
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Power side channel attack with a controllable power supply

Adam Verner

Ing. Jiří Buček, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

Study the differential power analysis (DPA) attack.

Create a library or extend an existing one to control the Aim-TTi QL355TP lab DC power

supply.

Use an oscilloscope and the controllable power supply to implement a DPA attack on a

suitable microcontroller. The specific microcontroller will be selected after consultation

with the supervisor.

Analyze the attack success rate depending on the voltage used and evaluate the results.

For your code, use Python with pyvisa and other suitable libraries.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 20 February 2023 in Prague.

Bachelor’s thesis

POWER SIDE CHANNEL
ATTACK WITH A
CONTROLLABLE POWER
SUPPLY

Adam Verner

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Jǐŕı Buček, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Adam Verner. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited
(with exceptions defined by the Copyright Act).

Citation of this thesis: Verner Adam. Power side channel attack with a controllable power supply.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Preliminaries 3

1.1 Differential Power Analysis . 4

1.1.1 Correlation Power Analysis . 4

1.2 Partial Guessing Entropy . 5

1.3 Advanced Encryption Standard . 6

1.4 Signal processing . 6

1.4.1 Noise reduction . 7

1.4.2 Trace alignment . 7

1.4.3 Data reduction . 8

1.5 QCoDes library . 9

1.5.1 Measurement retrieval . 12

1.5.2 Driver development . 12

2 Measurement setup 13

2.1 Target device . 14

2.1.1 Firmware . 15

2.1.2 AES implementation . 15

2.2 Power Supply . 17

iii

iv Contents

2.2.1 QCoDeS support . 18

2.3 Oscilloscope . 20

2.3.1 QCoDeS support . 20

3 Attacks on the target device 23

3.1 Summary of the results . 25

4 Conclusion 27

5 Future work 29

5.1 Success rate and encryption key format 29

5.2 Secure hardware . 29

5.3 DPA targeting the last encryption round 30

Contents of enclosed Media 35

List of Figures

1.1 Representation of the matrices with measured data (left) and key hypothesis. 5

1.2 Internal values of AES which can be target by DPA attack. 7

1.3 Illustrative example of trace alignment done using cross-correlation alignment 8

1.4 Internal timing concept for the Register File (taken from [14]) 9

1.5 Typical QCoDeS data acquisition workflow 10

2.1 General system connection overview . 13

2.2 MCU connection schematic . 15

2.3 Image of the board setup during measurement with main components
highlighted. 16

2.4 Partial list of commands supported by the AimTTi QL355TP power supply 18

2.5 Supply Current vs. VCC (taken from datasheet [14]) 20

2.6 Oscilloscope Channel 2 settings . 21

2.7 Format of the data returned by :WAV:DATA? command [25] 22

3.1 Relationship between operating Voltage and number of traces required
for successful DPA . 24

3.2 Minimal number of traces required for successful recovery of each key byte. 25

3.3 Relationship between Hamming Weight and required number of samples 26

3.4 Values of Partial Guessing Entropy (PGE) for different number of traces
and operation voltages. 26

v

vi List of code listings

List of Tables

2.1 Microcontroller Firmware commands . 17

List of code listings

1.1 QCoDeS measurement loop example . 11

1.2 Data retrieval from database previousely created using QCoDes 12

2.1 Patched AimTTi class usage demonstration 19

2.2 DSOX3024T oscilloscope capture setting and run 21

2.3 Reading data directly into numpy array from channel 1 using the exposed
VISA handle . 22

I would like to express my deepest gratitude to my work su-
pervisorr Ing. Jiř́ı Buček for his patience and helpful insights
during the course of the work. I am also grateful to family and
friends for their support and motivation.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all
sources of information in accordance with the Guideline for adhering to ethical principles
when elaborating an academic final thesis. I acknowledge that my thesis is subject to
the rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act,
as amended, in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as a school work under
the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023 .

viii

Abstract

The thesis applies Correlation Power Analysis (CPA) attack against AES implementation
running on a dedicated microcontroller and explores how the success depends on the
operating voltage of the microcontroller. Part of the work deals with instrumentation
required to execute the CPA attack on the target device. Data acquisition framework
QCoDeS was extended to support the Aim-TTi QL355TP power supply. The CPA
attack was applied on an Atmega microcontroller and proved to be successful although
no direct correlation between operating voltage and attack success was found. Future
work exploring the attack success against other types of crypto hardware was proposed.

Keywords Hardware security, Side channel attack, Controllable power supply, Cor-
relation power analysis (CPA), Differential power analysis (DPA), Partial Guessing
Entropy (PGE), QCoDeS framework

Abstrakt

Bakalářská práce aplikuje korelačńı odběrovou analýzu (CPA) na implementaci AES běž́ıćı
na dedikovanéam mikrokontroléru a zkoumá závislost úspěchu na napět́ı mikrokontroléru.
Část práce se zabývá ovládáńım př́ıstroj̊u potřebných k úspešnému provedeńı útoku CPA
na ćılové zař́ızeńı. Framework pro sběr dat QCoDeS byl rozš́ı̌ren o podporu laboratorńıho
zdroje Aim-TTi QL355TP. Útok CPA byl úspešně proveden na mikrokontrolér Atmega,
ačkoliv př́ımá závislost mezi operačńım napět́ım a úspěšnost́ı útoku nebyla nalezena.
Byl nast́ıněn možný budoućı př́ıstup zkoumaj́ıćı úspěšnost útoku proti jiným typ̊um
kryptografického hardwaru.

Kĺıčová slova Hardware bezpečnost, Útok postrańım kanálem, Laboratorńı zdroj,
Korelačńı odběrová analýza, Diferenciálńı odběrová analýza, PGE, knihovna QCoDeS

ix

List of abbreviations

SPA Simple Power Analysis
DPA Differential Power Analysis
CPA Correlation Power Analysis
PSU Power Supply Unit
PGE Partial Guessing Entropy
DES Data Encryption Standard
AES Advanced Encryption Standard
DC Direct Current

x

Introduction

Over the years, Cryptography has became omnipresent part of our everyday lives. Daily
activities such as reading your email, posting on social media or even opening doors to
you house using a smartcard are all made secure from malicious third parties thanks
to various cryptographic protocols. Historically, substantial effort has been made to
ensure the security of cryptographic algorithms, but even the most secure algorithms,
which would take thousands of years to be broken, can be defeated in just a few minutes
by using a side-channel attack. Most of the algorithms used today, such as Advanced
Encryption Standards (AES), were not designed with the hardware implementation in
mind and as such are usually susceptible to side-channel attacks.

The aim of this thesis is to study the Differential Power Analysis (DPA) side-channel
attack. Using provided oscilloscope and controllable power supply the attack is mounted
against a target microcontroller. Necessary scripts to control the provided instruments
as well as the DPA itself will be implemented using Python. With the use of controllable
DC supply as power source for the microcontroller, dependence of the success rate on
the supplied voltage will be measured and analyzed.

1

2 Introduction

Chapter 1

Preliminaries

This chapter briefly introduces the topic of the work. The First section id devoted to
explanation of AES cipher and its operation. Following section explains the concept
of Differential Power Analysis and steps necessary to mount such an attack. The
third section mentions signal processing techniques relevant to DPA. And the last
chapter shows the QCoDeS framework used for the data acquisition.

