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Abstract

This thesis explores the field of search engines, with a particular emphasis on Coun-
terfactual Learning to Rank, position bias, and document selection bias in historical
interactions, personalization of search results, and success metrics for offline ranking
evaluation. The study aims to design and implement a framework to learn suitable
models utilizing Counterfactual Learning to Rank methods that are used to compare
the ranking performance of the models and train unbiased models. Additionally, some
document-specific search features as well as user-specific features are proposed to en-
hance the performance of these models. Offline experiments were conducted on two
significantly different provided industrial datasets to assess the retrieval performance of
various models using the selected methods. Part of the experiments are dedicated to
the comparison of different personalization approaches. The performance of these models
was evaluated using appropriate success metrics for offline counterfactual evaluation, as
well as other offline evaluation metrics. In conclusion, this research contributes to search
engine optimization. The study’s findings have implications for the personalization of
search results and the development of more effective search engine algorithms.

Keywords search engines, Counterfactual Learning to Rank, position bias, document
selection bias, historical interactions, personalization, ranking success metrics, offline
evaluation
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x Abstract

Abstrakt

Tato práce se zabývá oblast́ı vyhledávač̊u, s d̊urazem na kontrafaktuálńı metody Learn-
ing to Rank, zkresleńı zp̊usobené pozićı dokument̊u a zkresleńı zp̊usobené výběrem doku-
ment̊u v historických interakćıch, personalizaci vyhledávaćıch výsledk̊u a úspěšnostńı
metriky pro offline vyhodnoceńı seřazených dokument̊u. Ćılem studie je navrhnout
a implementovat framework pro učeńı vhodných model̊u s využit́ım kontrafaktuálńıch
Learning to Rank metod, které se použ́ıvaj́ı pro srovnáńı úspěšnosti řazeńı těchto model̊u
a k jejich tréninku. Nav́ıc jsou navrženy některé specifické vyhledávaćı př́ıznaky pro
dokumenty i uživatele, které maj́ı zlepšit úspěšnost těchto model̊u. Off-line experi-
menty byly prováděny na dvou významně odlǐsných pr̊umyslových datasetech s ćılem
posoudit úspěšnost řazeńı r̊uzných model̊u pomoćı vybraných metod. Část experi-
ment̊u je věnována srovnáńı r̊uzných př́ıznak̊u k personalizaci pro konkrétńıho uživatele.
Úspěšnost těchto model̊u byla hodnocena pomoćı vhodných úspěšnostńıch metrik pro off-
line kontrafaktuálńı vyhodnoceńı i s daľśımi metrikami pro offline vyhodnoceńı. Toto
d́ılo přisṕıvá k optimalizaci vyhledávač̊u. Zjǐstěńı mohou být použita pro personalizaci
vyhledáváćıch výsledk̊u a vývoj efektivněǰśıch model̊u pro vyhledáváńı.

Kĺıčová slova vyhledávače, kontrafaktuálńı učeńı se řadit, zkresleńı dáno pozićı doku-
ment̊u, zkresleńı dáno výběrem dokument̊u, historické interakce, personalizace, metriky
řazeńı, offline vyhodnoceńı
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Chapter 1

Introduction

Today, the amount of data on the Internet is enormous and is still growing very fast. It
is a difficult task to find the information we need. This large amount of data calls for
effective search capabilities. Search engines are crucial in making the Internet an easy-
to-use, navigable space. They allow users to quickly and efficiently search through
large amounts of information to find the specific content they are looking for. Without
search engines, users would have to manually browse through countless data to locate
the information they need, resulting in a time-consuming and frustrating experience.
In general, search engines have become part of our daily lives and have revolutionized
the way we access and consume information on the Internet. From the perspective of
the search engine operator, the quality of the results could improve the Click Through
Rate (CTR), the number of purchases, the popularity of the web page, or increase
the duration of user engagement. Thus, it makes sense to optimize the search system.

This thesis will focus on a search system for an e-commerce and Video-On-Demand
(VOD) platform. The engine is given a query, and the engine returns a subset of all in-
dexed documents ranked by a relevancy score from the most relevant to the least relevant.
This solution will be the baseline approach. The main effort is to train some ranking
models that are able to rerank the set of documents returned so that the new ranking is
better from the perspective of the evaluation metrics used. Using Counterfactual Learn-
ing to Rank methods, the models will be trained using historical interactions between
users and the documents, products in an e-commerce platform, or movies in a VOD
platform. We will also estimate the biases that appear in the interactions and apply this
estimate to eliminate them. To improve ranking performance, we present new document
features and some of them are personalized to a user. We design and conduct a set of
experiments that compare the models using the selected offline success evaluation met-
rics with each other and with the baseline. Finally, we present the results and discuss
them.

1.1 Structure of thesis

In Chapter 2 we present and describe all the theories and methods we use in the fol-
lowing chapters. In Chapter 3 is described the whole framework in which we conduct

1



2 Introduction

experiments. In this chapter, we also present the concrete implementation of the pre-
sented methods. Chapter 4 describes the experiments we conduct. In Chapter 5, we
describe and show the outputs of the conducted experiments. We also discuss the re-
sults. The last Chapter 6 contains a summarization and conclusion of the experiments
and findings.



Chapter 2

Theory and methods

In this chapter, we present all the methods and concepts that we will use in the next chap-
ters. We start by presenting how a search engine creates a candidate set of documents
with scores. The documents can be sorted solely by the scores from the search engine.
To get a better user experience from the entire search system, we present some Learning
to Rank methods that use the scores with additional data to rerank the documents.

2.1 Search engine

A search engine is a specific type of Information Retrieval (IR) system that is designed
to enable users to quickly and easily search and retrieve relevant information from large
collections of data based on a query. Data could be, for example, web pages, videos,
documents, etc. In this thesis, we are interested in a search engine that contains doc-
uments in the database. Although a good search engine is a very complex system, in
this thesis, we are not interested in the exact implementation. We are interested in
how the engine creates the document result set that is returned based on a query and
how the relevancy scores are computed. Each document has some text fields. When
we send the search engine a query, the search engine performs a full-text search over
all the fields of the documents and returns the relevant ones for the given query. Each
returned document has a score, where the score represents the relevance to the given
query based on a metric. A full-text search means searching for words or phrases within
a text by searching for matches throughout the whole text. We start with a definition
of a document used in the work.

▶ Definition 2.1 (Document). A document is a set of text fields with a label for each
field.

Documents could be, for example, products of an e-shop with title and description text
fields.

2.1.1 Search engine metrics
Although there are many metrics available that could be used, we will use only the Lev-
enshtein edit distance and the BM25 metric. A scoring function is applied to all text

3



4 Theory and methods

fields in a document, and the maximum score is returned. A higher degree of query
match is indicated by a higher score. Given a query, the set of results created by a scor-
ing function consists of all documents with scores greater than 0. For each document in
the set, we say that the document matches the query.

▶ Definition 2.2 (Levenshtein edit distance). Let A = a1, a2, . . . , an, B = b1, b2, . . . , bm

be strings of lengths n and m, respectively, and let Σ be an alphabet ai, bj ∈ Σ for every
1 ≤ i ≤ n, 1 ≤ j ≤ m. The edit distance between A and B is the minimum number of
the following operations required to make the string B from the string A.

Insert c ∈ Σ into A.

Delete ai from A.

Replace ai with bj.

For example, the edit distance between strings KITTEN and SITTING is 3. The op-
erations are replace, replace, and insert:

KITTEN → SITTEN → SITT IN → SITTING.

The Levenshtein edit distance is defined just between two strings, not between a doc-
ument and a string. Direct generalization to compute the Levenshtein distance between
the query and each text field of the document and return the maximum is not applicable
in a full-text search. To use the edit distance between a document and a string, we com-
pute the distance for every document text field substring of the same length in characters
as the query. This is a very time-consuming operation, and thus an approximation is
used. The exact method is not part of this thesis, and thus will not be discussed. The
distance could easily be converted to a score where larger means better by subtracting
the computed distance from the maximal distance. The maximum of the Levenshtein
distance is the length of the longer string.

BM25 is a scoring function that gives a document a score based on a query. The func-
tion uses each term in the strings separately and is thus not sensitive to term proximity.
First, we need some definitions [1].

▶ Definition 2.3 (Average document length).

avgdl :=
∑

D∈D |D|
|D|

, (2.1)

where |D| is the number of terms in document D. A term is a sequence of characters
separated by whitespace. D is a collection of documents and |D| is the number of
documents in the collection D. We have data from two platforms, each platform contains
its own set of documents D. The data will be described further in the thesis.

▶ Definition 2.4 (Inverse document frequency).

IDF (t) :=

log |D|∑
D∈D 1t∈D

, if t is present in at least one document

0, otherwise,

(2.2)
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where t ∈ D means that the term t is present in a text field of document D. And 1 is
an indicator function that is 1 when the condition in the subscript is true and false
otherwise. By log we mean the log2 logarithm, and we use this notation throughout
the thesis. Inverse Document Frequency is a measure of how important a term is in
a collection of documents. The intuition behind IDF is that terms that appear in
many documents are less informative or discriminative than terms that appear in fewer
documents. Thus, the IDF of a term is higher when it appears in fewer documents
and lower when it appears in more documents. By taking the logarithm, we can obtain
a smoother weighting function that avoids extreme values for rare terms.

▶ Definition 2.5 (Term frequency). Term frequency f(t, D) is the frequency of occur-
rence of the term t in document D.

There are multiple definitions of the BM25 function, but we will use the following:

▶ Definition 2.6 (BM25 ).

BM25(D, Q) :=
n∑

i=1
IDF (qi) ·

f(qi, D) · (k1 + 1)
f(qi, D) + k1 · (1− b + b · |D|

avgdl )
(2.3)

In this formula, D represents a document and Q is a query. n is the number of query
terms, qi represents the i-th query term. |D| is the length of the document D. k is
a tuning parameter that controls the scaling of the term frequency, and b is a parameter
that controls the effect of document length normalization. Note that the BM25 is defined
between a query and a document.

In this section, we have shown how to obtain documents that match a query. Each
document from this set must have a non-zero score and the score is calculated based
on the defined metrics. The following chapters will describe the concrete search engine
implementation used, including how the specific metrics are utilized. We have not shown
how to obtain the set of documents efficiently, but it is beyond the scope of this thesis.

2.2 Learning to rank

According to [2], the Learning to Rank task is defined as: “Learning to rank for Informa-
tion Retrieval (IR) is a task to automatically construct a ranking model using training
data, such that the model can sort new objects according to their degrees of relevance,
preference, or importance.” We will use the Learning to Rank apparatus to improve
the basic ranking induced by a search engine from the perspective of a ranking quality
measure. There are several approaches to the Learning to Rank that we briefly present,
but our main focus is on the Counterfactual Learning to Rank approach.

2.2.0.1 Problem definition

First, we describe in more detail the data we use for training and evaluation. All data
are collected in the past, and the data for both platforms are different. We have a set
of queries Q that the users sent. A query Q ∈ Q is a triplet (q, t, u), where q is a
search string that we pass to a search engine, t is a timestamp of when the query was
issued, and u is a user who wrote the query. In the thesis, we mainly use the triplet
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Q as a whole and not the individual values of the triplet. For each query, we have a
set of candidate documents D that match the query string q and are obtained from a
search engine. The D is assumed to contain every document that could be relevant to
the given query. Documents that are not in the set are not relevant to the user, and the
user would not click on that document. There are two types of ranking R̄ and R. R̄ is
a ranking of documents that were shown to a user in the past. The ranking R̄ is a tuple
of documents:

R̄ := (D1, D2, D3, . . . ), Di ∈ D.

Each document in the ranking has a position in the vector called a rank. The vector does
not necessarily contain all the documents in the set D. This is common for a ranking
system showing users just the top-k relevant documents. Now we define the ranking R
that is not historical and is created using a model fθ. Let fθ be a model with a set of
parameters θ able to give each document D in a set of documents D a score fθ(D). The
ranking R of the document set D is defined as:

R := (D1, D2, D3, . . . ), Di ∈ D,

where
fθ(D1) ≥ fθ(D2) ≥ fθ(D3) ≥ . . . ,

and every document is present in the tuple R if and only if it is present in the set D.
Although this ranking R contains all the documents, it is possible that only the top-k
documents with the lowest rank can be shown to users or used in a ranking metric. We
also have the user’s clicks. When a ranking R̄ was shown to a user, the user decided
whether to click on a document or not. A user could click on multiple documents or
not click at all. So, for all rankings issued to a user, we have a click label denoted c(D),
which is 1 if the user clicked and 0 otherwise. The data we want, but do not have in
the thesis, are relevance labels. For each ranking issued to a user, we want labels that
indicate how much a document is relevant. A label could be a real number indicating
relevance, a number of stars from 1 to 5, where 5 stars are the most relevant, or a binary
label. Labels can be collected from human judges. Labels can also be just hypothetical,
and we call it the full information setting, and we denote the true label by y(D). The
click labels and relevance labels are assigned to a concrete user and query, but we do not
indicate it in the notation, since we will use the notation where we use a single query
and user. So there will be no ambiguity.

Figure 2.1 is a diagram showing the historical data. On the left side, there are users
who write queries to a search system. The queries are then passed to a search engine
that returns a set of candidates for each query with a score. The documents are then
passed to a Learning to Rank model that reranks the documents. The model used in the
past is optional, the documents can be sorted just by the scores returned by the search
engine. The model can be arbitrary, currently, we do not have any requirements for the
model. The output of the model is a ranking shown to the end user. The rankings in
the figure are the R̄ rankings with the bar. Users decide which documents to click on,
and the clicks are further recorded by the system. A click on a document is denoted by
bold text in the diagram. Based on this data, we try to train a new model.

The goal of Learning to Rank is to find the parameters θ so that the final rankings R
are the most optimal from the perspective of a ranking metric [3]. In further sections, we
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Figure 2.1 A diagram showing the historical data

show the concrete ranking models used and their parameters. We also show the concrete
metrics for which we optimize the model parameters.

There are three primary approaches to obtaining the optimal parameters θ:

Supervised Learning to Rank

Counterfactual Learning to Rank

Online Learning to Rank

Each approach has some advantages and disadvantages. We will discuss the basics
but in-depth only the Counterfactual Learning to Rank approach. But now we have to
introduce the ranking evaluation metrics that we will use.

2.2.0.2 Ranking evaluation

We need to evaluate a ranking created by a model to tell whether the ranking is good
or not. There are many ranking quality measures available in IR. We will evaluate our
ranking model fθ applied to a set of documents D with relevance y(D) to the document
D as:

∆(fθ,D, y) :=
∑

D∈D
λ(rank(D|fθ,D)) · y(D), (2.4)

where rank(D|fθ,D) is the rank of document D in the ranking R of the document set D
induced by fθ. The model fθ gives each document a score and the documents are sorted
by score. The function λ is a rank-weighting function that helps us to create several
different measures, but we use only the following. Note that we use the true relevance
label y(D) that we do not have [4].

Discounted Cumulative Gain (DCG) The relevance is weighted by the inverse of
the logarithm of rank p. Therefore, for each position in a ranking, we have a different
weight that decreases with the position. There is a normalized version called Nor-
malized DCG (NDCG) where the result is divided by an ideal DCG. The ideal DCG
is DCG of a ranking where relevant documents from the whole set of candidates are
at the top positions sorted from the most relevant to the least relevant. The ideal
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DCG is the maximum value of the DCG between all possible rankings. The resulting
value is then between 0 and 1.

λ(p) = − 1
log2(p + 1) (2.5)

Average relevant position (ARP) The relevance is weighted by rank p. The weight
of each position increases with the position. So a relevant document at position
hundred is more important than a relevant document at position ten.

λ(p) = p (2.6)

For the ARP and DCG metric, a suffix @k can be appended to signal that we are
interested only in the top-k documents of the ranking. We calculate it by multiplying
the λ(p) by the expression 1p≤k. For example, for the DCG@k metric:

λ(p) = − 1p≤k

log2(p + 1) .

This is a measure of a single ranking, and when we want to measure the performance of
a model over a whole dataset of rankings, we will use the average value.

Now, we present different recommendation measures that are used to evaluate a rec-
ommendation algorithm. The presented measures are not sensitive to the ranks of doc-
uments, they only use the set of documents in a ranking to a fixed position k. The first
is recall@k, since we do not know which documents are relevant, we use just click labels
c. Often, we are interested only in the top-k documents of a ranking. We want to know
whether a document D in a historical ranking R̄ that was clicked is recommended in
the first k positions of a newly created ranking R by a model fθ that is being evaluated.
Recall@k is defined across a whole dataset as:

recall@k :=
∑

Qi∈Q
∑

D∈Di
c(D) · 1rank(D|fθ,Di)≤k∑

Qi∈Q min(k,
∑

D∈Di
c(D)) . (2.7)

It is the number of documents clicked by a user and recommended by the model fθ to
position k divided by the total of documents clicked on the entire set of queries Q.

