
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Study of verifiability of an RSA implementation

Jakub Tetera

doc. RNDr. Dušan Knop, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

The verification of algorithms is a very important topic in security and computer science

in general. The task is to implement and verify an implementation of the RSA algorithm

in the Frama-C framework.

The main tasks are the following:

1) Learn the RSA algorithm and provide a high-level description of its basic functionality.

2) Learn the Frama-C framework.

3) Implement a verifiable (simplified) version of the RSA algorithm (in 64-bit arithmetic

and with 32-bit prime numbers).

4) Demonstrate the correctness of the partial verification by an SO/DLL attack.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 30 January 2023 in Prague.

Bachelor’s thesis

STUDY OF
VERIFIABILITY OF AN
RSA IMPLEMENTATION

Jakub Tetera

Faculty of Information Technology
Katedra informačńı bezpečnosti
Supervisor: doc. RNDr. Dušan Knop, Ph.D.
May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jakub Tetera. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Tetera Jakub. Study of verifiability of an RSA implementation. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2021.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

Introduction 1

1 Deductive formal verification 3
1.1 Theoretical foundations . 3

1.1.1 Hoare logic . 4
1.1.2 Weakest preconditions . 4
1.1.3 Intermittent assertions . 4

1.2 Practical usage . 5
1.3 Industrial use . 6

2 RSA and deductive verification 9
2.1 The RSA algorithm . 9
2.2 Common implementation flaws . 10

2.2.1 Mistakes from implementation complexity 10
2.2.2 Poor parameter choice . 11
2.2.3 Faulty hardening . 12

2.3 Benefits of a verified implementation . 12

3 Frama-C 13
3.1 Architecture . 13

3.1.1 Annotations . 13
3.1.2 Kernel . 14
3.1.3 Plugins . 14

3.2 Installation and usage . 15

4 Implementation 17
4.1 Design overview . 17
4.2 Development . 18

4.2.1 Basic implementation and automated verification 18
4.2.2 Manual verification using contracts . 18
4.2.3 Practical considerations . 20

4.3 File structure . 20
4.4 Algorithm structure and verification . 20

4.4.1 Encryption and decryption . 20
4.4.2 Extended Euclidean algorithm . 20
4.4.3 Modular arithmetic . 24

iii

iv Contents

4.4.4 Prime number generation . 29
4.4.5 Key generation . 29
4.4.6 Dynamic library libExponentGenerator . 31
4.4.7 Driver . 31

5 Practical demonstration 33
5.1 Standard operation . 33

5.1.1 Windows . 33
5.1.2 Linux . 33

5.2 Static verification . 33
5.3 Dynamic demonstration . 34

6 Conclusion 37

Enclosed repository contents 43

List of Figures

4.1 Example of generated assertions with possible overflow 19
4.2 Example of generated assertions without overflow 19

5.1 Example Frama-C GUI screenshot . 34
5.2 E-ACSL demonstration . 35

List of Code Listings

1.1 Annotated program example . 6
3.1 Frama-C installation . 15
4.1 Encryption and decryption code . 21
4.2 Extended Euclidean algorithm code . 23
4.3 Modular multiplication code . 25
4.4 Modular exponentiation code . 28
4.5 Modular multiplicative inverse code . 30
4.6 Prime number generation pseudocode . 31
5.1 frama-c-gui command . 34
5.2 E-ACSL demonstration terminal output . 35

v

I would like to express my deepest appreciation to all the extraor-
dinary individuals without whom this thesis would never have been
possible. Chiefly, I’d like to thank doc. RNDr. Dušan Knop, Ph.D.
for his insight, support and openness while supervising this thesis.
I would also like to extend special gratitude to my student colleagues
Bc. Lucie Procházková and Bc. Ladislav Louka for their correc-
tions. In addition to this, the countless hours we spent together
working on our respective theses have provided much needed moti-
vation and mutual support.
Finally, I’d like to thank my beautiful girlfriend and my parents for
their continued support of my studies and their patience in times of
need.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2023 .

vii

Abstract

This thesis explores the possibilities of formal deductive verification of the RSA encryption algo-
rithm. The theoretical part serves as an introduction to the realm of formal deductive verification
and its basic concepts, along with a brief survey of current applications of its concepts in in-
dustry. Furthermore, the RSA encryption algorithm and the Frama-C verification environment
for C-language programs, which uses annotations and automatic systems for formal verification
of theorems, are briefly described. The practical part provides a demonstration of application
of concepts explored in the theoretical part using an implementation of the RSA algorithm in
the C programming language and its partial verification using Frama-C. The final result of this
thesis is therefore a partially verified implementation of the RSA algorithm. Some of the possible
utility of such an implementation is demonstrated using an example SO/DLL injection attack
against one of its components.

Keywords Formal verification, deductive verification, RSA, Hoare logic, Frama-C, E-ACSL,
SO/DLL injection

Abstrakt

Tato práce se zabývá zjǐst’ováńım možnost́ı formálńı deduktivńı verifikace šifrovaćıho algoritmu
RSA. Teoretická část čtenáře uvede do problematiky formálńı deduktivńı verifikace, představ́ı
jej́ı základńı koncepty a nast́ıńı jej́ı současné pr̊umyslové využit́ı. Dále je představen samotný
algoritmus RSA a verifikačńı prostřed́ı Frama-C určené pro programy v jazyce C, které využ́ıvá
anotaćı a automatických systémů k dokazováńı teorémů. Praktická část se zabývá praktickou
ukázkou využit́ı koncept̊u nastiněných v teoretické části pomoćı demonstračńı implementace
algoritmu RSA v jazyce C a jej́ıho částečného ověřeńı pomoćı Frama-C a anotačńıho jazyka E-
ACSL. Výsledkem práce je částečně verifikovaná implementace šifrovaćıho algoritmu RSA. Jeden
z praktických př́ınos̊u verifikace je pak demonstrován pomoćı zastaveńı ukázkového SO/DLL
injection útoku na jednu z komponent této implementace.

Kĺıčová slova Formálńı verifikace, deduktivńı verifikace, RSA, Hoareova logika, Frama-C,
E-ACSL, SO/DLL injection

viii

List of abbreviations

ACSL ANSI C Specification Language
ANSI American National Standards Institute
AST Abstract syntax tree
DLL Dynamic link library

ETCS European Train Control System
GCD Greatest common divisor
LSB Least significant bit

MSB Most significant bit
NIST National Institute of Standards and Technology

OS Operating system
PKCS Public Key Cryptography Standard
RNG Random number generator

SO Shared object
SSL Secure Socket Layer
TP Theorem prover

VCG Verification condition generator
WSL Windows Subsystem for Linux

ix

x List of abbreviations

Introduction

Cryptography has always served a critical role in our society. For centuries, human endeavors,
organizations and even entire empires hinged upon their ability to communicate in a confidential
manner. The importance of this ability cannot be overstated, and is perhaps best illustrated on
the instances where encrypted messages had been intercepted and their encryption broken by
adversaries. Some of the notable historical cases include Mary Stuart’s letters, the breaking of
Kriegsmarine’s Enigma code in 1941, or the CIA’s cold war era VENONA project. At no point
in history, however, had the importance of secure encryption been as great as in today’s inter-
connected digital world with its ever increasing volumes of exchanged confidential information –
and ever increasing numbers of adversaries.

Numerous cryptographic algorithms have been developed over the years to ensure information
confidentiality. One of the most widely used among them is the RSA asymmetric key cryptosys-
tem, first publicly described by Rivest, Shamir and Adleman in 1977 [1]. Its security relies on the
computational difficulty of factoring large integers, and it is generally considered secure as long
as sufficiently large integers are used as keys. However, the implementation of this algorithm
can be tricky. Even subtle errors in any of the algorithm’s components may result in an insecure
cipher. Mistakes in implementation may also open the program itself to an array of attacks un-
related to cryptography, such as SO/DLL injection or buffer overflow. This may threaten both
its operation and the confidentiality of information contained within its memory.

The dangers of such errors are not new, nor are they unique to RSA or other cryptography
applications. Indeed, for this very reason, most software is extensively tested before entering
service. However, testing can only show the presence, not absence, of errors. In safety and
security-critical applications this may not be sufficient to ensure the required levels of confidence
in the system. Therefore, significant effort has been dedicated to ensure the formal and logical
correctness of programs and algorithms. This process is called formal verification.

Nowadays, two main techniques of formal verification are used in practice – model checking
[2], which relies on a complete and exhaustive exploration of the mathematical model of the
application, and deductive verification, which seeks to prove that all possible states and behaviors
of the program satisfy formally defined requirements. While formal verification has its limits,
especially the latter technique is widely and successfully used in several key industries, such
as aviation, nuclear energy, and industrial control in order to reduce both the likelihood of
failure and the attack surface for any prospective threats. Therefore, we endeavor to explore the
possibilities of this approach in other critical areas, such as encryption.

1

2 Introduction

Objectives
The main objective of this thesis is to explore the viability of developing a partially verified
implementation of the RSA encryption using C programming language and Frama-C formal ve-
rification framework. Furthermore, the high-level concepts of formal verification will be explored,
as well as its use within certain industries. Finally, a possible use case of a verified encryption
algorithm will be demonstrated using a mock attack scenario.

Thesis structure
The thesis is divided into five chapters. Chapter 1 introduces the reader into formal verification
and its core concepts. The field’s theoretical foundations and practical implications are explored,
along with the state of the art in industry. Chapter 2 endeavors to present the case for applying
formal verification to a widely used cryptographic algorithm, namely the RSA cryptosystem.
Chapter 3 provides a brief introduction to Frama-C, an industrialized formal verification frame-
work, which was used for implementing the practical segment of this thesis. Chapter 4 presents
a deep dive into our proof-of-concept verified implementation of RSA, outlining the challenges
faced, describing solutions used, and providing pen-and-paper proof where required. Chapter 5
provides a demonstration of the results of our work.

Chapter 1

Deductive formal verification

Deductive software verification is a subset of formal verification that works by expressing the
correctness, i.e. the expected behavior of the program, as a mathematical statement and then
proving it [3]. This verification process is based on a series of logical inferences (or “deduc-
tion”) from known and firmly defined properties of the program. Seminal works, upon which
deductive software verification is based, include Hoare logic, Dijikstra’s weakest preconditions,
and Burstall’s intermittent assertions [4].

Hoare’s work introduced the Hoare triple of preconditions, commands, and postconditions,
which collectively describe how execution of a command in question affects the internal state of
the program [5]. Dijkstra later noted that it is possible to compute the minimal precondition
that guarantees the required postconditions [6]. Finally, Burstall combined symbolic execution
with mathematical induction to prove that any program execution path implies its postcondition.
These works are explored in more detail in Section 1.1.

The three works formed the theoretical basis for the first successful deductive verification
tools, such as Tatzelwurm for Pascal. Tatzelwurm was published in 1989 and included facilities
for proving that the specified preconditions were stronger than the weakest preconditions required
to produce the stronger postconditions. Even so, for a long time, the process of formal verification
remained a largely pen-and-paper exercise, and the development of tools for a more automated
approach frequently happened in isolation on a per-institution basis [4].