Most daily used devices which implement any sort of cryptography are made out of
semiconductor logic gates, which are usually constructed using transistors. By applying
or removing charge from a transistor’s gate, electrons flow across the silicon substrate,
resulting in the consumption of power and the emission of electromagnetic radiation.
The resulting consumption of an integrated device corresponds to the activity it is
currently performing as well as the data that is being used. For example on a processor
with long data bus that uses pull up resistors the power consumption is significantly
different when transferring 0xD8 than 0x10 (this is called Hamming Weight Model, other
models are described later). While the different power consumption might not be directly
interpretable (especially on more complex and noisy devices) the leaked information can
accumulate over time exposing secrets. [1]

By closely measuring and analyzing the power consumed by a device during its
operation, an attacker can extract secret information such as encryption keys. The
first paper to explicitly discuss side-channel attacks on cryptographic systems using
power analysis (and not just timing) was published by Paul Kocher and Joshua Jaffe in
1999 [2], in which they described a technique for extracting secret keys from smart cards
by measuring the power consumption of the card during encryption operations.

First, the Advanced Encryption Standard (AES) is introduced, followed by a brief
explanation of the DPA method in section 1.1. Furthermore, an introduction to the
QCoDeS library, which is later used to control the measurement equipment, is given
in 1.5.

3

4 Preliminaries

1.1 Differential Power Analysis

The first step when performing Differential Power Analysis (DPA) is to collect multiple
traces from the targeted device. A trace is a sequence of power consumption measurements
made while the device is performing cryptographic operations.

DPA is a statistical method used to identify data-depended correlation between
different traces. An assumption is made about the data first which is used to divide the
collected traces into two groups. If the assumption about the data is correct (correlates
with the measurement contained in the traces) the square mean difference between each
group will be equal to non zero value (a distinct peak in DPA trace). On the other
hand if the assumption is incorrect and does not correlate with divided traces the square
mean difference will approach zero as the number of traces increases. Additionally with
the increased number of traces available the noise present in the measurement will be
canceled out allowing tiny correlations to be isolated. [2]

The crucial step in DPA is to choose the correct selection function. The function is
used to divide the traces into two distinct groups, and averages of each group are then
used to calculate the DPA trace. If the DPA trace shows significant spikes, the selection
function was chosen correctly and the value was actually computed by the target device.
If no significant correlation is observed in the DPA trace, either not enough traces were
gathered in order to observe the small correlation or the selection function was chosen
incorrectly. [1]

Depending on the architecture of the device, the selection function may either be
hypothetical value of an output from the combinational logic or from more complex
operation such as state change in a register. The selection function used by DPA must
be a binary function as the data needs to be divided into two subgroups.

1.1.1 Correlation Power Analysis

Correlation Power Analysis (CPA) is an extension to DPA which works by evaluating
the degree of correlation between variations within the set of measurements. [3] when
performing CPA it is crucial to produce accurate power model of the targeted device in
order to succeed.

There are two consumption models typically used in CPA applications:

Hamming Weight works by mapping the state value to the number of non-zero bits.
For example intermediate value 0xd5 has Hamming Weight equal to 5.

Hamming distance is a measure of the number of bits that differ in value between
two state changes. For example if an intermediate vale 0x3f changes value into 0x76
the Hamming distance is equal to 3.

The CPA attack is done by constructing a hypothesis for each possible value of
the state and then searching for correlation across the set of all measured traces. In

Partial Guessing Entropy 5

practice the CPA against AES with the knowledge of plaintexts used for encryption can
be implemented as follows. [4]

First a matrix t is constructed, where each row represents single power trace measure-
ment, giving us a matrix with total dimensions of N × L where N is the number of traces
available and L is the number of samples in each power trace. For simplicity first byte
of encryption key k0 is used. Secondly matrix h is constructed with hypothesis about
the inner values of the cipher for each trace using the Hamming Weight power model.
The dimensions of h are N × D where N is the number of traces and D is number of
possible values the k0 can have. Each row in the matrix h corresponds to a single trace
measurement and the rows repent different hypothesis about the key value such that
hi,j = HW (S(di ⊕ j)) where S is an unary function representing the AES SubBytes

operation, HW is a function mapping the intermediate values to the amount of non-zero
bits and di,0 is the value of the first byte in the plaintext corresponding to ith trace.
Both matrices are visualized in the figure 1.1 for better understanding. [4, 5]

L samples per trace

N traces
ti,j

D possible key values (0...256)

N traces
hi,j

Figure 1.1 Representation of the matrices with measured data (left) and key hypothesis.

To find the correlation between the hypothetical values and measured traces, Pearson’s
correlation coefficient is used. [6] When applied to the matrices as sample coefficient it
can be obtained using the following formula:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

The columns in the resulting matrix correspond to a sample at time i and each
column corresponds to a different key hypothesis. The correct key can then be found
simply by searching for the cell with the highest value and the row will correspond to
the key value used for the hypothesis.

1.2 Partial Guessing Entropy

Partial Guessing Entropy (PGE) is a useful metric used to measure the information
leakage in cryptographic devices, such as microcontrollers, during DPA attacks. The
correct key has to be known in order to evaluate PGE. Guessing entropy for a specific

6 Preliminaries

byte of the key is obtained by sorting all the possible key values by their probability and
taking the index of the correct key, 0 indicates that the keys is known. All calculated
entropy values are then used to calculated PGE of an attack by finding the average. [7]

1.3 Advanced Encryption Standard

AES is block cipher also known by its original name Rijndael, developed by two Belgian
cryptographesrs, J. Daemen and V. Rijmen. [8] A variant of the cipher has been approved
by NSA and included in the ISO standard 18033-3. [9] The cipher has a fixed block size
of 128 bits, three different configurations can be used with 128 bit key and 10 rounds,
196 bit key and 12 rounds, and 256 bit key and 14 rounds.

The encryption algorithm can be divided into four distinct steps:

Key Expansion Each round of the cipher requires 128 bit key (equal to the block size)
which are derived from the initial cipher key.

Initial round key addition the first derived key is XORed with the initial state.

Encryption Rounds each encryption round consists of four sub-steps:

Sub Bytes – each byte is replaced using lookup table,

Shift Rows – each row is shifted with constant number of steps,

Mix Columns – each column is lineary transposed using matrix multiplication with
static value, and

Add Round Key – state is XORed with corresponding derived key (same as step
2).

Final round The last round is same as previous rounds except the Mix Columns
operation is excluded.

When attacking AES the SubBytes operation is targeted as it is a nonlinear operations.
The non-linearity leads to observable power variations that leak information about the
secret key. In the figure 1.2 the two important parts of AES which can be targeted
by DPA are displayed. Based on the knowlege of either plaintext or cipher text the
beginning of AES operation or the end is choosen. The state value which is targeted in
either scenario is denoted by h, the values of the block key are denoted by k. [1]

1.4 Signal processing

Differential Power Analysis requires the processing of a relatively large amount of data.
In order to extract meaningful information from the measured traces, some form of signal
processing has to be performed. three steps are mentioned, that all may be done in order
to mount a successful attack – noise reduction, trace alignment and data reduction. These
processing techniques are critical in DPA attacks as they help to improve signal-to-noise

Signal processing 7

AddRoundKey

SubBytes

SubBytes

AddRoundKey

ShiftRows

h

k0

plaintext

ciphertext

h

k10

Beginning of AES End of AES

Figure 1.2 Internal values of AES which can be target by DPA attack.

ratio, remove unwanted noise and make the amount of computation feasible. The choice
of which options to choose depends on the application, knowledge and various factors of
the system, usually there is not a single correct way and more options have to be verified
experimentally.