Now we define a model performance measure based on the Jaccard index [5]. The
Jaccard index is a measure of similarity between two sets. It is defined as the size of the
intersection of the sets divided by the size of the union of the sets:

J(A, B) := |A ∩B|
|A ∪B|

. (2.8)

The value is always between 0 and 1. When the value is 1, the sets are equal. When the
value is 0, the sets do not have any element in common. The similarity is defined only
for two non-empty sets.

We define two sets that are bound to a single query Q. A set named clicked denotes
all documents that were clicked for the query. A set named matched@k is a set of
documents created by an intersection of documents in a ranking R̄ that was shown to
a user and a set of documents in the first k positions of a ranking R that is created
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Document
D

from R̄

succesc(D) = 0

failc(D) = 1
Is not in R

failc(D) = 0

success
c(D) = 1

Is in R

Figure 2.2 A decision treen showing Jaccard index J@k evaluation of a document

by a model fθ. In other words, the set matched@k is a set of documents that were
recommended in a historical ranking R̄ and are also in a current ranking R (in the first
k positions). A J@k is defined as the Jaccard index between these two sets:

J@k := J(clicked, matched@k) = |clicked ∩matched@k|
|clicked ∪matched@k|

. (2.9)

Intuitively, when we recommend a document in the top-k positions and the document
is the same as in the historical ranking, we know if we have succeeded or failed. The user
clicks on the document or not. On the other hand, when we do not show a clicked
document to the kth position, we have failed. When we recommend a document that
is not present in the historical ranking R̄, then we do not know. We can see a similar
situation in a decision tree in Figure 2.2. We will use only those ranking R̄ with clicks,
therefore, solving the case where the Jaccard index is not defined. We will discuss how
and why we use these measures in the next chapter.

2.2.1 Supervised Learning to Rank
As the name suggests, we need some labels on the documents. To use the supervised
approach, we need for each user-issued query in our dataset [3]:

Documents A set of documents that match the query.

Labels For each of the documents, we need a quality that indicates the relevance of this
document to the given user and the query issued.

Labels for each document are usually obtained from human judges, so they are
expensive and difficult to obtain. For example, not all websites that want to improve
the relevancy of their search results are able to get enough annotated records to train
a useful model. Even when labels are collected, they do not evolve over time, so they
are outdated.

There are pointwise, pairwise, and listwise approaches used to obtain the model
parameters θ or evaluate a model. The intuitive difference between the functions is how
many documents are used to get a single error, the errors are then summed up. These
approaches are not limited to supervised Learning to Rank but we present them here.



10 Theory and methods

2.2.1.1 Pointwise approach

The pointwise approach used in Learning to Rank is the standard regression or clas-
sification problem where we try to predict the label directly. For the regression task,
we want to minimize the error between the true and predicted labels. For example,
it is the same as predicting the price of houses based on some features. Classification
could be used, for example, when there are only binary relevance labels, relevant and
irrelevant. Documents can be sorted by probability of relevance, or documents deemed
relevant could be placed at top positions in random order.

Because the models are optimized only for the relevancy of a single document to the
query, the resulting ranking induced by these models is not optimized for the correct
ordering between the documents. The performance of this method is usually the worst
of the three [6].

Predicting the probability of relevance is a more difficult problem than ranking doc-
uments. If we have the true probability of relevance, we can sort the documents in
an optimal order, but if we have an optimal order, we do not have relevance probabili-
ties.

We will show a pointwise loss in Equation 2.38 where we try to predict the likelihood
of relevance in a binary relevant–irrelevant scenario. A pointwise evaluation measure
can be, for example, a sum of differences between predicted and true labels in a setting
where the labels are real numbers from 0 to 1.

2.2.1.2 Pairwise loss

The pointwise approach loss is not interested in other documents, takes into account only
one document, and is not dependent on any other document. The pairwise approach
is interested in the relative score of a pair of documents. It tries to put a pair of
documents in the correct order but without dependency on other pairs. The problem
with this method is that it treats every pair of documents equally important. Often we
are interested only in a top-k ranking where the ranks of pairs above k should not be
optimized at the cost of the pair above [3].

An example of pairwise loss is given in Definition 2.72. This loss is also an evaluation
measure, where we are interested in the number of pairs of documents with different
relevance labels that are in the wrong order. Meaning that the more relevant document
has a higher rank than the other document.

2.2.1.3 Listwise loss

The listwise optimizes the ranking directly. That is, the quality measure or loss function
is interested in all the documents at once. They are not differentiable since they use the
rank of a document, and thus the range of values consists of integers. An example of
a listwise evaluation measure is DCG, where we use the ranks of the documents directly.
An example of a listwise loss function is Equation 2.38 where we optimize the DCG
measure.
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2.2.2 Online Learning to Rank
The online Learning to Rank approach does not use historical data. Instead, the ranker
is optimized based on direct interactions with the users. It is done by training a ranking
model in real-time as users interact with the ranking system. It is called online since the
learning of ranker occurs as queries are received and results are presented, rather than
being precomputed offline. Using user feedback, such as clicks, the model is optimized
to provide better results. An approach that is commonly used in online Learning to
Rank is the multi-armed-bandit model. Since we are interested in the counterfactual
approach, we will not discuss this topic further [3].

2.2.3 Counterfactual Learning to Rank
Counterfactual Learning to Rank uses historical data to learn the parameters θ offline.
The data are presented in Section 2.2.0.1. The system does not directly interact with
the user, as opposed to the online approach, and the system does not have the true
relevance labels, as in the supervised approach. User interactions such as clicking on
a document, purchasing a product, adding a product to a cart, etc. provide implicit
feedback on user preferences and are collected in the past. This method uses these data
to learn a model. The focus of this thesis will be solely on the clicks made by users on a
document when a ranking is shown to a user. The name counterfactual is based on the
counterfactual evaluation of a ranking model that we present in the following section [3].

2.2.3.1 Counterfactual evaluation

Suppose that we have a ranking model fθ with parameters of the model θ and our
objective is to assess how performance would look in a production setting using a specific
metric before deployment. For the rest of the thesis, we assume we have only binary
document relevance labels – 1 for relevant and 0 for non-relevant. If we had the true
document relevance function y, we could compute the following formula over a set of
queries Q and a set of corresponding matching documents Di for each Qi ∈ Q [4, 6]:

L := 1
|Q|

∑
Qi∈Q

∆(fθ,Di, y). (2.10)

In the real world, we usually do not have true labels, but we have user clicks. When
a user clicks on a document, does that mean that the document is relevant? No, a click
could happen randomly on a non-relevant document, and when a user does not click
on a document, it does not mean that the document is irrelevant. When a document is
higher in ranking, it is more likely that the document is clicked. Even when a document is
not visible, the document could not be clicked. The interactions can not be used directly,
but certainly, the clicks are related to relevance. There are two major problems:

Noise When a user randomly clicks on a non-relevant document or does not click on
a relevant document, then it would be at a random document, and this should not
happen systematically. Averaging over large data, we can infer a preference, so
averaging will cancel the effect [3].
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Biases If a relevant document is shown in the 500th position, then the probability of
a click is very low compared to a document in the first position. This systematic bias
will occur for every query, so the effect will not be canceled out by averaging over
a large dataset. A bias influences how we collect the interactions. This phenomenon
is called a position bias, and we will define the biases in subsequent sections.

In this thesis, we will handle only position bias and document selection bias in his-
torical interactions. There are more types of biases that we do not address, such as trust
bias. A bias is a systematic error or deviation in the interaction data that was caused
by user behavior or the way the rankings are presented to the user.

If we show users for a given query a random permutation of the documents, the rel-
evant documents that are at a random position will receive a different number of clicks.
For example, when a relevant document is in the first position, the number of clicks will
be different from that of a relevant document in position ten. This phenomenon is called
position bias. This effect arises from the user’s behavior and from how the documents
are presented to the user.

Until now, we assumed that we showed the user all the documents that match a given
query. It is often not the case when we want to show a user just the top-k best documents.
Some of the relevant documents could be above the k threshold. Or even there could be
more than k relevant documents. Users are not able to click on the documents, so some
of the clicks are not collected, and thus the interactions are biased. This phenomenon is
called document selection bias. This bias emerges purely from the way the documents
are presented to the user: the documents were not shown, so they cannot be clicked.

Both biases will become more obvious when we calculate the expected value of a met-
ric in a simplified formalization of user behavior called a User Click model [7].

2.2.3.2 User Click Model

To formalize the biases, we will use a simplified model of how users browse a ranking and
collect clicks. Although many possible models can be chosen, we will use the following
Position-based Model.

In this model, the user click depends on whether the user has examined the document
and whether the document is relevant. A document’s examination (or observation) could
be seen as if the user saw the document in the ranking. There are three Bernoulli
variables. The first is the c(D) variable that represents a user click and is dependent
on a o(D) variable that represents whether the user has examined the document and
also on the y(D) relevance variable. The variable c(D) is fully observed — we know if
a user clicked or not in every ranking. The variables o(D) and y(D) are observed only
partially when a user clicks. In this model, every user clicks on a document if and only
if the document is observed and relevant [3, 6]:

c(D) = 1y(D)∧o(D). (2.11)

When a user does not click, we do not know if the document was not observed or
irrelevant. Since we do not know if a document was observed or is relevant, we model
it using probabilities. We denote the probability that the user will examine a document
D in position k in a ranking R̄ as P (o(D) = 1|R̄, D, k). We can omit k in the condition
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since the position k is already hidden in R̄ and D and thus redundant:

P (o(D) = 1|R̄, D, k) = P (o(D) = 1|R̄, D). (2.12)

The probability that a document D is relevant to a query string q as P (y(D)|q, D). And
the probability of a click c(D) on document D in a ranking R̄ for query q in position k
as P (c(D) = 1|q, R̄, D). These probabilities are the parameters of the Bernoulli distri-
bution. The model assumes that the variables depend only on the given conditions and
nothing else. Note that the probability of relevance depends only on the query string
without a user and timestamp. We will use the dependency on a user in further sections,
where we use personalization of the rankings for a concrete user to improve performance,
but in this model, the relevance is dependent only on the query. The documents are
relevant to a query without dependence on a user. The variables y(Di) and o(Dj) are
assumed to be independent for all documents Di and Dj in a ranking. So, the probability
of a click is:

P (c(D) = 1|q, R̄, D) = P (o(D) = 1|R̄, D) · P (y(D) = 1|q, D). (2.13)

The equation could be rewritten as:

P (c(D) = 1|q, R̄, D) 1= P (c(D) = 1 ∧ o(D) = 1|q, R̄, D)
= P (c(D) = 1|o(D) = 1, q, R̄, D) · P (o(D) = 1|R̄, D)
2= P (y(D)|q, D) · P (o(D) = 1|R̄, D).

(2.14)

Equation marked 1 is true since every clicked document must be observed before clicking.
In other words, the set of observed documents is a superset of clicked documents. Since
o(D)⇔ y(D) in the case o(D) = 1 is given, equality 2 is correct.

Whenever we see a click, we know that the user has examined the document and
that the document is relevant. For now, we assumed in Equation 2.13 that there is no
click noise — clicking on a non-relevant document.

In Figure 2.3 we can see an example of how a user can browse a ranking and click
on documents. The first document is relevant and observed, and thus clicked. The
second document is relevant, but not observed for a reason, and thus not clicked. In
the third position, there is a non-relevant document that is examined but not relevant
for the query, and thus not clicked. In the fourth and fifth positions, there are two
non-relevant documents that would not be clicked even if they are observed. Even when
there are three relevant documents, the user clicked only on the first document, so we
do not have the information that the documents D2 and D6 are relevant.

Whether these assumptions are valid or oversimplified depends on the application.
We believe that these assumptions are reasonable for our search engine application, and
we show the results in Chapter 5. In Figure 2.4 there is a probability tree of the User
Model. We can see that when a document is clicked, we know that the document was
observed and is relevant. The same statement does not hold in the case of non-click.

Historical rankings were shown to users using a ranking model that was deployed at
the time clicks were collected. There could be a single model, an ensemble of models,
or even the models could be changed in time. Even some A/B testing could be done
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Document 1
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Document 5
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Figure 2.3 An example of user behavior according to Position-based Model
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P (y(D) = 1|q, D)

non-click
P (y(D) = 0|q, D)

P (o(D) = 1|R̄, D)

Relevant

non-click
P (y(D) = 1|q, D)

non-click
P (y(D) = 0|q, D)

P (o(D) = 0|R̄, D)

Figure 2.4 A probability tree diagram showing the used User Model
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so that two different users could receive rankings from different models. We model the
ranking shown to a user for a query using probabilities, we call it a logging policy π
with the probability π(R̄|q) of showing a ranking R̄ for a query Q. We denote a set of
all rankings R̄ with non-zero probability π(R̄|q) as π(·|q). We will use this probability
in a top-k scenario where a user will see only a few documents with the lowest rank.

With this model of user behavior and historical interactions, we can calculate the ex-
pected value of a metric. We will see that the resulting value is weighted and thus
biased.

We want to estimate the value of a metric on the whole interaction dataset as if we had
the true relevance labels. The goal of Counterfactual evaluation is to find an estimator
∆̂ that unbiasedly estimates L using:

L̂ := 1
|Q|

∑
Qi∈Q

∆̂(fθ,Di, ci, π). (2.15)

Note that the ∆̂ estimator accepts the click labels ci for the query Qi instead of the true
relevance labels y for a set of documents Di. The estimator also accepts the logging
policy π.

If we try to estimate L naively using a ∆̂naive estimator where true relevance labels
are replaced by click labels [4]:

∆̂naive(fθ,D, c, π) :=
∑

D∈D
λ(rank(D|fθ,D)) · c(D), (2.16)

we end up with a biased estimate caused by the position and document selection. We
calculate the expected value over the observation and logging policy random variables to
see that we cannot use the click labels directly. We are interested in the expected value,
since we want to know whether we get the same value on average on a large dataset as
if we used the true relevance labels. The expected value of this estimator is as follows:

Eo,R̄

[
∆̂naive(fθ,D, c, π)

]
= Eo,R̄

[∑
D∈D

λ(rank(D|fθ,D)) · c(D)
]

1= Eo,R̄

[∑
D∈D

o(D) · λ(rank(D|fθ,D)) · y(D)
]

=
∑

D∈D
Eo,R̄ [o(D) · λ(rank(D|fθ,D)) · y(D)]

=
∑

D∈D
ER̄

[
P (o(D) = 1|R̄, D) · λ(rank(D|fθ,D)) · y(D)

]
=

∑
R̄∈π(·|q)

π(R̄|q)
∑

D∈D
P (o(D) = 1|R̄, D) · λ(rank(D|fθ,D)) · y(D).

(2.17)

In Step 1 we used the Equation 2.11.In this equation, the document selection and position
biases are clearly visible. The ranks are weighted by the probability of observance at the
given position in a ranking, and each ranking is weighted according to the probability
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of being shown by the logging policy π. We can see that, although the clicks are related
to relevance, they cannot be used directly. What we really want is the expression shown
in Equation 2.4.

To remove biases, an inverse propensity scoring estimator can be used. The idea is
to estimate the probabilities that cause the bias and use the estimation to cancel out the
effect. In the following estimator, we estimate only the position bias for each ranking.
This estimator is called a policy-oblivious estimator [4]:

∆̂oblivious(fθ,D, c, π) :=
∑

D∈D λ(rank(D|fθ,D)) · c(D)
P (o(D) = 1|R̄, D)

. (2.18)

We get an unbiased estimate when we calculate the same expected value of this estimator:

Eo,R̄

[
∆̂oblivious(fθ,D, c, π)

]
= Eo,R̄

[∑
D∈D

λ(rank(D|fθ,D)) · c(D)
P (o(D) = 1|R̄, D)

]

= Eo,R̄

[∑
D∈D

o(D) · λ(rank(D|fθ,D)) · y(D)
P (o(D) = 1|R̄, D)

]

=
∑

D∈D
Eo,R̄

[
o(D) · λ(rank(D|fθ,D)) · y(D)

P (o(D) = 1|R̄, D)

]

=
∑

D∈D
ER̄

[
P (o(D) = 1|R̄, D) · λ(rank(D|fθ,D)) · y(D)

P (o(D) = 1|R̄, D)

]
1=
∑

D∈D
λ(rank(D|fθ,D)) · y(D)

= ∆(fθ,D, y).

(2.19)

Step 1 assumes P (o(D) = 1|R̄, D) > 0. Only relevant documents contribute to the
estimate since, in the sum, the non-relevant documents are 0. As long as the following
condition is met, the estimate is unbiased:

∀R̄ ∈ π(·|q), ∀D ∈ D : y(D) = 1 =⇒ P (o(D) = 1|R̄, D) > 0. (2.20)

For every relevant document, we need a non-zero probability of being examined in every
ranking R̄ that can be shown for a query Q. A convenient property of this estimator is
that the logging policy π does not have to be known, which is why it is called policy-
oblivious. To use this method, we must know each clicked document’s propensities.
Propensities in the real world are unknown, so we need to estimate them. The estimation
method is presented in further sections.

