
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Integration of the safety certified PXROS-HR real-time

operating system in ROS2 robotic system.

Bc. Jakub Zahradník

Ing. Martin Daňhel, Ph.D.

Informatics

Design and Programming of Embedded Systems

Department of Digital Design

until the end of summer semester 2023/2024

Instructions

Instructions:

1. Get familiar with ROS2 system, its real-time concept, and collect set of requirements

expected from the underlying real-time operating system.

2. Analyze the existing feature set of the PXROS-HR operating system and map them to

collected set of requirements.

3. Propose concepts and solutions for identified gaps in existing feature set of PXROS-HR

with respect to ROS2 real-time needs. The specific scope of work will be determined by

the supervisor.

4. Implement proposed solutions either as service drivers running above the kernel

space or by modifying the kernel itself adding essential capabilities into it.

5. To prove the concept of a successful integration, try to create a minimalistic ROS2

system based on PXROS-HR real-time operating system.

Electronically approved by prof. Ing. Hana Kubátová, CSc. on 16 February 2023 in Prague.

Master’s thesis

INTEGRATION OF THE
SAFETY CERTIFIED
PXROS-HR REAL-TIME
OPERATING SYSTEM IN
ROS2 ROBOTIC SYSTEM

Bc. Jakub Zahradńık

Faculty of Information Technology
Department of Digital Design
Supervisor: Ing. Martin Daňhel, Ph.D.
May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Jakub Zahradńık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Zahradńık Jakub. Integration of the safety certified PXROS-HR real-time oper-
ating system in ROS2 robotic system. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2023.

Contents

Acknowledgments viii

Declaration ix

Abstract x

List of abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Current State . 2

2 Analysis 3
2.1 Robot Operating System . 3

2.1.1 What Is ROS? . 3
2.1.2 Why ROS? . 4
2.1.3 Versions . 5

2.2 ROS 2 . 7
2.2.1 Design Principles & Requirements . 7
2.2.2 Communication Patterns . 8
2.2.3 Architecture . 10
2.2.4 Internal Interfaces . 12
2.2.5 ROS 2 Concepts . 12
2.2.6 Security . 14
2.2.7 Related Projects . 14

2.3 Micro-ROS . 15
2.3.1 Features and Architecture . 15
2.3.2 Supported RTOSes . 16
2.3.3 Supported Platforms . 18
2.3.4 Build System . 19
2.3.5 Applications . 19
2.3.6 Multithread Support . 20

2.4 Data Distribution Service . 21
2.4.1 What Is DDS? . 21
2.4.2 Publish-Subscribe Pattern . 22
2.4.3 DDS Model . 22
2.4.4 DDS Architecture . 23
2.4.5 DDS Key Features . 23
2.4.6 What Is RTPS? . 26
2.4.7 RTPS Architecture . 26
2.4.8 ROS 2 & DDS . 28
2.4.9 Micro-ROS & DDS . 29

2.5 PXROS-HR . 32

iii

iv Contents

2.5.1 HighTec . 32
2.5.2 What Is RTOS . 32
2.5.3 What Is PXROS-HR . 33
2.5.4 PXROS-HR Special Features . 34

3 Proposed Solution and Implementation 37
3.1 Building Micro-ROS Library . 38

3.1.1 Creating Custom Static Library . 38
3.1.2 ROS 2 and Micro-ROS Code Modifications 39
3.1.3 Library Build . 44

3.2 Mutex Implementation . 45
3.2.1 Mutex API Functions . 46
3.2.2 Mutex Task Implementation . 47
3.2.3 Mutex Task Creation . 51

3.3 Project Structure . 52
3.3.1 HighTec Project Structure . 52
3.3.2 Configurations . 52
3.3.3 Linker File . 54
3.3.4 Tasks . 56

3.4 Micro-ROS Demos . 58
3.4.1 Custom Allocators . 58
3.4.2 Custom Transport . 59
3.4.3 Example Implementation . 61
3.4.4 Multithread publisher subscriber . 64
3.4.5 Multicore publisher subscriber . 64

4 Testing 67
4.1 Int32 publisher . 68
4.2 Int32 subscriber . 71
4.3 Ping pong . 72
4.4 Addtwoints server . 73
4.5 Multithread publisher subscriber . 75
4.6 Multicore publisher subscriber . 77

5 Conclusion 81

A History of ROS 83
A.1 Getting to ROS 1.0 . 85
A.2 Willow Garage Time . 86
A.3 Open Source Robotics Foundation Time . 88
A.4 ROS 2.0, The New Generation . 89

B Mutex Implementation 91
B.1 Mutex API Functions . 91
B.2 Mutex Scheme . 93

C Custom Allocators Implementation 95

D Custom Transports Implementation 97

List of Figures

2.1 Communication patterns . 10
2.2 Internal API architecture . 11
2.3 Micro-ROS architecture . 16
2.4 DDS middleware . 21
2.5 DDS architecture . 23
2.6 DDS data centricity . 24
2.7 DDS global data space . 24
2.8 DDS Scalable Architecture . 25
2.9 RTPS structure . 27
2.10 XRCE architecture . 30

3.1 Successful custom static micro-ROS library build 44
3.2 Mutex timeline . 50
3.3 PxNet base example configurations for different boards 53
3.4 Creating new configuration . 53
3.5 Excludes from build within configurations . 54
3.6 Multithread demo distribution of publishers and subscribers. 65
3.7 Multicore demo distribution of publishers and subscribers. 65

4.1 UDE program loader . 67
4.2 Micro-ROS agent output of int32 publisher demo 68
4.3 Wireshark log showing the creation of the micro-ROS client 68
4.4 Publisher topic registration check, echo, and UART debug output 69
4.5 Wireshark log approving the one-second periodic sending 69
4.6 Micro-ROS agent verbose output of int32 publisher demo 70
4.7 Micro-ROS agent output of int32 subscriber demo 71
4.8 Publishing a message for a subscriber . 71
4.9 Subscriber topic registration check, echo, and UART debug output 72
4.10 Micro-ROS agent output of ping pong demo . 72
4.11 Publishing a message for a ping subscriber . 73
4.12 Ping and pong topics registration check, echo and UART debug output 73
4.13 Micro-ROS agent output of addtwoints server demo 74
4.14 Service call of the addtwoints . 74
4.15 UART debug output of addtwoints server demo 74
4.16 Multithreaded topics registration check . 75
4.17 Multithreaded topics echo . 75
4.18 UART debug output of multithread publisher subscriber demo 76
4.19 UART debug output of multithread demo with rclc executor spin some function 77
4.20 UART debug output of multithread demo with reliable Pub-Sub pairs 77
4.21 Multicore topics registration check . 78
4.22 Multicore topics echo . 78
4.23 UART debug output of multicore publisher subscriber demo 79
4.24 UART debug output of multicore demo with rclc executor spin some function . . 80

v

4.25 Time difference in the publishing functions . 80

A.1 Re-Inventing the Wheel . 84
A.2 The ratio between reinventing the wheel and new research 85
A.3 Personal Robot 1 . 85
A.4 Personal Robot 2 . 86
A.5 ROS evolution in early days . 87
A.6 TurtleBot Family . 88

B.1 Mutex Server scheme after initialization . 94
B.2 Mutex Server scheme with already locked mutex 94

List of Tables

2.1 Summary of ROS 2 features compared with ROS 1 6
2.2 Supported platforms . 18
2.3 Micro-ROS demos . 19
2.4 The most important RTPS messages . 27
2.5 Supported RMW implementations . 29
2.6 Rmw inter-vendor communication configurations that are not supported 29

A.1 First ROS distributions with release dates. 87
A.2 ROS distributions created under Open Source Robotics Foundation 89

List of code listings

3.1 Custom CMAKE toolchain file for custom static library build 38
3.2 Custom colcon meta file for custom static library build 39
3.3 Selection of time functions implementation . 40
3.4 PXROS-HR time functions implementation . 40
3.5 Unused include of libgen.h . 41
3.6 PXROS-HR addition to Micro XRCE-DDS platforms 41
3.7 CMAKE define of the platform in configuration header template 41
3.8 pxdef.h include for time function implementation 42
3.9 Time function implementation for Micro XRCE-DDS 42
3.10 eProsima Micro XRCE-DDS mutex functions . 43
3.11 Micro XRCE-DDS Client mutex implementation structure 43
3.12 RMW DECLARE DEPRECATED macro definition 43
3.13 Script to fix include paths folder structure . 44
3.14 PXROS-HR mutex structures . 45
3.15 Mutex Server process of MUTEX INIT request 48

vi

List of code listings vii

3.16 Mutex Server process of MUTEX LOCK request 49
3.17 Mutex Server process of MUTEX UNLOCK request 49
3.18 Mutex Server task creation and initialization . 51
3.19 Micro-ROS demo sections in linker file . 55
3.20 Linker clear and copy tables . 55
3.21 The default allocator functions . 58
3.22 Original RCCHECK and RCSOFTCHECK macros 62
3.23 Modified RCCHECK and RCSOFTCHECK functions using UART Server 63
3.24 Task memory access definition for correct MPU settings 63
B.1 Mutex initialization function . 91
B.2 Mutex lock function . 92
B.3 Mutex unlock function . 92
C.1 PXROS-HR custom allocators implementation 95
D.1 Custom open function . 97
D.2 Custom close function . 97
D.3 Custom write function . 98
D.4 Custom read function . 99

I sincerely thank everyone who took the time to help me write this
master’s thesis. Firstly, I thank my supervisor Ing. Martin Daňhel,
for his professional guidance, patience, and valuable advice that helped
me complete the work. I would also like to sincerely thank my family
for their support throughout my studies. I would also like to thank
Roman Kńı̌zek – the product owner of the PXROS-HR, Radek Olexa
– my boss; and all the other colleagues of the HighTec company for
the discussions regarding the proposed implementation, sharing ideas
about this thesis and sharing their knowledge. Special thanks also go
to all my friends who mentally supported and motivated me, especially
Lucie Hartmanová, Jakub Horáček and Dominik Resl.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 3, 2023 .

ix

Abstract

This master’s thesis provides a comprehensive analysis of the Robot Operating System
(ROS) 2, including its architecture, communication patterns, concepts, and use of the Data
Distribution Service (DDS) as a middleware for data sharing. Additionally, the thesis explores
Micro-ROS, a lightweight version of ROS 2 designed to run on microcontrollers with limited
resources. This work focuses on analyzing the Micro-ROS’s architecture, features, and suitabil-
ity for embedded systems use. Additionally, the thesis explores using PXROS-HR, a real-time
operating system (RTOS), in the proposed solution.

The proposed solution involves building a custom static library for Micro-ROS and imple-
menting a mutex task for thread-safe data access. The project structure is presented, including
configurations and linker files, and describes the implementation of custom allocators and cus-
tom transport for Micro-ROS. The thesis also includes demonstrations of multithread publisher-
subscriber and multicore publisher-subscriber for Micro-ROS, showcasing the proposed solution’s
feasibility and effectiveness.

Furthermore, the proposed solution is evaluated by conducting one test for each demo, in-
cluding publishing and subscribing to a topic, creating a service server for remote procedures,
and distributing work to multiple tasks or cores. The results demonstrate that the proposed solu-
tion achieves thread-safe data access and enables efficient communication in resource-constrained
environments.

Keywords Aurix, HighTec, Infineon, Micro-ROS, PXROS-HR, PXROS, Real-time, ROS,
ROS 2, Robotic Operating System, RTOS, TriCore

Abstrakt

Tato diplomová práce poskytuje komplexńı analýzu robotického operačńıho systému (ROS) 2,
včetně jeho architektury, komunikačńıch vzor̊u a koncept̊u, a také jeho využit́ı Data Distribution
Service (DDS) jako middlewaru pro sd́ıleńı dat. Dále se práce zabývá Micro-ROS, odlehčenou
verźı ROS 2 navrženou pro provoz na mikrokontrolérech s omezenými zdroji. Práce se věnuje
architektuře, vlastnostem a vhodnosti Micro-ROS pro použit́ı ve vestavných systémech. Následně
práce rozeb́ırá využit́ı PXROS-HR, operačńıho systému reálného času (RTOS), v navrhovaném
řešeńı.

Navrhované řešeńı zahrnuje vytvořeńı vlastńı statické knihovny pro Micro-ROS a imple-
mentaci mutex tasku pro bezpečný př́ıstup k dat̊um. Práce představuje strukturu projektu včetně
konfiguraćı, linker soubor̊u a popisuje implementaci vlastńıch alokátor̊u a vlastńıho transportu
pro Micro-ROS. Práce také obsahuje ukázky v́ıcevláknových publisher-subscriber a v́ıcejádrových

x

xi

publisher-subscriber aplikaćı pro Micro-ROS, které ukazuj́ı proveditelnost a efektivitu navrho-
vaného řešeńı.

Dále je vyhodnoceno navržené řešeńı provedeńım jednoho testu pro každé demo, který zahrnuje
publishing a subscribing k topicu, vytvořeńı servisńıho serveru pro vzdálené procedury a dis-
tribuci práce na v́ıce úloh nebo jader. Výsledky ukazuj́ı, že navrhované řešeńı dosahuje bezpečného
př́ıstupu k dat̊um a umožňuje efektivńı komunikaci v prostřed́ıch s omezenými zdroji.

Kĺıčová slova Aurix, HighTec, Infineon, Micro-ROS, PXROS-HR, PXROS, Real-time, ROS,
ROS 2, Robotický operačńı systém, RTOS, TriCore

List of abbreviations

AMR Autonomous Mobile Robot
API Application Programming Interface

ARP Address Resolution Protocol
ASIL Automotive Safety Integrity Level
ASIO Audio Stream Input Output
BSD Berkeley Software Distribution

CIoT Consumer Internet of Things
CLI Command-Line Interface

DDS Data Distribution Service
GUI Graphical User Interface
IDE Integrated Development Environment
IDL Interface Definition Language
IEC International Electrotechnical Commission
IIoT Industrial Internet of Things
IoT Internet of Things
IP Internet Protocol

ISO International Organization for Standardization
lwIP Light-Weight Internet Protocol

MCU Cicrocontroller Unit
MIT Massachusetts Institute of Technology

OMG Object Management Group
OS Operating System
PC Personal Computer

POSIX Portable Operating System Interface
PXROS-HR Portable eXtendible Real-time Operating System – High Realiability

QoS Quality of Service
RAM Random Access Memory
ROS Robotic Operating System
RPC Remote Procedure Call

SLAM Simultaneous Localization and Mapping
SW Software

RTOS Real-Time Operating System
RTPS Real-Time Publish-Subscribe

SIL Safety Integrity Level
TCP Transmission Control Protocol

UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol
USB Universal Serial Bus

Wi-Fi Wireless Fidelity
XRCE eXtremely Resource-Constrained Environment

xii

Chapter 1

Introduction

The focus of this master’s thesis is to explore the possibility of integrating ROS (Robot Operating
System) with PXROS-HR (Portable eXtendible Real-time Operating System – High Reliability),
a certified real-time operating system. PXROS-HR is a highly reliable and portable real-time
operating system that has obtained certifications for TriCore, validating its suitability for safety-
critical applications up to SIL 3 (IEC 61508) and ASIL D (ISO 26262). The thesis aims to
explore the potential benefits and drawbacks of such an integration and provide insights into the
implementation process.

The thesis starts with an analysis of ROS and its features, including the design principles,
communication patterns, architecture, and security features. It also covers the latest version
of ROS, ROS 2, and its key features, such as support for real-time systems and the Data Dis-
tribution Service (DDS) protocol. Additionally, the thesis introduces Micro-ROS, a lightweight
implementation of ROS that can run on microcontrollers with limited resources, and discusses
its architecture, features, and applications.

Furthermore, the thesis explains DDS, a standard protocol for data-centric communication,
and its role in ROS 2 and Micro-ROS. It describes the DDS model, architecture, and key features,
including the Publish-Subscribe pattern and the Real-Time Publish-Subscribe (RTPS) protocol.
The thesis also discusses PXROS-HR, an RTOS from HighTec, and its unique features.

The proposed solution and implementation section details the steps taken to integrate ROS
with PXROS-HR using Micro-ROS. It covers building the Micro-ROS library and making code
modifications to support mutex implementation, project structure, and testing. The section
also includes examples of implementing custom allocators, custom transport, multithreaded and
multicore publisher-subscriber communication, and other Micro-ROS demos.

Finally, the thesis concludes with testing results. The testing section evaluates the proper
functioning of the proposed solution by separately testing each demo, which includes publishing,
subscribing to a topic, creating a service server for remote procedures, and the ability to dis-
tribute the work to multiple tasks (threads) or multiple cores. The results of the testing section
demonstrate the feasibility and efficacy of the proposed solution.

1.1 Motivation

The field of robotics and automation is rapidly expanding, and there is a growing need for safe and
reliable real-time operating systems to support increasingly complex and sophisticated robotic
systems. PXROS-HR is a certified real-time operating system with high reliability, designed to
meet the safety requirements of safety-critical applications in various domains, including auto-
motive, aerospace, and industrial automation. On the other hand, the Robot Operating System

1

2 Introduction

(ROS) has become the de-facto standard in robotics research and development due to its flexi-
bility, versatility, and ease of use.

However, integrating PXROS-HR with ROS is not a straightforward task due to differences in
their underlying architectures and design philosophies. This integration can bring many benefits,
including real-time performance, safety, and reliability of robotic systems, and opens up new
possibilities for building more sophisticated robotic applications. Therefore, this thesis aims to
investigate the feasibility of integrating PXROS-HR with ROS and to provide a proof-of-concept
implementation. The results of this thesis can help researchers and practitioners in the field of
robotics to build safer, more reliable, and more performant robotic systems.

1.2 Goals
The main goal of this thesis is to assess the feasibility of using PXROS-HR as the real-time
operating system for micro-ROS. The thesis aims to identify the essential requirements of the
underlying operating system and evaluate PXROS-HR’s ability to meet those requirements.
If any requirements are unmet, the thesis proposes potential solutions to enable the use of
PXROS-HR in micro-ROS projects. Additionally, the thesis seeks to develop a prototype example
that showcases the effectiveness of PXROS-HR as a real-time operating system for robotics
applications in conjunction with micro-ROS.

1.3 Current State
Micro-ROS currently supports three real-time operating systems: FreeRTOS, Zephyr, and NuttX.
FreeRTOS has been developed over 18 years in collaboration with leading chip companies and is
now distributed under the MIT open-source license. It is known for its simplicity and micro-ROS
uses the POSIX extension provided by FreeRTOS. Zephyr is an open-source, scalable project that
aims to obtain functional safety certification and is developed within a Linux Foundation Project,
making it the first open-source RTOS with such a certification. NuttX, on the other hand, em-
phasizes compliance with standards and has a UNIX API mimic that simplifies development for
Linux users. [1]

Each of these RTOSes supports multiple architectures and offers various features to users,
with different board support and licensing. However, RTOS-based support remains the primary
entry point to micro-ROS, despite the fact that real-time operating systems are commonly used
in resource-constrained environments. It is possible to use micro-ROS directly on bare metal
with an integration into the Arduino IDE.

Additionally, the experimental Arm Mbed OS is a new real-time operating system supported
by the micro-ROS project, specifically designed for creating IoT applications using an Arm
Cortex-M microcontroller.

Micro-ROS does not directly connect to the ROS 2 world, and instead relies on a micro-
ROS agent to facilitate communication between resource-constrained environments and standard
ROS 2 systems. The agent acts as a node, following the client-server paradigm, serving as a server
between the DDS Network and Micro-ROS nodes inside the MCU, and interacting with DDS
Global Data Space on behalf of the Micro-ROS nodes.

Chapter 2

Analysis

Robot Operating System (ROS) is a powerful tool for the development of robotic systems that has
gained popularity in recent years. As such, it has become the focus of numerous research studies
exploring its functionality, architecture, and applications. In this master’s thesis, the analysis
chapter provides an in-depth exploration of ROS, including its latest version ROS 2, and a related
project, Micro-ROS. Additionally, this chapter discusses the Data Distribution Service (DDS)
and how it relates to ROS 2. The purpose of this chapter is to evaluate the design principles,
communication patterns, architecture, security, and features of these technologies. The analysis
also examines how ROS 2 and Micro-ROS address the limitations of the previous ROS version
and how DDS enhances communication and data distribution in ROS 2. The chapter concludes
with PXROS-HR, a Real-Time Operating System (RTOS) developed by HighTec for embedded
systems. Finally, RTOS characteristics and PXROS-HR special features will be discussed in
more detail in the last section of this chapter.

2.1 Robot Operating System
This section will provide an overview of ROS, starting with a discussion of what ROS is and its
features. It will then provide a brief historical background of the platform. The next subsection
will explore why ROS has become such a popular choice among robotics developers, highlighting
the key advantages it offers. Finally, the section will provide an overview of the different versions
of ROS that have been released to date, detailing the new features and improvements in each
version.

2.1.1 What Is ROS?
Robot Operating System (ROS) is an open-source, meta-operating system for robots. It provides
a collection of software libraries and tools to help software developers create robot applications.
ROS offers a modular and distributed architecture, which allows developers to build complex
robot behaviors by integrating different software components.

ROS was initially developed by Willow Garage in 2007 for use in their personal robotics
research projects, and it has since grown into a widely used platform for robotics research,
education, and industry. ROS has a large and active community of users and contributors who
have developed a wide range of packages, libraries, and tools to extend its capabilities.

ROS supports a variety of programming languages, including C++, Python, and Java, and
provides a standard communication infrastructure for different parts of a robot system to com-
municate with each other. This communication infrastructure is based on a publish-subscribe

3

4 Analysis

messaging model and enables developers to easily integrate sensors, actuators, and other hard-
ware components into their robot systems.

Overall, ROS provides a flexible and powerful platform for developing robot applications,
allowing developers to focus on higher-level tasks such as perception, planning, and control,
while abstracting away the underlying hardware and communication infrastructure. [2, 3]

2.1.2 Why ROS?
ROS is a popular open-source middleware widely used for developing robotic applications. ”It’s
the fastest way to build a robot!” says [4], providing some reasons why ROS is a good choice for
robotics development:

Global community of millions of developers and users contributing to and improving the
software

Proven in use across the robotics industry, teaching, research, and large-scale competitions

Helps to create billions of dollars in value in the autonomous mobile robot (AMR) industry

Shortens time to market by providing the tools, libraries, and capabilities needed for robotics
applications

Provides flexibility and freedom to customize ROS according to business needs

Multi-domain ready for use across a wide array of robotics applications

Multi-platform supported and tested on Linux, Windows, macOS, and various embedded
platforms via micro-ROS

100% open-source ensuring free and unfettered access to a high-quality, fully featured robotics
SDK

Commercial-friendly distribution under permissive open-source licenses, such as Apache 2.0

Strong industry support demonstrated by the membership of the ROS 2 Technical Steering
Committee

Overall, ROS is a powerful and versatile platform that enables the rapid development and
prototyping of complex robotics and automation systems. Its modular architecture, large com-
munity, open-source nature, interoperability, visualization and simulation tools, robust communi-
cation infrastructure, and flexibility make it a popular choice among roboticists and researchers.
[4]

Benefits
In the past, robot designers and researchers needed to spend significant amounts of time de-
signing both the hardware and embedded software for each robot project. This process required
specialized skills in mechanical engineering, electronics, and embedded programming. The re-
sulting programs were more akin to embedded programming rather than robotics as we know
it today. Programs were closely tied to the underlying hardware, leading to significant program
reuse.

Robot operating systems were developed to address these challenges by offering standardized
functionalities that abstract hardware, similar to conventional operating systems for personal
computers. ROS acts as a facilitator for robotics projects, allowing researchers and engineers to
avoid continuously reinventing the wheel for each project and reducing financial costs.

Robot Operating System 5

ROS has a positive impact on research and development by reducing costs and time to market,
making it an attractive option for those who need to quickly launch a new prototype or reduce
a technological gap. Additionally, ROS allows experts from various disciplines to combine their
knowledge and skills to design and program robots, as robotics projects require a diverse set of
skills, often beyond those of a single individual.

ROS lowers the technical level required for working on robotics projects, making it easier
for companies to get started in robotics or design complex systems more quickly. In summary,
ROS offers a standardized and efficient approach to robotics that streamlines the design and
programming process, reduces costs, and facilitates collaboration across disciplines. [5]

2.1.3 Versions
This subsection will present ROS versions and give additional information about the reasons
behind the changes.

ROS 1

ROS 1 provides a comprehensive set of libraries that facilitate the development of various types
of robots, including tools for monitoring processes, communication introspection, and time-series
transformations, among others. Moreover, it features a large collection of sensor, control, and
algorithmic packages contributed by the community that enables even small teams to create
complex robotics applications. Despite these benefits, ROS 1 faces several challenges such as
inconsistency in data delivery over lossy links, absence of built-in security mechanisms, and
a single point of failure. Although the ROS 1 community has made attempts to address these
issues, such efforts often involve compromises due to architectural and engineering limitations.
For instance, addressing the single point of failure required bespoke solutions for each existing
client library. Another attempt involved extending ROS 1 for security via the SROS project, but
it was difficult to maintain and needed further development to align with security trends. These
efforts extended ROS 1’s lifespan but failed to address its core limitations. [2]

Reason to Make ROS 2

Robot Operating System began as a software development environment for the Willow Garage
PR2 robot, aiming to provide software tools for research and development projects while also be-
ing useful on other robots. ROS 1 was guided by the PR2 use case, which was a single robot with
workstation-class computational resources, no real-time requirements, excellent network connec-
tivity, and applications in research, mostly academia. ROS 1 overshot its goal and became useful
on a wide variety of robots, even being adopted by industries like manufacturing and agriculture.
However, with new use cases arising, ROS 1 was stretched in unexpected ways. ROS 2 was then
developed to meet the needs of a broader community by tackling new use cases head-on, such
as teams of multiple robots, small embedded platforms, real-time systems, non-ideal networks,
production environments, and prescribed patterns for building and structuring systems. At the
core of ROS is an anonymous publish-subscribe middleware system, which is now built using
off-the-shelf open-source libraries that benefit from ongoing improvements and are already used
in production systems. ROS 2 also aims to improve user-facing APIs by designing new APIs,
while still maintaining the key concepts of distributed processing, anonymous publish/subscribe
messaging, Remote Procedure Call (RPC) with feedback, language neutrality, and system intro-
spectability. While ROS 2 will not be API-compatible with existing ROS code, mechanisms will
be in place to allow both to coexist. [6]

6 Analysis

ROS 2
ROS 2 is the successor to the original ROS. It was designed to overcome the limitations of
ROS 1 (such as performance issues and lacked support for real-time systems) and to address
the evolving needs of the robotics industry. It also offers better support for multiple operating
systems, programming languages, and hardware architectures, making it easier for developers to
build and deploy robot applications. ROS 2 uses the Data Distribution Service (DDS) standard
for communication, which provides better performance and scalability than the previous ROS 1
communication protocol. ROS 2 also has a more modular architecture, which allows developers
to use only the components they need and to add new components as necessary.