1.4.1 Noise reduction

The first step when it comes to signal processing in general is to remove unwanted noise
from the captured signal traces. The noise in the signal can arise from various sources
such as measurement equipment, electrical interference or other environmental factors.
Removing noise from the signal can improve accuracy and decrease the number of traces
required for successful attack. There are several denoising techniques that can be used,
most notably:

Low-pass or band-pass filtering

Median filtering

Order filtering

FFT or wavelet denoising

Each method has its strengths and drawbacks, however, providing their detailed explana-
tion is out of the scope of this work. Implementation of all the aforementioned denoising
functions are available in the Python library SciPy. [10]

1.4.2 Trace alignment

When performing DPA, trace alignment is crucial because it ensures that the power
traces are properly aligned with the corresponding parts of the cryptographic algorithm

8 Preliminaries

being executed on the target device. If the traces are not properly aligned, then the DPA
will not succeed or it will identify non-existent correlations and cause false-positives.

In all cases the first trace is selected as an anchor and then every other trace is shifted
in order to match the anchor. Naive approach consists of finding a global maxima in
both traces and them using the location of both to calculate the shift necessary to match
the traces. This method is extremely time and space efficient, however, rarely functional.
Slightly more complex technique, is to calculate cross-correlation of the two traces, the
shift between the two traces is equal to the point where the value of the cross-correlation
is the highest. [11] This method is called Cross-correlation alignment and works well for
traces that are misaligned only by shift in time, usually because of imprecise or missing
trigger signal, it’s use is demonstrated in figure 1.3. More advanced alignment techniques
include Dynamic time warping or Elastic alignment[12] – strategies often used in speech
recognition – to match skewed traces usually produced by some DPA countermeasures
or unstable clocking signals.

Figure 1.3 Illustrative example of trace alignment done using cross-correlation alignment

1.4.3 Data reduction

The third step is to reduce the number of data that will be processed in order to make
the amount of computation feasible. It is important especially when working with large
number of traces and/or traces containing lots of sample points.

Windowing method which is pretty intuitive, but requires some information about the
execution, selects the part of the trace which does relevant computation to the attack.
For example when attacking AES implementation the first round could be identified and
kept without the rest of the computation.

With down sampling the amount of data can be reduced as well, the downside of it is
that some information from the signal is lost and with it a part of the leaked information
as well.

Provided information about the hardware design of the target system is available,

QCoDes library 9

more informed method of downsampling can be done. In the case of ATMega8, the
operands that are used in the registers are always fetched within the same offset from
the rising edge of the source clock, as can be seen in the figure 1.4. The rest of the clock
cycle should be irrelevant, thus only the part of the recorded trace that is moving the
secrets across the data bus and causing information leak1. This reduction method is
similar to the process of template-based attacks. [13]

Figure 1.4 Internal timing concept for the Register File (taken from [14])

1.5 QCoDes library

QCoDeS is a Python-based data acquisition framework developed by the Copen-
hagen / Delft / Sydney / Microsoft quantum computing consortium. While it
has been developed to serve the needs of nanoelectronic device experiments, it is
not inherently limited to such experiments, and can be used anywhere a system
with many degrees of freedom is controllable by computer. [15]

The QCoDeS framework is a great option to control the measurement workflow of
the experiment. It provides easy access to data persistence using local SQLite database.
The whole framework is well documented, including a large number of usage examples
for all aspects of the framework ranging from simple measurement up to custom driver
development. Pyvisa [16] library is used in the background to communicate with the
measurement instruments, the drivers usually expose the handler in the .visa handle
parameter. The drivers implemented by the library can be used as standalone components
without the rest of the framework.

The framework which uses PyVISA in the background was preferred to PyVISA as
it offers better management of complex instrument control, such as that of oscilloscopes
and power supplies. It hides the SCPI commands behind a layer of abstraction without
losing direct access to the communication library. The ecosystem provides data retention
capabilities useful for long-running experiments.

In the figure 1.5 typical workflow using QCoDeS is described. The usual steps when
performing measurement using the framework are explained below.

1Experimentally verified during the implementation

10 Preliminaries

initialise_or_create_database

load_or_create_experiment

Measurement.run()

Create Measurement and register measurement
parametrs run.add_result(...)

Perform measurement

Initialize instruments (create station)

Figure 1.5 Typical QCoDeS data acquisition workflow

The first step consists of instrument initialization. In our case this means connecting
to the Oscilloscope and Power Supply with their designated drivers. The details
of the communication protocol and connection options are described later in the
document for both measurement devices – Power Supply class is described in 2.2.1
and Keysight Oscilloscope connection support is described in 2.3.1.

Visa addresses are required for both instruments, these can be either Universal Serial
Bus addresses (starting with prefix ‘USB’) e.g.: USB0::0x2A8D::0x1766::MY60104
433::0::INSTR or network addresses e.g.: TCPIP0::10.11.58.253::9221::SOCKET.
There are also other VISA resource names, but none of them are relevant as the are
not available in the laboratory.

The second step is simple and only consists of database initialization. This step is
handled entirely in the background. If the database does not exist it is created, if
it exists, but the revision is from older QCoDeS version it will be automatically
updated otherwise it is kept as is, containing all the previously made experiments.
The database connection feature is really useful, because it stores data on disk instead
of random access memory which is far more limited and also provides data persistence
on power outage or script failure.

The third step is fairly similar to the previous one. The experiment is created (there
can be multiple experiments in the same database) and each subsequent measurement
is tagged with the experiment name so it can be easily searched in the database. The
grouping of measurement runs into different experiments is offered as a convenience,
but it is not essential to any functionality provided by QCoDeS and can be ignored
or used with default values.

In the fourth step Measurement class instance is created and variables that will later
be recorded are registered. There are two options on how to register a parameter
into the measurement, either by using a parameter of an existing device driver (from
the first step) e.g.: supply.ch1.volt or instance of a Parameter class can be used.

The fifth, sixth and seventh step are all part of the measurement loop. These three
steps together are demonstrated in the example 1.1. The measurement loop is

QCoDes library 11

Code listing 1.1 QCoDeS measurement loop example

with measurement.run() as datasaver:
for x in range(5, 15):

supply.ch1.set(x)
volt = multimeter.v1.get()
datasaver.add_result ((supply.ch1 , x),

(multimeter.v1, volt))

wrapped using the Pythons with-context statement and each measurement is then
saved using the add result method available from the context manager.

12 Preliminaries

Code listing 1.2 Data retrieval from database previousely created using QCoDes

>>> qc.initialise_or_create_database_at(’Measurement.db’)
>>> guids = qc.get_guids_by_run_spec(

experiment_name=’EX1’,
sample_name=’sample1 ’
)

>>> for guid in guids:
dataset = qc.load_by_guid(guid)
data = dataset.get_parameter_data ()
print(data[’voltage ’])

1.5.1 Measurement retrieval

The Library provides easy way to access the measurement results using provided helper
functions. In the final measurement combination of functions get guids by run spec
and load by guid is used to iterate through all the measurements that were done. The
get guids by run spec function takes various filter criteria as parameters, experiment
name for example and then returns all the measurement GUIDs that match this criteria.
The dataset can then be loaded from the database into memory using the function
load by guid. The code listing 1.2 demonstrates how to retrieve traces stored in the
experiment database.

