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Instructions

Abstract: The state-of-the-art multiple-target tracking (MTT) algorithms can be used to 

monitor several observed targets simultaneously. They are mostly not limited to 

permanently existing targets but also admit their random spawning and disappearance, 

misdetections, and false alarms. However, some targets may be temporarily or 

permanently hidden from detection due to the sensing principles. For instance, the 

primary active radars may not see targets that move at low altitudes. If there are other 

sensors that can provide any (external) information about these targets, it could be 

beneficial to incorporate this information.

Goal: The aim of the thesis is to propose a framework fusing external information into the 

knowledge of the multiple-target tracking algorithm. The steps are as follows:

1) Study and describe a selected MTT algorithm, its working principles, advantages, and 

disadvantages.

2) Propose a method for fusing external information into the knowledge of the MTT 

algorithm.

3) Experimentally assess the feasibility of the resulting framework. That is, provide some 

simulation examples and evaluate the results.

4) Discuss the properties of the proposed framework, its performance, advantages and 

disadvantages. Suggest possible future research directions.
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Abstract

The thesis focuses on the multi-target tracking problem in cluttered environments with the
uncertainty on the number of targets and using Bayesian inference. In this work, we mainly focus
on the popular Gaussian mixture probability hypothesis density (GM-PHD) filter and introduce
a technique to include additional information for cases when a sensor fails to detect targets due to
environmental or physical limitations. We provide all required theoretical background from the
basics of probability theory to the discussion of various multi-target tracking methods and the
introduction of the Finite Set Statistics (FISST) framework. We also conclude with an extensive
performance measurement and analysis of results, where we demonstrate that the proposed fusion
technique significantly improves tracking results. Finally, we discuss the limitations of the filter
and propose possible measures to overcome them.

Keywords Bayesian filtering, multi-target tracking, random finite sets, Gaussian Mixture
Probability Density filter, external information fusion

Abstrakt

Tato práce se zaměřuje na problém sledováńı v́ıce ćıl̊u v prostřed́ı s vysokým množstv́ım rušeńı
a nejistotou ohledně počtu sledovaných objekt̊u pomoćı Bayesovské inference. V této práci se
hlavně zaměřujeme na populárńı Gaussian mixture probability hypothesis density (GM-PHD)
filtr a představujeme techniku, jak zahrnout dodatečné informace pro př́ıpady, kdy senzor ne-
dokáže detekovat sledované objekty z d̊uvodu fyzických nebo prostředkových omezeńı. Posky-
tujeme veškeré potřebné teoretické pozad́ı od základ̊u teorie pravděpodobnosti až po diskusi o
r̊uzných metodách sledováńı v́ıce ćıl̊u a představeńı rámce Finite Set Statistics (FISST). Dále
zahrnujeme rozsáhlé měřeńı výkonnosti a analýzu výsledk̊u, kde ukazujeme, že navržená tech-
nika fúze výrazně zlepšuje sledovaćı výsledky. Nakonec diskutujeme omezeńı filtru a navrhujeme
možné zp̊usoby, jak je překonat.

Kĺıčová slova Bayesovské filtrováńı, sledováńı v́ıce ćıl̊u, náhodné množiny, gaussian mixture
probability density filtr, fúze exterńıch informaćı
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Introduction

Object tracking is a critical problem in signal processing and computer vision. The primary
goal of tracking algorithms is to estimate the states of moving targets based on a sequence of
sensor measurements in environments with a high degree of uncertainty. Different domains of
the problem require different approaches to target tracking. In this work, we provide an overview
of the existing areas of target tracking and introduce the scope of this study.

Tracking algorithms can be categorized based on the number of targets they track, whether
it is a fixed or known number of targets, or a variable and unknown number of targets. When
the number of targets in the tracking area is greater than one, we refer to it as multi-target
tracking (MTT). Object tracking is widely used in various fields, including robotics, autonomous
vehicles, surveillance, and medical imaging. With the recent emergence of deep learning algo-
rithms, there has been renewed interest in MTT, and many new deep learning-based approaches
have been proposed. However, the learned model predictive power is questionable, as these
approaches estimate the internal object dynamics using complex non-linear models, while the
Bayesian approach assumes fixed known model that are specified manually according to some
prior knowledge, for instance, physical laws. In this study, we focus on MTT using Bayesian
inference, the statistical approach based on recursive updates of the target posterior distribution
using a set of measurements.

Bayesian algorithms are classified based on the results they achieve [1, p. 11]. The first type of
algorithms are the Bayesian smoothers, which remove the noise of states based on past and future
measurements, i.e., they smooth the signal. The other type are the Bayesian predictors, which
predict the future state of a target more than one step ahead based on past measurements.
The last type are the Bayesian filters, which predict the current state of a target based on
measurements up to the moment of the predicted state. The Kalman filter, the fundamental
algorithm for many modern and sophisticated tracking methods, is an example of Bayesian
filters. This study focuses on Bayesian filters, and we cover the Kalman filter in detail.

Algorithms can also be separated based on the type of sensor and measurements used. There
are several sets of algorithms available to address specific problems depending on the sensors
used. For instance, point object tracking is used when the sensor generates one measurement per
object, such as a radar or a camera with an object recognition algorithm. When lidars are used,
one target generates a set of measurements, and this is referred to as extended object tracking
[2]. In surveillance, especially when tracking people, group object tracking algorithms are used to
estimate groups of individuals rather than every individual separately [3]. Additionally, tracking
with multipath propagation refers to scenarios where a sensor receives more than one detection
caused by the multipath phenomenon or multiple reflections from surrounding objects of the
same signal [4]. Finally, tracking with unresolved targets occurs when several targets produce
only one measurement [5]. In this study, we focus on point object tracking, assuming that one
target produces at most one measurement, and each measurement can be generated by at most

1



2 Introduction

one target.
This study aims to enhance the performance of the Gaussian Mixture probability hypothesis

density (GM-PHD) filter, a popular Bayesian filter for multi-target tracking (MTT), by propos-
ing a novel approach to incorporate external information. Specifically, we provide a detailed
description of the GM-PHD filter and its internals, and demonstrate through an example how
the filter may fail under environmental limitations. We then introduce our proposed method for
integrating external information and analyze its impact on the filter’s performance. Finally, we
evaluate the filter’s strengths and weaknesses in various scenarios and discuss the significance of
our contribution in improving the accuracy and robustness of the GM-PHD filter for MTT.

Structure
The thesis is structured as follows. Chapter 1 provides the theoretical background necessary
for understanding the rest of the thesis, including the introduction of probability theory and
probability distributions and the Bayes’ rule. Next, we present the Bayesian inference framework,
which is the basis for the general Bayes filter, a recursive algorithm for state estimation. Finally,
we present the concepts of state-space models and the Kalman filter.

Chapter 2 is dedicated to multi-target tracking. It starts with an overview of target tracking
methods, followed by an introduction to Random Finite Sets (RFS). The chapter then describes
the PHD filter and the PHD function. Next, we give a PHD filter formal definition, and then
observe the Gaussian Mixture PHD filter. The chapter concludes with a discussion of track
maintenance, the GM-PHD recursion, and ends with the framework for external information
fusion.

Chapter 3 describes the implementation and testing methodology of the GM-PHD filter. We
then introduce several metrics that are used to measure the performance of multi-target tracking
algorithms, then we describe four testing scenarios. The final section on parameters testing and
methodology explains how the tests were conducted and how the results were analyzed.

Chapter 4 analyzes the results of the tests conducted in Chapter 3. This chapter includes
sections on test results for each scenario and a discussion of the results, where a comprehensive
analysis of the filter strengths and weaknesses is provided.

The final Chapter 5 concludes this work by summarizing the main contributions of the thesis
and highlighting areas for future research.



Chapter 1

Theoretical background

The field of target tracking, both single and multiple, rely on mathematical concepts and methods
based on probability theory. In this chapter, we provide an introduction to key concepts of
probability and inference. We start by reviewing the basics of probability theory, including
random variables, probability distributions with examples of the most important ones for multi-
target tracking, and the Bayes’ theorem. Then, we describe the concept of state-space models,
a powerful framework that allows to describe dynamic system evolving in time. Then, we apply
these concepts with a Bayes filter, a general method for recursive estimation the state of a
dynamic system using measurements obtained from a sensor over time. Finally, we define and
prove two important in tracking theorems, and use these theorems to derive the Kalman filter,
and important and widely used framework that provides an optimal state estimate of a linear
system in the presence of Gaussian noise. The theoretical foundations in this chapter serve as
a basis for the next chapter, which covers more sophisticated algorithms for tracking multiple
targets in noisy environments.

1.1 Probability theory foundations
When we are dealing with probability of an event, we assume that there is a possibility of that
event occurring and we measure it using a number between 0 and 1 or a percentage between 0%
and 100%. In other words, we use the probability theory framework to assign numerical values to
arbitrary events. This section covers several fundamental concepts of probability theory, which
serve as the basis for this work.

The event, which we formally denote as E, comes from some space of all possible events, the
outcome space Ω. We also denote the probability of the event E as Pr{E}. This probability is a
real non-negative number, that is Pr{E} ∈ R,Pr{E} ≥ 0. The outcome space covers all possible
events, that is Pr{Ω} = 1. It then follows that the probability of disjoint events from the outcome
space Ω is the sum of probabilities of these events, that is for E1, . . . , En ∈ Ω,Pr{

⋃n
i=1 Ei} =∑n

i=1 Pr{Ei}.
We have defined three main axioms of probability theory. In addition to these axioms, several

crucial concepts illustrate the relationship between events. Given two events, E1 and E2, the
conditional probability of E1 given E2 is defined as

Pr{E1 | E2} = Pr{E1 ∩ E2}
Pr{E2}

. (1.1)

If the events are independent of each other, the probability of them occurring simultaneously
is given by

3



4 Theoretical background

Pr{E1 ∩ E2} = Pr{E1}Pr{E2}. (1.2)

These relationships allow us to define the law of total probability [6, p. 31], which is a key
component of Bayes’ rule. Let A be an event, A

∫
Ω, and {Bn : n = 1, 2, . . .} be a countable

partition of the space Ω. Then, we have:

Pr{A} =
∑
n

Pr{A | Bn}Pr{Bn}. (1.3)

Now, we can deduce the following rule:

▶ Definition 1.1 (Bayes’ rule). Let A and B be two events from the outcome space Ω. Then
the following applies:

Pr{A | B} = Pr{B | A}
Pr{B} = Pr{B | A}∑

n Pr{B | An}Pr{An}
. (1.4)

Bayes’ rule plays a crucial role in Bayesian inference and serves as the basis for Bayesian
filters, including the PHD filter.

1.1.1 Probability distributions
Events and their probabilities are not sufficient for our purposes; we need a framework that allows
us to obtain a formal, general description of a set of events from some outcome space. Specifically,
we need an abstraction around events, which is some function that maps the outcome space Ω to
some other space, typically R (but not necessarily). This abstraction is called a random variable
and one outcome of it is called a realization.

▶ Definition 1.2 (Random variable and its realization). Let Ω be a set of possible events, ω ∈ Ω
is some event, and O be another space. A function X : Ω → O is called a random variable and
x = X(ω) is called a realization of X.

The above definition provides a general framework for understanding random variables. How-
ever, for the purposes of Bayesian statistics, we will simplify the discussion by focusing on scalar,
continuous-valued random variables, represented by O = R. In practice, it is often impractical to
calculate the probability of every possible event from the outcome space Ω, especially for contin-
uous random variables with uncountably infinite outcomes. Instead, it may suffice to work with
intervals on the outcome space and their probabilities. We call such a probability distribution a
cumulative distribution function (cdf) of X, and the first-order derivative of the cdf is called a
probability density function (pdf).1

▶ Definition 1.3 (Cumulative distribution function (cdf)). Given a scalar real-valued random
variable X ∈ R and x as a realization of X, we define the probability Pr{X ∈ (−∞, x)} =
Pr{X < x} as the cumulative distribution function of random variable X and denote it as P (x).

▶ Definition 1.4 (Probability density function (pdf)). The probability density function p(x) of
a scalar real-valued random variable X is defined as:

p(x) = ∂P (x)
∂x

. (1.5)

1For discrete random variables, the corresponding distribution function is called a probability mass function
(pmf).



Probability theory foundations 5

Probability distributions are fundamental in Bayesian statistics and provide a way to model
and analyze the behavior of random variables. In the next section, we will discuss some common
probability distributions used in Bayesian filters, including the Gaussian distribution and the
Poisson distribution.

Probability distributions are fundamental in Bayesian statistics and provide a way to model
and analyze the behavior of random variables. Cdfs and pdfs (as well as pmfs for discrete
cases) are used to specify the probability distribution of a random variable, providing a formal
description of the relationship between events and probabilities. In addition to this formal
description, we also need to know several statistical properties of probability distributions to fully
understand their behavior. Two main properties of probability distributions are the expected
value, E[X], and the variance, Var[X]:

E[X] =
∫ ∞

−∞
xp(x)dx, (1.6)

Var[X] = E
[
(X − E[X])2]

=
∫ ∞

−∞
(x− E[X])2p(x)dx. (1.7)

The expected value, or the first moment, represents the most probable value of a random
variable. The variance, or the second central moment, is a measure of the variability of a random
variable and is often denoted as Var[X] = σ2. Furthermore, we often study the relationship
between two random variables, say X and Y , and measure their joint variability, which we call
a covariance:

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] =
∫ ∞

−∞
(x− E[X])(y − E[Y ])p(x, y)dxdx. (1.8)

For vector-valued random variables, that is X,Y ∈ Rk and x is the realization of X, the
formulas are the following. It is worth noting that the covariance in the vector case becomes a
matrix and is called a covariance matrix:

E[X] =
∫ ∞

−∞
xp(x)dx, (1.9)

Var(X) = E [(X − E[X]) (X − E[X])⊺] (1.10)

=
∫ ∞

−∞
(x− E[X]) (x− E[X])⊺ p(x)dx, (1.11)

Cov[X,Y ] = E [(X − E[X]) (Y − E[Y ])⊺] (1.12)

=
∫ ∞

−∞
(x− E[X]) (y− E[Y ])⊺ p(x,y)dxdy. (1.13)

Probability distributions are fundamental in Bayesian statistics and provide a way to model
and analyze the behavior of random variables. For the purpose of Bayesian filters, some common
probability distributions are particularly useful. In this section, we will discuss some of these
distributions and their main properties. We shall start from discrete cases and go on to the
continuous variables.

1.1.1.1 Bernoulli distribution
The Bernoulli distribution is the simplest discrete probability distribution, and the Bernoulli
random variable is binary, with only two realizations, 0 or 1. This distribution is parameterized
with r, the probability of the positive outcome. Its probability mass function is given by
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(a) PMF. (b) CDF.

Figure 1.1 Bernoulli distribution.

p(x) =


1− r if x = 0,
r if x = 1,
0 otherwise.

(1.14)

The pmf and the cdf of the Bernoulli distribution can be seen on Figure 1.1. We denote
this distribution as p(x) = Bernoulli(x; r). The expected value and the covariance of a Bernoulli
random variable X are

E[X] = r, Var[X] = r(1− r). (1.15)

In object tracking, we use Bernoulli random variables to model the existence of an object at
some time step k, which we will discuss in detail in the following sections.

1.1.1.2 Binomial distribution
Binomial random variables are the generalization of Bernoulli random variables, representing the
probability of x positive outcomes after n consecutive and independent trials. This distribution
is parameterized by the probability of the positive outcome in one trial r and the number of
trials n. Its pmf, as well as the expected value and the variance, are given by

p(x) =
(
n

x

)
rx(1− r)(n−x),

E[X] = nr,

Var[X] = nr(1− r).

(1.16)

1.1.1.3 Poisson distribution
The Poisson distribution is a discrete random distribution that can be used as an approximation
of the Binomial distribution in cases where n tends towards infinity and r tends towards 0 such
that their product stays about equal to a parameter λ, which is the parameter of the Poisson
distribution and also its expected value and variance. The outcome space of a Poisson random
variable is N0, that is natural numbers including 0, and its pmf, expected value and variance are
given by

p(x) = Poisson(x;λ) = λxe−λ

x! , (1.17)

E[X] = Var[X] = λ. (1.18)
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(a) PMF. (b) CDF.

Figure 1.2 Poisson distribution.

The probability mass function and the corresponding cumulative density functions of the
Poisson distribution can be seen in Figure 1.2. The Poisson distribution is a critical component
of modern multi-object tracking systems, as it is used to model noise measurements, and some
systems even use it to model objects that exist but are not visible in the field of view of a sensor
[7]. The Poisson distribution is the foundation of the so-called Poisson Point Processes (PPP),
which will be discussed later.

1.1.1.4 Uniform distribution
The uniform distribution is a continuous probability distribution and it describes such random
variables which outcomes on some interval [a, b] are possible with equal probability. This distri-
bution is parameterized by a and b and its pdf, E[X] and Var[X] are:

p(x) = Uniform(x; [a, b]) =
{

1
b−a if a ≤ x ≤ b,
0 otherwise,

(1.19)

E[X] = a+ b

2 , (1.20)

Var[X] = (b− a)2

12 . (1.21)

The uniform distribution is generally used to represent the uncertainty when all outcomes
are equally possible. In this work, we use the uniform distribution to model positions of clutter
measurements at some time step k.

1.1.1.5 Gaussian distribution
The Gaussian distribution, also known as the normal distribution, is a continuous probability
distribution that is widely used in many branches of statistics, including Bayesian filtering. It is
typically used to model a large number of independent and identically distributed (i.i.d.) random
variables.

The Gaussian distribution is characterized by two parameters: the mean µ and the variance
σ2. Its probability density function (pdf), expected value, and variance are given by:

p(x) = N
(
x;µ, σ2)

= 1√
2πσ

exp
(

(x− µ)2

2σ2

)
, (1.22)

E[X] = µ, (1.23)
Var[X] = σ2. (1.24)
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In the notation N
(
x;µ, σ2)

, the first parameter x means “evaluated at.” Despite the cdf
of the Gaussian distribution not having a closed-form representation, the distribution possesses
several desirable properties that allow for closed-form solutions in many applications, including
object tracking. Although it may be too simple to model certain scenarios, it represents the
approximate average position of objects and their uncertainty quite well. This work utilizes
mixtures of Gaussians, which will be discussed in more detail later.

1.2 Bayesian inference
In statistics, there are two ways to understand the uncertainty. The first one, called frequentist,
assumes that the source of uncertainty lays in the nature of events. If we modeled a random
process following this approach, we would calculate parameters of the model using their maximum
likelihood estimation, which in fact is the probability density function if the parameter evaluated
at the observed data (we will talk more about estimators in Section 1.2.2). In addition to the
estimated parameter value, we could also calculate confidence intervals, which would give us
a range where a possible true value of the parameter can lay considering some probability of
possible error.

The Bayesian approach has a different philosophy. It main assumption is that the uncertainty
origin is in the modeling itself and that this are we who have limited knowledge about the ground
true model. This difference leads to a completely distinct path of estimating values of a model.
At the beginning, we give parameters a prior distribution, our initial belief where true values of
parameters may lay. Next, after every new data piece we update the distribution using the Bayes’
rule. Using the likelihood function, which represents our updated beliefs about the parameter
after observing the data, and the prior, we compute the posterior distribution, the updated belief
about the value of the parameter. And, in an every subsequent step, the posterior becomes a
new prior.

One of the main differences, however, in these two approaches is the output of such estimation.
While in the frequentist statistics we get values of parameters, the Bayesian approach will give
us a full posterior distribution of parameter values. From such a distribution, we can extract
information for our needs, such as an estimation of a value or some uncertainty measure.

