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Abstrakt

V disertační práci studujeme různé fyzikální jevy spojené s teorií a fenomenologií
míchání, hmotností, oscilací a interakcí neutrin, a také bezneutrinového a dvouneutrinového
dvojitého beta rozpadu, které jsou rozděleny do čtyř částí. V první kapitole představíme
stručný historický úvod do neutrinové fyziky v rámci Standardního modelu, odvodíme celkový
účinný průřez pro nepružný rozptyl nízkoenergetických slunečných neutrin a reaktorových
antineutrin na vázaných elektronech za použití exaktní analytické formule pro atomový form
faktor, a odhadneme početnost událostí v experimentech Borexino a GEMMA s velmi nízkým
detekčním prahem. Ve druhé kapitole probereme důsledky nenulové hmotnosti neutrin a
neutrinových oscilací a vyšetříme nové módy bezneutrinového i dvouneutrinového dvojitého
beta rozpadu s emisí jednoho elektronu, ve kterých je druhý elektron přímo vyprodukován
ve vázaném stavu, vypočteme příslušné fázové faktory a poměry rozpadových šířek pomocí
relativistických elektronových vlnových funkcí balíkem Grasp2K pro multikon�gurační
Dirac-Hartree-Fockovu metodu, odhadneme parciální poločasy rozpadu pro experimentálně
pozorované izotopy podléhající dvojitému beta rozpadu, a vypočteme jednoelektronová
energetická spektra pro experimenty NEMO-3 a SuperNEMO se schopností stopování i
kalorimetrického měření energie částic, jakožto i dvouelektronová spektra pro kalorimetrické
experimenty jako například CUORE, EXO-200 a GERDA. Ve třetí kapitole rozšíříme
náš obraz za hranice Standardního modelu směrem k levo-pravo symetrickému modelu
zahrnujícího slabé interakce pravotočivých nabitých a neutrálních proudů a zpochybníme
možnost experimentálního rozlišení mechanismů bezneutrinového dvojitého beta rozpadu
zprostředkovaného výměnou lehkých a hypotetických těžkých Majoranových neutrin,
prozkoumáme obecný parametr narušení leptonového čísla získaný z interpolační formule
pro jaderné maticové elementy, uvážíme několik modelů míchání neutrin a seesaw
mechanismu mezi sektory lehkých a těžkých neutrin, a určíme oblasti dominance mechanismu
výměny těžkého Majoranova neutrina v parametrickém prostoru omezeného experimentem
KamLAND-Zen. Ve čtvrté kapitole navrhneme alternativní realizaci generace majoranovské
hmotnosti neutrin prostřednictvím kvarkového kondenzátu zvanou jako „quark-condensate
seesaw mechanism“, stanovíme limity na vazbové konstanty nestandardních efektivních
interakcí mezi neutriny a kvarky narušujících leptonové číslo, a předpovíme normální
hierarchii hmotnostního spektra neutrin s poměrně úzkými rozsahy různých parametrů
týkajících se hmotnosti neutrin na základě současných experimentálních dolních ohraničení
na poločasy bezneutrinového dvojitého beta rozpadu.
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Abstract

In the Dissertation, we study a variety of physical phenomena connected with the theory
and phenomenology of neutrino mixing, masses, oscillations, and interactions, as well as
neutrinoless and two-neutrino double-beta decay, which are divided into four parts. In
the �rst Chapter, we present a brief historical introduction to neutrino physics within the
Standard Model, derive the total cross section for inelastic scattering of low-energy solar
neutrinos and reactor antineutrinos by bound electrons using an exact analytic formula
for the atomic form factor, and estimate the event rates in the experiments Borexino
and GEMMA with very low detection thresholds. In the second Chapter, we discuss the
consequences of nonzero neutrino masses and neutrino oscillations and investigate new modes
of neutrinoless and two-neutrino double-beta decay with emission of a single electron in
which the other electron is directly produced in a bound state, calculate the corresponding
phase-space factors and decay-rate ratios by means of relativistic electron wave functions
via the multicon�guration Dirac–Hartree–Fock package Grasp2K, estimate the partial half-
lives for experimentally observed double-beta-decay isotopes, and compute the one-electron
energy spectra for the tracking-and-calorimetry experiments NEMO-3 and SuperNEMO as
well as two-electron spectra for calorimetric experiments such as CUORE, EXO-200, and
GERDA. In the third Chapter, we extend our picture beyond the Standard Model towards
the left-right symmetric model including right-handed charged-current and neutral-current
weak interactions and question the possibility to experimentally distinguish between the
mechanisms of neutrinoless double-beta decay mediated by exchange of light and hypothetical
heavy Majorana neutrinos, examine a general lepton-number-violating parameter obtained
from an interpolating formula for the nuclear matrix elements, consider several models of
neutrino mixing and seesaw mechanism between the light- and heavy-neutrino sectors, and
identify the regions of dominance of the heavy Majorana-neutrino exchange mechanism in
the parameter space constrained by the experiment KamLAND-Zen. In the fourth Chapter,
we propose an alternative realization of the generation of Majorana neutrino mass via the
quark condensate called the “quark-condensate seesaw mechanism,” set limits on the coupling
constants of nonstandard e�ective lepton-number-violating neutrino–quark interactions, and
predict the normal hierarchy of the neutrino-mass spectrum with relatively narrow ranges of
various parameters related to neutrino mass based on the present experimental lower bounds
on the half-lives of neutrinoless double-beta decay.
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Introduction

N
eutrino is an elementary particle basic properties of which are still unknown. It is a
spin-1/2 fermion with zero electric charge and very small but nonzero rest mass which
participates exclusively in the weak interaction. Often described as abundant but

elusive, neutrinos are—after photons—the second-most-numerous known elementary particles
in the Universe. Being very light, they are usually ultrarelativistic as they travel through space
with velocities close to the speed of light. Due to short range of the weak interaction, their
cross sections tend to be extremely small (∼ 10−44 cm2) and, as a result, neutrinos can pass
through ordinary matter largely unnoticed: a layer of lead to absorb one half of incoming
neutrinos would require a thickness of several light years. Another example: in spite of their
prevalence, on average only 1–2 neutrinos are captured by a human body during a lifetime.

In the Standard Model (SM), neutrinos are classi�ed as neutral leptons and couple to
charged leptons—the electron 4− ≡ ;−4 , muon `− ≡ ;−` , and tau g− ≡ ;−g —in three �avors as the
electron a4 , muon a` , and tau ag neutrinos, respectively. In addition to charged leptons ;−U and
neutrinos aU with �avor U = 4, `, g , for each charged antilepton ;+U there is a corresponding
antineutrino aU with opposite chirality: neutrinos are left-handed while antineutrinos are
right-handed. Lepton numbers !U—de�ned as +1 for leptons ;−U and aU , −1 for antileptons
;+U and aU , and 0 for all other particles—and thus also total lepton number ! =

∑
U !U , are

all conserved in the SM interactions. Neutrinos were originally introduced into the SM as
massless particles and were believed to be massless for a long time.

Neutrinos are produced by various natural and arti�cial sources:
• Reactor antineutrinos (the �rst neutrinos ever detected) are generated as a4 in V−

decays of neutron-rich �ssion fragments inside nuclear reactors at a rate of ∼ 1021 s−1
(about 4% of power output is inevitably lost to antineutrinos).
• Accelerator neutrinos are produced by particle accelerators when ultrarelativistic

protons collide with a �xed target and secondary pions c± and kaons  ± passing
through focusing magnetic horns and decay pipes form a narrow on-axis (direct) or
o�-axis (de�ected) high-energy pure a` or a` beam.
• Geoneutrinos originate primarily as low-energy a4 from natural V− radioactivity of

the terrestrial radionuclides 40
19K, 232

90�, and 238
92U, as well as of daughter isotopes from

their decay chains, inside the Earth’s crust and mantle.
• Atmospheric neutrinos are created in decays of pions c± and kaons  ±, as well as

their daughter muons `±, in particle showers resulting from collisions of cosmic rays
(90% high-energy protons and 10% alpha particles) with atomic nuclei in the Earth’s
upper atmosphere.
• Solar neutrinos are born as a4 in thermonuclear-fusion reactions ongoing in the Sun

(as well as any other star) through which it burns its nuclear fuel, exposing the Earth
to a �ux of 6.5 × 1010 cm−2 s−1.
• Supernova neutrinos are emitted in vast numbers (∼ 1057) in the early stages of

stellar-core collapse at the end of a star’s life cycle (carrying away as much as 99% of
its gravitational binding energy). In 1987, 24 neutrinos from the supernova explosion
SN 1987A observed in the Large Magellanic Cloud were detected in three laboratories,
marking the birth of neutrino astronomy: Kamiokande-II (led by Koshiba), IMB, and
BNO.

1



Introduction

• Galactic neutrinos are radiated with ultrahigh energies (in the TeV–EeV range) by
distant astrophysical objects—such as active galactic nuclei, colliding binary stars,
and gamma-ray bursts—and are studied by neutrino telescopes: ANTARES/KM3NeT,
IceCube, and Baikal-GVD.
• Relic neutrinos (not yet detected) decoupled from the primordial plasma 1 s after the

Big Bang and constitute the nonrelativistic Cosmic Neutrino Background (CaB) with a
density of 336 cm−3 and a temperature of 1.945 K.
The discovery of neutrino oscillations by Super-Kamiokande in 1998 provided

compelling evidence that neutrinos are, in fact, massive and mixed particles: a neutrino with
a de�nite �avor U (U = 4, `, g) can later be detected with some di�erent �avor V ≠ U and
the associated probability is a periodic function of time, or distance traveled. Such �avor
transitions are possible only if neutrinos have di�erent (nonzero) masses<8 (8 = 1, 2, 3) and if
there is neutrino mixing between neutrinos with de�nite �avor aU and mass a8 . The existence
of neutrino oscillations implies that the conservation of lepton numbers !U is only approximate
in the Nature, while total lepton number ! could possibly still be conserved. Neutrino mixing
opens the possibility of CP violation in the lepton sector, which could have played a crucial
role in leptogenesis and the origin of the baryon asymmetry (i.e., the observed dominance of
matter over antimatter) in the early Universe.