1.5.2 Driver development

Writing custom drivers for QCoDes is easy as the library provides high-level interface.
Base class VisaInstrument is available, which handles the initialization of the commu-
nication with the instrument using the underlying pyvisa library. Parameters of the
implemented instrument are added using the add parameter function which is provided
by the baseclass. In case it makes sense, instance of InstrummentChannel, which behaves
identically as VisaInstrument, can be used to group parameters together. This usually
makes sense in case of devices such as multi-channel power supplies. When publishing
a driver to the original repository, it should be stored in a file with following name
convention: qcodes\instrument drivers\[Vendor]\[Vendor] \[Model].py

Chapter 2

Measurement setup

This chapter is devoted to description of the measurement setup, individual devices
in the system and overall connection. In first section target microcontroller is intro-
duced, the features of the firmware are described and notes on how to program the
microcontroller are given. The following section describes the features of the Aim-TTi
QL355TP Power Supply, it’s communication protocol and device driver support. The
third section Introduces the oscilloscope used for trace measurement, it’s mode of
operation and communication.

Measurement setup consists of four parts, the Host computer, Power supply, Target
device and Oscilloscope as can be seen in the setup overview in figure 2.1. The Host
computer controlls the flow of the whole experiment, sets up measurement instruments
and saves recorded data. Power supply generates voltage for the target device to run
on as instructed by the Host. Randomly generated plaintexts and keys are sent into
the target device for encryption. And the oscilloscope measures the devices power
consumption.

ciphertexts

Target board

Supply voltage setting Oscilloscope settings
Host computer

supply voltagePower supply

Measured traces

Oscilloscope

plaintexts,
keys

Power cosumption

Figure 2.1 General system connection overview

13

14 Measurement setup

2.1 Target device

As a target device 8-bit Atmel AVR Microcontroller Atmega8 was selected. It features
RISC architecture, has 8K bytes of on-chip flash memory which can be self-programmed
and 1K byte Internal SRAM memory. The microcontroller can operate on voltages
raging from 2.7 V up to 5.5 V , with disabled brownout detection the chip can operate on
lower voltages but with no guarantee. Despite being fairly limited in terms of available
memory and processing speed the ATmega8 is fairly popular microcontroller because of
it’s low price and high availability as well as minimal requirements on any additional
on-board components.

In order to ensure proper and stable functionality, especially under near-limit condi-
tions, the microcontroller is connected to other circuitry. Breadboard has been used to
allow simple and modifiable setup. The used circuitry in the system includes mainly the
following:

External 8 Mhz crystal oscillator

CP2102 USB to UART module

LM358 comparator [17]

Current measurement resistor

Brief description of reasons as to why each component was included in the system
are given below.

External oscillator was used in order to ensure more stable clocking signal with
minimal jitter than what is available from the on-board oscillator as stable clocking
signal is essential for DPA.

USB to UART module provides a gateway for the necessary communication with
the host computer – sending and receiving commands.

Comparator was used in order to boost the level of data transmission signal coming
out from the device as its voltage was not sufficient for the CP2102 module when the
microcontroller was operating on the lower limit of supply voltage.

current measurement resistor between GND and the microcontrollers own ground
is necessary for current consumption measurement.

Schematic drawing of connections between each component required to operate the
microcontroller as well as measurement equipment connections are displayed in figure 2.2.
Final picture of the components connected on a breadboard can be seen in the figure 2.3.

Target device 15

Figure 2.2 MCU connection schematic

2.1.1 Firmware

The microcontroller is first to be loaded with some form of bootloader so that it can later
be programmed without using dedicated programmer (e.g.: T-LINK/V2). The project
uses Bootloader described in the AVR109[18] application note from Atmel, which enables
the device to be able to self-program (write both Flash and EEPROM Memories and
set required lock bits). In the aforementioned document the communication protocol
and all supported features are described. The implementation of the bootloader is
available online1 and can be compiled using Atmel studio 7 or equivalent tooling. The
communication between the host computer which is used to control all the tooling and
the bootloader is handled by a program called avrdude. [19]

In the final setup the bootloader was not used and direct programming using ST-LINK
was employed instead, because of compatibility issue between the available bootloader
code, chip revision and avrdude version. Since frequent re-programming of the board was
not required – the sample program was successfully verified and no bugs were discovered
– the microcontroller did not need to be reprogrammed at all.

2.1.2 AES implementation

Program containing AES implementation was provided by the supervisor [20] as is and
without any provisions.

Copy of the provided source code is located in the file mega8aes.zip. The
folder GccApplication1 contains the necessary project files to be imported into

1https://www.microchip.com/en-us/application-notes/an1644

16 Measurement setup

Figure 2.3 Image of the board setup during measurement with main components highlighted.

Microchip Studio. Files with the implementation of AES – aes.c and its header
file aes.h – is located in the root of the folder. Main function of the applica-
tion is located in the file testdpa uart.c. Compiled binary as it was flashed on
the target device is located in the output directory of the Microchip Studio at
GccApplication1GccApplication1Release.

The AES implementation correctness has been first verified against the AES imple-
mentation provided by the Python library PyCryptodome. [21] Set of random plaintexts
and keys were used to generate ciphertexts using the device as well as host computer
and the outputs of both were verified. All proved to be the same and no errors were
detected. Later on, during the measurement operation the encryption correctness was
also verified to make sure the chip is operating correctly, which was important especially
when working near the operational limits of the microcontroller.

Multiple commands are supported by the firmware all of which are shown in the
table 2.1. Most important commands used in the work were “p”, “k”, “r” and “C”
used precisely in that order. These command functions are fairly straight forward, the
receive commands store the next incoming 16 bytes into the respective inner buffers,
then the encryption command calls the AES implementation on the device which uses
the previously stored values, calculates the ciphertext and stores it into another buffer,
which is then read out by the host out using the transmit command.

Since the firmware generates pulses on PB1 precisely at the start of AES operation
no trace alignment needed to be done as all the traces match closely in their timing (also
thanks to stable power source there is no skew on the external oscillator). If that was
not the case and the traces need some for of alignment, generally two types approaches
are available. First approach works by shifting the traces in time according to distance

Power Supply 17

Command action
“p” receive plaintext
“p” send stored plaintext
“c” receive ciphertext
“C” transmit ciphertext
“k” receive encryption key

Command action
“K” transmit encryption key
“r” encrypt plaintext using stored key
“R” generate random plaintext
“b” jump into bootloader

default print usage

Table 2.1 Microcontroller Firmware commands

between global maxima in the area of the traces which are targeted by the attack. The
second approach is more complex and uses so-called elastic alignment – strategy often
used in speech recognition – to match skewed traces usually produced by simple DPA
countermeasures. [12]

2.2 Power Supply

General requirement on power supply that is used is to produce as little noise as possible
in order not to influence the measured data. Manufacturer of the used power supply
QLP355 promises Linear regulation with noise below 0.35mV rms. [22] which is well
bellow the measurement capabilities of the used Digital Storage Oscilloscope used.

The model incorporates two single output units and one auxiliary low voltage output.
Output units support 1mV setting resolution across the whole output range of 0-30 volts.
The instrument can be controlled remotely via one of its many interfaces, these include
RS232, USB, LAN and GPIB.

RS232 interface requires no setup at all and uses standard fully wired cable without
any cross-over connections. Because the connection requires XON/XOFF handshake
only ASCII encoded data can be send, but since all the parameters are sent in decimal
format this is not an issue. The baud rate can be configured from 600 up to 19200,
with default baud rate 9600, the value can be changed using the physical interface
on the device, other parameters are described in the documentation and should be
same as default values in most standard implementations.