In object tracking, the Bayesian approach to estimation has several advantages. Firstly, we
can estimate the posterior as time passes, one measurement at a time. This is good because
rarely do we have all measurements in advance, and often we want our systems to work in an
online manner. Secondly, full posteriors allow us to work with the uncertainty of estimation and
implement techniques to reduce the number of new hypotheses using merging techniques.2

Last but not least, the Bayesian approach allows us to incorporate prior knowledge about the
motion models of objects and their birth positions. All of the above helps to improve tracking
performance and reduce the impact of noisy measurements.

1.2.1 Bayes’ rule in terms of pdfs
In Bayesian object tracking, probability distributions are used instead of pure probabilities.
Therefore, Bayes’ rule must be defined using distributions. Fortunately, this is straightforward
after we define the conditional probability in terms of pdfs.

▶ Definition 1.5 (Conditional probability for pdfs). Let x and y be random variables with pdfs
p(x) and p(y), respectively, and the joint distribution p(x, y). Then the conditional probability of
x given y is defined as:

p(x|y) = p(x, y)
p(y) . (1.25)

2As we will see later, the GM-PHD filter uses the Mahalanobis distance between Gaussians to decide what
hypotheses should be merged into one. The computation of Mahalanobis distance includes the covariance matrix.
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▶ Definition 1.6 (Bayes’ rule for pdfs). Let z and x be random variables with densities p(z|x)
and p(x), respectively, and let p(z, x) be their joint distribution. The Bayes’ rule for p(x|z) is
defined as follows:

p(x|z) = p(z|x)p(x)
p(z) = p(z|x)p(x)∫

p(z|x)p(x)dx
. (1.26)

The distribution p(x|z) is the posterior distribution, p(z|x) is the likelihood, p(x) is the prior,
and p(z) is called evidence.

Evidence here is only the normalization constant for the distribution so that the integral of
the posterior equals to one. It is therefore convenient to omit this denominator in the text and
write the posterior only in terms of prior and likelihood. Since it is not already the equality, we
use the proportionality symbol:

p(x|z) ∝ p(z|x)p(x). (1.27)
We can use the rule defined above to compute the posterior of some parameter based on all

the data. However, in many real-world applications, measurements do not arrive all at once, but
rather sequentially over time. In the context of object tracking, sensors generate measurements in
a discrete manner, once per some predefined time interval, and the goal of the tracking algorithm
to estimate targets’ state at each time step. Fortunately, the construction of the Bayes’ rule allows
us to define the sequential data update in a very straightforward manner.

▶ Theorem 1.7 (Sequential Bayes’ rule). Let zk be an observed random variable at discrete
time steps k = 1, 2, . . . and let z1:k−1 represent the realizations of zk obtained from the time step
k = 1 up to (k − 1), that is z1:k−1 = {z1, z2, . . . , zk−1}. Let p(xk|z1:k−1) denote the posterior
distribution obtained at time k − 1 using all the measurements up to k − 1 and p(zk|xk) be the
likelihood of the new measurement zk. The posterior distribution p(xk|z1:k) at time step k is:

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|xk)p(xk|z1:k−1)dxk

∝ p(zk|xk)p(xk|z1:k−1). (1.28)

It should be mentioned that xk and zk must not always be scalars. As we will later see, they
can be vectors, denoted as xk and zk, or even sets, denoted Xk and Zk. The Bayes’ rule will
have the same form in any case.

The application of the Bayes’ rule has one big disadvantage. In practice, calculating the
posterior can be challenging or even intractable. The evidence term in the denominator contains
the integral of the product of the likelihood and the prior over the whole measurement space.
This product may (and often will) produce functions whose integration cannot be expressed in
a closed-form solution.

However, we can obtain a tractable solution by choosing a prior distribution from a set of
conjugate distributions with respect to the likelihood. In this case, the posterior will be in
the same form as the prior and we obtain an explicit closed-form solution. A conjugate prior
for a given likelihood function is a prior distribution that, when used in combination with the
likelihood, leads to a posterior distribution that is in the same family as the prior.

For example, if the likelihood is expressed using the Bernoulli distribution and the prior is
the Beta distribution, the posterior will also be a Beta distribution. The same applies for the
Gaussian distribution, where if both the prior and the likelihood are Gaussian, the posterior is
also Gaussian. This is particularly useful in practice, as many distributions have well-known
conjugate priors. The latter case is used, for instance, in the GM-PHD filter.

1.2.2 Estimators
As mentioned before, the output of the Bayesian inference is always a distribution. However,
we are often interested in obtaining an estimated value of the parameter we are estimating.
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Estimators do exactly that. Strictly speaking, estimators take a set of observations and produce
an estimate of the value of an unknown parameter of a distribution. We denote an estimate of
an unknown parameter x as x̂. There are several known estimators but we are interested in two
of them: ML and MAP.

The Maximum Likelihood (ML) estimator finds the value of the parameter such that it max-
imizes the likelihood function. Formally:

x̂ML = arg max
x

p(z|x). (1.29)

The ML estimator is a point estimator that finds the parameter value that makes the observed
data most probable. For instance, the frequentist approach uses this estimator to find the
parameter value. The MLE does not take the prior distribution into account and is more sensitive
to outliers [8]

The Maximum A Posteriori (MAP) estimator, on the other hand, finds the value of the
parameter that maximizes the posterior distribution. In formal notation:

x̂MAP = arg max
x

p(x|z) = arg max
x

p(z|x)p(x). (1.30)

The MAP estimator finds the most probable value of the parameter given the observed data.
Comparing to the MLE, MAP uses prior information and more robust when the data is noisy or
incomplete. That is the reason why MAP is often used in Bayesian inference.3

1.3 Gaussian-linear Bayesian filtering
We have now introduced the main principles of Bayesian inference. Now, we can turn to the
Kalman filter, a popular and widely used algorithm for state estimation. The Kalman filter (KF,
for short) is a recursive algorithm that uses Bayesian inference to estimate the state of a dynamic
system based on a sequence of noisy measurements.

The key feature of the KF is the ability to predict future states of the system. This is essential
for applications that require to foresee the behavior of tracked objects before the state of these
objects is measured. Examples of such systems may include autonomous driving or air defence
systems. The prediction ability helps also to overcome situations when a sensor fails to measure
the position of an object (a so-called misdetection).

In the following subsections, we will introduce the state-space models, give a formal definition
of a general Bayes filter, infer the Kalman filter formulas and discuss the Constant Velocity (CV)
model, a common motion model used in the Kalman filter.

1.3.1 Multivariate Gaussian Distribution
Before we start learning the basics of Bayesian filtration, we should extend our knowledge of the
Gaussian distribution to the multidimensional case. As mentioned in Section 1.1.1.5, it plays a
very important role in object tracking and, in particular, in this work. Formulas and theorems
defined in this section are essential for defining and proving the Kalman filter formulas. We will
define several properties of multivariate Gaussians required later.

First, we define the multivariate Gaussian distribution with mean vector µ, covariance matrix
Σ, and evaluated at x as:

N (x;µ,Σ) = 1√
(2π)n|Σ|

exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)
, (1.31)

3In this work, we use Gaussian posterior distributions and MAP estimates are equal to posterior mean esti-
mates, or MMSE-estimates. However, for general distributions, it will rarely be the case.
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where n is the length of the vector x, and | · | denotes the determinant of a matrix.
The multivariate Gaussian distribution is a generalization of the univariate Gaussian distri-

bution, where instead of a single mean and variance, we have a mean vector and a covariance
matrix that characterizes the correlation between the variables. Note that the exponent contains
the expression known as the Mahalanobis distance, which we will encounter throughout this
work. It is given by:

▶ Definition 1.8 (Mahalanobis distance). For vectors x and y and the symmetrical positive-
definite matrix S, the Mahalanobis distance is defined as:

d(x,y) =
√

(x− y)⊺S−1(x− y). (1.32)

As we will later see, in object tracking, we heavily use conditional probabilities, and in
particular, conditioning and marginalization of joint distributions of Gaussian random variables.
Thus, we define the following two theorems.

▶ Theorem 1.9 (Conditioning on a Gaussian joint distribution). Let x and y be Gaussian
random variables with distributions N (x;µx,Σxx) and N (y;µy,Σyy), respectively. Let their
joint probability be given by:

p(x,y) = N

([
x
y

]
;
[
µx
µy

]
,

[
Σxx Σxy

Σ⊺
xy Σyy

])
. (1.33)

Then the conditional distribution of x given y is defined as:

p(x|y) = N
(

x; µx|y,Σx|y

)
, (1.34)

where

µx|y = µx + ΣxyΣ−1
yy (y− µy), (1.35)

Σx|y = Σxx −ΣxyΣ−1
yy Σ⊺

xy. (1.36)

▶ Theorem 1.10 (Marginalization of a Gaussian joint distribution). Consider the same x, y,
N (x;µx,Σxx), N (y;µy,Σxx) and p(x,y) given in Theorem 1.9. The marginal distribution of
x is defined as:

p(x) = N (x;µx,Σxx) . (1.37)

The proofs for Theorem 1.9 and Theorem 1.10 can be found in classical statistical textbooks
such as [9, pp. 161–163].

1.3.1.1 Gaussian mixtures
In multi-target tracking, the posterior density cannot be described in a simple Gaussian dis-
tribution. Generally, the posterior distribution can have any form with only assumption that
the integral of it sums to one. However, when we are dealing with Gaussian-linear cases, the
posterior density is often represented as a mixture of many Gaussian components. A Gaussian
mixture is a linear combination of multiple Gaussian distributions and its pdf is expressed in the
following way:

p(x) =
N∑
i=1

wiN (x; µi,Σi) , (1.38)

where N is the number of Gaussian components in the mixture, wi is the weight of the ith
component, the weights wi ≥ 0 sum to one, i.e.

∑N
i=1 wi = 1, and each component N (x; µi,Σi)
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Figure 1.3 An example of a Gaussian mixture with three components. The first component is centered
at [0, −5]⊺ with weight 0.2, the second component has mean in [−5, 5]⊺ with weight 0.3 and the last has
mean [5, 5]⊺ and the weight 0.5.

is a Gaussian distribution with the mean in µi and the covariance matrix Σi. An example of a
Gaussian mixture pdf is illustrated in Figure 1.3.

Since the weights sum to one, the Gaussian mixture satisfies the normalization requirement of
pdfs and is thus a valid probability density function itself. The weights in the mixture represent
the relative importance of the corresponding component. Gaussian mixtures are used to model
complex distributions and have several nice mathematical properties as the Gaussian distribution,
as we will later see. That is why Gaussian mixtures are widely used to represent posterior
distributions in many MTT filters. Moreover, one can easily approximate any distribution with
a Gaussian mixture using algorithms such as the Expectation-Maximization algorithm [10].

A mixture f(X) with N components will have the expected value µ̂ and the covariance Σ̂
according to the following equations:

µ̂ =
N∑
i=1

wiµi, (1.39)

Σ̂ =
N∑
i=1

wiΣi + Σ̃, (1.40)

where the term Σ̃ is called the spread-of-the-innovations and is defined as:

Σ̃ =
N∑
i=1

wi(µi − µ̂)(µi − µ̂)⊺. (1.41)

The spread-of-the-innovations quantifies the magnitude of the difference between expectations
of individual components.

1.3.2 State-space model
In the previous section, we established the relationships between prior and posterior distributions
and learned about recursive Bayesian estimation of the posterior. Now, we will explore these
concepts in the context of object tracking.
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Object tracking involves estimating the internal states of objects that move in some space,
which are often unknown to us. These states may include physical properties of objects such
as position, velocity, acceleration, and orientation, depending on the application. Sensors such
as cameras, infrared scanners, lidars or radars constantly generate measurements of the object
states, which may be the distance of an object to the sensor, or its temperature. However, these
measurements are often noisy due to environmental conditions or imperfections of the sensor.
We use Bayesian filtering to estimate the real state of the objects and filter out the noise.

To handle the complexity and diversity of possible situations and properties, we need a
systematic framework for modeling object motion that captures all sources of uncertainty and
the nature of physical behavior of objects. This framework is called state-space modeling. In
state-space models, the internal state we want to estimate is represented as a vector of variables
that evolve over time according to a set of rules specified by the motion model, which is a known
function. The measurements obtained at each time step are modeled as a different function of
the state variables, known as the measurement model4.

For example, consider a moving bicycle and a surveillance camera with a rectangular field of
view (FoV). The bicycle enters the FoV and crosses it at a constant speed. The camera has an
algorithm that estimates the position of objects in the space from the image. With each frame
f , it returns a new position, say (x̂f , ŷf ). We can represent the state of the bicycle as a vector of
the position and velocity, which are unknown variables. Based on the measurements, we estimate
their values using the known physical relation between distance, velocity, and time: d = v∆t,
where d is the distance that the object with velocity v traveled in time ∆t.

Both the motion and measurement models should include some noise. In the example above,
the movement of the bicycle cannot perfectly follow the formula, and there will always be some
minor changes in speed. Moreover, the measurement model, which translates an estimated state
into a measurement, will also contain some uncertainty since the camera does not have a perfect
representation of the space.

We can now describe these models formally. Note that since the state is a vector, we will use
x for vectors. The motion and measurement models can be generally expressed as:

p(xk|xk−1) = ft(xk−1,uk,wk), (1.42)
p(zk|xk) = ht(xk,vk), (1.43)

where ft and ht are functions, xk−1 is the estimated state from time step k− 1, uk is called the
input (or control) vector, and wk and vk are zero-mean noise random variables.

However, this definition is too general since the functions ft and ht can be anything. As
mentioned earlier, to get a closed-form solution in the Bayesian inference framework, we need
to choose conjugate distributions for the likelihood and the prior. The Kalman filter, which we
will describe soon, works for the Gaussian-linear case, where the functions ft and ht are linear
and noise variables are distributed as Gaussian, i.e., wk,vk ∼ N (0,Σ). The Gaussian- linear
state-space model has the following representation:

p(xk|xk−1) = Fxk−1 + Buk + wk, vk ∼ N (0,Q), (1.44)
p(zk|xk) = Hxk + vk, wk ∼ N (0,R), (1.45)

p(x0) ∼ N (x̂0),P0), (1.46)

where:
4It should be mentioned that the names ‘motion’ and ‘measurement’ models are not the only terms used

to describe them. The reader may also encounter terms such as kinematic, state-transition, dynamic, or system
models for the motion model, and terms like observation, sensor, or likelihood models for the measurement model.
All of these names are correct, and their use depends on the context in which they are applied. However, in this
work, the author strives for consistency and will use the terms ‘motion’ and ‘measurement’ models throughout
the entire text.
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F is the transition matrix,

B is the input matrix,

H is the measurement matrix,

Q and R are symmetric positive definite matrices that describe the statistical properties of
the motion noise vk and the measurement noise wk, respectively,

x̂0 and P0 are mean and variance of the prior state.

The control variable uk, in general, represents some input signal from the environment, and
B specifies how the input signal affects the dynamic system. This may include the effect of
gravity on the vertical traveled distance or the voltage applied to some circuit. However, in
object tracking, we rely on measurements obtained from sensors to update our estimate of the
object state. We do not have control over the object motion. Thus, the input matrix is often
redundant, and we omit it (or set it to a zero matrix) along with the input variable uk.

The notation above may be inconvenient in some cases. In this work, we will often use a
shorter version that has the same meaning:

p(xk|xk−1) = N (xk; Fxk−1,Q), (1.47)
p(zk|xk) = N (zk; Hxk,R), (1.48)

x0 ∼ N (x0; x̂0,P0). (1.49)

1.3.2.1 Constant Velocity Model
The Constant Velocity (CV) model is one of the most commonly used motion and measurement
models in the context of object tracking. It describes the kinematics of objects in a 2D space
that move with a constant velocity. The state vector comprises a position vector and a velocity
vector, and while the position vector contains the coordinates of the object in the space, the
velocity vector contains the object speed in the direction of each axis.

The CV model is linear and one of the simplest models. It assumes that the speed of objects
remains unchanged during tracking, with only small deviations from the constant. This model
can be reasonably utilized in scenarios where objects do not change their speed or direction, such
as vehicles on highways or planes in the sky. Since the state vector contains only four variables,
the use of this model does not increase the computational burden on tracking algorithms.

The motion equation for the CV model is given by 1.47, and the state vector xk, the state
transition matrix F, and the process noise matrix Q can be defined as:

xk =


x1,k
x2,k
vx1,k

vx2,k

 ; F =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 ; Q = q2 ·


dt3

3 0 dt2

2 0
0 dt3

3 0 dt2

2
dt2

2 0 dt 0
0 dt2

2 0 dt

 , (1.50)

where dt is the change in time between the last estimation and the newly computed one, and q
is the motion noise parameter, which represents the uncertainty in the state transition.

The measurement model transforms a state vector from the state space into the measurement
space. Since the vanilla Kalman filter, which we will derive soon, works only with linear models,
the measurement model for the CV model assumes sensors measurements in the same 2D space
as in the state vectors. The measurement equation is given by 1.48, and the measurement matrix
H and the measurement noise matrix R can be defined as:

H =
[
1 0 0 0
0 1 0 0

]
; R = r2 ·

[
1 0
0 1

]
, (1.51)
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where r is the measurement noise parameter, which determines the variance of the measurement
noise.

We need to describe the choice of parameters q and r in more detail. These parameters
are crucial in obtaining good estimates from a filter. These parameters are not known a priori
and their values should be chosen carefully by the means of trial and error, or using automated
methods like, for instance, in [11]. However, selecting appropriate values often involves a trade-off
between tracking accuracy and computational complexity, and the use of exact methods depends
on the application and one’s requirements.

The CV model can be extended with additional information, such as change of speed. In this
way we will come to the constant acceleration model. However, it will not be used in this work
and, therefore, we will not leave formal definition of this model here.

1.3.3 The Bayes filter
We have learned how the internal state of a system can be represented in terms of a state vector
and motion and measurement models. Now, we are ready to present the formal definition of the
Bayes filter, the general abstraction of any Bayesian filter, including the Kalman filter and the
PHD filter.

First, we need to make a very important assumption on states. This assumption is called the
Markov model property. This property states that, for the motion model, the present state of a
system xk is dependent only on the state on the previous time step xk−1 given all past states
x1:k−1 and measurements z1:k−1. More formally:

p(xk|x1, . . . , xk−2, xk−1, z1, . . . , zk−2, zk−1) = p(xk|xk−1). (1.52)

A similar requirement must hold for measurement model, that is:

p(zk|x1, . . . , xk−2, xk−1, xkz1, . . . , zk−2, zk−1) = p(zk|xk). (1.53)

The Markov property may seem restrictive but in reality it is not because state- space models
allows us to capture dependencies in the system dynamics by simply introducing more variables
into the state vector. For instance, if we have a system where the current state has a dependence
on the previous two states, we can augment the state vector to include the last two states as
variables, and the Markov property will still hold.

The Bayes filter uses the motion and measurement models and assumes that this property
holds. The Bayes filter is a recursive framework that estimates an internal state of the system
over time using measurements. Every iteration of the filter consists of two steps: prediction and
update. On the prediction step, the filter estimates a internal state xk based on the previous
state xk−1 and the motion model p(xk|xk−1). The prediction step is also known as the Chapman-
Kolmogorov equation.

▶ Theorem 1.11 (The prediction step. The Chapman-Kolmogorov equation). Given the set
of measurements z1:k−1 = {z1, z2, . . . , zk−1} and the current state xk−1 and the motion model
p(xk|xk−1), the prediction step of the Bayes filter is computed as follows:

p (xk|z1:k−1) =
∫
p (xk, xk−1|z1:k−1) dxk−1 =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1, (1.54)

where the integral is taken over the entire state space of xk−1, and p (xk−1|z1:k−1) is the posterior
density of the state at time k − 1, given all measurements up to time k − 1.