Major progress in wider adoption of deductive verification started around the year 2000.
A wider community had formed in the field, facilitating easier exchange of ideas and resulting in
the development of several frameworks that enabled a complex approach to deductive verification.
These include KeY, SPARK, JML, and Frama-C; many of which have found their way into
industrial use and are still in active development today [4]. As the field matured, most of them
have developed a common array of features, which are described in Section 1.3 and shown on
the example of Frama-C which forms the basis of the practical segment of this thesis.

1.1 Theoretical foundations

Formal verification is an idea that is nearly as old as computer science itself. As early as 1949,
Alan Turing has demonstrated an approach to proving the correctness of a large routine by
breaking it down into individual mathematical operations, which are in turn individually proven
using standard mathematical and logical methods [7]. Turing has even included a full flow
diagram of his routine, as well as the map of possible program and memory states, which are
used to support his proof.

However, as program complexity increases, this and similar approaches quickly become com-

3

4 Deductive formal verification

plex, arduous, and time-consuming. In fact, with many common programs, the effort required
to provide such proofs verges on impossible due to the sheer number of individual elements that
need to be proven, raising the need for automating this process where possible.

1.1.1 Hoare logic
In 1969, C. A. Hoare proposed a logical basis for evaluating the execution states of computer
programs in his article titled An axiomatic basis for computer programming [5]. He observed
that the results of executions of a program can be expressed using the relationship between a set
of preconditions, i.e., the known state of the environment before an execution of a program, the
program execution itself, and a set of postconditions, which describe the results of the execution.
Using mathematical notation, this can be expressed as follows:

P{Q}R

Here, P is the set of preconditions, Q is the program execution, and R is the set of postconditions.
Hoare also provided the following natural language explanation of this statement:

▶ Theorem 1.1. If the assertion P is true before initiation of a program Q, then the assertion
R will be true on its completion.

This theorem provides the basis for deductive verification. If we are able to express the initial
requirements of a program and its end result using assertions, we can prove its correctness by
showing that an execution with given preconditions will always result in required postconditions
being established. According to Hoare, two elements are required for such proof of correctness –
Axioms which have already been proven, and inferences that enable deductive proof of additional
statements. The latter take the form of “If ⊢X and ⊢Y then ⊢Z” statements, i.e. “If X is proven,
and Y is proven, then Z is also proven.”

Hoare has provided several axioms and inferences in his original paper, which had been later
expanded in subsequent works by both Hoare and other researchers.

1.1.2 Weakest preconditions
The concept of weakest preconditions was proposed by E. W. Dijkstra, initially as a supplemen-
tary notion in order to facilitate a divide-and-conquer solution to a class of sequence generation
problems, rather than as a program verification tool [6]. The main observation is that it is possi-
ble to recursively calculate the weakest precondition required for a complex program to establish
a required postcondition as an union of the weakest preconditions of all its constituent elements.

This allows the simplification and partial automation the proofs of even large algorithms –
at least to an extent. It is sufficient to prove that the stated preconditions for any given complex
program are stronger than any and all of the preconditions of each of its components.

1.1.3 Intermittent assertions
The intermittent assertion method further expands on the idea of weakest preconditions by
extending it with techniques from symbolic execution and mathematical induction [8]. The final
goal of this method is to, in essence, prove that the program in question implies its postconditions
via a series of implications. Intermittent assertions usually take the following form:

At a point A in the program, the assertion T holds.

The correctness of a program segment (or an entire program) can be expressed using the
following intermittent assertions. In this instance, A denotes the entry point of a segment, B

Practical usage 5

denotes the exit point1, x is an input variable, y is an output variable, P (x) is a precondition
and T (x, y) is a desired postcondition:

▶ Theorem 1.2. If A is reached and P (x) holds, then B will be reached and T (x, y) will hold.

Notably, this form of assertion requires that both the entry and exit points have to be reached,
otherwise, the implication is rendered moot. Therefore, an additional lemma needs to be proven
independently for each program loop:

▶ Lemma 1.3. If at some time C is reached, a = x and Q1(a) holds, then at some time C will
be reached and Q2(a, x) will hold.

Q1(a) and Q2(a, x) denote the properties of x and a required by the loop’s operation. C
denotes a breakpoint within a loop, which will be reached during each iteration.

The intermittent assertion method is particularly useful for automated proofs of the properties
of loops. It allows us to leverage structural induction on partially ordered finite sets in order
to prove these properties on an incremental basis for each loop iteration [9]. In particular, loop
termination can be efficiently proven with proper choice of provable properties.

1.2 Practical usage
While the three seminal works have provided effective approaches to manually proving the cor-
rectness of programs (and indeed, that was their initial intention), their main benefit lies in the
fact that, unlike earlier pen-and-paper methods, they lend themselves very well to automation.
When used in conjunction they allow us to specify the high-level expected behaviors of a program
and provide a deductive proof of correctness with a series of well-defined automated steps.

In modern practice, the verification process starts by collecting a comprehensive set of for-
mally described requirements for algorithm correctness. This includes the required high-level
behaviors of the algorithm (e.g., the desired mathematical properties of the output), as well as
low-level ones (e.g., an absence of memory leaks or invalid read operations). Once established,
the requirements are translated into the so-called function contracts, which describe the collective
preconditions, postconditions and intermediate assertions required for the proof.

Function contracts usually take the form of assertions written in an annotation language,
placed at various stages of the program. Their purpose is to enable the automated deductive
verification capabilities built into the frameworks. The exact form and syntax used by each
framework vary but they follow the same general structure. This can be demonstrated using
a publicly available code snippet from the documentation of a modern verification framework,
Frama-C, and its associated annotation language, ACSL [10].

In the example algorithm in Listing 1.1 – a function that sets all elements of an array to zero
– ACSL annotations are written in blocks delimited by /*@ and */. The first block that precedes
the function signatures specifies the function contract. It describes the required preconditions
(in the requires clause), the assigned variables (in the assigns clause) and the postconditions
that this function will establish (ensures).

The second block contains the contract for the main loop of this algorithm. It contains
assertions that are required to prove its termination and correctness. First two assertions contain
loop invariants - conditions that must hold before entering the loop and hold upon exiting the
loop. Furthermore, any of its locations which was allocated outside of the loop body must preserve
its value. In this case, i must be at least 0 and at most n, and at each iteration, zero must be
assigned to the given array position. This is followed by an assignment declaration, which tracks
the variables whose values are modified by the loop. Finally, a loop variant is included. A loop
variant denotes an expression whose value must strictly decrease at every iteration of the loop,

1Assuming a single exit point for the segment.

6 Deductive formal verification

Code listing 1.1 Annotated program example
include <stddef .h>
/*@

requires \valid(a+(0..n -1));
assigns a[0..n -1];
ensures
\ forall integer i;

0 <= i < n ==> a[i] == 0;
*/
void set_to_0 (int* a, size_t n){

size_t i;

/*@
loop invariant 0 <= i <= n;
loop invariant
\ forall integer j;

0 <= j < i ==> a[j] == 0;
loop assigns i, a[0..n -1];
loop variant n-i;

*/
for(i = 0; i < n; ++i)

a[i] = 0;
}

while staying non-negative throughout the execution. It is required to prove the termination of
a loop.

A program annotated in this way is then processed by the chosen verification framework.
An intermediate normalized representation of the program is generated, which is subsequently
analyzed by the framework’s proving tools. The exact approach varies between frameworks, both
in architecture and in functionality2. Finally, a report is generated, which contains the proof
status of each individual building block of the program. Generally, a contract will be marked as
valid (i.e., all of its requirements are conclusively satisfied at every possible state in the program’s
flow), invalid (i.e., some of its requirements are conclusively unsatisfied at some possible state),
or inconclusive. The resulting report can then be used by the program’s authors to discover
previously unseen erroneous or otherwise undesired behaviors, examine the program’s flow in
depth, or to serve as a conclusive proof of correctness of critical software.

1.3 Industrial use

Initially, automated verification was mostly the domain of academic endeavors. The Tatzel-
wurm [11] tool for Pascal, developed at University of Karlsruhe in 1995, is one of the first
notable projects in this regard. In many ways it can be viewed as a direct precursor to today’s
software verification platforms. It is built using the same general approach and with the same
general elements, albeit with some notable limitations, such as the heavily restricted set of Pascal
commands available. It features a specification language which is used to specify preconditions
and postconditons in the form of contracts. Contracts are, in turn, used by an automated veri-
fication condition generator (or VCG) to generate the Hoare logic formulae necessary to verify
the program. Finally, an automated theorem prover (or TP) is used to show the correctness of
the input program based on both manual and auto-generated preconditions and postconditions.

2Frama-C’s approach is provided in Section 3.1

Industrial use 7

The adoption of deductive verification gained pace around the year 2000 with the birth of
several large and long-lasting projects, including some that are still in active development to this
day [4]. The first notable example is SPARK [12], a formally defined and verifiable programming
language based on Ada. Initially developed at University of Southampton based on requirements
by the UK Department of Defense, SPARK is intended to be used in high integrity applications,
such as real-time control systems, avionics, healthcare, and defense and military technology.
SPARK follows a similar structure to Tatzelwurm in that it includes a restricted set of Ada
commands extended with specification language, a VCG, and a TP, which are used to develop
complete, unambiguous and provably partially correct programs.

SPARK was quickly adopted by, in particular, the aeronautics and defense industries, due
to their need for highly dependable software with minimal margins for error. Many high profile
NATO defense projects rely on SPARK for verifying their critical software components written in
ADA. Notable examples include the Eurofighter Typhoon attack aircraft, or Lockheed Martin’s
Mk. 41 Vertical Launch System for various shipborne missiles. In the civilian sector, SPARK
had been used in avionics for modern aircraft (e.g., Boeing 777 and 787), safety systems such as
the ETCS, and multiple space vehicles developed by the European Space Agency [13]. Similar
verification tools are also available for other languages, such as JML for Java, which largely
follow a similar approach to program verification as the aforementioned examples.

8 Deductive formal verification

Chapter 2

RSA and deductive verification

RSA is one of the most prevalent cryptosystems used for secure data transmission. Designed in
1977 by Rivest, Shamir and Adleman [1], its main objective was to provide the capability for
secure encryption while also solving the key distribution problem inherent to all symmetric key
ciphers. In most earlier cryptosystems, before secure communication can be established, the keys
themselves needed to be exchanged first via a secure channel. RSA addresses this via public key
cryptography – a concept first attributed to Whitfield Diffie and Martin Hellman in 1976 [14].