USB interface requires a Communication Device Class driver, on computers running
Windows, suitable driver is provided by Microsoft and should be installed auto-
matically by Windows plug and play function when the device is connected to the
computer for the first time. On Linux the driver for the USB controller is included
in the kernel and works without any setup, node the device has been bound to can
be seen in the system log when connection is made, typically as /dev/ttyUSB0. The
Baud rate and other settings are unnecessary and are ignored by the USB Controller.

18 Measurement setup

Command description
V < N >< NRF > Set output < N > to < NRF > Volts.
OV P < N >< NRF > Set output < N > over voltage protection to < NRF > V
TRIPRST Attempt to clear all trip conditions from all outputs
I < N >< NRF > Set output < N > current limit to < NRF > Amps
OP < N >< NRF > Set output < N > on/off
∗IDN? Returns the instrument identification

Figure 2.4 Partial list of commands supported by the AimTTi QL355TP power supply

LAN interface is LXI (Lan eXtensions for Instrumentation)[23] compliant and remote
control of the interface is possible using TCP/IP protocol. The instrument provides a
basic Web server which can be used to read device information, configuration as well
as an option to directly send commands. Settings of the interface can be switched
back into factory mode using switch on the rear panel of the unit. When connected
the device uses DHCP to obtain its IP address, in the unlikely scenario that DHCP
is not available the devices uses static IP address of 192.168.0.100. ICMP Ping and
VXI-11 Discover Discovery protocols are implemented for instrument discovery, tools
such as Keysight Command Expert can be used to locate the device on local network.

GPIB interface is also provided and well described in the documentation, but since it
has no relevance to this work as it could not be used in the laboratory it’s description
is omitted.

All of the interfaces implement Standard Commands for Programmable Instru-
ments (SCPI). The device executes the commands in order as they are received and
responses to query commands are sent immediately. List with detailed description of over
forty commands is given in the documentation ranging from output setting to interface
locking. Some commands that can be used are listed in the 2.4, for example command
to set Voltage on the first output to 5.324 volts would be “V 15.324\n”.

2.2.1 QCoDeS support

The QCoDeS library did not offer the support for QL355TP out of the box, however
the documentation explains in great detail how to write custom drivers for new devices
that communicate using VISA protocol. In the folder with instrument drivers a number
of similar devices manufactured by AimTTi has been found. Most of the instrument
drivers derive from the class qcodes.instrument drivers.AimTTi.AimTTi which pro-
vides interface for most of the SCPI system commands as well as initialization for channel
parameters. Unfortunately the class did not support QL355TP as it was not aware of the
number of channels the device has neither did it implement any form of auto-detection.

Support for QL355TP was added into the library, which required some minor changes
to the AimTTi class, which other drivers for Aim-TTI power supplies derive from. Entry
for the power supply had to be added into the parent class as it requires information
about the number of channels the device has. This was previousely not done in easily-
extensible way so the class was modified. These changes has since then been accepted

Power Supply 19

Code listing 2.1 Patched AimTTi class usage demonstration

from qcodes.instrument_drivers.AimTTi import AimTTi
AimTTi._numOutputChannels[’QL355P ’] = 2
pws = SupplyDriver(

’power␣supply ’, ’TCPIP0 ::10.11.58.253::9221:: SOCKET ’
)
Connected to: THURLBY THANDAR QL355P (serial :552321) in 0.03s

by the maintainers of the library and merged into the master branch of the project2,
they were included in the latest (as of writing) release version 0.38.1 and are available in
Python Package Index PyPI.

As a part of the patch, the parameter numOutputChannels was exposed allowing
potential users to extend the lookup table with information regarding other devices,
which are not supported by default. In the code 2.1 the aforementioned feature is
demonstrated with the usage of QL355P device which, unlike QL355P, is not explicitly
supported by QCoDeS.

Additionally support for over current protection, over voltage protection, and trip
reset was added in to the library. The implementation of these features required:

adding new parameters into the instance of a class implementing communication
with the channels,

create custom parser for the response returned by the over voltage and current
protection query.

add custom function which triggers the device trip reset.

The implementation of these features is provided in the file AimTTiPatched.py.
Request to the maintainers of QCoDeS to merge the changes into the upstream has been
made, but as of writing it has not been approved yet. Although, that should not be a
problem once someone from the maintaining team is assigned the pull request

▶ Note 2.1. https://github.com/QCoDeS/Qcodes/pull/5156.

2https://github.com/QCoDeS/Qcodes/pull/5021

https://github.com/QCoDeS/Qcodes/pull/5156
https://github.com/QCoDeS/Qcodes/pull/5021

20 Measurement setup

2.3 Oscilloscope

Keysight DSOX3024T [24] from InfiniiVision family was used. It offers sampling speed
of upto 200 MHz which is sufficient for the application as the MCU is running on 8 Mhz
clock signal. Remote control is available over USB providing a way to programmatically
change running configuration allowing a completely automatized setup for various ranges
of measurements.

The current consumption of the microcontroller changes with the supply voltage
according to the figure 2.5, although the manufacturer does not test these values during
production. This imposes an inequality between the measured data for various supply
voltages. One option is to compensate the signal values later in software using some
transformation method e.g.: linear transformation, but this would introduce more noise
into the data and some information could be lost. Other, much better option is to
compensate the signal levels using the analog amplifier that is in the oscilloscope
which is better suited for this application. The oscilloscope settings that which were
acquired manually using the on-screen measurement options (peak-to-peak measurement,
averaging, ...) can be found in the table 2.6. The voltage and time range are for the
whole oscilloscope (reasons are mentioned later in the chapter) not per one square grid.
For more complex measurement setups this step could be easily automated, but for the
amount of settings that were required in this application it was not necessary.

Figure 2.5 Supply Current vs. VCC (taken from datasheet [14])

2.3.1 QCoDeS support

There is no out-of-the box support for any oscilloscope from the Keysight InfiniiVision
family in QCoDeS, however, there is support for higher series of oscilloscopes called
Infiniium. The protocols used by both product families are similar to each other and
overlap in many important features. The file KeysightInfiniiumPatched.py contains
the patched driver, which can be used to controll some of the features provided by the
oscilloscope. When initializing the driver and connecting to the device multiple warning
are shown in the output, but they can be safely ignored.

Oscilloscope 21

Supply voltage Horizontal Range H. Offset Vertical Range V. Offset
2.25 V 180 mV 067.8 mV 280 µs 1.36 ms
2.50 V 160 mV 076.2 mV 280 µs 1.36 ms
2.75 V 180 mV 092.4 mV 280 µs 1.36 ms
3.00 V 180 mV 108.4 mV 280 µs 1.36 ms
3.25 V 190 mV 126.3 mV 280 µs 1.36 ms
3.50 V 210 mV 144.3 mV 280 µs 1.36 ms
3.75 V 220 mV 162.7 mV 280 µs 1.36 ms
4.00 V 220 mV 192.4 mV 280 µs 1.36 ms
4.25 V 220 mV 228.8 mV 280 µs 1.36 ms
4.50 V 220 mV 266.3 mV 280 µs 1.36 ms
4.75 V 220 mV 299.4 mV 280 µs 1.36 ms
5.00 V 220 mV 339.4 mV 280 µs 1.36 ms
5.25 V 220 mV 398.9 mV 280 µs 1.36 ms

Figure 2.6 Oscilloscope Channel 2 settings

Code listing 2.2 DSOX3024T oscilloscope capture setting and run

>>> osc = ScopeDriver(’scope’, ADDR_SCOPE , timeout =2)
Connected to: KEYSIGHT TECHNOLOGIES DSO -X 3024T (serial: [...])
>>> osc.ch1.range (0.460 * 8)
>>> osc.timebase_range (280e-6 * 10)
>>> osc.trigger_edge_source(f’CHAN {1}’)
>>> osc.trigger_edge_slope(’POS’)
>>> osc.ch1.trigger_level (0.75)
>>> osc.ch1.display(True)
>>> osc.single () # osc.run for Auto

Channel capture, trigger and timebase settings are same for both families allowing
the use of the driver for those features without any additional work or patching. The
protocol does not expose all of the available functionality of the oscilloscope, especially
advanced trigger features and channel input processing. Its worth mentioning that the
settings used in the driver are always meant for the whole screen unlike when they’re
displayed on the oscilloscope where they show as values for one displayed square on
the display. In practice that means values that are displayed on the oscilloscope screen
for the Y axis (Voltage range) must be multiplied by the number of squares on the
screen, which is 8 for DSOX3024T and time setting on the display has to be multiplied
by 10 when using the driver. Example setup of single capture run without is shown in
code listing 2.2, where 460 mV and sampling time of 280 µs per square is set as well as
negative edge trigger. trace reading is missing in the example as that will be discussed
later.