Next, on the update step, the filter corrects the predicted state with the measurement zk
using the measurement model p(zk|xk). This step is computed using the standard Bayes’ rule.
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▶ Theorem 1.12 (The update step). Given the output of the prediction step of the Bayes filter
p (xk|z1:k−1), the observed measurement zk and the measurement model p(zk|xk), the update step
of the Bayes filter is computed as follows:

p (xk|z1:k) = p (zk|xk) p (xk|z1:k−1)
p (zk|z1:k−1) ∝ p (zk|xk) p (xk|z1:k−1) . (1.55)

These two steps create a loop, and to use the filter, we first predict the next state using
the Chapman-Kolmogorov equation, and then we update our guess with a measurement. Note,
that we will often use the simplified notation to explicitly state the time step of the value. The
notation •k|k−1 represents the predicted value at time step k, and the notation •k|k represents
the updated value at time step k after incorporating a measurement.

Now, having introduced the general Bayes filter, we will continue with exploring the Kalman
filter in detail, the popular and widely used tool for state estimation.

1.3.4 The Kalman filter
The Kalman filter is one of the most well-known and widely used algorithms in signal processing
and control theory. It is a recursive algorithm that allows the estimation of internal states of
entities in dynamic systems from a set of measurements that may be noisy or missing at some
time steps. The filter was proposed by Rudolf Kalman in 1960 [12] and has since been pervasively
used to control a vast array of consumer, health, commercial, and defense products [13].

The development of the filter was motivated by the need to improve aerospace technology
in the United States during the Cold War between the Soviet Block and the North American
Treaty Organization. Because the Soviet Union managed to launch its artificial satellites and
successfully send a human to space, the federal government of the United States supported
research into new technologies in the aerospace area.

The Kalman filter is an example of a general Bayes filter that was introduced earlier. This
means that the filter estimates the posterior distribution of the internal state at discrete time
steps using prior information about the observed object state and a set of noisy measurements.
As briefly mentioned in Section 1.3.2, the Kalman filter works on state-space linear models with
Gaussian noise and a Gaussian prior of the state. The predict- update loop in the Kalman filter
is the same as in the Bayes filter, and the same Chapman-Kolmogorov equation defined in 1.11
and the update equation defined in 1.12 are incorporated.

The main advantage of the Kalman filter is that it allows for the estimation of the state of
a system in real-time. It handles noisy measurements well and is fast; however, it is sensitive to
initial parameter settings, such as the noise covariance matrices [14]. Nonetheless, there are new
methods being developed that propose mechanisms to overcome this drawback, as in [15] and
[16].

One of the main drawbacks of the Kalman filter is its Gaussian-linear assumption. In real-
world applications, many systems exhibit non-linearity, and the Kalman filter may be ineffective.
Nonetheless, several extensions of the filter have been proposed that address this. Two well-known
algorithms are the Unscented Kalman Filter (UKF) and the Extended Kalman filter (EKF). The
UKF is an algorithm that uses a set of carefully chosen sigma points to capture the true mean
and covariance of the predicted and updated distributions without the need for linearization [17].
The EKF, on the other hand, linearizes the nonlinear motion and measurement models using
a first-order Taylor expansion [18]. These methods have been proven to be effective in many
applications, including the PHD filter. However, they are beyond the scope of this thesis and
will not be covered in detail.
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1.3.4.1 The Gaussian identity

Before we introduce the actual formulas of the Kalman filter, we should introduce a new funda-
mental theorem in object tracking and then deduce a corollary from it. These will also be used
later when we infer formulas for the the GM-PHD filter. We define this theorem using a general
notation without any meaning for Bayesian filters to avoid the confusion of variables when we
use this theorem in different parts of different filters.

▶ Theorem 1.13 (The Gaussian product identity). Given matrices and vectors A,U,m, d, and
V of appropriate dimensions, and that U and V are positive definite, the following identity
applies:

N (x;Ay + d, U)N (y;m,V ) = N (x;Am+ d, U +AV A⊺)N (y; m̂, V̂ ), (1.56)

where

m̂ = m+K(y −Am− d), (1.57)
V̂ = (I −KA)V, (1.58)
K = V A⊺(U +AV A⊺)−1. (1.59)

Proof. The proof of Theorem 1.13 presented here follows similar proofs in [19] (Appendix D)
and [20] (Section 3.8). However, the main idea of using algebraic manipulation of matrices was
taken from [21].

The proof is based on the idea that both sides of 1.56 represent the joint Gaussian distribution
of two random variables, p(x, y). From 1.5, we know that we can express this distribution as:

p(x, y) = p(x|y)p(y) = p(y|x)p(x). (1.60)

We claim that the left-hand side (LHS) of 1.56 represents this equality, i.e.,

p(x, y) = p(x|y)p(y) = N (x;Ay + d, U)N (y;m,V ). (1.61)

Next, we can express the product of two Gaussians in their quadratic forms, the same form
as defined in 1.31, i.e.

N (x;Ay + d, U)N (y;m,V ) = 1
(2π)n

√
|U ||V |

exp
(
−1

2

[
(x−Ay − d)⊺U−1(x−Ay − d)

+(y −m)⊺V −1(y −m)
])

. (1.62)

If we introduce a small algebraic trick for matrices:

[
I −A
0 I

] [
x−Am− d
y −m

]
=

[
x−Am− d−Ay +Am

y −m

]
=

[
x−Ay − d
y −m

]
, (1.63)

we can manipulate the exponent to obtain another quadratic form:
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(x−Ay − d)⊺U−1(x−Ay − d) + (y −m)⊺V −1(y −m)

=
[
x−Ay − d
y −m

]⊺ [
U−1 0

0 V −1

] [
x−Ay − d
y −m

]
=

[
x−Am− d
y −m

]⊺ [
I 0
−A⊺ I

] [
U−1 0

0 V −1

] [
I −A
0 I

] [
x−Am− d
y −m

]
=

[
x−Am− d
y −m

]⊺ ([
I A
0 I

] [
U 0
0 V

] [
I 0
A⊺ I

])−1 [
x−Am− d
y −m

]
=

[
x−Am− d
y −m

]⊺ [
U +AV A⊺ AV

V A⊺ V

]−1 [
x−Am− d
y −m

]
. (1.64)

This expression is also a joint Gaussian distribution p(x, y), but it cannot be split into two
independent Gaussians due to the fact that the matrix is not block-diagonal. Therefore, to
conclude the proof, we need to infer two other distributions, p(y|x) and p(x), from the derived
distribution p(x, y).

Notice that this is also a quadratic form, and it expresses a dependency on both x and y.
Therefore, his expression is also a joint Gaussian distribution p(x, y), but it cannot be split
into two independent Gaussians due to the fact that the covariance matrix in 1.64 is not block-
diagonal. Therefore, to conclude the proof, we need to infer two other distributions, p(y|x) and
p(x), from the derived distribution p(x, y).

We are going to obtain the p(y|x) distribution by conditioning on the joint distribution, i.e.
using the formula that was presented in Theorem 1.10. For completeness and simplicity, we will
write the joint distribution the same way that it is presented in the theorem:

p(x, y) = N

([
x
y

]
;
[
Am+ d
m

]
,

[
U +AV A⊺ AV

V A⊺ V

])
. (1.65)

Now, using equations 1.34 and 1.36, we will infer:

µy|x = µy + ΣyxΣ−1
xx (x− µx)

= m+ V A⊺(U +AV A⊺)−1(x−Am− d), (1.66)
Σy|x = Σyy − ΣyxΣ−1

xxΣyx
= V − V A⊺(U +AV A⊺)−1AV

= (I − V A⊺(U +AV A⊺)−1A)V, (1.67)
p(y|x) = N

(
y;µy|x,Σy|x

)
. (1.68)

Using Theorem 1.10, we obtain the expression for p(x):

p(x) = N (x;Am+ d, U +AV A⊺). (1.69)
If we introduce a new notation, K = V A⊺(U+AV A⊺)−1, we obtain the exact same expressions

for the Gaussians on the right-hand side (RHS) of the initial theorem. That confirms that both
LHS and RHS are equal due to the equivalence of their quadratic forms. And that concludes the
proof. ◀

From Theorem 1.13 we can also derive a corollary, that we will also need.
▶ Corollary 1.14. Given matrices and vectors A,U,m, d, and V of appropriate dimensions,
and that U and V are positive definite, the following identity applies:∫

N (x;Ay + d, U)N (y;m,V )dy = N (x;Am+ d, U +AV A⊺). (1.70)
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Proof. The proof of Corollary 1.14 is straightforward:

∫
N (x;Ay + d, U)N (y;m,V )dy =

∫
N (x;Am+ d, U +AV A⊺)N (y; m̂, V̂ )dy (1.71)

= N (x;Am+ d, U +AV A⊺)
∫

N (y; m̂, V̂ )dy︸ ︷︷ ︸
=1

(1.72)

= N (x;Am+ d, U +AV A⊺). (1.73)

In 1.71, we applied Equation 1.56 from Theorem 1.13, then, in 1.72 we notice that one of the
integrands does not depend on the integration variable y and we take it out from the integral. The
integrand that is left under the integral is a Gaussian distribution probability density function,
and it integrates to 1. Equation 1.73 is the right-hand side of Equation 1.70. It concludes the
proof of Corollary 1.14. ◀

1.3.4.2 The Kalman filter algorithm
We have derived several important formulas and relations, which are essential to infer the for-
mulas and algorithm of the Kalman filter. We should recall that the filter has Gaussian-linear
motion and measurement models and is essentially a Bayesian filter. The formal description of
the linear models was given in 1.47 and 1.48, the prediction step of the Bayesian filter in Theorem
1.11, and the update step in Theorem 1.12. With all the necessary pieces in place, we can now
derive the prediction and update formulas for the Kalman filter.

▶ Theorem 1.15 (The Kalman filter prediction). Assume that the motion and measurement
models are given by 1.47 and 1.48, respectively, and that the Markov assumption of the Bayes
filter holds, so that the Chapman-Kolmogorov equation is applicable. Let the posterior density at
time step k− 1 be denoted as N (xk−1; x̂k−1|k−1,Pk−1|k−1). Then, the predicted density is given
by:

p (xk|z1:k−1) = N
(
xk; Fx̂k−1|k−1,FPk−1|k−1F⊺ + Q

)
. (1.74)

Proof.

p (xk|z1:k−1) =
∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1 (1.75)

=
∫

N (xk; Fxk−1,Q) N
(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
dxk−1 (1.76)

=
∫

N
(
xk; Fx̂k−1|k−1,Q + FPk−1|k−1F⊺

)
N (xk−1; •, •) dxk−1 (1.77)

= N (xk; Fx̂k−1,FPk−1F⊺ + Q) . (1.78)

We started with the application of the Chapman-Kolmogorov equation from 1.11 and the
substitution of its terms with the suitable distributions. Next, in the equation 1.78, we used the
result of Theorem 1.13, and finally we applied Corollary 1.14 to get 1.78. ◀

▶ Theorem 1.16 (The Kalman filter update). Assume that the predicted density from 1.15 is
p (xk|z1:k−1) = N

(
xk; Fx̂k|k−1,FPk|k−1F⊺ + Q

)
, p(zk|xk) is the measurement model given in

1.48, and zk is the measurement at time k. Then the posterior density after the update step is
given by the following relation:

p(xk|zk) = N
(
xk; x̂k|k,Pk|k

)
, (1.79)

where the mean and covariance are given by:
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x̂k|k = x̂k|k−1 + Kk(zk −Hx̂k|k−1), (1.80)
Pk|k = (I−KkH)Pk|k−1, (1.81)

Kk = Pk|k−1H⊺(HPk|k−1H⊺ + R)−1. (1.82)

Proof.

p(xk|zk) = p(zk|xk)p(xk) (1.83)
= p(zk|xk)p(xk|z1:k−1) (1.84)

=
N (zk; Hxk, R) N

(
xk; x̂k|k−1,Pk|k−1

)∫
N (zk; Hxk, R) N

(
xk; x̂k|k−1,Pk|k−1

)
dxk

(1.85)

=
N

(
zk; Hx̂k|k−1,HPk|k−1H⊺ + R

)
N

(
xk; x̂k|k,Pk|k

)
N

(
zk; Hx̂k|k−1,HPk|k−1H⊺ + R

) (1.86)

= N
(
xk; x̂k|k,Pk|k

)
, (1.87)

where, according to Theorem 1.13, the values of x̂k|k and Pk|k are:

x̂k|k = x̂k|k−1 + Kk(zk −Hx̂k|k−1), (1.88)
Pk|k = (I−KkH)Pk|k−1, (1.89)

Kk = Pk|k−1H⊺(HPk|k−1H⊺ + R)−1. (1.90)

This proof utilizes the same Gaussian product identity theorem with its corollary utilizing in
addition the application of the Bayes’ rule. ◀

Before we conclude this section with the full algorithm of the Kalman filter, it should be noted
that straightforward computation of the covariance matrix after the update step is sensitive to
round-off numerical errors, and this can be avoided using a different form of the same expression
for Pk|k [8]:

Pk|k = (I−KkH)Pk|k−1(I−KkH)⊺ + KkRK⊺
k. (1.91)

This form is called the Joseph form and is less sensitive to numerical errors. In the algorithm,
we will use this form to compute the covariance matrix after the update step. The whole
algorithm of the Kalman filter is defined as follows:

The Kalman filter is the best possible linear estimator in the MMSE (minimum mean square
error) sense [22]. That means that the Kalman filter achieves the minimum expected squared
error between the true and estimated values, among all possible linear estimation methods. In
other words, assuming the motion model and the measurement model are linear, and the noise is
Gaussian and uncorrelated, the filter provides the optimal estimate. However, as it was mentioned
before, there are plenty of modifications that allow to use non-linear models or non-Gaussian
correlated noise. In this work, we will use the vanilla Kalman filter.
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Algorithm 1 Kalman filter algorithm
1: procedure KF(x̂k−1|k−1, Pk−1|k−1, zk)
2: x̂k|k−1,Pk|k−1 ← KFPredict(x̂k−1|k−1,Pk−1|k−1)
3: x̂k|k,Pk|k ← KFUpdate(x̂k|k−1,Pk|k−1)
4: return x̂k|k−1,Pk|k−1, x̂k|k,Pk|k
5: end procedure

6: procedure KFPredict(x̂k−1|k−1, Pk−1|k−1)
7: x̂k|k−1 ← Fx̂k−1|k−1 ▷ Predicted state estimate
8: Pk|k−1 ← FPk−1|k−1F⊺ + Q ▷ Predicted covariance
9: return x̂k|k−1,Pk|k−1

10: end procedure

11: procedure KFUpdate(x̂k|k−1, Pk|k−1)
12: Kk ← Pk|k−1H⊺(HPk|k−1H⊺ + R)−1 ▷ The Kalman gain
13: x̂k|k ← x̂k|k−1 + Kk(zk −Hx̂k|k−1) ▷ Posterior state estimate
14: Pk|k ← (I−KkH)Pk|k−1(I−KkH)⊺ + KkRK⊺

k ▷ Posterior covariance in Joseph form
15: return x̂k|k,Pk|k
16: end procedure
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Chapter 2

Multi-target tracking

In this section, we provide the theoretical background of the multi-target tracking problem. We
have already established the foundations of Bayesian filtering and explained in detail how the
Kalman filter works. Now, we will discuss how it differs from other filters that are used for
tracking objects. Before we start building the theoretical foundations for object tracking filters,
we need to clarify the difference between Bayesian filtering and Bayesian object tracking.

When we track objects, we rely on measurements from sensors, such as cameras, lidars, or
radars. These sensors have specific technical specifications and limitations, and there is no sensor
that can be 100% reliable. The reliability of a sensor may be affected by noise, which occurs when
a sensor detects an object that is not present. This behavior may be caused by weather conditions
in the sensor operating area, the limited resolution of the sensor, or dirt or dust covering the
sensor surface. We do not address the exact reasons why this happens; we only need to find ways
to eliminate noisy measurements and separate them from measurements generated by existing
objects.

The second problem is closely related to the first. It occurs when a sensor fails to generate
measurements for objects that are present in its field of view. The reasons for this may be the
same as for noisy measurements, and we do not address these reasons directly. However, we must
be able to mathematically model these situations to ensure that they can be properly handled
by the filter we want to use to track objects.

These two problems have their names that we will use in this work. Noisy measurements are
called clutter, and missing measurements are called misdetections. We have already seen that
the latter problem can be handled by the Kalman filter by skipping the update step. Clutter, on
the other hand, creates a much more challenging problem. Figure 2.1 shows what clutter looks
like to the filter. In the left image, we see a track of an object and measurements generated by
the sensor, shown in red. Clutter measurements are shown as blue asterisks. We can distinguish
between measurements and clutter. However, in the right image, we see how the filter sees the
same data points, with all points in the same color. To the filter, all these points look the same,
and there is no easy way to distinguish between clutter and real measurements.

The uncertainty in distinguishing between real measurements and clutter has led to the
development of many methods for addressing this problem. The main idea behind these methods
is that, since we have no information about which measurements come from targets and which
are clutter, we should consider all measurements at each time step as coming from a target. This
involves creating all possible assignments between measurements and targets and then evaluating
the probability of each such assignment. In other words, we evaluate the possibility that a given
measurement comes from a specific target according to its motion model. If the measurement
is too far from the target, the probability of such an assignment will be lower than that of
an assignment with a measurement that is close to the predicted state. These assignments are
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(a) Real measurements from some object are shown
as red dots. Clutter measurements are displayed as
blue asterisks.

(b) Both real measurements and clutter measure-
ments are shown as blue asterisks.

Figure 2.1 Measurements in clutter. In this Figure, we indicate the clutter problem. When a sensor
generates measurements, some of them may be clutter measurements, and there is no easy way to
distinguish which data points come from a real object and which are noise.

referred to as association hypotheses. In the following subsection, we will provide a brief overview
of various target tracking methods and approaches. But before doing so, we will outline the main
assumptions of multi-target tracking (MTT).

2.1 Overview of target tracking methods
There are multiple filters that use association hypotheses. For single-target tracking, when the
maximum number of targets is fixed to one, in Gaussian-linear scenarios the Probabilistic Data
Association (PDA) filter can be utilized [23]. At each time step, this filter creates new hypotheses
for all possible data associations and creates a joint posterior distribution after at the update
step. Each hypothesis is assigned with a weight that reflects the likelihood that it actually
originates from the target. Next, the resulting Gaussian mixture is reduced to only one Gaussian
that represents the posterior state of the target. Both Gaussian mixtures and the reduction
techniques will will be discussed later in this work.

This PDA filter is conceptually very simple and straightforward, but it may be too simple
for many real-world scenarios, particularly when there are multiple targets present that are too
close to each other to be tracked by multiple instance of the PDA filter. This is addressed in the
extension and the resulting filter is named the Joint Probabilistic Data Association (JPDA) filter
[24]. It can handle multiple targets all at once but only when the number of targets is known
in advance. The main idea behind this filter is that at each time step it creates all possible
measurement-to-target association hypotheses, and, for each target, it creates a joint probability
from all partial probabilities computed for each measurement. The series of such probabilities
create tracks, and the track with the highest probability is considered the real track of the object.
Because of the way how hypotheses are calculated, the JPDA filter is computationally much more
expensive than the PDA filter. Moreover, if tracks get too close to each other, this filter shows
the problem called the track coalescence—when tracks of two targets merge into one track.