Suppose that Alice wants to receive an encrypted message from Bob, with a third person,
Eve, intercepting their communications. In this scenario, public key cryptography allows Alice to
generate a key pair comprised of a public (encryption) key and a private (decryption) key. This
is done in such a way that neither of the keys can be used to derive the other. The private key is
kept secret by Alice, while the public key is transmitted to Bob through any channel. Bob uses
the public key to encrypt the message for Alice, which is then sent to her through a potentially
insecure channel. Eve is able to intercept the public key and the message, but since key is not
a valid decryption key (as it would be in a symmetric cryptography scenario) and cannot itself
be used to derive the decryption key, it cannot be used to decrypt the message. Alice and Bob’s
secrets therefore remain safe.

To achieve the properties above, RSA relies on modular exponentiation and the computational
difficulty of factoring large numbers, as described below. The resulting algorithm is relatively
easy to use and very secure in practice, so long as it is correctly implemented. However, it
has a number of prerequisites that need to be satisfied by its inputs, as well as many potential
pitfalls that make it exceedingly difficult to implement securely — to the point that custom
implementations are often discouraged within the software development community.

Deductive verification can help eliminate a large class of such issues. It can provide a conclu-
sive proof that the implementation contains neither low-level mistakes nor high-level architectural
faults that may be used for attacks.

2.1 The RSA algorithm

The operation of RSA, as described by Rivest, Shamir and Adleman is as follows [1]:
To encrypt a message M using RSA, a public key comprised of two positive integers (e, n)

is used. First, the message is converted into a sequence of integers. Then, each member of the
sequence is raised to the power of e modulo n, producing the ciphertext C:

C ≡ Me (mod n) (2.1)

9

10 RSA and deductive verification

To decrypt a ciphertext C, it can be raised to the power of d modulo n, resulting in a
decryption key of (d, n).

M ≡ Cd (mod n) (2.2)

The key generation is somewhat more complex. First, a pair of two very large primes p and
q is selected (and kept secret). Then, their product n, which serves as the modulus for both
encryption and decryption, is calculated and released.

n = p · q (2.3)

The next step is to calculate Euler totient function value ϕ(n), which will serve as an input
for subsequent generation of the private exponent d.

ϕ(n) = (p − 1) · (q − 1) (2.4)

Then, either the encryption exponent e or the decryption exponent d is chosen arbitrarily,
with the other being derived later. In the original paper, d is the exponent of choice. However, in
most practical applications, e is the arbitrarily chosen exponent. The reasons for this are security
and execution speed. Since common binary exponentiation algorithms work faster when a small
exponent with low Hamming weight is chosen, it is convenient to choose such an exponent. If
this exponent was to be the decryption key, an attacker would have a significantly easier time
guessing it, resulting in insecure encryption.

The chosen exponent (e in this case) must satisfy the following requirements:

2 < e < ϕ(n) (2.5)

gcd(e, ϕ(n)) = 1 (2.6)

The lowest (and fastest) such value is 3. In practice, the value of 65537 (216 +1) is frequently
used, as it partially mitigates the danger of sub-optimal padding, while retaining a low Hamming
weight and thus enabling faster operation.

Finally, the remaining exponent (in our case d) is derived as a modular multiplicative inverse
of the arbitrarily chosen exponent.

d ≡ e−1 (mod ϕ(n)) (2.7)

Rivest, Shamir and Adleman have also included a mathematical explanation and proof of
their algorithm, leveraging Euler’s generalization of Fermat’s little theorem [1, Chapter 6]

2.2 Common implementation flaws
A successful implementation of RSA requires the developer (and the user) to make many design
decisions which influence the algorithm’s properties in subtle, but meaningful ways. Unfortu-
nately, many common optimizations and parameter choices could result in degraded security.
Worse still, this may not be immediately apparent in many cases. There have been instances
of such insecure implementations resulting in widespread vulnerabilities, such as the vulnerable
random number generator (RNG) included in a vast number of commonly used smart cards and
which is described in depth in Section 2.2.2.

2.2.1 Mistakes from implementation complexity
Practical implementations of RSA can be highly complex. For instance, if the cipher is to have
sufficient strength, it has to operate with very large integers. For common applications the United
States of America, the National Institute for Standards and Technology (NIST) recommends the

Common implementation flaws 11

use of at least 2048-bit RSA keys [15]. As many languages do not possess native implementations
of sufficiently wide integers, developers must frequently resort to use of third-party libraries, or
implement their own large number arithmetic and handling procedures.

As the complexity of a program increases, so does the likelihood of vulnerabilities from design
choices or developer mistakes. Potential issues range from application instability to enabling
information disclosure or even code execution (e.g., via buffer overflow). Mistakes of this type
are known to occur occasionally even in commonly used RSA libraries. An example of this would
be a buffer overflow vulnerability affecting certain versions of the popular OpenSSL library, which
may result in compromise of RSA-1024 under certain (albeit unlikely) circumstances [16].

Even in cases where third party libraries are used to provide some of the required function-
ality, vulnerabilities within them may transitively expose the RSA implementation to attacks.
Erroneous library usage also opens the application to previously unavailable attacks, such as
SO/DLL injection.

2.2.2 Poor parameter choice
RSA requires the developers to choose several parameters – namely p, q and e (or d). The
way in which they are selected is integral to the cipher’s security. Over time, many flawed
choices of numbers have appeared in public projects. For example, in 2017, a developer for Salt,
an infrastructure management tool written in Python, has selected 1 as the value for public
exponent e. The resulting implementation effectively performed no encryption and transmitted
plaintext information [17].

For p and q, many vulnerabilities arise from insufficient RNG entropy during their generation.
If two keys share one prime but not the other (i.e. p = p′ but q ̸= q′), an attacker can easily factor
both corresponding public moduli by computing their GCD (p) and dividing to find q and q′,
respectively. From there, calculating the private exponent can be done using the normal RSA
key generation approach. Such flaws are particularly common in embedded systems, whose usage
patterns may result in reduced entropy available to the RNG and whose low computing power
frequently leads developers to seek questionable optimizations. In 2012, Heninger et al. [18] have
performed a study aimed at cracking publicly available SSH and TLS certificates. They have
discovered that a small proportion of devices (0.40% of the sample) produced keys factorable in
this manner. Almost invariably, these were embedded devices presumably using insecure RNG
implementations.

Perhaps the most widely publicized example of poor entropy in random number selection was
a vulnerability affecting a range of cryptographic hardware produced by Infineon Technologies
produced between (at least) 2004 and 2017. The vulnerability, dubbed “Return of Coppersmith’s
attack” (ROCA), by the researchers that discovered it, lay in the specific method that was used
to obtain primes for use in RSA key generation. All of them were generated with the following
form in order to optimize the generation process:

p = k · M + (65537a mod M) (2.8)

While the integers k and a were not known, the value of M was calculated as a product of
first n primes, where n was fixed for each key size. Since the result of this operation was rather
large compared to key size (e.g., 219 bits for 256-bit primes used in RSA-512), the amount of
entropy was greatly reduced – in the case of RSA-512, the reduction was from 256 to 99 bits.
The researchers were then able to use their knowledge of public keys, along with a modification
of Coppersmith’s algorithm for finding small roots of modular equations, to factorize the entire
prime, and thus compromise the private key. In practice, keys up to 2048 bits were found to be
vulnerable. The approximate financial cost of such attack to an attacker using common cloud
services was found to be between $0.06 (for RSA-512) and $40,000 (for RSA-2048) [19].

The publication of this vulnerability had severe practical consequences – individuals and
organizations using the faulty hardware were faced with the possibility of compromise by a de-

12 RSA and deductive verification

termined attacker. This included approximately 750,000 citizens of Estonia, who were issued
vulnerable smart personal ID cards [20].

2.2.3 Faulty hardening
RSA possesses certain mathematical properties that make its plain (unharedened) implementa-
tion vulnerable to a variety of attacks. For instance, short messages and low encryption exponents
(i.e. m < n1/e) result in ciphertext smaller than the modulus and thus trivially breakable as
the eth root of the ciphertext. Another class of attacks leverages the fact that plain RSA is
not semantically secure, making it vulnerable to chosen plaintext attacks (by encrypting likely
plaintexts using the public key and checking whether they are equal to the attacked ciphertext).
Other attacks include side-channel attacks via differential power analysis, timing attacks [21], or
branch prediction analysis [22].

For these (and other) reasons, RSA implementations are frequently hardened by including
padding, implementing extra operations in order to break the relationship between key values
and side-channel readings, as well as other similar hardening constructions.

In addition to the increased complexity of a hardened implementation, (which in turn leads
to many of the issues described in Section 2.2.1), the hardening mechanisms may themselves
be flawed. This results in a false sense of security at best and additional avenues for attacks
at worst. Notably, an earlier padding scheme in use with RSA – PKCS #1, up to version 1.5
– enabled adaptive chosen ciphertext attacks against Secure Socket Layer (SSL) session keys.
Using repeated decryption requests and the fact that only very few ciphertexts resulted in PKCS
#1-compliant plaintexts (beginning with bytes 0x00 and 0x02), it has been demonstrated that
it is possible to reconstruct the key within practical timeframes [23].

2.3 Benefits of a verified implementation
Deductive verification can potentially help developers mitigate the impact of some of the common
pitfalls listed above. Common programming mistakes (e.g., buffer overruns, variable overflows,
flow control errors...) can frequently be conclusively ruled out in many cases. Using modern
verification frameworks, a number of such issues can be even avoided using auto-generated as-
sertions and contracts at next to no additional development effort cost. SPARK and Frama-C
both include provisions for automatically detecting a range of common faulty behavior including
integer overflows and invalid memory reads. This feature is also present in most other commonly
used frameworks.

Expanding upon auto-generated assertions with custom ones can improve the implemen-
tation’s integrity even further. The validity of input parameters can be checked, ruling out
parameter choice outside of specification. Moreover, output properties of such an algorithm can
be guaranteed to an extent, increasing the trustworthiness of such an implementation.

Verification also has benefits which arguably cannot be empirically measured. It helps foster
a culture of consistency, attention to detail within the development team, as well as a reliability-
focused mindset in development. This (as well as all previously listed benefits) makes verification
especially desirable in applications where safety and security is mission critical, or where retroac-
tive remediation of implementation flaws is not viable.

Unfortunately, verification is not the proverbial silver bullet for algorithm correctness. Some
of the more subtle (and more dangerous) flaws can be difficult or impossible to prevent using
common verification. For RSA specifically, it is difficult to verify properties such as the security
of padding or RNG entropy, or similar subtle flaws. As such, it remains important to not rely
on a “silver bullet” method of ensuring program correctness, but to adhere to established good
development, testing, and lifecycle management practices.

Chapter 3

Frama-C

The Frama-C framework, developed at the behest of a consortium of French public companies,
is emblematic of modern automated software verification frameworks. It is widely used in de-
velopment of safety and security-critical C language programs. Notable users include Airbus, as
well as the French Commissariat à l’Énergie Atomique et aux Énergies Alternatives. It has been
chosen as the verification framework selected for the practical segment of this thesis due to its
high degree of maturity and a wide array of features.