Because neutrinos are electrically neutral, they could be either Dirac or Majorana
fermions. If massive neutrinos a8 are Majorana particles (i.e., truly neutral, with all additive
charges equal to zero), neutrinos and antineutrinos are, in fact, identical particles: aU = aU
distinguished in reactions only by their helicity states and, consequently, even total lepton
number ! is not conserved. The most straightforward way to probe the nature of massive
neutrinos would be an observation of neutrinoless double-beta (0aVV) decay, which involves
lepton-number violation (LNV) by two units: Δ! = ±2 forbidden in the SM and requires
Majorana mass terms beyond the Standard Model (BSM), but only lower bounds on the half-
lives of this process currently exist: ) 0aVV

1/2 & 1026 yr at 90%C.L. In contrast, two-neutrino
double-beta (2aVV) decay, which conserves total lepton number: Δ! = 0 and is allowed as a
2nd-order process within the SM weak interaction, is the rarest known radioactive decay in
nuclear physics, with typical half-lives: ) 2aVV

1/2 ∼ 1019–1021 yr.
From neutrino-oscillation experiments, it is possible to extract the values of neutrino-

mixing parameters—the mixing angles \12, \13, \23, and the Dirac phase X—as well as the
mass-squared di�erences Δ<2

8 9 = <2
8 − <2

9 , leaving us with two possible scenarios for the
spectrum of neutrino masses: either a normal hierarchy (NH) with <1 < <2 � <3 (i.e.,
a larger mass di�erence between the heavier neutrinos) or an inverted hierarchy (IH) with
<3 � <2 < <1 (i.e., a larger mass di�erence between the lighter ones), each conventionally
parameterized by the (unknown) lightest-neutrino mass, denoted by<0. The absolute scale of
neutrino masses must be further inferred from model-dependent cosmological observations of
the Cosmic Microwave Background (CMB), direct kinematical measurements of the electron-
spectrum endpoint in tritium (31H) V− decay or calorimetric-spectrum endpoint in electron
capture by holmium (16367Ho), and—in case of Majorana neutrinos—experimental searches for
0aVV decay or theoretical constraints imposed by various Grand Uni�ed Theories (GUTs).

At present, we know that there are three types of active (i.e., weakly interacting) left-
handed �avor neutrinos aU , but several results indicate that there might be at least one or two
additional neutrino species: the experiments LSND and MiniBooNE, GALLEX/GNO and SAGE
(the gallium anomaly), and a recent reevaluation of reactor-antineutrino spectra (the reactor-
antineutrino anomaly). These hypothetical particles are called “sterile neutrinos” since they
would not participate in any of the SM interactions, but they could still manifest themselves in

2



neutrino-oscillation experiments through disappearance from measured neutrino �uxes. The
corresponding massive neutrinos #8 (i.e., partners of the light sterile neutrinos) are assumed
to be very heavy (∼ 1016 GeV) by virtue of the seesaw mechanism, which provides a natural
explanation for the smallness of neutrino masses. Sterile neutrinos play a central role in
various BSM-physics models which attempt to explain the origin of neutrino mass, while
keV-scale sterile neutrinos are of interest to cosmology as viable candidates for constituents
of moderately cold or warm dark matter (DM) in the Universe.

In summary, neutrino physics is currently faced with several open questions of
fundamental importance:
• Absolute scale of neutrino masses.
• Normal vs. inverted hierarchy of the neutrino-mass spectrum.
• Origin of neutrino mass.
• Dirac vs. Majorana nature of massive neutrinos.
• CP violation in the lepton sector.
• Existence of sterile neutrinos.

In the precision era, numerous neutrino experiments are in progress and many more are under
construction with the aim of improving our knowledge of the neutrino-oscillation parameters,
resolving the open questions, constraining various theoretical models, and searching for exotic
neutrino properties: non-standard interactions (NSIs), decay channels of unstable neutrinos,
magnetic moment `a , mixed (partly bosonic) statistics, etc. In addition to its profound
impact on a wide range of �elds ranging from nuclear, particle, and astroparticle physics
to astrophysics and cosmology, neutrino physics is already enjoying its �rst applications in
the form of newly emerging disciplines of nuclear-reactor monitoring (through detection
of reactor antineutrinos), neutrino geophysics (extraction of geological information using
geoneutrinos), neutrino tomography of the Earth (study of its density pro�le by means of high-
energy atmospheric and galactic neutrinos), neutrino astronomy (for instance, the ongoing
search for a supernova-neutrino signal by the SuperNova Early Warning System (SNEWS)
network of neutrino detectors), neutrino astrophysics (just to mention the neutrino image
of the Sun), and neutrino cosmology (the role of relic neutrinos in Big Bang nucleosynthesis
(BBN), distribution of the CMB anisotropies, and formation of the large-scale structure (LSS)
of the Universe).

The present Thesis is structured as follows. In Chapter 1, we present a brief historical
introduction to neutrino physics within the Standard Model, derive the total cross section
for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos by bound
electrons using an exact analytic formula for the atomic form factor, and estimate the event
rates in the experiments Borexino and GEMMA with very low detection thresholds. In
Chapter 2, we discuss the consequences of nonzero neutrino masses and neutrino oscillations
and investigate new modes of neutrinoless and two-neutrino double-beta decay with emission
of a single electron in which the other electron is directly produced in a bound state,
calculate the corresponding phase-space factors and decay-rate ratios by means of relativistic
electron wave functions via the multicon�guration Dirac–Hartree–Fock package Grasp2K,
estimate the partial half-lives for experimentally observed double-beta-decay isotopes, and
compute the one-electron energy spectra for the tracking-and-calorimetry experiments
NEMO-3 and SuperNEMO as well as two-electron spectra for calorimetric experiments such
as CUORE, EXO-200, and GERDA. In Chapter 3, we extend our picture beyond the Standard
Model towards the left-right symmetric model including right-handed charged-current and
neutral-current weak interactions and question the possibility to experimentally distinguish
between the mechanisms of neutrinoless double-beta decay mediated by exchange of light
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and hypothetical heavy Majorana neutrinos, examine a general lepton-number-violating
parameter obtained from an interpolating formula for the nuclear matrix elements, consider
several models of neutrino mixing and seesaw mechanism between the light- and heavy-
neutrino sectors, and identify the regions of dominance of the heavy Majorana-neutrino
exchange mechanism in the parameter space constrained by the experiment KamLAND-
Zen. In Chapter 4, we propose an alternative realization of the generation of Majorana
neutrino mass via the quark condensate called the “quark-condensate seesaw mechanism,” set
limits on the coupling constants of nonstandard e�ective lepton-number-violating neutrino–
quark interactions, and predict the normal hierarchy of the neutrino-mass spectrum with
relatively narrow ranges of various parameters related to neutrino mass based on the present
experimental lower bounds on the half-lives of neutrinoless double-beta decay. In the
Conclusion, we summarize the main results and scienti�c contributions of the Author to the
abovementioned problems, the list of publications he has co-authored, and his participation
in international conferences and meetings including oral presentations. In Appendix A, we
cover the elements of the Dirac–Hartree–Fock method in the multicon�guration approach and
provide the computer code (Bash script) the Author has developed in order to automate the
calculation of relativistic electron wave functions by the program package Grasp2K. Finally,
the list of references cited in the present Thesis can be found in the Bibliography.

In this work (unless stated otherwise), we employ the system of natural units, in which
the reduced Planck constant ℏ and the speed of light in vacuum 2 are set to unity: ℏ = 2 = 1, and
assume the numerical values of other physical constants from Ref. [1]. For the metric tensor
6`a of Minkowski spacetime (with Lorentz indices `, a = 0, 1, 2, 3 subject to the Einstein
summation convention), we adopt the “West Coast” signature: 6`a = diag(+1, −1, −1, −1).
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1
Inelastic Scattering of Low-Energy

Neutrinos by Atomic Electrons

1.1 Introduction

I
n 1930, Pauli wrote a famous open letter1 addressed to “Dear Radioactive Ladies and
Gentlemen” at a meeting in Tübingen in which he �rst postulated the existence of
neutrinos. As a desperate remedy to reconcile the continuous (rather than discrete)

structure of the energy distributions of electrons emitted from atomic nuclei in beta (V) decay
with the conservation laws of energy, momentum, and angular momentum, he suggested that
in V decays:

V−: = −→ ? + 4− + a4,
V+: ? −→ = + 4+ + a4,

(1.1)

in addition to a proton ? (neutron =) and electron 4− (positron 4+), there is a third �nal-state
particle which is now identi�ed as the electron antineutrinoa4 (electron neutrinoa4 ). From this
hypothesis, it follows that neutrinos must possess half-integer spin, no electric charge, small
(possibly zero) rest mass, have negligible ionization capabilities and interactions with matter,
and carry away a portion of the total released kinetic energy & missing from the continuous
V spectrum such that—neglecting the nuclear recoil—the sum of the electron and neutrino
energies is constant. Pauli proposed his idea at a time when the only known subatomic
particles were the proton ? , electron 4−, and photon W, and—much to his regret—for many
years neutrinos were considered undetectable particles. He originally called the new particle
a “neutron,” which was later renamed by Fermi to “neutrino” (“little neutral one” in Italian) in
order to avoid confusion after the discovery of the neutron = by Chadwick in 1932.