This condition cannot be satisfied when we show the user only the top-k documents.
There could be more than k relevant documents, and since we cannot show more than k,
we end up with at least one document that is not visible, so the probability is 0. When
there are fewer relevant documents than k for each query, the previously deployed ranker
must be near optimal, which is unlikely. As a result, the ∆̂oblivious estimator is biased
in the top-k scenario. We use a policy-aware estimator ∆̂aware estimator to account for
this.



Learning to rank 17

Across multiple top-k rankings, showing all the relevant documents is possible.
Therefore, a non-static logging policy could show each relevant document in a rank-
ing. As a result, the probability of examination across multiple rankings is not 0. The
document may not be visible in some rankings, but it is not a problem as long as it
is visible in at least one ranking. The idea is to relax the per-ranking condition and
apply a per-query condition. The probability of examination over all rankings can be
calculated as an expectation over the logging policy [4]:

P (o(D) = 1|D, π) = ER̄

[
P (o(D) = 1|R̄, D)

]
=

∑
R̄∈π(·|q)

π(R̄|q) · P (o(D) = 1|R̄, D). (2.21)

The policy-aware estimator is defined as:

∆̂aware(fθ,D, c, π) :=
∑

D∈D

λ(rank(D|fθ,D)) · c(D)
P (o(D) = 1|D, π) . (2.22)

The estimator ∆̂aware weighs clicks more heavily when a document appears in only a
single ranking compared to another document that appears in all rankings. Thus, correct
for situations where a document is absent in some rankings and cannot be clicked. The
expected value of the estimator is [4]:

Eo,R̄

[
∆̂aware(fθ,D, c, π)

]
= Eo,R̄

[∑
D∈D

λ(rank(D|fθ,D)) · c(D)
P (o(D) = 1|D, π)

]

= Eo,R̄

[∑
D∈D

o(D) · λ(rank(D|fθ,D)) · y(D)
P (o(D) = 1|D, π)

]

=
∑

D∈D
Eo,R̄

[
o(D) · λ(rank(D|fθ,D)) · y(D)

P (o(D) = 1|D, π)

]

=
∑

D∈D
Eo,R̄

[
o(D) · λ(rank(D|fθ,D)) · y(D)∑

R̄′∈π(·|q) π(R̄′|q) · P (o(D) = 1|R̄′, D)

]

=
∑

D∈D
ER̄

[
P (o(D) = 1|R̄, D) · λ(rank(D|fθ,D)) · y(D)∑

R̄′∈π(·|q) π(R̄′|q) · P (o(D) = 1|R̄′, D)

]

=
∑

D∈D

∑
R̄∈π(·|q) π(R̄|q) · P (o(D) = 1|R̄, D) · λ(rank(D|fθ,D)) · y(D)∑

R̄′∈π(·|q) π(R̄′|q) · P (o(D) = 1|R̄′, D)

=
∑

D∈D
λ(rank(D|fθ,D)) · y(D)

= ∆(fθ,D, y).

(2.23)

Similarly, the equation holds as long as the following condition is satisfied:

∀D ∈ D : y(D) = 1 =⇒
∑

R̄∈π(·|q)

π(R̄|q) · P (o(D) = 1|R̄, D) > 0. (2.24)
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Every relevant document has a non-zero probability of examination in at least one rank-
ing R̄ with a non-zero probability of being shown. Therefore, as long as this condition
is satisfied, the ∆̂aware estimator is unbiased.

The ∆̂aware estimator is a generalization over the ∆̂oblivious estimator since Condi-
tion 2.20 implies Condition 2.24. But the other implication is not true. The policy-
oblivious estimator could be seen as a special case of the policy-aware estimator where
the logging policy is static, and every relevant document is shown in the ranking.

There can be a large number of logging policies that satisfy Condition 2.24, such
as a policy that performs a random permutation of the rankings or a less invasive one
that swaps a random document with a random document at the top-k. Condition 2.24
can also be satisfied directly from the models deployed when the clicks were collected.
A disadvantage is that we have to know or estimate the logging policy π otherwise,
we cannot use this method. The next disadvantage is that historical interactions were
logged using a logging policy, so we cannot choose a different one. We are also unable
to validate the conditions. We do not know which documents are relevant and if the
documents were observed. We assume that only the clicked documents are relevant and
that every clicked document had been observed before it was clicked.

An important point to note here is that we start with the click c on the document,
then we use the estimators to get to where we use the y of the actual relevance of the
document, so we claim that the document is really relevant.

So far, we have assumed that we have no click noise. This means that we assumed
that the following condition is true:

c(D) = 1y(D)∧c(D). (2.25)

for every document D. However, the inverse propensity scoring approaches still work as
long as the following condition is true [8]:

y(Di) > y(Dj)⇔ P (c(Di) = 1|q, R̄, Di) > P (c(Dj) = 1|q, R̄, Dj). (2.26)

It means that as soon as a document Di is more relevant than another document Dj , the
probability of clicking on Di is greater than clicking on Dj . The other implication states
that if clicking on the document, Di is larger than clicking on Dj , the document Di is
more relevant than Dj . So, as long as this condition holds, the estimates are unbiased
under click noise. This condition is reasonable to assume in our case.

To better understand the biases, we present the same example as in [4] that contrasts
the two approaches. First, we show a situation where there is a relevant document that
appears in all the rankings. Subsequently, we offer a situation where another document
is beyond the top-k rankings. We will see that in the first situation, both estimates
are unbiased. In the second situation, the policy-oblivious estimator cannot account
for the ranking where the document is missing compared to the policy-oblivious that
provides an unbiased estimate.

▶ Example 2.7. Suppose that we have a query Q and a logging policy π that shows
only two rankings R̄1 and R̄2:

π(R̄1|q) > 0 ∧ π(R̄2|q) > 0 ∧ π(R̄1|q) + π(R̄2|q) = 1. (2.27)
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In the first situation, there is a relevant document DA that appears in both rankings, so
the examination probabilities are positive for each ranking:

P (o(DA)|R̄1, DA) > 0 ∧ P (o(DA)|R̄2, DA) > 0. (2.28)

We can write an expected value for a generic estimator ∆̂ as:

Eo,R̄

[
∆̂(fθ,D, c, π)

]
= Eo,R̄

[∑
D∈D

λ(rank(D|fθ,D)) · c(D)
ρ(o(D)|D, π, R̄)

]
= λ(rank(DA|fθ,D)) · y(DA)·(

π(R̄1|q) · P (o(DA) = 1|R̄1, DA)
ρ(o(DA)|DA, π, R̄1)

+ π(R̄2|q) · P (o(DA) = 1|R̄2, DA)
ρ(o(DA)|DA, π, R̄2)

)
.

(2.29)

The ρ could be replaced by the policy-aware 2.22 or policy-oblivious 2.19 estimator. For
a policy-oblivious estimator, the propensities are positive, so we can write:

Eo,R̄

[
∆̂oblivious(fθ,D, c, π)

]
= λ(rank(DA|fθ,D)) · y(DA)·(

π(R̄1|q) · P (o(DA) = 1|R̄1, DA)
P (o(DA) = 1|R̄1, DA)

+ π(R̄2|q) · P (o(DA) = 1|R̄2, DA)
P (o(DA) = 1|R̄2, DA)

)
=
(
π(R̄1|q) + π(R̄2|q)

)
· λ(rank(DA|fθ,D)) · y(DA)

=λ(rank(DA|fθ,D)) · y(DA) = ∆(fθ,D, y).

(2.30)

and, for a policy-aware estimator, the propensities are also positive, so we can write:

Eo,R̄

[
∆̂aware(fθ,Di, ci, π)

]
= λ(rank(DA|fθ,D)) · y(DA)·(

π(R̄1|q) · P (o(DA) = 1|R̄1, DA) + π(R̄2|q) · P (o(DA) = 1|R̄2, DA)
π(R̄1|q) · P (o(DA) = 1|R̄1, DA) + π(R̄2|q) · P (o(DA) = 1|R̄2, DA)

)
=λ(rank(DA|fθ,D)) · y(DA) = ∆(fθ,D, y).

(2.31)

Note that the policy-oblivious estimator applies the propensity per single ranking, and
the policy-aware estimator corrects with propensity per query so the propensities are
the same for both rankings. Both estimates are unbiased for this situation since both
Condition 2.20 and Condition 2.24 are satisfied.

Now, the second situation in which we have a different document DB that is present
in the ranking R1 and is not present in the ranking R2 is the following:

P (o(DB)|R̄1, DB) > 0 ∧ P (o(DB)|R̄2, DB) = 0. (2.32)

As a result, no click will ever be received in the ranking R2, so we have to consider only
R1 in the estimation. The generic expected value is:

Eo,R̄

[
∆̂(fθ,D, c, π)

]
= Eo,R̄

[∑
D∈D

λ(rank(D|fθ,D)) · c(D)
ρ(o(D)|D, π, R̄)

]

=λ(rank(DA|fθ,D)) · y(DA) ·
(

π(R̄1|q) · P (o(DA) = 1|R̄1, DA)
ρ(o(DA)|DA, π, R̄1)

)
.

(2.33)
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Condition 2.20 is not satisfied, so the policy-oblivious estimate provides a biased esti-
mate:

Eo,R̄

[
∆̂oblivious(fθ,D, c, π)

]
=λ(rank(DA|fθ,D)) · y(DA) · π(R̄1|q) · P (o(DA) = 1|R̄1, DA)

P (o(DA) = 1|R̄1, DA)
=π(R̄1|q) · λ(rank(DA|fθ,D)) · y(DA).

(2.34)

On the other hand, Condition 2.24 for the policy-aware estimator is fulfilled. It
implies that Equation 2.23 is true and the estimate is unbiased, so this estimator can
account for the situation where a document is not shown in a ranking as soon as the doc-
ument is shown in some other rankings:

Eo,R̄

[
∆̂aware(fθ,D, c, π)

]
= λ(rank(DA|fθ,D)) · y(DA) · π(R̄1|q) · P (o(DA) = 1|R̄1, DA)

π(R̄1|q) · P (o(DA) = 1|R̄1, DA)
= λ(rank(DA|fθ,D)) · y(DA) = ∆(fθ,D, y).

(2.35)

The policy-aware estimator gives more weight to cases where the document is rarely
shown.

The intuition behind the estimators can be the following. The estimator tries to
convert the previous ranking to the following case. The case is when a ranking of all
matched documents is shown to the user. The user is a robot that clicks on a document
if and only if a document is relevant to the user based on a given query. So, the user
goes through the ranking and examines all the documents. Even when there is a large
number of those documents. This behavior would provide an unbiased estimate in our
model. Unfortunately, this is not the case in the real world. The estimators try to
remove the position bias and document selection bias. Estimators try to convert the
biased data to the ideal situation by weighting the clicks.

Since we do not know the propensities, we have to estimate them. In Section 2.2.4,
we show how to estimate position bias, and in Section 2.2.5 we generalize this method
and try to estimate document selection bias.

2.2.3.3 Learning a model

So far, we have shown how to evaluate model performance using estimators to obtain
an unbiased estimate of a metric using historical user interactions. We can use an
estimator ∆̂ to directly learn a model. We will use this approach to learn a linear model
that we will then compare with the LambdaMART approach. Although we can use
the click labels to learn a model as in ∆̂naive estimator we can also use the unbiased
estimators. If we use the naive approach, we learn a model that optimizes a biased
metric, so the performance can be worse than when using the other estimators. The
model that learns using bare clicks is called a biased model [9]. We want to find the
parameters θ for a model f to obtain an optimal value of a metric [3]:

θ = arg min
θ′

1
|Q|

∑
Qi∈Q

∆̂(fθ′ ,Di, ci, π). (2.36)
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We would use gradient descent, but the function is not differentiable due to the rank
function. We will solve this problem by optimizing a differentiable upper bound rank
of the rank function. If we can find a tight upper bound for the rank function, then
optimizing that upper bound can also help us find the optimal value of the function. In
the model, we will optimize the following upper bound:

rank(D|fθ, D) =
∑

D′∈D
1fθ(D)≤fθ(D′) ≤

∑
D′∈D

max(1− (fθ(D)− fθ(D′)), 0)

= rank(D|fθ,D).
(2.37)

On the right side of the inequality, there are three cases in the max function. The
score of the document D′ is higher, so the difference in parentheses is negative, and
thus the first argument is greater than 1. For each document D′ that should be ranked
before D, we add a number greater than 1. The second case is when the document D′

has a lower score than D. In this case, the difference in parentheses is positive. Thus,
we add a number between 0 and 1 due to the max function. The last case is when the
scores of the document are the same. We do not know how to order the documents
with the same score, so we place them all in the last position, so we add 1. We can see
that the inequality holds for all three cases. The rank function is differentiable. So, the
function we will optimize looks like this:

1
|Q|

∑
Qi∈Q

∆̂(fθ,Di, ci, π) = 1
|Q|

∑
Qi∈Q

∑
D∈Di

λ(rank(D|fθ,Di)) · c(D)
ρ(o(D)|D, π, R̄)

. (2.38)

This is an example of a listwise loss function. Note that we pass the document D to
the model as an argument, but when we learn the model, we do not use the concrete
document, but we use the document features that are presented in further sections. The
pseudocode for learning a linear model is the following:

Algorithm 1: Learning the baseline model
Input : Model of position bias B,

a training set of queries Q,
number of iterations n,
learning rate η

Output: Parameters of the model θ
Initialize parameters θ′ to 0.
for i← 1 to n + 1 do

for Qi ∈ Q do
Compute the propensity ρ(o(D)|D, π, R̄) using B for each D ∈ Di

Calculate the gradient: ∆θ

[∑
D∈Di

λ(rank(D|fθ,Di))·c(D)
ρ(o(D)|D,π,R̄i)

]
Update the parameters θ′ by subtracting the calculated gradient and η

end
end
return θ′;
In the algorithm, we iterate n times throughout the dataset, and for each query,

we compute the propensity. The function ρ can be replaced according to the naive,
policy-oblivious, or policy-aware estimators. Once we have the propensities, we use
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them to calculate the gradient of the loss function with respect to the parameters θ.
Then we subtract the gradient using a learning rate parameter η. Subtracting is valid
only for the DCG and ARP metrics. The gradient update is performed for each query.
Parameters n and η are chosen using validation data.

2.2.4 Position bias estimation
As described in the previous sections, we address two types of bias in the thesis. The
biases are unknown, so to get an unbiased estimate, we need to know the propensities.

One of the biases is the position bias. We will show the estimation in this section.
The estimation of selection bias is a generalization and will be shown in Section 2.2.5.

The simple idea of calculating the position bias as the number of clicks in a position
and dividing it by the total document recommendations in the position is wrong. In our
model, the probability of a click is:

P (c(D) = 1|q, R̄, D) = P (o(D) = 1|R̄, D) · P (y(D)|q, D). (2.39)

The rankings that were shown to the users were sorted by estimated relevance. So,
the most relevant documents were at the top. If we do the naive calculation, then
the propensities would be biased by relevance. One way to eliminate bias would be
to perform a random permutation of the documents in the rankings before showing
the ranking to a user. Then there would be the same number of relevant documents
at each position on average, so the naive estimate would not be biased for large data.
Unfortunately, we cannot change the logging policy of the historical data. And even if
we can, the randomization of the result causes a bad user experience.

We will simplify our problem by assuming that the observation is dependent only on
the position. A ranking and a document do not influence the probability of observation,
except for the position of the document in the ranking:

P (o(D) = 1|R̄, D, k) = P (o(D) = 1|k). (2.40)

The position bias estimation algorithm we present is based on [6]. It is an Expectation-
Maximization (EM ) algorithm that iterates between an expectation step and a maxi-
mization step. The procedure finds parameters of the user click model that maximize
the log-likelihood of the data. For the sake of brevity, we denote probabilities as:

P (c(D) = 1|q, D, k) = P (o(D) = 1|k)︸ ︷︷ ︸
θk

·P (y(D)|q, D)︸ ︷︷ ︸
γq,D

. (2.41)

Parameters θk and γq,D are the partially observed parameters of the model that we want
to estimate. There is one θk for each position k and one γq,D for each unique query
string q and document D pair. Let {θk} be the set of parameters for all positions and
let {γq,D} be the set of all parameters for all query–document pairs. The log-likelihood
of the data in the model is:∑

Qi∈Q

∑
Dj∈Di

ci(Dj) · log θkγq,Dj + (1− ci(Dj)) · log(1− θkγq,Dj ). (2.42)
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We first present the standard EM algorithm and then a regression-based version that
better handles sparse data. We can compute the following probabilities using our pa-
rameters.