3.1 Architecture

On the top level, Frama-C is comprised of a kernel, which parses annotated C code into a normal-
ized representation, and various plugins that leverage this normalized representation in order to
perform various individual verification tasks [24]. This section contains the detailed breakdown
of its structure.

3.1.1 Annotations
In addition to application code itself, deductive verification requires the application’s authors to
be able to provide specifications for their expected behavior. In most modern software verification
frameworks, this takes the form of function contracts. Frama-C is no exception in this regard.
It uses an annotation language called ACSL, or ANSI/ISO C Specification Language. According
to its authors, ACSL is heavily inspired by the JML specification language for Java applications
in both form and function. Its main goal is to provide a convenient way for “writing the kind of
properties that make up a function contract” [10].

ACSL annotations are presented in the form of special purpose comment blocks, enabling code
compatibility with regular C-language compilers. They contain precise formal specifications of
the underlying code’s behavior in a manner both understandable to human programmers and
convenient for automated tool operation. A comprehensive set of verification features is provided
by ACSL. These include low-level verification primitives for low-level C language features (e.g.,
provisions for pointer arithmetics and/or verifying pointer validity), arithmetic functions (in-
cluding arbitrary precision arithmetic), high-level abstract reasoning constructs such as logical
predicates, and provisions for defining custom advanced verification logic.

An example of ACSL annotated code is published on the Frama-C website [10]. This same
example is included in Listing 1.1.

13

14 Frama-C

3.1.2 Kernel
The Frama-C kernel’s purpose is to process ACSL contracts and specifications and integrate
them with the underlying code. It parses both native C code and its ACSL annotations and
produces a normalized representation in the form of an abstract syntax tree (AST) [24]. This is
required to provide an unified basis for subsequent operations, both by the kernel itself and by
various verification plugins.

In addition to this main purpose, the kernel serves as an orchestration hub within the frame-
work. It is responsible for managing the analysis sequence by scheduling and executing capa-
bilities from various plugins. It also provides features such as serialization and deserialization
of analysis results, enforcing separation of various analyses, maintaining analysis integrity or
providing means for communication between various plugins. The intent of this functionality is
to provide interoperability between analysis plugins while maintaining operational integrity and
user comfort [24].

Another benefit of this solution is the ability to easily swap the framework’s components or
integrate additional plugins as required. Notably, multiple automatic prover plugins are provided
with Frama-C out of the box, each best suited for different use cases.

3.1.3 Plugins
The vast majority of program verification tasks in Frama-C is handled by various plugins. Many
of them are bundled as standard with ever Frama-C installation, others are developed and dis-
tributed separately. They cover a wide variety of functionality, ranging from core automated
theorem proving to providing additional toolsets for specialized applications such as smart cards.
Only the plugins leveraged for the purposes of this thesis will be described in more detail. The
full list of available plugins can be found at Frama-C’s website [25].

3.1.3.1 EVA
EVA, which stands for Evolved Value Analysis, is a plugin designed to compute variable variation
domains1 [26]. It serves both as a basis for the operation of other plugins and as a standalone
tool. In the latter use case, its main purpose is to infer the impossibility of variable-related
runtime errors such as integer overflows. EVA will emit a warning when a possibility of such an
error is detected, with the absence of warnings serving as a guarantee of absence of errors.

During the course of development of our partially verified RSA implementation (described
later in Chapter 4), EVA was used during initial debugging to validate the results of arithmetic
operations. Several possible integer overflows have been detected and corrected in this manner.

3.1.3.2 RTE
RTE automatically generates ACSL assertions protecting each program expression against un-
defined behavior [27]. This includes (but is not limited to) arithmetic overflows, invalid pointer
dereference, out-of-bounds array access. In many ways, it provides the same functionality as the
EVA plugin described above. Indeed, the plugin’s manual explicitly states that parallel use of
EVA and RTE is unnecessary. The main difference is that RTE does not automatically attempt
to prove its assertions, but always relies on external plugins such as RTE or E-ACSL.

3.1.3.3 WP
WP is the plugin responsible for proving that ACSL contracts are valid for all possible execution
paths of the code [28]. It does this by leveraging weakest precondition calculus, and can be

1In layman’s terms, the range of possible values for program variables

Installation and usage 15

extended with a variety of external prover tools and proof assistants. It contains its own built-in
prover – qed – but this can be supplemented or supplanted by any prover compatible with the
why3 prover platform, such as the interactive prover coq. According to its creators, it should
serve as a strong alternative to traditional unit testing. Our proof-of-concept uses the plugin in
this capacity as well.

3.1.3.4 E-ACSL
E-ACSL is an example of a plugin that does not perform deductive verification per se. Instead,
its purpose to is to generate C code that performs runtime verification of ACSL assertions –
even in cases where deductive verification was inconclusive. This is very useful in cases when
full verification is impossible (e.g., due to unverified components or prover limitations). A pro-
gram generated by E-ACSL will terminate if an assertion is violated. Otherwise, it will behave
in a manner identical to the original program. This is somewhat analogous to the defensive
programming technique of putting C-language assertions in critical segments of code. The main
benefit is that ACSL allows us to specify significantly more complex behaviors with comparative
ease, potentially enabling the use of runtime assertions even in places where regular C assertions
would be impractical.

This thesis shows some of these possibilities by demonstrating a program to fail when an
invalid parameter is provided to an annotated function. A detailed demonstration is provided in
Chapter 5

3.2 Installation and usage
Frama-C was natively developed for Linux, although it can be run on Windows using WSL2 and
on Mac using Homebrew. It is available through a third party package manager called OPAM. Full
installation guidelines are available at the project’s website [29].

For the setup of our local environment (Ubuntu 20.04 under WSL2), the following steps were
executed, as specified in the guidelines:

Code listing 3.1 Frama-C installation
sudo apt install make m4 gcc opam

opam init --disable - sandboxing --shell -setup
eval $(opam env)
opam install depext

opam depext --install lablgtk3 lablgtk3 - sourceview3
opam depext --install -y frama -c

Following installation, Frama-C can be started in GUI mode using the following command:
GDK_BACKEND =x11 frama -c-gui <options >

The exact syntax depends on the required behaviors and plugins. For the purposes of this the-
sis, the following options have been used. This allows us to perform static deductive verification
with GUI.

GDK_BACKEND =x11 frama -c-gui -wp -rte <source_files > -cpp -extra -args
="-I< include_paths >"

Additionally, we have used the bundled utility for compilation with E-ACSL
e-acsl -gcc.sh -c --rte=all -E"< compilerOptions >" -l"< linkerOptions

>"

16 Frama-C

The specific commands used during the development of our proof-of-concept are provided as
needed in Chapter 5.

Chapter 4

Implementation

In order to demonstrate the utility of a verified implementation of an encryption algorithm, we’ve
developed a simplified proof-of-concept RSA library in C. This implementation was then anno-
tated using ACSL, and a static partial deductive verification using Frama-C’s wp and rte plugins
has been performed. This has been combined with the E-ACSL plugin, which provides runtime
condition verification capability, and which allowed us to prevent an attack using a spoofed
component.

In this chapter, the implemented algorithm will be broken down to its individual building
blocks, which include their C code, as well as their ACSL verification annotations. For each
block, a brief explanation is provided.

4.1 Design overview

Our implementation has been developed as a C library, using Rivest, Shamir and Adleman’s orig-
inal RSA specifications [1]. It is self contained and consists of encryption/decryption functions,
a key generation function, and various mathematical functions required for RSA’s operation.
This chiefly includes the extended Euclidean algorithm, the Rabin-Miller probabilistic primality
test, and seveal functions for performing modular arithmetic without integer overflows. The only
external dependency is the random number generator. A wrapper for Windows and Linux built-
in RNG implementations is provided. The Windows implementation uses the cryptographically
secure rand_s() function from Microsoft Visual C++, and the Linux implementation retrieves
its random data from /dev/urandom.

All internal functions are annotated using ACSL and have been partially verified using Frama-
C to ensure their correctness. The explanations (as well as the results) for the annotations of
notable functions are included in subsequent sections.

As a proof-of-concept, the implementation comes with several limitations. Encryption using
this library supports keys and data of up to 64 bits of length. This is due to the fact that longer
inputs would require an implementation of arbitrary precision arithmetic. This would result
in considerably increased complexity of all operations without meaningfully contributing to the
main goals of this thesis. For similar reasons, neither hardening techniques such as padding nor
countermeasures for side channel attacks are implemented. This implementation is therefore not
to be used in any real-world cryptographic application unless further effort is made to strengthen
it.

17

18 Implementation

4.2 Development
The proof-of-concept had been developed using a method outlined in an earlier thesis by Tomáš
Homola [30]. His method, dubbed the Minimal contract method, operates in several steps:

1. Develop a plain C-language implementation.

2. Perform automated verification and correction of runtime behaviors.

3. Verify preconditions and postconditions to function contracts.

4. Verify loop behaviors.

5. Verify memory manipulation verification.

6. Verify final specifications of high-level behavior (e.g., mathematical relationships between
outputs).

We have leveraged a similar approach, with minor modifications to accommodate our specific
needs where required. These modifications are described further in this section.

4.2.1 Basic implementation and automated verification
The proof-of-concept application has been developed incrementally on a function-by-function
basis. Upon completion of each function, we have performed automated variable value analysis
using Frama-C’s eva and rte/wp1 plugins to highlight possible undesirable behaviors. This
behavior had then been corrected before performing another round of verification. In some ways,
variable analysis was used as a more powerful alternative unit testing. It allowed us to guarantee
the absence of undefined behavior under all possible execution conditions, as opposed to under
a limited set of test inputs.

The benefits of this approach can be demonstrated on the case of an early version of the
modMultiply() function. An addition operation contained an edge case which might have re-
sulted in an integer overflow for too large operands. The rte plugin has generated an integer
overflow assertion. The wp plugin has subsequently attempted to prove this assertion, but was
predictably unable to do so. This is indicated by the orange blip in the highlighted section in
a screenshot from the Frama-C GUI included in Figure 4.1. Once this mistake had been cor-
rected through including an additional check, the verification output in Figure 4.2 shows that an
overflow is no longer possible.

4.2.2 Manual verification using contracts
Most basic verification steps were performed in a manner analogous to Homola’s approach to
verifying Jarńık’s spanning tree algorithm. Preconditions and postconditions have been specified
using ACSL’s requires and ensures clauses, respectively. For loop verification, loop variants
(strictly decreasing loop variables) have been used to verify termination. Higher-order specifi-
cations, such as the inductive definition of greatest common denominator, have been specified
using the inductive and predicate clauses.

In some cases, our functions’ desired behaviors depend on inputs. Frama-C allows us to
specify multiple separate behaviors using the behavior notation. Each behavior specified in
this way contains an assumes clause, which describes the conditions specific to each respective
behavior.