One of the key goals of ROS 2 is to enable the development of more complex and robust
robotic systems. It achieves this by providing better support for multi-robot systems and more
advanced hardware, as well as a wider range of programming languages and tools. Moreover,
ROS 2 incorporates new features that make it easier to integrate with other software systems,
including cloud services and machine learning frameworks. [7, 8]

Comparison of ROS 1 with ROS 2
A comparison of significant distinctions between ROS 1 and ROS 2 is presented in 2.1, taken
from [2].

Category ROS 1 ROS 2

Network transport Bespoke protocol built on TCP/UDP Existing standard (DDS), with ab-
straction supporting addition of others

Network architecture Central name server (roscore) Peer-to-peer discovery
Platform support Linux Linux, Windows, and macOS

Client libraries Written independently in each lan-
guage

Sharing a common underlying C library
(rcl)

Node versus process Single node per process Multiple nodes per process
Threading model Callback queues and handlers Swappable executor
Node state management None Lifecycle nodes

Embedded systems Minimal experimental support (rosse-
rial)

Commercially supported implementa-
tion (micro-ROS)

Parameter access Auxilliary protocol built on XMLRPC Implemented using service calls
Parameter types Type inferred when assigned Type declared and enforced

Table 2.1 Summary of ROS 2 features compared with ROS 1. [2]

ROS 2 7

2.2 ROS 2
This section provides an overview of ROS 2, including its design principles and requirements that
guided its development. It discusses the various communication patterns supported in ROS 2,
as well as the architecture of the system. The section describes the internal interfaces used by
ROS 2, including the ROS middleware interface (rmw API) and the ROS client library interface
(rcl API). In addition, it offers conceptual overviews that offer broad and high-level introductory
details on important elements of ROS 2. A thorough analysis of the system’s performance and
reliability aspects is presented, along with a discussion of the security considerations that were
taken into account during its development. Lastly, the section provides a brief overview of related
projects that are based on or related to ROS 2.

Scope
The Robot Operating System 2 is a versatile platform that caters to a wide range of robotics
applications, including education, research, product development, and deployment. ROS 2 is
composed of several interrelated software components, categorized into three areas (taken from
[2]):

1. Middleware
The middleware component, which handles communication among components, is considered
the foundation of ROS 2 and includes network APIs and message parsers.

2. Algorithms
ROS 2 also provides commonly used algorithms in robotics applications, such as perception,
Simultaneous Localization and Mapping (SLAM), and planning.

3. Developer tools
ROS 2 includes a suite of developer tools for configuration, debugging, simulation, and log-
ging.

2.2.1 Design Principles & Requirements
The design of the ROS 2 has been guided by a set of design principles, including:

Distribution – involves separating requirements into functionally independent components
that have their own execution context and share data via explicit communication in a decen-
tralized and secure manner

Abstraction – is used to govern communication through interface specifications that define
the semantics of the data exchanged, leading to an ecosystem of interoperable components
abstracted away from specific vendors of hardware or software components

Asynchrony – enables communication among components asynchronously, creating an event-
based system that allows an application to work across multiple time domains

Modularity – is enforced at multiple levels, and the ecosystem is organized into a large
number of federated packages rather than a single codebase

These design principles have trade-offs, such as making it more difficult to achieve deter-
ministic execution, but adherence to them generally leads to better outcomes, including code
reuse, software testing, fault isolation, collaboration within interdisciplinary project teams, and
cooperation at a global scale. [2]

8 Analysis

To meet the needs of robotics developers, a system has been designed with the following
requirements:

Security

Embedded systems support

Diverse networking environments support

Real-time computing

Product readiness

ROS 2 has an integrated security system that comprises authentication, encryption, and
access control to secure its communication channels. Additionally, Micro-ROS helps to extend
the reach of ROS 2 to embedded systems. ROS 2’s quality of service is designed to adapt to the
constraints of a network, while APIs enable real-time computing. Furthermore, Apex.AI1 has
achieved functional safety certification for their ROS 2-based autonomous vehicle software. This
certification enables the use of ROS 2 in safety-critical systems, such as autonomous vehicles and
heavy machinery.[2]

2.2.2 Communication Patterns
The ROS 2 documentation includes engaging animations and clear explanations that demonstrate
how these patterns work, and they can be found in the tutorial2 section.

ROS 2 Graph
The ROS graph is a network of ROS 2 elements processing data together at one time. It
encompasses all executables and the connections between them if you were to map them all out
and visualize them. [10]

Node
Node is a software component in the ROS 2 framework that performs a specific task or set
of tasks within a robot application. It is recommended that every node has a single specific
function, such as controlling a particular component of the robot (e.g., one node for wheel
motors and another for a laser range-finder), and they can communicate with each other using
topics, services, actions, or parameters. Multiple nodes work together to form a complete robotic
system. In ROS 2, a single executable, such as a C++ or Python program, can include one or
more nodes. [10]

Parameters
ROS 2 parameters are a way to store and retrieve data that affects the behavior of a node.
Parameters can be thought of as configuration variables that can be set and modified at runtime.
Unlike ROS 1, ROS 2 parameters are type-safe, meaning that the parameter’s data type is
specified and enforced by the system. This ensures that nodes receive valid parameter values
and eliminates potential bugs caused by type mismatches.

1”Apex.Grace is a fork of ROS 2 that has been made so robust and reliable that it can be used for the
development and production of highly-safety critical systems such as autonomous vehicles, robots, and aerospace
applications. Apex.Grace is API-compatible to ROS 2. In a nutshell, Apex.Grace is an SDK for autonomous
driving software and other safety-critical mobility applications.” [9]

2ROS 2 tutorials are available from https://docs.ros.org/en/humble/Tutorials.html.

https://docs.ros.org/en/humble/Tutorials.html

ROS 2 9

ROS 2 parameters can be set via command-line arguments, configuration files, or dynamically
at runtime. They can be used to tune the behavior of a node or to specify information about
the node, such as its name or namespace. Nodes can also use parameters to share information
with other nodes in the system.

ROS 2 parameters are organized under a node, and nodes can expose their parameters to
the rest of the system, allowing other nodes to access and modify them. This makes parameters
a useful tool for configuring and coordinating the behavior of a system of ROS nodes. [11]

Message

ROS 2 messages are the basic unit of data exchange in ROS 2. They are a structured way of
exchanging information between ROS 2 nodes using topics, services, and actions. Each message
is defined as a simple data structure in a language- and platform-independent manner, allowing
nodes written in different programming languages to communicate with each other seamlessly.

ROS 2 messages are defined in ROS interface definition language (IDL) files, which describe
the fields and data types that make up the message. The IDL files are used to generate language-
specific code that can be compiled and linked into the nodes that use them. [12]

Topic

In ROS 2, the communication between nodes is often achieved through topics, which are a type
of asynchronous message-passing framework. Similar to other asynchronous frameworks such
as ASIO (Audio Stream Input Output), topics allow nodes to communicate with one another
through publish-subscribe (described in 2.4.2) functionality. This approach is focused on orga-
nizing a system using strongly typed interfaces by arranging end points in a computational graph
under the concept of a node.

One of the advantages of using topics is the ability to have many-to-many communication,
which is useful for system introspection. This allows developers to observe messages passing on
a topic by simply creating a subscription to that topic without making any changes to the system.
This feature is achieved through the use of an anonymous publish-subscribe architecture. [2, 13]

Service

ROS 2 provides different communication patterns to accommodate different use cases. While
asynchronous message-passing frameworks like topics can be advantageous for system introspec-
tion, they may not always be the right tool. In such cases, ROS 2 provides request-response
communication through services. These services enable easy data association between a request
and a response, which is useful for ensuring that a task was completed or received. Unlike tra-
ditional request-response patterns that may block a client’s process, ROS 2 allows non-blocking
service calls. Services are organized under a node for organization and introspection, allowing
a subsystem’s interfaces to appear together in system diagnostics.

A service consists of two parts:

Request – a message that contains the data the client node wants to send to the service
node

Response – a message that contains the data the service node sends back to the client node

ROS 2 services are typically used when a node needs to perform a specific action, like setting
a parameter or triggering a specific behavior in another node. [2, 14, 15]

10 Analysis

Action
ROS 2 introduces the concept of actions which are goal-oriented, asynchronous communication
interfaces. An action is defined by an action interface, which consists of a goal, feedback, and
result message. Unlike services, actions are designed to manage complex and long-running op-
erations, such as autonomous navigation or manipulation that can be preempted or canceled.
Additionally, actions are designed to provide feedback to the client about the status of the re-
quested operation, allowing clients to monitor and react to progress updates. As with services,
actions are nonblocking and organized under the node, allowing for easy organization and intro-
spection of a subsystem’s interfaces. [2, 16, 17]

Figure 2.1 The picture shows the different communication patterns available in ROS 2 – topics,
services, and actions. The arrows between nodes indicate the flow of information, with publishers and
subscribers using topics, clients and services servers using services, and clients and actions servers using
actions. [2]

2.2.3 Architecture
The middleware architecture of ROS 2 consists of several abstraction layers, which are generally
hidden behind the client library during development. The client libraries provide access to the
core communication APIs and are tailored to each programming language to make them more
idiomatic and take advantage of language-specific features. Communication is agnostic to how the
system is distributed across compute resources, whether they are in the same process, a different
process, or even a different computer.

The middleware abstraction layer called ROS Middleware (rmw) provides the essential com-
munication interfaces, and the vendors for each middleware implements the rmw interface and
are made interchangeable without code changes. Users may choose different rmw implementa-
tions, and thereby different middleware technologies, based on performance, software license, or
supported platforms. Although all of the supported rmws are based on DDS, a few community-
supported rmws exist for other communication methods.

The network interfaces, such as topics, services, and actions, are defined with message types
using an interface description language (IDL). ROS 2 defines these types using the ROS IDL
format (.msg files) or the OMG IDL standard (.idl files), and user-provided interface definitions

ROS 2 11

are generated at compile time and create code required for communication in any client library
language.

ROS 2 provides a pattern for managing the lifecycle of nodes that transition through a state
machine with states like unconfigured, inactive, active, and finalized. This is an important tool
for coordinating various parts of the distributed asynchronous system.

Developers can use additional architectural patterns to structure their programs. ROS 2
offers a pattern that manages the lifecycle of nodes, moving through a state machine with dif-
ferent states, such as unconfigured, inactive, active, and finalized. These states enable system
integrators to control when specific nodes are active, which is essential for coordinating various
parts of the distributed asynchronous system.

As previously mentioned, communication is not tied to the location of endpoints within
machines and processes. However, the decision of which machine or process to allocate each
node should not be made during node development. Instead, it should be based on how the node
is used in the larger system. Nodes developed as components can be allocated to any process
as a configuration, which is an important feature for systems under development. It allows
developers to rearrange where nodes are running based on various circumstances. For example,
several nodes can share a process to conserve system resources or reduce latency. [2]

Figure 2.2 The picture shows the architecture of ROS 2, divided into two main internal interfaces –
the rmw (ROS Middleware) layer, the rcl (ROS Client Library) layer; and the client libraries layer. The
rmw layer provides an abstraction of the communication layer, allowing ROS 2 to be used with different
middleware implementations. The rcl layer provides the basic building blocks for ROS 2 applications.
The client libraries layer provides the high-level APIs for creating and running ROS 2 applications, such
as the C++ and Python libraries. [18]

12 Analysis

2.2.4 Internal Interfaces
The internal interfaces in ROS 2 consist of the ROS middleware interface (rmw API) and the
ROS client library interface (rcl API). The rmw API acts as an intermediary between the ROS 2
software stack and the underlying middleware implementation, which could either be a DDS or
RTPS implementation. It facilitates discovery, publish and subscribe mechanics, request-reply
mechanics for services, and serialization of message types.

On the other hand, the rcl API is a slightly higher level API that provides an abstraction layer
between the middleware implementation and the client libraries, such as rclcpp. The rcl interface
gives access to the ROS graph and graph events and is used by the client libraries. In contrast,
the rmw API provides the minimum middleware functionality required to support ROS’s client
libraries. The rmw API implementation is provided by middleware implementation-specific pack-
ages, like rmw fastrtps cpp, which are compiled against vendor-specific DDS interfaces and types.

The goal of the interface abstraction is to isolate the ROS user space code from the under-
lying middleware implementation, allowing users to switch DDS vendors or even middleware
technology with minimal impact on their code. The ros to dds (shown in 2.2) package category
represents the packages that allow users to access DDS vendor-specific objects and settings us-
ing the ROS equivalents, without exposing vendor-specific symbols and headers in the normal
interface. Despite this, it may be necessary on occasion to manually adjust settings, and these
packages make it easy to identify any potential violations of vendor portability by inspecting the
package’s dependencies. [18]

2.2.5 ROS 2 Concepts
Conceptual overviews provides general background information about key aspects of the system.
This includes high-level information on the architecture, key concepts, and features of ROS 2.
The aim is to provide a foundational understanding of the system without diving into more
technical details.

Executors
In ROS 2, an executor is responsible for executing callbacks for subscriptions and timers. It
is essentially a thread or set of threads that continuously checks for new events and runs the
corresponding callback functions. Executors help manage the asynchronous nature of ROS 2,
ensuring that callbacks are executed in a timely and efficient manner.

ROS 2 provides several different types of executors, each with a specific behavior and use
case, including single-threaded and multi-threaded executors. Single-threaded executors run
all callbacks in a single thread, while multi-threaded executors execute callbacks in multiple
threads, allowing for parallel processing of callbacks resulting in improved performance. In
addition, ROS 2 provides executors that are optimized for specific use cases. For example, the
StaticSingleThreadedExecutor is designed for use in systems where the number of subscriptions
and timers is fixed and known in advance. The StaticSingleThreadedExecutor can pre-allocate
memory for subscriptions and timers, resulting in more efficient callback execution.

Overall, executors are an important part of ROS 2, as they help manage the flow of data and
events within a ROS 2 system. By providing a way to handle asynchronous events in a structured
and efficient manner, executors help ensure that ROS 2 systems can operate effectively and
reliably. [19]

ROS 2 Client Libraries
Client libraries are application programming interfaces that allow developers to write their code
for the ROS. These libraries provide access to the fundamental concepts of ROS, including

ROS 2 13

nodes, topics, services, and others. They are available in different programming languages so
that developers can write their ROS code in a language that best suits their requirements. This
enables developers to build their applications using Python for rapid prototyping and C++ for
computationally intensive tasks.

Sharing of messages between nodes written using different client libraries is possible because
all client libraries have code generators that allow users to interact with ROS interface files in
their respective programming languages.

Moreover, client libraries expose the core functionality of ROS, such as names and names-
paces, time, parameters, console logging, threading model, and intra-process communication, to
developers. This functionality is essential in building ROS applications and is made available to
developers through client libraries.

The ROS 2 client libraries, clcpp and rclpy, offer C++ and Python interfaces respectively,
both of which use the common functionalities of the ROS Client Library (rcl).

rclcpp

The rclcpp package provides a C++ interface to create nodes, publishers, and subscribers,
and is designed to be used with C++ messages generated by rosidl generator cpp. Rclcpp
uses all the features of C++ and C++17 features to provide a user-friendly interface, while
also maintaining consistent behavior with other client libraries that use the rcl API.

rclpy

Similarly, rclpy builds on top of the rcl C API and provides an idiomatic Python experience
using native Python types and patterns. The Python client library generates custom Python
code for each ROS message and converts the native Python message object into the C ver-
sion of the message when needed. The rclpy also takes care of the execution model using
threading.Thread or similar to run the functions in the rcl API. All operations happen on
the Python version of the messages until they need to be passed into the rcl layer, at which
point they are converted into the plain C version of the message so it can be passed into the
rcl C API.

Community-maintained

Additionally, there are other community-maintained client libraries for languages such as
Ada, C, JVM, .NET Core, Node.js, and Rust.

These client libraries make use of the common core rcl interface to implement logic and
behavior of ROS concepts that are not language-specific, such as parameters and namespaces.
By making use of the rcl, client libraries only need to wrap common functionalities with foreign
function interfaces, which keeps them thin and easier to develop. Having a common core also
makes the behavior between languages more consistent and requires less maintenance when it
comes to bug fixes. [20]

The ROS DOMAIN ID

In ROS, a domain is a logical grouping of nodes that are able to communicate with each other. It
is defined by a unique domain ID, which is an integer that is set by the user. Nodes that belong
to the same domain can communicate with each other directly, without the need for extra
configuration. Nodes in different domains can still communicate, but they need to explicitly
specify the domain ID of the other nodes. This can be useful for separating different parts of
a larger system or for isolating test environments. The ROS domain ID can be set using the
ROS DOMAIN ID environment variable or using command-line arguments. [21]

14 Analysis

QoS
ROS 2 provides a Quality of Service (QoS) settings framework to manage how data is exchanged
between nodes in the system. The QoS settings define the reliability, durability, and communica-
tion speed of the data being sent. By configuring the QoS settings, developers can optimize the
system to meet the requirements of their specific application. There are different types of QoS
settings available in ROS 2, such as reliability, durability, history, liveliness, and deadline. Each
type has different options that can be set to achieve the desired behavior. By understanding
and appropriately setting the QoS parameters, developers can create a more efficient and reliable
ROS 2 system. [22]

2.2.6 Security
In modern commercial robotics, security is an essential aspect that needs to be considered. ROS 2
is designed with security in mind and implements the DDS security standard along with a suite
of tools called SROS2 that simplifies the management of security infrastructure. DDS security
is based on three main concepts, described in [2]:

Authentication
Verifies the identity of a message or participant in the network. In ROS 2, digital signatures
are utilized for authentication through public key cryptography. SROS2 includes command-
line tools for generating and storing digital signatures.

Access control
Allows fine-grained policies to be applied to authorized network participants. It allows par-
ticipants to communicate only with approved network interfaces and to discover approved
participants. SROS2 includes command-line tools for generating these configurations.

Encryption
Guarantees that third parties cannot access or replay data into the network. Encryption is
accomplished using the Advanced Encryption Standard Galois/Counter Mode (AES-GCM)
symmetric-key cryptography. The key material is derived from the shared secret obtained
during authentication. The following section explores the details of these security concepts
in DDS security and SROS2, and the tools available for configuring them.

2.2.7 Related Projects
There are several related projects in the ROS 2 ecosystem. Among the most significant are:

Gazebo – physics simulation tool for ROS-based robots

Ros2 control – flexible framework for real-time control of robots implemented with ROS 2

Navigation2 – comprehensive and flexible navigation stack for mobile robots using ROS 2

MoveIt – rich platform for building manipulation applications featuring advanced kinemat-
ics, motion planning, control, collision checking, and more

Micro-ROS – platform for putting ROS 2 onto microcontrollers, starting at less than 100 kB
of RAM (detailed information in 2.3)

There are also hundreds of further community projects that are developed and maintained
by the global ROS community. Developers can maintain a ”README.md” file in the root of
their package folder to document their package, which is then rendered into the overview page of
the package at https://index.ros.org/. In addition, there are also company-driven projects from
Intel and NVIDIA. [23]

https://index.ros.org/

Micro-ROS 15

2.3 Micro-ROS
Robot Operating System 2 is an open-source robotics middleware widely used in research and
industry. It provides a wide range of libraries and tools to ease the development of complex
robotic systems. However, the majority of ROS 2 users target high-end computing platforms
such as laptops and servers, neglecting the potential of deploying ROS 2 on low-cost and low-
power microcontrollers.

Micro-ROS aims to address this issue by bringing ROS 2 to microcontrollers, enabling the
development of first-class ROS 2 entities in the embedded world. The project provides a client
library optimized for microcontrollers, which includes all major ROS 2 concepts such as nodes,
publish/subscribe, client/service, node graph, and lifecycle management. The client library is
based on the standard ROS 2 Client Support Library (rcl) and a set of extensions and convenience
functions (rclc), which are optimized for microcontrollers. Micro-ROS mission is defined as
follows: ”Bridging the gap between resource-constrained microcontrollers and larger processors
in robotic applications that are based on the Robot Operating System.” [24]

One of the main challenges of running ROS 2 on microcontrollers is memory usage, as these
devices usually have limited resources. To address this challenge, Micro-ROS provides a complete
article and tutorial on how to tune the memory consumption of the middleware. Additionally, the
project uses Micro XRCE-DDS, a middleware implementation optimized for deeply embedded
systems, which provides built-in support for various communication transports such as serial,
Ethernet, Wi-Fi, Bluetooth, and 6LoWPAN.

Micro-ROS supports popular open-source real-time operating systems (RTOS) such as Zephyr,
FreeRTOS, and NuttX, and can be ported to any RTOS that comes with a POSIX interface. The
RTOS-specific build systems are integrated into a few generic setup scripts, which are provided
as a ROS 2 package. [24]

Why Microcontrollers?
Microcontrollers are used extensively in robotic applications due to their hardware access, hard,
low-latency real-time processing capabilities, and power-saving features. Additionally, microcon-
trollers are preferred for safety-critical applications, but it is important to note that micro-ROS
is not developed according to any safety standard. [24]

2.3.1 Features and Architecture
The micro-ROS system allows for the implementation of major core concepts such as nodes,
publish/subscribe, client/service, node graph, and lifecycle on microcontrollers. The micro-
ROS client API, which is based on the standard ROS 2 Client Support Library (rcl) and a set
of extensions and convenience functions (rclc), is optimized for MCUs and does not require
dynamic memory allocations. The micro-ROS agent seamlessly connects micro-ROS nodes to
standard ROS 2 systems, providing access to micro-ROS nodes with known ROS 2 tools and
APIs. The extremely resource-constrained middleware, Micro XRCE-DDS, is integrated with
the ROS middleware interface (rmw) in the micro-ROS stack and supports various transports.
Micro-ROS also supports popular open-source real-time operating systems, and its build systems
are integrated into generic setup scripts that allow ROS developers to use their usual command
line tools. The architecture scheme is shown in 2.3. [25]

16 Analysis

Figure 2.3 The image shows the architecture of Micro-ROS, a lightweight implementation of the
Robot Operating System 2 (ROS 2) designed for microcontrollers and microprocessors. The architecture
includes multiple layers, including the RTOS layer, middleware layer, and the micro-ROS client library
layer. The image also depicts the different components of Micro-ROS, including the Micro XRCE-DDS
agent, which handles communication between the microcontroller and the larger ROS 2 system, and the
Micro-ROS client library, which provides the functionality needed to develop and deploy applications on
the microcontroller. [25]

2.3.2 Supported RTOSes
The use of RTOSes is widespread due to the benefits they offer (more about what is RTOS is
described in 2.5.2). RTOSes typically provide hardware abstraction layers that ease the use of
hardware resources, such as timers and communication buses, and offer threads and tasks entities
which, together with the use of schedulers, provide the necessary tools to implement determinism
in the applications. They also offer stack management, which helps in the correct memory usage
of the MCU resources, a valuable good in embedded systems.

In addition, the use of RTOSes allows the development of reusable code, as they offer different
algorithms for scheduling and hardware abstraction layers that can be leveraged by different
applications. The exchange of software entities is expected and desired at all levels, including
the RTOS layer.

Micro-ROS supports three RTOSes – FreeRTOS, Zephyr, and NuttX – all of which are
integrated into the micro-ROS build system. Here are the key features of each RTOS, taken
from [1].

Micro-ROS 17

FreeRTOS
FreeRTOS is licensed under the MIT license and is well-known for its simplicity and the extension
provided by Amazon called a:FreeRTOS. In the case of micro-ROS, the POSIX extension is
utilized.

Extremely small footprint

POSIX extension available

Memory management tools

Standard and idle tasks available with assignable priorities

Transport resources: TCP/IP and lwIP

Zephyr
Zephyr is a recent open-source real-time operating system that was created under the Linux
Foundation Project, and is supported by various reputable semiconductor companies. The main
objective of the project is to obtain a certification for functional safety, which would make Zephyr
the first open-source RTOS to acquire such a certification.

Small footprint

Native POSIX port

Cross Architecture: Huge collection of supported boards

Extensive suite of Kernel services

Multiple Scheduling Algorithms

Highly configurable/Modular for flexibility

Native Linux, macOS, and Windows Development

NuttX
NuttX focuses on its adherence to standards such as POSIX and its ability to fit on micro-
controllers with 8- to 32-bit capacity. It has APIs that are similar to UNIX, which makes it
convenient for developers familiar with Linux. NuttX operates under the BSD license and is
developed using the GNU toolchain. However, the uClib++ library used with NuttX comes
under the more restrictive GNU LGPL Version 3 license.

POSIX compliant interface to a high degree

Rich Feature OS Set

Highly scalable

Real-Time behavior: fully pre-emptible; fixed priority, round-robin, and “sporadic” scheduling

There is one more RTOS, yet still only experimentally supported – Arm Mbed OS, an open-
source operating system for Arm Cortex-M microcontrollers. Micro-ROS can also be used as
a bare-metal application, thanks to its release as a standalone library with header files, and its
support for the Arduino IDE.

18 Analysis

RTOS Requirements
The ROS 2 stack has been developed for operating systems according to the Portable Operating
System Interface (POSIX) standards. In fact, ROS 2 only depends on a small subset of POSIX
for process identification, clock, time, and filesystem operations. The use of POSIX is hidden by
a thin abstraction layer implemented by the rcutils package and repository. This package also
implements support for Windows and streamlines tiny differences between different Unix-like
operating systems. Furthermore, rcutils implements an abstraction for atomic operations.

Micro-ROS adopts the assumption of POSIX but makes smaller changes to rcutils, using
the same changeset mechanism as explained above for rcl: filesystem operations are disabled,
dynamic memory allocations (in the context of error reporting) are prevented, and a user-level
implementation of 64-bit atomic operations is provided.

The use of POSIX standards is essential for the porting or reuse of code of ROS 2 that was
natively coded in Linux, as it ensures compatibility between different RTOSes. Both NuttX and
Zephyr comply to a good degree with POSIX standards, making the porting effort minimal,
whereas FreeRTOS provides a plugin, FreeRTOS+POSIX, thanks to which an existing POSIX
compliant application can be easily ported to FreeRTOS ecosystem, and therefore leverage all
its functionality. [26]

2.3.3 Supported Platforms
Micro-ROS has the objective of making ROS 2 accessible to a broad range of microcontrollers, en-
abling first-class ROS 2 components in the embedded domain. The primary focus of micro-ROS
is mid-range 32-bit microcontroller families, which usually have limited memory resources. Typ-
ically, micro-ROS requires MCUs with at least tens of kilobytes of RAM and communication
peripherals that support communication between the micro-ROS Client and Agent. Table 2.2
shows supported hardware, RTOSes, and transports together with the size of RAM and Flash
memories.