In 1934, Fermi assumed the existence of neutrinos and developed the �rst quantum �eld
theory of V decay, governed (in modern terms) by the V-decay interaction Hamiltonian [2]:

HV (G) = �F ? (G) W` =(G) 4 (G) W` a4 (G) + H.c., (1.2)

where�F = 1.166× 10−5 GeV−2 is the Fermi coupling constant, which determines the strength
of the weak interaction, ? (G), =(G), 4 (G), and a4 (G) are the bispinor �elds of the proton,
neutron, electron, and electron neutrino, respectively, as functions of the spacetime coordinate

1A copy of the original letter sent by Pauli from Zürich on December 4, 1930, together with an
English translation by K. Riesselmann, is available online: http://microboone-docdb.fnal.gov/cgi-bin/
RetrieveFile?docid=953&filename=pauli%20letter1930.pdf
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G = (C, ®G)T, W` (with Lorentz index ` = 0, 1, 2, 3) are the anticommuting 4 × 4 gamma
matrices,2 k (G) = k †(G) W0 represents a Dirac-adjoint �eld, and H.c. stands for the Hermitian-
conjugated term, responsible for the V+ decay mode and related processes. In analogy with
quantum electrodynamics (QED), Fermi’s theory of V decay is based on a contact four-fermion
interaction in the form of a scalar product of two vector currents 9 ` (G) = k1(G) W`k2(G)
between di�erent �elds and it has introduced a novel concept of creation and annihilation of
particles, similar to emission and absorption of photons in atomic transitions. Fermi derived a
formula for the V-decay half-life as well as the shape of the electron energy spectrum, including
the e�ect of neutrino mass on the spectrum endpoint. His idea was so ahead of its time that
it was initially rejected for publication by the journal Nature for containing “speculations too
remote from reality,” which prompted his decision to switch to experimental physics. Although
not renormalizable, Fermi’s early theory of V decay survives to this day (after specifying the
correct tensor structure of the four-fermion interaction) as a low-energy e�ective �eld theory
of the weak interaction between leptons and nucleons below the, - and / -boson mass scale
<,,/ ∼ 100GeV and provided a proper framework for all interactions in particle physics.

In 1936, Gamow and Teller went a step further and studied the most general (assuming
no derivatives of the �elds) parity-conserving (scalar) four-fermion V-decay Hamiltonian [3]:

HV (G) =
∑

0=(,+ ,) ,�,%

�0 ? (G) Γ0 =(G) 4 (G) Γ0 a4 (G) + H.c. (1.3)

Here, �0 (0 = (, + , ) , �, % ) are �ve coupling constants with dimension −2 and the 4 × 4
matrices Γ0 = 1, W`, f`a , W`W5, W5, where f`a = 8

2 [W
`, Wa ] = −fa` is an antisymmetric tensor

and W5 = 8 W0W1W2W3 is the chirality matrix, represent all possible couplings in scalar ((),
vector (+ ), tensor () ), axial-vector (�), and pseudoscalar (% ) currents 90 (G) = k1(G) Γ0k2(G),
respectively. In the original Fermi’s model (which corresponds to �+ = �F and all other
�0 = 0), the leptons are emitted with antiparallel spins and total angular momentum
� = 0, 1

2 , 1, . . . of the nucleus and parity c = ±1 of the nuclear wave function (collectively
written as the spin-parity � c ) remain unchanged, whereas the new model could also describe
V-decay transitions in which the lepton spins are parallel and the nuclear spin is changed by
one unit. According to the selection rules for allowed spins �8,5 and parities c8,5 of the initial (8)
and �nal (5 ) nuclei, a nuclear V decay can proceed as: (a) a pure Fermi transition if �5 = �8 = 0
and c5 = c8 via the ( and+ terms, (b) a pure Gamow–Teller transition if �5 = �8 ±1 and c5 = c8
via the ) and � terms, and (c) a mixed transition if �5 = �8 ≠ 0 and c5 = c8 , in which case all
terms except for the % term contribute to the process. In addition to these “allowed” transitions,
there are also the so-called “forbidden” transitions which can involve higher changes in the
nuclear spin (�5 − �8 = 0, ±1, ±2, . . . ) and �ip its parity (c5 = ±c8 ), but their matrix elements
are nonzero only if one takes into account the variation of the lepton wave functions inside the
nucleus and, consequently, their probabilities are suppressed by several orders of magnitude.
This extension of Fermi’s theory could explain all observed V decays, but further experimental
attempts to determine the coupling constants �0 often led to contradictory results, showing
that the theory was still incomplete.

In 1956, Cowan and Reines detected the �rst neutrinos—reactor antineutrinos a4—from
the Savannah River Plant nuclear reactor via inverse beta decay (IBD) [4]:

IBD: ? + a4 −→ = + 4+. (1.4)

2In the Dirac representation: W0 = ( 1 0
0 −1 ), W: = ( 0 f:

−f: 0 ), W5 = ( 0 1
1 0 ), where f: are the 2 × 2 Pauli matrices:

f1 = ( 0 1
1 0 ), f2 = ( 0 −88 0 ), f3 = ( 1 0

0 −1 ). From the de�nitions: {W`, Wa } = 26`a , W`† = W0W`W0, and W5 = 8 W0W1W2W3, it
follows: W`Wa = −WaW` (` ≠ a), W`W5 = −W5W` , (W0)2 = 1, (W: )2 = −1, (W5)2 = 1, W0† = W0, W:† = −W: , W5† = W5.
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After previously considering a nuclear explosion as a high-intensity neutrino source, they
eventually built a detector composed of two 200 l water tanks (containing ∼ 1028 target
protons) doped with 40 kg of dissolved cadmium chloride CdCl2 and arranged between three
1, 400 l layers of liquid organic scintillator (triethylbenzene, terphenyl, and POPOP wavelength
shifter) viewed by 110 5-inch photomultiplier tubes (PMTs), enclosed by a lead-and-para�n
shield separated by 11m of concrete from the reactor and located 12m underground (to provide
overburden and shielding from reactor neutrons, gamma radiation, and cosmic rays), and
exposed to a reactor-antineutrino �ux of 1.2×1013 cm−2 s−1. The IBD process can be initiated by
electron antineutrinos with energies exceeding the threshold energy<4 +<= −<? = 1.8MeV,
where<4 , <? , and<= are the electron, proton, and neutron masses, respectively (in particle
kinematics, the neutrino masses <8 can be safely neglected). The positron promptly slows
down and annihilates with an electron in the surrounding water: 4− + 4+ −→ 2W, producing
a pair of 0.511MeV gamma-ray photons emitted in opposite directions. In order to reduce the
background from accidental coincidences, cadmium (a good neutron absorber) was dissolved
in the water to produce a secondary signal, delayed by about 3–10 `s, from capture of the
moderated neutron:

108
48Cd + = −→ 109m

48Cd −→ 109
48Cd + W, (1.5)

followed by a cascade of gamma rays with a total energy of about 9MeV from the metastable
nuclear isomer 109m

48Cd. Coincidence of the prompt signal from electron–positron annihilation
and the delayed signal from neutron capture provided a unique signature for antineutrino
detection. After running for 1, 371 h including both reactor-up and reactor-down time,
the experiment con�rmed the neutrino hypothesis of Pauli by measuring a reactor-power-
dependent IBD event rate of 2.88 ± 0.22 h−1 with a signal-to-background (S/B) ratio of 3 : 1
and a cross section of 6.3 × 10−44 cm2, in excellent agreement with theoretical predictions.

In the same year, Lee and Yang questioned parity conservation in weak interactions
and included also parity-violating (pseudoscalar) terms in the V-decay Hamiltonian [5]:

HV (G) =
∑

0=(,+ ,) ,�,%

? (G) Γ0 =(G) 4 (G) Γ0 (�0 +�′0 W5) a4 (G) + H.c., (1.6)

where�′0 are �ve additional coupling constants with dimension −2. By de�nition, P symmetry
is the invariance of physical laws (i.e., of the Lagrangian) under parity transformation (spatial
inversion) % : ®A ↦→ −®A , which states that a mirrored system behaves exactly like a mirror
image of the original system, and implies conservation of a multiplicative quantum number
? known as parity: % Ψ(®A ) = Ψ(−®A ) = ? Ψ(®A ), with eigenvalues ? = ±1 (since %2 = 1) for
even and odd wave functions Ψ(®A ), respectively. In an attempt to solve the so-called \ – g
puzzle, which refers to the fact that two charged strange mesons decaying into pions c0,± as
\+ −→ c0 + c+ with intrinsic parity ? = (−1)2 and g+ −→ c+ + c+ + c− with ? = (−1)3 were
found to have identical masses and lifetimes, Lee and Yang suggested that \+ and g+ might
be two decay modes of the same particle (now known as the  + strange meson) if parity
is not strictly conserved. They surveyed all contemporary experimental data available from
V decay as well as hyperon and meson decays and concluded that, while there is evidence
of parity conservation in the strong and electromagnetic interactions, there was no support
either in favor or against parity conservation in the weak interaction. In order to test their
hypothesis of parity violation, they proposed a series of experiments which are sensitive to
pseudoscalar interference terms∝ �0�′1 formed out of observable quantities. In particular, one
could measure the angular distribution of electrons emitted in V− decay of polarized nuclei:

dΓ =
Γ

4c
(1 + U coso) dΩ, (1.7)
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where dΓ is the di�erential decay rate (i.e., the number of decays per unit time) for electrons
emitted at a solid angle dΩ = sino do di , o is the angle between the electron momentum ®? (a
vector) and the nuclear spin ®� (a pseudovector) oriented along the I-axis, Γ =

∫
dΓ is the total

decay rate, and U = 2
Γ

(∫
o< c

2
dΓ −

∫
o> c

2
dΓ

)
∈ [−1, 1] is the asymmetry parameter, which can

be obtained as the relative di�erence between the number of electrons being emitted up and
down. Parity conservation requires that the angular distribution must be symmetrical with
respect to o = c

2 : dΓ(o) = dΓ(c − o), which is equivalent to: U = 0. Otherwise, P symmetry
would be violated as the weak interaction would be able to distinguish the left from the right.