Part of the Infiniium communication protocol which is responsible for data reading
(captured trace retrieval) contains parameters which the lower end InfiniiVision does not
offer in it’s protocol and on which the drivers implementation relies making it unusable
in that scenario. However, the VISA handler used for the communication is exposed
by the driver allowing commands to be sent directly into the device and to read raw
output. When reading raw bytes with the trace data the handle allows chunk size to
be specified which leads to efficient burst reading from the device. Each point in the

22 Measurement setup

Code listing 2.3 Reading data directly into numpy array from channel 1 using the exposed
VISA handle

>>> osc.write(":WAVeform:POINts␣MAX")
>>> osc.write(f":WAV:SOUR␣CHANnel {1}")
>>> osc.write(":WAVeform:FORMat␣BYTE")
>>> osc.write(":WAV:DATA?") # ask for data
>>> digits = int(osc.visa_handle.read_bytes (2)[1:])
>>> length = int(osc.visa_handle.read_bytes(digits)) + 1
>>> trc = osc.visa_handle.read_bytes(length , chunk_size=length)
>>> array = np.frombuffer(trc[:-1], dtype="uint8")

8 0 0 0 0 0 1 2 0 [. . .] \n

Message start delimiter
Number of digits that follow
Number of bytes to be transmitted

Message end delimiter
The actual data

Figure 2.7 Format of the data returned by :WAV:DATA? command [25]

trace is represented by one byte since the oscilloscope has 8 bit precision ADC and
numpy.frombuffer can be used to load the raw binary data into an array structure
suitable for processing. Example of direct data reading is show in the code listing 2.3.

The format of the data returned by the oscilloscope is broken down in the figure
2.7, other relevant SCPI commands are described in the programmers guide released by
Keysight. [25]

Chapter 3

Attacks on the target device

Systematic measurement encryption cycles has been performed on the target device
with various supply voltage levels. DPA attack was launched successfully in every
instance with different results. And the measured data has been thoroughly analyzed.

The whole measurement procedure with detailed description of each step is available in
the Jupyter notebook Measurement.ipynb which has been used to control the whole ex-
periment. The notebook consists of multiple parts, first the measurement instruments are
initialized and communication with the microcontroller is verified using chip operation
function. Settings for the oscilloscope are acquired in a semi-automatic manner requiring
some input from the operator. Afterwards the measurement loop is executed for each
voltage level and the produced traces are stored. The rest of the notebook is made up
by analysis of the measured data.

Some of the helper functions, which used in the experiment, are located in the file
utils.py. Raw data as retrieved from the oscilloscope is stored in the sqlite database
generated by QCoDeS in the file Measurement.db, the data can be accessed using the
QCoDes library as described in the section 1.5.1.

Initially, the data needed for the experiment was recorded in the laboratory producing
14 sets of data across different voltages ranging from 2.25 V up to 5.5 V . Before recording
each set, non-measured cycles of encryption were executed on the device in order to
stabilize the power consumption and charge in all present capacitors to a stable level.
Due to the ≈ 9 MB size of each trace as received from the oscilloscopes, and the need to
record large amount of traces, the length of each trace had to be restricted to conserve
storage space used by the database. The part of the trace which was kept was chosen
in a way to include the first round round of the AES encryption, which is the target of
the DPA implementation. Without this restriction, the size of the database would have
exceeded tens of gigabytes making it impractical to store and analyze.

As a preliminary step, DPA was performed on the raw traces for each set and
successful attacks were observed in every case. Minimal number of traces required for a

23

24 Attacks on the target device

successful key recovery was calculated for each set by reducing the amount of traces used
in the DPA and observing the success of the attack, additionally binary search was used
in order to reduce the amount of computation needed from O(n) where n is the number
of traces in each set to O(log n). The outcome can be seen in the figure 3.1, which does
not exhibit any clear relationship between the supply voltage and the minimal number
of traces required for successfully DPA attack.

2.25V
2.5V

2.75V
3.0V

3.25V
3.5V

3.75V
4.0V

4.25V
4.5V

4.75V
5.0V

5.25V
Voltage

100

120

140

160

180

200
M

in
im

um
 tr

ac
es

 re
qu

ire
d

fo
r s

uc
ce

ss
fu

l k
ey

 re
co

ve
ry

Figure 3.1 Relationship between operating Voltage and number of traces required for
successful DPA

After the initial analysis of the data, no clear relationship was observed. However,
this analysis has been rather generic and did not necessarily mean that there is no
interesting pattern to be found. To be able to do further analysis effectively the amount
of data had to be further reduced with the methods introduced in the section 1.4. These
methods were experimentally verified on a random sample taken from the whole dataset.
Under-sampling with factor 25 (the trace size is reduced 25 times) proved to be fairly
efficient with surprising results – the minimal number of traces required to recover
the key was almost four time less than that of the original traces for randomly chosen
sample. The size reduction method which works with the knowledge of the hardware
implementation was verified by comparing the distance from the peak the correlation
with the source clocking signal which showed that the idea was correct. Although the
latter method did not produce such extreme outcome for randomly chosen experiment
data it produced more stable results corresponding to those of the initial analysis and as
such was chosen for further use.

The Heatmap in figure 3.2 presents the minimal number of required traces (key
recovery threshold) for each byte of the key, across different supply voltages. The
minimal number of traces was calculated by creating a batch witch zero traces, when
DPA failed recovering the correct key, new trace was added, this process was then
repeated until DPA was successful for at least 30 newly added traces. The thresholds for
each byte of the key across different supply voltages were within a relatively narrow range
with no clear relationship between them. However, a high difference in the thresholds
can be observed across different positions in the encryption key, which warranted further
investigation. While the initial assumption was that the Hamming Weight would be an
influential factor, the results as seen in the figure 3.3 suggest that there may be other

Summary of the results 25

Figure 3.2 Minimal number of traces required for successful recovery of each key byte.

factors at play which are currently unknown and would require further work to be done.

As a final and last step in the analysis process, Partial Guessing Entropy (PGE) for
different number of traces was calculated. The figure 3.4 shows the mean PGE value
for all bytes. Again, the results show that there is no significant relationship between
the supply voltages and PGE values. Notably, slight trend is observable within the
range of 40 to 60 traces, in this section the PGE values indicate that the upper range
of the operating voltage (3.75 V - 5 V) may leak slightly more information than the
rest. However, the magnitude of the difference is not significant enough to produce a
distinguishable impact on the overall success rate of the DPA attack.