Board RTOSes Supported transports Support RAM Flash

Renesas EK RA6M5
FreeRTOS,
ThreadX,
Bare-metal

UDP, UART, USB-CDC Official 512 kB ≤ 2 MB

Espressif ESP32 FreeRTOS UART, WiFi UDP, Ethernet UDP Official 520 kB 4 MB
Arduino Portenta H7 — USB, WiFi UDP Official 8 MB 16 MB
Raspberry Pi Pico
RP2040 — USB, UART Official 264 kB ≤ 16 MB

ROBOTIS OpenCR
1.0 — USB, UART Official 320 kB 1024 kB

Teensy 3.2 — USB, UART Official 64 kB 256 kB
Teensy 4.0/4.1 — USB, UART, Ethernet UDP (4.1) Official 1024 kB 2048 kB
Crazyflie 2.1 Drone FreeRTOS Custom Radio Link Official 192 kB 1 MB
STM32L4 Discovery
kit IoT Zephyr USB, UART, Ethernet UDP Official 128 kB 1 MB

Olimex LTD STM32-
E407

Zephyr, FreeR-
TOS, NuttX

USB (Z, N), UART (Z, F, N),
Ethernet UDP (F, N) Official 196 kB 1 MB

Arduino Due — USB, UART Community 96 kB 512 kB
Arduino Zero — USB, UART Community 32 kB 256 kB
ST NUCLEO-F446ZE FreeRTOS UART Community 128 kB 512 kB
ST NUCLEO-F746ZG FreeRTOS UART Community 320 kB 1 MB
ST NUCLEO-H743ZI FreeRTOS UART Community 1 MB 2 MB

Table 2.2 Supported platforms [27].

Micro-ROS also allows users to build their applications for Linux, which can be useful for
testing and debugging purposes. Moreover, users can build a static library of Micro-ROS, which
can be integrated into custom development tools. Finally, Micro-ROS also allows users to build
a generic library for Android, expanding its compatibility with different platforms. [28, 27]

Micro-ROS 19

2.3.4 Build System
Micro-ROS provides two approaches to develop applications for embedded platforms. The first
approach is a ROS-specific build system that includes modules to integrate software for cross-
compiling applications on supported platforms in terms of both hardware and firmware. The sec-
ond approach generates standalone modules and components that allow integration of micro-ROS
into external or custom development frameworks. A dedicated tool is available to compile micro-
ROS as a standalone library, enabling developers to use micro-ROS without the ROS build
system. [27]

1. micro ros setup
The micro ros setup is a ROS 2 package that provides a standalone build system suitable for
any typical ROS 2 workspace. It enables the compilation and generation of micro-ROS apps
in images for various supported hardware boards and RTOSes.
Using micro ros setup is straightforward as it can be installed similar to any other ROS 2
package, and its functionalities can be accessed through the ROS 2 CLI tool. It requires only
four ROS 2 commands to compile, generate, and flash an image onto a board.

2. External build systems
The second approach to building micro-ROS involves the integration3 of the micro-ROS
build system into the build system of a larger project, followed by building micro-ROS as
a component of the larger project. This approach offers increased flexibility and control over
the build process; however, it may require a greater amount of effort to effectively integrate
the two build systems.

2.3.5 Applications
Micro-ROS demos showcase the capabilities and functionalities of Micro-ROS in various use
cases and scenarios. Here is the list of the examples taken from [27], where are provided details.
However, there does not exist any ”readme” files or any documentation that would describe the
demo.

addtwoints client fibonacci action server multithread publisher subscriber
addtwoints server fragmented publication parameter server
autodiscover agent fragmented subscription ping pong
complex msg publisher graph introspection ping uros agent
complex msg subscriber int32 multinode static type handling
configuration example int32 publisher string publisher
epoch synchronization int32 publisher subscriber string subscriber
fibonacci action client int32 subscriber timer

Table 2.3 Micro-ROS demos

Some of these applications are commonly used with RTOSes; however, not all the supported
RTOSes have all the demos integrated. Different RTOSes only have samples and some extra
demos to show the integration with more realistic use cases, such as reading data from sensors
and publishing it.

3Micro-ROS has been integrated with several platform build tools that are listed at https://github.com/micro-
ROS/micro ros setup.

https://github.com/micro-ROS/micro_ros_setup
https://github.com/micro-ROS/micro_ros_setup

20 Analysis

2.3.6 Multithread Support
As of the time of writing this thesis, there is no official support for multithreaded executors in
micro-ROS, unlike ROS 2’s rclcpp and rclpy, which offer multithreading at the executor level.
Micro-ROS currently supports only multithreading at the publish/subscribe level, which allows
two publishers to publish at the same time to the same session. Micro XRCE-DDS handles
synchronization using mutexes. However, dispatching subscribers to their own threads is not yet
supported, meaning that only one thread can be dispatched at a time.

Some Micro-ROS’s GitHub branches offer support for specific RTOSes, such as NuttX, which
is fully POSIX-compliant and thus uses POSIX API for multithreading. However, multithreading
is crucial for optimizing performance on multicore embedded devices. Although Micro-ROS’s rclc
GitHub page is used for development, there is currently no multithread support in the official
”ros2/rclc” repository. Nevertheless, developers are working on implementing multithreaded
executors4. Initially, multithreading will be available for POSIX-compliant RTOSes, followed by
a solution for non-POSIX operating systems.

4There already exists one pull request https://github.com/ros2/rclc/pull/339 related to this issue
https://github.com/ros2/rclc/issues/340 that is trying to bring multithreaded executor to micro-ROS (firstly
targetted to NuttX).

https://github.com/ros2/rclc/pull/339
https://github.com/ros2/rclc/issues/340

Data Distribution Service 21

2.4 Data Distribution Service
In recent times, the use of the Internet of Things has become increasingly popular. As such,
there is a need for reliable communication middleware to support the development of distributed
systems in IoT. One such protocol is the Data Distribution Service (DDS), which has become
an integral part of industrial development today.

This chapter focuses on DDS, its basic concepts and features, how it works, and its advantages.
It will also examine the DDS model, which is based on the Publish-Subscribe pattern, and explain
how it differs from other messaging patterns. Additionally, the chapter will describe the DDS
architecture and its modular design, highlighting the different entities created by the DDS and
their functions. Furthermore, it will explore how DDS is involved in the ROS and its significance
to the robotics industry. Finally, the chapter will examine micro-ROS, which uses the eXtremely
Resource-Constrained Environment XRCE-DDS, and compare it to the standard DDS protocol.

2.4.1 What Is DDS?
DDS is a key data protocol that offers low-latency data connectivity, extreme reliability, and
scalability for mission-critical IoT applications. It is a specification of the API of a Publish-
Subscribe Communication Middleware for distributed systems that is maintained by the Object
Management Group (OMG). DDS is used in a wide range of industries, including telecom-
munications, defense, data centers, IIoT, robotics, virtualization and cloud computing, energy,
healthcare, public and private transportation, and mining. DDS is particularly important for
robotics, mainly because this protocol has been selected as the default middleware of the ROS
2, which means to robotics similar what Ubuntu and Linux to computing. [29, 30]

Middleware
In a distributed system, middleware is a type of software that provides services between the
application layer and the operating system. For better idea there is an image 2.4 interpreting
middleware’s position and its content. Furthermore, it simplifies the communication and data
exchange and let software developers to focus on the specific purpose of the apllication. [29]

Figure 2.4 The DDS middleware is a software layer that lies between the application layer and
operating system, abstracting the application from the details of OS, network transport and low-level
data formats. The APIs are provided in different programming languages making it independent from
operating system, language used and processor architectures. [29]

22 Analysis

2.4.2 Publish-Subscribe Pattern
The Publish-Subscribe (Pub/Sub) pattern is a messaging pattern used in software architecture
to facilitate communication between components of a system. In Pub/Sub, publishers broad-
cast messages to multiple subscribers without needing to know which specific subscribers are
interested in the message.

Pub/Sub has a few key benefits, such as decoupling components and improving scalability.
By using this pattern, components are not directly dependent on each other, which makes it
easier to modify or replace them without impacting other parts of the system. Pub/Sub also
allows for a high degree of flexibility in scaling, as new subscribers or publishers can be added
as needed without impacting the rest of the system.

Pub/Sub is used in many different types of applications, including real-time data streaming,
event-driven architectures, and Internet of Things applications. It provides a way for components
to communicate with each other in a flexible and scalable way, making it an important pattern
to understand for software developers. [31]

2.4.3 DDS Model
The basic idea of DDS is straightforward: a ”topic” is a name and description for a type of data
that we want to share across a distributed system. These topics exist in an abstract space called
the ”Global Data Space” in DDS, which is similar to the real implementation because there are
usually no intermediate brokers involved.

Entities created by the DDS factory are called publishers and subscribers. Typically, an ap-
plication creates one participant that includes either a publisher or subscriber, but DDS also
defines a third level of entities called Datawriters and Datareaders that are responsible for read-
ing and writing data from the global data space (described in 2.4.5). To simplify the explanation,
the focus will be on publishers and subscribers.

DDS automatically discovers remote participants in the system by having each participant
send out a multicast announcement or a unicast message to a pre-defined list of peers. DDS then
maintains a list of remote destinations for each participant.

This model is decoupled in several dimensions that are taken from [32]:

Space – automatic discovery makes the distributed system independent of the network topol-
ogy, removing the need to change an application accordingly

Time – publisher can publish asynchronously without checking for subscribers, and late-
joiner subscribers receive data if persistence QoS parameters are set to persistent

Redundancy – multiple publishers can share a topic and assigns the publisher with the
highest ”strength” parameter as the owner; failover and takeover mechanisms are available if
the owner fails, and an unlimited number of subscribers can subscribe to a single topic

Platform & Language – DDS is compatible with a wide range of platforms (including
Windows, Linux, Solaris, Aix, Mac Os, Integrity, LynxOS, QNX, VxWorks) and programming
languages (such as C, C++, Java, C#, Ada), allowing for heterogeneous distributed systems
and relieving developers of concerns regarding platform or language compatibility

Implementation – The DDS specification includes an interoperability protocol named RTPS
(details in 2.4.6), allowing different applications within a distributed system to use different
DDS implementations and still work together

Data Distribution Service 23

2.4.4 DDS Architecture
DDS has a straightforward modular design where the DDS infrastructure can be linked to the
application as a library without the need for installation of any service or daemon, and the
interoperability protocol is implemented on top of the transport layer, making it possible to be
implemented over any underlying transport. Typical transports used with DDS include UDP,
TCP, and Shared Memory, but users can also add their own transports. Figure 2.5 provides
a visual representation for better understanding. [32]

Figure 2.5 DDS architecture provides a simple and modular design. For most implementations, the
DDS infrastructure is just a library that can be linked to an application. The interoperability protocol
sits on top of the transport layer allowing it to be implemented over any underlying transport. [32]

2.4.5 DDS Key Features
This section examines the essential characteristics of the Data Distribution Service, encompassing
data-centricity, a global data space, dynamic discovery, quality of service, and security. DDS
stands out among other middleware solutions due to its data-centric approach, which eliminates
the need for developers to manage data sharing complexity in their own code. The global
data space in DDS serves as a local repository of data and facilitates sharing of data between
applications running on different systems and in different languages with low latency. DDS
also provides flexible Quality of Service specifications, including reliability, system health, and
security. Dynamic discovery enables automatic discovery of publishers and subscribers, while
the scalable architecture of DDS allows for its use from small devices to the cloud and very
large systems. Finally, DDS provides a range of security options to ensure that sensitive and
confidential data remains secure and confidential during transmission without the loss of real-time
performance.

Data Centricity

DDS’s unique focus on data-centricity makes it particularly well-suited for the Industrial IoT.
Unlike other middleware solutions, DDS ensures that each message contains the relevant con-
textual information needed to properly interpret the data received. With DDS’s data-centric
approach, programmers can specify how and when data should be shared, with the data values
being shared directly. This eliminates the need for developers to manage data sharing complexity
in their own code, as DDS implements controlled, managed, and secure data sharing on their
behalf.

24 Analysis

Figure 2.6 DDS enables QoS-controlled data-sharing through topic-based communication, where
applications publish and subscribe to topics by name. Subscribers can apply filters to receive only
specific data subsets. DDS domains are entirely independent and do not share data across domains. [29]

Global Data Space

DDS uses a ”global data space” as a local repository of data. Applications access the global data
space through an API, and DDS sends messages to update relevant stores on remote nodes. This
gives the impression that the application has access to the entire global data space, but in reality,
each application only stores locally what it needs for as long as it needs it. DDS is designed
to manage data in motion and facilitates the sharing of data between applications running on
different systems and in different languages with extremely low latency.

Figure 2.7 In DDS, data sharing occurs within Topics and data-objects identified by their Key
attributes. This is similar to identifying records in a database. DDS is peer-to-peer and doesn’t rely on
servers or cloud to broker data. [29]

Data Distribution Service 25

Quality of Service
DDS enables flexible data sharing with Quality of Service specifications for reliability, system
health, and security. It only sends necessary data to each endpoint and has reliability measures to
ensure messages reach their intended destination. DDS can dynamically determine where to send
data and efficiently handles large data sizes by filtering and sending only relevant data. It uses
multicast messages for fast updates and tracks data versions to translate between them. DDS
offers security features such as access control, data flow path enforcement, and on-the-fly data
encryption. DDS is most effective when all of these capabilities are used together in demanding
and unpredictable environments, with high-speed data transfer.

Dynamic Discovery
Dynamic discovery in DDS allows for automatic discovery of publishers and subscribers without
manual configuration, enabling ”plug-and-play” capabilities and extensibility. This feature also
discovers the communication characteristics and endpoint attributes, allowing for easy addition
of communication participants across different operating systems or hardware platforms without
needing to configure IP addresses or machine architectures.

Scalable Architecture
The architecture of OMG DDS is devised to be adaptable for small and large systems, ranging
from small devices to the cloud. It has the capability to enable the Internet of Things by scaling
across a massive number of participants, delivering data at exceptionally high speeds, managing
numerous data objects, and ensuring maximum availability and security. DDS minimizes the
intricacy of distributed system development by consolidating much of the complexity into a single,
standardized communication layer.

Figure 2.8 DDS spans Edge to Cloud, supporting high-speed machine-to-machine communications
at the edge, robust QoS in intermediary systems, and scalable access to information in the cloud. [29]

Security
Security is a critical feature in DDS, particularly for systems that handle sensitive or confiden-
tial data. DDS provides a range of security options, including access control, authentication,
encryption, and data integrity. These security measures ensure that only authorized nodes can

26 Analysis

access and modify data in the system, and that the data remains secure and confidential during
transmission all without the loss of real-time performance. [29]

2.4.6 What Is RTPS?
The Real-Time Publish-Subscribe protocol is a communication protocol used for publishing and
subscribing to information in a best effort and reliable manner. It can function over unreliable
transports like UDP, and can be used for both unicast and multicast communication. RTPS
provides an open standard for the exchange of real-time data between distributed systems, sup-
porting a wide range of application domains such as robotics, aerospace, transportation, and the
Industrial Internet of Things (IIoT).

Built on top of the Data Distribution Service standard, RTPS defines the application-level
publish-subscribe communication model and provides a standardized wire protocol5. This proto-
col facilitates interoperability between different vendor implementations of DDS, enabling seam-
less communication between systems.

RTPS supports the discovery of new participants, the management of data flow between
participants, and the exchange of real-time data with a range of Quality of Service (QoS) levels.
It provides mechanisms for reliability, scalability, and fault tolerance, making it suitable for use
in strict real-time systems. [34]

RTPS Advantages
The Real-Time Publish-Subscribe protocol has several advantages according to [34]:

Scalability – is designed to scale to large systems with many participants, allowing efficient
communication between them

Interoperability – different DDS vendors can use RTPS as their interoperability protocol,
ensuring that systems built with different DDS implementations can communicate with each
other

Real-time communication – provides reliable and timely delivery of data, even in dis-
tributed real-time systems with strict timing requirements

Extensibility – allows for custom extensions to be added to the protocol, enabling users to
tailor the communication to their specific needs

Platform independence – is independent of the underlying transport and can be imple-
mented on a variety of platforms, including embedded systems, desktop computers, and cloud
servers

QoS support – provides a rich set of QoS policies that allow users to control the reliability,
latency, and bandwidth of the communication

2.4.7 RTPS Architecture
The architecture consists of four modules: Structure, Message, Behavior, and Discovery.
Each module has a specific role in controlling the exchange of information.

5There is no exact definition of a wire protocol. However, there exists one that quite precisely explain what
does it means. The encyclopedia of PCMAG (available from [33]) says: ”In a network, a wire protocol is the
mechanism for transmitting data from point a to point b. The term is a bit confusing, because it sounds like layer
1 of the network, which physically places the bits ’onto the wire.’ In some cases, it may refer to layer 1; however,
it generally refers to higher layers, including Ethernet and ATM (layer 2) and even higher layer distributed object
protocols such as SOAP, CORBA or RMI.”

Data Distribution Service 27

Structure Module

The Structure module defines the communication endpoints and maps them to their DDS coun-
terparts. It establishes a separate communication plane for each RTPS domain and contains
a set of Participants. Each Participant can contain multiple local Endpoints of two different
kinds: Writers and Readers. These endpoints exchange information in the RTPS network by
sending RTPS messages. The interface between the RTPS endpoints and their corresponding
DDS entities is the HistoryCache. The information exchanged between the endpoints is usually
stored in a CacheChange. To illustrate, when a write operation occurs, it creates a CacheChange
in the Writer History. Afterward, the RTPS Writer transmits an RTPS message to all match-
ing Readers. When the RTPS Reader receives the message, it adds the CacheChange to its
corresponding HistoryCache and informs the DDS entity that new data is now accessible.

Figure 2.9 RTPS Participants can have multiple Writers and Readers which exchange information
through RTPS messages. [34]

Message Module

The Message module defines the content of the atomic information exchanges between RTPS
Writers and Readers. RTPS Messages are composed of a header followed by a number of sub-
messages. The submessages allow the vocabulary of messages to be extended while maintaining
backward compatibility. The three most important messages are DATA, HEARTBEAT, and
ACKNACK.

Message Direction Description

DATA Writer → Reader
Conveys details about a change in a data object associated with the
Writer, such as new information being added or an update in the data
object’s life cycle.

HEARTBEAT Writer → Reader Indicating the CacheChanges that are available at the current moment

ACKNACK Reader → Writer Permits the Reader to notify the Writer about the received and missing
changes. It supports both positive and negative acknowledgements.

Table 2.4 The most important RTPS messages

28 Analysis

Behavior Module
The Behavior module describes the valid messages exchanges that can occur between a Writer
and a Reader. It also defines the changes in the state of the Writer and Reader depending on
each message. These rules ensure interoperability between different implementations.

Discovery Module
The Discovery module describes the protocol that enables Participants to obtain information
about the existence and attributes of all the other Participants and Endpoints in the Domain.
This information exchange is called metatraffic. The discovery protocol is divided into two lay-
ers: Participant Discovery Protocol (PDP) and Endpoint Discovery Protocol (EDP). The PDP
specifies how the Participants discover each other. Upon discovery, the Participants exchange
information about their endpoints using the EDP. Different vendors may implement multiple
discovery protocols, however to ensure interoperability one PDP and one EDP must be im-
plemented by all vendors. The discovery mechanism allows simple plug and play connectivity
without requiring any configuration by the user. [34]

2.4.8 ROS 2 & DDS
Data Distribution Service is the underlying communication protocol used by ROS 2’s middleware
layer to facilitate communication between nodes. DDS is a popular middleware protocol for real-
time, distributed systems, and ROS 2’s adoption of DDS provides a number of benefits.

ROS 2’s middleware layer, called the ROS MiddleWare (rmw), provides an abstraction layer
for communication between nodes. The rmw layer is responsible for managing the communication
interfaces, while the DDS protocol is responsible for managing the actual data distribution.

ROS 2 provides support for multiple DDS vendors, allowing users to choose the vendor that
best suits their needs. ROS 2’s vendor-independent architecture allows for easy integration with
a wide range of DDS-based systems and supports the development of interoperable systems.

Overall, the use of DDS in ROS 2 enables real-time, scalable, and interoperable communica-
tion between nodes, making it a key component of the ROS 2 ecosystem.

ROS 2 DDS/RTPS Vendors
DDS is an industry standard that is implemented by several vendors, including RTI’s Connext
DDS, eProsima’s Fast DDS, Eclipse’s Cyclone DDS, and GurumNetworks’s GurumDDS. RTPS
is the wire protocol used by DDS to communicate over the network.

ROS 2 supports multiple DDS/RTPS implementations, as choosing the right vendor or imple-
mentation depends on several factors, such as the license, platform availability, or computation
footprint. Vendors may offer different DDS or RTPS implementations for specific purposes, like
RTI’s Connext implementation for microcontrollers or for applications requiring special safety
certifications.

To use a DDS/RTPS implementation with ROS 2, a ”ROS Middleware interface” (rmw
interface) package must be created to implement the abstract ROS middleware interface using
the DDS or RTPS implementation’s API and tools. Creating and maintaining rmw packages
for supporting DDS implementations is a lot of work, but it is essential to support at least
a few implementations to ensure that the ROS 2 codebase is not tied to any one particular
implementation. Users may want to switch out implementations depending on their project’s
needs. [35]

Data Distribution Service 29

Product name License Rmw implementation Status

eProsima Fast DDS Apache 2 rmw fastrtps cpp Full support. Default rmw. Pack-
aged with binary releases.

Eclipse Cyclone DDS Eclipse Public License
v2.0 rmw cyclonedds cpp Full support. Packaged with bi-

nary releases.

RTI Connext DDS commercial, research rmw connextdds
Full support. Support included
in binaries, but Connext installed
separately.

GurumNetworks Gu-
rumDDS commercial rmw gurumdds cpp

Community support. Support in-
cluded in binaries, but GurumDDS
installed separately.

Table 2.5 Supported RMW implementations [35]

Multiple rmw Implementations
The default rmw implementation in ROS 2 binary releases is Fast DDS, which comes pre-installed.
However, other rmw implementations like Cyclone DDS, Connext DDS, and GurumDDS can be
enabled by installing additional packages, without requiring any rebuilds or replacement of ex-
isting packages. Multiple rmw implementations can also be built and installed simultaneously in
a ROS 2 workspace that is built from source, as long as the relevant DDS/RTPS implementation
is installed properly and relevant environment variables are configured. If the rmw package for
a specific DDS implementation is present in the workspace, it will be built during the compilation
of the ROS 2 code if the corresponding DDS implementation is also installed.

Many instances demonstrate that nodes utilizing various rmw implementations can commu-
nicate with each other, although this isn’t universally valid. According to the documentation
[35], the following inter-vendor communication configurations are not supported:

Rmw implementations Limitation

Fast DDS ↔ Connext WString published by Fast DDS can not be received correctly by
Connext on macOS

Connext ↔ Cyclone DDS does not support pub/sub communication for WString
Table 2.6 Rmw inter-vendor communication configurations that are not supported

2.4.9 Micro-ROS & DDS
The use of microcontrollers in robotics and IoT has rapidly grown in recent years, and with it
comes the need for a lightweight middleware solution that can support publisher/subscriber com-
munication architectures. Micro XRCE-DDS (described below in this subsection) has emerged
as a promising option for such applications, as it is designed to work within the constraints of
microcontrollers, providing low resource consumption and multi-transport support. This has led
to its adoption by companies such as Renesas and ROBOTIS. Additionally, Micro XRCE-DDS
has been selected as the default middleware layer for the micro-ROS project, which aims to bring
the capabilities of the Robot Operating System 2 to microcontrollers. This section examines the
integration of Micro XRCE-DDS with micro-ROS and the benefits of this combination in the
development of robotic and IoT applications on microcontrollers. [36]

XRCE
The eXtremely Resource-Constrained Environment is a lightweight communication protocol,
which provides a means of communicating data from resource-constrained environments to larger
systems that use the DDS standards. The DDS-XRCE wire protocol has been standardized by
the OMG.

30 Analysis

The XRCE architecture is designed to enable resource-constrained devices to communicate
with a DDS network through an XRCE Agent. Image 2.10 illustrates the communication proto-
cols used and the architecture scheme that is composed of three main components:

XRCE Client is responsible for generating requests and receiving responses to communi-
cate with the XRCE Agent. It is implemented in the application running on the resource-
constrained device.

XRCE Agent is an intermediate service that sits between the XRCE Client and the DDS
network. It is responsible for translating the XRCE Client’s requests into DDS protocol
messages and vice versa. The XRCE Agent enables the XRCE Client to publish and subscribe
to topics in the DDS network, as well as manage its DDS entities, such as topics, publishers,
and subscribers.

DDS network is the final destination for the data exchanged between the XRCE Client
and other DDS entities. It is responsible for routing data to the appropriate subscribers and
maintaining the quality of service required by the system. [37]

Figure 2.10 The DDS-XRCE protocol allows for the seamless integration of resource-constrained
devices into DDS-based systems, enabling them to communicate data efficiently with larger systems. Its
architecture is divided into three parts – clients, agent and DDS network [37]

eProsima Micro XRCE-DDS
Micro XRCE-DDS is a small-footprint implementation of the DDS-XRCE protocol that targets
resource-constrained devices and microcontrollers. It is designed to provide a lightweight and
efficient communication framework for distributed systems that require real-time performance
and reliable data exchange.

Micro XRCE-DDS is developed and maintained by eProsima, a company that specializes in
middleware solutions for distributed systems. The implementation is based on the eProsima’s
Fast DDS library, which provides a full-featured DDS implementation for more powerful devices.

Data Distribution Service 31

Micro XRCE-DDS provides a client-server architecture for connecting resource-constrained
devices to a larger DDS network. The client library is designed to run on resource-constrained
devices, such as microcontrollers or embedded systems, and provides a simplified API for pub-
lishing and subscribing to DDS topics. The server component runs on a more powerful device
and acts as a bridge between the DDS network and the client devices.

One of the main features of Micro XRCE-DDS is its small memory footprint, which makes
it suitable for deployment on devices with limited resources. The implementation is highly
configurable, allowing developers to fine-tune the performance and memory usage of the library
to suit their specific needs.