1The former was used for cursory checks during development, as it executes faster than the latter

Development 19

Figure 4.1 Example of generated assertions with possible overflow

Figure 4.2 Example of generated assertions without overflow

20 Implementation

4.2.3 Practical considerations
We have found that some elements of full formal verification using ACSL would result in signif-
icant increase of effort required with few additional benefits compared to a pen-and-paper proof
of the algorithm. In these instances, we have opted to perform the latter and provide references
to the pen and paper proof. This was done in the interest of practicality and applicability of our
approach, especially with regards to possible adoption beyond the academic sphere.

Furthermore, Frama-C was occasionally unable to reason about validity of certain assertions.
Notably, pointer validity in loop or recursive call scenarios appears to pose difficulties to the
wp plugin. In those cases, the validity was manually verified and the reasoning behind it was
included as a code comment. However, the faulty verification may propagate throughout the
chain through preconditions and nested calls, causing subsequent verification to fail as well. The
validity of failed verification was also reasoned manually using pen-and-paper methods. The
results of such reasoning are similarly either included as code comments, or as a commentary in
Section 4.4 of this chapter.

4.3 File structure

Individual functions are separated into header and corresponding implementation files based on
their purpose within the library. There are four main structural elements – RSAMath, which
handles the arithmetic required for RSA’s operation, RSAUtils, which contains the wrappers for
calling the operating system’s RNG APIs, RSAKeygen, which contains functions integral to key
generation, and libRSAVerified, which handles the main cryptographic functionality.

4.4 Algorithm structure and verification

4.4.1 Encryption and decryption
RSA encryption and decryption is performed using simple modular exponentiation. The encryp-
tion and decryption functions are therefore included mainly for ease or use. As such, they act
as a wrapper for the modular exponentiation function modEx(), described in Section 4.4. They
take pointers to buffers holding the plaintext/ciphertext, the key values, and a destination buffer
for each operation’s result.

Due to the aforementioned fact that these functions are merely wrappers for other verified
functions, their ACSL contracts only include provisions for pointer validity. No additional proof
of mathematical properties of the modular exponentiation function within them is necessary.

The code for both functions can be seen in Listing 4.1

4.4.2 Extended Euclidean algorithm
The extended Euclidean algorithm serves the purpose of finding Bézout’s coefficients required for
calculating the modular multiplicative inverse and determining whether they exist. This widely
known algorithm recursively calculates the greatest common divisor of two integers, retroactively
computing the coefficients after each iteration. The implementation used is one that is widely
available, and as such, has been both described and proven multiple times in literature. One
such proof and description had been done by Andreas Klappenecker of Texas Agricultural and
Mechanical University [31]. Based on this proof, we have included an inductive construct in the
Frama-C annotation that proves that our C-language implementation – eea() – does indeed find
the greatest common divisor of the inputs.

Algorithm structure and verification 21

Code listing 4.1 Encryption and decryption code
/*@
@ requires \valid(pubKeyBuf) && \valid(ptBuf) && \valid(ctBuf);
*/
int8_t rsa_encrypt (uint64_t e, uint64_t * pubKeyBuf , uint64_t * ptBuf ,

uint64_t * ctBuf)
{

return modEx (* ptBuf , e, *pubKeyBuf , ctBuf);
}

/*@
@ requires \valid(pubKeyBuf) && \valid(privKeyBuf) && \valid(ctBuf) && \

valid(ptBuf);
*/
int8_t rsa_decrypt (uint64_t *pubKeyBuf , uint64_t * privKeyBuf , uint64_t *

ctBuf , uint64_t * ptBuf)
{

return modEx (* ctBuf , *privKeyBuf , *pubKeyBuf , ptBuf);
}

rte has highlighted two possibilities for an overflow during the calculation of the greatest
common denominator, requiring additional checks to remedy. However, this overflow is mathe-
matically impossible. A general idea of a proof of this fact can be found in literature [32]. We
have used this proof as an inspiration to prove this for our own implementation.

▶ Lemma 4.1. If gcd(a, b) = t = ax + by, then |x| ≤ |b/2t| and |y| ≤ |a/2t|.

Proof. By induction on n, where n is the number of recursive iterations of the extended Eu-
clidean algorithm. For the moment, let’s assume that t = gcd(a, b) = 1 and b > a > 0. The
algorithm then completes in n rounds.

For n = 0, a = 1 and b > a, x = 1 and y = 0. In this case, it trivially holds that 0 ≤ a
2t and

1 ≤ | b
2t | for all (b > a) ∈ Z

If b > a > 1 and the algorithm completes in a single round (n = 1), since t = 1, we know
that there exists k such that b = ka + 1, k ∈ Z

Our algorithm calculates the coefficients from the n = 0 case as follows:

x = 0 − ka + 1
a

· 1 = −ka + 1
a

y = 1

Since a ≥ 2, we know that |y| ≤ | a
2 |. | ka+1

a | ≤ | b
2 | Holds as well, since b = ka + 1 and a ≥ 2,

giving us:

|ka + 1
a

| ≤ |ka + 1
2 .

In the inductive case, we’re assuming coprime a and b such that b > a and n + 1 recursive
rounds of the algorithm are required. This means that there exists r such that b = ka + r,
k, r ∈ Z., b > r > 1.2 Furthermore, we know that the nth application of the algorithm calculates
gcd(r, a), that gcd(r, a) = gcd(a, b) = 1, and that in the recursive chain, the round n = 1 will
eventually be reached. Let xn, yn therefore be the solutions to Bézout’s identity xr + ya = 1.
The base case assumption for n = 1 is the following:

2r = 1 is covered by the base case

22 Implementation

|xn| ≤ |a2 |

|yn| ≤ |r2 |

For n + 1, our algorithm calculates the coefficient as follows:

xn+1 = yn − b

a
· xn

yn+1 = xn

We need to prove that |xn+1| ≤ | b
2 | and |yn+1| ≤ | a

2 |. The latter assertion holds thanks to
the fact that yn+1 = xn and |xn| ≤ | a

2 |. For the former:

| b

2 | ≤ |yn − b

a
· xn|

|ka + r

2 | ≤ |yn − ka + r

a
· xn|

If we apply base case assumptions, the “worst case” scenario for our proof is if yn and xn have
opposite signs. That would make the right hand side expression’s absolute value |yn+((ka+r)

a ·xn).

|ka + r

2 | ≤ |r2 + ka + r

a
· a

2 |

|ka

2 + r

2 | ≤ |r2 + (ka + r)a
2a

|ka

2 | ≤ |ka + r

2 |

Because r > 1, our assertion holds and the proof is complete. Proof for cases when gcd(a, b) =
t ̸= 1 is unnecessary, because that simply means that gcd(a, b) = t · gcd(a/t, b/t) and the coeffi-
cients don’t change in any way. ◀

The function contract itself is merely a formal specific of preconditions and postconditions of
the algorithm’s operation. Under all circumstances, it is required that the buffers for Bézout’s
coefficients are valid (to prevent C runtime errors) and disjointed (to ensure that they are being
written correctly by the function). Furthermore, in order to prove that the recursive call of this
function will terminate, a decreases clause is used. This clause behaves in a manner similar to
a loop variant - it ensures that the variable’s integer value strictly decreases between calls [33].

The individual behaviors describe the preconditions and postconditions of the Euclidean
algorithm. behavior valid_non_zero describes the conditions for a standard step, whereas
behavior zero describes the base case scenario. Both behaviors are disjointed, and combined,
they cover all possible inputs (as described by their assumes clauses).

The code for this algorithm can be found in Listing 4.2.

Algorithm structure and verification 23

Code listing 4.2 Extended Euclidean algorithm code

/*@
@ inductive is_gcd (integer p, integer q, integer d) {
@ case gcd_zero :
@ \ forall integer n; is_gcd (n, 0, n);
@ case gcd_else :
@ \ forall integer p,q,d; is_gcd (q, p%q, d) ==> is_gcd (p, q

, d);
@ }
*/
/*@
@ requires \valid(x) && \valid(y);
@ requires x != y;
@ decreases (a);
@ behavior non_zero :
@ assumes a != 0;
@ assigns *x, *y;
@ admit ensures \ result == (*x * a) + (*y * b);
@ ensures \valid(x) && \valid(y);
@ ensures x != y;
@ ensures is_gcd (a, b, \ result);
@ behavior zero:
@ assumes a == 0;
@ assigns *x, *y;
@ ensures \ result == \old(b);
@ ensures X_eq_1 : *x == 0;
@ ensures Y_eq_0 : *y == 1;
@ ensures \valid(x) && \valid(y);
@ ensures x != y;
@ ensures is_gcd (a, b, \ result);
@ complete behaviors ;
@ disjoint behaviors ;
@ */
uint64_t eea(uint64_t a, uint64_t b, int64_t * restrict x, int64_t *

restrict y) {
if (a == 0) {

*x = 0;
*y = 1;

//@ assert *x==0;
//@ assert *y==1;
return b;

}

int64_t xTemp = 0;
int64_t yTemp = 0;

uint64_t gcd = eea(b % a, a, &xTemp , &yTemp);

// Cannot possibly overflow or underflow . Proven in thesis text.
*x = yTemp - ((b / a) * xTemp);
*y = xTemp;

return gcd;
}

24 Implementation

4.4.3 Modular arithmetic
4.4.3.1 Modular multiplication
The first modular arithmetic function requiring formal verification in our implementation is
modMultiply(), the 64-bit modular multiplication function. Despite the fact that the end result
of this operation is at most 64-bit wide (i.e., the same or lower width than the modulus), the
näıve approach3 may result in an integer overflow. To solve this issue, we leverage a variant of
the long multiplication algorithm.

Numbers represented in binary can be converted to decimal4 using a sum of powers of two.
This is illustrated by Expression 4.1:

4210 ≡ 1010102 ≡ (1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20)10 (4.1)

The associative properties of multiplication allow us to express the multiplication of a decimal
number with a binary number as shown in Expression 4.2:

(5 · 42)10 ≡ (5 · 1 · 25 + 5 · 0 · 24 + 5 · 1 · 23 + 5 · 0 · 22 + 5 · 1 · 21 + 0 · 20)10 (4.2)

A more general expression of sum is shown in Expression 4.3 below:

length(b)∑
n=0

(a · 2n) · bn (4.3)

Our algorithm operates as a sum similar to Expression 4.3, with the modulus operator applied
at various points of the sum in order to prevent overflows. The algorithm’s code can be seen in
Listing ??. It operates in a loop, processing the binary digits of the second multiplicant (b) in a
loop. For each digit, if this digit is one, it adds the current value of the first multiplicant (a) to
the intermediate result. At the end of each iteration, the current value of a is multiplied by two
to obtain the next value (a · 2n). The modulus operator is then applied to the result to reduce
its width, and the next digit of b is shifted in for the next operation.

This algorithm is not free from edge cases. Both the addition (r + a) and multiplication
(a * 2) can produce an overflow. The included C code has provisions for detecting and reme-
diating such conditions.

Frama-C is mainly used to prove that the function is without side effects and will terminate.
This is done using a loop variant and assigns clauses. Additional assertions are present through-
out the algorithm to enforce more stringent requirements and prove the absence of undefined
behavior.