In 1957, Wu et al. performed a famous experiment which con�rmed the hypothesis of
parity violation in the weak interaction by observing V− decay of polarized 60

27Co nuclei [6]:

60
27Co −→ 60

28Ni
∗ + 4− + a4
↓

60
28Ni + 2W, (1.8)

where the 60
28Ni

∗ nucleus promptly releases its excitation energy through a cascade of two
W-ray photons. The 60

27Co sample formed a thin crystalline layer on the upper surface of a
crystal of cerium magnesium (CeMg) nitrate (a paramagnetic salt) inside a vertical vacuum
chamber (a cryostat), cooled down to near-absolute-zero temperatures achieved via the process
of adiabatic demagnetization, while the nuclear spins were aligned parallel to the I-axis and
oriented either up or down using an electromagnetic coil providing an external polarizing
uniform magnetic �eld. Since W-ray emission is an electromagnetic process (which is known
to conserve parity), the photons are emitted isotropically from the nucleus and the measured
W anisotropy served as a control of the degree of polarization of the parent nuclei. While
the W rays were monitored by a pair of polar and equatorial NaI scintillation counters, the V
electrons were detected by an anthracene-crystal scintillator located 2 cm above the sample.
The experiment then counted the event rate for electrons emitted upwards and compared
it with that of a warm setup when the parent nuclei are misaligned and the electrons are
emitted isotropically (any asymmetry is averaged out). It was found that there is a signi�cant
V asymmetry (|U | ∼ 1) and the electrons are emitted preferentially opposite to the nuclear spin
(U < 0). Subsequent experiments later established that the weak interaction exhibits maximal
parity violation: U = −1, which means that the scalar interaction terms and their pseudoscalar
counterparts have equal strength: |�′0 | = |�0 |. Because the allowed V− decay of 60

27Co is a
pure Gamow–Teller transition 5+ −→ 4+ (Δ� = 1), angular-momentum conservation also
implies that electrons emitted in V− decay are predominantly left-handed, i.e., their helicity
ℎ = ®( · ®?/| ®( | | ®? | = ±1, de�ned as the (normalized) projection of the particle spin ®( onto the
direction of its momentum ®? , on average tends to be negative: 〈ℎ〉 = −E/2 , where E is the
electron velocity and 2 is the speed of light.

In 1958, Goldhaber, Grodzins, and Sunyar determined the neutrino helicity from the
circular polarization of photons emitted in electron capture (EC) by the isotope 152m

63Eu [7]:

152m
63Eu(0) + 4−b (±

1
2 ) −→

152
62Sm

∗(±1) + a4 (∓1
2 )

↓
152
62Sm(0) + W(±1), (1.9)

where 4−b is an atomic electron in a bound state and the numbers in parentheses indicate
the possible projections of spin onto arbitrary axis. The EC process is most probable for
bound electrons occupying an s subshell (with orbital angular momentum ; = 0), since
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their wave functions do not vanish at the origin, which means that they have a signi�cant
overlap with the atomic nucleus. The weak allowed Gamow–Teller transition 0− −→ 1− is
followed by an electromagnetic E1 W transition 1− −→ 0+ and the electron neutrino a4 and
photon W have antiparallel spins: ®(a4 ↑↓ ®(W . The daughter nucleus 152

62Sm
∗ and neutrino a4

acquire opposite momenta due to nuclear recoil, and hence those W-ray photons which are
emitted along the direction of �ight of the nucleus have the same helicity as the neutrino:
ℎa4 = ℎW . When compared to a 152

62Sm
∗ nucleus decaying at rest, the energy of such photons

in the laboratory frame is slightly increased due to Doppler e�ect (blueshift) and su�cient for
resonant scattering (i.e., absorption and subsequent re-emission) by a samarium-oxide (Sm2O3)
scatterer with isotopic abundance 26% of 152

62Sm located below the radioactive sample:

152
62Sm + W −→ 152

62Sm
∗ −→ 152

62Sm + W, (1.10)

followed by their detection in a NaI(Tl) scintillation counter, which was connected to a PMT
and screened from the primary W rays by thick lead shielding. In order to determine the
circular polarization of the primary W-ray photons, the 152m

63Eu source was inserted into an
iron electromagnet alternatively magnetized either up or down. Since the photons passing
through magnetized iron undergo Compton scattering by the electrons in iron atoms if their
spins are antiparallel rather than parallel, it was possible to �lter the photons by transmitting
only those with spins aligned with the magnetic �eld. From the measured event rates for each
of the two orientations, the authors obtained a result compatible with 100% negative helicity
of electron neutrinos: ℎ = −1.0 ± 0.3. In such way, it was experimentally established that
neutrinos are left-handed (ℎ = −1) and antineutrinos are right-handed (ℎ = +1) fermions.

At the same time, Feynman and Gell-Mann, and independently also Sudarshan and
Marshak, proposed the + −� (vector minus axial vector) theory of V decay [8, 9]:

HV (G) =
�V√
2
? (G) W` (1 − 6� W5) =(G) 4 (G) W` (1 − W5) a4 (G) + H.c. (1.11)

Here, �V =
√
2�+ = 1.136 × 10−5 GeV2 is the V-decay coupling constant, 6� = ��/�+ = 1.27

is the axial-vector weak coupling constant for nucleons, and the V-decay Hamiltonian takes
the form of a product of two vector minus axial-vector currents (which also contains mixed
+ × � interaction terms). Based on the theory of massless two-component neutrinos and
the empirical data on the helicity of electrons and neutrinos emitted in V decay, the authors
assumed that only the left-handed chiral components k! (G) = %!k (G) of the �elds enter the
weak interaction, where %! = 1

2 (1 − W
5) is the left-handed projection operator (%2

!
= %!), e.g.:

4 (G) W` (1 − W5) a4 (G) = 2 4! (G) W` a4! (G). (1.12)

This assumption greatly simpli�es the model by implying that: �(,) ,% = �′
(,) ,%

= 0 (by virtue
of the properties of gamma matrices) and �′

+ ,�
= −�+ ,� (determined experimentally). From

similarity of the strengths of V decay and muon capture: ? + `− −→ = + a` (�V ∼ �F), it was
straightforward to generalize the theory of V decay to the+ −� theory of the weak interaction:

H+−� (G) =
�F√
2
9` (G) 9 `†(G), (1.13)

where the weak current 9 ` (G) includes the muon ` (G) and muon-neutrino a` (G) �elds:

9 ` (G) = a4 (G) W` (1 − W5) 4 (G) + a` (G) W` (1 − W5) ` (G) + ? (G) W` (1 − 6� W5) =(G). (1.14)
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Such a theory exhibits universality (all four-fermion interactions are characterized by a single
coupling constant �F), ensures conservation of lepton numbers !U , and enforces maximal
parity violation (i.e., equal weight of the vector and axial-vector terms) compatible with the
negative helicity of neutrinos. In addition to a simple and elegant uni�ed description of all
known weak-interaction processes, such as V± decay, EC, IBD, `− capture, and `± decay,
this theory predicted a whole range of new phenomena, most importantly the process of
elastic scattering of neutrinos and antineutrinos by electrons: 4− + aU −→ 4− + aU and
4−+aU −→ 4−+aU . The requirement of renormalizability paved the way towards development
of the theory of weak interaction mediated by exchange of the charged , ± and neutral / 0

massive vector bosons.
In 1962, Lederman, Schwartz, and Steinberger discovered the muon neutrino

a` through decays of pions from the AGS accelerator located at Brookhaven National
Laboratory [10]:

c+ −→ `+ + a`,
c− −→ `− + a` . (1.15)

In this experiment, protons accelerated by the synchrotron collided with a beryllium (4Be)
target, producing relativistic pions propagating towards the detector which decayed in �ight,
giving rise to a narrow beam of high-energy muon neutrinos, muons, and possibly a small
fraction of other charged particles, all of which except for the neutrinos were captured by an
iron shield wall, 13.5m thick and located 21m from the target. These neutrinos were then
detected in a 10-ton aluminum (13Al) spark chamber situated behind the shielding through
the reactions:

= + a` −→ ? + `−,
? + a` −→ = + `+. (1.16)

Thus, it was observed that neutrinos which were created together with muons and
subsequently interacted with matter could only produce muons but no electrons, indicating
that neutrinos which couple with muons (e.g., in muon capture) and electrons (e.g., in V decay)
are di�erent particles: a4 ≠ a` . In 2000, the discovery of the tau neutrino ag was announced
by the DONUT experiment at Fermilab [11].

By 1968, Glashow, Weinberg, and Salam had formulated the Standard Model (SM) of
particle physics, which is a uni�ed theory of the electromagnetic, weak (collectively called
electroweak), and strong interactions between elementary particles formally de�ned as a
gauge quantum �eld theory with LagrangianLSM invariant under local gauge transformations
from the SM symmetry group [12, 13, 14]:

SM: SU(3)� × SU(2)! × U(1). . (1.17)

In Fig. 1.1, we summarize the particle content of the SM. The spin-1/2 fundamental fermions
are the basic constituents of matter, which are broadly divided into two categories: (a) leptons,
which do not participate in the strong interaction, and (b) quarks, which participate in all SM
interactions. Besides, they are organized according to their �avor into three generations (or
families), which are identical copies of one another di�ering only by their masses. The spin-
1 (vector) gauge bosons are the carriers of three out of the four fundamental forces (except
for gravity), which are incorporated into the theory via the requirement of local invariance
of LSM under the SM symmetry group, where the number of gauge �elds corresponds to the
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number of in�nitesimal generators of the underlying Lie algebra. The strong interaction—
mediated by the eight gluons 6—is described by the group SU(3)� (where� denotes the color
charge of quarks and gluons) with eight generators �0 = 1

2 _0 (0 = 1, . . . , 8) proportional to
the 3×3 Gell-Mann matrices _0 and is the subject of quantum chromodynamics (QCD). On the
other hand, the weak interaction—mediated by the three massive vector bosons, ± and / 0—
and the electromagnetic interaction—mediated by the photon W—stem from the electroweak
symmetry group SU(2)! × U(1). , which is a product of the group SU(2)! of weak isospin
(where ! refers to the left-handed chiral components of the lepton and quark �elds) with three
generators )0 = 1

2 g0 (0 = 1, 2, 3) proportional to the 2 × 2 Pauli matrices g0 , which acts on the
left-handed lepton ! = ( a4!4! ) , . . . and quark & =

( D!
3!

)
, . . . doublets of each generation (the

right-handed components 4', D', 3', . . . transform trivially as singlets, while massless right-
handed neutrinos are absent in the SM), and the group U(1). of weak hypercharge with a
single generator. , which ensures the uni�cation of the electromagnetic and weak interactions
through the Gell-Mann–Nishijima relation:

& = )3 +
.