3.1 Summary of the results

The analysis revealed no apparent relationship between the operating voltage of the
target microcontroller and the success rate of the DPA attack. Coincidentally irregular
pattern was observed in the success rate across different bytes of the key, but the available
data did not reveal any apparent cause, leaving this area for further research.

Earlier proposed method for trace size reduction, based on the microcontroller clock
signal, showed to be fairly efficient without causing any significant loss of information to
the signal and has been used successfully in practice.

26 Attacks on the target device

Figure 3.3 Relationship between Hamming Weight and required number of samples

Figure 3.4 Values of Partial Guessing Entropy (PGE) for different number of traces and
operation voltages.

Chapter 4

Conclusion

This work has explored the possibilities of Differential Power Analysis (DPA) as a method
for attacking secure devices. Usage of QCoDeS library for data acquisition and capture
has been demonstrated. DPA attacks were successfully and repeatedly launched against
Atmega microcontroller. And the relationship between success rate of DPA and supply
voltage of a target microcontroller has been examined.

Differential power analysis as a method to exploit side-channel data leakage unforeseen
by Cryptosystem designers has been introduced. Variation of DPA called Correlation
Power Analysis (CPA) has been explained as well and used extensively later in the work.
Signal processing techniques relevant to the application of DPA have been discussed,
some of them were experimentally verified and applied during the analysis process.

In order to communicate with the measurement equipment, namely Keysight
DSOX3024T digital oscilloscope and Aim-TTi QL355TP lab DC power supply, the
popular opensource data acquisition framework QCoDeS has been extended. The
operation and usage of this framework was explained and illustrated with code examples.
Some minor issues were encountered when storing data into the experiment database,
which were most likely caused by the operating system, but they did not lead to any
significant data loss.

14 sets of measured data have been acquired across different supply voltage levels
ranging from 2.25 V up to 5.25 V . Voltage levels outside of the microcontrollers normal
operating range were included as well in order to examine if the microcontroller behaves
abnormally in extreme conditions. The entire traces have not been saved since the
required storage space on the hard drive would exceed tens of gigabytes. Instead, only
the important part containing the first round of AES was stored for later use.

In the last part of the work, previously recorded data was used to examine the
relationship between voltage of the power supply and success rate of DPA attack. Firstly
DPA attack has been launched against subsets of the raw recorded data, as this operation
was both time and space consuming it was optimized by using binary search to find
the smallest amount of traces required for successful full-key recovery. The recorded

27

28 Conclusion

numbers have shown no correlation with the supply voltage and thus detailed analysis
has been done in order to gain confidence in the conclusion. Then minimal required
traces were calculated for each byte of the key using the processed traces in order to save
computational time, which showed no relationship between attack success and supply
voltage. However, the generated graph revealed interesting inequality among different
bytes in the key. To further investigate this phenomenon, it would be necessary to
examine traces recorded with different keys, unfortunately, such data was not available
at the time of analysis, and thus this area remains open for future research. And the last
part of the analysis uses Partial guessing entropy (PGE) to measure information leakage
as this method is less prone to small variations in the success. As with the previous
two instances, no relationship between supply voltage of the microcontroller and DPA
success rate was found and therefore the following conclusion can be drawn.

Success rate of the DPA attack mounted against Atmel Atmega8P microcontroller is
independent on the voltage level used to supply power microcontroller.

Chapter 5

Future work

5.1 Success rate and encryption key format

Figure 3.3 revealed inequality between different bytes of the key. Different number of
traces was required to recover different bytes, various factors can be at play, such as
Hamming Weight of the key. Data which would support or contradict the assumption
were not available at the moment. Trace recordings made with different encryption keys
are required in order to analyze the relationship.

5.2 Secure hardware

Different protections against DPA have been proposed in research papers such as Dual-
rail pre-charge logic (DPL), Random delays insertion (RDI) or Bus-Invert Coding. DPA
success rate against devices employing such counter measures might possibly be influenced
by the supply voltage, but further research is required.

DPL uses two rails in order to represent one logical bit of value and the computations
are done in two phases – pre-charge and evaluation. [26]

RDI works by inserting random delatys into the datapath of a cryptographic processor
randomizing both the consumption profile as well as the total charge quantity
transferred from the power supply. [27]

Bus-Invert Coding aims at reducing the number of bit transitions in a circuit. When
the number of expected transitions is larger than threshold HW, the input is coded
in order to reduce the number of transitions required. [28]

29

30 Future work

5.3 DPA targeting the last encryption round

As mentioned in the chapter 1.1 DPA attack can target two different parts of the AES
encryption. In our work the intermediate values after the first subBytes operation have
been targeted. Future work could verify the results acquired by targeting the value of
the roundKey used in the last round. The process of deriving round keys is reversible
and therefore the value of the encryption key can be calulated.

Bibliography

1. KOCHER, Paul; JAFFE, Joshua; JUN, Benjamin; ROHATGI, Pankaj. Introduction
to differential power analysis. Journal of Cryptographic Engineering. 2011. Available
from doi: 10.1007/s13389-011-0006-y.

2. KOCHER, Paul; JAFFE, Joshua; JUN, Benjamin. Differential Power Analysis.
In: Advances in Cryptology — CRYPTO’ 99. Springer Berlin Heidelberg, 1999.
Available from doi: 10.1007/3-540-48405-1_25.

3. BRIER, Eric; CLAVIER, Christophe; OLIVIER, Francis. Correlation Power Analy-
sis with a Leakage Model. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 16–29. Available from doi: 10.1007/978-3-540-28632-5_2.

4. BUČEK, Jǐŕı. BI-HWB support material [online]. 2023. [visited on 2023-02-15].
Available from: https://courses.fit.cvut.cz/BI-HWB/.

5. BOTTINELLI, Paul; BOS, Joppe. Computational aspects of correlation power
analysis. Journal of Cryptographic Engineering. 2017. Available from doi: 10.1007/
s13389-016-0122-9.

6. NOVÁK, Petr. BI-PST support material [online]. 2023. [visited on 2023-02-15].
Available from: https://courses.fit.cvut.cz/BI-PST/.

7. DPA Contest [online]. [N.d.]. [visited on 2023-03-19]. Available from: https://www.
dpacontest.org/v2/index.php.

8. DAOR, Joa; DAEMEN, Joan; RIJMEN, Vincent. AES proposal: rijndael. 1999.

9. ISO CENTRAL SECRETARY. Information technology – Security techniques – En-
cryption algorithms – Part 3: Block ciphers. Geneva, CH, 2010. Standard, ISO/IEC
18033-3:2010. International Organization for Standardization. Available also from:
https://www.iso.org/standard/18033.html.

10. SciPy: Scientific Library for Python [online]. 2023. [visited on 2023-03-14]. Available
from: https://www.scipy.org/. Version 1.10.1.

11. MANGARD, Stefan; OSWALD, Elisabeth; POPP, Thomas. Power Analysis Attacks.
Springer US, 2007. Available from doi: 10.1007/978-0-387-38162-6.

31

https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2
https://courses.fit.cvut.cz/BI-HWB/
https://doi.org/10.1007/s13389-016-0122-9
https://doi.org/10.1007/s13389-016-0122-9
https://courses.fit.cvut.cz/BI-PST/
https://www.dpacontest.org/v2/index.php
https://www.dpacontest.org/v2/index.php
https://www.iso.org/standard/18033.html
https://www.scipy.org/
https://doi.org/10.1007/978-0-387-38162-6

32 Bibliography

12. WOUDENBERG, Jasper G. J. van; WITTEMAN, Marc F.; BAKKER, Bram.
Improving Differential Power Analysis by Elastic Alignment. In: Topics in Cryptology
– CT-RSA 2011. Springer Berlin Heidelberg, 2011, pp. 104–119. Available from doi:
10.1007/978-3-642-19074-2_8.