An admittance was made about the validity of the function’s final output in its contract,
which is automatically treated as valid in subsequent operation. The reason for this is the
difficulty of finding a loop invariant due to the properties of modular arithmetic. An automated
proof using Frama-C would add significant difficulty to the verification process compared to a
pen-and-paper proof, with few benefits for the purposes of this thesis.

The code can be found in listing 4.3

3Multiplying the operands with each other and feeding the result into the modulus operator
4Or, indeed, any other base

Algorithm structure and verification 25

Code listing 4.3 Modular multiplication code
/*@
@ predicate isModMultiply (integer r, integer a, integer b, integer m) =
@ r == (a * b) % m;
@*/

/*@
@ requires \valid(resBuf);
@ behavior good:
@ assumes mod != 0;
@ assigns \result , * resBuf ;
@ admit ensures isModMultiply (* resBuf , a, b, mod);
@ ensures \ result == 0;
@ behavior bad:
@ assumes mod == 0;
@ assigns \ result ;
@ ensures \ result == -1;
@ complete behaviors ;
@ disjoint behaviors ;
*/
int8_t modMultiply (uint64_t a, uint64_t b, uint64_t mod , uint64_t *

resBuf) {

// A modulus of zero would cause undefined behavior
if (mod == 0) {

return -1;
}

// Convert a to its modular equivalent
a = a % mod;

uint64_t result = 0;

// Start long multiplication based on B's binary digits
// --
/*@ loop assigns result , a, b;

@ loop variant b;
@*/
while (b > 0) {

if (b & 1) {

// Edge case - possible overflow during addition
// If that happens :
// - Take the difference from result to

modulus
// - Remove it from a and take the remnant

as the new result (this is essentially an
implicit modulo operation)

if((UINT64_MAX - a) < result){

// Paranoid (and possibly superfluous)
check to ensure that result is
smaller than mod

result = result % mod;
uint64_t rem = mod - result ;

26 Implementation

// Additional verbose check to enable
Frama -C's proof of impossibility of
overflows

if (a >= rem){
result = (a - rem) % mod;

}
else {

result = (result + a) % mod;
}

}
else {

// If there 's no overflow , this
operation is enough

result = (result + a) % mod;
}

}

a = a % mod;
// Edge case: possible overflow during multiplication
// The solution is the same as above
if ((UINT64_MAX - a) < a) {

//@ assert a < mod;
uint64_t rem = mod - a;
// Modulus cannot be larger than 2a - wouldn 't

fit into 64 bit int
//@ assert rem <= a;
a = (a - rem) % mod;

}
else {

// If there 's no overflow , this operation is
enough

a = (a * 2) % mod;
}

// Next binary digit
b = b >> 1;

}

* resBuf = result % mod;

return 0;
}x

Algorithm structure and verification 27

4.4.3.2 Modular exponentiation
Modular exponentiation is handled by the modEx() function. It is performed using the well-
known square-and-multiply algorithm, adapted for modular arithmetic. This algorithm is based
on a recursive application of the following observations:

xn =

1 if n = 0

(x2) n
2 if n is even

x · ((x2) n−1
2) if n is odd

This allows us to calculate higher order exponents using their binary representation. Numbers
with least significant bit set represent odd exponents, and those with least significant bit (LSB)
set represent even exponents. Furthermore, bitwise shifting a value n by one position to the
right produces the value n

2 for odd integers and n−1
2 for even ones. This allows us to perform

the exponentiation operation iteratively by either squaring the base a if the current exponent is
even, or squaring and multiplying if the current exponent is odd. The next bit of the exponent
is then shifted in, and the operation is performed again for the new exponent. The algorithm’s
termination is guaranteed by the fact that zeroes are shifted to the most significant bit of the
exponent during each iteration. At some point in the operation, the exponent’s value will reach
zero and the algorithm will terminate.

ACSL assertions serve a purpose similar to those included in all other functions in Section
4.4.3. They ensure loop termination, preempt side effects and provide protections against runtime
errors and undefined behavior.

Throughout the operation, the value is reduced to fit into a 64-bit variable by applying
modular multiplication instead of regular multiplication. As with modular multiplication, this
behavior significantly increases the effort required to produce a loop invariant compared to a pen-
and-paper proof. An admittance has therefore been included in the contract based on the pen-
and-paper proof included in this section to simplify the verification process.

The code can be found in Listing 4.4.

4.4.3.3 Modular multiplicative inverse
The final modular arithmetic function, modInverse(), is the function for computing the modular
multiplicative inverse of a 64-bit integer. A modular multiplicative inverse z of an integer a
modulo m is defined as follows:

az ≡ 1 (mod m)

To calculate it, our code Bézout’s coefficients previously calculated using the extended Eu-
clidean algorithm5. Bézouts coefficients belonging to a pair of integers a, b are numbers x, y
such that:

ax + by = gcd(a, b)

If a and m are coprime, i.e. gcd(a, mod) = 1, and if we apply the modulo operation to both
sides, we may try to find their Bézout’s coefficients in the following manner:

ax + my = 1 (mod m)

Since my ≡ 0 (mod m), we know that ax ≡ 1 (mod m). Bézout’s coefficient x is therefore
the modular multiplicative inverse of a modulo m. If a and mod aren’t coprime, a modular
multiplicative inverse does not exist. modInverse() therefore merely verifies that the inputs are
coprime and returns the value of the corresponding Bèzout’s coefficient. In order to satisfy the
requirements of subsequent operation, the possibly negative value of this coefficient is transformed
into its corresponding value in modular representation.

5as described in Section 4.4.2

28 Implementation

Code listing 4.4 Modular exponentiation code
/*@
@ requires \valid(resBuf);
@ behavior good:
@ assumes mod != 0;
@ assigns * resBuf ;
@ admit ensures * resBuf == (aˆb) % mod;
@ ensures \ result == 0;
@ behavior bad:
@ assumes mod == 0;
@ assigns \ nothing ;
@ ensures \ result == -1;
@ complete behaviors ;
@ disjoint behaviors ;
*/
int8_t modEx(uint64_t a, uint64_t b, uint64_t mod , uint64_t * resBuf) {

if (mod == 0) return -1;

// Will be returned if b == 0;
uint64_t result = 1;
a = a % mod;

/*@
@ loop assigns result , a, b;
@ loop variant b;
*/
while (b > 0) {

if (b & 1) { // if current LSB of B is 1
modMultiply (result , a, mod , & result);

}

b = b / 2;
modMultiply (a, a, mod , &a);

}

// printf (" Result within the function : %lu\n", result);
* resBuf = result ;
return 0;

}

Algorithm structure and verification 29

The Frama-C contract mostly serves the purpose of verifying that the function has no side
effects in terms of assignments. The algorithm’s correctness itself has once again been proven
using pen-and-paper methods and supplemented with additional assertions to strengthen its
requirements. Furthermore, Frama-C was unable to reason about the validity of preconditions
and certain assignments, causing some subsequent verification steps to remain inconclusive.

The code for modular multiplicative inverse can be found in Listing 4.5

4.4.4 Prime number generation
Prime number generation for use in our RSA implementation uses the high-level algorithmic
approach described by the pseudocode in Listing 4.6.

Random numbers are sourced from the operating system’s RNG API. The call is wrapped
inside a custom function, csRandom(). The exact specification is determined at compile time
based on the target operating system. For Windows, rand_s() function from Microsoft Visual
C++ is called directly, and the Linux implementation reads its random data from /dev/urandom.
A Frama-C contract is not included, as there are no properties that can be verified by the
framework.

To determine whether a number is prime, the basic Rabin-Miller primality test is used [34].
This test is performed by the rabinMiller() function. It is based on verifying that a property
that is known to be true for all prime numbers also holds for the number being tested.

▶ Lemma 4.2. Let x, n be integers. n is considered a strong probable prime to base x if one of
the following congruences is satisfied:

xd ≡ 1(mod n)

x2r·d ≡ −1(mod n) for some 0 ≤ r < s

With n = 2s · d, s being a positive integer and d being an odd positive integer.

The algorithm which checks whether these congruences are satisfied is based on Rabin’s
description [34] and optimized via leveraging findings by Webster and Sorenson [35]. Webster
and Sorenson have been able to demonstrate that Rabin-Miller testing against a limited set of
bases – 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 and 37 – is sufficient to deterministically prove whether
a 32-bit unsigned integer is prime. The proofs for both the algorithm itself, and its deterministic
modification, are included in their respective papers. Its Frama-C certification therefore only
includes automatically generated assertions by the rte plugin. Additionally, some RTE assertions
could not be proven automatically due to Frama-C’s internal limitations. The reasoning behind
the correctness of operations marked by these assertions is explained by comments within the
code itself.

The prime number generation function – getPrime() is the final implementation of the
algorithm and performs exactly as specified by the pseudocode in Listing 4.6. Unfortunately, a
deterministic formal proof of this function is impossible. Its termination cannot be guaranteed.
As such, it also does not include any ACSL specification beyond guaranteeing a non-zero output.

4.4.5 Key generation
The key generation is handled by function generateKeyPair(). Its algorithm operates in the
manner specified by Rivest, Shamir and Adleman in their original description of the RSA algo-
rithm [1]. It operates with an externally supplied public exponent in the following steps:

1. Obtain a set of 32-bit primes, p and q

2. Calculate the public key modulus as their product

30 Implementation

Code listing 4.5 Modular multiplicative inverse code
/*@
@ requires mod != 0;
@ requires \valid(resBuf);
@ behavior coprime :
@ assumes is_gcd (a, mod , 1);
@ assigns * resBuf ;
@ admit ensures (a * (* resBuf)) % mod == 1;
@ ensures \ result == 0;
@ behavior not_coprime :
@ assumes ! is_gcd (a, mod , 1);
@ assigns \ nothing ;
@ ensures \ result == -1;
@ complete behaviors ;
@ disjoint behaviors ;
*/
int8_t modInverse (uint64_t a, uint64_t mod , uint64_t * resBuf)
{

int64_t x = 0;
int64_t y = 0;

uint64_t gcd = eea(a, mod , &x, &y);

uint64_t result = 0;

// If a and mod aren 't coprime , the modular inverse doesn 't
exist.

if (gcd != 1) {
return -1;

}
else {

if (x >= 0) {
// If x is positve , it 's the modular inverse
result = ((uint64_t)x) % mod;

}
else {

// If the coefficient is negative , we need to
find the corresponding modular equivalent

uint64_t x0 = (uint64_t)(-(x + 1));
result = (mod - 1 - x0) % mod;

}
}

// Write out the result
* resBuf = result ;

return 0;
}

Algorithm structure and verification 31

Code listing 4.6 Prime number generation pseudocode
algorithm getPrime is:

main:
x <- random number
if x is prime:

return x
else

goto main

3. Calculate the Euler totient for p and q

4. Calculate the private exponent as a modular multiplicative inverse of the public exponent

Certification of this algorithm using Frama-C is not possible due to the aforementioned un-
certain termination of prime number generation. Furthermore, in edge cases, the Euler totient
function value may potentially not satisfy the requirements for existence of modular multiplicative
inverse of the public exponent. The only verification included for this function is the pen-and-
paper proof provided by Rivest et al. [1], supplemented by automated assertions generated by
the rte plugin, which were either proven automatically or supplemented with code comments of
proof.