P (o(D) = 1, y(D) = 1|c(D) = 1, q, D, k) = 1,

P (o(D) = 1, y(D) = 1|c(D) = 0, q, D, k) = 0,

P (o(D) = 1, y(D) = 0|c(D) = 0, q, D, k) = θk(1− γq,D)
1− θkγq,D

,

P (o(D) = 0, y(D) = 1|c(D) = 0, q, D, k) = (1− θk)γq,D

1− θkγq,D
,

P (o(D) = 0, y(D) = 0|c(D) = 0, q, D, k) = (1− θk)(1− γq,D)
1− θkγq,D

.

(2.43)

From these probabilities, we can compute the marginals:

P (o(D) = 1|c(D) = 0, q, D, k) = θk(1− γq,D)
1− θkγq,D

,

P (y(D) = 1|c(D) = 0, q, D, k) = (1− θk)γq,D

1− θkγq,D
,

P (o(D) = 1|c(D) = 1, q, D, k) = 1,

P (y(D) = 1|c(D) = 1, q, D, k) = 1.

(2.44)

In the expectation step in iteration t + 1 we use the parameters {θ(t)
k } and {γ(t)

q,D} from
iteration t and estimate the joint distribution of the variables o(D) and y(D) using equa-
tions 2.43. Subsequently, we compute the marginal distribution using equations 2.44.

In the maximization step in iteration t + 1, we use the marginals 2.44 from iteration
t to obtain a better estimate of the hidden variables {θ(t+1)

k } and {γ(t+1)
q,D } using the data

as:

θ
(t+1)
k :=

∑
Qi∈Q

∑
Dj∈Di

P (o(Dj) = 1|c(Dj), q, Dj , k) · 1R̄i[k]=Dj∑
Qi∈Q

∑
Dj∈Di

1R̄i[k]=Dj

, (2.45)

γ
(t+1)
q,D :=

∑
Qi∈Q

∑
Dj∈Di

P (y(Dj) = 1|c(Dj), q, Dj , k) · 1qi=q∧Dj=D∑
Qi∈Q

∑
Dj∈Di

1qi=q∧Dj=D
, (2.46)

where the indicator function 1R̄i[k]=Dj
is 1 if and only if the document Dj is in a position

k in a ranking R̄i logged for a query Qi. Otherwise, the function is 0. Equation 2.45
divides the data by positions. On the other hand, Equation 2.46 divides the data into
query–document pairs. Note that the maximization step uses the marginal probabilities
from equations 2.44.

We start with an initial estimate of the parameters that could be, for example,
random. At each step, the parameters are corrected using the data. In a subsequent
iteration, the parameters are used to obtain an even better estimate. Therefore, the
log-likelihood converges to a local optimum. A complete explanation of why the EM
algorithm optimizes the likelihood can be found in Paper [10]. We stop iterating once
the convergence condition is satisfied.
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Now, we present the regression-based EM algorithm [10]. The motivation to not
use the standard algorithm is the sparsity of the data. We need the parameter γq,D

for each query–document pair we want to rank. There is a problem with new queries
and new documents. There could be a lack of data even for the query–document pairs
we have in the training data to get a good estimate. The new approach differs in the
maximization step, which uses a feature vector x that represents the query–document
pair. The feature vector x used can be the same as the ranking features used in the
ranking system. Using a feature vector instead of a specific query–document pair allows
the algorithm to generalize beyond single query document pair and thus handles the
data sparsity. A function g is then used to represent the relevance γq,D = g(xq,D). To
obtain the function g to estimate relevance, the problem is converted to a classification
problem. After the expectation step, a label r is sampled from P (y(D)|c(D), q, D, k)
for each query–document pair q and D. The label represents relevance. We get a set
of feature vectors xq,D and a binary label r for each vector. Then we learn a binary
classifier that is capable of predicting P (r = 1|xq,D) = g(xq,D) [6]. Here is a pseudocode
of the regression-based EM algorithm.

Algorithm 2: Regression-based EM
Input : Set of documents Di and set of rankings R̄i for queries Qi ∈ Q
Output: θk, γq,D

θ
(0)
k ← 0 // or random

γ
(0)
q,D ← 0 // or random

t← 0
repeat

S ← {}
for Qi ∈ Q do

for Dj ∈ Di do
Sample r from P (y(D)|ci(Dj), qi, Dj , pos(Dj , R̄i))
S ← S ∪ (r, xqi,Dj )

end
end
Fit classifier g with S

γ
(t+1)
q,D ← g(xq,D)

Create parameters θ
(t+1)
k based on Definition 2.45

t← t + 1
until converged;
return set of θ

(t)
k and set of γ

(t)
q,D

Expression pos(Dj , R̄i) returns the position of Dj in the ranking R̄i. When the docu-
ment is not present in the ranking, the probability is defined as 0. Regression-based EM
replaces just the Equation 2.46 by sampling a distribution and then learning a model.
The convergence criterion could be arbitrary. For example, a fixed number of iterations
or a minimal difference in log-likelihood between iterations. In the next chapter, we
present the exact implementation of the algorithm.
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2.2.5 Selection bias estimation

In this section, we estimate the document selection bias in a way similar to that of
Section 2.2.4. We found no document selection bias estimation method in the literature,
so we created our own using the generalization of position bias estimation. In Paper [3]
they present only the document selection bias, but without any estimation method. They
create semi-synthetic data where the bias is predetermined and thus is known. This is
not our case.

The goal is to estimate the value of:

∑
R̄∈π(·|q)

π(R̄|q) · P (o(D) = 1|R̄, D), (2.47)

for each query and for each document from the candidate set. The expression sums over
all rankings with a non-zero probability of appearance for a given query. The probability
of the appearance of a ranking R̄ is multiplied by the probability of the observance of
document D in the ranking R̄. A document may have a 0 probability of observance in
a concrete ranking since the document is not visible. Similarly, as in Expression 2.21 we
condition the click probability on the logging policy π instead of the concrete ranking
and get:

P (c(D) = 1|q, D, π) = ER̄

[
P (c(D) = 1|q, R̄, D)

]
= ER̄

[
P (o(D) = 1|R̄, D) · P (y(D)|q, D)

]

= P (y(D)|q, D)︸ ︷︷ ︸
γq,D

θq,D︷ ︸︸ ︷∑
R̄∈π(·|q)

π(R̄|q) · P (o(D) = 1|R̄, D)︸ ︷︷ ︸
θk

,

(2.48)

the concrete rankings R̄ are replaced by the logging policy. The probability of clicking
now depends only on the given query and document. The click probability also depends
on the logging policy, but the logging policy is fixed. The data are already collected
using a logging policy that we cannot change, so we do not use it in the notation. The
expression marked θq,D is the observation probability of a document for a query without
the dependence on a ranking. The probability of clicking in Equation 2.48 can be seen as
the probability of clicking on a document D for a query string q over all possible rankings.
There is one parameter θq,D per each query–document pair. Note that the parameter
θq,D is the same as Expression 2.47.

The log-likelihood of the model is similar to the Expression 2.42 but the θk is replaced
by θq,D:

∑
Qi∈Q

∑
Dj∈Di

ci(Dj) · log θq,Dj · γq,Dj + (1− ci(Dj)) · log(1− θq,Dj γq,Dj ). (2.49)

Similarly, as for equations in 2.43, we can calculate the following joint probabilities using
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the parameters:

P (o(D) = 1, y(D) = 1|c(D) = 1, q, D, π) = 1,

P (o(D) = 1, y(D) = 1|c(D) = 0, q, D, π) = 0,

P (o(D) = 1, y(D) = 0|c(D) = 0, q, D, π) = θq,D(1− γq,D)
1− θq,Dγq,D

,

P (o(D) = 0, y(D) = 1|c(D) = 0, q, D, π) = (1− θq,D)γq,D

1− θq,Dγq,D
,

P (o(D) = 0, y(D) = 0|c(D) = 0, q, D, π) = (1− θq,D)(1− γq,D)
1− θq,Dγq,D

.

(2.50)

From these probabilities, we can compute the marginals:

P (o(D) = 1|c(D) = 0, q, D, π) = θq,D(1− γq,D)
1− θq,Dγq,D

,

P (y(D) = 1|c(D) = 0, q, D, π) = (1− θq,D)γq,D

1− θq,Dγq,D
,

P (o(D) = 1|c(D) = 1, q, D, π) = 1,

P (y(D) = 1|c(D) = 1, q, D, π) = 1.

(2.51)

In the maximization step, we use the marginal probabilities of the previous iteration to
calculate the parameters {γq,D} and {θq,D}. The formula for γ

(t+1)
q,D is the same as in

Definition 2.46. To estimate θ
(t+1)
q,D for a query string q and a document D, we use the

following formula:

θ
(t+1)
q,D =

∑
Qi∈Q

∑
Dj∈Di

P (o(Dj) = 1|c(Dj), q, Dj , pos(Dj , R̄i)) · 1qi=q∧Dj=D∑
Qi∈Q

∑
Dj∈Di

1qi=q∧Dj=D
, (2.52)

where the probability P (o(Dj) = 1|c(Dj), q, Dj , pos(Dj , R̄i)) is 0 when the document
Dj is not present in the ranking R̄i. The probability is not estimated by this model,
so we use the estimate in Section 2.2.4. We iterate over all query strings, and for each
query where the document D is in the candidate set, we sum the probability that the
document D was observed in the ranking. This sum is divided by the total number
of queries in which the document D is in the set of candidates. According to the way
an EM algorithm works, the parameter θ

(t)
q,D should be increasingly closer to the true

value of θq,D.
The EM algorithm is mostly the same as in Section 2.2.4. We will use the regression-

based version again for the same reason: data sparseness. Similarly, as for Equation 2.46,
we do not calculate θq,D for each pair, but use a feature vector xq,D to train a model
that outputs probabilities. To obtain the labels for the vectors, we sample binary labels
from probability P (o(D) = 1|c(D), q, D, pos(Dj, R̄)) for each document D in a ranking
R̄. A label equal to 1 represents that the document was observed. To estimate the
document selection bias, we need the position bias estimate. In the algorithm, we train
two binary classifiers instead of one in Algorithm 2.

Note that these models also estimate the relevance of documents. Relevance can
be used for ranking: documents from the candidate set can be sorted by relevance in
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descending order. This is an example of the pointwise approach, where the probability
of relevance is trained simply by using document features and labels without dependence
on other documents. These models will also be evaluated and compared with the other
approaches.

2.2.6 Item/User K-Nearest-Neighbors (KNN )
In this section, we use the term item as a synonym for document as it is a common
naming convention on this topic. The Item/User KNN algorithms are very popular
and effective models in recommendation systems. We will use the algorithm to create
personalized features for each item in the candidate set assigned to a query that a user
sends. In the next chapter, we show how. This section describes only the algorithms [11].

The UserKNN and ItemKNN algorithms belong to the category of collaborative
filtering algorithms. Collaborative filtering is based on the assumption that people tend
to like things that people with similar tastes and preferences also like. There are two
types, user-based and item-based. The basic idea of the user-based is that groups of
users are interested in the same content. Once we identify which groups a user belongs
to, we can recommend the items with which the users in the group interacted. The item-
based approach finds items similar to those with which the user has interacted in the
past and recommends them. The advantage of collaborative filtering is that there is no
need for user or item attributes. The only data needed are the user preferences on the
items. Preferences are usually collected using user feedback. Feedback could be explicit
or implicit. Explicit feedback could be collected, for example, from users using a form
in which users can rate an item from 0 to 5 stars. The implicit feedback was already
presented. Since we do not have explicit feedback, we will use implicit feedback in the
form of clicks. Collaborative filtering differs from the content-based approach, where the
item or user attributes are used to get the recommendation. Content-based methods
will not be discussed.

Both algorithms work with a matrix called rating matrix or interaction matrix. We
denote the matrix as

R ∈ R|U |·|I|
? , (2.53)

where |U | is the size of the set of users U and |I| is the size of the set of items I. The R?
is the set of real numbers with the symbol ?:

R? := R ∪ ?. (2.54)

The question mark represents an unknown or unobserved value. We will use the users
u ∈ U and the items i ∈ I to index the matrix. Let ri,u ∈ R|U |·|I|

? represent an element
in the matrix R, and let ru: and r:i represent a vector of user u and item i, respectively.
Each row of the matrix represents a user and contains the user’s interaction with the
items. Each matrix column represents an item and contains users’ interactions with
the item. The matrix is huge when there are a large number of items and users, but
the matrix is very sparse, which means that most of the cells are ? or 0. A rating matrix
R is shown in Figure 2.5. We can see that in the rows are the vectors ru: representing
users, and in the columns are the r:i vectors representing items.

From the feedback, we want to create the matrix. We can generally have multiple
interactions for each user-item pair and possibly of different types. Each cell ri,j is just
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one real number or symbol ?. We need to aggregate the interaction into a single number.
The problem is solved using an aggregation function that maps the set of all possible
interactions to R?. We will present the aggregation function used in the next chapter.
An example of this function could be a function that gives each type of interaction
a weight, and then for all the interactions in the set, the weights are summed according
to the interaction type. When the set is empty, the value is ?.

Before using the matrix, the matrix cells containing ? must be replaced by a real
number. Therefore, we need a function m:

m : R|U |·|I|
? → R

|U |·|I|. (2.55)

The function m could be a rating prediction model. Rating prediction is a standard task
in recommendation systems, but is beyond the scope of this thesis. From now on, we
will use the following simple function m that applies to each cell:

m(ri,j) :=
{

0 if ri,j =?,

ri,j otherwise.
(2.56)

All symbols ? are replaced by 0. The other cells are left unchanged. Now, we present
pseudocodes of the algorithms.

Algorithm 3: UserKNN
Input : Rating matrix R ∈ R|U |·|I|

? ,
a user u,
how many neighbors to consider k

Output: Vector representing items with relevancy scores
Res[1, . . . , |I|]← 0
Find set of k most similar users N for user u using similarity sim
for un ∈ N do

Res← Res + sim(u, un) · run:
end
return Res

We find the k most similar users N to the user u. Then for each similar user un,
we aggregate the rating vector run: of the matrix R to Res weighted by similarity sim
between user u and user un. The output is a vector of length |I|, and each vector element
represents an item. The value of the vector element represents a score for how the item
is relevant to the user u.
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Algorithm 4: ItemKNN
Input : Rating matrix R ∈ R|U |·|I|

? ,
a user u,
how many neighbors to consider k

Output: Vector representing items with relevancy scores
Res[1, . . . , |I|]← 0
Find set of all interacted items Ī for user u
for ī ∈ Ī do

Find set of k most similar items N for item ī using similarity sim
for in ∈ N do

Res[in]← Res[in] + ru,̄i · sim(in, ī)
end

end
return Res

For each interacted item ī, we find the k most similar items N using similarity sim.
We sum the ratings ru,̄i weighted by sim over all similar items in. The algorithms are
very similar, we just use rows or columns from the rating matrix.

The similarity function sim returns a real number that represents the similarity of
two vectors. The similarity function uses the rating matrix. In this thesis, we use the
cosine similarity defined as follows:

cosine(u, v) := u · v
||u|| · ||v||

, (2.57)

where u and v are some non-zero vectors of real numbers of the same length. The
expression u · v is a standard scalar product:

u · v :=
∑

i

ui · vi, (2.58)

and the expression || · || is the Euclidean norm:

||u|| :=
√∑

i

u2
i . (2.59)

So, the similarity between users u1, u2 ∈ U is defined as:

sim(u1, u2) := cosine(Ru1:, Ru2:), (2.60)

and similarly for items i1, i2 ∈ I:

sim(i1, i2) := cosine(R:i1 , R:i2). (2.61)

The cosine similarity is bounded by −1 and +1, where higher means more similar. Cosine
similarity is suitable for sparse vectors since only non-zero vector elements can change
the result value.

Calculating the k nearest neighbors could be very computationally demanding, so
the neighbors for each element are usually precomputed.
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R

I

U r:i

ru: ru,i

Figure 2.5 A rating matrix R denoting the important elements

2.2.7 RankNet, LambdaRank, LambdaMART
Now we present the basic ideas behind the state-of-the-art pairwise model in Learning
to Rank. We show how to train an unbiased pairwise model using only interaction data.
We will use only binary relevance labels, although the idea holds with general labeled
data where the labels can be, for example, a real number between 0 and 1 [12].

The first approach was RankNet, and other approaches are based on this model.
Despite the name RankNet, the underlying model can be any differentiable model, but
the original paper used neural networks [13]. Let relation ▷Q denote that document Di

is more relevant (and thus should be ranked before) Dj for a query Q:

Di ▷Q Dj , (2.62)

when we are writing about a single query, we use just ▷ without the subscript. From
now on, we will use only one query, so the Q will be omitted. A document Di should
be ranked before another Dj because the labels differ. Document Di could have 5 stars
relevance label, while document Dj has only 3. Let P (Di ▷ Dj) denote the probability
that Di ▷ Dj for query Q. For now, suppose that we have a trained model f that accepts
a vector x of document features and query-related features of size m and outputs a real
number:

f : Rm → R. (2.63)

Let si = f(xi) and sj = f(xj), where xi and xj are the features of the document Di

and Dj , respectively. Note that we do not use the exact document identifier, but we use
the document features. With this model trained, we create the ranking R of a set of
documents D by sorting the documents by the model output in descending order.