Micro XRCE-DDS is compatible with the ROS 2 ecosystem and can be used as a middleware
implementation for ROS 2 nodes. It provides a ROS 2 interface that allows ROS 2 applications
to communicate with resource-constrained devices using DDS. This makes it possible to build
distributed robotic systems that incorporate both high-performance computing platforms and
low-power, embedded devices.

Key Features
Micro XRCE-DDS is a middleware, designed for microcontroller applications, that offers several
key features according to [36]:

Low resource consumption
Micro XRCE-DDS is optimized for microcontroller applications with limited memory, making
it highly efficient in terms of memory consumption. The latest version of this library has
a memory consumption of less than 75 KB of Flash memory and around 3 KB of RAM,
which is ideal for low-power devices. The middleware is also highly configurable, allowing
users to customize the library’s size and features based on their application requirements.

Multi-transport support
Micro XRCE-DDS supports multiple transport protocols natively, including UDP, TCP, and
a custom Serial transport protocol. This feature makes it highly versatile and suitable for
use in a wide range of applications.

Multi-platform support
The XRCE Client supports FreeRTOS, Zephyr, and NuttX as embedded RTOS, as well as
Windows and Linux. The XRCE Agent, on the other hand, supports Windows and Linux.
This feature allows for the middleware’s use in a wide range of platforms and applications.

QoS support
Micro XRCE-DDS allows users to create DDS entities in the XRCE Agent either by XML or
reference. The XML approach enables users to create entities in Reliable or Best-Effort mode,
while the reference approach reduces the memory consumption of the Client inside the MCU.
The ability to write custom XML QoS as in DDS enables users to tailor the middleware to
their specific requirements.

32 Analysis

2.5 PXROS-HR
This section focuses on the exploration of PXROS-HR, a commercial real-time operating system
that is designed to work with advanced multi-core MCUs. The section begins with an overview
of real-time operating systems, outlining their key characteristics. Following that, the section
proceeds to introduce PXROS-HR, where the main features are discussed, and how it differs
from other real-time operating systems. Finally, the section delves into the special features of
PXROS-HR, which include hardware-based memory protection and object-based system archi-
tecture. The objective of this section is to offer a comprehensive understanding of PXROS-HR,
emphasizing its strengths and capabilities for use in safety-critical applications.

2.5.1 HighTec
HighTec EDV Systeme is a privately owned company that was established in 1982 and is now the
world’s recognized commercial open source compiler vendor. With offices in Germany (headquar-
ter), Czech Republic, Hungary and China, HighTec offers reliable and secure tools for embedded
software development, ensuring independence for the future. The HighTec C/C++ compiler is
portable and always available for the latest chip revisions for our supported architectures ahead
of general release.

HighTec has been assigned as the Preferred Design House6 by Infineon and the Preferred
Compiler Partner by STMicroelectronics. Cooperation agreements with semiconductor vendors
ensure the long-term availability of HighTec’s development toolsets and guarantee automotive-
grade support, including frozen version support and bug scanning compilers. [39]

HTC IDE
The Hightec IDE is an Eclipse-based software development environment designed for embedded
systems. It provides GUI toolchain configuration, including a compiler, assembler, linker, and
debugger, along with project management capabilities and support for programming languages
like C and C++. The IDE supports a variety of microcontroller architectures, such as ARM,
PowerPC, and TriCore, among others, making it a versatile and valuable tool for embedded
software developers working with HighTec’s products.

PxNet
PxNet is a module that enables TCP/IP communication by implementing a task with a specific
API primarily used for TCP and UDP communication. SEVENSTAX company provides the
TCP/IP stack, which HighTec adapted for use in PXROS-HR applications. The PxNet STX
package includes the PxNet API module, which implements the application programming in-
terface. Application tasks can access PxNet services by calling functions from the PxNet API.
[40]

2.5.2 What Is RTOS
A Real-time Operating System is a specialized operating system designed to ensure real-time
applications meet specific deadlines. They are critical for applications with timing-specific re-
quirements and other critical systems. RTOS has similar functions as general-purpose operating
systems like Windows, macOS, or Linux, but with a scheduler that meets specific deadlines for
different tasks. They are typically used in embedded systems for real-time environments. RTOS

6As PDH, HighTec provides Basic Support Services free of charge, operating as a generic technical help-desk
to the customers for AURIX related topics. Design services or topics requiring substantial design or R&D effort
are also delivered by HighTec, as part of HighTec Premium Services. [38]

PXROS-HR 33

handles multiple processes and ensures events are responded to within predictable time limits,
providing multitasking functionality, prioritization of process threads, and sufficient interrupt lev-
els. These operating systems are used in various industries, including air traffic control systems,
anti-lock brakes, medical systems, and cameras. RTOS has unique opportunities and challenges
for research in computer science, electrical engineering, and related fields, with a modular and
scalable architecture that allows for customization to meet specific application requirements. [41]

Real-time operating systems are designed to not only accurately perform a calculation process
but also deliver the result within a predictable timeframe. Typically, two categories of real-time
are identified (taken from [42]):

Hard real-time – demands that all time limits be strictly met, as a single delay could result
in an unusable outcome

Soft real-time – more lenient and allows for a few time limits to be exceeded in specific
instances without rendering the result unusable

Key Characteristics
Real-time operating systems generally have the following characteristics (taken from [41]):

Small footprint
Real-time operating systems are designed to have a small footprint, making them lightweight
in comparison to general OSes.

High performance
RTOSes are known for their high performance, being fast and responsive.

Determinism
Determinism is a key characteristic of RTOSes, ensuring that repeating inputs result in the
same output.

Safety and security
Safety and security are the highest priorities in RTOS development, as they are frequently
used in critical systems.

Priority-based scheduling
RTOSes use priority-based scheduling to ensure high-priority tasks are executed before lower-
priority ones.

Timing information
RTOSes are responsible for timing and providing an API.

2.5.3 What Is PXROS-HR
PXROS-HR (Portable eXtendible Real-time Operating System – High Reliability) is a real-time
operating system designed for advanced multi-core MCUs. It features a modern micro-kernel
and hardware memory protection mechanisms (Memory Protection Unit – MPU) for improved
encapsulation and robustness. The latest version of PXROS-HR supports fine-grained hardware
memory protection mechanisms (MPU) available in modern microcontrollers like the AURIX.

PXROS-HR is officially safety approved for safety-critical applications up to SIL 3 (IEC61508)
and ASIL D (ISO 26262), making it ideal for industrial and automotive applications where safety
is a top priority. The certification was issued by TÜV-Nord Systems GmbH & Co. KG.

34 Analysis

Developed with the HighTec C/C++ compiler for TriCore/AURIX, PXROS-HR integrates
with Infineon’s MCAL and SafeTlib software frameworks. It is a non-AUTOSAR based and
highly optimized for the TriCore architecture, providing multi-core support for the AURIX family.
[43]

2.5.4 PXROS-HR Special Features
In comparison to other Real-time Operating Systems, PXROS-HR has some special features.
These features are mentioned in [42].

Hardware-based Memory Protection
PXROS-HR implements a hardware-based memory protection mechanism to restrict memory
access between different tasks. Each task is allocated a specific amount of memory, and the
hardware’s MPU detects any unauthorized access attempts outside of this memory area, trigger-
ing a trap that transfers control to the operating system.

Permission Concepts for Tasks
PXROS-HR manages the permissions of tasks by granting or denying specific rights, such as
access to operating system or hardware resources. Furthermore, the data exchanged via messages
are secured by the MPU to ensure task protection.

Object-based System Architecture
In PXROS-HR, all managed elements are treated as objects, including message objects and task
objects.

No Interrupt Locks
Unlike other operating systems, PXROS-HR doesn’t use interrupt locks during scheduling. This
allows for immediate reaction to interrupts without latency, significantly improving system pre-
dictability.

Message-based Data Interchange
Task data is exchanged through message objects and mailboxes, providing implicit synchroniza-
tion and restricting data access to the current message user. This eliminates the need for explicit
synchronization mechanisms, such as semaphores.

Encapsulation
In PXROS-HR, the object-based approach and hardware-assisted memory protection facilitate
the concept of encapsulation. A task is considered as an independent capsule that is isolated from
the outside world. Interaction with the external world is possible only through a well-defined and
narrow interface using message objects. Hardware prevents accidental interference by restricting
access operations. The system consists of several capsules, allowing for manageable connections
within the system while ensuring unobtrusive behavior.

Reloading Tasks
With the concept of encapsulation, PXROS-HR enables the loading and unloading of new tasks
during system runtime dynamically.

PXROS-HR 35

Debugging The Running System
PXROS-HR allows individual tasks to be stopped within a running system and debugged, while
the overall system continues to operate.

Difference Between System Tasks and Application Tasks
The permission concept in PXROS-HR allows distinguishing between system tasks and applica-
tion tasks. System tasks have comprehensive privileges and offer services to application tasks
that require a higher privilege level, thus forming a system platform that provides additional
functionality to applications. Application tasks, which typically implement application-specific
functionalities, have lower privileges and can be reloaded as needed.

Micro-kernel
PXROS-HR is implemented as a micro-kernel, meaning that only the essential functionalities
of the operating system are implemented in the kernel. Additional functionalities, such as the
TCP/IP stack or the file system, are realized as separate modules running as application tasks.

36 Analysis

Chapter 3

Proposed Solution and
Implementation

This thesis aims to develop a prototype that integrates PXROS-HR into micro-ROS. The current
distributions supported for micro-ROS include Foxy Fitzroy and Humble Hawksbill. While Foxy
Fitzroy offers more stability with code fixes, it will reach end-of-life soon, and therefore, the
prototype will be based on Humble Hawksbill, which has a longer support duration of five years.

The integration will be achieved by creating a prototype based on the HighTec PxNet package
that encapsulates the TCP/IP stack. The UDP communication protocol will facilitate data
exchange between the micro-ROS agent and the client. The HighTec TC39x PxNet base example,
available in the HighTec content manager1, will serve as the foundation for the prototype. It
will be aligned with the HighTec project structure, and irrelevant elements will be removed.
The Application Kit TC3X7 version 2.0 with TC397 B-Step will fulfill the requirements of the
base example. The HighTec IDE and toolchain for TriCore version 4.9.4.1 will be utilized for
managing, configuring, and building the prototype. The micro-ROS library will be created with
the same toolchain as a custom static library and added to the prototype with the set of headers.

The project will use the hardware debugger from PLS and the Universal Debug Engine (UDE)
GUI for programming and debugging. Additionally, the debug logs from the micro-ROS demos
will be displayed in a terminal by connecting the development board to a computer via UART
communication.

The chapter begins by explaining the process of building the micro-ROS library, which in-
volves creating a custom static library and modifying the ROS 2 and micro-ROS code. Subse-
quently, the chapter outlines the implementation of multicore mutexes (based on PXROS-HR
API) in micro-ROS, which involves the development of mutex API functions to ensure basic
mutex functionality, configuration and creation of mutex task. The project structure is then
described, which includes the HighTec project structure, project configurations, linker file mod-
ifications required for the hardware MPU configuration, and task description, configuration and
distribution. Furthermore, the chapter covers the implementation of various micro-ROS de-
mos, including implementations of custom allocators and custom transport functions. There is
a particular focus on multithread publisher-subscriber, and a newly created multicore publisher-
subscriber that highlights the potential of PXROS-HR as a multicore RTOS.

Overall, this chapter is an essential resource for anyone interested in integrating PXROS-HR
into micro-ROS.

1”The HighTec Content Manager provides you with easy access to the HighTec’s resource cloud repository.
You find there project examples, templates and other documents that help you to get up to the speed quickly.”[44]

37

38 Proposed Solution and Implementation

3.1 Building Micro-ROS Library
As far as the external build system is used for building the thesis example, a custom static
library will be built. There is an official tutorial on how to create a custom static library. Before
building the library, the tutorial needs some prerequisites to be accomplished. All of them are
described quite in detail on the official micro-ROS pages or in ROS 2 documentation. Here are
the following steps how to successfully get to creating custom static library:

1. Download and install the ROS 2 sources for the Humble version [45]

2. Download and install the micro-ROS build system for the Humble version [46]

3. Follow the tutorial for creating a custom static library [47]

3.1.1 Creating Custom Static Library
The tutorial instructs users to create two files that specify the cross-compilation requirements
for building a custom static library and a set of header files:

1. CMake toolchain file – contains the toolchain configuration

2. Colcon2 meta file – contains the micro-ROS library configuration

The tutorial provides example versions of both files, which are modified as required for this
thesis. The toolchain file used for the HighTec TriCore toolchain version 4.9.4.1 is provided
below:

1 set(CMAKE_SYSTEM_NAME Generic)
2 set(CMAKE_SYSTEM_PROCESSOR tricore)
3 set(CMAKE_CROSSCOMPILING 1)
4 set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
5 set(PLATFORM_NAME " PXROS ")
6 set(PXROS 1)
7

8 set(CMAKE_SYSROOT ˜/ ros2_humble / microros_ws)
9

10 set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
11 set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
12 set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
13

14 # Makefile flags
15 set(CROSSDEV /mnt/hgfs/ HighTec / toolchains / tricore /v4 .9.4.1 - linux /bin/tricore -)
16 set(ARCH_CPU_FLAGS "-mcpu= tc39xx -DAPPKIT_TC3X7_V2_0 -O0 -Wall -fdata - sections -

ffunction - sections -g2")
17 set(ARCH_OPT_FLAGS "")
18

19 # Compiler tools
20 foreach (tool gcc ld ar)
21 string (TOUPPER ${tool} TOOL)
22 find_program (${TOOL} ${ CROSSDEV }${tool })
23 if(NOT ${TOOL })
24 message (FATAL_ERROR " could not find ${ CROSSDEV }${tool}")
25 endif ()
26 endforeach ()
27

28 set(CMAKE_C_COMPILER ${ CROSSDEV }gcc)
29 set(CMAKE_CXX_COMPILER ${ CROSSDEV }g++)

2”Colcon – collective construction. Colcon is a command line tool to improve the workflow of building, testing
and using multiple software packages. It automates the process, handles the ordering and sets up the environment
to use the packages.” [48]

Building Micro-ROS Library 39

30

31 set(CMAKE_C_FLAGS_INIT "-std=c99 ${ ARCH_CPU_FLAGS } ${ ARCH_OPT_FLAGS }" CACHE
STRING "" FORCE)

32 set(CMAKE_CXX_FLAGS_INIT "${ ARCH_CPU_FLAGS } ${ ARCH_OPT_FLAGS } " CACHE STRING ""
FORCE)

33

34 include_directories (SYSTEM
35 /mnt/hgfs/ HighTec /pxros -hr/ tricore /v8 .2.0/ kernel / include
36 /mnt/hgfs/ MutexServer
37)

Code listing 3.1 CMAKE toolchain configuration file needed to build a custom static micro-ROS
library in my custom toolchain.cmake.

The example colcon meta file was modified in the following ways:

The option ”-DUCDR PIC=OFF”, which controls position independent code in the Micro-
CDR project, was set to OFF. By default, this option is set to ON in Micro-CDR’s CMake-
Lists.txt file:

1 option (UCDR_PIC " Control Position Independent Code ." ON)

The option ”-DUCLIENT PROFILE STREAM FRAMING=OFF” needed to be set to ON
only when non-packet communication is used. In this thesis, UDP communication is used,
which is packet-oriented. However, setting this flag to ON should not cause any problems, as
the custom transport can later be set to use framing or not. Disabling this option can save
some memory, as the framing functions will not be included. This is one way to reduce the
memory needed for the entire library.

The option ”-DUCLIENT PROFILE MULTITHREAD=ON” must be set to true for further
multithread and multicore demo examples.

The modified projects and their configurations in the example colcon meta file are:
1 " microcdr ": {
2 "cmake -args": [
3 "-DUCDR_PIC =OFF"
4]
5 },
6 " microxrcedds_client ": {
7 "cmake -args": [
8 "-DUCLIENT_PIC =OFF",
9 "-DUCLIENT_PROFILE_UDP =OFF",

10 "-DUCLIENT_PROFILE_TCP =OFF",
11 "-DUCLIENT_PROFILE_DISCOVERY =OFF",
12 "-DUCLIENT_PROFILE_SERIAL =OFF",
13 "-DUCLIENT_PROFILE_STREAM_FRAMING =OFF",
14 "-DUCLIENT_PROFILE_CUSTOM_TRANSPORT =ON",
15 "-DUCLIENT_PROFILE_MULTITHREAD =ON"
16]
17 },

Code listing 3.2 Modified projects and their configuration in the custom colcon meta file in
my custom colcon.meta.

3.1.2 ROS 2 and Micro-ROS Code Modifications
PXROS-HR is not POSIX-compliant operating system, which means that several functions that
micro-ROS or ROS 2 relies on will not work, such as the time function. This section describes
the modifications and additions that were made to the code to enable micro-ROS and ROS 2 to
function on PXROS-HR.

40 Proposed Solution and Implementation

Time function
To address the issue with the time function, modifications were made to the library. The
library contained two time function implementations – one for WIN32 systems and the other
for the rest. To add support for PXROS-HR, an implementation of the time functions needed
in the library was added, named time pxros.c to align with the naming convention of the other
implementations.
The added time pxros.c file contains implementations for the rcutils system time now and
rcutils steady time now functions. These functions retrieve the current system time and the
current steady time, respectively, using the PxTickGetTimeInMilliSeconds function provided
by the PXROS-HR operating system.
The time function implementation selection was modified in uros/rcutils/CMakeLists.txt as
follows:

1 if(WIN32)
2 set(time_impl_c src/ time_win32 .c)
3 elseif (PXROS)
4 set(time_impl_c src/ time_pxros .c)
5 else ()
6 set(time_impl_c src/ time_unix .c)
7 endif ()

Code listing 3.3 Selection of time functions implementation based on the underlying operating system
in uros/rcutils/CMakeLists.txt.

Here is the content of the added time pxros.c implementation of the time functions in uros/r-
cutils/src/time pxros.c file:

1 # ifdef __cplusplus
2 extern "C"
3 {
4 # endif
5

6 # include " pxdef .h"
7 # include " rcutils /time.h"
8 # include <unistd .h>
9

10 # include "./ common .h"
11 # include " rcutils / allocator .h"
12 # include " rcutils / error_handling .h"
13

14 rcutils_ret_t
15 rcutils_system_time_now (rcutils_time_point_value_t * now)
16 {
17 RCUTILS_CHECK_ARGUMENT_FOR_NULL (now , RCUTILS_RET_INVALID_ARGUMENT);
18

19 *now = RCUTILS_MS_TO_NS (PxTickGetTimeInMilliSeconds ());
20

21 return RCUTILS_RET_OK ;
22 }
23

24 rcutils_ret_t
25 rcutils_steady_time_now (rcutils_time_point_value_t * now)
26 {
27 RCUTILS_CHECK_ARGUMENT_FOR_NULL (now , RCUTILS_RET_INVALID_ARGUMENT);
28

29 *now = RCUTILS_MS_TO_NS (PxTickGetTimeInMilliSeconds ());
30

31 return RCUTILS_RET_OK ;
32 }
33

34 # ifdef __cplusplus
35 }
36 # endif

Code listing 3.4 PXROS-HR time functions implementation in uros/rcutils/src/time pxros.c.

Building Micro-ROS Library 41

Unused and not provided header file
Additionally, the include statements in the process.c file were modified by adding a conditional
statement to exclude the unused libgen.h header file, which is not provided, when building
with PXROS-HR. The modified conditional statement is shown below:

1 #if defined _WIN32 || defined __CYGWIN__
2 // When building with MSVC 19.28.29333.0 on Windows 10 (as of 2020 -11 -11) ,
3 // there appears to be a problem with winbase .h (which is included by
4 // Windows .h). In particular , warnings of the form:
5 //
6 // warning C5105 : macro expansion producing ’defined ’ has undefined behavior
7 //
8 // See https :// developercommunity . visualstudio .com/ content / problem /695656/ wdk

-and -sdk -are -not - compatible -with - experimentalpr .html
9 // for more information . For now disable that warning when including windows

.h
10 # pragma warning (push)
11 # pragma warning (disable : 5105)
12 # include <Windows .h>
13 # pragma warning (pop)
14 # else
15 # if ! defined __HIGHTEC__
16 # include <libgen .h>
17 # endif
18 # include <unistd .h>
19 # endif

Code listing 3.5 Conditional include of unused header (when using HighTec compiler) in
uros/rcutils/src/process.c.

eProsima
The integration of Micro XRCE-DDS into the PXROS-HR operating system required signif-
icant modifications, including the implementation of time functions, the addition of PXROS
to operating systems, and the implementation of mutexes for the multithreading profile.
Initially, PXROS-HR was added to the platforms in the eProsima/Micro-XRCE-DDS-Client
/CMakeLists.txt file as shown below:

1 # Check platform .
2 if(CMAKE_SYSTEM_NAME STREQUAL " Linux " OR CMAKE_SYSTEM_NAME STREQUAL " Android "

)
3 set(UCLIENT_PLATFORM_LINUX ON)
4 elseif (CMAKE_SYSTEM_NAME STREQUAL " Windows ")
5 set(UCLIENT_PLATFORM_WINDOWS ON)
6 elseif (CMAKE_SYSTEM_NAME STREQUAL " Darwin ")
7 set(UCLIENT_PLATFORM_MACOS ON)
8 elseif (CMAKE_SYSTEM_NAME STREQUAL " Generic ")
9 ...

10 elseif (PLATFORM_NAME STREQUAL " PXROS ")
11 set(UCLIENT_PLATFORM_PXROS ON)
12 endif ()
13 endif ()

Code listing 3.6 Simplified code snippet showing the addition of PXROS-HR to platforms in
eProsima/Micro-XRCE-DDS-Client/CMakeLists.txt.

The CMake define was added to the header of the template configuration file located at
eProsima/Micro-XRCE-DDS-Client/include/uxr/client/config.h.in:

1 # cmakedefine UCLIENT_PLATFORM_POSIX
2 # cmakedefine UCLIENT_PLATFORM_POSIX_NOPOLL
3 # cmakedefine UCLIENT_PLATFORM_WINDOWS
4 # cmakedefine UCLIENT_PLATFORM_FREERTOS_PLUS_TCP

42 Proposed Solution and Implementation

5 # cmakedefine UCLIENT_PLATFORM_RTEMS_BSD_NET
6 # cmakedefine UCLIENT_PLATFORM_ZEPHYR
7 # cmakedefine UCLIENT_PLATFORM_PXROS

Code listing 3.7 Add CMAKE define of the platform for PXROS-HR in configuration header template
in eProsima/Micro-XRCE-DDS-Client/include/uxr/client/config.h.in.

To implement the time function in the eProsima/Micro-XRCE-DDS-Client/src/c/util/time.c,
the pxdef.h header file is included:

1 # ifdef WIN32
2 # include <Windows .h>
3 # elif defined (UCLIENT_PLATFORM_FREERTOS_PLUS_TCP)
4 # include " FreeRTOS .h"
5 # include "task.h"
6 # elif defined (UCLIENT_PLATFORM_PXROS)
7 # include " pxdef .h"
8 # endif /* ifdef WIN32 */

Code listing 3.8 pxdef.h include for time function implementation in eProsima/Micro-XRCE-DDS-
Client/src/c/util/time.c.

Inside the function uxr nanos, the PXROS-HR API function PxTickGetTimeInMilliSeconds
was called to obtain the current time, which is returned in milliseconds and then transformed
to nanoseconds:

1 ...
2 # elif defined (UCLIENT_PLATFORM_PXROS)
3 return (int64_t) PxTickGetTimeInMilliSeconds () * 1000000;
4 # else
5 ...

Code listing 3.9 Time function uxr nanos implementation using PXROS-HR API in eProsima/Micro-
XRCE-DDS-Client/src/c/util/time.c.

eProsima’s Micro XRCE-DDS also provides a multithreading profile that includes APIs for
mutex implementation (implementation details are in section 3.2). These APIs enable users
to implement mutexes according to their specific operating systems or platforms.
Below are simplified code samples that demonstrate the implementation of eProsima’s mu-
texes:

1 void uxr_init_lock (
2 uxrMutex * mutex)
3 {
4 ...
5 # elif defined (UCLIENT_PLATFORM_PXROS)
6 PxInitLock (& mutex ->impl);
7 # else
8 ...
9 }

1 void uxr_lock (
2 uxrMutex * mutex)
3 {
4 ...
5 # elif defined (UCLIENT_PLATFORM_PXROS)
6 PxLock (& mutex ->impl);
7 # else
8 ...
9 }

Building Micro-ROS Library 43

1 void uxr_unlock (
2 uxrMutex * mutex)
3 {
4 ...
5 # elif defined (UCLIENT_PLATFORM_PXROS)
6 PxUnlock (& mutex ->impl);
7 # else
8 ...
9 }

Code listing 3.10 eProsima Micro XRCE-DDS mutex functions defined in eProsima/Micro-XRCE-
DDS-Client/src/c/profile/multithread/multithread.c.

To use the multithreading profile provided by eProsima’s Micro XRCE-DDS, a user needs to
add a specific mutex structure definition to the uxrMutex. This is a general structure used
in Micro XRCE-DDS. For example, in this case, the PxMutex t structure is used, which is
described in 3.2.

1 // Micro XRCE -DDS Client mutex implementation
2

3 typedef struct uxrMutex
4 {
5 # ifdef WIN32
6 # elif defined (PLATFORM_NAME_FREERTOS)
7 SemaphoreHandle_t impl;
8 StaticSemaphore_t xMutexBuffer ;
9 # elif defined (UCLIENT_PLATFORM_ZEPHYR)

10 struct k_mutex impl;
11 # elif defined (UCLIENT_PLATFORM_POSIX)
12 pthread_mutex_t impl;
13 # elif defined (UCLIENT_PLATFORM_PXROS)
14 PxMutex_t impl;
15 # endif // ifdef WIN32
16 } uxrMutex ;

Code listing 3.11 Micro XRCE-DDS Client mutex implementation structure in eProsima/Micro-
XRCE-DDS-Client/include/uxr/client/profile/multithread/multithread.h.

”RMW DECLARE DEPRECATED” macro definition
It is important to note that Hightec’s compiler for TriCore version 4.9.4.1 v does not support
the attribute deprecated with an optional argument inside the enumerate definition. Thus,
the RMW DECLARE DEPRECATED macro does not warn about the deprecation in this
compiler version. The macro is then defined as follows:

1 # ifndef _WIN32
2 # ifdef __HIGHTEC__
3 # define RMW_DECLARE_DEPRECATED (name , msg) name
4 # else
5 # define RMW_DECLARE_DEPRECATED (name , msg) name __attribute__ ((deprecated (

msg)))
6 # endif
7 # else
8 # define RMW_DECLARE_DEPRECATED (name , msg) name __pragma (deprecated (name))
9 # endif

Code listing 3.12 RMW DECLARE DEPRECATED macro definition in eProsima/Micro-XRCE-
DDS-Client/include/uxr/client/profile/multithread/multithread.h.