Both PDA and JPDA filters are single-scan methods, which means they process only one set of
measurements at a time. Compared to single-scan methods, there exist multi-scan methods that
compute probabilities of tracks based on the history of all measurements, in a hierarchical manner.
This way of calculating posterior probabilities leads to significant improvements in tracking
accuracy, since the filter takes into consideration the whole history of the object movement.
The classical example of a multi-scan filter is Reid’s Multiple Hypothesis Tracker (MHT), also
known as the hypothesis-oriented MHT (HO-MHT) [25]. This filter is similar to the way it
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computes probabilities; however, the calculation of the probability of each association hypothesis
incorporates the probability of the parent hypothesis from the previous time step, thus creating
a hypothesis tree at each filter cycle. The number of hypotheses is therefore multiplied by the
number of new measurements at each step, and the total number of association hypotheses grows
exponentially. Efficient implementations of the recursive HO-MHT include advanced techniques
on how to prune the number of less probable hypotheses at each time step [26].

The computational complexity of Reid’s MHT has led to modifications in the way hypotheses
are created. Instead of generating new hypotheses for all parent hypotheses at each time step, we
can create several sequences of the best associations for several time steps in the past and compute
new hypothesis probabilities for those hypotheses only. This reduction in the computational
complexity avoids the need to compute all possible branches in the hypothesis tree. Moreover, it
allows for efficient implementation techniques like look-up tables, and there is no recursion in the
computation of new hypotheses. This algorithm is known as the track-oriented MHT (TO-MHT)
[27]. As a modification of Reid’s MHT, TO-MHT is also a multi-scan method, but instead of
recursively evaluating all possible hypotheses, it processes all hypotheses at once.

The way both variants of MHT handle track hypothesis initialization and the propagation
of association hypotheses over time allows “the MHT approach inherently handle initiation and
termination of tracks, and hence accommodate an unknown and time-varying number of targets”
[28]. However, because the number of hypotheses grows exponentially, hypothesis reduction tech-
niques should be used, and the pruning of hypotheses with low probabilities should be relatively
aggressive. This makes MHT a strong algorithm but with higher computational requirements.

The JPDA filter and the MHT are two approaches for handling multiple targets in a scene.
However, there is one alternative approach that is conceptually very different from both methods,
which utilizes an abstract mathematical concept called Finite-Set Statistics (FISST) [19]. We
will dedicate several next sections to explaining what FISST is, introducing the main theoretical
assumptions of the multiple target tracking problem, and then discussing the main building
blocks of the PHD filter.

2.2 Random Finite Sets
We have discussed one possible approach for evaluating the uncertainty between targets and
measurements in multi-target tracking. Filters such as JPDA or MHT, in both variants, use a
hypothesis-based approach where at each time step, a set of hypotheses is created to map all
possible associations between new measurements and existing targets. However, these approaches
do not model the uncertainty of the number of targets themselves. At any given moment, new
targets may appear or disappear from the field of view, and the filters should be able to estimate
tracks for every target.

To illustrate this point, let us consider the scenario of a common surveillance camera tracking
people in a large mall. At every moment, people enter the area covered by the camera, cross it,
and then leave the area. The number of people can vary greatly at different times of the day or
on different days of the week, and there is no simple solution for estimating the number of mall
visitors at every moment.

In the JPDA filter, the number of hypotheses is assumed to be known in advance, which
is a rare case in real-world applications. In the MHT approach, object appearance events can
be modeled by assuming that if two or more measurements have a high probability of being
assigned to one target, this is probably because the number of objects in the vicinity of the
target is greater than one. However, these approaches are not systematic nor optimal, and the
exact estimation of the number of targets is rather a side effect [29].

This problem led to the development of the Random Finite Sets (RFSs) theory, a completely
new approach to multi-target tracking. At each time step, a collection of objects that are present
in the field of view of a sensor is modeled as a random finite set. Generally, a set is a collection
of distinct objects without a specific order of the elements. In an RFS, the number of objects
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is only known to be finite, but the exact cardinality, or the number of elements in the set, is
modeled using some probability distribution. Moreover, all elements in the set are probability
distributions. Therefore, RFSs are random variables that model the uncertainty of every state
and the number of states as a single entity. An outcome, or a realization, of such a random
variable is a fixed set with an exact state, and measurements are considered to be outcomes of
the unknown internal state.

The RFS concept led to the development of a new branch in statistics called Finite Sets
Statistics (FISST). In FISST, sets are random variables that have their probability distributions
and probability density functions. Furthermore, FISST allows the use of RFSs for Bayesian
inference, which leads to the need for defining basic algebraic operations on sets, such as integrals
and derivatives. As we will soon see, the mathematics behind it becomes complex, and one way
to simplify the notation is the introduction of a new way of expressing relations. This concept,
called probability generating functionals (p.g.fls), significantly simplifies the notation in FISST.
Unfortunately, the underlying level of mathematical abstraction becomes much more difficult to
understand.

In this section, we will give a formal definition for a random finite set and also define the
main formulas that are needed to understand the logic behind FISST and use it to infer the PHD
filter. In this work, we will use standard notation that does not use p.g.fls. However, the reader
may refer to the original work in [30] to learn about these concepts.

2.2.1 RFS formal definition
As we mentioned earlier, random finite sets allow us to model object states and the cardinality
of the set as a single random variable. At each time step k, we have a set of object states with
cardinality nk. We also assume that states are vectors from some space, and without loss of
generality, we assume that this space is Rn. Formally, for every time step k, we have vectors
x1
k, . . . ,x

nk
k , where xik ∈ Rd for ∀i and ∀k. We define the random finite set as follows:

▶ Definition 2.1 (Random finite set). Let k be a time step and x1
k, . . . ,x

nk
k be vectors from Rd,

where nk is a random number with a known distribution. Then, Ξk ⊆ Rd is a random finite set
with cardinality |Ξk| = nk, and Xk = {x1

k, . . . ,x
nk
k } is called a realization of the RFS.

It should be noted that the cardinality equal to zero is also valid, and in that case, the
realization of an RFS is an empty set, i.e., Xk = ∅.

As we already know, RFSs are random variables, and we need an analogous mechanism as
for classical random variables defined on vectors that allows us to describe the behavior of the
RFS. For vector-based random variables, we have cumulative distribution functions and their
first-order derivatives probability density function. The analogy to a cdf for a random finite set
is called the belief mass measure and is defined as follows:

▶ Definition 2.2 (Belief mass measure). Let Ξ ⊆ Rd be a random finite set, and S ⊆ Rd be
some region of the set space. The belief mass measure βΞ of Ξ is defined as:

βΞ(S) = Pr{Ξ ⊆ S} =
∫

S
pΞ(X)δX, (2.1)

where pΞ is a FISST density function, also called the multi-target pdf, and
∫

S pΞ(X)δX is a
set integral over all sets X ⊆ S.

In this work, we do not include the formal proof that pΞ is indeed a pdf, i.e., pΞ(X) for all X
and

∫
Rd pΞ(X)δX = 1. However, the reader may refer to the standard reference on FISST [19]

to see the proofs. Here, we only emphasize that this function is a pdf for RFSs and it captures
both the cardinality of a set and the distribution over elements in the set.
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2.2.2 Set integral and the convolution formula
In the definition above, we have used an integral on sets. For a set-valued function f , it is defined
as: ∫

S
f(X)δX =

∞∑
n=0

1
n!

∫
S×...×S

f
({

x1, . . . ,xn
})

dx1 . . . dxn. (2.2)

We can build the intuition for the set integral by understanding what integrated values really
are. When we compute an integral over real values, we, in simple words, compute the value of
the integrand for all possible values. The set integral is conceptually the same, however, the
integrated value is a random set and there are two variables incorporated–the cardinality of the
set, and the values. That means, that we sum up the function values for all possible cardinalities,
from the empty set until infinity, and all possible elements in the set. The term 1

n! refers to the
fact that for any two values a, b, sets {a, b} and {b, a} are equal, because sets are invariant to
order. That means that any permutation of elements in the set leads to the same set, and the
number of possible permutations is equal to n!.

The set integral is important for computing the posterior distribution in Bayesian inference.
The Chapman-Kolmogorov equation is defined the same way for RFSs, as we will see later in
this section, and it uses the total probability theorem where we compute the integral over all
states from the previous time step. In case when the state is represented by a random set, the
set integral is used.

In addition to the set integral, we are often interested in basic operations on sets, like union
or intersection. For instance, if we have two random finite sets with two different distributions,
what is the distribution of their union? To answer this question and to build the intuition, we
shall return to a simpler case, discrete-valued random variables.

If we have two integer-valued random variables X,Y with pmfs pX(x) and pY (y), respectively,
and their sum Z = X + Y , the probability that a realization of Z is equal to the exact value z
is described using the so-called convolution formula:

Pr{Z = z} =
+∞∑
v=−∞

pX(v)pY (z − v). (2.3)

The main idea behind the convolution is simple: we have an infinite number of possibilities
how we can sum up two values and get the result equal to z. If we take a value v, then the
second value is z − v, for all v. And the result is obtained by summing the probabilities of this
pair of numbers.

The convolution over sets has the same idea, where we sum over all possible pairs of values
that add up to a particular value. If Ξ and Γ are two random finite sets with multi-object
probability density functions pΞ(X) and pΞ(Y ), and Σ = Ξ∪Γ, the probability that a realization
of Σ equals to the exact set X is:

pΣ(Y ) =
∑
X⊆Y

pΞ(X)pΓ(Y \X), (2.4)

Simply speaking, we take some values (or none at all) from X and create a set Y containing
these values, and the rest are assigned to the other set, Y \ X. Then, the probability of this
assignment is evaluated and we take the sum of probabilities of all such assignments. Having
understood the main concept, we are ready to define the set convolution for general cases.

▶ Definition 2.3 (Set convolution). Let Ξ be a random finite set and Ξ1 ∪ . . .∪Ξn = Ξ be sta-
tistically independent subsets with multi-target probability density functions pΞ1(X), . . . , pΞn(X),
respectively. The multi-target pdf for Ξ is then defined as:



28 Multi-target tracking

pΞ(Y ) =
∑

X1⊎...⊎Xn=Y

n∏
i=1

pΞi(Xi), (2.5)

where the expression X1⊎. . .⊎Xn = Y represents the union of mutually disjoint (and possibly
empty) subsets of Y such that X1 ∪ . . . ∪Xn = Y [19, pp. 385–386].

The convolution formula is a fundamental concept in FISST and multi-target tracking. In
many filters, like, for instance, the Poisson Multi-Bernoulli Mixture filter [7], we model existing
targets as a Bernoulli RFS, and the clutter as the Poisson RFS. Measurements at every time
step contain a random permutation of true measurements and clutter, and in order to calculate
the posterior density we model them as a union of two RFSs. The PHD filter, the filter covered
in detail later in this work, also uses unions of several RFSs.

Last but not least, we should define the expected value of a RFS pdf and the cardinality
distribution. The expected value is defined in almost the same way like for vector- or scalar-
valued pdfs, however, there is one important difference, as the sum of RFSs is not defined, the
average is not defined too, and we cannot calculate the expected value directly. However, if we
define a function that maps a RFS into a space where the addition is defined, we can compute
the expected value using this formula:

▶ Definition 2.4 (Expected value of a multi-target pdf). Let Ξ be a RFS and pΞ(X) be its
multi-target pdf. Let f : F(D) → R be some function that maps a RFS into a real number1.
Then, the expected value is defined as follows:

E[f(Ξ)] =
∫
f(X)pΞ(X)δX =

∞∑
n=0

1
n!

∫
f({x1, . . . ,xn}pΞ({x1, . . . ,xn}dx1 . . . dxn. (2.6)

The expected value of a multi-target pdf is used when calculating the Chapman-Kolmogorov
equation for RFSs describe in Section 2.2.4.

The cardinality distribution of a random finite set is a discrete distribution that has the prob-
ability mass function describing the probability of the set having the exact number of elements.

▶ Definition 2.5 (Cardinality distribution of a RFS). Let Ξ be a RFS and pΞ(X) be its multi-
target pdf and let the Kronecker delta function be denoted δy defined by:

δy =
{

1 if y = 0,
0 otherwise.

(2.7)

Then, the cardinality pmf is defined as:

Pr{|Ξ| = k} = E[δk−|Ξ|] (2.8)

=
∞∑
n=0

1
n!

∫
δk−npΞ({x1, . . . ,xn}dx1 . . . dxn (2.9)

= 1
k!

∫
pΞ({x1, . . . ,xk}dx1 . . . dxk. (2.10)

Before we proceed to the use of random finite sets in Bayesian inference and multi-target
tracking, we should describe several known RFSs and their pdfs. In the next sections, we will
describe set distributions that are already known to us: the Bernoulli RFS and the Poisson RFS.
The latter has a direct relation to the important mathematical concept used in target-tracking,
the point processes.

1F(D) is a special function that creates a so-called power set, or all possible subsets of the set D.
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2.2.3 Bernoulli and Poisson RFS
The Bernoulli random finite sets is one of the simplest and straightforward RFS pdfs. Recall that
the Bernoulli distribution is a discrete distribution that models the probability of the positive
outcome. In multi-target tracking, Bernoulli RFSs are used to model the existence of one object.
That is, the cardinality distribution takes values either one or zero (either an object exists or
not) with some probability r. The state distribution of the object can be arbitrary. Formally,
the Bernoulli RFS is defined as follows:

▶ Definition 2.6 (Bernoulli RFS). Let x be a random variable with the pdf p(x), and let
0 ≤ r ≤ 1 be some number. Then, the Bernoulli RFS Ξ has the following pdf:

pΞ(X) =


1− r if X = ∅,
rp(x) if X = {x},
0 otherwise.

(2.11)

The cardinality of the Bernoulli RFS has the Bernoulli distribution, that is:

Pr{|Ξ| = k} =


1− r if k = 0,
r if k = 1,
0 otherwise.

(2.12)

The Poisson RFS is also a widely used multi-target pdf. It is commonly used to model
clutter, since it has a parameter λ that represents the intensity, or the expected number of noise
measurements.

▶ Definition 2.7 (Poisson RFS). Let x be a random variable with the pdf p(x), and let λ(x) be
the intensity function2. Then, the multi-target pdf of the Poisson RFS Ξ is:

pΞ(X) = exp
(
−

∫
λ(x)dx

) ∏
x∈Ξ

λ(x). (2.13)

The cardinality pmf of the Poisson RFS is Poisson-distributed with the rate parameter λ̂ =∫
λ(x)dx is the following:

Pr{|Ξ| = k} = Poisson(k; λ̂). (2.14)

Intuitively, the Poisson RFS pdf represents the probability of observing any finite set of
objects anywhere in the area, given that objects appear over it independently. In contrast to
the Bernoulli distribution, the Poisson RFS cannot be used to model the target existence, since
there is no way to limit the cardinality. However, when the location of the points is random
through the whole surveillance area, and the number of these points is Poisson-distributed, the
Poisson RFS is a good choice.

Both the Bernoulli RFS and the Poisson RFS are examples of so-called point processes, also
called the Bernoulli process and the Poisson Point Process (PPP), respectively. Generally, a
point process is a mathematical model that describes the random spatial distribution of points.
In target tracking, point processes model various events, such as object appearance, disappear-
ance, or movement. In particular, the PDF filter uses the PPP to model clutter, where clutter
measurements are independent and appear uniformly over the whole surveillance area. For more
information about point processes, the reader is referred to the classical textbook on the topic
[31].

2Note that the intensity function can be an arbitrary function depending on the domain of the Poisson RFS.
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2.2.4 Bayes filter in terms of RFSs
In Section 1.3.3, we have discussed the prediction step, also known as the Chapman-Kolmogorov
equation, and the update step in term of state vectors and motion and measurement models.
In this section, we will derive similar formulas for Bayesian inference in the context of random
finite sets.

Since RFS pdfs are indeed densities, as we discussed in Section 2.2.1, the recursive relations
for RFS have the same form, however, densities are multi-target densities that catch the motion
of all objects at once, and arguments are sets.

▶ Theorem 2.8 (The prediction step for RFS). Given sets of measurements Z1:k−1 = {Z1,
Z2, . . . , Zk−1}, the current state RFS Xk−1, the multi-target transition density fk|k−1(Xk|Xk−1),
and the multi-target posterior density from the previous time step pk−1 (Xk−1|Z1:k−1), the pre-
diction step of the Bayes filter for RFSs is computed as follows:

pk|k−1 (Xk|Z1:k−1) =
∫
fk|k−1 (Xk|Xk−1) pk−1 (Xk−1|Z1:k−1) δXk−1. (2.15)

▶ Theorem 2.9 (The update step for RFS). Given the predicted density pk|k−1 (Xk|Z1:k−1),
the observed set of measurements Zk and the multi-target likelihood gk(Zk|Xk), the update step
of the Bayes filter for RFS is computed as follows:

pk (Xk|Z1:k) =
gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1)∫
gk (Zk|X) pk|k−1 (X|Z1:k−1) δX

(2.16)

∝ gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1) . (2.17)

Note that the multi-target transition density is not the same motion model that we used
before. The same applies for the multi-target likelihood that plays the role of the measurement
model but is a completely different relation. The transition density captures the motion of all
objects in a set all at once, including the birth (appearance) of new objects, and the death
(disappearance). The likelihood, on the other hand, models the transition from a set of object
states to probable measurements. Arguments of both are now sets, and explicit forms can be
derived from motion and measurement models using FISST. These derivations along with formal
proofs of the Bayesian recursion defined above can be found in [30].

Even though the relations look similarly on the first glance, the underlying mathematics differs
drastically. In comparison to the single-object tracking, states now represent the distribution of
all objects simultaneously. Moreover, the multi-target transition density now captures much
more information: not only it describes the transition of objects that are already in the current
state set, but also the behavior of the change of the cardinality of the set. In the next section,
we will explore how these relations can be applied to address the multi-target tracking problem.
We will also examine the assumptions that must be made in order to develop Bayes filters based
on FISST.

2.2.5 Multi-target tracking standard model
We have now reached the final fundamental theoretical section where we will give a formal
definition to the multi-target tracking problem. We have already mentioned that the multi-target
transition density includes more than a standard motion model; more specifically, it describes
not only the dynamics of all underlying objects in the current state set but also the birth and
death of objects. In this section, we will cover in detail how new objects are born, the survival
probability, and how we can model clutter. These concepts are fundamental for building the
PHD filter.
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Let X be the state space and Z be the measurement space. Elements of X are state vectors
of one object, and Z contains elements that are measurement vectors. For instance, for the
CV model covered in Section 1.3.2.1, the state space is R4, and the measurement space is R2.
Assume that at time k, the number of targets is M(k). This number varies at every time step
since new targets may appear or disappear. The multi-target state set at time k is therefore
Xk = {x1

k, . . . ,x
M(k)
k } ∈ F(X ). Also, at every time step, we get a measurement set. Let us

denote the number of measurements at time k as N(k). Thus, the multi-target observation set
at time k is Zk = {z1

k, . . . , z
M(k)
k } ∈ F(Z). The order of elements in both sets is not significant.

The measurement set contains not only those measurements that come from real objects but also
clutter, and those noise vectors are indistinguishable from those coming from targets. The goal
of the multi-target tracker is to filter out the clutter and to find the best mapping between the
objects and measurements.

Existing targets either move according to their underlying dynamics model to the next state
or die (disappear). The transition from the state xk−1 ∈ Xk−1 to xk ∈ Xk happens according to
the specified motion model of the target, fk|k−1(xk|xk−1). The death of one target happens with
the probability 1 − PS,k(xk−1), and the target survives with the probability PS,k(xk−1). This
probability is referred to as the survival probability. In terms of RFSs, the survival of a target
with the state xk−1 is modeled using the survival function on an RFS Sk|k−1:

Sk|k−1(xk−1) =
{
{xk} if the target survives,
∅ otherwise.

(2.18)

At every time step, new targets may appear (be born). The birth process is considered
spontaneous, and the exact distribution of newborn targets is domain-dependent. In general,
the target birth distribution includes the location where new targets appear and their intensity.
For instance, the birth process may be modeled by the Poisson Point Process, as in [7], or the
Gaussian mixture for Gaussian-linear cases, as we will later see. In terms of FISST, the birth of
new targets is a random set Bk|k−1(·) that contains newly born targets when the transition from
the multi-target state Xk−1 to the state Xk occurs.