Now, we show how to train the model. We estimate the probability P (Di ▷ Dj) that
Di should be ranked before Dj for query Q using:

P̂i,j := 1
1 + e−σ(si−sj) . (2.64)
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The parameter σ determines the shape of the sigmoid function. We do not have the
relevance labels in our data, but we have the clicks. For now, assume that click means
relevance and non-click means irrelevance. We will deal with the gap later. Let

Si,j :=


1 if c(Di) > c(Dj),
0 if c(Di) = c(Dj),
−1 if c(Di) < c(Dj).

(2.65)

So Si,j indicates whether document Di is considered more relevant, the same relevant,
or less relevant for a query Q. For the sake of brevity, we denote:

α = σ(si − sj). (2.66)

The cross-entropy loss function C(i, j) we will use for a single pair of documents is the
following:

C(i, j) := −1
2(1 + Si,j) · ln P̂i,j − (1− 1

2(1 + Si,j)) · ln(1− P̂i,j), (2.67)

which could be rewritten as:

C(i, j) = −1
2(1 + Si,j) · ln P̂i,j − (1− 1

2(1 + Si,j)) · ln(1− P̂i,j)

= −1
2(1 + Si,j) · ln 1

1 + e−α
− (1− 1

2(1 + Si,j)) · ln(1− 1
1 + e−α

)

= 1
2(1 + Si,j) · ln(1 + e−α)− (1− 1

2(1 + Si,j)) · ln e−α

1 + e−α

= 1
2(1 + Si,j) · ln(1 + e−α)− (1− 1

2(1 + Si,j)) · (ln e−α − ln(1 + e−α))

= 1
2(1− Si,j)α + ln(1 + e−α) = 1

2(1− Si,j)σ(si − sj) + ln(1 + e−σ(si−sj)).
(2.68)

The partial derivative of C(i, j) with respect to si and sj is as follows:

∂C(i, j)
∂si

= σ

(1
2(1− Si,j)− 1

1 + eσ(si−sj)

)
= −∂C(i, j)

∂sj
. (2.69)

Suppose that θ is a parameter of the model f with a vector of parameters θ. We update
the parameter using the partial derivative of θ for a single pair of documents:

θ ← θ − η
∂C(i, j)

∂θ
= θ − η

(
∂C(i, j)

∂si

∂si

∂θ
+ ∂C(i, j)

∂sj

∂sj

∂θ

)
, (2.70)

where the parameter η is called the learning rate. The last expression is rewritten using
the chain rule.

We learn the parameters using a gradient descent algorithm. The gradient update is
done for each pair of documents with different labels in the default algorithm.

Let IR be a set of pairs of documents Di, Dj where Di is ranked after document Dj

and Di ▷ Dj in a ranking R:

IR := {(i, j)|Di, Dj ∈ D ∧Di ▷ Dj ∧ pos(Di, R) > pos(Dj , R)}. (2.71)
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The set IR is a set of pairs, where Si,j = 1 for every pair. There is a set IR for each
query ranking R. We will omit R from the notation since we will always use only a single
ranking.

There is a high-level pseudocode of the RankNet approach:
Algorithm 5: RankNet

Input : Set of documents Di and set of labels ci for queries Qi ∈ Q,
learning rate η

Output: Vector of model parameters
Initialize model parameters θ
repeat

for Qi ∈ Q do
Create IRi by sorting the documents using model scores and the labels ci

for (Dk, Dj) ∈ IRi do
Calculate the gradient of C(k, j) with respect to parameters θ
Update model parameters using the gradient and η

end
end

until converged;
return θ

The algorithm iterates over a set of queries in a training set. The Ri is created by
sorting the documents by model scores with respect to the current parameters. For each
pair of documents with different labels, the algorithm uses the loss function C(i, j) to
update the model parameters. The gradient calculation and parameter update steps are
symbolic and depend on the underlying model. For example, the convergence criterion
can be when the metric difference between iterations is less than a threshold on the
validation set. The parameters of the mode can be initialized, for example, randomly.

The LambdaRank approach presents two main contributions: a speedup in learn-
ing and direct optimization of a ranking metric. The LambdaRank algorithm performs
parameter updates per query instead of RankNet. The total cost of a query we define
as:

C :=
∑

(i,j)∈I

C(si, sj). (2.72)

The partial derivative of C with respect to a parameter θ is:

∂C

∂θ
=

∑
(i,j)∈I

∂C(si, sj)
∂si

∂si

∂θ
+ ∂C(si, sj)

∂sj

∂sj

∂θ

=
∑

(i,j)∈I

σ

(1
2(1− Si,j)− 1

1 + eσ(si−sj)

)
·
(

∂si

∂θ
− ∂sj

∂θ

)

=
∑

(i,j)∈I

λi,j

(
∂si

∂θ
− ∂sj

∂θ

)

=
∑

(i,j)∈I

λi,j
∂si

∂θ
− λi,j

∂sj

∂θ
,

(2.73)
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where we have defined

λi,j := σ

(1
2(1− Si,j)− 1

1 + eσ(si−sj)

)
= ∂C(i, j)

∂si
= −∂C(i, j)

∂sj
. (2.74)

If we use it with the set I where Si,j = 1 for every element, we can write just:

λi,j = − σ

1 + eσ(si−sj) . (2.75)

For each document Di, we add the term λi,j
∂si
∂w if (i, j) ∈ I and subtract the term if

(j, i) ∈ I. Based on this observation, we can accumulate the sum per document. The
sum can be rewritten as follows:

∂C

∂w
=
∑

Di∈D
λi

∂si

∂w
, (2.76)

where we have defined:
λi :=

∑
(i,j)∈I

λi,j −
∑

(j,i)∈I

λj,i. (2.77)

For example, suppose we have a ranking with only two documents D1, D2 and D1 ▷ D2.
So, the set I has only one element I = {(1, 2)}. The lambdas are:

λ1 = λ1,2 = −λ2,1 = −λ2.

The lambdas with a single subscript can be thought of as forces. We can attach an arrow
to every document, and the length of the arrow denotes the force in which direction the
document should move. The ranking has only two possible directions: move up or
down. For each pair of documents (Di, Dj), if a document Di has λi,j in the sum λi,
then document Dj has −λi,j in the sum λj . The RankNet optimizes pairwise errors. It
is all well if it is the desired loss, but we often want to optimize a different measure,
such as NDCG. Although RankNet can work well with these measures, there is a better
approach. We multiply λi,j by the difference in NDCG that we get by swapping only
the documents Di and Dj , leaving the others unchanged. The difference is denoted as
|∆NDCG|. So, we redefine the lambdas:

λi,j := − σ

1 + eσ(si−sj) |∆NDCG|. (2.78)

Experimentally, this approach has been shown to optimize NDCG directly according
to [14, 15]. So, the issue of optimizing a non-continuous measure like NDCG can be
solved by this approach. In [16] they even proved that the LambdaRank approach op-
timizes an upper bound on NDCG. The RankNet cost function C is not the only one
possible it is just the cost function that worked the best in the LambdaRank paper [12].
Even when we want to optimize a different Information Retrieval measure, such as Av-
erage Relevant Position (ARP), we can replace |∆NDCG| by |∆ARP | [14]. In Figure 2.6
we can see a ranking where the non-relevant documents are of turquoise color and the
relevant documents are yellow. The arrows attached to the relevant document symbolize
the accumulated lambdas. On the right are the lambdas that we get when using the de-
scribed loss function without the multiplication by the NDCG difference. The arrow of
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Figure 2.6 A ranking with depicted lambdas

the document at the lower rank is larger since there are more pairwise errors for the doc-
ument compared to the other document. The arrows on the left side are the lambdas
that we get when optimizing NDCG. In this diagram, only the relevant documents have
arrows, but the other non-relevant documents also have lambdas that are not depicted
for transparency. Now, we present a high-level pseudocode of the approach:

Algorithm 6: LambdaRank
Input : Set of documents Di and set of labels ci for queries Qi ∈ Q,

learning rate η,
ranking measure M

Output: Vector of model parameters
Initialize model parameters θ
repeat

for Qi ∈ Q do
Create IRi by sorting the documents using model scores and the labels ci

Calculate λj,k for each (j, k) ∈ IRi and multiply by difference in M
Calculate λj for each document Dj

Calculate the gradient of C with respect to parameters θ
Update model parameters using the gradient and parameter η

end
until converged;
return θ

The algorithm is very similar to the RankNet algorithm. The model parameter up-
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date uses a mini-batch update per query, but that does not give the important learning
speedup. For now, we do not take the convergence loop and the query loop into account.
The complexity of the RankNet algorithm depends on the number of pairs of documents
in the set I. In the worst case, it could be quadratic. In Equation 2.76 we can see that
the partial derivative computation is also quadratic for LambdaRank, since the compu-
tation of λi is linear. We compute λi and multiply it with ∂si

∂w . The computation of ∂si
∂w

can be a costly operation, for example, for a large neural network. In Equation 2.70
we have to compute the expensive operation per each pair of documents since the pa-
rameters of the models change every iteration. Thus we cannot store some results in
memory. Computing a lambda in Equation 2.78 is a relatively inexpensive operation. In
Equation 2.76, we perform the expensive operation only in the outer sum. This makes
LambdaRank, which also has quadratic complexity, a much faster algorithm.

LambdaMART is a combination of LambdaRank and Multiple Additive Regression
Trees (MART ). The inner model used is MART. MART uses gradient-boosted decision
trees for prediction [17]. LambdaMART has state-of-the-art ranking performance in
pairwise supervised Learning to Rank [9]. We do not present the ideas behind MART
since it is beyond the scope of this thesis.

2.2.7.1 Pairwise bias

In this section, we remove the gap between clicks and relevance labels. For now, we
have assumed for pairwise loss in Section 2.2.7 that click means relevance and non-
click means irrelevance. As we have seen in Section 2.17 the clicks are biased. Thus,
click labels cannot be used interchangeably with relevance labels. Using click labels as
relevance labels, we would train a biased ranker [9] that would give suboptimal results. In
Article [9], they have not shown precisely why and how the ranker is biased in the context
of the User Model used. The paper also removed only the position bias, not the document
selection bias. Thus, we present our own derivation of the results. Until now, we defined
the set I using Si,j where we used clicks c as true relevance labels. Now we redefine
the expression Si,j using true relevance labels y as in Definition 2.65, and thus we also
redefine the set I.

Si,j :=


1 if y(Di) > y(Dj),
0 if y(Di) = y(Dj),
−1 if y(Di) < y(Dj).

(2.79)

To show the bias, we used a naive estimator Cnaive(si, sj) where we used the clicks as
relevance labels again. To remove the bias, we create a new estimator Caware(si, sj) that
handles both position bias and document selection bias. The naive estimator is defined
as follows:

Cnaive(si, sj) := c(Di) · (1− c(Dj)) · C(si, sj). (2.80)
Since the set I is now created using the true relevance labels, we use the click labels
directly in the estimators. We rewrite Definition 2.72 for query cost as follows:

Cnaive :=
∑

pos(Di)<pos(Dj)
Cnaive(si, sj) =

∑
pos(Di)<pos(Dj)

c(Di) ·c(1−Dj) ·C(si, sj). (2.81)

The equation is rewritten using the definition of a set I for binary relevance labels. When
a clicked document Di is below a non-clicked document Dj , then the pair (Di, Dj) is in
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the set. In summation, we iterate on all pairs where Di is below Dj in a ranking. Then
in the sum, the only non-zero case is where Di is clicked and Dj is not clicked. Again, we
calculate the expected value of the cost function. We want to have the expected value
equal to the value obtained when using the true relevance labels and thus unbiased.

Eo,R̄ Cnaive(si, sj)
= Eo,R̄ [c(Di)(1− c(Dj))C(si, sj)]
= Eo,R̄ [o(Di)y(Di)(1− o(Dj)y(Dj))C(si, sj)]
= y(Di)C(si, sj)Eo,R̄ [o(Di)− o(Di)o(Dj)y(Dj)]
= y(Di)C(si, sj)(Eo,R̄ [o(Di)]− y(Dj)Eo,R̄ [o(Di)o(Dj)])
1= y(Di)C(si, sj)(Eo,R̄ [o(Di)]− y(Dj)Eo,R̄ [o(Di)]Eo,R̄ [o(Dj)])

= y(Di)C(si, sj)ER̄

[
P (o(Di) = 1|R̄, Di)

] (
1− y(Dj)ER̄

[
P (o(Dj) = 1|R̄, Dj)

])
= y(Di)C(si, sj)ER̄

[
P (o(Di) = 1|R̄, Di)

]
ER̄

[
1− y(Dj)P (o(Dj) = 1|R̄, Dj)

]
= y(Di)C(si, sj)ER̄

[
P (o(Di) = 1|R̄, Di)(1− y(Dj)P (o(Dj) = 1|R̄, Dj))

]
= C(si, sj)

∑
R̄∈π(·|qi)

π(R̄|Qi)y(Di)P (o(Di) = 1|R̄, Di)(1− y(Dj)P (o(Dj) = 1|R̄, Dj)).

(2.82)

In Step 1 we used the independence of o(Di) and o(Dj). The result is biased similarly
to Equation 2.17. There is the same document selection bias and position bias. To
remove biases, we again use inverse propensity scoring. The term in Equation 2.82
(1− y(Dj)P (o(Dj) = 1|R̄, Dj) represents the biased non-relevance. A problem we have
is that we do not know how to interpret non-click. A document is not clicked if it is
unobserved at all or if the document is observed and not relevant. So, the case is different
when a document is clicked. If a click occurs, we know that the document is relevant,
as can be seen in Figure 2.4. An observation is:

P (c(D) = 0 ∧ y(D) = 0|q, R̄, D) = P (y(D) = 0|q, D), (2.83)

since every non-relevant document is not clicked. In other words: a set of non-clicked doc-
uments is a superset of non-relevant documents. The joint probability in Equation 2.83
can be rewritten:

P (y(D) = 0|q, D) = P (y(D) = 0|c(D) = 0, q, D) · P (c(D) = 0|q, R̄, D). (2.84)

In the case where y(D) is given in the probability P (c(D) = 0|q, R̄, D) we can write:

P (y(D) = 0|c(D) = 0, q, D) · P (c(D) = 0|q, R̄, D, y(D)) = (1− y(D)). (2.85)

The expression c(D) = 0 can be further decomposed in our User Model as follows:

c(D) = 0⇔ o(D) = 0 ∨ o(D) = 1 ∧ y(D) = 0. (2.86)
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If we calculate the probability of not clicking:

P (c(D) = 0|q, R̄, D)
= P (o(D) = 0 ∨ o(D) = 1 ∧ y(D) = 0|q, R̄, D)
= P (o(D) = 0|q, R̄, D) + P (o(D) = 1|q, R̄, D) · P (y(D) = 0|q, R̄, D)
= 1− P (o(D) = 1|q, R̄, D) · P (y(D) = 1|q, R̄, D).

(2.87)

If we assume that y(D) is deterministically known, we can rewrite it as follows:

P (c(D) = 0|q, R̄, D, y(D)) = 1− P (o(D) = 1|q, R̄, D) · y(D). (2.88)

That is enough to create a policy-aware estimator of pairwise loss Caware(si, sj) for a pair
of documents Di and Dj :

Caware(si, sj) := c(Di) · (1− c(Dj)) · C(si, sj) · P (y(D) = 0|c(D) = 0, q, D)∑
R̄′∈π(·|qi) π(R̄′|qi) · P (o(D) = 1|R̄′, D)

.

(2.89)
The query cost for the policy-aware estimator:

Caware :=
∑

pos(Di)<pos(Dj)
Caware(si, sj). (2.90)

We again calculate the expected value with the new estimator. Following the last step
in Equation 2.82 where Cnaive(si, sj) is replaced by Caware(si, sj) for the sake of brevity:

Eo,R̄ Caware(si, sj)
1= C(si, sj) P (y(D) = 0|c(D) = 0, q, D)∑

R̄′∈π(·|qi) π(R̄′|qi) · P (o(D) = 1|R̄′, D)
·∑

R̄∈π(·|qi)

π(R̄|qi) · y(Di) · P (o(Di) = 1|R̄, Di) · P (c(D) = 0|q, R̄, D, y(D))

2= (1− y(Dj)) · C(si, sj) ·
∑

R̄∈π(·|qi) π(R̄|qi) · y(Di) · P (o(Di) = 1|R̄, Di)∑
R̄′∈π(·|qi) π(R̄′|qi) · P (o(D) = 1|R̄′, D)

=
∑

pos(Di)<pos(Dj)
y(Di) · (1− y(Dj)) · C(si, sj)

=
∑

(i,j)∈I

C(si, sj).