2
(1.18)

between the electric charge & (& = 0, −1, +23 , −
1
3 for neutrinos, charged leptons, up-type

quarks, and down-type quarks, respectively), weak isospin )3 ()3 = +12 for neutrinos and up-
type quarks and ) = −1

2 for charged leptons and down-type quarks), and weak hypercharge
. . The spin-0 (scalar) Higgs boson � is introduced into LSM via the Higgs doublet of charged
q+(G) and neutral q0(G) complex scalar �elds:

Φ(G) =
(
q+(G)
q0(G)

)
=

1
√
2

(
0

E + � (G)

)
, (1.19)

which in the unitary gauge is given by the Higgs �eld � (G) and its vacuum expectation value
(VEV): E = (

√
2�F)−1/2 = 246GeV. Below the energy scale ΛEWSB ∼ 100GeV, it is responsible

for the spontaneous electroweak-symmetry breaking (EWSB) down to the group U(1)& of the
electromagnetic interaction with a single generator & (the operator of electric charge):

EWSB: SU(2)! × U(1). −→ U(1)& (1.20)

and for the resulting generation of particle masses via the Higgs mechanism, in which the,
and / bosons obtain longitudinal degrees of freedom and all fermions (except for neutrinos)
with �elds 5 (G) acquire masses < 5 = H5 E/

√
2 as well as interactions with the Higgs boson

through Yukawa couplings with the Higgs �eld [15, 16, 17]:

LY(G) = −
∑
5

H5 E√
2
5 (G) 5 (G) −

∑
5

H5√
2
5 (G) 5 (G)� (G), (1.21)

where the coe�cient H5 are dimensionless parameters of the SM which must be determined
experimentally. The SM is a greatly successful theory, being renormalizable and having
correctly predicted a wide range of particle properties, most notably the existence of weak
neutral currents mediated by the / boson, which were discovered through deep inelastic
scattering # + a` −→ - + a` and # + a` −→ - + a` of high-energy accelerator
neutrinos a` and antineutrinos a` by nucleons # producing hadrons - but no electrons
or muons in the Gargamelle heavy-liquid bubble chamber at CERN in 1973 [18], and the
existence of the Higgs boson � with a mass of 125GeV at a statistical signi�cance of 5f

11



1. Inelastic Sca�ering of Low-Energy Neutrinos by Atomic Electrons

fundamental fermions

I II III

gauge 
bosons

le
p

to
n

s
q

u
ar

ks

νe
electron 
neutrino

νμ
muon 

neutrino

ντ
tau

neutrino

e
electron

μ
muon

τ
tau

u
up

c
charm

t
top

d
down

s
strange

b
bottom

W
W boson

Z
Z boson

γ
photon

g
gluon

H
Higgs
boson

Figure 1.1: Particle content of the SM: (a) spin-1/2 neutral a4 , a` , ag and charged 4−, `−, g−
leptons, (b) spin-1/2 up-type D, 2 , C and down-type 3 , B , 1 quarks, (c) spin-1 (vector) gauge
bosons, , / , W, 6, and (d) spin-0 (scalar) Higgs boson � . For each fermion and the, boson,
there is also a corresponding antiparticle.

through proton–proton collisions at energies B = 7–8 TeV and subsequent decay channels
� −→ WW, //, , +, −, g+g−, 11 by the experiments ATLAS and CMS, operating at the Large
Hadron Collider (LHC) located at CERN, in 2012 [19, 20]. Nevertheless, it also has several
important shortcomings: it does not account for gravity, the structure of dark matter (DM),
in�uencing the galaxy rotation curves on astronomical scales, cannot be attributed to any of
the SM particles, and it lacks a natural explanation for the smallness of neutrino masses (in its
original formulation, neutrinos were massless particles), which indicates that the SM is only
an e�ective �eld theory of some yet unknown underlying theory beyond the SM.

In 1998, the experiment Super-Kamiokande (originally designed to search for proton
decay) observed an angular dependence of the composition of atmospheric-neutrino �uxes,
produced in the following reactions with a a` : a4 ratio of 2 : 1 [21]:

c+ −→ `+ + a` c− −→ `− + a`
↓ ↓
4+ + a4 + a`, 4− + a4 + a`, (1.22)

providing the �rst direct evidence that the neutrinos traversing the space partially change their
�avor. In 2002, this result was independently veri�ed by the experiment SNO based on elastic
scattering (ES) of solar neutrinos by electrons as well as charged-current (CC) and neutral
current (NC) deuteron (3) disintegration [22]:

ES: aU + 4− −→ aU + 4−,
CC: a4 + 3 −→ ? + ? + 4−,
NC: aU + 3 −→ ? + = + aU .

(1.23)

In such a way, the experiment SNO �nally resolved the long-standing “solar neutrino problem,”
which refers to a discrepancy between the �ux of solar neutrinos predicted by Bahcall and
measured by Davis since the late 1960s in the Homestake experiment via the radiochemical
reaction �rst proposed by Pontecorvo [23]:

37
17Cl + a4 −→ 37

18Ar + 4−, (1.24)

12



1.1. Introduction

which found a de�cit of about 1/3–1/2 of the expected solar-neutrino �uxes, having oscillated
to other neutrino �avors to which this experiment was not sensitive.

The existence of neutrino oscillations implies that:
• Neutrinos have di�erent (nonzero) masses.
• Neutrino mixing occurs between the �avor and mass eigenstates.
• Lepton numbers !4 , !` , !g are not strictly conserved.

Neutrino mixing describes the fact that the �avor-neutrino �elds aU (G) (U = 4, `, g) which
couple with the , and / bosons in the weak interaction Lagrangian are superpositions of
the massive-neutrino �elds a8 (G) (8 = 1, 2, 3) with de�nite masses <8 , given by a unitary
transformation:

aU (G) =
∑
8

*U8 a8 (G), (1.25)

where*U8 are the elements of the unitary 3× 3 Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
lepton mixing matrix* [24]: * †* = 1.

In the standard parameterization, the PMNS matrix * is fully determined by three
mixing angles \12, \13, \23, one Dirac phase X , and—if massive neutrinos are Majorana
particles—two additional Majorana phases U1, U2 as follows (B8 9 ≡ sin\8 9 , 28 9 ≡ cos\8 9 ):

* =
©«
1 0 0
0 223 B23
0 −B23 223

ª®¬ ©«
213 0 B13 4

−8X

0 1 0
−B1348X 0 223

ª®¬ ©«
212 B12 0
−B12 212 0
0 0 1

ª®¬ ©«
48U1 0 0
0 48U2 0
0 0 1

ª®¬
=

©«
212 213 B12 213 B13 4

−8X

−B12 223 − 212 B13 B23 48X 212 223 − B12 B13 B23 48X 213 B23
B12 B23 − 212 B13 223 48X −212 B23 − B12 B13 223 48X 213 223

ª®¬ ©«
48U1 0 0
0 48U2 0
0 0 1

ª®¬ . (1.26)

The mixing angles \8 9 as well as the neutrino mass-squared di�erences Δ<2
8 9 = <

2
8 −<2

9 have
been measured to a good accuracy by the neutrino-oscillation experiments, while the Dirac
X and Majorana U8 phases—responsible for CP violation in the lepton sector—remain largely
unknown.

At present, the absolute scale of neutrino masses <8 is not known, but the neutrino-
oscillation experiments indicate two possible scenarios, each parameterized by the (unknown)
lightest-neutrino mass <0 and the small X<2 = <2

2 −<2
1 and large Δ<2 = <2

3 −
1
2 (<

2
1 +<2

2)
mass gaps:
• Normal hierarchy (NH) with<1 < <2 �<3 (Δ<2 > 0):

<1 =<0,

<2 =
√
<2

0 + X<2,

<3 =

√
<2

0 +
X<2

2
+ Δ<2. (1.27)

• Inverted hierarchy (IH) with<3 �<1 < <2 (Δ<2 < 0):

<1 =

√
<2

0 −
X<2

2
− Δ<2,

<2 =

√
<2

0 +
X<2

2
− Δ<2,

<3 =<0. (1.28)
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Figure 1.2: Normal hierarchy (NH) and inverted hierarchy (IH) of the spectrum of neutrino
masses<8 , conventionally parameterized by the (unknown) lightest-neutrino mass<0 and the
small X<2 =<2
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1 and large Δ<2 =<2

3 − 1
2 (<

2
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2) mass gaps.

Table 1.1: Best-�t values of the neutrino-oscillation parameters from a three-neutrino global
analysis of the neutrino-oscillation data [25].

Best �t NH IH

sin2 \12 0.297 0.297
sin2 \13 0.0214 0.0218
sin2 \23 0.437 0.569
X<2 [eV2] 7.37 × 10−5 7.37 × 10−5
Δ<2 [eV2] 2.50 × 10−3 −2.46 × 10−3

In Fig. 1.2, we show a schematic diagram of these two types of the neutrino-mass spectrum.
In Table 1.1, we present the best-�t values of the neutrino-oscillation parameters \8 9 , X<2,
Δ<2 obtained from the recent three-neutrino global analysis of the neutrino-oscillation
experiments [25]. Note that the heaviest neutrino must possess a mass of at least√
|Δ<2 | = 50meV, which justi�es the expected neutrino mass scale: <8 ∼ 10−1 eV.

Neutrino mass can be constrained from several observable parameters measured in
di�erent types of experiments:
• Cosmological observations set limits on the sum of neutrino masses:

Σ =
∑
8

<8 . (1.29)

Currently, the most stringent bound comes from the measurements of the CMB
anisotropies including baryon acoustic oscillations (BAOs) by the space probe
Planck [26, 27]: Σ < 0.12 eV at 95%C.L., which implies the following upper bounds
on the lightest-neutrino mass: <0 < 30.1meV for the NH and<0 < 15.9meV for the
IH of neutrino masses. In Fig. 1.3, we show the sum of neutrino masses Σ as a function
of the lightest-neutrino mass<0 including the Planck limit.
• Kinematical measurements of the electron-spectrum endpoint in tritium (31H) V− decay

are sensitive to the e�ective electron-(anti)neutrino mass:

<V =

√∑
8

|*48 |2<2
8
. (1.30)
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NH (solid) and IH (dashed) of neutrino masses, including the Planck limit [26, 27]: Σ < 0.12 eV
at 95%C.L. and the resulting upper bounds on the lightest-neutrino mass:<0 < 30.1meV (NH)
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Figure 1.4: E�ective neutrino mass<V as a function of the lightest-neutrino mass<0 for the
NH (solid) and IH (dashed) of neutrino masses, including the Mainz [28] and Troitsk [29] limit:
<V < 2.2 eV at 95%C.L., as well as the recent KATRIN improvement [30]: <V < 0.8 eV at
90%C.L.. The lightest-neutrino mass<0 for both NH and IH is constrained by Planck [26, 27].