Given that we have the relations for both the transition from the current multi-target state
and the birth set, and assuming that the multi-target state at the previous time step k − 1 is
Xk−1, we can derive the following expression for the multi-target state Xk, assuming that the
survival and birth processes are independent of each other3:

If we apply the convolution formula from Definition 2.3, and introduce the simplified nota-
tion Sik|k−1 = Sk|k−1(xik−1), the complete multi-target motion model fk|k−1(Xk|Xk−1) has the
following form:

fk|k−1(Xk|Xk−1) =
∑

Γk⊎S1
k|k−1...⊎S

M(k−1)
k|k−1 =Xk−1

γk(Γk)
M(k−1)∏
i=1

sk|k−1(Sik|k−1|xik−1), (2.19)

where γk(·) is the intensity function of the birth process, which can be a Poisson RFS pdf defined
in Equation 2.13, and sk|k−1(Sik|k−1|xik−1) is the multi-target transition density defined as:

sk|k−1(Sik|k−1|xik−1) =
{
PS,k(xik−1)fk|k−1(xk|xik−1) if Sik|k−1 = {xk},
1− PS,k(xik−1) if Sik|k−1 = ∅.

(2.20)

The multi-target measurement model, or the multi-target likelihood, also consists of several
parts. At time k, a target may generate a new measurement with probability PD,k(xk), and there

3Note that, in addition to the survival set and the birth process, [32] assumes the existence of the spawning
process

⋃
ζ∈Xk−1

Bk|k−1(ζ), i.e., that the existing targets may randomly spawn new targets in the same location.
While this is important in the defense area, such as when a fighter takes off from an aircraft carrier, we do not
include this process in this work. Fundamentally, the underlying mathematics does not change.
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will be a misdetection with probability 1− PD,k(xk). A measurement is generated according to
the measurement model, gk(zk|xk). Thus, the measurement RFS at time k is:

Θk(xk) =
{
{zk} if target is detected,
∅ otherwise.

(2.21)

Additionally, at every time step, false measurements are generated by a sensor. The RFS
with clutter is denoted as Kk. Both Θk(xk) and Kk create the multi-target measurement set Zk:

Zk = Kk ∪

[ ⋃
xk∈Xk

Θk(xk)
]
. (2.22)

As we did for the multi-target transition density, we denote Θi
k = Θk(xik) and apply the set

convolution formula to get the multi-target measurement likelihood:

pk(Zk|Xk) =
∑

Kk⊎Θ1
k
...⊎ΘM(k)

k
=Zk

κk(Kk)
M(k)∏
i=1

θk(Θi
k|xik), (2.23)

where κk(Kk) is the clutter intensity function, which is often modeled as a Poisson RFS, and
θk(Θi

k|xik) is the multi-target measurement density defined as:

θk(Θi
k|xik) =

{
PD,k(xik)gk(zk|xik) if Θi

k = {zk},
1− PD,k(xik) if Θi

k = ∅.
(2.24)

Let us examine Equation 2.23 closely to gain an understanding of its implications. The
convolution formula suggests that we divide the measurement set Zk into several subsets, where
each subset can either be empty or contain measurements. Next, we compute the value of the
multi-target measurement density function for every combination of state vectors and values in
the set. In other words, we determine the likelihood of the association between the state vector
and the measurement. Consequently, we can interpret the computation of the multi-target
measurement likelihood as a joint formulation for determining the probability of all conceivable
association hypotheses for all targets. While this may appear similar to the JPDA filter, in this
case, the relationship is more general and supports an unknown number of targets.

In general, multi-target trackers are built on top of several general assumptions about the
problem. These assumptions form the Standard Model of Multi-target tracking [19, pp. 311–313].
We will enumerate these assumptions, which summarize this section, in the following list:

1. The clutter process is Poisson-distributed in time and uniformly distributed in space.

2. The clutter process, target motions, and observations are statistically independent.

3. The transition density and the measurement likelihood are Markovian, that is once xk−1 is
known, then xk is independent of xk−2, xk−3, etc.

4. Existing targets survive from time k − 1 to k with the probability PS,k(·) and move to the
next state with the motion model fk(xk|xk−1).

5. A target generates a measurement with probability PD,k(·) with the measurement model
g(zk|xk).

6. A target generates no more than one measurement at a time.

7. The birth process is Poisson-distributed in time.
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The PHD filter also relies on these main assumptions. In the following sections, we present
the PHD filter, which is based on the propagation of the first-order multi-target moment, or the
PHD function, in time instead of the full posterior distribution. Next, we will derive relations
for the Gaussian-linear case to get equations of the GM-PHD filter. Finally, we present the way
how we can input additional information into the filter to get better tracking results.

2.3 The PHD filter
The Probability Hypothesis Density (PHD) filter is a popular approach to multi-target tracking,
especially when the number of targets is unknown and varies over time. The general formulation
of the filter was first introduced by Mahler [30] as a direct application of the probability hypothesis
density function. The filter is based on finite set statistics (FISST), covered briefly in Section
2.2, and works by propagating the first-order multi-target moment, or the PHD function, in time
instead of the full posterior distribution. This greatly reduces the computational burden of the
filter compared to traditional hypotheses-based methods such as the MHT filter.

In 2003, Vo proposed the sequential Monte Carlo implementation of the PHD filter [33],
known as the SMC-PHD filter. However, this implementation had several drawbacks, such
as a high computational cost due to the large number of particles required for distribution
approximation and the reliance on clustering techniques for state estimation. Later, in 2006, Vo
and Ma introduced a closed-form solution for the Gaussian-linear case [32], called the GM-PHD
filter. For non-linear models, the authors suggested implementations that utilize non-linear
Kalman filters, such as the Unscented Kalman Filter and the Extended Kalman Filter. The
versions of the PHD filter with these linearization techniques were called UK-PHD and EK-
PHD, respectively. The GM-PHD filter was a significant improvement over the SMC-PHD filter
in terms of computational efficiency while still providing accurate estimates of the number of
targets and their states. The GM-PHD filter is the main topic of this work.

2.3.1 The PHD function
The probability hypothesis density (PHD) function is the first-order moment of a random finite
set, also known as the intensity function. Its value is the expected number of targets in a
certain area of the target space. From Section 1.1.1, we know that the first-order moment is the
expectation value, but what is the expectation value of a set? To answer this question, let us
define the problem formally. The computations that follow are based on the original book by
Mahler [19, pp. 576–578].

Let a random finite set be denoted by Ξ with the multi-target probability distribution pΞ(X),
and the target space X . The expected number of targets is, conceptually, the integral over all
targets multiplied by the value of the probability density function for each state value. However,
since summing over targets will not have any meaning in terms of the expected value, we introduce
the delta function of a set:

δΞ(x) =
{

0 if X = ∅,∑
w∈X δw(x) otherwise,

(2.25)

where δw is the Dirac delta density centered at w, the continuous-space analog of the Kronecker
delta function mentioned in Definition 2.5.

▶ Definition 2.10 (PHD function). Given a random finite set Ξ, where elements of Ξ are from
X , with the multi-target density pΞ(X), the expected value of the set Ξ is defined as:

vΞ(x) = E[δΞ(x)] =
∫
δΞ(x) · pΞ(X)δX. (2.26)
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Figure 2.2 An example of the PHD function. Three targets move in the 2D Euclidean space according
to a CV model. Note that this function is not normalized, which means that the integral over the entire
space is not equal to one. In this example, the expected number of targets in the space is approximately
3.2245, which can be inferred from the location of the corresponding peaks.

The function vΞ(x) is also called the Probability hypothesis density (PHD) function.

The PHD function is not a probability density function, that is, it is not normalized to
integrate to one. The integral of the PHD function over some subspace S yields the expected
number of targets in this subspace:

E[|Ξ ∩ S|] =
∫
S

vΞ(x)dx. (2.27)

This formulation prompts that the PDF function is an unnormalized multi-target probability
density function with the normalization constant equal to the expected number of existing targets
N̂ over the whole space X , i.e., N̂ =

∫
X vΞ(x)dx. Therefore, the peaks of this distribution are

the most probable locations of the tracked targets. The density evolves over time as targets move
in space. An example of the PHD function is illustrated in Figure 2.2.

The fact that the PHD function does not include normalization allows an efficient computation
of this function in terms of the computational complexity. This fundamental property of the PHD
function led to the development of the PHD filter. In the next section, we will define several
assumptions of the PHD filter and define the predict-update cycle.

2.3.2 PHD filter formal definition
We have defined the PHD function and mentioned that instead of propagating the full posterior
density, the PHD filter propagates the first-order moment of the multi-target posterior state. In
this section, we will describe the main assumptions of the PHD filter and derive the predict and
update step equations in terms of the PHD function. It should be noted that while the PHD
filter is a general concept, its implementation is specific to the problem domain. Later sections
will provide the exact closed-form solution for Gaussian-linear problems.

The PHD filter relies on several general assumptions about the modeled problem. In addition
to the standard assumptions, the PHD filter assumes:

1. Each target has a single-target motion model fk(xk|xk−1).
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2. Existing targets move to the next state with probability PS,k(xk−1).

3. New targets are born with states from X according to the multi-target birth likelihood γk(X).
The corresponding PHD of this likelihood is:

γk(x) =
∫
γk(x ∪X)δX. (2.28)

4. Existing targets generate measurements according to the single-target Markovian measure-
ment model g(zk|xk) with probability PD,k(xk).

5. Clutter measurements are Poisson-distributed in time with the spatial distribution κk(zk).

6. The predicted multi-target distribution pk|k−1(xk|z1:k−1) is a Poisson RFS.

The last assumption is a simplification that allows to derive a closed form solution. A Poisson
process assume that all targets are statistically independent, and such approximation is not that
restrictive is the interactions between moving targets in negligible. In this work we do not include
the spawning process, therefore, it can be shown that this requirement is satisfied [32].

Both the prediction and the update follow the same rules we have derived in Section 2.2.4.
It can be shown that the Chapman-Kolmogorov equation and the measurement correction step
for the PHD filter, excluding target spawning, has the following form:

▶ Theorem 2.11 (The PHD recursion). Assuming that all requirements defined above hold, the
PHD recursion has the following form:

vk|k−1(xk|Z1:k−1) = γk(xk) +
∫
PS,k(xk−1)fk|k−1(xk|xk−1)vk−1(xk−1|Z1:k−1)dxk−1, (2.29)

vk(xk|Z1:k) = [1− PD,k(xk)] vk|k−1(xk|Z1:k−1)

+
∑

zk∈Zk

PD,k(xk)gk(zk|xk)vk|k−1(xk|Z1:k−1)
κk(zk) +

∫
PD,k(ξ)gk(zk|ξ)vk|k−1(ξ|Z1:k−1)dξ

, (2.30)

where vk−1(xk−1|Z1:k−1) is the posterior PHD function from the previous time step [32] [19,
pp. 588–591].

Note that the computation of the posterior probability hypothesis density after the update
does not include the set integral, which means that we do not need to compute all association
hypotheses between measurements and states, decreasing the computational burden. It can be
shown that the computational complexity of the PHD filter at every time step is O(mn), where
m is the number of measurements and n is the number of current targets [19, p. 592].

In the next section, we will provide the formulation of the PHD filter in terms of Gaussian-
linear filtering and Gaussian mixtures. We will see that for such cases a closed-form solution
exists, and there are no approximations required to compute the posterior PHD density.

2.3.3 The Gaussian Mixture PHD filter
The Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter was proposed in 2006
by Vo and Ma in [32] as a closed-form solution for the Gaussian-linear case of the general PHD
filter and quickly became popular. As mentioned in the previous section, the PHD filter does
not propagate the full posterior distribution, which eliminates the need to compute hypothesis
likelihoods between measurements and existing targets. Therefore, the resulting filter is not
computationally expensive as hypotheses-oriented filters like the MHT filter or filters that are
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built on top of the FISST theory and utilize random finite sets and the convolution formula to
compute the full posterior distribution at each time step.

In the GM-PHD filter, the posterior intensity function is described by a Gaussian mixture.
The same applies to the initial prior distribution and birth components. The clutter is modeled
using a Poisson Point Process. Both the prediction and update steps utilize the equations that
were inferred in the previous section, and the target dynamics and the single-target measurement
likelihood are modeled using the standard Kalman filter equations. In this section, we will give
a formal definition of the GM-PHD filter along with the exact algorithm. All relations described
in this section follow those provided in [32] with the addition of labels (or tags) for Gaussian
components from [34] to enable basic track management. It should be noted that the notation
in this work is slightly modified to stay consistent with the notation given in previous sections.
Moreover, as noted before, we assume that existing targets cannot spawn additional targets, so
the independence of targets’ dynamics is preserved.

2.3.3.1 Track maintenance
In this section, we will briefly cover one of challenges in multi-target tracking, which is track
maintenance and then we introduce the way how this challenge may be addressed in the GM-
PHD filter. When an algorithm creates estimates of targets at each time step, these estimates
cannot always be implicitly connected to those from previous time steps. If we require not
only point estimates but also the trajectories of targets, we should use techniques to maintain
identities of targets and to create associations between new measurements and these identities.
Thus, the trajectory here refers to the collection of state estimates of a target in time. Generally,
the track maintenance problem includes three disjoint sub-problems: track initialization, track
confirmation and track deletion [35]. Track initialization refers to the creation of new tracks.
A new track is initialized when a new measurement is received that cannot be assigned to any
existing track. Since the measurement is not always the true measurement, the tentative track
should be confirmed by receiving subsequent measurements that meet certain criteria. Different
algorithm specify various different criteria depending on their internal logic. For instance, one
way to confirm tracks is called the M/N rule, which states that the track becomes confirmed if
at least M measurements out of N subsequent updates should be assigned to the tentative track
[35, p. 871]. Confirmed tracks create trajectories of objects and we need a way to terminate
tracks that do not receive measurements anymore, for example, when a target leaves the field
of view. Yet again, there are multiple different ways how to approach this problem, including
restricting the maximum age of a track, or when the likelihood of target existence falls under
some threshold [29, p. 243].

Estimating tracks has several challenges that need to be addressed to implement an effective
tracking algorithm. For example, the track loss occurs when a track is temporarily or permanently
lost due to a missed detection or incorrect association between a measurement and some existing
track. Wrong associations may also cause track swaps, when an algorithm swaps measurements
from two or more targets moving closely to each other, and measurements generated by one
target are assigned to a track of another, and vice versa. Closely moving targets may also create
a so-called track coalescence, the situation when two tracks of different targets are merged into
one track in the middle of trajectories of these two targets. For instance, the JPDA filter is
known to suffer from track coalescence [36].

Despite there are many advanced techniques how to maintain track, we choose a straight-
forward approach in this work for the implementation of the GM-PHD filter. Every Gaussian
component receives a unique tag, or label, that identifies this component. When the algorithm
generates state estimates, these tags are used to connect single-target estimates from different
time steps and having the same label into one trajectory. The track is terminated when the
Gaussian component with the tag assigned to this track is removed from the mixture. While this
approach is intuitive and simple, in Chapter 4 we show that is shows good performance results.
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2.3.3.2 GM-PHD recursion
Before we start to deduce all formulas of the GM-PHD filter, we should make several additional
assumptions for the Gaussian-linear case in addition to the general ones given in Section 2.3.2:

1. All targets have a Gaussian-linear single-target motion and measurement models, that is:

fk|k−1(xk|xk−1) = N (xk; Fk−1xk−1,Qk−1) , (2.31)
gk(zk|xk) = N (zk; Hkxk,Rk) , (2.32)

where the detailed explanation of the meaning of Fk−1,Qk−1,Hk,Rk are given in Section
1.3.2.

2. Both the survival and detection probabilities are constant in time4, that is, they do not
depend on states:

PS,k(xk−1) = PS,k, (2.33)
PD,k(xk) = PD,k. (2.34)

3. The birth intensity is modeled using a Gaussian mixture of the form:

γk(xk−1) =
Jγ,k∑
i=1

w
(i)
γ,kN

(
xk−1; m(i)

γ,k,P
(i)
γ,k

)
, (2.35)

where Jγ,k denotes the number of birth components, and m(i)
γ,k and P(i)

γ,k are the mean vector
and the covariance matrix of each component. These are given as parameters and specified in
advance according to the problem domain. Since this mixture is not a probability density by
an intensity function, weights do not need to sum to one, and the weights w(i)

γ,k here represent
the expected number of new targets that are expected to appear in a location centered at
m(i)
γ,k.

These assumptions form the basis for the Gaussian-linear PHD filter recursion formulas.
Assuming these assumptions hold for a given problem, and by following the PHD filter recursion
equations from Theorem 2.11, we propose the following theorem:

▶ Theorem 2.12 (The GM-PHD filter prediction). Given that the posterior intensity of the
previous time step vk−1(xk−1|Z1:k−1) is a Gaussian mixture of the form:

vk−1(xk−1|Z1:k−1) =
Jk−1∑
i=1

N
(

xk−1; m(i)
k−1,P

(i)
k−1

)
, (2.36)

where every Gaussian component has a unique tag or label assigned to it, which forms the set of
tags:

Tk−1 = {T (1)
k−1, . . . , T

(Jk−1)
k−1 }. (2.37)

Then the predicted intensity at time k is also a Gaussian mixture, defined as:

vk|k−1(xk|Z1:k−1) = γk(xk) + vS,k|k−1(xk), (2.38)
4A closed-form solution can be derived without this assumption, see Section III-E in [32].



38 Multi-target tracking

where γk(xk) is given in Equation 2.35 and vS,k|k−1(xk) is the PHD function of survived targets
given by:

vS,k|k−1(xk) = PS,k

Jk−1∑
i=1

w
(i)
k−1N

(
xk; m(i)

S,k|k−1,P
(i)
S,k|k−1

)
, (2.39)

m(i)
S,k|k−1 = Fk−1m(i)

k−1, (2.40)

P(i)
S,k|k−1 = Fk−1P(i)

k−1F⊺
k−1 + Qk−1. (2.41)

The set of tags after the prediction step forms the union of the set of tags from the previous
time step with the set of unique tags of components spontaneously born at time k:

Tk|k−1 = Tk−1 ∪ {T (1)
γk
, . . . , T

(Jγk )
γk }. (2.42)

Let us look at these equations closer. The dynamics of every component (or a possible target)
follows the standard Gaussian-linear dynamics and their mean vectors and covariance matrices
are calculated as a standard Kalman predict. Weights represent the expected number of targets
in the area centered at mean vectors, or the uncertainty of target existence. We then apply
Theorem 1.14 and get rid of the integral in the prediction step from Theorem 2.11. Finally, the
Gaussian mixture is then multiplied by the survival probability.