(2.91)

In Step 1, we already used Equation 2.88, and in Step 2, we used Equation 2.85. After
the last step, we have the desired unbiased output. We want to calculate C(si, sj)
for each pair of documents Di and Dj where Di is below document Dj in a ranking
and document Di is relevant and Dj is not. To remove the bias, we have to estimate
P (y(D) = 0|c(D) = 0, q, D). If we had the true value of P (y(D) = 0|c(D) = 0, q, D),
we would know the probability of relevance for each document. In this case, it is useless
to train a ranker since we would sort the document according to this probability of
relevance. We do not know the exact probability value, but the equations 2.44 also
estimate the probability. We can use this estimate to train a ranker since an estimation
does not need to be optimal to provide better results than a ranker trained without the
estimate.
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Chapter 3

Implementation

In this chapter, we start by presenting the whole framework in which we conducted the
experiments that we present in the next chapter. We begin by presenting the framework
as a whole in the very next section and then describe the individual parts in more detail
in each section alone. This chapter also contains some details on the implementation of
the methods used.

3.1 Framework

In Figure 3.1 is a diagram of the framework depicted as a graph. The nodes with rounded
corners represent an activity, and the rectangle nodes represent data sent between the
activity nodes. We have data from a search engine of VOD and e-commerce platforms.
We have the data presented in Section 2.2.0.1. Figure 2.1 denotes the data graphically.
The data are: Users, Documents, Historical rankings R̄ and clicks c, and Search queries
Q. The data are depicted in the graph. We describe the exact data in more detail in
Section 3.3.

We start by sending the queries to a Search engine node that outputs a set of can-
didate documents based on a search engine metric from Section 2.1.1. Each candidate’s
score represents the match between the document and the query. All sets of candidates
with scores for each query are denoted using the Candidate documents node.

The next activity node is Feature factory. For each user and document, we have
some features. In this node, we assign to each candidate from the candidate set D the
features of the document along with the score. We also assign each candidate in the
candidate set the user features to each document. Each document in a candidate set for
a particular query has the same user feature values. If there is the same query string
q from a different user, the user features may differ between queries. Some different
features are described in Section 3.6. Here, we also use another search engine to create
additional features. The output is the Dataset node where we have a set of candidates
with features partitioned by query Q ∈ Q. This is also where the data are pre-processed
as described in the following Section.

In the Dataset split node, we split the data into training, validation, and test.
The data were divided by users to ensure each user belonged to a single set. The

39



40 Implementation

training and validation datasets are used for training, and the test dataset is used only
at the end of the process to get an estimate of the performance of the models. The
training, test, and validation datasets were divided in a ratio of 70%, 15%, and 15%,
respectively.

The Bias estimation node accepts the training data with the rankings and clicks.
This is the node where we estimate the position and the document selection bias using
the methods in Sections 2.2.4 and 2.2.5. The output of the node are Bias estimators
which contains two models that can estimate position bias and document selection bias.
These bias estimators can also predict a given document’s relevance probability. We can
use the probabilities to sort the documents, so the ranking performance of these models
was also evaluated.

The next activity node is Training of models. This involves utilizing both the training
and validation data to train the models and adjust their parameters using the validation
data. In addition, unbiased rankers are trained using estimated bias, and models are
trained using historical rankings and interactions. The node’s output is composed of all
the models we present in more detail in Section 3.5. The models are named Baseline,
Linear, and LambdaMART. The model named Baseline is the model that ranks docu-
ments only by the score returned from the search engine. Linear model is presented in
Section 2.2.3.3 and the LambdaMART is presented in Section 2.2.7.

The last activity node is Counterfactual evaluation. All models are evaluated and
compared in this node using the apparatus in Section 2.2.3.1. The input of this node
contains all the models we want to evaluate. Note that we use Bias estimators not
only for bias estimation but also for ranking. Then we need the test dataset with the
historical rankings and clicks.

3.2 Search engines

In the framework, we used two search engines. The first search engine is called Search
engine (Candidates) and is used to obtain the set of candidates that can be relevant to
the query. This engine used the Levenshtein distance to obtain the candidates. Both
platforms wanted to use the measure to tolerate a typo in the query. The returned score
was calculated as the maximum for all text fields in a document and, therefore, the
maximum match for all text properties. Using the maximal possible score, the resulting
score is normalized between zero and one. The maximum size limit for the candidate
set was 750, and any documents that had a lower score and went beyond this limit
were filtered out. Documents with scores lower than 10% of the maximum score were
also filtered out. The search engine is case-insensitive. The search engine used was
Recombee’s search engine, which was also used for all the data we collected in the past.
All sets of candidates passed on to the previous rankers were created using this search
engine.

The second search engine used, called Search engine (Features) used the BM25 scor-
ing function. The parameters of the function were the most widely used: k1 = 1.2 and
b = 0.75. We used the engine to create additional document features. We indexed the
documents in the search engine and then searched for the query per each document
property. So, for each document, we have a BM25 score for each text field. If we pass
these scores as features to a ranker, the ranker can create weights for each text property
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of the document. For example, a title of a product is often more important than a de-
scription of the product. The BM25 score was initially defined for a document D and
not for a text property of the document. It can be envisioned as splitting one document
with multiple text fields into multiple documents with only one field and then searching
in those documents.

As a result, we have a global score of Search engine (Candidates), which represents
a general match between a query and a document. Then, we have a BM25 score for
each document text field. These values are then used in Feature factory in Figure 3.1.
We used Elasticsearch as the implementation of Search engine (Features).

3.3 Data description/preprocessing

As already stated, we have data from a search system of two web platforms: a VOD
platform and an e-commerce platform. All data were supplied by Recombee, a cloud-
based recommendation engine that functions as a service that offers recommendations
based on user behavior and preferences. The input data files are not attached because
they are private data that Recombee cannot disclose

Some data are already presented in Section 2.2.3.1. A Video on Demand (VOD)
platform is a type of online streaming service that allows users to access video content on
demand. This platform provides a library of movies, TV shows, and other video content
that users can access from anywhere with an Internet connection. The e-commerce
platform allows users to buy a product online. The platform we use is focused on the
entertainment industry.

The usual scenario is that a user comes to the website and tries to find the desired
content using a search box. The user is shown some results and decides which document
to view in detail using a click. The user can click on multiple documents, not just one.
The user can also decide not to click at all.

For the VOD case, there is an infinite scroll in which users can view all documents
in the candidate set. The users are shown around 8 documents (depending on the
screen size), and then they decide to click to see the next 8 documents. Therefore,
Condition 2.20 is theoretically satisfied.

Whereas for the e-commerce platform, there is a typical top-k scenario where only
the best 6 documents are shown to the user, and the user cannot view more documents.
If a document relevant to the query and for the given user is not visible, then a more
specific query must be issued to view other documents. Condition 2.20 cannot be true
for the top-k scenario, as already stated in Section 2.2.3.1. We cannot validate if at least
Condition 2.24 is satisfied. The condition states that if a document is relevant to a query,
there must be a non-zero probability of observance across all rankings that can be shown
to the query. We do not know if a document is relevant, and thus we cannot check if the
document is shown in a ranking. There were multiple different models deployed. Some
of the models included randomization of the results. There is also randomization caused
by personalization of the ranking for different users or by A/B testing other models or
parameters. Based on these reasons, we presume that the condition is satisfied.

For both platforms, we have the data from three consecutive days. We used only
users who clicked on a document at least once. In other words, we filtered all users with-
out a single document interaction. For the e-commerce platform data, we have 8040,
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1660, and 1725 users in the training, test, and validation sets, respectively. For the VOD
platform data, we have 22364, 4708, and 4807 users in the training, test, and validation
sets, respectively. For the e-commerce platform, there are around 950000 recommen-
dation queries, and 17000 were clicked, and for the VOD platform, there are around
300000 recommendation queries, and 32000 were clicked. The e-commerce platform
data contain around 16000 unique queries, and the VOD platform data around 4000.
What is very different is the number of recommended documents. The e-commerce data
contain 26000 unique documents that were returned in rankings to users, whereas the
VOD data contain only 350. For the e-commerce dataset, there are 26000 unique docu-
ments in 950000 different recommendation queries, whereas for the VOD platform, there
are only 350 documents in 300000 unique recommendation queries. For a query in the
VOD platform, there is usually a much smaller set of candidate documents, so there is a
much smaller space for reordering of the documents. The presentation of the results and
the number of documents that were returned for a query make the two datasets very
different, which is good for comparison of the methods.

In addition to text fields of documents, the platforms also have their own properties
that are not textual. Since we cannot present the exact properties, we present just how
we pre-processed them. We need the features in numerical values to be used by the Linear
model. Each numeric property is left as is. When a categorical document property has
fewer than 50 unique values, the property is one-hot encoded. If a categorical property
has more than 50 unique values, then the category is replaced by an integer. This
causes an ordering of the values, but it is better than removing the entire property. If
a document property is a set of values, then if there are less than 50 unique values,
then the values are also one-hot encoded. If there are more than 50 values, the property
is remoted. If a property after preprocessing is a constant value, then the property is
removed. The textual properties are used in Section 3.2 and then removed. Then these
document features are used in the Feature factory node in Figure 3.1. Then each feature
is normalized between 0 and 1 throughout the whole dataset. We normalize the values
using the training dataset. The validation and test datasets are also normalized, but
using the values from the training dataset, therefore the values in test and validation
datasets can be out of the interval.

When a user is writing a query, every few hundred milliseconds, the query is sent to
the search system to give the user at least some results as the user is typing. We do not
want to take these queries into account since the queries are never clicked (except the
last). All queries five seconds apart in time at maximum are considered to be in a single
search session. We are interested in the last query from the session. This is the point
where the user decides whether to click or not. All other queries in the session are not
important to us. When a user typed only the first part of the query and the desired
document was shown, the user also finished the session.

Both platforms also have features for their users, such as gender, age, nationality,
etc. These features could also be used to improve the quality of the ranking. For now, we
assumed that the relevance of a document depends only on the query without dependence
on a user. A document is either relevant or non-relevant to a query, and it is the same
for all users. In the real world, a document relevant to one user may not be relevant to
another user, even for the same string query. So, in addition to the presented theory, we
assume that the relevance also depends on the user, and thus all the probabilities are
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conditioned on a query and the user. Actually, we use the user features instead of the
user identifier in the models and assume that the fitted model can generalize to other
feature vectors. We use the assumption that users that are somewhat similar will have
the same preferences for relevant items. Suppose that we have users where we have user
age, nationality, gender, language, and maybe others. Now suppose that there are two
users with completely the same features, but the age feature difference between the users
is three. Furthermore, users have similar preferences or interact with similar documents
(presented in Section 3.6). These users are likely to have the same preferences when
the same query is given. The same is true for the features of the document also. If
we want to personalize the rankings for a given user, then the models that provide the
scores by which the documents are sorted must depend on the features of the user. We
use user features in learning all models: the Linear ranker, estimating both biases and
learning the LambdaMART model. We preprocess the user features in the same way as
the document features, and the resulting vector that we use to learn a model is a simple
concatenation of the vectors.

As a result, we have 310 features for the e-commerce dataset and 330 for the VOD
dataset. Since the data are large, we had problems with memory while learning the
models. To solve the problems, we did a feature selection to reduce the dimensionality
of the data, and thus reduce memory usage. When a model learns using fewer features, it
does not mean that performance will be worse. On the validation data, the performance
can be even better due to the overfitting of the training data.

Since we use the MART algorithm in LambdaMART we can use the feature impor-
tances the model creates. We have not presented how the algorithm works, but it is an
iterative algorithm that iteratively builds decision trees. Each tree is built by selecting
the best splits by a feature based on a predefined criterion. When a feature is selected,
the feature provides the best split among some other features. The goal of splitting by
features in a decision tree is to create subsets of the data that are as homogeneous as
possible with respect to the target variable, which helps later with predictions. A prede-
fined criterion can be, for example, the Gini impurity or the information gain. When we
aggregate the number of times a feature was used, we can interpret it as the importance
of the feature for the model. The importances are only relative to other features. When
the algorithm is fitted, we have for each feature the count of how many times the feature
was used. We normalize the counts between 0 and 1 using the largest count. We remove
all features with importance less than 0.0075 for both datasets. The threshold is very
small, and it mainly removes features with an importance of 0. The threshold was se-
lected mainly to remove the zero-importance features and the features with importance
very close to 0. For the e-commerce we retained 69 features, and for the VOD dataset,
we retained only 17 features.

3.4 Bias estimation

In this section, we present some of the implementation details of the bias estimation as
presented in Sections 2.2.4 and 2.2.5.

To estimate position bias using the regression-based EM algorithm, we need a binary
classifier capable of predicting probability. We need to estimate the probability of rele-
vance. The classifier takes the ranking features as input (user features are also included).
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The labels are sampled from a distribution. We used Gradient Boosted Decision Trees
(GBDT ) as the classifier from the LightGBM framework [18].

For each iteration of the Algorithm 2 we conducted five iterations of the GBDT model
and then resampled the data and continued with the next iteration. In an iteration,
we used all weak learners from previous iterations. We hand-tuned the learning rate
parameter to 0.1 based on validation data. With this value, the log-likelihood of the User
Model data converged in a reasonable time. We used the hand-tuning of the parameters
more times since a proper grid search of the parameters would be very computationally
demanding since the data are large. We used a simple convergence criterion to stop
the algorithm, where we hand-tuned the number of iterations to nine since the value
converged before that point for both datasets. We left all other parameters to the
default values. The classifier used to estimate the document selection bias was exactly
the same with the same parameters.

Since the classifier supports the weighting of the samples, we created the weights
using the probability of each sample. In Algorithm 2 we sample the labels from the
distribution:

P (y(D)|ci(Dj), qi, Dj , pos(Dj , R̄i)). (3.1)

Each data point has a probability of being relevant and non-relevant, and we used the
probability as the weight in the classifier. The classifier prefers to successfully classify the
input variables with higher weights. Intuitively, a document that we are more confident
in assessing relevance should receive higher weight in the classifier than a document
for which we are less confident. We also use this technique in document selection bias
estimation. This is the only improvement we did to the default algorithm. We present
how it affected the performance in the following chapter.

We use a technique called Bias clipping. When learning an unbiased model using
the estimated bias, there is a chance that the estimator has a high variance and predicts
a very small probability. When the propensity is applied to a data point, the weight
is very large compared to the size of the dataset. The ranker then can be overfitted to
the point and is not able to generalize well. To solve the problem, we set a threshold
on the minimal probability. This produces a biased model, but then the variance of the
model is smaller, which can result in better performance. This is an example of Bias-
variance tradeoff. We use clipping only on training data and never on test or validation
data. We use the value of the parameter 0.001.

As already stated in Chapter 2 the model that estimates the document selection bias
used the estimation of position bias of the second model.

3.5 Training of models

In this node, we train all ranking models without those already trained from the Bias
estimation node. We start by describing the Baseline model.

3.5.1 Baseline
As a baseline, we use the bare search engine scores. It is a minimal setting in which
a website could provide a way to search for documents. It is completely not personalized,



46 Implementation

and the only feature used is the match between a text property of a document and
a query. The provided scores are from Search engine (Candidates) where we used the
Levenshtein score. The Baseline model can also be seen as a model that uses just
the global score search score property and performs a sort. This model is not trained.

3.5.2 Linear
The second model is named Linear. This approach was presented in Section 2.2.3.3
where we directly optimized an estimator loss. As the name suggests, we used a regu-
larized linear regression model using the L2 regularization of the model coefficients. For
this model, we have not used any library and implemented our own gradient descent
algorithm to fit the coefficients. We briefly present the linear model [19]. We mark
a feature vector of a document as:

x = (x1, x2, . . . , xm, 1), xi ∈ R, (3.2)

where m is the number of features and 1 at the end is the intercept. We mark the set of
coefficients/parameters/weights as follows:

w = (w1, w2, . . . , wm, wm+1), wi ∈ R. (3.3)

The wm+1 is the weight of the intercept. In this model, we assume that there is a real
score for the document Y that is linearly dependent on the features and thus can be
calculated as:

Y = w1x1 + w2x2 + . . . + wm+1 + ϵ = w · x⊤ + ϵ, (3.4)

where ϵ is a random variable and we assume E ϵ = 0. The intercept with weight wm+1
represents a starting value when all other weights are zero and ensures that Eϵ = 0. We
estimate the score Ŷ of a document based on the features as:

Ŷ = E Y = w · x⊤. (3.5)

We also add a term that penalizes the weights of the model with L2 regularization. It
creates a biased estimate, but it helps us with the colinearity problem and can help with
overfitting.

Ŷ = w · x⊤ + λ
m∑

i=1
w2

i . (3.6)

The parameter λ controls the weight of the regularization. The score Ŷ is then used in
the rank function.