44 Proposed Solution and Implementation

3.1.3 Library Build
After making the necessary changes to the source code, the micro-ROS library can be built using
the command provided in the tutorial:

1 $ ros2 run micro_ros_setup build_firmware .sh $(pwd)/ my_custom_toolchain . cmake $(
pwd)/ my_custom_colcon .meta

Figure 3.1 Successful custom static micro-ROS library build.

Despite the fact that the build process produced 48 packages with stderr output, the library
was successfully built. It is worth noting that the stderr output only contained warnings, as the
build process would have failed with the first error encountered.

The resulting include folder structure after building a custom static micro-ROS library is not
suitable for adding just one include path. This is due to the fact that the required header files
are located in different directories. A comment on a GitHub issue3 talking about this problem
suggests: ”As far as some platforms are easier just to include one folder and have all the headers
inside, what we do is iterate the folder structure and copy ’back’ folders that are repeated” [49].

To address the issue of the resulting include folder structure in the micro-ROS workspace not
being suitable for adding a single include path, a bash script has been provided in a GitHub issue.
[49] This script iterates through the folder structure and copies back folders that are repeated to
make it easier to include a single folder with all the necessary headers. Running this script fixes
the include paths in the micro-ROS workspace:

1 #!/ bin/bash
2

3 LIBRARY_PATH =$(pwd)/ firmware / build
4

5 # ####### Fix include paths ########
6 pushd firmware / mcu_ws > /dev/null
7 INCLUDE_ROS2_PACKAGES =$(colcon list | awk ’{ print $1}’ | awk -v d=" " ’{s=(

NR ==1?s:s d)$0}END{ print s}’)
8 popd > /dev/null
9

10 for var in ${ INCLUDE_ROS2_PACKAGES }; do
11 if [-d " $LIBRARY_PATH / include /${var }/${var}"]; then
12 rsync -r $LIBRARY_PATH / include /${var }/${var }/* $LIBRARY_PATH / include /${

var}
13 rm -rf $LIBRARY_PATH / include /${var }/${var}
14 fi
15 done

Code listing 3.13 Script to fix include paths folder structure taken from [49].

3The issue is available from https://github.com/micro-ROS/micro ros setup/issues/530

https://github.com/micro-ROS/micro_ros_setup/issues/530

Mutex Implementation 45

3.2 Mutex Implementation
The implementation of mutexes presented in this thesis does not follow any standard, such as
POSIX. Instead, it was created to meet the specific requirements of eProsima’s Micro XRCE-DDS
multithreading profile implementation.

There are two ways to implement mutexes with PXROS-HR. However, since PXROS-HR
is a multicore RTOS, the simpler implementation that can only work within a single core is
not suitable for our purposes. As the goal of this thesis is to provide a multicore example, the
simpler implementation will not be further examined in this work. To achieve multicore mutexes,
a serializing entity, in the form of a task, is required. The Mutex Server is the task that will
take care of providing mutex functionality across multiple cores. The micro-ROS implementation
requires mutexes to be recursive which means that the task that already has the lock can lock it
again without any waiting and continue in the execution. The same number of lock and unlock
operations must be ensured.

In order to implement the Mutex Server, several components are needed. Firstly, the mutex
structure has to be defined:

Mutex structure – visible from the application

Mutex service data structure – visible from Mutex Server

Message metadata structure – to pass necessary information from an application to the Mutex
Server

1 /* ===
2 * Mutex structures
3 * === */
4

5 /* Task mutex structure */
6 typedef struct PxMutex_t
7 {
8 int mutex_id ; /* Mutex ID to identify the mutex service data */
9 PxMbx_t mutex_server_mbx ; /* Mutex server mailbox - avoiding to get it with

10 each request again */
11 } PxMutex_t ;
12

13 /* Structure for inter task communication via PXROS messages metadata */
14 typedef union PxMutexMsg_t
15 {
16 PxMsgMetadata_t pxmd; /* original metadata representation */
17 struct itc /* InterTask Communication representation of metadata */
18 {
19 int mutex_id ; /* Mutex ID to identify the mutex service data */
20 MutexOperation_t mutex_operation ; /* Mutex request operation */
21 } itc;
22 } PxMutexMsg_t ;
23

24 /* Mutex server service data */
25 typedef struct PxMutexData_t
26 {
27 PxMbx_t mutex_mbx ; /* Mutex mailbox (FIFO) for incoming lock requests */
28 MutexLockState_t mutex_locked ; /* State flag , MUTEX_LOCKED or MUTEX_UNLOCKED */
29 PxTask_t mutex_task ; /* Task ID of the task that has the active lock */
30 int mutex_counter ; /* Recursive counter */
31 } PxMutexData_t ;

Code listing 3.14 PXROS-HR mutex structures for application tasks, PXROS-HR message metadata
for passing data between tasks and internal structure of the Mutex Server in MutexServer.h.

PXROS-HR objects necessary for the implementation:

Mailbox – queue for message objects

Message – object for communication within tasks

46 Proposed Solution and Implementation

The following features of PXROS-HR are utilized in the implementation of mutexes:

Name query – tasks can register data with the Name Server under a 32-bit tag, which makes
the data ”public” and accessible to other tasks that request it by the tag

Request a message – a message object is created to request init/lock/unlock operations

Use metadata of the message – PXROS-HR offers 8 bytes of metadata that can be used to
speed up message sending. If this size is insufficient, a buffer of the required size can be
obtained

Send message – messages are sent to the requested mailbox

Release message – a message object can be returned to the object pool, or if a task is waiting
for the release, the message can be returned to that task

Wait for the release of the message – a task that has sent a message can wait for the receiver
to release it. This blocks the task in execution but does not block the core, allowing other
tasks to run.

In PXROS-HR, messages can be sent and waited for release, providing a mechanism for
request-response data exchange. However, mutexes are considered a core mechanism for ensuring
synchronization between data accessed by multiple threads or tasks. Typically, mutexes do not
have return values and are not directly checked by the application. It is assumed that the mutex
mechanism is functioning correctly. As such, any error in the mutex implementation is considered
fatal and will result in a PxPanic (a panic routine triggered in case of a fatal error, with exact
behavior depending on the processor, typically involving a breakpoint or illegal instruction) when
a standard error occurs, or a PxTrapAbort when an unexpected error is encountered.

3.2.1 Mutex API Functions
Mutex API functions have few things in common
Firstly, they all request a message to communicate with the Mutex Server. This message is
created without any extra buffer allocation, as the 8 bytes that can be stored in the message
metadata are sufficient for passing information to the Mutex Server. The message is then
set to await release, which allows the task to later call the PxMsgAwaitRel function and
block itself without blocking the execution on the core for other tasks. Once a task calls
PxMsgRelease on this message, the task that was waiting will receive the message and can
continue its execution. This feature is also useful for passing return values, which can be
stored in message metadata. After setting the message to await release, metadata from
the message are obtained and filled with specific values defined by the metadata structure
(3.14), including the mutex operation (init/lock/unlock) and mutex ID (obtained during
initialization). The message is then sent to the Mutex Server, and a task waits for the
response with the PxMsgAwaitRel function. This call is blocking, which gives us the desired
functionality of the mutex – waiting until the caller can continue with having a lock. Finally,
the message is released, which means that the message object is returned to the object pool
and can be used again.

The initialization call takes care of two additional things

1. Firstly, it obtains the mailbox ID of the Mutex Server task, which has previously been
registered to the Name Server by the Mutex Server. This ID is written to the application
mutex structure, which has minimal memory overhead but improves functionality speed.
While it would be possible to make a request to the Name Server to obtain the mailbox

Mutex Implementation 47

ID, this would add more time overhead than necessary. Since mutexes are a core feature
that always comes with non-negligible overhead, it’s important to keep this overhead as
small as possible.

2. Secondly, after initialization is done by the Mutex Server, the mutex ID that has been
initialized is stored in the metadata of the message and needs to be copied to the application
mutex structure so it can be used later.

The code of the API functions can be seen in appendix B.1.

3.2.2 Mutex Task Implementation
To minimize the probability of mutex failures during runtime, it is important to limit the maxi-
mum number of mutexes and ensure that there is always sufficient memory available for them. In
the implementation described below, the mutex service data is stored on the stack of the Mutex
Server task. However, determining the appropriate size for the task stack can be challenging, as
it requires either static analysis of the code to identify worst-case memory consumption or exper-
imental methods such as filling the stack with a pattern and observing the amount of memory
used.

To minimize memory overhead and ensure that the mutex service data is always available
and errors can be detected during compile time, a dedicated section can be created for this data
and access can be allowed in extended memory regions. This approach provides greater control
over the mutex service data and can help reduce the risk of runtime failures.

1 /* ===
2 * Defines
3 * === */
4

5 # define MAX_MUTEX_NUMBER 40

In the implementation mentioned in this thesis, mutexes are provided as a service task through
a set of API functions. The service task maintains a simple array as its service data structure to
handle mutexes. Since there is no requirement to destroy or deallocate the mutexes, the array
serves as a sufficient data structure for this use case. Initialization of mutexes is performed by
utilizing the mutexes used index, which represents the next available index in the service data
array. However, it is important to note that this index must not exceed the maximum number
of mutexes, which is defined by MAX MUTEX NUMBER.

1 /* Mutex service data */
2 PxMutexData_t mutex_data [MAX_MUTEX_NUMBER];
3

4 int mutexes_used = 0;

At the start of its execution, the Mutex Server task registers its mailbox ID with the Name
Server. This allows application tasks to retrieve the mailbox ID by sending a request to the
Name Server, enabling them to send requests to the Mutex Server task.

1 /* Register Mutex server mailbox in NameServer that other tasks can query it */
2 PxError_t regErr = PxNameRegister (MutexServer_MID_NAMESERVERID ,
3 sizeof (PxTask_t),
4 & myMailbox);
5 if (regErr != PXERR_NOERROR)
6 PxPanic ();

48 Proposed Solution and Implementation

The Mutex Server task’s main loop consists of the following steps:

1. Wait for messages from clients (the Mutex Server task does not block other tasks on the same
core from executing their code)

2. Get metadata from the request message

3. Process the request based on its type

4. Release the request message

Requested operations:

MUTEX INIT
One of the requested operations is MUTEX INIT. When the Mutex Server receives a request
with this operation, it first checks if there is any free mutex available. If there is, the Mutex
Server proceeds to set the initial values to the service data that corresponds to the first free
mutex. These initial values include the mutex’s unlocked state, an invalid task ID, a counter
set to zero, and the ID of the newly created mailbox.
Suppose there are no errors during the creation of the mailbox. In that case, the Mutex Server
fills the metadata with the initialized mutex ID (which corresponds to the array index) and
increments the counter of used mutexes (setting it to the next free mutex index).

1 case MUTEX_INIT :
2

3 /* Check if there is any free mutex */
4 if (mutexes_used >= MAX_MUTEX_NUMBER)
5 PxPanic (); // No free mutex
6

7 /* Initialize mutex service data */
8 mutex_data [mutexes_used]. mutex_locked = MUTEX_UNLOCKED ;
9 mutex_data [mutexes_used]. mutex_task = PxTaskIdInvalidate ();

10 mutex_data [mutexes_used]. mutex_mbx = PxMbxRequest (PXOpoolTaskdefault);
11 mutex_data [mutexes_used]. mutex_counter = 0;
12

13 /* Error while initializing the mutex ? */
14 if (! PxMbxIdIsValid (mutex_data [mutexes_used]. mutex_mbx))
15 PxPanic ();
16

17 /* Set metadata as an answer to application task */
18 mutex_msg_metadata .itc. mutex_id = mutexes_used ;
19 PxMsgSetMetadata (taskMsg , mutex_msg_metadata .pxmd);
20

21 mutexes_used ++;
22

23 break ;

Code listing 3.15 Mutex Server process of MUTEX INIT request in MutexServer.c.

MUTEX LOCK
The locking process starts with the Mutex Server checking if the requested mutex ID is correct
and has been previously initialized. If the check is successful, there are two possible situations
– the mutex is either LOCKED or UNLOCKED. In the case of an unlocked mutex, the Mutex
Server sets the mutex state to LOCKED, assigns the requester’s task ID to the service data,
and increments the recursive counter.
However, if the mutex is already locked, the Mutex Server checks whether the requester is
the owner of the lock. If the requester is indeed the owner, the recursive counter is simply
incremented. If the requester is not the owner of the lock, a request message is sent to the

Mutex Implementation 49

mutex mailbox, which behaves like a FIFO for such requests. This ensures that the requests
are served in the order in which they arrived. Once the current lock owner unlocks the mutex,
the first waiting message in the mailbox will take the lock.

1 case MUTEX_LOCK :
2

3 /* Check if the ID is valid */
4 if (mutex_id < 0 || mutex_id >= mutexes_used)
5 PxPanic (); // Invalid ID
6

7 /* Check if the mutex is unlocked */
8 if (mutex_data [mutex_id]. mutex_locked == MUTEX_UNLOCKED)
9 {

10 /* Mutex is free , claim it */
11 mutex_data [mutex_id]. mutex_locked = MUTEX_LOCKED ;
12 mutex_data [mutex_id]. mutex_task = PxMsgGetOwner (taskMsg);
13 mutex_data [mutex_id]. mutex_counter ++;
14 break ;
15 }
16

17 /* Owner of the lock locks it again */
18 else if (PxTaskIdGet (mutex_data [mutex_id]. mutex_task) == PxTaskIdGet (

PxMsgGetOwner (taskMsg)))
19 {
20 mutex_data [mutex_id]. mutex_counter ++;
21 break ;
22 }
23

24 /* Mutex is locked , send msg to waiting list (mailbox FIFO) for the mutex
*/

25 PxMsgSend (taskMsg , mutex_data [mutex_id]. mutex_mbx);
26

27 break ;

Code listing 3.16 Mutex Server process of MUTEX LOCK request in MutexServer.c.

MUTEX UNLOCK
The unlocking process also starts with checking if the requested mutex ID is correct and
previously initialized. If the mutex is locked and the requester is the owner of the lock, the
unlocking process can continue. Otherwise, there are two possible situations – unlocking
an unlocked mutex or unlocking without having a lock. In this implementation, these situ-
ations do not generate errors, but they should never happen in a well-designed application.
Therefore, it is debatable whether this behavior should be considered an error or not.
If the unlocking process continues, the recursive counter is decremented. If the recursive
counter reaches zero, which means that the lock was the ”last” one, the Mutex Server tries to
get a request message from the mutex mailbox. If there is no waiting request (no message in
the mailbox), the mutex is unlocked (set to UNLOCKED and invalidate the task ID). If there
is any task waiting for the lock (request message was sent to the mailbox because the lock
was already locked), the mutex service data are updated according to the waiting request,
and the request message is released so that the waiting task can continue its execution with
the lock.

1 case MUTEX_UNLOCK :
2

3 /* Check if the ID is valid */
4 if (mutex_id < 0 || mutex_id >= mutexes_used)
5 PxPanic (); // Invalid ID
6

7 /* Check if the task that is trying to unlock is the owner of the lock */
8 if (mutex_data [mutex_id]. mutex_locked == MUTEX_LOCKED

50 Proposed Solution and Implementation

9 && PxTaskIdGet (mutex_data [mutex_id]. mutex_task) == PxTaskIdGet (
PxMsgGetOwner (taskMsg)))

10 {
11 /* Firstly decrement mutex counter and then if it can be freed */
12 if (-- mutex_data [mutex_id]. mutex_counter == 0)
13 {
14

15 /* Check if any other task waits for the lock */
16 PxMsg_t waiting_mutex_msg = PxMsgReceive_NoWait (mutex_data [mutex_id].

mutex_mbx);
17 if (PxMsgIdIsValid (waiting_mutex_msg))
18 {
19 /* A task is waiting - claim the mutex for first waiting task */
20 mutex_data [mutex_id]. mutex_task = PxMsgGetOwner (waiting_mutex_msg);
21 mutex_data [mutex_id]. mutex_counter ++;
22 PxMsgRelease (waiting_mutex_msg);
23 break ;
24 }
25

26 /* Set mutex to free */
27 mutex_data [mutex_id]. mutex_locked = MUTEX_UNLOCKED ;
28 mutex_data [mutex_id]. mutex_task = PxTaskIdInvalidate ();
29 }
30 }
31

32 break ;

Code listing 3.17 Mutex Server process of MUTEX UNLOCK request in MutexServer.c.

In order to ensure proper functioning of mutexes, users must follow a strict order of operations
as outlined in 3.2. Firstly, the Mutex Server task must be executed to register its mailbox ID with
the Name Server, which should already be running. Secondly, each individual mutex must be
initialized before any locking or unlocking operations can be performed. By following this order,
users can ensure that mutexes will function correctly and efficiently within their application.

Figure 3.2 Mutex timeline that the user must follow the order to ensure mutexes will work properly.

Mutex Implementation 51

3.2.3 Mutex Task Creation
The Mutex Server task is created as a service task before any other task in the system. This is
achieved by calling the Mutex Server create function on the Mutex Server core. However, since
the Init task has a higher priority, the Mutex Server does not get any execution time initially. To
allow the Mutex Server to execute its code, the Init task lowers its priority. The Mutex Server
then executes its initialization code and waits for incoming requests.

Now the Init task can continue with its execution and registers the Mutex Server mailbox
as a service mailbox, ensuring that no task can continue execution until the Mutex Server is
registered. This is achieved by calling the HtcWaitForService function for all tasks. The function
waits for the Mutex Server mailbox to be registered and returns an error if the wait time exceeds
a set duration. By default, the wait time is set in the px utils.h file.

1 /* Mutex server initialization */
2 if (coreId == MUTEXSERVER_CORE)
3 {
4 /* Create Mutex server task */
5 PxTask_t taskId = MutexServer_Create (MUTEXSRV_PRIO , 0, PXMcTaskdefault ,

PXOpoolTaskdefault);
6

7 /* Enable the execution of service tasks during the user tasks deployment by
setting priority

8 * of InitTask lower than the lowest service priority (lower prio = higher
number !)

9 */
10 PxTaskSetPrio (myID , MUTEXSRV_PRIO + 1);
11

12 /* Register service to a free request ID */
13 PxMbxRegisterMbx (_PxSrv5_ReqMbxId , PxTaskGetMbx (taskId));
14 }
15

16 /* Wait for the Mutex server service task on MUTEXSERVER_CORE to get initialized
.*/

17 errRes = HtcWaitForService (MUTEXSERVER_CORE , _PxSrv5_ReqMbxId , 0, 0,
INITTASK_EVENT_WAIT);

18 if (errRes != PXERR_NOERROR)
19 PxPanic ();

Code listing 3.18 Mutex Server task creation and initialization in InitTask.c.

The HtcWaitForService is an essential part of the initialization process for the Mutex Server
and Name Server tasks, as it ensures that no task will continue execution until the task mailboxes
are registered as service mailboxes.

52 Proposed Solution and Implementation

3.3 Project Structure
The example developed in this thesis is based on HighTec’s example that demonstrates the
use of PxNet – TC39x PxNet base example (most simple PxNet project with only PxNetTask,
EthDrvTask, PxNetMonitor and LedServer). To understand how the example is structured, the
HighTec project structure will be briefly introduced, and then it will be explained what changes
and additions were made to this example to make it work with the custom static micro-ROS
library built earlier.

3.3.1 HighTec Project Structure
Only brief description will be provided. For more detailed information please refer to HighTec
TC39x PXROS-HR BSP example’s documentation [50].

The HighTec project structure is composed of several logically separated elements, each having
its own folder within the project. These elements include bsp, crt0, ld, src, and pxros (see folder
structure in Figure 3.5).

bsp – a BSP component represents microcontroller and evaluation board dependent SW
tailored to a particular microcontroller derivative

crt0 – a toolchain and a microcontroller-dependent startup code that initializes a ’C’ runtime
environment

ld – linker files prescribing placement of the final application code and data

src – it contains one file ‘shared main.c‘ implemented as a shared code executed on each core;
the PXROS-HR operating system starts here by the execution of the ‘PxInit‘ API function

pxros/config – PXROS-HR system configuration. Here the user specifies parameters for
each of the instantiated kernels, like the number of objects, tasks, and size of the default user
memory

pxros/hal – An abstraction of the underlying microcontroller for PXROS-HR time tick
functionality

pxros/tasks – A folder with the implementation of example tasks

pxros/utils – Common utilities used across user tasks

3.3.2 Configurations
The tc39x pxnet base example includes pre-defined configurations (3.3) for different boards. For
the purpose of this master’s thesis, all configurations except iROM APPKIT TC3X7 V2 0 –
which is used for the Application Kit TC37X version 2.0 board and serves as a base for creating
new configurations – can be deleted. Each configuration will represent a demo and should follow
the naming convention: ” ⟨demo name⟩”.

The Create New Configuration window will appear where you can set the desired settings for
the new configuration (as shown in 3.4). The Copy settings from – Existing configuration option
is used, with iROM APPKIT TC3X7 V2 0 selected as the base configuration. Once a configu-
ration has been created for each demo, the original iROM APPKIT TC3X7 V2 0 configuration
can be deleted.

For each configuration, the symbol DEPLOY ⟨DEMO NAME⟩=1 is defined in both the C
and C++ Compilers. Additionally, the include paths to the micro-ROS library headers must be

Project Structure 53

set in the Project properties for both compilers. Finally, the micro-ROS library itself needs to
be added to the C++ Linker with the appropriate library search path.

By following these steps, multiple demos can be implemented and tested on the Application
Kit TC37X version 2.0 board with only changing the configuration.

Figure 3.3 PxNet base example configurations for different boards.

Figure 3.4 Creating new configuration by copying the settings from the PxNet base example config-
uration for Application kit TC3X7 version 2.0.

To ensure that the demos do not define the same variables or structures, etc., the symbol
DEPLOY ⟨DEMO NAME⟩=1 is used to include only the header files of the currently selected
demo by the configuration. Similarly, this can be done for the sources as well. In the HTC IDE,
there is an option to exclude sources from the build, which requires manual exclusion of the
demo from all non-corresponding configurations. An example of this exclusion can be seen with
int32 publisher in Figure 3.5.

54 Proposed Solution and Implementation

Figure 3.5 Selecting configurations in which to exclude sources inside the demo folder from the build.

3.3.3 Linker File
Each micro-ROS demo example requires two sections: the micro-ROS library section, which
provides access to the library functions and global data, and a demo-specific section that contains
the global data required for that particular demo (e.g. publisher data). All of these sections are
enclosed within two symbols that define the beginning and end of the section and are named
using the following convention:

⟨NAME OF THE SECTION ⟩ BASE

⟨NAME OF THE SECTION ⟩ END

Project Structure 55

These symbols allow the user to add the section either to the task context or to the extended
memory region and give the tasks access to the section. Additionally, all symbols are aligned to
8 bytes to match the MPU region’s granularity. Micro-ROS demos section are defined as follows:

1 /* ==
2 * Micro -ROS demos sections
3 * == */
4

5 SECTIONS
6 {
7 /* MicroROS data and bss section */
8 . microROS .data :
9 {

10 . = ALIGN (8);
11 MICROROS_BASE = .;
12 * libmicroros .a:(*. data *)
13 } > DATA AT > RODATA
14

15 . microROS .bss :
16 {
17 * libmicroros .a:(*. bss *)
18 . = ALIGN (8);
19 MICROROS_END = .;
20 } > DATA
21

22 /* MicroROS applications data */
23 . microROS_demos .bss :
24 {
25 /* int32_publisher */
26 . = ALIGN (8);
27 INT32_PUBLISHER_BASE = .;
28 *(. int32_publisher)
29 . = ALIGN (8);
30 INT32_PUBLISHER_END = .;
31

32 ...
33

34 } > DATA
35 }
36

Code listing 3.19 Micro-ROS demo sections in linker file tc39x pxnet base example.ld

To maintain independence between the library and demos, three output sections are created.
The library section includes both bss (global data) and data (initialized values/constants). The
startup code in HighTec examples includes a configuration table that informs the application
on how to manage user’s memory. Global data requires no special initialization, but is assumed
to be initialized with zeroes. During startup code execution, HighTec sets the RAM memory
to zeroes for the ranges defined in the clear table. On the other hand, data requiring value
initialization are placed into a copy table and are copied from FLASH to RAM memory by the
startup code. The definition of clear and copy tables for core 0 and core 1:

1 /* ==
2 * CLEAR & COPY TABLES with END delimiter to support crt0 init
3 * Each core has its own table to process during its init to allow multicore
4 * execution .
5 * Shared resources are inserted to Core [0] tables (the RESET core)
6 * clear_sec :
7 * data memory ranges to clear to zero
8 * copy_sec :
9 * data memory ranges that needs to be value initialized

10 * (init values are stored in FLASH and copied to RAM)
11 * === */
12

56 Proposed Solution and Implementation

13 SECTIONS
14 {
15 /* ---- CORE 0 ---- */
16

17 .CPU0. clear_sec :
18 {
19 LONG(ADDR (. microROS .bss)); LONG(SIZEOF (. microROS .bss));
20 LONG(ADDR (. library .bss)); LONG(SIZEOF (. library .bss));
21 LONG(ADDR (. microROS_demos .bss)); LONG(SIZEOF (. microROS_demos .bss));
22 LONG(ADDR (. bss)); LONG(SIZEOF (. bss));
23 LONG(ADDR (. heap)); LONG(SIZEOF (. heap));
24 LONG (-1); LONG (-1);
25 } > RODATA_CPU0_
26

27 .CPU0. copy_sec :
28 {
29 LONG(LOADADDR (. microROS .data)); LONG(ADDR (. microROS .data)); LONG(SIZEOF (.

microROS .data));
30 LONG(LOADADDR (. library .data)); LONG(ADDR (. library .data)); LONG(SIZEOF (.

library .data));
31 LONG(LOADADDR (. data)); LONG(ADDR (. data)); LONG(SIZEOF (. data));
32 LONG (-1); LONG (-1); LONG (-1);
33 } > RODATA_CPU0_
34

35 /* ---- CORE 1 ---- */
36

37 .CPU1. clear_sec :
38 {
39 LONG (-1); LONG (-1);
40 } > RODATA_CPU1_
41

42 .CPU1. copy_sec :
43 {
44 LONG (-1); LONG (-1); LONG (-1);
45 } > RODATA_CPU1_
46

47 ...
48 }
49

Code listing 3.20 Beginning of linker clear and copy tables in tc39x pxnet base example.ld.