The initial prior intensity v0(x) with the corresponding set of unique tags T0 is also a Gaussian
mixture and those are set in advance. If the initial state is not known or empty, this mixture
may have no components, i.e. J0 = 0. Formally, the initial prior is defined by:

v0(x) =
J0∑
i=1

w
(i)
0 N

(
x; m(i)

0 ,P(i)
0

)
, (2.43)

T0 = {T (1)
0 , . . . , T

(J0)
0 }. (2.44)

At time step k, we receive a measurement set Zk with true and noise measurements (clutter).
The update step of the GM-PHD filter is described in the following theorem:

▶ Theorem 2.13 (The GM-PHD filter update). Given that the GM-PHD assumptions hold and
the predicted intensity vk|k−1(xk|Z1:k−1) and the corresponding set of tags Tk|k−1 have the form:

vk|k−1(xk|Z1:k−1) =
Jk|k−1∑
i=1

w
(i)
k|k−1N

(
xk; m(i)

k|k−1,P
(i)
k|k−1

)
, (2.45)

Tk|k−1 = {T (1)
k|k−1, . . . , T

(Jk|k−1)
k|k−1 }. (2.46)

Then, the posterior intensity function vk(xk|Z1:k) is a Gaussian mixture of the form:

vk(xk|Z1:k−1) = (1− PD,k)vk|k−1(xk|Z1:k−1) +
∑

zk∈Zk

vD,k(xk, zk), (2.47)

where
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vD,k(x, z) =
Jk|k−1∑
i=1

w
(i)
k (z)N

(
xk; m(i)

k|k,P
(i)
k|k

)
, (2.48)

w
(i)
k (z) =

PD,kw
(i)
k|k−1q

(i)
k (z)

κk(z) + PD,k
∑Jk|k−1
j=1 w

(j)
k|k−1q

(j)
k (z)

, (2.49)

q
(i)
k (z) = N

(
z; Hkm(i)

k|k−1,HkP(i)
k|k−1H⊺

k + Rk

)
, (2.50)

m(i)
k|k(z) = m(i)

k|k−1 + K(i)
k (z−Hkm(i)

k|k−1), (2.51)

P(i)
k|k =

[
I−K(i)

k Hk

]
P(i)
k|k−1, (2.52)

K(i)
k = P(i)

k|k−1H⊺
k(HkP(i)

k|k−1H⊺
k + Rk)−1. (2.53)

For each existing component, there are (1 + |Zk|) new components. Assign each this component
the same tag as for the parent component to form a new set for each measurement T (zik)

k−1 for
i = 1, . . . , |Zk|. The final set of non-unique tags after the update step is thus:

Tk = Tk|k−1 ∪ T
(z1
k)

k|k−1 ∪ . . . ∪ T
(z|Zk|
k

)
k|k−1 . (2.54)

It can be proven that the equations above are the result of the direct application of the
general PHD update formulas defined in Theorem 2.11 with the Gaussian-linear measurement
model from Equation 1.48 and the Kalman update from Theorem 1.16. Again, the closed-form
solution is obtained by utilizing the result from the fundamental Gaussian identity defined in
Theorem 1.13. The tag set Tk after the update step contains (1 + |Zk|) copies of the set Tk|k−1.
The uniqueness of these tags is ensured in the next stages.

Let us examine what happens during the update step. The first part of Equation 2.47 com-
putes for all existing targets the hypothesis of misdetection. Recall that the predicted intensity
is a Gaussian mixture with Jk|k−1 components. That is, the number of misdetection hypotheses
is also Jk|k−1. The second term creates Jk|k−1 new components for each measurement. These
components represent the likelihood that this exact measurement comes from one of the existing
targets represented by one of the predicted intensity components, and the weight of this exact
assignment is computed in Equation 2.49. Equation 2.50 represents a Gaussian distribution cen-
tered at the location where we expect to see a new measurement from a target according to the
measurement model. This Gaussian is evaluated at vector z; q(z) is a scalar value representing
the likelihood that the measurement comes from this exact target. Equations 2.51 and 2.52 are
the standard Kalman update equations, analogous to those defined in Theorem 1.16. The last
equation, 2.53, represents the Kalman gain in its standard form. For better computational stabil-
ity, this form can be reformulated as the Joseph form, defined in Equation 1.91. The summarized
version of the measurement update algorithm of the GM-PHD filter is described in Algorithm 2.

It should be noted that new components generated in the update step are stored in three
arrays with |Zk|× (1 +Jk|k−1) elements for all new hypotheses. One of these arrays contains the
weights, the other has mean vectors as elements, and the third is for covariance matrices. We
place the corresponding element of one association between a predicted state and a measurement
into the corresponding position, calculated as Jk|k−1 ·j+i, where j is the index of a measurement
in Zk and i is the index of a predicted component. The first Jk|k−1 elements are for misdetection
hypotheses.

As we now see, at every time moment, the update step creates a new set of components, and
their number is equal to Jk = Jk|k−1(1 + |Zk|). That means that the number of components will
grow exponentially if we do not incorporate pruning techniques. The GM-PHD filter, therefore,
defines two additional steps of the algorithm: pruning and merging.
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Algorithm 2 GM-PHD filter update step
Require: Measurements set Zk
Require: The predicted Gaussian components vk|k−1

1: procedure Update(Zk, {w(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1, T

(i)
k|k−1}

Jk|k−1
i=1 )

2: for i← 1, . . . , Jk|k−1 do ▷ Precompute common PHD update components
3: η

(i)
k|k−1 ← Hkm(i)

k|k−1

4: S(i)
k ← HkP(i)

k|k−1H⊺
k + Rk

5: K(i)
k ← P(i)

k|k−1H⊺
k

[
S(i)
k

]−1

6: P(i)
k|k ←

[
I−K(i)

k Hk

]
P(i)
k|k−1

7: end for
8: for i← 1, . . . , Jk|k−1 do ▷ Create misdetection hypothesis components
9: w

(i)
k ← (1− PD,k)w(i)

k|k−1

10: m(i)
k ←m(i)

k|k−1

11: P(i)
k ← P(i)

k|k

12: T
(i)
k ← T

(i)
k|k−1

13: end for
14: for j ← 1, . . . , |Zk| do ▷ Measurements update
15: for i← 1, . . . , Jk|k−1 do
16: w

(Jk|k−1·j+i)
k ← PD,kw

(i)
k|k−1N

(
z(j)
k ; η

(i)
k|k−1,S

(i)
k

)
17: m(Jk|k−1·j+i)

k ←m(i)
k|k−1 + K(i)

k (z(j)
k − η

(i)
k|k−1)

18: P(Jk|k−1·j+i)
k ← P(i)

k|k

19: T
(Jk|k−1·j+i)
k ← T

(i)
k|k−1

20: end for
21: for i← 1, . . . , Jk|k−1 do ▷ Update weights

22: w
(Jk|k−1·j+i)
k ← w

(Jk|k−1·j+i)
k

κk(z(j)
k

)+
∑Jk|k−1

l=1 w
(Jk|k−1·j+i)
k

23: end for
24: end for
25: Jk = (|Zk|+ 1) · Jk|k−1

26: return {w(i)
k ,m(i)

k ,P(i)
k , T

(i)
k }

Jk
i=1

27: end procedure
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Pruning here refers to the technique of reducing the number of overall components by remov-
ing those Gaussians whose weight is less than a specified threshold. In other words, we get rid of
those components that represent an assignment hypothesis with a low likelihood. The truncation
threshold τ is a parameter of the filter and is set in advance. It can be set to any small number,
such as 10−5. Formally, the pruning algorithm is summarized in Algorithm 3.

Algorithm 3 GM-PHD filter pruning
Require: Pruning threshold τ
Require: Gaussian components from the update step vk

1: procedure Prune(truncation threshold τ , {w(i)
k ,m(i)

k ,P(i)
k , T

(i)
k }

Jk
i=1)

2: I ← {i = 1, . . . , Jk | w(i)
k > τ}

3: l← 0
4: for i ∈ I do
5: l← l + 1
6: w̄

(l)
k ←

w
(i)
k∑

j∈I
w

(j)
k

7: m̄(l)
k ←m(i)

k

8: P̄(l)
k ← P(i)

k

9: T̄
(l)
k ← T

(i)
k

10: end for
11: J̄k ← l

12: return {w̄(i)
k , m̄(i)

k , P̄(i)
k , T̄

(i)
k }

J̄k
i=1

13: end procedure

Merging in the context of the GM-PHD filter reduces the number of number of Gaussian
components by combining hypotheses that are close to each other. The “closeness” of components
is calculated using the Mahalanobis distance given in Definition 1.8 and the threshold U is given
in advance. In this step, we also ensure that every component in the resulting mixture contains
a unique label.

Moreover, to limit the number of components to a reasonable level, the GM-PHD filter
incorporates the maximum number of allowed components Jmax as another parameter. If the
number of remaining components exceeds this threshold after the merging step, we select Jmax
components with the largest weights and eliminate the rest. In formal language, merging is
summarized in Algorithm 4.

The final step of the GM-PHD filter is state extraction. At every time step, we want to extract
the locations of existing targets so that we can visualize the filter results or compute performance
metrics. The multi-target state estimate will then contain information from components with
weights larger than a certain threshold. [32] suggests a threshold equal to 0.5. Single-target state
estimates are obtained by taking the mean vectors of the Gaussian components with weights
larger than the τ , and those components that have a smaller weight but whose weight was larger
than τ at any previous time step. The reason for the second condition is that it enables track
continuity for those targets that did not receive measurements at the current time step but still
exist. If the target generates a new measurement later and its state estimate appears again in
the multi-target state estimate, this target will have a continuous track without interruptions.
The state extraction process is summarized in formal language in Algorithm 5.

We provide the final algorithm for the GM-PHD filter in Algorithm 6, including the modified
prediction step with fusion of external information covered in the next subsection. For a better
overview, we summarize the entire GM-PHD cycle in Figure 2.3.
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Algorithm 4 GM-PHD filter merge
Require: Merge threshold U
Require: Maximum number of components Jmax
Require: Gaussian components after pruning v̄k

1: procedure Merge(U , Jmax, {w̄(i)
k , m̄(i)

k , P̄(i)
k , T̄

(i)
k }

J̄k
i=1)

2: I ← {i = 1, . . . , J̄k}
3: l← 0
4: while I ̸= ∅ do
5: l← l + 1
6: j ← arg maxi∈I w̄(i)

k

7: L←
{
i ∈ I | (m̄(i)

k − m̄(j)
k )⊺[P̄(i)

k ]−1(m̄(i)
k − m̄(j)

k ) ≤ U
}

8: w̃
(l)
k ←

∑
i∈L w̄

(i)
k

9: m̃(l)
k ←

1
w̃

(l)
k

∑
i∈L w̄

(i)
k m̄(i)

k

10: P̃(l)
k ←

1
w̃

(l)
k

∑
i∈L w̄

(i)
k

(
P̄(i)
k + (m̃(l)

k − m̄(i)
k )(m̃(l)

k − m̄(i)
k )⊺

)
11: T̃

(l)
k ← T̄

(j)
k

12: I ← I \ L
13: end while
14: if l > Jmax then
15: Take Jmax components from {w̃(i)

k , m̃(i)
k , P̃(i)

k , T̃
(i)
k }li=1 with largest weights

16: l← Jmax
17: end if
18: J̃k ← l
19: I ← {1, . . . , J̃k}
20: while I ̸= ∅ do ▷ Uniquify labels
21: j ← arg maxi∈I w̃(i)

k

22: L←
{
i ∈ I \ {j} | T̃ (i)

k = T̃
(j)
k

}
23: for i ∈ L do
24: T̃

(i)
k ← A new unique unused tag

25: end for
26: I ← I \ L
27: end while
28: return {w̃(i)

k , m̃(i)
k , P̃(i)

k , T̃
(i)
k }

J̃k
i=1

29: end procedure

Algorithm 5 GM-PHD filter state extraction
Require: Gaussian components after merge ṽk

1: procedure ExtractStates({w̃(i)
k , m̃(i)

k , P̃(i)
k , T̃

(i)
k }

J̃k
i=1)

2: T̂k ← {T̃ (i)
k | w̃

(i)
k > 0.5, i = 1, . . . , J̃k}

3: X̂k ← {m̃(i)
k | T̃

(i)
k ∈ T̂j , j = 1, . . . , k}

4: return X̂k

5: end procedure
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Figure 2.3 The visualization of the GM-PHD cycle.

2.4 External information fusion

In many real-world scenarios, one sensor and one source of information may not suffice. Sensors in
general have specific technical specifications and limitations. For example, imagine a surveillance
system tracking enemy troops. A raw image from a camera working in the visible spectrum may
not capture information about people using camouflage, and therefore, tracking such targets
with this camera alone becomes intractable. However, if we use additional information from an
infrared camera, targets become clearly visible and combined measurements will have a higher
signal-to-noise ratio. Techniques involving combining information from different sources are
called information fusion. In this section, we will briefly describe the types of information fusion
that exist and describe how this information can be used to get more accurate tracking results
for the GM-PHD filter.

Information fusion, or information integration, is generally a broad term, mainly because
sources of information differ a lot. For instance, data fusion is the process of merging data
from different data sources and in different formats to create a comprehensive picture of the
environment [37]. Data sources may refer to measurements from sensors, data from a database,
or human input, while data types may include text, images, audio inputs, or binary data. On the
other hand, decision fusion refers to collecting decisions from different algorithms that may look
at the problem from different perspectives or work with different data inputs, and combining
these decisions to create one final decision. Ensembles of different machine learning algorithms,
for example, for pattern prediction, are an example of decision fusion [38].

In this work, we will refer to another fusion technique called sensor fusion. In principle,
sensor fusion is a subset of data fusion, which involves collecting data from various sensors and
merging it to get a more precise and complete estimate of the environment. The example from
the introduction to this section is also an example of sensor fusion. There may be many different
types of sensors, including cameras, radars, lidars, sonars, or infrared cameras. Every sensor
measures different aspects of the tracked environment, and the combined information describes
the surrounding world more precisely.

Regarding Bayesian inference and multi-target tracking, we create estimates of moving ob-
jects, and there are many variables that can input uncertainty: the detection rate of the sensor,
the quality of the tracking algorithm and its implementation, the environment conditions where
the sensor operates, etc. And while the algorithm may be replaced with the one providing better
estimates for a specific problem, physical limitations of sensors and the environment cannot be
addressed easily. For example, let us take the AN/MPQ-53 radar, which is a part of the Patriot
system, a surface-to-air missile system used for air defense deployed in many countries. The
exact technical specifications of the radar are far beyond the scope of this work. However, we
will give an example of what may cause the radar to fail to detect targets.
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The AN/MPQ-53 radar has a 120-degree field of view with a 170 km range [39]. However,
there may be physical limitations of the environment that create blind and clutter zones. For
instance, imagine the situation where the radar is deployed on a surface and is targeted to track
air objects above the sea. The water may cause spontaneous reflections of the radar rays and
cause clutter measurements. Moreover, the curvature of the terrain may create a blind zone so
that the radar will not be able to track targets flying at low altitudes. This example is shown
graphically in Figure 2.4.

Figure 2.4 An example of the AN/MPQ-53 radar deployed on the surface with curvature and targeted
at the sea. The curvature causes the blind zone, and reflections from the water surface may cause clutter
measurements.

This problem may be addressed in several ways, one of which, that is covered in this work,
is to use information fusion techniques. For example, we can incorporate additional information
from other sensors placed after the curvature that supplements additional data about the blind
zone and therefore covers the area that stays invisible to the radar. This source of additional
information may be another radar or a different type of sensors, or even a soldier with binoculars.
We can then input this additional information to the GM-PHD filter to improve the tracking
performance. The example of such mitigation is illustrated in Figure 2.5.

Figure 2.5 An example of the AN/MPQ-53 radar deployed on the surface with curvature and targeted
at the sea. After the curvature, there is a soldier with binoculars with the additional observation range
that covers the blind zone of the deployed radar.

We now define the imputation of additional data formally. Given that an instance of the
GM-PHD filter with the CV model is running and at every time step k it gets measurements
from a sensor mixed with clutter in a set Zk. Let there be an additional sensor that operates
in the blind zone of the first radar. The second sensor measures position and velocity of targets
mψ appearing in the blind zone with the uncertainty given by the covariance matrix Pψ and the
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weight denoting the expected number of targets at this location, denoted wψ,k. Also, every such
component is assigned with a unique tag Tψ,k. All measurements of the second sensor create a set
of additional states at time k, denoted ΨF,k = {w(i)

ψ,k,m
(i)
ψ ,Pψ(i), T (i)

ψ,k}
Jψ,k
i=1 , where Jψ,k denotes

the number of additional state estimates. Given that the dynamics of targets is Gaussian-linear,
we propose that the intensity function of these additional measurements as ψk(x), which is a
Gaussian mixture of the following form:

ψk(x) =
Jψ,k∑
i=1

w
(i)
ψ,kN

(
x; m(i)

ψ,k,P
(i)
ψ,k

)
. (2.55)

The GM-PHD filter is then modified to include additional information. We include this
intensity in the prediction step of the GM-PHD filter, defined in Theorem 2.12, that will thus
have the following form:

▶ Theorem 2.14 (The GM-PHD filter with external information prediction). Given that
assumptions from Section 2.3.3 apply and the posterior intensity of the previous time step
vk−1(xk−1|Z1:k−1) is a Gaussian mixture of the form:

vk−1(xk−1|Z1:k−1) =
Jk−1∑
i=1

N
(

xk−1; m(i)
k−1,P

(i)
k−1

)
, (2.56)

where every Gaussian component has a unique tag or label assigned to it, which forms the set of
tags:

Tk−1 = {T (1)
k−1, . . . , T

(Jk−1)
k−1 }. (2.57)

Also, let additional state estimates from other sensors have the form ΨF,k = {w(i)
ψ,k,m

(i)
ψ ,P(i)

ψ ,

T
(i)
ψ,k}

Jψ,k
i=1 and the fusion intensity is given by Equation 2.55. Then the predicted intensity at time

k is also a Gaussian mixture, defined as:

vk|k−1(xk|Z1:k−1) = γk(xk) + ψk(xk) + vS,k|k−1(xk), (2.58)

where γk(xk) is given in Equation 2.35 and vS,k|k−1(xk) is the PHD function of survived targets
given in Theorem 2.12. The set of tags after the prediction step forms the union of the set of
tags from the previous time step with the set of unique tags of components spontaneously born at
time k and tags from Gaussian terms from another sensor:

Tk|k−1 = Tk−1 ∪ {T (1)
γk
, . . . , T

(Jγk )
γk } ∪ {T (1)

ψ , . . . , T
(Jψ)
ψ }. (2.59)

All other steps of the GM-PHD filter remain the same. The final algorithm of the GM-PHD
filter with external information fusion is given in Algorithm 6.

In this chapter, we introduced the fundamentals of multi-object tracking and discussed ways
how we can track multiple targets using measurements from a sensor in clutter. Subsequently,
we described the PHD filter, which utilizes the Final Set Statistics to propagate the posterior
intensity function of the multi-target probability distribution. Furthermore, we introduced the
GM-PHD filter, a closed-form solution of the PHD filter for Gaussian-linear dynamics of moving
objects. Lastly, we extended the GM-PHD filter with fusion of external information, which
enhanced the tracking performance for those cases where one sensor may fail to detect targets
due to the effects of physical limitations of the sensor or environment. In the next chapter, we
will describe the implementation of the GM-PHD filter and its performance on different testing
cases and metrics.
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Algorithm 6 GM-PHD filter with additional information fusion
Require: Truncation threshold τ
Require: Merge threshold U
Require: Maximum number of components Jmax
Require: Initial Gaussian terms v0 = {w(i)

0 ,m(i)
0 ,P(i)

0 , T
(i)
0 }

J0
i=1

1: procedure GM-PHD-Fusion(Zk,Ψk, vk−1 = {w(i)
k−1,m

(i)
k−1,P

(i)
k−1, T

(i)
k−1}

Jk−1
i=1 )

2: vk|k−1 ← Predict-Fuse(Ψk, vk−1)
3: vk ← Update(Zk, vk|k−1) ▷ Defined in Algorithm 2
4: v̄k ← Prune(τ, vk) ▷ Defined in Algorithm 3
5: ṽk ←Merge(U, v̄k) ▷ Defined in Algorithm 4
6: X̂ ← StateExtract(ṽk) ▷ Defined in Algorithm 5
7: return X̂
8: end procedure

9: procedure Predict-Fuse(Ψk, {w(i)
k−1,m

(i)
k−1,P

(i)
k−1, T

(i)
k−1}

Jk−1
i=1 )

10: j ← 0
11: for i← 1, . . . , Jγ,k do ▷ Create spontaneous birth components
12: i← i+ 1
13: w

(j)
k|k−1 ← w

(i)
γ,k

14: m(j)
k|k−1 ←m(i)

γ,k

15: P(j)
k|k−1 ← P(i)

γ,k

16: T
(j)
k|k−1 ← T

(i)
γ,k

17: end for
18: for i← 1, . . . , Jψ,k do ▷ Fuse external information
19: i← i+ 1
20: w

(j)
k|k−1 ← w

(i)
ψ,k

21: m(j)
k|k−1 ←m(i)

ψ,k

22: P(j)
k|k−1 ← P(i)

ψ,k

23: T
(j)
k|k−1 ← T

(i)
ψ,k

24: end for
25: for i← 1, . . . , Jk−1 do ▷ Prediction for existing targets
26: i← i+ 1
27: w

(j)
k|k−1 ← PS,kw

(i)
k−1

28: T
(j)
k|k−1 ← T

(i)
k−1

29: m(i)
S,k|k−1 ← Fk−1m(i)

k−1

30: P(i)
S,k|k−1 ← Fk−1P(i)

k−1F⊺
k−1 + Qk−1

31: end for
32: Jk|k−1 ← j

33: return {w(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1, T

(i)
k|k−1}

Jk|k−1
i=1

34: end procedure



Chapter 3

Implementation and tests

This chapter presents the methodology we used to test the performance of the GM-PHD filter.
Firstly, we introduce two metrics that are appropriate for use in measuring the performance of a
multi-target tracking algorithm. Secondly, we describe in detail several test scenarios on which
the testing was conducted. Finally, we explain the ranges of different initial settings that were
tested and describe the implementation of the GM-PHD filter.