For a long time, this quantity was constrained by the Mainz [28] and Troitsk [29]
experiments: <V < 2.2 eV at 95%C.L. Recently, a substantial improvement of this
limit down to the sub-eV domain was achieved by the spectrometer KATRIN [30]:
<V < 0.8 eV at 90%C.L., which has a future goal of reaching a sensitivity to neutrino
mass as low as 0.2 eV. In Fig. 1.4, we show the e�ective neutrino mass<V as a function
of the lightest-neutrino mass <0 including the limits from the Mainz and Troitsk
experiments as well as the recent KATRIN improvement.
• If massive neutrinos are Majorana particles, experiments searching for neutrinoless

double-beta (0aVV) decay can constrain the e�ective Majorana neutrino mass:

<VV =
∑
8

* 2
48<8 . (1.31)

By far, the most stringent limit on the modulus of this complex parameter follows
from the lower bound on the 0aVV-decay half-life of the isotope 136

54Xe found by the
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Figure 1.5: Regions of allowed values of the e�ective Majorana neutrino mass |<VV | as a
function of the lightest-neutrino mass <0 for the NH (solid) and IH (dashed) of neutrino
masses obtained by varying the Majorana phases in the interval U1, U2 ∈ [0, c), including
the KamLAND-Zen limit [31]: ) 0aVV

1/2 > 1.07 × 1026 yr at 90%C.L. (|<VV | < 90.7meV). The
lightest-neutrino mass<0 for both NH and IH is constrained by Planck [26, 27].

experiment KamLAND-Zen [31]: ) 0aVV
1/2 > 1.07 × 1026 yr at 90%C.L., which implies an

upper bound: |<VV | < 90.7meV. In Fig. 1.5, we show the e�ective Majorana neutrino
mass |<VV | as a function of the lightest-neutrino mass<0 including the KamLAND-Zen
limit. Due to the undetermined Majorana phases U1 and U2 entering the 1st-row PMNS-
matrix elements*48 , the regions of allowed values of |<VV | are obtained by varying the
Majorana phases in the interval U1, U2 ∈ [0, c). As soon as some of the Majorana
phases is not equal to a multiple of c/2, CP symmetry is violated in the lepton sector.

For the orthonormal and complete basis of �avor eigenstates |aU〉 and mass eigenstates |a8〉,
i.e., eigenstates of the vacuum Hamiltonian: � |a8〉 = �8 |a8〉 with energies �8 =

√
®?2
8
+<2

8
and

momenta ®?8 , Eq. (1.25) implies:
|aU〉 =

∑
8

* ∗U8 |a8〉 . (1.32)

Transition probability %U→V (C) for a neutrino produced in the �avor eigenstate |aU〉 to a
di�erent �avor eigenstate |aV〉 after time C reads:

%U→V (C) = | 〈aV |aU (C)〉 |2 = | 〈aV |4−8�C |aU〉 |2 =
�����∑
8 9

*V 9 *
∗
U8 〈a 9 |4−8�C |a8〉

�����2
=

�����∑
8 9

*V 9 *
∗
U8 4
−8�8C 〈a 9 |a8〉

�����2 =
�����∑
8

*V8 *
∗
U8 4
−8�8C

�����2 = ∑
8 9

*V8 *
∗
U8 *

∗
V 9
*U 9 4

−8 (�8−� 9 )C ,

(1.33)

where we used the Schrödinger time evolution of states: |aU (C)〉 = 4−8�C |aU〉, Eq. (1.32) and
its analog for bra vectors: 〈aV | =

∑
9 *V 9 〈a 9 |, time-independent Schrödinger equation for the

vacuum Hamiltonian: � |a8〉 = �8 |a8〉, orthogonality of the mass eigenstates: 〈a 9 |a8〉 = X 98 , and
the formula: |I |2 = II∗. While this formula is exact, it is useful to bring it to a more practical
form. Bearing in mind that neutrinos are almost exclusively ultrarelativistic, let us consider the
following assumptions: 1. all mass eigenstates propagate with the same momentum (the so-
called “equal-momentum assumption”): ®?8 ≈ ®? , 2. the neutrino masses are very small compared
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to the momentum: <8 � |®? |, 3. the neutrino momentum is practically equal to its energy:
| ®? | ≈ �, and 4. the time equals the distance traveled (i.e., the neutrino velocity E ≈ 1 in natural
units): C ≈ !:

�8 =

√
®?2
8
+<2

8
≈

√
®?2 +<2

8
≈ | ®? |

(
1 +

<2
8

2| ®? |2

)
≈ � +

<2
8

2�
. (1.34)

Under these assumptions, the phase in the exponential factor becomes:

(�8 − � 9 ) C ≈
Δ<2

8 9 !

2�
, (1.35)

where we have de�ned the mass-squared di�erence: Δ<2
8 9 = <

2
8 −<2

9 . Thus, the formula for
the transition probability as a function of the neutrino energy � and the distance ! from its
source becomes:

%U→V (�, !) =
∑
8 9

*V8 *
∗
U8 *

∗
V 9
*U 9 4

−8
Δ<2

8 9
!

2� . (1.36)

From this result, it is clear that neutrino oscillations are possible only if neutrinos are mixed
(so that *U8 ≠ XU8 ) and massive (so that Δ<2

8 9 ≠ 0) particles, but also that—unlike the mixing
angles \8 9 and mass-squared di�erences Δ<2

8 9—the individual neutrino masses <8 cannot be
determined solely from the neutrino-oscillation experiments. Note that in order to conserve
the total neutrino �ux, these probabilities must add to unity:

∑
V %U→V (�, !) = 1, where

%U→U (�, !) is called the survival probability. In a setup where transitions between only two
�avors play a dominant role, the so-called two-neutrino approximation is applicable and the
oscillation probability is e�ectively described by only one mixing angle \ and just one mass-
squared di�erence Δ<2:

%U→V (�, !) = sin2 2\ sin2
(
Δ<2!

4�

)
. (1.37)

In Fig. 1.6, we illustrate the oscillation probabilities %U→V (�, !) for electron neutrinosa4 (U = 4)
with energy � = 1MeV as functions of the distance ! from the neutrino source. In the case if
the Dirac phase X = 0, CP symmetry is conserved and the oscillation probabilities for neutrinos
aU ↔ aV and antineutrinos aU ↔ aV are equal.

In the present Chapter, after the rather extensive introduction to modern neutrino
physics, we calculate the total cross section for inelastic scattering of low-energy solar
neutrinos aU and reactor antineutrinos aU (U = 4, `, g) by atomic electrons bound in atoms
of various chemical elements:

4−b + aU −→ 4−∗b + aU ,
4−b + aU −→ 4−∗b + aU , (1.38)

causing a transition of the target bound electron 4−b to an excited state 4−∗b (by analogy with
Raman scattering of photons), as shown in Fig. 1.7. As an example, we consider the simplest
possible transition: 1s −→ :s, in which an inner K-shell electron with (principal, orbital,
and magnetic) quantum numbers (=, ;, <) = (1, 0, 0) occupies the state (:, 0, 0), where : is
the principal quantum number of the lowest-lying electron shell with at least one vacant s
orbital. While this process is expected to be much less probable than elastic neutrino–electron
scattering, it is nevertheless instructive to develop a formalism for the description of atomic
structure in neutrino interactions (which is not widely used in the literature) and to evaluate
the degree of suppression for the existing high-sensitivity neutrino experiments with very
low detection thresholds, most notably Borexino and GEMMA. Let us start by deriving the
e�ective low-energy Lagrangian suitable for the treatment of neutrino–electron interactions.
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Figure 1.6: Oscillation probabilities %U→V (�, !) for electron neutrinos a4 (U = 4) with energy
� = 1MeV as functions of the distance ! from the neutrino source. We adopt the values of the
mixing angles \8 9 and mass-squared di�erences Δ<2

8 9 from the experiments, while assuming
that the Dirac phase (with a large experimental uncertainty) X = 0.

1.2 E�ective Low-Energy Weak-Interaction Lagrangian

In a Yang–Mills theory, local invariance of the electroweak Lagrangian LEW, which is the
most general renormalizable Lagrangian invariant under local gauge transformations from
the electroweak symmetry group SU(2)! ×U(1). describing the electroweak part of the SM, is
achieved by replacing the four-gradient with a covariant derivative including four new vector
gauge �elds, `

0 (0 = 1, 2, 3) and �` [32]:

m` ↦→ �` = m` + 86
∑
0

,0` )0 + 86′ �`
.