13. ELAABID, M.; GUILLEY, Sylvain; HOOGVORST, Philippe. Template Attacks
with a Power Model. IACR Cryptology ePrint Archive. 2007, vol. 2007.

14. ATmega8(L) datasheet [online]. Atmel Corporation, 2013. [visited on 2023-03-
01]. Available from: https://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel - 2486 - 8 - bit - AVR - microcontroller - ATmega8 _ L _ datasheet . pdf.
Rev.2486AA–AVR–02/2013.

15. NIELSEN, Jens Hedegaard. QCoDeS/Qcodes: QCoDeS 0.37.0. Zenodo, 2023. Avail-
able from doi: 10.5281/ZENODO.7573346.

16. GRECCO, Hernán E.; DARTIAILH, Matthieu C.; THALHAMMER-THURNER,
Gregor; BRONGER, Torsten; BAUER, Florian. PyVISA: the Python instrumen-
tation package. Journal of Open Source Software. 2023, vol. 8, no. 84, p. 5304.
Available from doi: 10.21105/joss.05304.

17. LMx58-N Low-Power, Dual-Operational Amplifiers [online]. Texas Instruments
Incorporated, 2000 Revised March 2022. [visited on 2023-03-01]. Available from:
https://www.ti.com/lit/ds/snosbt3j/snosbt3j.pdf?ts=1682409152028.

18. AVR109: Self Programming [online]. Atmel Corporation, 2004. [visited on 2023-
03-01]. Available from: https://ww1.microchip.com/downloads/en/Appnotes/
doc1644.pdf. Rev. 1644G–AVR–06/04.

19. DEAN, Brian S. AVRDUDE 0v7.1 [online]. 2023. [visited on 2023-02-20]. Available
from: https://github.com/avrdudes/avrdude.

20. BUČEK, Jǐŕı [private communication]. 2023-02-27.

21. PyCryptodome [online]. 2023. [visited on 2023-03-14]. Available from: https://
github.com/Legrandin/pycryptodome. Version 3.17.0.

22. QL Series II - Precision Power Supplies - Instruction Manual [online]. Thurlby
Thandar Instruments Ltd, 2013. [visited on 2023-03-01]. Available from: https:
/ / resources . aimtti . com / manuals / QL _ Series _ II - Instruction _ Manual -
Iss8.pdf. Rev. 48511-1560 Issue 8.

23. LXI CONSORTIUM, INC. LXI Reference Design Overview [online]. 2016 [visited on
2023-03-19]. Available from: https://www.lxistandard.org/Documents/Papers/
LXI%5C%20Reference%5C%20Design%5C%20Overview%5C%2016MAR2016.pdf.

24. InfiniiVision 3000T X-Series Oscilloscope [online]. Keysight Technologies, 2022.
[visited on 2023-03-01]. Available from: https://www.keysight.com/us/en/
assets/7018-04570/data-sheets/5992-0140.pdf.

25. InfiniiVision 3000T X-Series Oscilloscope - Programmer’s Guide [online]. Keysight
Technologies, 2022. [visited on 2023-04-01]. Available from: https://www.batronix.
com/files/Keysight/Oszilloskope/3000XT/3000XT-Programming.pdf.

https://doi.org/10.1007/978-3-642-19074-2_8
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf
https://doi.org/10.5281/ZENODO.7573346
https://doi.org/10.21105/joss.05304
https://www.ti.com/lit/ds/snosbt3j/snosbt3j.pdf?ts=1682409152028
https://ww1.microchip.com/downloads/en/Appnotes/doc1644.pdf
https://ww1.microchip.com/downloads/en/Appnotes/doc1644.pdf
https://github.com/avrdudes/avrdude
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://resources.aimtti.com/manuals/QL_Series_II-Instruction_Manual-Iss8.pdf
https://resources.aimtti.com/manuals/QL_Series_II-Instruction_Manual-Iss8.pdf
https://resources.aimtti.com/manuals/QL_Series_II-Instruction_Manual-Iss8.pdf
https://www.lxistandard.org/Documents/Papers/LXI%5C%20Reference%5C%20Design%5C%20Overview%5C%2016MAR2016.pdf
https://www.lxistandard.org/Documents/Papers/LXI%5C%20Reference%5C%20Design%5C%20Overview%5C%2016MAR2016.pdf
https://www.keysight.com/us/en/assets/7018-04570/data-sheets/5992-0140.pdf
https://www.keysight.com/us/en/assets/7018-04570/data-sheets/5992-0140.pdf
https://www.batronix.com/files/Keysight/Oszilloskope/3000XT/3000XT-Programming.pdf
https://www.batronix.com/files/Keysight/Oszilloskope/3000XT/3000XT-Programming.pdf

Bibliography 33

26. DANGER, PJean-Luc; GUILLEY, Sylvain; BHASIN, Shivam; NASSAR, Maxime;
SAUVAGE, Laurent. Overview of Dual Rail with Precharge Logic Styles to Thwart
Implementation-Level Attacks on Hardware Cryptoprocessors. 2009. Tech. rep. Avail-
able also from: https://hal.inria.fr/inria-00075774. hal-00431261.

27. BUCCI, Marco; LUZZI, Raimondo; GUGLIELMO, Michele; TRIFILETTI, Alessan-
dro. A countermeasure against differential power analysis based on random delay
insertion. In: 2005, 3547–3550 Vol. 4. Available from doi: 10.1109/ISCAS.2005.
1465395.

28. VOSOUGHI, M. Ali; WANG, Longfei; KOSE, Selcuk. Bus-Invert Coding as a
Low-Power Countermeasure Against Correlation Power Analysis Attack. In: 2019.
Available from doi: 10.1109/SLIP.2019.8771332.

https://hal.inria.fr/inria-00075774
https://doi.org/10.1109/ISCAS.2005.1465395
https://doi.org/10.1109/ISCAS.2005.1465395
https://doi.org/10.1109/SLIP.2019.8771332

34 Bibliography

Contents of enclosed Media

readme.txt .. file with contents description
src

mega8aes.zip project bundle with Atmega firmware
DPA..............................Directory containing implementation sources

AimTTiPatched.py QCoDeS driver for QL355TP power supply
KeysightInfiniiumPatched.py.......QCoDeS driver for keysight infiniium
oscilloscopes
Measurement.db......................Database containing measured traces
Measurement.ipynb.....Jupyter notebook containing the Measurement and
analysis
requirements.txt.......................Python package requirements file
utils.py...various utility functions

thesis..............................directory containing the LATEXsource files
text...directory containing thesis text

thesis.pdf....................................the thesis text in PDF format

35

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Preliminaries
	Differential Power Analysis
	Correlation Power Analysis

	Partial Guessing Entropy
	Advanced Encryption Standard
	Signal processing
	Noise reduction
	Trace alignment
	Data reduction

	QCoDes library
	Measurement retrieval
	Driver development

	Measurement setup
	Target device
	Firmware
	AES implementation

	Power Supply
	QCoDeS support

	Oscilloscope
	QCoDeS support

	Attacks on the target device
	Summary of the results

	Conclusion
	Future work
	Success rate and encryption key format
	Secure hardware
	DPA targeting the last encryption round

	Contents of enclosed Media