3.1 Metrics

For evaluating the performance of the GM-PHD filter, we used two metrics proposed in [32]. The
first metric is called the Circular Position Error Probability (CPEP). It measures the probability
that the estimated position of a target falls in a circular region with a given radius around the
true position. This metric has its roots in the military area, where the weapons system precision
is measured with the probability of hitting targets in a certain ellipse with a given mean [40].
While linear metrics like a simple Euclidean distance would measure the accuracy, the CPEP
metrics measures precision of the tracking algorithm. In formal language, this metric is defined
as:

CPEPk(r) = 1
|Xk|

∑
x∈Xk

ρk(x, r), (3.1)

where r is the radius of the circluar area, and ρk(x, r) is defined as:

ρk(x, r) = Pr{∥Hkx̂−Hkx∥2 > r,∀x̂ ∈ X̂k}. (3.2)

Here, X̂k refers to the set of estimates generated by the tracking algorithm at time step k, Hk

is the single-target measurement model, and ∥ · ∥2 is the Euclidean norm of a vector.
The second measure of tracking error is the expected absolute error on the number of targets.

In simple words, this metric gives the average difference between the predicted and true number
of targets. Mathematically, it is defined as:

E
[∣∣∣|X̂k| − |Xk|

∣∣∣] . (3.3)

Generally, these two metrics measure the total uncertainty of a multi-target tracking filter
given be a random finite set – both the number of targets in the set and the precision of the esti-
mates. We evaluate these metrics for all tracking scenarios to show the influence of a parameter
change or the presence of fusion techniques on the filter performance.
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3.2 Test scenarios
We evaluate the performance of the algorithm in four different test scenarios using multiple
parameter values. To facilitate reference to these scenarios later in the report, we denote them
as (C1)–(C4). The following subsections provide a detailed description of each test case. Here,
we describe the complete setup common to all scenarios.

All test cases use the Gaussian-linear Constant Velocity motion and measurement models
described in Section 1.3.2.1. Targets are assumed to move in 2D Euclidean space, where distance
is measured in meters and time in seconds. Additionally, we assume that the sampling period is
constant and set to 1s. The process noise q is set to 5m/s2 for every target and every test case.
Consequently, the single-target state vector xk, the single-target state transition matrix F, and
the process noise matrix Q have the following form:

xk =


xk
yk
vx,k
vy,k

 ; F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ; Q =


25
3 0 25

2 0
0 25

3 0 25
225

2 0 25 0
0 25

2 0 25

 . (3.4)

Moreover, we set the standard deviation of the measurement noise to a constant value for
all test cases, r = 10m. The measurement matrix H and the measurement noise matrix R are
defined as:

H =
[
1 0 0 0
0 1 0 0

]
; R =

[
100 0
0 100

]
. (3.5)

The sensor field of view is a 2D square with an area of V = 4 × 106m2, with boundaries
delimited by [−1000, 1000] × [−1000, 1000] meters. This rectangular region corresponds to the
surveillance area where the sensor is deployed. The sensor is assumed to be perfect with infinite
resolution.

The initial detection and survival probabilities are set to PD,k = 0.98 and PS,k = 0.99,
respectively. We will see the metrics for different values of these parameters in the next chapter.

The birth process is initialized as a Gaussian mixture with two components, where each
component represents the location where new targets are expected to be born and its weight
denotes the likelihood of a real target being present in the area. The specific relationships for
each test case differ and will be presented in the following subsections.

The noise process is modeled using a Poisson random finite set, and the clutter measurements
are Poisson distributed in time and uniformly distributed in space. The clutter intensity is
denoted by a normalized intensity over the surveillance region, the clutter spatial intensity λc,
and is set to a constant λc = 12.5×10−6m−2. With the surveillance area equal to V = 4×106m2,
this Poisson process generates on average 50 clutter measurements at each time step. In later
sections, we will evaluate the impact of changing the spatial clutter intensity, represented by the
parameter λc, on the performance of the GM-PHD filter by testing it for different values of λc.
This clutter process is described by the following equation:

κk(z) = λcV u(z), (3.6)

where u(z) represents the bivariate uniform distribution over the surveillance area [x0, x1] ×
[y0, y1], given by:

u(z) =
{

1
(x1−x0)(y1−y0) if z ∈ [x0, x1]× [y0, y1],
0 otherwise.

(3.7)

The truncation threshold for the pruning step of the GM-PHD filter is set to τ = 10−5, and
the merging threshold is set to U = 4. The impact of changing these parameters on the filter
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Figure 3.1 The (C1) scenario. In the left figure, we see the tracks of two objects in the 2D space,
locations of their births (black circles) and deaths (arrow heads). In the right figure, we see how each
coordinate of the tracks of both objects changes over time. We can see that the tracks of two objects
intersect at time k = 53.

performance will be discussed. The maximum number of components is fixed at Jmax = 1000,
intentionally set higher than the value proposed in [32] to evaluate different parameter settings
with more precision, particularly in scenarios with a higher number of targets.

In the following subsections, we will provide a detailed description of the dynamics of targets
for each test case. We will then evaluate the GM-PHD filter performance for each scenario and
discuss the results.

3.2.1 Two objects with crossing paths (C1)
This test case is fully identical to the one given in [32] and demonstrates the accuracy of the
implementation by showing that the results obtained by the authors of the original paper are
reproducible.

In this scenario, two objects are born at the same time at k = 1 and follow independent linear
paths. The initial state vectors of these objects are the following:

x(1)
1 =


250.0
250.0
2.5
−12.0

 , x(2)
1 =


−250.0
−250.0

12
−2.5

 . (3.8)

At a certain moment, their tracks cross. Both objects disappear at time k = 100. Therefore,
the number of objects remains constant throughout the simulation, with two objects present at
all times. The paths of both objects are shown in Figure 3.1. The arrows show the direction
of movement, and the position of the arrowhead denotes the position of the object death. The
circles on the other side of the line illustrate the location of the target birth.

Finally, the initial Gaussian mixture of the birth intensity in this scenario is given by:

γk(x) = 0.1N
(

x; m(1)
γ ,Pγ

)
+ 0.1N

(
x; m(2)

γ ,Pγ

)
, (3.9)

where:
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m(1)
γ =


250
250
0
0

 , m(2)
γ =


−250
−250

0
0

 , Pγ =


100 0 0 0
0 100 0 0
0 0 25 0
0 0 0 25

 . (3.10)

3.2.2 Objects are born and die at different times (C2)
This test case represents a scenario in which different objects are born at different times and
move in various directions. It demonstrates how well the filter performs on tracking multiple
objects when the number of true targets Xk changes over time.

The birth intensity consists of two Gaussian terms, as in the (C1) case, each with a weight
of 0.1, and is expressed as follows:

γk(x) = 0.1N
(

x; m(1)
γ ,Pγ

)
+ 0.1N

(
x; m(2)

γ ,Pγ

)
, (3.11)

where:

m(1)
γ =


−1000

750
0
0

 , m(2)
γ =


1000
−750

0
0

 , Pγ =


100 0 0 0
0 100 0 0
0 0 30 0
0 0 0 30

 . (3.12)

In total, there are six different tracks, with a maximum of five targets present at a time and
a minimum of one target at a time step. Objects are born every 10 time steps, and each has
a lifespan of 50 time steps. The paths of the six targets are depicted in Figure 3.2. The state
vectors of the six targets are as follows:

x(1)
0 =


−1000.0

750.0
25.0
0.0

 , x(2)
10 =


1000.0
−750.0
−25.0

0.0

 , x(3)
20 =


−1000.0

750.0
17.68
−17.68

 ,

x(4)
30 =


1000.0
−750.0
−17.68
17.68

 , x(5)
40 =


−1000.0

750.0
0.0
−25.0

 , x(6)
50 =


1000.0
−750.0

0.0
25.0

 . (3.13)

3.2.3 Unexpected objects with no fusion (C3)
The third scenario is based on the second one, (C2), and it tests the appearance of two additional
components on two unexpected locations. The birth intensity is defined by the same relation as
in Equations 3.11 and 3.12. The initial states of objects, including the time of birth is also the
same and given by Equation 3.13. However, there are also two additional objects entering the
scene at time k = 20 and k = 60. Their initial state vector are given by:

x(7)
20 =


−1000.0
−1000.0

20.0
20.0

 , x(8)
60 =


1000.0
1000.0
−20.0
−20.0

 . (3.14)

The lifespan of these objects is 40 time steps of each. The whole picture of tracks in the scene
is depicted in Figure 3.3.
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Figure 3.2 The (C2) scenario. In the left figure, we can see the tracks of multiple objects in the 2D
space, their locations of birth (black circles) and death (arrow heads). The right figure shows how the
coordinates of each object track change over time and the variation in the number of objects present in
the scene.

Figure 3.3 The (C3) scenario. In the left figure, we can see the tracks of multiple objects in the 2D
space, their locations of birth (black circles) and death (arrow heads). In comparison to the (C2) case,
two additional objects appear on two additional positions. The right figure shows how the coordinates
of each object track change over time.
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For instance, this scenario may occur in cases when a sensor has a blind zone, and the objects
appear in the field of view too late. We will later show that without imputation of external
information, the GM-PHD filter is unable to capture the dynamics of these objects.

3.2.4 Unexpected objects with external information fusion
(C4)

The last test scenario is identical to the previous one, (C3), with the addition of two fused
components. The example provided in Section 2.4 suggests that the additional information may
be provided by another sensor or, for instance, by a soldier. The filter is then able to capture
objects that remain invisible due to its physical limitations or the environmental conditions.

The birth intensity is given by Equations 3.11 and 3.12. Initial states of moving targets are
defined by Equations 3.13 and 3.14, and tracks of moving targets are visually demonstrated in
Figure 3.3. However, in this test case, we additionally create fusion sets at times k = 20 and
k = 60 with one element. At every other time step, the fusion set remains empty. Recall that the
fusion intensity ψk is given by Equation 2.55. The set ΨF,k in our scenario is defined as follows:

ΨF,k =


{

(w(1)
20 ,m

(1)
ψ,20,P

(1)
ψ,20, Tψ,20)

}
if k = 20,{

(w(2)
60 ,m

(2)
ψ,60,P

(2)
ψ,60, Tψ,60)

}
if k = 60,

∅ otherwise,

(3.15)

where:

w
(1)
20 = 0.6, m(1)

ψ,20 =


−1050
−1050

25
25

 , P(1)
ψ,20 =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

 , (3.16)

w
(2)
60 = 0.7, m(2)

ψ,60 =


1020
1020
−22
−22

 , P(3)
ψ,60 =


40 0 0 0
0 40 0 0
0 0 5 0
0 0 0 5

 . (3.17)

and Tψ,20 and Tψ,20 are some unique tags for new Gaussian components.
We assume that there are two sensors, each measuring at two different locations. The first

sensor generates estimates with larger uncertainty; therefore, the covariance matrix has higher
values, and the weight, the measure of uncertainty of the sensor, is lower. The second sensor,
which inputs information at time k = 60, has better precision, and the estimate of the position
of the second object and its speed is more precise, thus having a higher weight value.

3.3 Parameters testing and methodology
Each test scenario (C1)–(C4) has default settings as defined in Section 3.2. However, to obtain
a complete picture of how the GM-PHD filter behaves in different situations, we also evaluate
each test case with various combinations of filter settings. This testing is performed by fixing
the default values of every parameter and iterating through different values of one parameter at
a time. The list of tested settings includes:

Clutter spatial density λc ∈ [0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5]× 10−6

Detection probability PD,k ∈ [0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]
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Survival probability PS,k ∈ [0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]

Truncation threshold τ ∈ [10−6, 10−5, 10−4, 10−3]

Merge threshold U ∈ [4, 10, 20, 50]

The GM-PHD filter with additional information fusion was implemented using Python 3.10
and the following libraries:

NumPy v1.23.5 for mathematical operations and efficient matrix multiplication,

SciPy v1.10.0 for a convenient and reliable sampling from multivariate distributions,

Matplotlib v3.7.0 for plot generation and visualization.

Additionally, for numerical stability of calculation of covariance matrices, so that they remain
symmetrical and positive definite, a small trick is applied:

P = 0.5× (P + P⊺). (3.18)

For each testing scenario and every combination of default settings and changed parameters, a
testing case is created. Each testing case is evaluated using 100 Monte Carlo input data samples,
which are randomly generated measurements, clutter, and misdetections. The filter is run on
each sample separately, resulting in 100 filter runs per testing case. In total, we conducted 13, 200
runs of the GM-PHD filter. The testing was performed using a MacBook Pro model A2141 with
a 2.6 GHz 6-Core Intel Core i7 CPU and 16 GB RAM. The total running time, including steps
from data generation to evaluation and plotting, was approximately 17 hours.
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Chapter 4

Results analysis

In this chapter, we present the results of a thorough testing of different parameters of the GM-
PHD filter on different test cases presented in the previous chapter. For convenience, we have
split this chapter into multiple sections, referring to each test scenario and included multiple
plots that depict the change of both the CPEP metric and the expected absolute error on the
number of targets. Finally, we discuss the results, outline the strengths and weaknesses of the
GM-PHD filter, and compare the results of the (C3) and (C4) scenarios, with and without
external information fusion.

4.1 Test results (C1)

We begin by examining the simplest scenario where the number of targets is constant in time and
there are only two targets present in the scene. As mentioned before, we generated 100 Monte
Carlo measurement and clutter samples for every test scenario and parameter setting, given
that the true trajectories of these objects do not change in time. Figure 4.1 shows one of these
samples for the default filter settings described in Section 3.2. The left image displays how the
true tracks of two objects are generated. The transition from black to yellow color illustrates the
change in time for a target. The red stars represent the measurements that the filter receives at
a time step, with the intensity of the red color representing the time step. Gray crosses indicate
clutter measurements, with the intensity of the gray color having the same meaning as for the
red stars. On the right side of the figure, we see the change of both coordinates in time with
noise measurements and the estimates of the filter represented by black circles at each time step.

We can observe that the filter provides very accurate estimates even in cluttered environments.
For instance, in this case, the filter receives an average of 50 noise measurements for every
measurement set. However, we also notice that estimates are not perfect. For instance, one of
the objects did not receive estimates at time k = 21 and it lasted for three time steps, and at
k = 24, the object appeared again.

Let us examine how changes in settings affect the filter performance in terms of metrics. To
illustrate all runs for every parameter, we use a box plot. For every value of a parameter, we
draw a box whose boundaries represent the first and third quartiles. The “whiskers” depict the
minimum and maximum values of the distribution of metric values from all runs, and black dots
represent those measurements that are considered outliers. The minimum and maximum values
are calculated as one and a half times the interquartile range from the first and third quartiles,
respectively, where the interquartile range is the difference between the two quartiles. Outliers
are defined as those values that fall outside the range between the minimum and maximum. The
black line inside boxes represents the median value, and the red dot is for the mean value. Means
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Figure 4.1 One sample of data and estimates for the (C1) scenario. Left: True tracks of two objects
(black to yellow) with clutter measurements (gray crosses) and received measurements (red stars) for a
single Monte Carlo sample. Right: Change of both coordinates in time with noise measurements (red
circles) and filter estimates (black circles) for the same Monte Carlo sample. The filter shows accurate
estimates even in very cluttered environments.

Figure 4.2 Here, we examine the change of CPEP (left) and the expected absolute error on the
number of targets (right) for the (C1) scenario for different values of the clutter spatial rate λc. Every
box is the representation of the distribution of 100 independent samples. As the clutter spatial rate
increases, the estimation error also increases, which may be observed on the growing trend of both
metrics. All other setting are set to default values, i.e. PD,k = 0.98, PS,k = 0.99, τ = 10−5 and U = 4.

are connected to better see the overall trend.
First, we examine the change of performance for different clutter rates. In Figure 4.2, we

see that the increase of clutter measurements worsens the performance in both the precision of
target estimates, and the estimate of the number of targets. It should be noted, that the increase
in the expected absolute error is more pronounced than for the CPEP. It is clear that higher
clutter rates causes more spurious estimates that the filter may consider to be real targets. Even
in cases where these false tracks are not confirmed later, the number of estimated targets can
be higher than the real number at a given time moment. However, in general, we see that the
increase is not drastic, and the performance of the filter is good for even high values of the clutter
rate.

Next, let us look how the filter behaves for different values of the detection probability. The
detection probability is a parameter that may vary for different environments and sensors, and
its setting may affect the overall tracking performance. Figure 4.3 shows how the estimation
error changes for multiple settings of the detection probability. It can be seen that low detection
probabilities influence the performance of the filter drastically in both the estimation of the
number of targets and the precision of state estimates. For instance, the comparison of two
values of PD,k = 0.7 and PD,k = 1.0 gives more than seven times better estimation results in
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Figure 4.3 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C1) scenario for different values of the detection probability PD,k. Every box is the
representation of the distribution of 100 independent samples. As the detection probability increases,
the estimation error decreases, which may be observed on the decreasing trend of both metrics. All other
setting are set to default values, i.e. λc = 12.5 × 10−6, PS,k = 0.99, τ = 10−5 and U = 4.

Figure 4.4 The change of CPEP (left) and the expected absolute error on the number of targets (right)
for the (C1) scenario for different values of the survival probability PS,k. Every box is the representation
of the distribution of 100 independent samples. Neither of metrics shows a change when the survival
probability changes. All other setting are set to default values, i.e. λc = 12.5 × 10−6, PD,k = 0.98,
τ = 10−5 and U = 4.

terms of the number of targets and twice better results for the state estimation. This suggests
that the GM-PHD filter may show poor results for higher clutter rates and lower detection
probabilities.

The third parameter we will examine is the probability of survival, PS . In Figure 4.4, we see
that the performance is not affected by different values of the survival probability. The result
suggests that even though the intensity of existing targets will rapidly decrease at every time
step with a lower value of PS,k, the tracks will still remain confirmed when the target generates
enough measurements.

The next variable parameter is the truncation threshold τ . Figure 4.5 suggests that pruning
too many components due to higher values of τ reduces the performance of the GM-PHD filter.
For instance, τ = 10−3 caused a small decrease in both the precision and the estimate of the
number of targets. The explanation of this effect is fairly straightforward. When the truncation
threshold is too large, the number of hypotheses is drastically reduced at every time step and
the loss of information in the posterior intensity is therefore not negligible.