2
, (1.39)

where 6 and 6′ are dimensionless coupling constants associated with the (nonabelian) weak-
isospin SU(2)! and (abelian) hypercharge U(1). subgroups, respectively, with generators )0
and. satisfying the commutation relations: [)0, )1] = 8 n012 )2 , where the structure constant is
the antisymmetric Levi-Civita symbol n012 (n123 = +1). It is possible to rewrite this Lagrangian
in terms of �elds of the physical vector gauge bosons by de�ning the �eld, ` that annihilates
the , + and creates the , − particles (whereas its Hermitian conjugate , `† does the exact
opposite) via a unitary transformation:

, ` =
1
√
2
(, `

1 − 8,
`

2 ), (1.40)

as well as the electromagnetic (EM) �eld �` and the �eld / ` quanta of which are the photon
W and the / 0 boson, respectively, via an orthogonal transformation:(

�`

/ `

)
=

(
cos\W sin\W
− sin\W cos\W

) (
�`

,
`

3

)
, (1.41)

where \W is the so-called Weinberg weak-mixing angle [1]: sin2 \W = 0.231.
The interaction termLint of the electroweak LagrangianLEW for the lepton sector (i.e.,

with the quark sector omitted) can be split into a sum of two terms [33]:

Lint(G) = LCC
int (G) + L

NC
int (G), (1.42)
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Figure 1.7: Inelastic scattering of low-energy solar neutrinos aU and reactor antineutrinos aU
(U = 4, `, g) by atomic electrons: 4−b +
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aU , leading to a 1s −→ :s transition of the

target bound electron 4−b to the excited state 4−∗b . The subsequent atomic deexcitation through
a cascade of X-rays or Auger electrons could serve as a signature for (anti)neutrino detection.

where the charged-current (CC) interaction Lagrangian describes the coupling of leptons with
the, boson, while the neutral-current (NC) interaction Lagrangian determines their coupling
with the / boson and photon:

LCC
int (G) = −

6

2
√
2
9,` (G), ` (G) + H.c.,

LNC
int (G) = −

6

2 cos\W
9/` (G) / ` (G) − 4 9�` (G)�` (G). (1.43)

Here, the weak CC, weak NC, and EM current, respectively, read:

9
`

,
(G) =

∑
U

aU (G) W` (1 − W5) ;U (G),

9
`

/
(G) = 1

2

∑
U

aU (G) W` (1 − W5) aU (G) +
∑
U

;U (G) W` (6+ − 6� W5) ;U (G),

9
`

�
(G) = −

∑
U

;U (G) W` ;U (G), (1.44)

where the minus sign in the EM current 9 `
�
(G) is due to the negative charge of the electron,

4 = 1.602 × 10−19 C > 0 is the elementary charge [1], and the vector 6+ and axial-vector 6�
weak coupling constants for leptons are related to the Weinberg angle:

6+ = −1
2
+ 2 sin2 \W,

6� = −1
2
. (1.45)

Note that the last term in the NC interaction Lagrangian LNC
int is the interaction term of the

Lagrangian LQED of quantum electrodynamics (QED), which is invariant under local U(1)&
gauge transformations. Uni�cation of the electromagnetic and weak forces implies that the
electroweak coupling constants are interrelated:

6 sin\W = 6′ cos\W = 4, (1.46)
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and the same is also true for the, - and / -boson masses once the electroweak symmetry is
spontaneously broken via the Higgs mechanism:

</ =
<,

cos\W
. (1.47)

In the weak-interaction processes such as V decay and elastic scattering of neutrinos
by electrons, the transferred momentum | ®@ | ∼ MeV is very small compared to the , - and
/ -boson masses<,,/ ∼ 100GeV, in which case their propagators simplify as follows:

�
(,,/ )
`a (@) = 8

−6`a +
@` @a

<2
,,/

@2 −<2
,,/
+ 8Y

|@ |2�<2
,,/−−−−−−−−→ 8

6`a

<2
,,/

. (1.48)

As a result, the vector-boson propagators are contracted to vertices which describe a
contact four-fermion interaction with an overall coupling constant

(
− 86

2
√
2

)
8

<2
,

(
− 86

2
√
2

)
(for the

propagator and two vertices). Since this e�ective coupling must correspond with the Fermi
constant �F, we obtain an important relation:

�F√
2
=

62

8<2
,

. (1.49)

Thus, at low energies (| ®@ | � <,,/ ∼ 100GeV) it is possible to study low-energy weak
interactions within the e�ective low-energy CC and NC weak-interaction Lagrangians:

LCC
e� (G) = −

�F√
2
9,` (G) 9 `†, (G),

LNC
e� (G) = −

�F√
2
9/` (G) 9 `/ (G). (1.50)

While these e�ective four-fermion interactions are not renormalizable, they can be
successfully applied to a large number of weak-interaction processes in the lowest orders of
perturbation theory.

In the context of the present Chapter, it is su�cient to consider only those interaction
terms which contribute to the inelastic scattering processes in Eq. (1.38):

Le� (G) = −
�F√
2
a4 (G) W` (1 − W5) 4 (G) 4 (G) W` (1 − W5) a4 (G)

− �F√
2

∑
U

aU (G) W` (1 − W5) aU (G) 4 (G) W` (6+ − 6� W5) 4 (G), (1.51)

where the two terms describe CC and NC weak interactions, respectively. We see that while
scattering of electron neutrinos a4 (or antineutrinos a4 ) by electrons has both CC and NC
contributions, scattering of muon a` and tau ag neutrinos (or antineutrinos a` and ag ) can
proceed exclusively via NC interactions. Using the following Fierz transformation:

L+−� (k1, k2, k3, k4) ≡ k1 W` (1 − W5)k2k3 W
` (1 − W5)k4 = L+−� (k1, k4, k3, k2), (1.52)

we can rewrite the CC interaction term in the same way as the NC ones. Thus, we obtain the
e�ective low-energy weak-interaction Lagrangian:

Le� (G) = −
�F√
2
a4 (G) W` (1 − W5) a4 (G) 4 (G) W` (�+ −�� W5) 4 (G)

− �F√
2

∑
U=`,g

aU (G) W` (1 − W5) aU (G) 4 (G) W` (6+ − 6� W5) 4 (G), (1.53)
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Figure 1.8: Feynman diagrams for scattering of neutrinos aU (top) and antineutrinos aU
(bottom) by electrons 4− from Eq. (1.38): contributions of the CCLCC

int (left) and NCLNC
int (middle)

Lagrangians from Eq. (1.43) as well as the e�ective LagrangianLe� (right) for |@ |2 �<2
,,/

from
Eq. (1.53).

where we have de�ned new constants:

�+ = 1 + 6+ ,
�� = 1 + 6� . (1.54)

In Fig. 1.8, we show the Feynman diagrams for scattering of neutrinos aU and antineutrinos
aU by electrons 4− from Eq. (1.38) under the CC LCC

int and NC LNC
int Lagrangians from Eq. (1.43)

as well as the e�ective Lagrangian Le� for |@ |2 � <2
,,/

from Eq. (1.53). In what follows, we
restrict ourselves to the channel U = 4 , since the results for the channels U = `, g can be
obtained by the formal substitution: �+ ↦→ 6+ and �� ↦→ 6�.

Thus, let us consider inelastic scattering of electron neutrinos a4 and antineutrinos a4
by bound electrons 4−b :

4−b + a4 −→ 4−∗b + a4,
4−b + a4 −→ 4−∗b + a4, (1.55)

starting from the e�ective low-energy weak-interaction Lagrangian:

Le� (G) = −
�F√
2
a4 (G) W` (1 − W5) a4 (G) 4 (G) W` (�+ −�� W5) 4 (G). (1.56)

In what follows, we denote the initial |8〉 and �nal |5 〉 two-particle states for neutrinos a4 and
antineutrinos a4 in the same way and treat both scenarios simultaneously:

|8〉 = |4−b (=, ;, <, B),
(−)
a4 (:, ℎ)〉 ≡ |4, a4〉 ,

|5 〉 = |4−∗b (=
′, ;′, <′, B′), (−)a4 (:′, ℎ′)〉 ≡ |4′, a′4〉 ,

(1.57)
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1. Inelastic Sca�ering of Low-Energy Neutrinos by Atomic Electrons

where =, ; ,<, and B = ±1/2 are the principal, orbital, and magnetic quantum numbers and spin
projection of the bound electron, respectively, and : = (l, ®:)T, l = | ®: | (i.e., we neglect the
neutrino masses<8 ), ®: , and ℎ = ±1 is the four-momentum, energy, momentum, and helicity
of the (anti)neutrino in the initial state, while the primed variables refer to the �nal state.

1.3 Nonrelativistic Approximation for Bound Electrons

In order to describe the bound states of atomic electrons in a consistent way, we introduce the
electron 4 (G) and electron-neutrino a4 (G) �elds in the following form:

4 (G) =
∑
=;<B

0=;<B k=;<B (®A ) 4−8�=C +
∫

d3 ®?
(2c)3

∑
B

0B®? k
B ( ®?, ®A ) 4−8� ®?C + 1B†®? k̃

B ( ®?, ®A ) 48� ®?C ,

a4 (G) =
∫

d3®:
(2c)3

1√
2l®:

∑
ℎ

2ℎ®:
Dℎ (:) 4−8: ·G + 3ℎ†®: Eℎ (:) 48: ·G . (1.58)

Here, 0=;<B , 0B®? , 1B®? , 2ℎ®: , and 3ℎ®: represent �ve independent (mutually anticommuting) sets of
annihilation operators for electrons in the discrete spectrum, electrons in the continuous
spectrum, positrons in the continuous spectrum, free neutrinos, and free antineutrinos,
respectively (positrons do not exhibit discrete spectrum in the Coulomb �eld of a positively
charged nucleus). These operators are labeled by the (discrete or continuous) quantum
numbers of the states which they annihilate: principal quantum number = = 1, 2, . . . , orbital
quantum number ; = 0, 1, . . . , = − 1, magnetic quantum number < = −;, . . . , +; , spin
projection B = ±1/2 (in the discrete spectrum) or helicity B, ℎ = ±1 (in the continuum), and
momentum ®? and ®: or four-momentum ? = (� ®?, ®?)T and : = (l®: , ®:)

T. Furthermore,k=;<B (®A ),
k B ( ®?, ®A ), and k̃ B ( ®?, ®A ) are four-component bispinor wave functions of electrons in the discrete
spectrum, electrons in the continuous spectrum, and positrons in the continuous spectrum,
respectively. These functions represent the solutions to the Dirac equation with the Coulomb
potential: + (A ) = −U//A , where U ≈ 1/137 is the �ne-structure constant and / is the atomic
number of the nucleus. Their explicit for does not concern us here, but with the Coulomb
interaction switched o� (/ → 0), the continuous-spectrum wave functions reduce to plane
waves:

k B ( ®?, ®A ) /→0−−−−→ 1√
2� ®?

DB (?) 48 ®? ·®A , k̃ B ( ®?, ®A ) /→0−−−−→ 1√
2� ®?