3.3.4 Tasks
In the HighTec example structure, each task typically has its own folder containing a source file,
header file, and configuration file. In addition, there are some support files that are related to
all tasks:

taskCores – configuration file that provides the task-to-core assignment

taskDeployment – file containing create functions for user task deployment

taskNameIds – names definition to query entry specific content using NameServer

taskPrios – file that specifies the priorities for tasks, services, and hardware interrupts

The unused tasks from the original example (tc39x pxnet base example) can be deleted –
PxNetMonitor and LedServer.

Mutex Server
The Mutex Server is a service task responsible for the multicore mutex functionality. More
information about the Mutex Server can be found in section 3.2.

Project Structure 57

PxNet Task
The PxNet Task is responsible for configuring PxNet and allowing users to use the TCP/IP
stack.

Uart Server
The UART Server is utilized for debugging output, although the conventional printf function is
not applicable. Instead, a buffer for output is defined, and the text is formatted to the buffer
using the sprintf function. The buffer is then sent to the UART Server via the ioWrite function,
ensuring that the buffer is forwarded to the output to be displayed on terminals on a PC.

In order to use macros defined in the standard micro-ROS demos, the buffer must be global
(more about this is mentioned in 3.4.3). As a result, a special section must be created to provide
access to the task that will be using the buffer for output. To enable PXROS to set the MPU
with appropriate access rights for the task, the user must add an extended region or task context
that includes the buffer.

To ensure that the buffer is printed correctly, it should not be altered by other tasks while
a request is made to forward the buffer to the output. As a result, each task should have its own
buffer.

The API and intertask communication to the UART task are defined in the utils folder and
provide functions for read, write, and select:

ioWrite – for sending a buffer to the output

ioRead – waits (blocking) until input is received and then reads the data

ioSelect – waits without blocking for input, without reading the data

The function declarations for these API functions are:
1 int ioWrite (PxMbx_t mbx , char *buf , int length);
2 int ioRead (PxMbx_t mbx , char *buf , int length);
3 int ioSelect (PxMbx_t mbx , PxEvents_t ev);

Micro-ROS Demos
Demos are created as pluggable tasks. Each demo has its own folder and configuration which
excludes all other demos from build. All the main task create functions are placed to taskDeploy-
ment.c to the deployment table. Init task calls the TaskDeploy function which iterates through
this table and when the task is supposed to run on the core where the function is executed, it
will call the task create function.

58 Proposed Solution and Implementation

3.4 Micro-ROS Demos
All the demos presented in this thesis are equivalent to the demos available in the official micro-
ROS GitHub repository [51]. Although there are numerous examples that showcase the basic
functionalities, due to the limitations of this thesis, it was not feasible to implement all of them.
To achieve the main goal of this thesis, which is to investigate the feasibility of integrating micro-
ROS with PXROS-HR, inspiration was taken from other RTOSes that are officially supported
by micro-ROS, such as FreeRTOS. Each supported RTOS has its own repository, which contains
subsets of the original micro-ROS demos. For this thesis, the following demos were chosen:

int32 publisher – demonstrates the basic functionality of publishing to a topic

int32 subscriber – demonstrates the basic functionality of subscribing to a topic

ping pong – demonstrates more advanced functionality by combining two publishers and
two subscribers

addtwoints server – demonstrates the implementation of a service server that provides
a response for the addition of two given integers

multithread publisher subscriber – demonstrates running multiple tasks (threads)

To establish a connection with the ROS 2 agent, a transport must be defined. Although it
is possible to use the default transports provided by eProsima’s Micro XRCE-DDS, the High-
Tec PxNet module provides TCP/IP functionality, which necessitates the creation of a custom
transport. In this case, mapping the PxNet API functions to the micro-ROS API functions is
required.

Furthermore, micro-ROS allows for the definition of custom allocators, which can be useful
when the user requires more control over the managed memory. On TriCore with PXROS-HR,
the hardware memory protection unit is used to grant each task access only to the necessary
memory areas for the task’s functionality. This restricts unwanted accesses, which improves
safety and security.

3.4.1 Custom Allocators
According to [52], the default allocator wraps the following methods:

1 - allocate = wraps malloc ()
2 - deallocate = wraps free ()
3 - reallocate = wraps realloc ()
4 - zero_allocate = wraps calloc ()
5 - state = ‘NULL ‘

Code listing 3.21 The default allocator functions from [52].

which are functions of the standard library stdlib.h. To use these functions, a user must
define a heap and grant access rights to the standard library for the tasks that will use them.
However, this means that tasks will have access to the entire heap, which is not necessary and
compromises safety.

PXROS-HR provides its own memory management functions, such as PxMcTakeBlk for allo-
cating a block of memory of a desired size from a requested memory class and PxMcReturnBlk
for freeing or deallocating the block. Realloc and zero allocate can be easily implemented with
these two functions and the standard library. It is important to note that the realloc function in
PXROS-HR will not extend the actual buffer size, but it will always try to allocate a new, larger
buffer.

Micro-ROS Demos 59

The advantage of using PXROS-HR memory management functions is that access rights are
handled by the operating system, and users do not need to add any access rights to the task’s
configuration. Additionally, if there is no need to use any other standard library function that
requires global data, access rights to that area can be omitted.

In a single-task environment, all demos will use PXROS-HR functions for memory manage-
ment. However, this is not a suitable solution for multithreading, multitasking, or multicore
environments, as access rights cannot be shared easily. For example, consider a main task that
creates buffers and initializes the system. After initialization, the main task creates a new task
(for example, a publisher). The main thread passes the pointer to the allocated publisher struc-
ture, but the publisher task does not have access rights to the memory because it was allocated by
a different task, and access rights are set only for the task that took the block from the memory
class. Any approach that uses PXROS-HR memory management functions in a multithreaded
environment would be too complicated or would result in excessive overhead. Thus, setting both
tasks to have access to the heap area means that the first one can allocate the necessary data
and the new task can access it. Therefore, all demos that run within multiple tasks will use the
heap and default standard allocators approach.

The prototypes for Micro-ROS functions for custom allocators are presented below:
1 void * (* allocate)(size_t size , void * state);
2 void (* deallocate)(void * pointer , void * state);
3 void * (* reallocate)(void * pointer , size_t size , void * state);
4 void * (* zero_allocate)(size_t number_of_elements , size_t size_of_element ,
5 void * state);

Here are the PXROS-HR functions fulfilling the Micro-ROS prototypes:
1 void * PXROS_allocate (size_t size , void * state);
2 void PXROS_deallocate (void * pointer , void * state);
3 void * PXROS_reallocate (void * pointer , size_t size , void * state);
4 void * PXROS_zero_allocate (size_t number_of_elements , size_t size_of_element ,
5 void * state);

The implementation of custom allocators based on PXROS-HR memory management func-
tions and standard library functions is provided in Appendix C.

3.4.2 Custom Transport
The official micro-ROS website provides a tutorial ([53]) on implementing custom micro-ROS
transports, which require adherence to specified function prototypes. Two communication modes
are available for implementation:

Stream-oriented mode

Packet-oriented mode

For the present application, which employs the PxNet module for encapsulating the TCP/IP
stack and uses UDP communication for message exchange, packet-oriented mode is selected by
disabling the framing flag, setting it to 0.
Here are the micro-ROS function prototypes for custom transport callbacks:

1 bool (* custom_transport_open)(uxrCustomTransport * transport);
2 bool (* custom_transport_close)(uxrCustomTransport * transport);
3 size_t (* custom_transport_write)(
4 uxrCustomTransport * transport ,
5 const uint8_t * buffer ,
6 size_t length ,
7 uint8_t * errcode);
8 size_t (* custom_transport_read)(

60 Proposed Solution and Implementation

9 uxrCustomTransport * transport ,
10 uint8_t * buffer ,
11 size_t length ,
12 int timeout ,
13 uint8_t * errcode);

Below is a list of the PxNet custom transport structure and the functions that meet the
Micro-ROS prototypes requirements:

1 /* Structure for PxNet communication */
2 typedef struct PxnTransport
3 {
4 int sock;
5 int port;
6 struct sockaddr_in addr;
7 } PxnTransport ;
8

9 bool pxn_udp_open (uxrCustomTransport * transport);
10 bool pxn_udp_close (uxrCustomTransport * transport);
11 size_t pxn_udp_write (uxrCustomTransport * transport , const uint8_t * buf , size_t

len , uint8_t * err);
12 size_t pxn_udp_read (uxrCustomTransport * transport , uint8_t * buf , size_t len , int

timeout , uint8_t * err);

A detailed description of the implementation of each function:

pxn udp open
This function allocates a UDP socket instance using the Pxn Socket function from the PxNet
API. If the allocation is successful, the function fills the custom transport structure (Pxn-
Transport) with the IP address of the ROS 2 agent.

pxn udp close
This function closes a socket instance by calling Pxn Close.

pxn udp write
This function for sending data is more complicated than the previous. Firstly, the buffers used
in micro-ROS are not aligned, which does not meet the requirements of PxNet. Defining the
buffer with the ”aligned” attribute would not be effective, as the buffer is used incrementally,
meaning that it will inevitably become misaligned at some point. This means that extra
memory block has to be obtained from the memory class using PxMcTakeBlk. This block is
aligned and the original buffer containing data to be sent must be copied to this temporary
aligned buffer. The PxNet function Pxn Sendto, used for sending a UDP packet, can return
an error code EAGAIN, which means ”try again later”. This usually happens only before the
PxNet knows where to send the packet (before initial ARP requests). Therefore, a timeout
has been added specifically for the EAGAIN error code case. The timeout is based on the
PXROS-HR timeout object, where a task sets the time in the number of ticks and event that
would be used to generate a wake-up event. The default values are 5 tries with a 2-millisecond
timeout between each try, resulting in a total of 10 ms for ”try again later” time. During the
2 milliseconds, the task waits without blocking the execution on its core for other tasks. If
any other error occurs during the sending or data are successfully sent, the timeout object is
stopped, released, and the temporary aligned buffer is released as well.

pxn udp read
This function for receiving data is similar to the previously mentioned pxn udp write. How-
ever, the timeout is obtained as a parameter of the function and is implemented not to block
the execution on its core for other tasks. If the timeout is higher than 10 ms, the number of
retries is set to 10, and the retry timeout is divided by 10 so that the final timeout number

Micro-ROS Demos 61

corresponds. This limits the application to use multiples of 10, so as not to shorten the time-
out (the maximum cut from the original timeout is 9 ms). If the timeout is lower than 10 ms,
one millisecond is used as the retry timeout, and the number of retries corresponds to the
given timeout value. As the Pxn Recvfrom function also expects the buffer to be aligned, the
aligned temporary buffer must be created for receiving the data as well. After the successful
receive, the data are copied into the given buffer. The number of bytes received or an error
code is returned after stopping the timeout object, releasing it, and the temporary aligned
buffer.

The timeout for sending brings almost zero overhead since the Pxn Sendto function is typically
called only once. However, the overhead resulting from copying data to aligned buffers is not
negligible, which is a limitation of PxNet.

The code for the custom transport functions can be found in Appendix D.

3.4.3 Example Implementation
Each demo has a section named after the example, containing global variables such as:

1. uart buff – an aligned buffer used for debug prints via UART

2. uart mbx – the mailbox of the UART Server (where to send requests)

Here is an example for the int32 publisher :
1 # define STRING_BUFFER_LEN 100
2

3 # pragma section ". int32_publisher " 8 awB
4 char uart_buff [STRING_BUFFER_LEN] PXMEM_ALIGNED ;
5 PxMbx_t uart_mbx ;
6 rcl_publisher_t publisher ;
7 std_msgs__msg__Int32 msg;
8 # pragma section

The synchronization with the PxNet (TCP/IP stack) is the first step in every demo. Each
PXROS-HR kernel has a local table of service request mailboxes on each core. After creating
the PxNet task, its mailbox is registered to the table on the core where it runs. In order to make
this service visible from a different call, the user must call PxGetGlobalServerMbx with the core
where it was registered. This function copies the entry to the local table so that it can be later
accessed with PxMbxRequestMbx, which looks only to the local table. This is necessary when
a task that wants to use the PxNet runs on a different core.

PxNet does not currently have any synchronization point, meaning that there is no exact point
at which a user knows that PxNet and the Ethernet driver are fully initialized. When a task
starts executing micro-ROS code without synchronization, there are timeouts that could cause
the application to fail. Although a synchronization point would require intervention in the PxNet
implementation, which is beyond the scope of this thesis. As a simple workaround, a waiting
period of a few seconds is used to ensure the full initialization of PxNet before starting the
application. Although this solution is not appropriate for a production environment, it suffices
to test the feasibility of the prototype in this thesis. Based on experimentation, a waiting time
of ten seconds has been found to be sufficient in most cases.

1 /* Synchronization point
2 * ---------------------
3 * The demo task needs to wait for PxNet to get initialized and running .
4 * It will be done as soon as the _PxTcpAccessReqMbxId global server mailbox
5 * became available .
6 */
7

62 Proposed Solution and Implementation

8 errRes = PxGetGlobalServerMbx (PXNETTASK_CORE , _PxTcpAccessReqMbxId);
9 if (errRes != PXERR_NOERROR)

10 PxPanic ();
11

12 /* Get UART Server mailbox */
13 uart_mbx = UartServer_getMbx (1 << 25);
14

15 /* Wait for 10 sec (complete initialization of PxNet Task and Ethernet driver)
*/

16 HtcSleep (PxTickGetTicksFromMilliSeconds (10000) , 1);

In the case of the demos that are executed within a single task, the custom transport structure
(transport) is allocated on the task’s stack. Conversely, for the examples that run across multiple
tasks, the transport structure is allocated on the global data section of the demo (thus allowing
access to be shared across the multiple tasks).

The code for the single task demos is provided below:
1 /* Set custom transport */
2 PxnTransport transport ;
3 transport .sock = -1;
4

5 if (rmw_uros_set_custom_transport (
6 false ,
7 (void *) &transport ,
8 pxn_udp_open ,
9 pxn_udp_close ,

10 pxn_udp_write ,
11 pxn_udp_read) != RMW_RET_OK)
12 {
13 PxPanic ();
14 }
15

In single task demos, the process of custom transport configuration is followed by the setting
of custom allocators:

1 /* Set custom allocators */
2 rcl_allocator_t PXROS_allocator = rcutils_get_zero_initialized_allocator ();
3 PXROS_allocator . allocate = PXROS_allocate ;
4 PXROS_allocator . deallocate = PXROS_deallocate ;
5 PXROS_allocator . reallocate = PXROS_reallocate ;
6 PXROS_allocator . zero_allocate = PXROS_zero_allocate ;
7

8 if (! rcutils_set_default_allocator (& PXROS_allocator))
9 {

10 PxPanic ();
11 }

With the help of the UART Server and this initialization step, it becomes possible to replace
the original printf function with sprintf and ioWrite function calls. This can be observed in the
modified RCCHECK and RCSOFTCHECK macros which have been changed from the original
version:

1 # define RCCHECK (fn) { rcl_ret_t temp_rc = fn; if ((temp_rc != RCL_RET_OK)){ printf
(" Failed status on line %d: %d. Aborting .\n",__LINE__ ,(int) temp_rc);}}

2 # define RCSOFTCHECK (fn) { rcl_ret_t temp_rc = fn; if ((temp_rc != RCL_RET_OK)){
printf (" Failed status on line %d: %d. Continuing .\n",__LINE__ ,(int) temp_rc)
;}}

Code listing 3.22 Original RCCHECK and RCSOFTCHECK macros.

Micro-ROS Demos 63

to:
1 # define RCCHECK (fn) { rcl_ret_t temp_rc = fn; if ((temp_rc != RCL_RET_OK)){ \
2 sprintf (uart_buff , " Failed status on line %d: %d. Aborting .\n",__LINE__ ,(int

) temp_rc); \
3 ioWrite (uart_mbx , uart_buff , strlen (uart_buff)); \
4 PxPanic () ;}}
5 # define RCSOFTCHECK (fn) { rcl_ret_t temp_rc = fn; if ((temp_rc != RCL_RET_OK)){ \
6 sprintf (uart_buff , " Failed status on line %d: %d. Continuing .\n",__LINE__ ,(

int) temp_rc); \
7 ioWrite (uart_mbx , uart_buff , strlen (uart_buff));}}

Code listing 3.23 Modified RCCHECK and RCSOFTCHECK functions using UART Server.

The header file associated with each demo only declares the create function. For instance,
the int32 publisher demo has the following declaration in its corresponding header file:

1 /* ==
2 * TASK API INTERFACE
3 * == */
4

5 extern PxTask_t int32_publisher_Create (PxPrio_t prio , PxEvents_t events ,
6 PxMc_t memClass , PxOpool_t objPool);

Task configuration
The configuration of the task is stored in a dedicated file with the suffix ” cfg.c”. All the con-
figuration parameters remain the same as in the other application tasks from the original PxNet
base example, except for a few things described below. For a more in-depth understanding of the
configuration, please refer to HighTec’s PXROS-HR example manuals.

Regarding the stack size, it should be noted that it is defined separately for each task. As
mentioned previously, the stack size is set to be much larger than what was revealed in memory
profiling [54] of micro-ROS. This ensures that the integration is not burdened by memory failure
issues. The stack size definition for the task is shown below:

1 /* TASK STACKs (in Bytes) */
2 # define TASK_STACKSIZE 4000
3 # define TASK_INTR_STACKSIZE 64

After defining the stack size, the symbols from the linker file that create the boundaries of
the sections need to be declared so that they can later be used to define memory regions for the
MPU. Tasks inherit the data context from their parent, and the extended regions are set based on
the needs of the application. The specific demo section, micro-ROS library, and standard library
global data are sections where tasks have access to read and write operations. The extended
memory regions have a special entry that indicates that there are no other extended memory
regions. This configuration helps ensure that tasks are properly isolated and have access only to
the memory regions they require.

1 extern PxUInt_t INT32_PUBLISHER_BASE [];
2 extern PxUInt_t INT32_PUBLISHER_END [];
3

4 extern PxUInt_t MICROROS_BASE [];
5 extern PxUInt_t MICROROS_END [];
6

7 extern PxUInt_t LIBRARY_DATA_BASE [];
8 extern PxUInt_t LIBRARY_DATA_END [];
9

10 /* TASK DATA CONTEXT
11 * Data regions that stay permanently programmed in Task MPU regions
12 * Notes :
13 * . lowerbound = 0 : region inherited from the parent

64 Proposed Solution and Implementation

14 * . lowerbound = . uppebound : no valid region
15 */
16 static const PxTaskContext_T task_Context =
17 {
18 . protection [0] =
19 {
20 0,
21 0,
22 NoAccessProtection
23 },
24 . protection [1] =
25 {
26 0,
27 0,
28 NoAccessProtection
29 }
30 };
31

32 /* TASK EXTENDED MEMORY REGIONS
33 * Any memory region the task needs to access outside task ’s stack and global

data region
34 * stated in Task Data Context
35 */
36 static const PxProtectRegion_T taskAPRegions [] =
37 {
38 { (unsigned int) INT32_PUBLISHER_BASE , (unsigned int) INT32_PUBLISHER_END ,

WRProtection },
39 { (unsigned int) MICROROS_BASE , (unsigned int) MICROROS_END , WRProtection },
40 { (unsigned int) LIBRARY_DATA_BASE , (unsigned int) LIBRARY_DATA_END ,

WRProtection },
41 {0, 0, NoAccessProtection }
42 };

Code listing 3.24 Task memory access definition for correct MPU settings.

To configure the task specification structure, the task’s name and function must be specified.
Below is an example showing the configuration for int32 publisher :

1 /* Configure Task specification structure */
2 task_Spec . ts_name = (const PxChar_t *)"Task int32_publisher ";
3 task_Spec . ts_fun = int32_publisher_taskFunc ;

3.4.4 Multithread publisher subscriber
The multithread publisher subscriber demo consists of two task functions, one for the main task
where subscribers run, and the other for the publisher tasks that run separately. A configuration
file for the publisher tasks is added to the task files. Following the micro-ROS initialization
(before calling the executor), the publisher tasks are created with lower priority. Once created,
the publisher tasks wait for the initial message from the main task that contains the pointer to
the publisher structure. This message is sent immediately after calling the publishers task create
function. The distribution of the publishers and subscribers running on a single core is shown in
3.6.

3.4.5 Multicore publisher subscriber
The multicore publisher subscriber example is designed to demonstrate the capability of PXROS-
HR as a multicore RTOS for distributing the load of tasks across multiple cores. This example
consists of two task functions, one for the main task where the subscribers run, and one for the
publisher tasks that run on different cores.

Micro-ROS Demos 65

Figure 3.6 Multithread demo distribution of publishers and subscribers.

In this example, the create function of the publisher tasks is assigned to the task deployment
table and they are created by the Init task, because PXROS-HR does not allow a task to create
a new task on a different core. When the publisher tasks start their execution, they register their
task IDs to the Name Server so that they can be accessed by the main task. Then, they wait for
the initial message from the main task.

Meanwhile, the main task initializes the micro-ROS and gets the IDs of the publisher tasks
from the Name Server before calling the executor. The main task then sends the pointer to the
publisher structure to each publisher task. The publisher tasks use the synchronization with
the PxNet described above and copy the service mailbox entry to their local table of service
mailboxes.

The figure 3.7 displays the distribution of publishers and subscribers running on multiple
cores but within one node.

Figure 3.7 Multicore demo distribution of publishers and subscribers.

66 Proposed Solution and Implementation

Chapter 4

Testing

To validate the proposed implementation, the focus was on testing the micro-ROS basic concept
of communication. The testing environment used was based on the Application Kit with TC397
B-Step development board. The TriCore chip was flashed and debugged using a PLS hardware
debugger connected to a Windows PC running the UDE (Universal Debug Engine) debugger
GUI. The development board was connected via USB cable to the Windows PC to print UART
debug output and via Ethernet cable to a laptop running native Ubuntu 22.04.2 LTS (Jammy
Jellyfish). On this laptop, the micro-ROS agent version Humble was installed according to the
documentation ([27]).

The testing process involved:

1. Flash the demo ”.elf” file to the MCU

2. Run the micro-ROS agent

3. Run the demo in the MCU

4. Run the corresponding ROS 2 commands for each demo

5. Observe the behavior based on the outputs of the commands, UART debug output from the
MCU, and Wireshark logs

The custom transports file had to be updated with the IP address of the machine where the
micro-ROS agent runs, along with the port specified by the user when running the micro-ROS
agent command. The UDE was configured for the Application Kit with TC39x B-Step (DAP).
Testing was done for each demo separately.

Figure 4.1 UDE program loader with all the demo ELF files – binary is loaded only to core 0, symbols
are loaded for each core.

67

68 Testing

4.1 Int32 publisher
The int32 publisher example can be considered the simplest among the tested demos. The micro-
ROS agent output (as shown in Figure 4.2, although it does not match the verbose output due
to different sessions) confirms that the micro-ROS client was successfully created and the session
was established. The log messages indicating that the ”topic created” and ”publisher created”
were the most important, signifying the successful creation of the publisher.

Figure 4.2 Micro-ROS agent output of int32 publisher demo.

The Wireshark log in 4.3 shows the UDP packet sent from the development board to the
laptop during the testing of int32 publisher. The data in this packet matches the data from the
micro-ROS agent verbose output shown in 4.6, indicating that the communication is functioning
properly and that the implementation of custom transports is successful.

Figure 4.3 Wireshark log showing the creation of the micro-ROS client. The Data matches the data
of the verbose output of the micro-ROS agent.

In the top right corner of Figure 4.4, the available topics can be seen, with the topic
/pxros int32 publisher created by the MCU. The echo of this topic shows the data published
to it, and the bottom right corner shows the UART debug output, confirming that the timer,
timer callback, and executor are functioning properly.

Int32 publisher 69

Figure 4.4 Publisher topic registration check, the echo of the publisher topic and UART debug output
from the MCU.

From the Wireshark log (4.5), it can be observed that the UDP packet is sent every second,
which corresponds to the timer settings defined in the demo.

Figure 4.5 Wireshark log approving that the publish is done each second.

70 Testing

Figure 4.6 Micro-ROS agent verbose output of int32 publisher demo.

Int32 subscriber 71

4.2 Int32 subscriber
Similarly to the publisher, the successful creation of the subscriber can be seen in the micro-ROS
agent output (4.7).

Figure 4.7 Micro-ROS agent output of int32 subscriber demo.

As shown in the top-right corner of 4.9, the subscriber topic MicroROS/int32 subscriber is
available, indicating that the subscriber was successfully created. To verify that the subscriber
is receiving messages, the following command can be executed:

1 $ ros2 topic pub --once / microROS / int32_subscriber std_msgs /msg/ Int32 ’{data:
"1"} ’

To verify that the subscriber is working properly, commands to publish messages containing
the 32-bit integers ”1,” ”2,” ”3,” and ”101” to the topic /microROS/int32 subscriber were exe-
cuted. This test aimed to check for the successful publishing of messages, which was confirmed
by observing the echo of the topic. All four messages were displayed in the echo, indicating that
they were published correctly (shown in the left image of 4.9).

Furthermore, the UART debug output was checked, and all the messages were printed with
the correct values (shown in the right low corner of 4.9). This indicates that the subscriber was
successfully receiving and processing published messages.

Figure 4.8 Publishing a message containing 32-bit integer value for a subscriber.

72 Testing

Figure 4.9 Subscriber topic registration check, the echo of the subscriber topic and UART debug
output from the MCU.

4.3 Ping pong

The ping-pong demo involves two publishers and two subscribers, making it a more advanced
demo. All publishers and subscribers with the two topics used in this demo can be found in the
micro-ROS agent output (4.10), which indicates that their creation was successful.

Figure 4.10 Micro-ROS agent output of ping pong demo.

In the demo, pings are published to the /microROS/ping topic every two seconds, as observed
in the left image of 4.12, as well as in the UART output (right low corner of 4.12), where they
have matching frame id.

To demonstrate that the application can respond to custom pings, a fake ping with the
frame id called fake ping was published to /microROS/ping. The following command was used
to achieve this:

1 $ ros2 topic pub --once / microROS /ping/ std_msgs /msg/ Header ’{ frame_id : "
fake_ping "}’

The ping should be visible in the echo of /microROS/ping, the UART debug output, and the
echo of /microROS/pong if the subscriber recognizes that the ping was not created by the demo
in MCU. As observed in 4.12, the subscriber for the /microROS/ping topic correctly recognized

Addtwoints server 73

the external pings and responded with a pong to the /microROS/pong topic, indicating that the
application was working properly.

Figure 4.11 Publishing a message containing fake ping for a ping subscriber.

Figure 4.12 Ping and pong topics registration check, their echo and UART debug output from the
MCU showing that the external fake ping was answered with a pong.