The final parameter that was tested is the merge threshold U , or the maximum Mahalanobis
distance between components on which these components will be merged into one. The results for
different values of U are shown in Figure 4.6. The increase in the distance between components
causes the same effect as the increase of the truncation threshold τ , that is, the loss of information
from the posterior intensity. However, for this specific case and tested values of the parameter,
the performance in both metrics worsens only slightly. The exact choice of the merge threshold
U is, however, domain-dependent.

Finally, let us visually examine how trajectories are estimated and the final state of the
posterior distribution. In Figure 4.7, the left image illustrates the error in trajectory estimation.
The track with the tag 667 was terminated when two targets’ paths cross each other, and the
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Figure 4.5 The change of CPEP (left) and the expected absolute error on the number of targets (right)
for the (C1) scenario for different values of the truncation threshold τ . Every box is the representation
of the distribution of 100 independent samples. The X axis is on the logarithmic scale. We see, that,
for higher values of τ , the performance becomes worse. All other setting are set to default values, i.e.
λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99 and U = 4.

Figure 4.6 The change of CPEP (left) and the expected absolute error on the number of targets (right)
for the (C1) scenario for different values of the merge threshold U . Every box is the representation of
the distribution of 100 independent samples. The X axis does not have any scale. We see that, for
higher values of U , the performance slightly worsens. All other settings are set to default values, i.e.
λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99, and τ = 10−5.

other track is created right after the intersection with a new tag 854. We will later see how the
effect of this problem worsens for more complex scenarios. However, we observe great results
in terms of state estimation for both targets. The right image shows the internal state of the
GM-PHD filter at time step k = 100, more precisely the posterior intensity. It can be seen that
two peaks are have expected value in the locations of two objects.

4.2 Test results (C2)
The second test scenario contains six independent objects that are born and die at different times.
We have already discussed the influence of changing values over various parameters and will not
include all the plots here, since every metric shows the exact same trend for all parameter values
except for higher magnitudes of errors due to the increased number of objects. The reader can,
however, find all figures in Appendix A. In this section, we will compare two cases of trajectory
estimation to point out the track continuity problem of the chosen tagging strategy.

First of all, let us examine the results of target state estimation of one sample, a worst-case
scenario. In Figure 4.8, we see how tracks, measurements, and clutter are generated along with
state estimates depicted for two axes on the right side of the figure. We clearly see that for this
exact sample there are many ”holes” where the estimates were not suggested by the filter. One
of the reasons for this behavior is false positive measurements that appear in close proximity
to the real targets, which causes the filter to underestimate the likelihood of hypotheses of real
target-to-measurement assignments.

The described behavior causes the track continuity problem already mentioned in the previous
section. Figure 4.9 compares two different runs on two different data samples. On the left picture,
we see that there are six trajectory estimates for six targets, thus the estimate is correct. On the
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Figure 4.7 Left: The visualization of trajectories estimates and the posterior distribution at time k =
100. The straight gradient lines represent true tracks, the points represent state estimates generated by
the GM-PHD filter, and different colors of the points illustrate unique tags of the estimated trajectories.
Note, that when two tracks intersect, one of estimated tracks was falsely terminated and a new one
created. Right: The posterior distribution at time step k = 100. For visualization purposes, the
covariance matrices of all Gaussian components were multiplied by the factor of 81. Two Gaussian terms
are visible on locations where two targets were at this time step. The bottom target has a lower weight,
thus its color is dim. The filter was run with default settings, i.e. λc = 12.5 × 10−6, PD,k = 0.98,
PS,k = 0.99, τ = 10−5, and U = 4.

Figure 4.8 One sample of data and estimates for the (C2) scenario. Left: True tracks of two objects
(black to yellow) with clutter measurements (gray crosses) and received measurements (red stars) for a
single Monte Carlo sample. Right: Change of both coordinates in time with noise measurements (red
circles) and filter estimates (black circles) for the same Monte Carlo sample. In comparison to the (C1)
scenario, the number of missed estimates is increased.
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Figure 4.9 Left: The visualization of trajectory estimates at time k = 100 for the ideal case. For six
targets, there are six different trajectories with good state estimates. Right: The same test scenario with
wrong track estimates. We see that there are nine estimated trajectories, and the track continuity is not
maintained. The filter was run with default settings, i.e., λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99,
τ = 10−5, and U = 4.

right image, however, the number of trajectories is higher, because tracks become terminated and
new tracks are initialized. This is caused by the logic of tagging Gaussian components during
merging. During this step of the GM-PHD filter, the component with the highest likelihood is
chosen as the parent component, and other Gaussian terms are merged into the chosen one. If
some new hypothesis created for a clutter measurement happens to have a higher weight, the
Gaussian that had the initial tag is merged into this wrong component, and the correct tag
disappears from the posterior intensity. The uncertainty in the posterior intensity is also shown
in Figure 4.10. The best-case scenario is illustrated on the left. At time k = 100, there is one
target present in the scene, and the posterior intensity contains only one significant component.
However, the bad scenario has a higher uncertainty in estimating the posterior PHD function,
and we see several blobs in the image.

4.3 Test results (C3)

The third case depicts the same scenario as (C2), however, with two additional targets that
appear at unexpected locations. Figure 4.11 shows that the GM-PHD filter fails to estimate
states of these two additional targets. On the right side of this figure, we see that there are no
black circles for two lines on both the X axis, and the Y axis. The figures illustrating the change
in metrics over different values of filter parameters is located in Appendix A.

If we look at Figure 4.12, we will clearly see, that two targets starting from the bottom-left
corner and the top-right corner were not detected by the filter. The track continuity problem
persists. It should be noted, that for the demonstration purposes, we intentionally choose the
sample where the track continuity problem is present and visible. Generally, the filter performs
well, and the expected absolute error on the number of targets should be compared using the
average value over all samples.

4.4 Test results (C4)

Finally, we evaluate tracking results for the similar case as (C3) but with external information
fusion. The tracking scenario with estimates generated by the GM-PHD filter is illustrated in
Figure 4.13. We can see that the filter now detects new targets and the estimates are precise
even though the initial mean vectors and covariance matrices are not precise.

In Figure 4.14, we see the same track continuity problem, where the filter created nine
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Figure 4.10 Left: The visualization of posterior intensity at time k = 100. The intensity has only one
Gaussian component with a high weight, which corresponds to the location of the only target present in
the scene. Right: The posterior distribution at time step k = 100 for a different sample of data. The
uncertainty is higher, and there are three visible blobs for one existing target. Note that, for visualization
purposes, the covariance matrices of all Gaussian components were multiplied by a factor of 81. The
filter was run with default settings, i.e. λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99, τ = 10−5, and
U = 4.

Figure 4.11 One sample of data and estimates for the (C3) scenario. Left: True tracks of two objects
(black to yellow) with clutter measurements (gray crosses) and received measurements (red stars) for
a single Monte Carlo sample. Right: Change of both coordinates in time with noise measurements
(red circles) and filter estimates (black circles) for the same Monte Carlo sample. Two targets were not
detected by the filter, and no estimates were generated for them.
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Figure 4.12 Left: The visualization of trajectories estimates and the posterior distribution at time
k = 100. Two targets were not detected. Right: The posterior distribution at time step k = 100. For
visualization purposes, the covariance matrices of all Gaussian components were multiplied by the factor
of 81. The filter was run with default settings, i.e. λc = 12.5×10−6, PD,k = 0.98, PS,k = 0.99, τ = 10−5,
and U = 4.

Figure 4.13 One sample of data and estimates for the (C4) scenario. Left: True tracks of two objects
(black to yellow) with clutter measurements (gray crosses) and received measurements (red stars) for
a single Monte Carlo sample. Right: Change of both coordinates in time with noise measurements
(red circles) and filter estimates (black circles) for the same Monte Carlo sample. Two targets were not
detected by the filter, and no estimates were generated for them.
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Figure 4.14 Left: The visualization of trajectories estimates and the posterior distribution at time
k = 100. In comparison to the (C3) scenario, two targets are now detected correctly. Right: The
posterior distribution at time step k = 100. We see two Gaussian components that refer to two existing
objects. For visualization purposes, the covariance matrices of all Gaussian components were multiplied
by the factor of 81. The filter was run with default settings, i.e. λc = 12.5 × 10−6, PD,k = 0.98,
PS,k = 0.99, τ = 10−5, and U = 4.

CPEP EAE
(C3) 0.87876 0.85900
(C4) 0.85900 0.35380

Table 4.1 The comparison of CPEP and the expected absolute error on the number of targets (EAE)
for the scenarios (C3) and (C4). The numbers represent the averaged values of metrics over 100 Monte
Carlo samples. The filter was run with default settings, i.e. λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99,
τ = 10−5, and U = 4.

trajectories, while there are only eight targets. However, in comparison to the (C3) scenario, the
objects are now detected, and their tracks are estimated correctly. Despite trajectory estimates
being present, note that the filter required some time to start detecting the the bottom-left target.
It is due to its large uncertainty and the small weight, their exact values are given in Section
3.2.4. Thus, the GM-PHD algorithm required several additional measurements to confirm the
track.

The visualization of all metrics for different filter settings is included in Appendix A. Here,
we compare the evaluation of these metrics for default parameters in scenarios (C3) and (C4),
as shown in Table 4.1.

4.5 Discussion
As we have presented the results of performance measurement, let us discuss them and draw
several conclusions. In general, the GM-PHD filter is a robust algorithm. However, like any
other algorithm, it has its drawbacks.

First of all, it is obvious that the filter is sensitive to the quality of data coming from a
sensor. For instance, if the sensor has a low detection probability and high clutter rates, track-
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ing performance may suffer from the uncertainty on both the state estimate precision and the
estimated number of targets. Moreover, the filter becomes sensitive to the setting of the survival
probability. For these cases, it is recommended to either use additional sources of information
or use another tracking algorithm.

Secondly, let us discuss track maintenance. Generally, the GM-PHD filter has an in-built
implicit track maintenance. When a Gaussian has a sufficient weight, in our case greater than
0.5, the track is considered initialized and confirmed. However, there is a problem. If several
clutter measurements happen to be in the vicinity of birth components, the likelihood of these
components getting enough weights is quite high. This will lead to existence of tracks with only
a few estimates, often only one. This problem may be addressed by increasing the minimum
weight required for generating an estimate or by introducing some additional logic, such as the
minimum number of estimates, something like the M/N logic discussed in Section 2.3.3.1.

The next problem is the consequence of the simple strategy we have chosen for tagging
Gaussian components to connect estimates into trajectories. We have seen that it suffers from
the track continuity problem, which is discussed in detail along with the reason in Section 4.2. We
may try to address this issue by introducing more sophisticated techniques of track maintenance.
For instance, we could track the history of track estimates for each tag, and if the correct tag
would have been discarded in favor of a tag with an empty history, we would detect it and assign
the correct tag to preserve the track continuity. The other option would be to use clustering
techniques like in the JPDA filter.

Next, we have observed the change of performance when there are no fusion components.
They are fundamentally similar to birth components, but we have shown how they could be used
for inputting additional external information into the filter. For blind zones, there is no way
to append information using the standard techniques. The filter is unable to capture targets
that are invisible to a sensor, and the way how the posterior intensity is represented in the GM-
PHD filter makes it impossible to confirm tracks since there are no Gaussian terms to which new
measurements can be assigned. We could have defined the birth components that cover the whole
field of view, however, it would lead to the problem discussed in the previous paragraph, i.e., too
many false estimates because of confirming birth components with clutter measurements.

Last but not least, it is obvious that the complexity O(mn) discussed in Section 2.3 assumes
that the computational burden of the GM-PHD filter is highly dependent on the clutter rate. If
there are too many false positive measurements at each time step, the performance in terms of
processing time degrades. This is another reason why it is required to reduce the clutter rate as
much as possible.

Despite all the drawbacks we have discussed, the GM-PHD filter remains one of the most
popular and robust solutions to multi-target tracking. The filter is fast and reliable; it does
not need to estimate the full posterior distribution, which is often complex. For Gaussian-linear
cases, the GM-PHD filter has a closed form solution, and non-linear models can be estimated
using the UK-PHD or the EK-PHD filter.
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Conclusion

This work explored one of the most popular Bayesian filters for multi-target tracking in Gaussian-
linear cases, the Gaussian Mixture Probability Density (GM-PHD) filter. We investigated its
performance and robustness in several tracking scenarios, including challenging situations where
a sensor failed to collect measurements from targets and external information fusion was required.

We have demonstrated that by incorporating external estimates from other sensors, we can
improve the performance of the GM-PHD filter, as shown by evaluating several metrics that
indicated significant improvement in tracking results.

However, we have also identified a problem with track continuity when using the simple
tagging of Gaussian components. More sophisticated techniques may improve track maintenance
of the GM-PHD filter and make it more robust to complex scenarios with high uncertainty due
to clutter measurements and a high number of targets.

Additionally, we measured and discussed the filter performance depending on the setup of
internal parameters. We observed that the GM-PHD filter was sensitive to the choice of set-
tings, particularly the clutter rate and probability of detection, highlighting the need to consider
environmental conditions and the quality of the sensor when using the filter.

In conclusion, the GM-PHD filter remains a powerful and robust algorithm for the state es-
timation of multiple targets in complex scenarios. Its computational complexity is outstanding
compared to traditional multi-target tracking algorithms. The propagation of only the posterior
first-order moment may be sufficient to achieve good tracking results. The techniques introduced
in this work and the comprehensive performance measurements may aid the multi-tracking re-
search community in further improving the GM-PHD filter.

65



66 Conclusion



Appendix A

Appendix 1. Results comparison
across different filter parameters

In this appendix, we present all testing results for the scenarios described in the main text. The
results for each testing case are similar to those presented in Section 4.1; however, the reader may
find it helpful to review the measurements for other test cases. Figures A.1, A.2, and A.3 show
the change of metrics depending on the change of the clutter spatial rate λc for scenarios (C2),
(C3), and (C4), respectively. Figures A.4, A.5, and A.6 depict the change of metrics for different
values of the detection probability PD,k for each individual case in the same order. Figures A.7,
A.8, and A.9 show the change for the survival probability PS,k, Figures A.10, A.11, and A.12 for
the truncation threshold τ , and finally, Figures A.13, A.14, and A.15 for the merge threshold U
for scenarios (C2), (C3), and (C4), respectively. All figures are ordered in a way in which metrics
for one parameter are grouped together so that the reader can compare results for different test
cases. Every figure is provided with a detailed description of what it depicts.

67



68 Appendix 1. Results comparison across different filter parameters

Figure A.1 Here, we examine the change of CPEP (left) and the expected absolute error on the
number of targets (right) for the (C2) scenario for different values of the clutter spatial rate λc. Every
box is the representation of the distribution of 100 independent samples. As the clutter spatial rate
increases, the estimation error also increases, which may be observed on the growing trend of both
metrics. All other setting are set to default values, i.e. PD,k = 0.98, PS,k = 0.99, τ = 10−5 and U = 4.

Figure A.2 Here, we examine the change of CPEP (left) and the expected absolute error on the
number of targets (right) for the (C3) scenario for different values of the clutter spatial rate λc. Every
box is the representation of the distribution of 100 independent samples. As the clutter spatial rate
increases, the estimation error also increases, which may be observed on the growing trend of both
metrics. All other setting are set to default values, i.e. PD,k = 0.98, PS,k = 0.99, τ = 10−5 and U = 4.

Figure A.3 Here, we examine the change of CPEP (left) and the expected absolute error on the
number of targets (right) for the (C4) scenario for different values of the clutter spatial rate λc. Every
box is the representation of the distribution of 100 independent samples. As the clutter spatial rate
increases, the estimation error also increases, which may be observed on the growing trend of both
metrics. All other setting are set to default values, i.e. PD,k = 0.98, PS,k = 0.99, τ = 10−5 and U = 4.
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Figure A.4 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C2) scenario for different values of the detection probability PD,k. Every box is the
representation of the distribution of 100 independent samples. As the detection probability increases,
the estimation error decreases, which may be observed on the decreasing trend of both metrics. All other
setting are set to default values, i.e. λc = 12.5 × 10−6, PS,k = 0.99, τ = 10−5 and U = 4.

Figure A.5 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C3) scenario for different values of the detection probability PD,k. Every box is the
representation of the distribution of 100 independent samples. As the detection probability increases,
the estimation error decreases, which may be observed on the decreasing trend of both metrics. All other
setting are set to default values, i.e. λc = 12.5 × 10−6, PS,k = 0.99, τ = 10−5 and U = 4.

Figure A.6 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C4) scenario for different values of the detection probability PD,k. Every box is the
representation of the distribution of 100 independent samples. As the detection probability increases,
the estimation error decreases, which may be observed on the decreasing trend of both metrics. All other
setting are set to default values, i.e. λc = 12.5 × 10−6, PS,k = 0.99, τ = 10−5 and U = 4.
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Figure A.7 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C2) scenario for different values of the survival probability PS,k. Every box is the
representation of the distribution of 100 independent samples. Neither of metrics shows a change when
the survival probability changes. All other setting are set to default values, i.e. λc = 12.5 × 10−6,
PD,k = 0.98, τ = 10−5 and U = 4.

Figure A.8 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C3) scenario for different values of the survival probability PS,k. Every box is the
representation of the distribution of 100 independent samples. Neither of metrics shows a change when
the survival probability changes. All other setting are set to default values, i.e. λc = 12.5 × 10−6,
PD,k = 0.98, τ = 10−5 and U = 4.

Figure A.9 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C4) scenario for different values of the survival probability PS,k. Every box is the
representation of the distribution of 100 independent samples. Neither of metrics shows a change when
the survival probability changes. All other setting are set to default values, i.e. λc = 12.5 × 10−6,
PD,k = 0.98, τ = 10−5 and U = 4.
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Figure A.10 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C2) scenario for different values of the truncation threshold τ . Every box is the represen-
tation of the distribution of 100 independent samples. The X axis is on the logarithmic scale. We see,
that, for higher values of τ , the performance becomes worse. All other setting are set to default values,
i.e. λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99 and U = 4.

Figure A.11 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C3) scenario for different values of the truncation threshold τ . Every box is the represen-
tation of the distribution of 100 independent samples. The X axis is on the logarithmic scale. We see,
that, for higher values of τ , the performance becomes worse. All other setting are set to default values,
i.e. λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99 and U = 4.

Figure A.12 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C4) scenario for different values of the truncation threshold τ . Every box is the represen-
tation of the distribution of 100 independent samples. The X axis is on the logarithmic scale. We see,
that, for higher values of τ , the performance becomes worse. All other setting are set to default values,
i.e. λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99 and U = 4.
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Figure A.13 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C2) scenario for different values of the merge threshold U . Every box is the representation
of the distribution of 100 independent samples. The X axis does not have any scale. We see that, for
higher values of U , the performance slightly worsens. All other settings are set to default values, i.e.
λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99, and τ = 10−5.

Figure A.14 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C3) scenario for different values of the merge threshold U . Every box is the representation
of the distribution of 100 independent samples. The X axis does not have any scale. We see that, for
higher values of U , the performance slightly worsens. All other settings are set to default values, i.e.
λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99, and τ = 10−5.

Figure A.15 The change of CPEP (left) and the expected absolute error on the number of targets
(right) for the (C4) scenario for different values of the merge threshold U . Every box is the representation
of the distribution of 100 independent samples. The X axis does not have any scale. We see that, for
higher values of U , the performance slightly worsens. All other settings are set to default values, i.e.
λc = 12.5 × 10−6, PD,k = 0.98, PS,k = 0.99, and τ = 10−5.



Bibliography
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