We start by initializing all the coefficients to 0. Initializing the parameters at random
provided the same results. All of the following parameters were manually tuned on the
basis of validation data. We selected the parameter λ = 0.0001. Note that all features
are normalized between zero and one, and thus have the same weight. The learning
rate parameter in the first iteration is η = 0.05. We also used a learning rate decay, in
which, at each iteration, we used the learning rate of the previous iteration multiplied
by 0.95. It should ensure that the gradient step is not too large and thus converges
better. Since we update the gradient per each query in mini-batches, we used a gradient



Feature engineering 47

momentum technique. It helps to overcome the issues of oscillations and getting stuck
in local minima or saddle points. Momentum is inspired by the concept of momentum
in physics, where a moving object tends to continue moving in the same direction due
to its inertia. In the context of gradient descent, momentum is introduced by adding
a fraction of the previous update to the current update. This helps to smooth out
the optimization path and accelerates convergence. We decided to keep the last three
gradients, and each gradient has an exponentially decaying weight of 0.4. Therefore,
the weights for the previous gradients are 0.4, 0.16, and 0.064. We selected the number
of iterations n = 100 because higher values have not provided better results even for
different decay values of the learning rate.

3.5.3 LambdaMART
We used the LambdaMART implementation of the LightGBM framework [18]. We use
the parameter objective set to lambdarank in LGBMRanker and the default optimized
metric is NDCG@k. The parameter k is set by lambdarank truncation level of LGBM-
Ranker. We present the values of this parameter in the following sections. We used
a learning rate of 0.4 with a learning rate decay of 0.995 with 500 iterations. All other
parameters used the default values.

The LGBMRanker supports the setting of weights for the documents, but the inter-
pretation of the weights is different from what we want in Section 2.2.7.1. The model
gives weights to the lambdas in Equation 2.77. We want to give weight to a pair of doc-
uments as in Equation 2.89. So, we implemented support for these weights in the ranker
source code. We changed the meaning of the weights. The framework is open source, so
it was possible. The code is shown in the enclosed media.

3.6 Feature engineering

We have already presented most of the features used for the ranking or document. We
start by summarizing the features and then presenting the new ones.

We presented the document properties and the user properties. Then we also used the
search score per document and then search scores per text property of the document. In
addition to these properties, we also used the length of the search query since information
on how long the query is can be important. The only personalized features are the user
features. Now, we present two other personalized features using the methods presented
in Section 2.2.6.

We must specify how we aggregate the interaction in the rating matrix R. Since we
only use the clicks on the documents, we aggregate all the clicks to the rating matrix
by summing all the interactions between a user and a document in the cell representing
the user and document. A value in a cell represents the user’s preference for the item.
Since there may be users who interact with a single document many times, we limit
the maximum number in cells to ten. Without the limitation, a cell can contain a very
large number that can outweigh different cells. So, every cell in the rating matrix has
a maximum value of ten. We start by presenting how we used the ItemKNN algorithm
and then show how we used the UserKNN.
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Suppose we have a user and want to recommend some documents to the user based on
a user query. ItemKNN algorithm iterates over all items with which the user interacted.
For each interacted item, a set of similar items is found. As a result, we have a vector of
document scores, and the score is calculated as shown in Section 2.2.6. Scores represent
possible user preferences for the document. We set the scores created by ItemKNN
to the candidate documents returned for the search query. This makes a personalized
feature for the given user that respects individual preferences.

The case for UserKNN is very similar. The Algorithm 3 output is also a vector
of document scores. So we use it precisely the same way. As a result, we have two
personalized features of user preference for the documents.

One problem is with evaluation when we create the interaction matrix. We cannot
create the matrix for all users and items before evaluation since, in this case, we would
have the data from the future, which we obviously do not have in a real application.
Meaning that when we are evaluating a model and creating a ranking for a historical
query we cannot use user interaction for the query. At this time, we do not know which
document the user will click on. We know it since we have historical data, but we do
not know it in a production environment. So, to estimate how the model would behave
in production, we must handle this problem.

We solve it in the following way. We create the rating matrix for all training users.
We aggregate all of their interactions into the matrix. The test and validation users
are also in the matrix but have no interactions in the cells. The rows for validation
and test users are zero vectors. Each query Q ∈ Q is a triplet (q, t, u). The triplet has
a string query q, timestamp t, and user u as already presented in Section 2.2.0.1. When
creating these two features for a query Q, we remove from a copy of the filled matrix R
all the user interactions that occurred at a timestamp equal to or greater than t. When
creating the features, we only have the interaction that the users already did in the past
since we removed all current and future interactions. This is a very similar situation
to that in the production environment. When we create the features for the test and
validation user queries, we do not remove the interactions from a copy of the matrix
R, but instead, we add the interactions to the matrix. When creating the features for
a query Q of a test/validation user, we added all the interactions of the user before the
query was issued. This ensures that we do not use interactions of users in the test or
validation sets while creating the features.

3.7 Counterfactual evaluation

In the node Counterfactual evaluation we evaluate the trained models using the unbiased
estimators presented in Section 2.2.3.1. We can use the policy-oblivious estimator for the
VOD platform data since the preconditions are satisfied. For the e-commerce dataset,
we must use the policy-aware estimator.

We compare the methods using the DCG ranking measure. It is important to note
that optimizing DCG@k and DCG is the same as long as there are fewer or the same
number of relevant documents than k. In this case, the ranking of optimal DCG@k and
optimal DCG is the same. If there are more relevant documents than k, then DCG@k
is not sensitive to the ranks of relevant documents above the threshold k. Optimizing
DCG@k and NDCG@k is the same, as NDCG@k is normalized using a constant value.
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It is a difficult task for counterfactual evaluation to estimate the normalization con-
stant [4, 20]. We do not have the true relevance labels, so we do not know which and
how many documents are relevant to create the ideal DCG. In our model, we only know
that the clicked documents are relevant, but there may be some others. Therefore, we
use DCG@k for the evaluation instead of NDCG@k, which has a better interpretation.

We replace λ in the Algorithm 1 for the Linear model with DCG. So, we optimize
the global DCG. We assume that a situation with more relevant documents than k is
very rare. Thus, optimizing DCG and DCG@k is mostly the same. The LambdaMART
implementation optimizes the NDCG@k measure. Since the method is initially meant
for supervised Learning to Rank, and we use the clicks as relevance labels, the implemen-
tation creates the normalization constant using clicks. It is not a problem, since it is just
a normalization constant that does not change the optimal values of the loss function.
The bias estimators that we also use for the ranking evaluation do not optimize DCG,
since they optimize a pointwise probability of relevance.

In addition to the models presented, we can also compare the average performance
of the previous solution deployed when the data were collected. We mean average since
there were multiple rankers, and we evaluate them all together as one ranker. We will
call it the Legacy model. We have the rankings R̄ of the previous Legacy model, so we
use it for ranking evaluation.

Performance evaluation of a search system is not straightforward. There is no one-
size-fits-all system that performs well across diverse datasets and users. Every platform
has different documents to search for and users with different preferences. Each plat-
form can have different business rules that often go against some evaluation measures.
A proper evaluation of a search system’s performance is always in a production environ-
ment using some A/B testing. However, often it is hard to get a model to production
due to several reasons such as slow prediction, a lot of programming, low traffic, etc.

It is often easier to evaluate the model offline, even when the accuracy is worse than
in production. When the performance in the offline evaluation is good enough, then
start the deployment to production. It is important to use some evaluation measures
that will correlate with the performance measures of the search system in the online
environment.

We will use different evaluation measures that test the search system from different
perspectives. We will evaluate using the DCG@6 metric for the e-commerce platform,
since only the top-6 documents are shown to the user, and we are not interested in
ranking documents above rank 6. For the VOD platform, we are interested in the
whole ranking, so we will optimize the DCG. Based on this, we set the parameter
lambdarank truncation level to 6 for e-commerce and 750 for VOD, which is the total
number of candidates that we use. We will use mainly this measure to compare the
newly fitted models with the Lagacy model. The other measures are not completely
suitable for this comparison as described further.

The next measure we will use is recall@k. This measure is invariant to the ranks
of the documents. In this measure, only click labels are used to estimate performance.
Although clicks do not indicate relevance and are biased, they provide an indicator of
relevance that we use in this metric. Calculating an unbiased estimate of recall@k
using true relevance labels is not as straightforward as for the previous measures. This
measure is unsuitable for comparing newly created models with the ranker Legacy, as
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clicks are biased by the presentation of the document. Therefore the Legacy ranker
has an advantage. For example, a Legacy ranker for the e-commerce platform has the
recall@6 equal to 1. The reason is that a user can click only on the first 6 documents.
The recall@k is robust to an unbalanced dataset, as we have. Most of the items retrieved
from the search engine are not clicked. We want as much as possible from the clicked
item in the top-k items. An optimal value of DCG@k for a single ranking implies an
optimal value for recall@k, but the other implication does not hold. So optimization
of DCG@k can be seen as optimization of recall@k in the binary relevance case. Bias
estimators do not optimize the DCG@k directly. We will experiment with different
values of k as we present in the next chapter.

The last metric we use is the Jaccard index. According to [5], the metric strongly
correlates with online performance, so we use it also in model evaluation.
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Experiment design

In this chapter, we present the experiments we performed and how we evaluated them.
We applied the experiments to both datasets. In the following chapter, we show the re-
sults and describe the findings.

In the following experiments, we are interested in these ranking quality metrics:
DCG@k, ARP, recall@k, and J@k. We are mainly interested in DCG@k. The measure
assigns to a higher position more weight compared to a lower position. It is exactly what
we want since, for the user experience, the top positions are the most important. For
both platforms, we evaluated only the DCG metric with k equal to the values for which
the models are optimized. For the VOD dataset, we optimized the global k. It could be
seen as infinite k. For the e-commerce platform only the top-6 documents are visible, so
we are interested only in DCG@6. We have defined DCG@k (in Section 2.2.0.2) with
a minus, so lower values mean better and the metric is non-positive for all values. All
other metrics are positive, so we always show the absolute value to be consistent with
other metrics. Therefore, larger values mean better.

We evaluated recall@k as well as J@k for the following values for the VOD dataset:
1, 3, 6, 15, and 30. For the e-commerce dataset, we evaluated 1, 3, and 6. Higher values
did not provide significant differences and, therefore, no information.

We also evaluated the global ARP for both datasets. This metric is very sensitive
to a relevant document placed in a high position compared to DCG and, therefore,
can provide complementary information. It should be noted that, for the metric ARP ,
a lower value indicates better performance than all other metrics. All experiments were
performed on the test data unless otherwise stated.

The training of the models and the evaluation of DCG and ARP were done us-
ing the policy-aware estimator unless otherwise noted. The policy-oblivious estimator
cannot be used for the e-commerce data. The evaluation using policy-oblivious and
policy-aware estimators is the same for the VOD dataset.

4.1 Expectation-Maximization experiments

First, we show how we improved the convergence of the EM algorithms. In addition to
the default algorithm as presented in [6], we used some improvements. We presented the
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improvement in Section 3.4. We ran the algorithm with and without improvement to
see the difference. For both runs, we monitored the log-likelihood of the data presented
in Equations 2.42 and 2.49 in addition to the ranking metrics. The ranking metrics were
evaluated using the policy-aware estimator for both datasets. We used all the personal-
ization features. We first performed this experiment because we used the created models
that performed better in the next experiments. We call the model that estimates only
position bias a Position model and the model that estimates document selection bias a
Selection model.

4.2 Personalization experiments

We are interested in how personalization improves the ranking performance from the
perspective of the metrics used. We divided the personalization features into two parts.
The first one that we named Content-based personalization is created by the user fea-
tures. On the other hand, we named Collaborative personalization the features presented
in Section 3.6 using collaborative filtering algorithms. We are interested in how each
approach influences performance and how performance changes when applied together
compared to a version where the personalization features are missing.

For Collaborative personalization, we are also interested in how the two features
perform with a different value of k. Therefore, we performed the following experiments.

For Content-based personalization, we trained and evaluated the rankers with and
without Content-based user features.

For Collaborative personalization, we tried these values of k for the e-commerce
platform: 1000, 500, 250, 125, 67, 33, 16, 8, 4, 2, and 1. For the VOD platform, we
tested only the following values of k: 250, 125, 67, 33, 16, 8, 4, 2, and 1. The algorithm
is slower for higher values of k, so it makes sense to check if there is a threshold above
which the performance is not better. When trying the parameter k, the Content-based
features were omitted.

Finally, we tested Content-based personalization and Collaborative personalization
together with the best-performing parameter of k.

In addition, we will show the feature importances of the personalization features
created by the models as presented in Section 3.3.

We used the policy-aware estimator for these experiments to train and evaluate the
models. In other experiments, we used both Collaborative and Content-based features.
The selection of the parameter k to be used in other experiments will be discussed and
done in the next chapter.

4.3 Unbiased rankers experiments

We tested the influence of learning an unbiased ranker for the Linear model presented
in Section 2.2.3.3 and for the LambdaMART model presented in Section 2.2.7. We
are interested in different bias estimators including the naive estimator. We are also
interested in how the estimation of:

P (y(D) = 0|c(D) = 0, q, D), (4.1)
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will improve the performance of the LambdaMART model as presented in Section 2.82.
We conducted the following experiments: For both datasets, we learned both models
using their estimators. So, for Linear we fitted three models, and for LambdaMART we
fitted also three models. The third does not estimate the probability in Equation 4.1. For
the e-commerce platform, we omitted the policy-oblivious estimator for Linear model
since the Condition 2.20 is not satisfied.

4.4 Comparison of rankers

We trained all rankers using the parameters that provided the best ranking performance
and compared them with each other using the metrics presented. In addition to these
models, we also compared the Legacy model, which is the ranker that was in production
at the time the data were collected for both platforms. Each platform used a different
Legacy model. We also compared a linear model called Random similar to Linear that
only randomly initialized the weights when fitting to the data (note that all the feature
values are normalized between 0 and 1). This model serves as a verification check that
we have not trained some trivial models. Another advantage is that the model can tell
if there is room for reranking of the documents. When the Random model performs
well, for example, in recall@k metrics, it means that only a few documents can be
reordered and there is not much room for reordering. The model serves as a comparison
between the e-commerce and VOD datasets. The last model we compare is the Baseline
model, which ranks documents only based on the scores of the documents returned from
the search engine. From this comparison, we will check whether the trained models
improve performance compared to a bare search engine.

In addition to this, we also show the feature importances created by the Lamb-
daMART model to see if the features designed are important or not for the ranking of
the documents.
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Chapter 5

Discussion of the experimental
results

In this chapter, we show and describe the results and the outputs of the experiments
presented in Chapter 4.

5.1 Expectation-Maximization experiments results

In Figure 5.1 there are plots that denote the dependence of the log-likelihood on the
number of iterations. In the first row, we have the plots for the e-commerce dataset.
On the left is the improved version and on the right is the original version of the EM
algorithm. The second row is the VOD dataset. In each graph, there are two EM models:
the Position model and the Selection model. For each model, there is a measurement
for the training and test data.

The weight improvement of the samples helped the Selection model the most. Con-
vergence with the improved version was faster for both datasets. All models converged
to the 9th iteration. The Position model fits the data better than the Selection model
in both datasets. The curves for both test and training data are identical, indicating
that the models do not suffer from overfitting to the training data.

In Figure 5.2 is a comparison of the ranking performance of the Position model and
the Selection model for the e-commerce platform. Each model has a version with and
without weight improvement. The ranking performance of the Position model and the
Selection model is very similar.

For the DCG@6 metric, there is an improvement in the version with weights for both
models. The ARP metric is worse for the version with weights. There is an improvement
in the DCG@6 metric and a decrease in the ARP metric. It means that relevant
documents to position 6 are ordered better, but relevant documents above position 6 are
ordered worse compared to the original version.

The differences between the original version and the version with weights are insignif-
icant in all other metrics compared to the metrics ARP and DCG@6.

A similar graph is shown in Figure 5.3 for the V OD platform. As already stated,
due to the limited number of recommendable documents compared to the e-commerce
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Figure 5.2 Comparison of the EM algorithms with the improvement on the ranking perfor-
mance for the e-commerce platform

platform, there is not the same room for the reordering of the documents. The situation
is very similar to that in Figure 5.2. There is also an improvement in DCG and a decrease
in ARP .

For all other experiments, we used the version with the weights, since the convergence
is better and the ranking performance of the DCG metrics is better in which we are
more interested compared to ARP .

5.2 Personalization experiments results

In Figure 5.4 is shown the evolution of DCG@6 on the parameter k used in ItemKNN
and UserKNN for the e-commerce platform. The parameter k represents the number of
neighbors used in the algorithms. In the graph, the x-axis has a logarithmic scale except
the interval between 0 and 1, where the scale is linear. We will use the label λ-MART
as a synonym for LambdaMART .

There are 4 curves for the four models that we trained. The most significant impact
of the parameter k is on the Position and Selection models. The most significant im-
provement is for values lower than 4. Then the performance is very similar. Each model
used randomization in the learning phase, so there are some deviations.