4.4.6 Dynamic library libExponentGenerator
The libExponentGenerator serves the purpose of providing an attack vector for demonstrating
the possibilities of the E-ACSL plugin. It contains a single function – getPublicExponent() –
whose purpose is to generate the exponent e used in RSA encryption. Two implementations of this
function are provided – a “non-malicious” version which returns one of the 10 most commonly
used exponents, and a “malicious” version which always returns 1, effectively rendering the
encryption process moot. Since the library is loaded by the driver application dynamically, the
malicious and non-malicious versions can be interchanged by simply replacing the respective
shared object or dynamic link library file in the binaries folder. No E-ACSL annotations are
present in this library, as it is supposed to mimic a potential unverified third party library in our
demo scenario.

4.4.7 Driver
The driver is built to illustrate the capabilities of the developed RSA library, as well as to explore
additional possibilities of the E-ACSL plugin. It performs the following operations:

1. Obtains e. It does so by attempting to dynamically load libExponentGenerator and calling
getPublicExponent(). In case of a failure, the value defaults to 65537

2. Attempts up to 100 times to generate a valid key pair using rsa_generateKeyPair()

3. Encrypts the plaintext 1234567890 using the generated key pair

4. Decrypts the ciphertext from the previous step using the generated key pair

By design, libExponentGenerator is loaded by name without any additional specifications.
This results in the system standard load order being applied and potentially making the appli-
cation vulnerable to various DLL-related attacks. in Chapter 5, we are using the E-ACSL plugin
to mitigate a subset of such attacks.

32 Implementation

Chapter 5

Practical demonstration

A practical demonstration of everything above can be performed using the proof-of-concept
code accompanying this thesis. This includes standard operation of the RSA library without
Frama-C, static verification using Frama-C plugins rte and wp, and a dynamic demonstration
of the capabilities of E-ACSL in stopping an injection of malicious parameters via .so injection
on Linux.

5.1 Standard operation
The proof-of-concept is provided as a CMake project. By default, Linux and Windows are
supported. There are no additional dependencies beyond the C standard library, common OS
functions, and CMake for build.

5.1.1 Windows
For Windows, the provided project can be built imported into Visual Studio as a CMake project.
A CMakePresets.json file is provided, specifying build targets for Windows (x86 and x64 de-
bug/release) and Ubuntu under WSL. It can be built and executed using the IDE’s builtin
functions, or it can be built directly using CMake from the project root within developer Power-
Shell. The demo (using the driver program) can be executed by running DemoDriver.exe from
the build output directory.

5.1.2 Linux
On Linux, the build can be performed via CMake from the root directory. A convenience script
– build_all.sh is provided with the distribution to simplify the process. If this script is used,
it will output all binary files into ./linux_build/bin/. The demo driver program can then be
executed by running ./linux_build/bin/DemoDriver.

5.2 Static verification
Static verification is done via Frama-C GUI. From the project root directory, the command
listed in Listing 5.1 can be executed. This will bring up a window which allows us to explore
the code, its ACSL annotations and the results of wp’s reasoning about them. The verification
status appears as a symbol next to each annotation. Green symbols indicate valid and verified

33

34 Practical demonstration

Code listing 5.1 frama-c-gui command
frama -c-gui -wp -rte -warn -unsigned - overflow ./ driver / driver .c ./

libRSAVerified /src /*.c -cpp -extra -args ="-I ./ libRSAVerified /
include -I ./ libRSAVerified / include / libRSAVerified "

Figure 5.1 Example Frama-C GUI screenshot

assertions and yellow symbols indicate inconclusive verification. In contrast, assertions marked
in red are conclusively proven to be false. An example Frama-C GUI window showing a segment
of our implementation can be found in Figure 5.1.

5.3 Dynamic demonstration
To illustrate the possibilities of runtime assertion checking, we have prepared a dynamic demo
that is built along with the main application. As mentioned in Section 4.4.7, the driver applica-
tion dynamically loads a library that generates the encryption exponent e. This is done to mimic
a common scenario in endpoint software, where a third party module is included with the appli-
cation. During build, two versions of this library are produced – libExponentGenerator.so or
ExponentGenerator.dll, which operates within safe bounds, and libMaliciousGenerator.so
or MaliciousGenerator.dll, whose exponent generation function always returns a value of 1.
If ExponentGenerator is replaced with a renamed MaliciousGenerator, the program will load
the malicious library. Under normal circumstances, this results in no visible error – the encryp-
tion will execute with an exponent on 1. However, if the executable is compiled with E-ACSL,
the assertion violation is detected, and the program is terminated. This behavior can be seen in
Figure 5.2 and Listing 5.2.

E-ACSL is currently only available for Linux. The Linux build script build_all.sh will build
the dynamic demo, and output the results of E-ACSL compilation into linux_build/dynamic.
Two binaries are produced - a.out, which contains the regular (non-validated) program, and
a.out.e-acsl, which does perform runtime verification.

Dynamic demonstration 35

Figure 5.2 E-ACSL demonstration

Code listing 5.2 E-ACSL demonstration terminal output
$ cd linux_build / dynamic /
./ linux_build / dynamic$./a.out
Key pair: public 9187949965961182769; private 9838098835135477691;
Encrypt : PT: 1234567890; CT: 8488867005218027722;
Decrypt : CT: 8488867005218027722; Result : 1234567890;
./ linux_build / dynamic$ mv ./ libMaliciousGenerator .so ./

libExponentGenerator .so
// linux_build / dynamic$./a.out
Key pair: public 1; private 2405371065081043901;
Encrypt : PT: 1234567890; CT: 1234567890;
Decrypt : CT: 1234567890; Result : 1234567890;
./ linux_build / dynamic$./a.out.e-acsl
driver .c: In function 'main '
driver .c:88: Error: Assertion failed :

The failing predicate is:
e > 1.
With values at failure point:
- e: 1

Aborted
./ linux_build / dynamic$

36 Practical demonstration

Chapter 6

Conclusion

We would like to conclude with a quick review of our stated objectives’ completion. In Chapter 1,
the fundamentals of deductive verification have been explored. We have briefly explored the
three seminal works that form the foundation of the field of formal deductive verification, how
those concepts have been brought from theory into practice, and how they have been ultimately
adopted within various industries.

Chapter 2 makes the case for the implementation of a verified version of the RSA algorithm. It
shows how RSA’s intrinsic properties make it difficult to implement properly, which is evidenced
by the numerous flawed implementations that have appeared throughout its history. The chapter
also outlines the areas where deductive verification techniques can be used to reduce the likelihood
of erroneous implementation.

Chapter 3 presents the Frama-C verification framework, which was subsequently used in
our implementation of verified RSA. It briefly outlines the architecture and the capabilities of
this framework, and presents a few notable functionalities that have been leveraged during the
development of this thesis’ practical segment.

This is expanded upon in Chapter 4. This chapter describes the thinking behind our verified
implementation of RSA. It provides a structural overview of the architecture, as well as in-depth
descriptions of the algorithms used, problems that we have faced, and the solutions that we have
applied. This is supported by the implementation code, including the annotations for automated
verification, and supplemented by pen-and-paper manual proofs of correctness where needed.

Finally, Chapter 5 contains guidance on validating the work outlined in Chapter 4 using the
included proof-of-concept application. It shows how to operate the basic verified implementation
using the included driver application, how to view the verification results by using the Frama-C
GUI, and how to demonstrate the possibilities of runtime verification using E-ACSL

We believe that this marks our stated objectives as achieved. We have shown that although
complex, partial formal verification of RSA is possible, viable and useful. We have been able
to develop a verified implementation, use Frama-C to preclude undefined or otherwise faulty
runtime behavior, and to prove the correctness of its underlying components using a combination
of automated and pen-and paper methods.

Nevertheless, there is still room for additional work in this space. Our implementation is
strictly proof-of-concept – it is not hardened, and operates merely on 64-bit inputs. This pre-
cludes any practical use in its current form. Expanding it to contain hardening techniques
(e.g., padding) and to operate using arbitrary precision arithmetic is therefore crucial to further
development.

Additionally, the majority of verification performed as a part of this thesis was still done
using pen-and-paper methods. This was sufficient to achieve our goals. However, there are
opportunities for more stringent verification using Frama-C and ACSL, particularly in the arith-

37

38 Conclusion

metic functions used. Such work may use our pen-and-paper proofs as a basis to expand upon.
Moreover, we have not utilized Frama-C to its full potential in terms of plugins. This could be
another area of study that could yield results.

To broaden the possible audience, a verified implementation of RSA could also be developed
for other languages and frameworks. Namely, verification using JML could provide significant
benefits to the security of embedded devices running Java. Implementation in Ada SPARK could
also be beneficial, as SPARK is widely known and used in industrial applications.

Bibliography

1. RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM. 1978, vol. 21, no. 2, pp. 120–126. issn
0001-0782. Available from doi: 10.1145/359340.359342.

2. CLARKE, Edmund M.; SCHLINGLOFF, Bernd-Holger. Chapter 24 - Model Checking.
In: ROBINSON, Alan; VORONKOV, Andrei (eds.). Handbook of Automated Reasoning.
Amsterdam: North-Holland, 2001, pp. 1635–1790. Handbook of Automated Reasoning. isbn
978-0-444-50813-3. Available from doi: https://doi.org/10.1016/B978-044450813-
3/50026-6.

3. FILLIÂTRE, Jean-Christophe. Deductive software verification. International Journal on
Software Tools for Technology Transfer. 2011, vol. 13, pp. 397–403.

4. HÄHNLE, Reiner; HUISMAN, Marieke. Deductive Software Verification: From Pen-and-
Paper Proofs to Industrial Tools. In: Computing and Software Science: State of the Art
and Perspectives. Ed. by STEFFEN, Bernhard; WOEGINGER, Gerhard. Cham: Springer
International Publishing, 2019, pp. 345–373. isbn 978-3-319-91908-9. Available from doi:
10.1007/978-3-319-91908-9_18.

5. HOARE, C. A. R. An Axiomatic Basis for Computer Programming. Commun. ACM. 1969,
vol. 12, no. 10, pp. 576–580. issn 0001-0782. Available from doi: 10.1145/363235.363259.

6. DIJKSTRA, Edsger Wybe; DIJKSTRA, Edsger Wybe; DIJKSTRA, Edsger Wybe; DIJK-
STRA, Edsger Wybe. A discipline of programming. Vol. 613924118. prentice-hall Englewood
Cliffs, 1976.