4.4 Addtwoints server
The Add two ints demo in micro-ROS showcases the request-response communication pattern
that can be utilized in ROS 2 systems. This demo allows the user to send a request to the
MCU to add two integers, and then waits for the MCU to process the request. After processing
the request, the MCU returns the desired output as the response. This pattern is useful for
delegating high-computing power demanding tasks to more powerful devices.

In the micro-ROS agent log, the service server is created as a ”replier” (see 4.13). This
indicates that it is ready to receive requests and provide a response based on those requests.

74 Testing

Figure 4.13 Micro-ROS agent output of addtwoints server demo.

In order to test the Add Two Ints service server, a service call with appropriate arguments
needs to be created. The service is available under the name /addtwoints, which can be confirmed
by running the command ”$ ros2 service list”. The service call requires two arguments, a and
b, which represent the two integers to be added. In order to evaluate the functionality of the
service server, various scenarios with different arguments (both positive and negative integers)
can be tested by executing the following command:

1 $ ros2 service call / addtwoints example_interfaces /srv/ AddTwoInts "{a: 1, b: 2}"

The service response was displayed directly in the terminal (as shown in 4.14), and the
response was correct. Additionally, the UART output printed the request with the passed argu-
ments.

Figure 4.14 Service call of the addtwoints to add two integers and return the sum.

Figure 4.15 UART debug output of addtwoints server demo.

Multithread publisher subscriber 75

4.5 Multithread publisher subscriber

In the multithread example, two publishers and two subscribers are created, which is similar to
the ping pong example, so the micro-ROS agent output is not attached. The availability of the
/multithreaded topic 1 and /multithreaded topic 2 topics can be observed in 4.16. The correct
publishing to these topics is confirmed by the output shown in 4.17.

Figure 4.16 Multithreaded topics registration check.

Figure 4.17 Multithreaded topics echo showing that the application running on MCU publishes
correctly to the two topics.

The UART output of the publishers can be observed in 4.18 along with their respective task
IDs. However, the behavior of the subscribers is inconsistent. One publisher-subscriber pair
is set as default, which uses reliable communication with acknowledgments, while the other is
set as best effort, which does not use acknowledgments. As a result, some missed messages
may be acceptable. However, further investigation is needed to determine what steps can be
taken to ensure proper triggering of the subscribers. As shown in figure 4.18, it is evident that
initially, only one subscriber was active. However, later in the process, the second subscriber was
triggered, which can be observed from the appearance of red rectangles in the figure.

Due to the difference in approaches used by other RTOSes for running the executor compared
to the original demos, tests were conducted to investigate whether the issue with the second
subscriber not being executed was caused by a problem with the executor call or due to a high
execution load on the core.

The official demos utilize the rclc executor spin function:

1 rclc_executor_spin (& executor);

76 Testing

Figure 4.18 UART debug output of multithread publisher subscriber demo where the best effort sub-
scriber does not work properly. The red rectangles show that both subscribers received a message.

An example of a different approach is demonstrated in the FreeRTOS demos, where the
rclc executor spin some function is periodically called, giving the executor a specific amount of
time to run before the task goes to sleep. The following code was used with PXROS-HR:

1 while (1)
2 {
3 rclc_executor_spin_some (& executor , RCL_MS_TO_NS (100));
4 HtcSleep (PxTickGetTicksFromMilliSeconds (100) , EV_WAIT_TIMEOUT);
5 }

The change in approach for running the executor helped in triggering both subscribers as
shown in 4.19 with the red and green rectangles indicating activation of both subscribers. How-
ever, it can still be observed that the subscriber is not triggered consistently, as shown by the
blue rectangles in 4.24 where the numbers 26 and 27 were published by the task with ID 30 but
the corresponding subscriber was not triggered. Based on the observations, it seems that the
handling of rclc executor spin might be the reason why the subscriber callbacks are not being
triggered.

The difference in publishing speed between the two publishers is also worth noting. Even
though they both wait for one second between publishing, after some time, one publisher be-
comes ahead of the other. This is because the implementation does not trigger a publisher every
second to synchronize the publishing but instead triggers it one second after the previous publish.
Furthermore, the amount of time needed for processing the publishing differs between the two
publishers. The publisher that is defined as default needs to wait for acknowledgment, which
causes its execution to take longer than the best effort publisher that does not use acknowl-
edgments. This can be seen in 4.24 where in the yellow rectangle, both publishers have just
published, but the difference in the numbers they published is greater than one.

To achieve synchronization and ensure reliable delivery of messages, the best effort publisher
can be modified to become reliable. By doing this, the output is synchronized as both the
publisher and subscriber take similar time to execute, and the subscribers are guaranteed to be
triggered as the pub-sub pair is defined as reliable. The output can be seen in Figure 4.20.

Multicore publisher subscriber 77

Figure 4.19 UART debug output of multithread demo with rclc executor spin some function proving
that it helps with the receiving of the best effort subscriber. However, it still misses some messages. In
the yellow rectangle, it is possible to observe that the publishing time differs between best effort and
reliable publishers.

Figure 4.20 UART debug output of multithread demo with reliable Pub-Sub pairs.

4.6 Multicore publisher subscriber

The multicore example builds upon the multithread example, with the main difference being
that tasks are executed on separate cores to distribute the processing load.

The micro-ROS agent output remains the same as the ping pong example, with two publish-
ers, two subscribers, and two topics created. In figures 4.21 and 4.22, both multicore topics are
available, with the publishers running on the MCU correctly publishing data to their respective
topics.

78 Testing

Figure 4.21 Multicore topics registration check.

Figure 4.22 Multicore topics echo showing that the application running on MCU publishes correctly
to the two topics.

In the multicore example, both subscribers are running on the same core and encounter
a similar issue as in the multithread example, where the use of the rclc executor spin function
causes the best effort subscriber not to be triggered as shown in 4.23. However, changing the
approach to periodic calls of rclc executor spin some was sufficient to resolve the issue and ensure
both subscribers are triggered correctly, as seen in 4.24. This suggests that distributing the
execution load across different cores can improve the dependability of the example’s execution.

The execution time difference between the default and best effort publishing functions is sig-
nificant enough to cause a noticeable discrepancy in the published numbers. After approximately
3 minutes, the best effort publisher is ten numbers ahead of the default publisher, as illustrated
in 4.25.

Multicore publisher subscriber 79

Figure 4.23 UART debug output of multicore publisher subscriber demo where the best effort sub-
scriber does not work properly. The red rectangles show when the best effort subscribers were triggered.

80 Testing

Figure 4.24 UART debug output of multicore demo with rclc executor spin some function proving
that it helps with the receiving of the best effort subscriber.

Figure 4.25 Time difference in the publishing functions of the best effort and reliable publishers.
After approximately three minutes, the difference is about ten seconds.

Chapter 5

Conclusion

In conclusion, this thesis has provided an analysis of Robot Operating System (ROS) and its
successor, ROS 2, as well as the Micro-ROS framework, Data Distribution Service (DDS), and
PXROS-HR. For a Real-Time Operating System (RTOS) to be compatible with micro-ROS, it
needs to be POSIX compliant. For RTOSes that are not POSIX compliant, they need to align
with the POSIX standard to some degree. In the case of PXROS-HR, this meant implementing
time functions and mutexes to achieve compatibility with micro-ROS. The PXROS-HR features
were introduced and used to map the requirements for time functions and mutex functionality.
These requirements were then implemented using the relevant PXROS-HR features and API
functions. The proposed solution and implementation involve building a custom static library for
micro-ROS, implementing Mutex Server, configuring the project structure, and testing different
micro-ROS demos. The implementation was done at the application level, so there was no
need to modify the kernel itself. The results showed that the prototype successfully integrates
PXROS-HR into Micro-ROS using the UDP communication protocol for data exchange between
the Micro-ROS agent and the client.

The necessary components required to build this project are as follows:

HighTec compiler for TriCore version 4.9.4.1

HighTec safety certified RTOS for TriCore – PXROS-HR

PxNet – HighTec module encapsulating TCP/IP stack developed by SEVENSTAX company

SEVENSTAX TCP/IP stack sources

Micro-ROS library

HighTec PxNet base example

iLLD (Infineon Low-Level Driver) sources to build the Ethernet driver

The above-mentioned list highlights the complexity of the prototype, which necessitated the
use of various commercial tools, libraries, and software.

The development of this thesis was conducted in collaboration with HighTec, and any code
generated to investigate the feasibility of integrating PXROS-HR into micro-ROS is the property
of HighTec.

To enhance the readability of the text, captions were omitted in some of the code listings.

81

82 Conclusion

Known Limitations
The stdbool.h header from the standard library is utilized by the Micro-ROS library for boolean
data types. However, HighTec defines its own boolean type and overwrites the previous definition
in pxdef.h, which contains all the public definitions, API, and structures for PXROS-HR. This
becomes problematic because the boolean type defined in the standard library has a size of 1 byte
while the boolean type in PXROS-HR is defined as PxUInt32 t with a size of 4 bytes. Although
pxdef.h is included in several places, the issue arises when the PXROS-HR mutex implementation
in the Micro XRCE-DDS Client project includes MutexServer.h, which requires the PXROS-HR
API for its implementation. As a result, the size of function parameters (or return values) in
function declarations and definitions did not match. To address this problem, the redefinition in
pxdef.h was commented out during the build of the Micro-ROS library to prevent any interference
with code relying on the standard library. The original pxdef.h was used without modification
during the build of the prototype.

During testing, it was observed that the micro-ROS application failed to start and encountered
errors in some of the PxNet API functions. This issue is likely due to a lack of synchronization in
the PxNet module, which means that there is no exact point where a task can access information
that the PxNet module is fully initialized and ready for use. Although waiting for 10 seconds
appeared to solve the problem during experimentation, later testing showed that this simple
waiting time was not sufficient. This issue indicates the possibility of a bug in the PxNet module,
but detailed testing and root cause investigation are beyond the scope of this thesis. However,
it is important to note that this issue did not affect the feasibility of the integration.

As the integration of PXROS-HR into micro-ROS was not straightforward and PXROS-HR
does not provide mutexes by default, the development of the Mutex Server was necessary. The
implementation of this task was tested internally at HighTec. However, like any other use of
mutexes, this approach introduces some overhead. Although this is not within the scope of this
thesis, it would be valuable to evaluate the size of the overhead and compare it with standard
POSIX mutexes on Linux, for example.

The use of PxNet requires an aligned buffer, which can also cause overhead in micro-ROS.
This is because the buffer used in micro-ROS is incrementally filled, and may not always be
aligned. As a result, message copying is necessary both during sending and receiving functions
to ensure alignment with PxNet requirements.

Results
A functional prototype was developed to demonstrate the feasibility of integrating PXROS-HR
into the micro-ROS system, with a focus on the key concept of micro-ROS communication
patterns. The prototype includes several micro-ROS demo applications that were adapted to
use PXROS-HR as their underlying real-time operating system. Additionally, an extra demo
was created to showcase the power of PXROS-HR as a multicore RTOS, with multiple tasks
assigned to different cores. Overall, the prototype proves that the integration of PXROS-HR
into micro-ROS is possible and offers benefits in terms of real-time capabilities and multicore
processing.

The prototype is currently designed for the Application Kit TC3X7 version 2.0 with the
TC397 B-Step, but it can be easily adapted for other boards and processors supported by the
PxNet base example. Only the general files that are not directly related to micro-ROS need to
be added or modified.

Appendix A

History of ROS

ROS originated as a personal project initiated by Keenan Wyrobek and Eric Berger while study-
ing at Stanford University aiming to address the recurring issue of reinventing the wheel in
robotics (comic of the robotics research process is shown in A.1). Keenan Wyrobek and Eric
Berger were concerned about the prevalent issue in robotics at the time, meaning mainly:

Too much time was spent re-creating the software infrastructure to develop complex robotics
algorithms (this included creating drivers for sensors and actuators, as well as enabling com-
munication between different programs within the same robot)

Lack of time devoted to building intelligent robotics programs

Keenan and Eric highlighted the issue of the reinvention of drivers and communication systems
being repeated for every new project, even within the same organization. They beautifully
expressed the situation in one of their pitch deck1 slides that they used to present to potential
investors. Figure A.2 shows these ratios between reimplementing and bringing new solutions.

Eric and Keenan established the Stanford Personal Robotics Program in 2006 with the ob-
jective of addressing the issue of reinventing the wheel in robotics. They aimed to develop
a framework that enables seamless communication among processes, along with tools to facili-
tate code creation. The goal was to raise a total of $4 million, which was estimated to cover the
expenses of hiring software engineers for ROS support and the construction of ten robot copies.
Eventually, Keenan and Eric received only $50k in funding. The funds, along with additional
financial support from Stanford Deans, were used to develop PR1 (Personal Robot 1 – visible in
A.3). This robot was then used to garner support for the project from leading robotics software
R&D teams, as well as the Stanford AI Robot team, which provided valuable insights into the
high standards required for a robotics software development platform to be truly effective. How-
ever, perhaps the most significant use of PR1 was in creating engaging videos2 that showcased
its capabilities, which were then used to attract further funding for the project.

Despite receiving feedback that their goal of creating the ”Linux of Robotics” was too am-
bitious, the creators of ROS persisted in pursuing this vision. Their persistence paid off when
they met Scott Hassan, an investor and the founder of Willow Garage, a research center spe-
cializing in robotics products, who was impressed by their vision and saw its potential to enable
future entrepreneurs in the robotics industry with an open-source foundation. As a successful
entrepreneur himself who had used open-source software to build companies like Google and

1Pitch decks in a simplified way are: ”Short presentations to help someone else learn about your business
quickly.” Taken from [56]

2One of the videos is about Teleoperated PR1 cleaning a room in 2006, which is accessible at
https://www.youtube.com/watch?v=oyHWkQcin7I.

83

https://www.youtube.com/watch?v=oyHWkQcin7I

84 History of ROS

Figure A.1 Comic commissioned at Willow Garage, from Jorge Cham, to illustrate the wasted time
in robotics R&D. [55]

eGroups, Hassan was passionate about ”paying it forward” and supporting the development of
ROS.

Scott was so intrigued by their idea that he chose to provide funding and establish a Per-
sonal Robotics Program with Keenan and Eric at Willow Garage, which was the third program
alongside autonomous car and boat programs. Thanks to Hassan’s support, the development
of ROS at Willow Garage received a funding that exceeded the initial estimate of $4 million.
This is where the Robot Operating System was created, along with the PR2 (Personal Robot
2) robot. The ROS project soon became so significant that Willow Garage abandoned all of its
other projects and solely focused on the development and dissemination of ROS.

Getting to ROS 1.0 85

Figure A.2 The Eric and Keenan pitch deck slide shows the ratio of time spent between reinventing
the wheel and new research in robotics. It points out that most of the time is wasted by re-implementing
already existing software. The image also indicates that this issue also happened in the same organiza-
tions. [55]

Figure A.3 PR1 (Personal Robot 1) was utilized to garner support from the foremost research and
development teams in the field of robotics software. [57]

A.1 Getting to ROS 1.0
At Willow Garage, a multitude of factors contributed to the eventual success of the Robot
Operating System (ROS) in becoming the ”Linux of Robotics.” One key factor was the early
recruitment of renowned leaders, engineers, and researchers. These individuals brought valuable
expertise and experience to the team. Another critical aspect was the team’s unwavering focus
on building ROS as the ”Linux of Robotics.” They achieved this by incorporating leaders from
previous open-source robotics initiatives into the ROS community, investing in user-friendly and

86 History of ROS

Figure A.4 The PR2 (Personal Robot 2) robot is considered to be among the most advanced research
robots ever developed. Its cutting-edge hardware and software capabilities enable it to perform complex
tasks. PR2 robot is entirely integrated with ROS, providing access to all the ROS developer tools and
built-in capabilities for tasks ranging from complete system calibration to manipulation. [58]

powerful software, and persuading major companies like Bosch to adopt open-source libraries.
To foster the growth of the ROS community, the team employed various tactics (e.g. The

two-day workshop, The intern program). For example, they encouraged applicants for a free PR2
through their Beta Program to describe how they would use the hardware platform to benefit
the entire ROS community. In addition, they incentivized leaders at academic institutions and
companies to open-source their robotics work by awarding them prizes, rather than offering
traditional academic discounts for the PR2s.

A.2 Willow Garage Time
ROS was developed at Willow Garage for approximately six years, until the company shut down
in 2014. During this time, the project underwent many advancements which contributed to its
rise in popularity.

In 2009, ROS Mango Tango, also known as ROS 0.4, was released as the first distribution of
ROS. Interestingly, its name had no connection to the current naming convention. The release
of ROS 1.0 followed almost a year later in 2010. From this point on, the ROS team adopted
a naming convention that used turtle species for their distributions. The subsequent distributions
and their release dates are as follows in table A.1.

During that time, several other significant events occurred. In 2009, Willow Garage developed
the second version of the Personal Robot, known as the PR2. In an effort to address technical
queries about ROS, the team launched ROS Answers. The first ROSCON was organized in 2012
and has since become the official yearly conference for ROS developers. Willow Garage provided

Willow Garage Time 87

Distribution Release date
Box Turtle 2010
ROS C-Turtle 2010
Diamond Back 2011
ROS Electric Emys 2011
ROS Fuerte Turtle 2012
ROS Groovy Galapagos 2012

Table A.1 First ROS distributions with release dates.

11 PR2 robots to 11 universities in 2010 to facilitate robotics software development using ROS.
This move was in line with the original idea of Eric and Keenan.

Moreover, during this period, simulation became crucial, specifically 3D simulation. Conse-
quently, the team incorporated Gazebo, the 3D robotics simulator from the Player/Stage project,
into ROS. As a result, Gazebo became the default 3D simulator for ROS. The growth of ROS
was remarkable as it progressed. The number of repositories, packages offered, and the adoption
rate by universities and corporations increased rapidly. This massive increase can be seen in A.5,
showing the number of repositories and packages in the early days.

Figure A.5 In the early days, the development of ROS was evolving and brought a massive increase
in the number of repositories and packages offered. [58]

Another crucial event that contributed to the expansion of the ROS community was the
introduction of the Turtlebot robot by Willow Garage in 2011, which became a widely recognized
robot for ROS developers. While the PR2 was originally intended for testing and development
with ROS, its complexity and high cost made it unfeasible for most researchers. In contrast, the
TurtleBot was an affordable and simple robot that allowed for basic experimentation with ROS
and robotics. It quickly gained widespread popularity and is still in use today, with updated
versions such as the TurtleBot2, TurtleBot3, and the most current TurtleBot4, released in May
2022. The whole TurtleBot family is shown in A.6.

In 2013, an announcement was made by Willow Garage that the company would be dissolved
within that year, which sparked questions about the fate of ROS. It was proposed that the
Open Source Robotics Foundation, which was newly established at the time, would take over
the leadership of ROS development. Additionally, many of the former Willow Garage employees
were hired by Suitable Technologies, one of the spin-offs created from Willow Garage, despite
not using ROS for their products. The responsibility of providing customer support for all the

88 History of ROS

Figure A.6 The TurtleBot is an open-source personal robot kit developed by Melonee Wise and Tully
Foote at Willow Garage in November 2010. It was an inexpensive and straightforward robot facilitating
elementary ROS and robotics experimentation. There are now four generations of TurtleBots. The
image shows the TurtleBot Family. [59]

PR2 robots was taken up by Clearpath Robotics, another significant company in the robotics
industry.

A.3 Open Source Robotics Foundation Time

ROS kept progressing and introducing new versions under the fresh legal structure of the Open
Source Robotics Foundation. Table A.2 lists the following distributions with their release date.

At the time of writing this thesis, there are only two active ROS 1 distributions – ROS Melodic
Morenia and ROS Noetic Ninjemys. It should be noted that the latest ROS distribution, ROS
Noetic, is the final version ever released. It uses Python 3, unlike all previous versions that used
Python 2. No additional ROS 1 distributions were made after this release, and the focus was
shifted to developing ROS 2.

ROS 2.0, The New Generation 89

Distribution Release date
ROS Hydro Medusa 2013
ROS Indigo Igloo 2014
ROS Jade Turtle 2015
ROS Kinetic Kame 2016
ROS Lunar Loggerhead 2017
ROS Melodic Morenia 2018
ROS Noetic Ninjemys 2020

Table A.2 Following ROS distributions created under Open Source Robotics Foundation with release
dates.

A.4 ROS 2.0, The New Generation
In approximately 2015, the limitations of ROS for commercial use became more evident. Com-
panies were hesitant to adopt ROS in their products due to issues such as a single point of failure
(the roscore), lack of security, and no support for real-time applications. However, ROS needed
a stronger presence in the industrial sector to become the standard for robotics. To address this
challenge, the Open Source Robotics Foundation undertook the development of ROS 2.0. This
foundation underwent a name change in 2017 to become Open Robotics. The rebranding was
done to give the organization a more corporate identity rather than being perceived as a foun-
dation, even though the foundation aspect of the organization still remains. More details about
ROS 2 will be provided in the following sections. [58, 55]

90 History of ROS

Appendix B

Mutex Implementation

This appendix provides additional information on the mutex implementation, including the mu-
tex API functions that application tasks can use, as well as visual representations to aid in
understanding the Mutex Server implementation.

B.1 Mutex API Functions
The following functions provide the mutex API that should be called from the application tasks.
It covers three basic functionalities – initialization, locking, and unlocking of the mutex.

1 /* ˜˜˜
2 * FUNCTION : PxInitLock
3 * Initialize the mutex structure with valid mutex ID on success , otherwise
4 * error code
5 * IN:
6 * mutex : pointer to a mutex structure
7 * NOTES :
8 * ˜˜˜ */
9

10 void PxInitLock (PxMutex_t * mutex)
11 {
12 /* Get Mutex server mailbox */
13 PxError_t errRes = HtcPxNameQuery (MutexServer_MID_NAMESERVERID ,
14 sizeof (PxTask_t),
15 &mutex -> mutex_server_mbx ,
16 0,
17 0,
18 MUTEXSERVER_EV_WAIT_TIMEOUT);
19 if (errRes != PXERR_NOERROR)
20 PxPanic ();
21

22 /* Get message to communicate with Mutex server , metadata are sufficient */
23 PxMsg_t msgHnd = PxMsgRequest (0, PXMcTaskdefault , PXOpoolTaskdefault);
24

25 /* Set message to be send back */
26 PxMsgSetToAwaitRel (msgHnd);
27

28 /* Get message metadata */
29 PxMutexMsg_t mutex_msg_metadata ;
30 mutex_msg_metadata .pxmd = PxMsgGetMetadata (msgHnd);
31

32 /* Set metadata for mutex init */
33 mutex_msg_metadata .itc. mutex_operation = MUTEX_INIT ;
34 mutex -> mutex_id = -1; // uninitialized

91

92 Mutex Implementation

35 mutex_msg_metadata .itc. mutex_id = mutex -> mutex_id ;
36 PxMsgSetMetadata (msgHnd , mutex_msg_metadata .pxmd);
37

38 /* Send message to Mutex server , blocking call with await release */
39 PxMsgSend (msgHnd , mutex -> mutex_server_mbx);
40 PxMsgAwaitRel (msgHnd); // wait for response
41

42 /* Set mutex ID */
43 mutex_msg_metadata .pxmd = PxMsgGetMetadata (msgHnd);
44 mutex -> mutex_id = mutex_msg_metadata .itc. mutex_id ;
45

46 PxMsgRelease (msgHnd);
47 }

Code listing B.1 Mutex initialization function in MutexServer.c.

1 /* ˜˜˜
2 * FUNCTION : PxLock
3 * Get the lock of the mutex if it is free
4 * otherwise wait for the mutex to be free and then get the lock.
5 * IN:
6 * mutex : pointer to a mutex structure
7 * NOTES :
8 * When the message is released by the Mutex server , lock was successfully
9 * obtained

10 * ˜˜˜ */
11

12 void PxLock (PxMutex_t * mutex)
13 {
14 /* Get message to communicate with Mutex server , metadata are sufficient */
15 PxMsg_t msgHnd = PxMsgRequest (0, PXMcTaskdefault , PXOpoolTaskdefault);
16

17 /* Set message to be send back */
18 PxMsgSetToAwaitRel (msgHnd);
19

20 /* Get message metadata */
21 PxMutexMsg_t mutex_msg_metadata ;
22 mutex_msg_metadata .pxmd = PxMsgGetMetadata (msgHnd);
23

24 /* Set metadata for mutex init */
25 mutex_msg_metadata .itc. mutex_operation = MUTEX_LOCK ;
26 mutex_msg_metadata .itc. mutex_id = mutex -> mutex_id ;
27 PxMsgSetMetadata (msgHnd , mutex_msg_metadata .pxmd);
28

29 /* Send message to Mutex server , blocking call with await release */
30 PxMsgSend (msgHnd , mutex -> mutex_server_mbx);
31 PxMsgAwaitRel (msgHnd); // wait for response
32

33 PxMsgRelease (msgHnd);
34

35 /* Successfully claimed the lock */
36 }

Code listing B.2 Mutex lock function in MutexServer.c.

1 /* ˜˜˜
2 * FUNCTION : PxUnlock
3 * If the requesting task has the lock:
4 * If there is any task waiting for the lock , pass it the lock; if no

task
5 * waits , unlock it
6 * otherwise :
7 * do nothing
8 * IN:
9 * mutex : pointer to a mutex structure

Mutex Scheme 93

10 * NOTES :
11 * Unlocking always passes the lock to the first task waiting for the lock ,
12 * if there is any.
13 * ˜˜˜ */
14

15 void PxUnlock (PxMutex_t * mutex)
16 {
17 /* Get message to communicate with Mutex server , metadata are sufficient */
18 PxMsg_t msgHnd = PxMsgRequest (0, PXMcTaskdefault , PXOpoolTaskdefault);
19

20 /* Set message to be send back */
21 PxMsgSetToAwaitRel (msgHnd);
22

23 /* Get message metadata */
24 PxMutexMsg_t mutex_msg_metadata ;
25 mutex_msg_metadata .pxmd = PxMsgGetMetadata (msgHnd);
26

27 /* Set metadata for mutex init */
28 mutex_msg_metadata .itc. mutex_operation = MUTEX_UNLOCK ;
29 mutex_msg_metadata .itc. mutex_id = mutex -> mutex_id ;
30 PxMsgSetMetadata (msgHnd , mutex_msg_metadata .pxmd);
31

32 /* Send message to Mutex server , blocking call with await release */
33 PxMsgSend (msgHnd , mutex -> mutex_server_mbx);
34 PxMsgAwaitRel (msgHnd); // wait for response
35

36 PxMsgRelease (msgHnd);
37

38 /* Successfully unlocked */
39 }

Code listing B.3 Mutex unlock function in MutexServer.c.