The Linear model improved the metric for values of k less than 4. For larger values,
DCG@6 is the same with some deviations. The impact of the parameter k is less
significant than the other rankers.

The same situation is for the LambdaMART model where the improvement is mainly
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Figure 5.3 Comparison of the EM algorithms with the improvement on the ranking perfor-
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Figure 5.4 Dependence of DCG@6 on parameter k used in collaboration-filtering algorithms
for e-commerce platform

for the values of the parameter k lower than 4. The deviations are larger compared to
the other rankers.

The same graph is shown in Figure 5.5 for the VOD platform. There is an improve-
ment for values of k less than 4. Again, there are some deviations. The improvement is
lower compared to the e-commerce platform.

For both platforms, there is a correlation between the deviations in the performance
of the models for a particular value of k. Models are trained independently, so the
performance variance created by learning randomization should not be correlated. It
indicates that there are values of parameter k greater than 4 that do not provide the
same performance. That is, the features (created by the collaborative filtering algorithms
that used the parameter k) do not explain the target variable the same for different values
of k greater than 4. The ranking metric is not a non-decreasing function of the parameter
k, which is expected since the larger the parameter k, the more information the features
should contain.

In other experiments, we set the value of the parameter k at 1000 for the e-commerce
platform and 250 for the VOD platform, as it provided the best performance among all
models. Setting a higher value is not necessary since the performance of the models will
be the same, but the computational resources will increase.

In Figures 5.6 and 5.9 are comparisons of the ranking performance of different person-
alization versions for different models. The KNN is a version in which only Collaborative
features are used without user property features with values of k set to 1000 and 250 for
the e-commerce and VOD platforms, respectively. The Content version is the opposite.
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Figure 5.5 Dependence of DCG on parameter k used in collaboration-filtering algorithms
for VOD platform

Only the Content-based features are used. Then the Both version uses both types of
features. The Without version does not use the personalization features at all.

In Figure 5.6 is a comparison for the e-commerce platform. Using only user properties
does not provide any additional performance to the Without version. An exception is
the ARP metric for the Selection model, where the performance is better. It can be
caused by the high variance of the model in this metric.

Using both types of features at the same time also does not provide additional per-
formance to the KNN version.

The only features that significantly improve performance are the Collaborative fea-
tures. The greatest improvement is for the Selection and Position models. The smallest
improvement is for the Linear model, which indicates that there is a non-linear relation-
ship between the ranking score and the Collaborative and other document features.

Since the Selection and Position models (presented in Section 3.4) are GDBT, we
can show the importance of the features. In Figures 5.7 and 5.8 are the importance of
the features created by the models for the Both version. The feature importances are
divided by the maximum importance, and thus the maximum importance is 1. Features
with importance lower than 3.4% after normalization are filtered out. Since we cannot
give the exact name of the properties, we use the following naming convention. The
document or user properties that we can present have the same name. The document
text properties that we search in and create a score are numbered from zero (presented
in Section 3.2) and then the name of the feature is Search score {NUMBER}. The user
properties are also numbered from zero, and the name is User feature {NUMBER}. The
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Figure 5.8 Feature importance of the Selection model for the e-commerce platform

other features of the documents are also numbered from zero, and the name is then
Doc. feature {NUMBER}. The Search score without number is the global search score,
collaborative filtering features are named ItemKNN and UserKNN.

The Position model in Figure 5.7 contains only one Content-based feature of impor-
tance 10.8%, the ItemKNN feature is of importance 13.5%. The UserKNN feature is
filtered since the importance is lower than the threshold.

For the Selection model, the situation is slightly different. The importance of per-
sonalization features is greater. Both have the importance of 33.3%. There are several
more features that are more important, but adding the ItemKNN feature significantly
improved performance. Although the importance of the feature User feature 0 is the
same as for ItemKNN the ranking performance of the model did not change when the
user properties were used alone.

In Figure 5.9 is again the ranking comparison of different versions of personalization
for different models for the VOD platform. As we have seen, the performance improve-
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ment is not as significant for the e-commerce platform. Using only user properties alone
does not improve ranking metrics with the exception of Position model where each met-
ric for Content is slightly better compared to Without. As we can see in Figure 5.10 there
is no significant Content-based feature and the user data for the e-commerce platform
contain only a single user feature. Based on this observation, the better performance is
just a variance of the model caused by the randomization in learning.

Using both types of features at the same time also does not provide additional per-
formance to the KNN version. Again, compared to all other versions, the greatest
improvement is for the KNN version.

In Figures 5.10 and 5.11 are again the feature importances for Position and Selec-
tion models, respectively. Both the ItemKNN and UserKNN importances are above the
threshold for both models, but there are still features with significantly higher impor-
tance.

In Figures 5.19 and 5.20 are the feature importances created by the LambdaMART
model for the e-commerce and VOD platforms, respectively. For the e-commerce plat-
form, ItemKNN is more important than UserKNN. A personalization feature that is
even more important is User update time. There are also other user property features
with numbers 4 and 33.

Figure 5.20 for the VOD platform shows that there is a User update time person-
alization feature that is the most important, and all other features are relatively much
less significant. The second most important feature is ItemKNN.

The intuition why there are some Content-based features that are more important
compared to ItemKNN or UserKNN but do not provide the same ranking performance
improvement could be that the information in the user property features is also spread
out in the document features. When user Content-based features are added, they do not
provide any additional information needed to rank the documents better. Other features
that are already present provide the information. When the ItemKNN or UserKNN
features are added, the features contain more information and the target probability or
score is better explained as a function of those features.

In general, the feature created by ItemKNN seems very important to the ranking
performance. The feature created by UserKNN is much less important. Although some
of the user property features are more important compared to ItemKNN from the model’s
perspective, they do not appear to be very important in the ranking performance. For
parameter k greater than 4, the performance is very similar for all models that use the
features. Although there appear to be some values of the parameter k greater than 4
that do not provide the same performance, the selection of the right parameter k is
important for a concrete model. These observations hold for data from both platforms.
The importance of the other features will also be discussed in the following sections.

5.3 Unbiased rankers experiments results

In Figure 5.12 is a comparison of rankers trained with different estimators. There are
three versions of the LambdaMART model. The first one named Biased is the model
trained using pure clicks without debiasing (the naive estimator is used). The second
Selection is trained using debiasing with the policy-aware estimator. The last Neg.
biased is trained using an estimator in which only the clicked documents are debiased,
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Figure 5.9 Comparison of different personalization approaches to the ranking performance
for the VOD platform
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Figure 5.10 Feature importance of the Position model for the VOD platform
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Figure 5.11 Feature importance of the Selection model for the VOD platform
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Figure 5.12 Comparison of different debiasing approaches on the ranking performance of the
models for the e-commerce platform

as presented in Section 4.3. The Linear model is trained only using the naive estimator
and the policy-aware estimator. The policy-oblivious estimator is omitted because the
condition for using this estimator is not satisfied for this platform, as discussed in Section
3.3.

The performance of the models does not change much with different estimators for
all metrics. For most metrics, the version Neg. biased is slightly better than the other
versions. We estimated the probability in Equation 4.1 using the Selection model. The
estimate may not be accurate enough and thus misleading. Omitting the estimate and
replacing the expression with 1 seems to provide slightly better performance. There are
other small differences, but they are most likely caused by randomization when fitting
models. The reason why a biased ranker has the same performance as an unbiased
ranker may be because training a biased ranker does not mean that the ranker is unable
to learn important relationships compared to the unbiased ranker, as stated in [21].

Figure 5.13 is the same graph but for data from the VOD platform. Since the
condition to use the policy-oblivious estimator is satisfied, there is also the Position
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version for the Linear model for completeness. In this graph, there does not seem to be
any pattern caused by the different versions of the models.

The different estimators used while learning the model do not have a significant
influence on the performance of the model. Even a Biased version provides the same
performance as the unbiased rankers. The only exception is Neg. biased version, which
provides slightly better performance in some metrics, but only for the e-commerce plat-
form.

5.4 Comparison of rankers results

A comparison of the learned model with the best-performing parameters is shown in
Figure 5.14 for the e-commerce platform. There is the performance of the 7 rankers. The
best model in almost all metrics is the Legacy model that was deployed in production
while the data we used were collected. The recall@6 is equal to 1 which is the optimal
performance. The reason is that at most 6 documents were shown to the user, and the
user could click only on these documents and no others.

The λ-MART model outperforms all other models in each metric. For the recall@1
metric, λ-MART also outperforms the Legacy model, which means that the model is
better at placing clicked documents at the first position. The performance of recall@3
is also very competitive to that of Legacy.

The second best model that we trained is the Linear model in which we optimize an
upper bound of the global DCG. The model is still better than the models primarily
used to estimate the biases.

The Position and Selection models are the worst of all trained rankers in all metrics
except the J@3 and J@6 metrics, where performance is comparable to other models.

The Baseline ranker provides a decent performance. All trained models are better in
almost all metrics. An exception is the ARP metric, where the Baseline model is better
than the Position and Selection models.

The Random model is presented here only for comparison. The performance of
the Random model is very poor, so there is significant room for ranking performance
improvement.

The same comparison for the VOD platform is shown in Figure 5.15. One big dif-
ference is that the Legacy model is outperformed by all trained models on most metrics.
For the most important DCG metric, the Legacy model is outperformed.

The λ-MART model seems slightly better than the other trained models. One ex-
ception is the Jaccard index metrics.

The Position and Selection models provide a very similar performance to the Linear
model. For the J@k metrics, bias estimation models are better and should therefore be
preferred to the Linear model.

The Baseline model is again outperformed by trained models even in the ARP metric.
The Random model has significantly better performance for the DCG metric compared
to the e-commerce platform. This indicates that there is less space to reorganize the
documents. It is expected since the VOD platform contains many fewer documents that
can be recommended.

For completeness, Figure 5.16 evaluates the DCG and ARP metric using policy-
oblivous estimator for the VOD platform. The relative differences between the models
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Figure 5.14 Comparison of different ranking approaches for the e-commerce platform
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are very similar. The scale of the y-axis is different. The policy-oblivious estimator seems
to give more weight to the metrics, and thus the scale is different. For this platform, the
bias estimators should theoretically provide the same bias estimation. What is important
is that the relative differences are preserved so the conclusion of which model is better
stays the same.

The offline metrics are only indicators of the online performance of the model. For
most metrics, the Legacy model is better than the other models, but this does not mean
that the models would perform worse in production. Some preconditions may not be
satisfied, the bias estimated may not be accurate enough, or the user model may be
oversimplified, so it is not omniscient to compare the models to the model that was in
production since the model is in a different position.

The reason why the performance of the bias estimation models is the worst among
all the trained models could be that the models use the pointwise approach compared to
the pairwise and listwise approaches, which generally have better ranking performance.

The performance of the bare search engine was beaten by all trained models, so it
shows the advantage of using a Learning to Rank system.

Figure 5.17 denotes the dependence of DCG@6 on the learning phase. The algo-
rithms that fit the models are iterative for all trained rankers. For each ranker, there is
a different number of iterations. For each model after some fixed number of iterations,
we measured the performance of the model. For each model, we measured the perfor-
mance a different number of times, so we normalized the measurements into a learning
phase in percentages using the least common multiple of the number of measurements.
Each point in the graph is the performance measurement after some fixed number of
training iterations. In the first row, there is the graph for training data, and the second
row is the graph for test data.

The λ-MART model for iterations after the second measurement has the same rank-
ing performance for the test data. The performance of the training data is still increasing
with the number of iterations. The model is overfitting to the training data. It is not
a problem as long as the performance on the test data does not decrease.

The curves for the Linear model are very similar, the model is not overfitted to the
training data. The value of DCG@6 converged in the 6th measurement, there is no
improvement in the next iterations.

The learning curves for both the Position and Selection models are mostly the same.
The models have the best ranking performance from the perspective of DCG@6 in the
first measurement. In further iterations, the performance decreases for both training
and test data. In other experiments, we used the model from the third measurement,
since it provided both good ranking performance and good log-likelihood of the data.

The same graph for the VOD platform is shown in Figure 5.18. The curves for the
training and test data are the same. The λ-MART and Linear models converged to the
same value of DCG. The Position and Selection models also have the same curves. For
all models, the ranking performance is the same for all measurements after the second
measurement.

There is no overfitting of the λ-MART model as for the data of the e-commerce
platform. For the Position and Selection models, the performance does not decrease
with the number of iterations.

In Figure 5.19 are the feature importances of the λ-MART model for the e-commerce
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Figure 5.18 Dependence of DCG on the number of iterations in the learning process for
training and test data for the VOD platform

platform. The graph structure was already presented in Section 5.2. The most important
feature is Document update time. The update time can also be the time that the docu-
ment was created. The cause may be that users click mainly on new or old documents
in the platform, so it makes sense to recommend them in the first positions. The feature
User update time is also very important for the model. The cause may be similar: new
users are interested in specific types of documents. The global search score is the third
most important feature. Search scores partitioned by the document text fields Search
score 4 and Search score 2 are also very important.

A similar graph for the VOD platform is shown in Figure 5.20. By far, the most
significant feature is User update time. The cause may be very similar to the e-commerce
platform. The second most important feature is the ItemKNN personalization feature
that slightly increased the ranking performance. Old or new users seem interested in
a specific type of content. Search scores are slightly more important than most other
document or user features.

In Figures 5.7 and 5.8 are feature importances of the bias models for the e-commerce
platform. The feature importances between the Selection and Position models are sim-
ilar, but they are very different from the LambdaMART feature importances. Some
of the most important features for LambdaMART are not even present for the other
two models, such as: Doc. feature 49, Search score 4, or User update time. This also
holds on from the other side. The most important features for bias estimation models
are Document feature 64, Document feature 62, or User feature 0. The bias estimation
models have fewer features above the threshold. Similar observations hold for the VOD
platform in Figures 5.10 and 5.11, but they use the same number of features.
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Chapter 6

Conclusion

In this chapter, we discuss and conclude the findings of the previous chapter. In the
end, we present the future work.

In the first experiment, we showed that adding the probabilities as weights to the
model improves the convergence of the data log-likelihood. The weights also helped to
improve the ranking performance from the perspective of the metrics used. An exception
is the ARP metric which was worse than the original version. There was an improvement
in the DCG metrics, which added more weight to the lower positions compared to the
DCG metrics. The cause is that the models with the weights improvement rank better
relevant documents in the top positions, but also some other relevant documents are
moved deeper in the ranking.

In the second experiment, we tried different personalization methods. One approach
used the properties of users. The other approach used created features using collabora-
tive filtering algorithms. We showed that using the user properties did not improve the
ranking performance, although the features had significant importance in the ranking
algorithms. The cause may be that the information in the user properties is already
present in the document features. For collaborative filtering features, we tried the pa-
rameter k that controls the number of neighbors to use. We found that using more than
4 neighbors does not provide a significantly better performance, although some values
of the parameter negatively impact the performance of all models. The personalization
features created by the collaborative filtering algorithms significantly improved ranking
performance. The feature created by ItemKNN had considerably greater importance
than the UserKNN feature. When both personalization approaches were used together,
there was no performance improvement compared to the case where collaborative filter-
ing features were used alone.

The third experiment showed that training an unbiased ranker does not significantly
improve ranking performance compared to training a biased ranker. A slight improve-
ment was for the version of the LambdaMART model, where we only estimated the bias
of the clicked document. The estimation of the bias of a non-clicked document was prob-
ably misleading and thus decreased the performance of the completely unbiased ranker.
The cause of such a minor improvement may be that learning a biased ranker does not
mean that the ranker cannot learn the correct relationships compared to an unbiased
ranker.

75
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We compared the models and discussed the created features in the last experiment.
From the models we trained, LambdaMART provided the best ranking performance
among most metrics. This model also outperformed the previously deployed ranker for
the e-commerce platform in the recall@1 metric. The performance of the recall@3 metric
was also very competitive. For the VOD platform, all trained models outperformed the
previously deployed model in all metrics. For the e-commerce platform, the Linear model
outperformed the Position and Selection models. For the VOD platform, the ranking
performance for these models was very similar, but the bias estimation models had better
results from the perspective of Jaccard index metrics. All trained models surpassed
the performance of the bare search engine, demonstrating the benefits of employing
a Learning to Rank system. We showed using the feature importances of the models
that the designed features are essential for the ranker as well as for the bias estimators.
Both the personalization and search features are of relatively high importance compared
to most other document features.

6.1 Future work

The next step that can be done with the results of this thesis is to deploy the best-
performing models to the production of the platforms and evaluate the performance in
the online environment.
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readme.txt.................................brief description of the media content
thesis.pdf...........................................thesis text in PDF format
requirements.txt...........................the python packages that were used
Dockerfile................environment in which the experiments were conducted
src.............................................directory of the source code files

thesis ................ thesis source code in LATEX format and bibliography file
impl ................. python source code files used to conduct the experiments

LightGBM.....................the LGBM framework with the updated code
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