7. Checking a large routine [online]. 1949 [visited on 2023-03-25]. Available from: https :
//turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-
b-8.

8. COUSOT, P.; COUSOT, R. “A la Burstall” intermittent assertions induction principles for
proving inevitability properties of programs. Theoretical Computer Science. 1993, vol. 120,
no. 1, pp. 123–155. issn 0304-3975. Available from doi: https://doi.org/10.1016/0304-
3975(93)90248-R.

9. VOSATKA, Karel. Intermittent-assertion method as a structural induction. Kybernetika.
1979, vol. 15, pp. 122–135. issn 0023-5954.

10. ANSI/ISO C specification language. CEA LIST, 2023. Available also from: https://frama-
c.com/html/acsl.html.

39

https://doi.org/10.1145/359340.359342
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/363235.363259
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://doi.org/https://doi.org/10.1016/0304-3975(93)90248-R
https://doi.org/https://doi.org/10.1016/0304-3975(93)90248-R
https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html

40 Bibliography

11. DEUSSEN, Peter; HANSMANN, Alex; KÄUFL, Thomas; KLINGENBECK, Stefan. The
verification system Tatzelwurm. In: KORSO: Methods, Languages, and Tools for the Con-
struction of Correct Software: Final Report. Ed. by BROY, Manfred; JÄHNICHEN, Stefan.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 285–298. isbn 978-3-540-47802-7.
Available from doi: 10.1007/BFb0015468.

12. SPARK - The SPADE Ada Kernel. AdaCore, 2011. Available also from: https://docs.
adacore.com/sparkdocs-docs/SPARK_LRM.htm#_Toc311793130.

13. FELDMAN, Michael B. Who’s Using Ada? Real-World Projects Powered by the Ada Pro-
gramming Language. George Washington University, 2014. Available also from: https :
//www2.seas.gwu.edu/˜mfeldman/ada-project-summary.html.

14. DIFFIE, W.; HELLMAN, M. New directions in cryptography. IEEE Transactions on In-
formation Theory. 1976, vol. 22, no. 6, pp. 644–654. Available from doi: 10.1109/TIT.
1976.1055638.

15. BARKER, Elaine; DANG, Quynh. Recommendation for key management, part 3: Application-
specific key management guidance. National Institute of Standards and Technology, 2015.
Available also from: https://csrc.nist.gov/publications/detail/sp/800-57-part-
3/rev-1/final.

16. CVE-2019-1551. [N.d.]. Available also from: https://www.cve.org/CVERecord?id=CVE-
2019-1551.

17. saltstack/salt commit 5dd304276ba5745ec21fc1e6686a0b28da29e6fc. [N.d.]. Available also
from: https://github.com/saltstack/salt/commit/5dd304276ba5745ec21fc1e6686a0b28da29e6fc.

18. HENINGER, Nadia; DURUMERIC, Zakir; WUSTROW, Eric; HALDERMAN, J Alex.
Mining your Ps and Qs: Detection of widespread weak keys in network devices. In: Presented
as part of the 21st {USENIX} Security Symposium ({USENIX} Security 12). 2012, pp. 205–
220.

19. NEMEC, Matus; SYS, Marek; SVENDA, Petr; KLINEC, Dusan; MATYAS, Vashek. The
Return of Coppersmith’s Attack: Practical Factorization of Widely Used RSA Moduli.
In: 24th ACM Conference on Computer and Communications Security (CCS’2017). ACM,
2017, pp. 1631–1648. isbn 978-1-4503-4946-8/17/10.

20. DAN GOODIN - OCT 16, 2017 11:00 am UTC; WISE, Aged Ars Veteran jump to post
vintagedave. Millions of high-security crypto keys crippled by newly discovered flaw. 2017.
Available also from: https://arstechnica.com/information- technology/2017/10/
crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/.

21. BRUMLEY, David; BONEH, Dan. Remote timing attacks are practical. Computer Net-
works. 2005, vol. 48, no. 5, pp. 701–716. issn 1389-1286. Available from doi: https://doi.
org/10.1016/j.comnet.2005.01.010. Web Security.

22. ACIIÇMEZ, Onur; KOÇ, Çetin Kaya; SEIFERT, Jean-Pierre. On the Power of Simple
Branch Prediction Analysis. In: Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security. Singapore: Association for Computing Machinery,
2007, pp. 312–320. ASIACCS ’07. isbn 1595935746. Available from doi: 10.1145/1229285.
1266999.

23. BLEICHENBACHER, Daniel. Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Annual International Cryptology Conference.
1998.

24. Frama-C - Architecture. CEA LIST, [n.d.]. Available also from: https://frama-c.com/
html/kernel.html.

25. Frama-C - Plugins. CEA LIST, [n.d.]. Available also from: https://frama-c.com/html/
kernel-plugin.html.

https://doi.org/10.1007/BFb0015468
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm#_Toc311793130
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm#_Toc311793130
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://csrc.nist.gov/publications/detail/sp/800-57-part-3/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-3/rev-1/final
https://www.cve.org/CVERecord?id=CVE-2019-1551
https://www.cve.org/CVERecord?id=CVE-2019-1551
https://github.com/saltstack/salt/commit/5dd304276ba5745ec21fc1e6686a0b28da29e6fc
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1145/1229285.1266999
https://frama-c.com/html/kernel.html
https://frama-c.com/html/kernel.html
https://frama-c.com/html/kernel-plugin.html
https://frama-c.com/html/kernel-plugin.html

Bibliography 41

26. Frama-C - EVA. CEA LIST, [n.d.]. Available also from: https://frama- c.com/fc-
plugins/eva.html.

27. Frama-C - RTE. CEA LIST, [n.d.]. Available also from: https://frama- c.com/fc-
plugins/rte.html.

28. BAUDIN, Patrick; BOBOT, François; CORRENSON, Löıc; DARGAYE, Zaynah; BLAN-
CHARD, Allan. WP Plug-in Manual. 2023. Available also from: https://frama-c.com/
download/frama-c-wp-manual.pdf.

29. Frama-C - Installation. [N.d.]. Available also from: https://git.frama- c.com/pub/
frama-c/blob/master/INSTALL.md.

30. HOMOLA, Tomáš. Certifikované algoritmy pro hledáńı minimálńı kostry. 2021. Available
also from: https://dspace.cvut.cz/handle/10467/96906. Bachelor’s Thesis. Czech
Technical University in Prague.

31. KLAPPENECKER, Andreas. The Extended Euclidean Algorithm [online]. 2006. [visited on
2023-05-01]. Available from: https://people.engr.tamu.edu/andreas-klappenecker/
cpsc311h-f06/exgcd.pdf.

32. RANKIN, S. A. The Euclidean Algorithm and the Linear Diophantine Equation ax +
by = gcd(a, b). The American Mathematical Monthly [online]. 2013, vol. 120, no. 6, pp.
562–564 [visited on 2023-05-07]. issn 00029890, issn 19300972. Available from: https :
//www.jstor.org/stable/10.4169/amer.math.monthly.120.06.562.

33. PATRICK BAUDIN1, Pascal Cuoq; FILLIÂTRE, Jean-Christophe; MARCHÉ, Claude;
MONATE, Benjamin; MOY, Yannick; PREVOSTO, Virgile. ACSL: ANSI/ISO C Specifica-
tion Language. 2023. Version 1.18. Available also from: https://frama-c.com/download/
acsl.pdf.

34. RABIN, Michael O. Probabilistic algorithm for testing primality. Journal of Number The-
ory. 1980, vol. 12, no. 1, pp. 128–138. issn 0022-314X. Available from doi: https://doi.
org/10.1016/0022-314X(80)90084-0.

35. SORENSON, Jonathan; WEBSTER, Jonathan. Strong pseudoprimes to twelve prime bases.
Mathematics of Computation. 2016, vol. 86, no. 304, pp. 985–1003. Available from doi:
10.1090/mcom/3134.

https://frama-c.com/fc-plugins/eva.html
https://frama-c.com/fc-plugins/eva.html
https://frama-c.com/fc-plugins/rte.html
https://frama-c.com/fc-plugins/rte.html
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf
https://git.frama-c.com/pub/frama-c/blob/master/INSTALL.md
https://git.frama-c.com/pub/frama-c/blob/master/INSTALL.md
https://dspace.cvut.cz/handle/10467/96906
https://people.engr.tamu.edu/andreas-klappenecker/cpsc311h-f06/exgcd.pdf
https://people.engr.tamu.edu/andreas-klappenecker/cpsc311h-f06/exgcd.pdf
https://www.jstor.org/stable/10.4169/amer.math.monthly.120.06.562
https://www.jstor.org/stable/10.4169/amer.math.monthly.120.06.562
https://frama-c.com/download/acsl.pdf
https://frama-c.com/download/acsl.pdf
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1090/mcom/3134

42 Bibliography

Enclosed repository contents

README.md...................................Brief description of the repository’s contents
build all.sh...Linux build script
CMakeLists.txt..Root CMake build instructions
CMakePresets.json.....................................CMake presets for Visual Studio
driver...Sources for the demo driver application

CMakeLists.txt...........CMake instructions for building the demo driver application
driver.c ... Demo driver source code

libExponentGenerator........................Sources for the exponent generator module
include...Header files

libExponentGenerator.h
src..Source files

libExponentGenerator.c...........Implementation of the valid exponent generator
libMaliciousGenerator.c..... Implementation of the malicious exponent generator

CMakeLists.txt...............CMake instructions for building the exponent generator
libRSAVerified Sources for the main RSA library

CMakeLists.txt......................CMake instructions for building the RSA library
include...Header files

libRSAVerified.h..Main RSA header
libRSAVerified Additional headers, used internally by libRSAVerified

RSAKeygen.h
RSAUtils.h
RSAMath.h

src..Source files
libRSAVerified.c..............................Source for main RSA functionality
RSAKeygen.c..............................Source code for key generation functions
RSAUtils.c.......................................Source code for utility functions
RSAMath.c Source code for arithmetic functions

text..Text of the thesis
thesis...LATEX source
thesis.pdf...Text of the thesis in PDF format

43

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Deductive formal verification
	Theoretical foundations
	Hoare logic
	Weakest preconditions
	Intermittent assertions

	Practical usage
	Industrial use

	RSA and deductive verification
	The RSA algorithm
	Common implementation flaws
	Mistakes from implementation complexity
	Poor parameter choice
	Faulty hardening

	Benefits of a verified implementation

	Frama-C
	Architecture
	Annotations
	Kernel
	Plugins

	Installation and usage

	Implementation
	Design overview
	Development
	Basic implementation and automated verification
	Manual verification using contracts
	Practical considerations

	File structure
	Algorithm structure and verification
	Encryption and decryption
	Extended Euclidean algorithm
	Modular arithmetic
	Prime number generation
	Key generation
	Dynamic library libExponentGenerator
	Driver

	Practical demonstration
	Standard operation
	Windows
	Linux

	Static verification
	Dynamic demonstration

	Conclusion
	Enclosed repository contents