B.2 Mutex Scheme
This section provides detailed visualizations of the implementation of Mutex Server. Figure B.1
depicts the state after initialization and provides an overview of how communication between
application tasks and Mutex Server works, as well as how the internal structure of the mutexes is
organized. Figure B.2 demonstrates the scenario where TaskA already has the lock, and TaskB
tries to lock the same mutex. TaskB’s request goes to the mutex mailbox (FIFO) and TaskB is
blocked until the mutex is unlocked.

94 Mutex Implementation

Figure B.1 Example scheme after initialization with two application tasks – TaskA, TaskB.

Figure B.2 Example scheme where TaskA has the lock, and TaskB sends the request to lock the
same mutex. TaskB’s request goes to the mutex mailbox, and TaskB waits for the release of the request
message (obtaining the lock).

Appendix C

Custom Allocators
Implementation

The TriCore microcontrollers come with a hardware Memory Protection Unit (MPU) and PXROS-
HR handles the correct configuration of this MPU. Each task is required to specify its access
rights to the memory areas it needs to work with. To ensure proper access rights are set, cus-
tom allocators are utilized for dynamic memory allocation. The following implementations were
employed for the single-core demos:

1 void * PXROS_allocate (size_t size , void * state){
2 (void) state ;
3

4 return PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (size));
5 }
6

7

8 void PXROS_deallocate (void * pointer , void * state){
9 (void) state ;

10

11 if (pointer)
12 (void) PxMcReturnBlk (PXMcTaskdefault , (PxMptr_t) pointer);
13 }
14

15

16 void * PXROS_reallocate (void * pointer , size_t size , void * state){
17 (void) state ;
18

19 if (NULL == pointer)
20 {
21 return PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (size));
22 }
23 else
24 {
25 PxMptr_t tmp = PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (size));
26 if (tmp)
27 {
28 memcpy (tmp , pointer , size);
29 (void) PxMcReturnBlk (PXMcTaskdefault , (PxMptr_t) pointer);
30 }
31 return tmp;
32 }
33 }
34

35

36

95

96 Custom Allocators Implementation

37 void * PXROS_zero_allocate (size_t number_of_elements , size_t size_of_element ,
void * state){

38 (void) state ;
39

40 PxMptr_t ptr = PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (number_of_elements *
size_of_element));

41 memset (ptr , 0, number_of_elements * size_of_element);
42 return ptr;
43 }

Code listing C.1 PXROS-HR custom allocators implementation in allocators.c.

Appendix D

Custom Transports
Implementation

This appendix includes the custom transport function implementations that enable the commu-
nication between the micro-ROS agent and client through the use of PxNet and PXROS-HR
APIs.

1 bool pxn_udp_open (uxrCustomTransport * transport)
2 {
3 PxnTransport * PxnTransport_data = (PxnTransport *) transport ->args;
4

5 bool rv = false ;
6

7 /* Socket initialization */
8 PxnTransport_data ->sock = Pxn_Socket (AF_INET , SOCK_DGRAM , 0);
9 if (PxnTransport_data ->sock != -1)

10 {
11 memset (& PxnTransport_data ->addr , 0, sizeof (PxnTransport_data ->addr));
12

13 /* Remote IP setup . */
14 PxnTransport_data ->addr. sin_family = AF_INET ;
15 PxnTransport_data ->addr. sin_port = htons (2018) ;
16 PxnTransport_data ->addr. sin_addr . s_addr = htonl (IP_ADDR_TO_INT (192 , 168 , 0,

10)); // Host IP address
17

18 rv = true;
19 }
20

21 return rv;
22 }

Code listing D.1 Custom open function using PxNet API in microros transports.c.

1 bool pxn_udp_close (uxrCustomTransport * transport){
2 PxnTransport * PxnTransport_data = (PxnTransport *) transport ->args;
3

4 return Pxn_Close (PxnTransport_data ->sock) == 0;
5 }

Code listing D.2 Custom close function using PxNet API in microros transports.c.

97

98 Custom Transports Implementation

1 size_t pxn_udp_write (uxrCustomTransport * transport , const uint8_t * buf , size_t
len , uint8_t * err){

2 PxnTransport * PxnTransport_data = (PxnTransport *) transport ->args;
3

4 size_t rv = 0;
5 PxMptr_t tmp_buf = PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (len));
6

7 if (! tmp_buf)
8 PxPanic ();
9

10 /* Ensure that the buffer is aligned */
11 memcpy (tmp_buf , buf , len);
12

13 /* Prepare timeout for PxNet response "try again later " */
14 int retryCount = SEND_RETRY_COUNT ;
15 int retryTimeout = PxTickGetTicksFromMilliSeconds (SEND_RETRY_TIMEOUT);
16

17 /* Ask for a timeout object from the task default object pool to generate wake
-up event */

18 PxTo_t to = PxToRequest (PXOpoolTaskdefault , retryTimeout , EV_WAIT_TIMEOUT);
19

20 if (PxToIdError (to) != PXERR_NOERROR)
21 {
22 PxPanic ();
23 *err = 1;
24 return rv;
25 }
26

27 /* Retry loop with waiting sleep in between send retries */
28 do
29 {
30 int32_t bytes_sent = Pxn_Sendto (PxnTransport_data ->sock ,
31 (void *) tmp_buf ,
32 PXMEM_ADJUST (len),
33 0,
34 (struct sockaddr *) &(PxnTransport_data ->addr)

,
35 sizeof (PxnTransport_data ->addr));
36

37 /* Successfully sent */
38 if (bytes_sent > 0)
39 {
40 rv = (size_t) bytes_sent ;
41 *err = 0;
42 break ;
43 }
44 /* Try again later returned from PxNet */
45 else if (bytes_sent == EAGAIN)
46 {
47 PxToStart (to);
48 PxAwaitEvents (EV_WAIT_TIMEOUT);
49 }
50 /* Error */
51 else
52 {
53 retryCount = 0;
54 break ;
55 }
56 } while (-- retryCount > 0);
57

58 /* Entry not found after number of trials
59 * Something must be wrong in the complete application
60 */
61 if (retryCount == 0)
62 *err = 1;

99

63

64 /* Stop and release the temporary timeout object */
65 PxToStop (to);
66 PxToRelease (to);
67

68 /* Return aligned temporary buffer */
69 PxMcReturnBlk (PXMcTaskdefault , tmp_buf);
70

71 return rv;
72 }

Code listing D.3 Custom write function using PxNet API in microros transports.c.

1 size_t pxn_udp_read (uxrCustomTransport * transport , uint8_t * buf , size_t len , int
timeout , uint8_t * err){

2 PxnTransport * PxnTransport_data = (PxnTransport *) transport ->args;
3

4 size_t rv = 0;
5

6 /* Timeout is in ms , divide by 10 and do it ten times so the other tasks can
run too.

7 * Total timeout = retryCount * retryTimeout
8 * Time for running other tasks while waiting for next try: timeout / retryCount
9 * If the timeout is lower than 10 ms , wait 1 ms within each try

10 */
11 int retryCount ;
12 int retryTimeout ;
13 if (timeout >= 10)
14 {
15 retryCount = 10;
16 retryTimeout = PxTickGetTicksFromMilliSeconds (timeout)/ retryCount ;
17 }
18 else
19 {
20 retryCount = timeout ;
21 retryTimeout = PxTickGetTicksFromMilliSeconds (1);
22 }
23

24 /* Get aligned temporary buffer */
25 PxMptr_t tmp_buf = PxMcTakeBlk (PXMcTaskdefault , PXMEM_ADJUST (len));
26

27 if (! tmp_buf)
28 PxPanic ();
29

30 /* Receive address structure */
31 struct sockaddr recv_addr ;
32 unsigned int recv_addr_size = sizeof (recv_addr);
33

34 /* Ask for a timeout object from the task default object pool to generate wake
-up event */

35 PxTo_t to = PxToRequest (PXOpoolTaskdefault , retryTimeout , EV_WAIT_TIMEOUT);
36

37 if (PxToIdError (to) != PXERR_NOERROR)
38 {
39 PxPanic ();
40 *err = 1;
41 return rv;
42 }
43

44 /* Retry loop with waiting sleep in between send retries */
45 do
46 {
47 int32_t bytes_received = Pxn_Recvfrom (PxnTransport_data ->sock ,
48 (void *) tmp_buf ,
49 PXMEM_ADJUST (len),
50 MSG_DONTWAIT ,

100 Custom Transports Implementation

51 (struct sockaddr *) &recv_addr ,
52 & recv_addr_size);
53

54 /* data successfully received */
55 if (bytes_received >= 0)
56 {
57 /* Copy received data from temporary buffer to receive buffer */
58 memcpy (buf , tmp_buf , len);
59 rv = (size_t) bytes_received ;
60 *err = 0;
61 break ;
62 }
63 /* Error */
64 else
65 {
66 PxToStart (to);
67 PxAwaitEvents (EV_WAIT_TIMEOUT);
68 }
69 } while (-- retryCount > 0);
70

71 /* Entry not found after number of trials
72 * Something must be wrong in the complete application
73 */
74 if (retryCount == 0)
75 *err = 1;
76

77 /* Stop and release the temporary timeout object */
78 PxToStop (to);
79 PxToRelease (to);
80

81 /* Return aligned temporary buffer */
82 PxMcReturnBlk (PXMcTaskdefault , tmp_buf);
83

84 return rv;
85 }

Code listing D.4 Custom read function using PxNet API in microros transports.c.

Bibliography

1. MICRO-ROS. Supported RTOSes [online]. 2023. [visited on 2023-04-25]. Available from:
https://micro.ros.org/docs/overview/rtos/.

2. MACENSKI, Steven; FOOTE, Tully; GERKEY, Brian; LALANCETTE, Chris; WOODALL,
William. Robot Operating System 2: Design, architecture, and uses in the wild. Science
Robotics [online]. 2022, vol. 7, no. 66, eabm6074 [visited on 2023-04-25]. Available from doi:
10.1126/scirobotics.abm6074.

3. OPEN ROBOTICS. ROS - Robot Operating System [online]. 2022-07. [visited on 2023-04-
25]. Available from: https://www.ros.org/.

4. OPEN ROBOTICS. Why ROS? [online]. [visited on 2023-04-25]. Available from: https:
//www.ros.org/blog/why-ros/.

5. MAZZARI, Vanessa. ROS – Robot Operating System [online]. 2016-03. [visited on 2023-
04-25]. Available from: https://www.generationrobots.com/blog/en/ros- robot-
operating-system-2/.

6. GERKEY, Brian. Why ROS 2? [online]. 2014-06. [visited on 2023-04-25]. Available from:
https://design.ros2.org/articles/why_ros2.html.

7. THOMAS, Dirk. Changes between ROS 1 and ROS 2 [online]. 2015-09. [visited on 2023-
04-25]. Available from: https://design.ros2.org/articles/changes.html.

8. OPEN ROBOTICS. ROS 2 Documentation [online]. 2023-02. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/index.html.

9. APEX.AI. FAQ [online]. 2023. [visited on 2023-04-25]. Available from: https://www.apex.
ai/faq.

10. OPEN ROBOTICS. Understanding nodes [online]. 2022-06. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Tutorials/Beginner- CLI- Tools/
Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html.

11. OPEN ROBOTICS. Understanding parameters [online]. 2022-06. [visited on 2023-04-25].
Available from: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html.

12. OPEN ROBOTICS. About ROS 2 interfaces [online]. 2021-08. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Concepts/About-ROS-Interfaces.html.

13. OPEN ROBOTICS. Understanding topics [online]. 2022-06. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Tutorials/Beginner- CLI- Tools/
Understanding-ROS2-Topics/Understanding-ROS2-Topics.html.

14. MILLÁN, José L. Creating ROS 2 Services [online]. 2022-08. [visited on 2023-04-25]. Avail-
able from: https://foxglove.dev/blog/creating-ros2-services.

101

https://micro.ros.org/docs/overview/rtos/
https://doi.org/10.1126/scirobotics.abm6074
https://www.ros.org/
https://www.ros.org/blog/why-ros/
https://www.ros.org/blog/why-ros/
https://www.generationrobots.com/blog/en/ros-robot-operating-system-2/
https://www.generationrobots.com/blog/en/ros-robot-operating-system-2/
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/changes.html
https://docs.ros.org/en/humble/index.html
https://www.apex.ai/faq
https://www.apex.ai/faq
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/humble/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://foxglove.dev/blog/creating-ros2-services

102 Bibliography

15. OPEN ROBOTICS. Understanding services [online]. 2022-06. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Tutorials/Beginner- CLI- Tools/
Understanding-ROS2-Services/Understanding-ROS2-Services.html.

16. WEON, Esther. Creating ROS 2 Actions [online]. 2022-08. [visited on 2023-04-25]. Available
from: https://foxglove.dev/blog/creating-ros2-actions.

17. OPEN ROBOTICS. Understanding actions [online]. 2022-07. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Tutorials/Beginner- CLI- Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html.

18. OPEN ROBOTICS. About internal ROS 2 interfaces [online]. 2021-03. [visited on 2023-04-
25]. Available from: https://docs.ros.org/en/humble/Concepts/About-Internal-
Interfaces.html.

19. OPEN ROBOTICS. Executors [online]. 2022-12. [visited on 2023-04-25]. Available from:
https://docs.ros.org/en/humble/Concepts/About-Executors.html.

20. OPEN ROBOTICS. About ROS 2 client libraries [online]. 2022-08. [visited on 2023-04-25].
Available from: https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-
Libraries.html.

21. OPEN ROBOTICS. The ROS DOMAIN ID [online]. 2021-09. [visited on 2023-04-25]. Avail-
able from: https://docs.ros.org/en/humble/Concepts/About-Domain-ID.html.

22. OPEN ROBOTICS. About Quality of Service settings [online]. 2022-07. [visited on 2023-04-
25]. Available from: https://docs.ros.org/en/humble/Concepts/About-Quality-of-
Service-Settings.html.

23. OPEN ROBOTICS. Related Projects [online]. 2022-07. [visited on 2023-04-25]. Available
from: https://docs.ros.org/en/humble/Related-Projects.html.

24. MICRO-ROS. Micro-ROS [online]. 2023. [visited on 2023-04-25]. Available from: https:
//micro.ros.org/.

25. MICRO-ROS. Features and Architecture [online]. 2023. [visited on 2023-04-25]. Available
from: https://micro.ros.org/docs/overview/features/.

26. BELSARE, Kaiwalya; RODRIGUEZ, Antonio Cuadros; SÁNCHEZ, Pablo Garrido; HI-
ERRO, Juanjo; KO LCON, Tomasz; LANGE, Ralph; LÜTKEBOHLE, Ingo; MALKI, Alexan-
dre; LOSA, Jaime Martin; MELENDEZ, Francisco; RODRIGUEZ, Maria Merlan; NORD-
MANN, Arne; STASCHULAT, Jan; MENDEL, Julian von. Micro-ROS. In: Robot Operat-
ing System (ROS): The Complete Reference (Volume 7). Ed. by KOUBAA, Anis. Springer,
2023, pp. 3–55. Available from doi: 10.1007/978-3-031-09062-2_2.

27. MICRO-ROS. Micro ros setup [online]. 2023-02. [visited on 2023-04-25]. Available from:
https://github.com/micro-ROS/micro_ros_setup.

28. MICRO-ROS. Supported Hardware [online]. 2023. [visited on 2023-04-25]. Available from:
https://micro.ros.org/docs/overview/hardware/.

29. OBJECT MANAGEMENT GROUP. What is DDS? [online]. [visited on 2023-04-25]. Avail-
able from: https://www.dds-foundation.org/what-is-dds-3/.

30. RAVAL, Khushbu. Datatechvibe Explains: Data Distribution Service (DDS) Protocol [on-
line]. 2022-07. [visited on 2023-04-25]. Available from: https://datatechvibe.com/data/
datatechvibe-explains-data-distribution-service-dds-protocol/.

31. O’RIORDAN, Matthew. Everything You Need To Know About Publish/Subscribe [online].
2020-07. [visited on 2023-04-25]. Available from: https://ably.com/topic/pub-sub.

32. EPROSIMA. Introduction to DDS [online]. [visited on 2023-04-25]. Available from: https:
//www.eprosima.com/index.php/resources-all/whitepapers/dds.

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://foxglove.dev/blog/creating-ros2-actions
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Concepts/About-Internal-Interfaces.html
https://docs.ros.org/en/humble/Concepts/About-Internal-Interfaces.html
https://docs.ros.org/en/humble/Concepts/About-Executors.html
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html
https://docs.ros.org/en/humble/Concepts/About-Domain-ID.html
https://docs.ros.org/en/humble/Concepts/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/humble/Concepts/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/humble/Related-Projects.html
https://micro.ros.org/
https://micro.ros.org/
https://micro.ros.org/docs/overview/features/
https://doi.org/10.1007/978-3-031-09062-2_2
https://github.com/micro-ROS/micro_ros_setup
https://micro.ros.org/docs/overview/hardware/
https://www.dds-foundation.org/what-is-dds-3/
https://datatechvibe.com/data/datatechvibe-explains-data-distribution-service-dds-protocol/
https://datatechvibe.com/data/datatechvibe-explains-data-distribution-service-dds-protocol/
https://ably.com/topic/pub-sub
https://www.eprosima.com/index.php/resources-all/whitepapers/dds
https://www.eprosima.com/index.php/resources-all/whitepapers/dds

Bibliography 103

33. PCMAG. Wire protocol [online]. [visited on 2023-04-25]. Available from: https://www.
pcmag.com/encyclopedia/term/wire-protocol.

34. EPROSIMA. RTPS Introduction [online]. [visited on 2023-04-25]. Available from: https:
//www.eprosima.com/index.php/resources-all/whitepapers/rtps.

35. OPEN ROBOTICS. About different ROS 2 DDS/RTPS vendors [online]. 2022-03. [visited
on 2023-04-25]. Available from: https://docs.ros.org/en/humble/Concepts/About-
Different-Middleware-Vendors.html.

36. MICRO-ROS. Micro XRCE-DDS [online]. 2021-03. [visited on 2023-04-25]. Available from:
https://micro.ros.org/docs/concepts/middleware/Micro_XRCE-DDS/.

37. EPROSIMA. Introduction to XRCE [online]. [visited on 2023-04-25]. Available from: https:
//www.eprosima.com/index.php/resources-all/whitepapers/xrce.

38. HIGHTEC EDV-SYSTEME GMBH. Infineon Preferred Design House [online]. 2022. [vis-
ited on 2023-04-25]. Available from: https://hightec-rt.com/en/company/pdh.

39. HIGHTEC EDV-SYSTEME GMBH. About us [online]. 2022. [visited on 2023-04-25]. Avail-
able from: https://hightec-rt.com/en/company/about-us.

40. HIGHTEC EDV-SYSTEME GMBH. PxNet STX: Quick Guide. 2022-10.
41. GILLIS, Alexander S. real-time operating system (RTOS) [online]. 2022-02. [visited on 2023-

04-25]. Available from: https://www.techtarget.com/searchdatacenter/definition/
real-time-operating-system.

42. HIGHTEC EDV-SYSTEME GMBH. PXROS-HR Kernel v8.2.0: User’s Guide. 2020.
43. HIGHTEC EDV-SYSTEME GMBH. PXROS - Real-time OS for TriCore and AURIX

[online]. 2022. [visited on 2023-04-25]. Available from: https://hightec- rt.com/en/
products/real-time-os.

44. HIGHTEC EDV-SYSTEME GMBH. HighTec Content Manager [online]. 2023. [visited on
2023-04-25]. Available from: https://docs.hightec-rt.com/component-ide-qsg/3.1.
0/chapter/chapter-content-manager.html.

45. OPEN ROBOTICS. Ubuntu (source) [online]. 2023-03. [visited on 2023-04-25]. Available
from: https : / / docs . ros . org / en / humble / Installation / Alternatives / Ubuntu -
Development-Setup.html.

46. MICRO-ROS. First micro-ROS Application on Linux [online]. 2023-03. [visited on 2023-
04-25]. Available from: https : / / micro . ros . org / docs / tutorials / core / first _
application_linux/.

47. MICRO-ROS. Creating custom static micro-ROS library [online]. 2021-07. [visited on 2023-
04-25]. Available from: https://micro.ros.org/docs/tutorials/advanced/create_
custom_static_library/.

48. THOMAS, Dirk. colcon - collective construction [online]. 2022-06. [visited on 2023-04-25].
Available from: https://colcon.readthedocs.io/en/released/index.html.

49. DR-MH; GARRIDO, Pablo. Static library creation: Wrong folder structure in firmware/build
/include [online]. 2022-05. [visited on 2023-04-25]. Available from: https://github.com/
micro-ROS/micro_ros_setup/issues/530.

50. HIGHTEC EDV-SYSTEME GMBH. TC39x PXROS-HR BSP example: Quick Guide. 2020-
11.

51. MICRO-ROS. Micro ros demos [online]. 2022-05. [visited on 2023-04-25]. Available from:
https://github.com/micro-ROS/micro-ROS-demos.

52. MICRO-ROS. micro-ROS utilities [online]. 2023. [visited on 2023-04-25]. Available from:
https://micro.ros.org/docs/tutorials/programming_rcl_rclc/micro-ROS/.

https://www.pcmag.com/encyclopedia/term/wire-protocol
https://www.pcmag.com/encyclopedia/term/wire-protocol
https://www.eprosima.com/index.php/resources-all/whitepapers/rtps
https://www.eprosima.com/index.php/resources-all/whitepapers/rtps
https://docs.ros.org/en/humble/Concepts/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/humble/Concepts/About-Different-Middleware-Vendors.html
https://micro.ros.org/docs/concepts/middleware/Micro_XRCE-DDS/
https://www.eprosima.com/index.php/resources-all/whitepapers/xrce
https://www.eprosima.com/index.php/resources-all/whitepapers/xrce
https://hightec-rt.com/en/company/pdh
https://hightec-rt.com/en/company/about-us
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://hightec-rt.com/en/products/real-time-os
https://hightec-rt.com/en/products/real-time-os
https://docs.hightec-rt.com/component-ide-qsg/3.1.0/chapter/chapter-content-manager.html
https://docs.hightec-rt.com/component-ide-qsg/3.1.0/chapter/chapter-content-manager.html
https://docs.ros.org/en/humble/Installation/Alternatives/Ubuntu-Development-Setup.html
https://docs.ros.org/en/humble/Installation/Alternatives/Ubuntu-Development-Setup.html
https://micro.ros.org/docs/tutorials/core/first_application_linux/
https://micro.ros.org/docs/tutorials/core/first_application_linux/
https://micro.ros.org/docs/tutorials/advanced/create_custom_static_library/
https://micro.ros.org/docs/tutorials/advanced/create_custom_static_library/
https://colcon.readthedocs.io/en/released/index.html
https://github.com/micro-ROS/micro_ros_setup/issues/530
https://github.com/micro-ROS/micro_ros_setup/issues/530
https://github.com/micro-ROS/micro-ROS-demos
https://micro.ros.org/docs/tutorials/programming_rcl_rclc/micro-ROS/

104 Bibliography

53. MICRO-ROS. Creating custom micro-ROS transports [online]. 2021-07. [visited on 2023-
04-25]. Available from: https://micro.ros.org/docs/tutorials/advanced/create_
custom_transports/.

54. [MICRO-ROS]. Memory profiling [online]. 2021-04. [visited on 2023-04-25]. Available from:
https://micro.ros.org/docs/concepts/benchmarking/memo_prof/.

55. WYROBEK, Keenan. The Origin Story of ROS, the Linux of Robotics [online]. 2017-10.
[visited on 2023-04-25]. Available from: https : / / spectrum . ieee . org / the - origin -
story-of-ros-the-linux-of-robotics.

56. MAILCHIMP. What is a Pitch Deck? [online]. [visited on 2023-04-25]. Available from:
https://mailchimp.com/resources/what-is-pitch-deck/.

57. GREENLEIGH, John. PR2 [online]. [visited on 2021-04-25]. Available from: https://
robots.ieee.org/robots/pr2/.

58. TELLEZ, Ricardo. A History of ROS (Robot Operating System) [online]. 2019-07. [visited
on 2023-04-25]. Available from: https://www.theconstructsim.com/history-ros/.

59. OPEN ROBOTICS. What is a TurtleBot? [online]. [visited on 2021-04-25]. Available from:
https://www.turtlebot.com/.

https://micro.ros.org/docs/tutorials/advanced/create_custom_transports/
https://micro.ros.org/docs/tutorials/advanced/create_custom_transports/
https://micro.ros.org/docs/concepts/benchmarking/memo_prof/
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics
https://mailchimp.com/resources/what-is-pitch-deck/
https://robots.ieee.org/robots/pr2/
https://robots.ieee.org/robots/pr2/
https://www.theconstructsim.com/history-ros/
https://www.turtlebot.com/

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Motivation
	Goals
	Current State

	Analysis
	Robot Operating System
	What Is ROS?
	Why ROS?
	Versions

	ROS 2
	Design Principles & Requirements
	Communication Patterns
	Architecture
	Internal Interfaces
	ROS 2 Concepts
	Security
	Related Projects

	Micro-ROS
	Features and Architecture
	Supported RTOSes
	Supported Platforms
	Build System
	Applications
	Multithread Support

	Data Distribution Service
	What Is DDS?
	Publish-Subscribe Pattern
	DDS Model
	DDS Architecture
	DDS Key Features
	What Is RTPS?
	RTPS Architecture
	ROS 2 & DDS
	Micro-ROS & DDS

	PXROS-HR
	HighTec
	What Is RTOS
	What Is PXROS-HR
	PXROS-HR Special Features

	Proposed Solution and Implementation
	Building Micro-ROS Library
	Creating Custom Static Library
	ROS 2 and Micro-ROS Code Modifications
	Library Build

	Mutex Implementation
	Mutex API Functions
	Mutex Task Implementation
	Mutex Task Creation

	Project Structure
	HighTec Project Structure
	Configurations
	Linker File
	Tasks

	Micro-ROS Demos
	Custom Allocators
	Custom Transport
	Example Implementation
	Multithread_publisher_subscriber
	Multicore_publisher_subscriber

	Testing
	Int32_publisher
	Int32_subscriber
	Ping_pong
	Addtwoints_server
	Multithread_publisher_subscriber
	Multicore_publisher_subscriber

	Conclusion
	History of ROS
	Getting to ROS 1.0
	Willow Garage Time
	Open Source Robotics Foundation Time
	ROS 2.0, The New Generation

	Mutex Implementation
	Mutex API Functions
	Mutex Scheme

	Custom Allocators Implementation
	Custom Transports Implementation