EB (?) 4−8 ®? ·®A . (1.59)

In addition, �= , � ®? =
√
®?2 +<2

4 , and l®: =

√
®:2 +<2

8
≈ |®: | are the energy eigenvalues of

electrons in the discrete spectrum, electrons and positrons in the continuous spectrum, and
free neutrinos and antineutrinos, respectively, where <4 = 0.511MeV is the electron mass.
Finally, considering the Dirac equation of motion for spin-1/2 fermions with mass<:

(8W`m` −<)k (G) = 0, (1.60)

the four-component Dirac spinorsDB (?) and EB (?) represent the solutions of the Dirac equation
for particles and antiparticles, respectively, in momentum space:

(/? −<) DB (?) = 0, (/? +<) EB (?) = 0, (1.61)

where we used the Feynman “slash” notation: /0 ≡ 0` W` . In the Dirac representation:

DB (?) =
√
� ®? +<

(
qB

®f · ®?
� ®?+<

qB

)
, EB (?) =

√
� ®? +<

(
®f · ®?
� ®?+<

jB

jB

)
, (1.62)
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1.4. Sca�ering Amplitude

where ®f = (f1, f2, f3) is the Pauli vector and qB and jB are two-component spinors which
form two orthonormal: qB† qB ′ = jB† jB

′
= XBB ′ and complete:

∑
B q

B qB† =
∑
B j

B jB† = 1 sets.
The Dirac spinors satisfy the completeness relations (polarization sums):∑

B

DB (?) DB (?) = /? +<,
∑
B

EB (?) EB (?) = /? −<. (1.63)

The (nonzero) canonical anticommutation relation, de�nition of one-particle states,
and their normalization in the case of bound electrons reads:

{0=;<B, 0†=′; ′<′B ′} = X==′ X;; ′ X<<′ XBB ′,
|4−b (=, ;, <, B)〉 = 0

†
=;<B
|0〉 ,

〈4−b (=, ;, <, B) |4
−
b (=
′, ;′, <′, B′)〉 = X==′ X;; ′ X<<′ XBB ′, (1.64)

while in the case of free neutrinos and antineutrinos we have:

{2ℎ®: , 2
ℎ′†
®: ′
} = {3ℎ®: , 3

ℎ′†
®: ′
} = (2c)3 X3(®: − ®:′) Xℎℎ′,

|a4 (:, ℎ)〉 =
√
2l 2ℎ†®: |0〉 , |a4 (:, ℎ)〉 =

√
2l 3ℎ†®: |0〉 ,

〈a4 (:, ℎ) |a4 (:′, ℎ′)〉 = 〈a4 (:, ℎ) |a4 (:′, ℎ′)〉 = 2l (2c)3 X3(®: − ®:′) Xℎℎ′, (1.65)

where |0〉 is the vacuum state, normalized to unity: 〈0|0〉 = 1 and simultaneously annihilated
by all annihilation operators: 0=;<B |0〉 = 0B®? |0〉 = 1

B
®? |0〉 = 2

ℎ
®:
|0〉 = 3ℎ®: |0〉 = 0.

For the bound-electron wave functions k=;<B (®A ), we employ a nonrelativistic
approximation:

k=;<B (®A ) ≈
1
√
2�=

DB (?) Ψ=;< (®A ), (1.66)

in which the bound electron is associated with zero momentum: ? = (�=, ®0)T (so that the
spinors DB (?) in the Dirac representation of gamma matrices have only one nonvanishing
component), its total energy is given by the rest energy<4 minus the (positive) binding energy
�̂= , i.e.: �= = <4 − �̂= , and its spatial dependence is described by the nonrelativistic wave
functions Ψ=;< (®A ) obtained by solving the Schrödinger equation for a hydrogen-like atom.

1.4 Scattering Amplitude

The scattering amplitude for our process can be calculated from the unitary (-matrix operator
de�ned via the Dyson series:

( =

∞∑
==0

(−8)=
=!

∫
d4G1 . . . d4G= T {Hint(G1) . . .Hint(G=)}, (1.67)

where—if there are no derivatives of the �elds—the interaction Hamiltonian coincides with
the interaction Lagrangian (up to a sign): Hint(G) = −Le� (G) and the time-ordering operator
T is de�ned in terms of the Heaviside step function \ (G):

T {k (G)k (G′)} = k (G)k (G′) \ (G0 − G′0) −k (G′)k (G) \ (G′0 − G0), (1.68)
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1. Inelastic Sca�ering of Low-Energy Neutrinos by Atomic Electrons

where the minus sign is due to anticommutativity of the bispinor �elds k (G). According to
Wick’s theorem:

T {k1 . . .k=} = N[k1 . . .k=] +
∑
[8 9]
N[k1 . . .k8 . . .k 9 . . .k=]

−
∑
[8 9] [:;]

N[k1 . . .k8 . . .k: . . .k 9 . . .k; . . .k=] + . . . , (1.69)

a time-ordered product of fermion �elds k8 (G) is given by a sum of normal-ordered products
with 0, 1, 2, . . . all possible contractions, where the normal-ordering operatorN reshu�es all
creation operators 0†

8
to the left of all annihilation operators 08 while producing a factor of −1

for each interchange due to anticommutativity of the fermion algebra, such that the vacuum
expectation value (VEV) 〈0|T {k1 . . .k=}|0〉 is zero for all except the fully contracted terms.

In the 1st order of perturbation theory, the (-matrix element ( (1)
5 8
≡ 〈5 |( (1) |8〉 reads:

(
(1)
5 8

= −8 �F√
2

∫
d4G 〈4′, a′4 |N [a4 (G) W` (1− W5) a4 (G) 4 (G) W` (�+ −�� W5) 4 (G)] |4, a4〉, (1.70)

where the top and bottom neutrino “clips” refer to neutrinos a4 and antineutrinos a4 ,
respectively. These external-leg contractions yield the particle wave functions:

4 (G) |4−b (=, ;, <, B)〉 = k=;<B (®A ) 4
−8�=C , 〈4−∗b (=

′, ;′, <′, B′) | 4 (G) = k=′; ′<′B ′ (®A ) 48�=′C ,
a4 (G) |a4 (:, ℎ)〉 = Dℎ (:) 4−8: ·G , 〈a4 (:′, ℎ′) | a4 (G) = Dℎ

′ (:′) 48: ′·G ,
a4 (G) |a4 (:, ℎ)〉 = Eℎ (:) 4−8: ·G , 〈a4 (:′, ℎ′) | a4 (G) = Eℎ

′ (:′) 48: ′·G ,
(1.71)

so that the (-matrix element becomes:

(
(1)
5 8

= −8 �F√
2

∫
dC 4−8 (�=+l−�=′−l

′)C
∫

d3®A 48 (®:−®: ′)·®A

×
{
−Dℎ′ (:′) W` (1 − W5) Dℎ (:) k=′; ′<′B ′ (®A ) W` (�+ −�� W5)k=;<B (®A ),
Eℎ (:) W` (1 − W5) Eℎ

′ (:′)k=′; ′<′B ′ (®A ) W` (�+ −�� W5)k=;<B (®A ),
(1.72)

where the top (bottom) expression refers to neutrinos (antineutrinos) and the preceding −1
(+1) sign is due to an odd (even) number of “clip” intersections.

Separating the trivial part 1 of the (-matrix (no scattering): ( = 1 + 8 ) , we obtain the
transition amplitude:

)5 8 =
(2c) X (�=′ + l′ − �= − l)
+
√
2�=
√
2l
√
2�=′
√
2l′

�UV "5 8 . (1.73)

Here, we have introduced the nonrelativistic approximation of zero momentum for bound
electrons from Eq. (1.66) and formally de�ned the initial ? = (�=, ®0)T and �nal ?′ = (�=′, ®0)T
four-momenta of the bound electron with total energies �= = <4 − �̂= and �=′ = <4 − �̂=′
(i.e., the rest energy minus the binding energies). In order to derive the formula for total
cross section while avoiding the problems with in�nities without the wave-packet approach,
we switched to the �nite-volume normalization, in which the space and time are con�ned
to a large but �nite arbitrary volume + (®A ∈ + ) and time interval ) (C ∈ ) ), while periodic
boundary conditions imply that the momentum ®? ≈ 2c

+ 1/3 ®= (®= ∈ ℤ3) and hence also the energy
� ®? are dense but discrete, so that the corresponding delta functions can be expressed as follows:
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1.4. Sca�ering Amplitude

(2c)3 X3( ®? − ®?′) ≈ + X ®? ®? ′ and (2c) X (� − �′) ≈ ) X�� ′ . The transition amplitude—being related
to observable quantities—must not depend on the normalization, and thus it was divided by
the norm

√
〈5 |5 〉 〈8 |8〉 of the initial and �nal states, where for a free (anti)fermion k we have:

〈k (?, B) |k (?′, B′)〉 = 2� ®? (2c)3 X3( ®?−®?′)XBB ′ ≈ 2� ®?+ X ®? ®? ′ XBB ′ . Integration over the time variable
C gives the delta function which enforces the conservation of energy, while—instead of a delta
function

∫
d3®A 48 ( ®?8−®? 5 )·®A = (2c)3 X3( ®? 5 − ®?8) for the conservation of momentum (which is

present in the case with free particles)—the inclusion of bound states leads to an appearance
of the inelastic atomic form factor:

�UV ( ®@) =
∫

d3®A Ψ∗
V
(®A ) ΨU (®A ) 4−8 ®@·®A , (1.74)

where U = (=, ;, <) and V = (=′, ;′, <′) collectively label the quantum numbers of the bound
electron in the initial and �nal states described by the nonrelativistic wave functions ΨU (®A )
and ΨV (®A ), respectively, and ®@ = ®:′ − ®: is the transferred momentum. Finally, in the case with
neutrinos (antineutrinos) the Lorentz-invariant scattering amplitude reads:

"5 8 =


+�F√

2
Dℎ
′ (:′) W` (1 − W5) Dℎ (:) DB

′ (?′) W` (�+ −�� W5) DB (?),

−�F√
2
Eℎ (:) W` (1 − W5) Eℎ

′ (:′) DB ′ (?′) W` (�+ −�� W5) DB (?).
(1.75)

Since we are dealing with unpolarized particles, the total cross section will be
proportional to the squared modulus of the scattering amplitude, averaged over the initial
and summed over the �nal spin states: B, B′ = ±1/2 for the bound electron and ℎ, ℎ′ = −1
for the neutrino or ℎ, ℎ′ = +1 for the antineutrino (massless neutrinos are always left-handed
while antineutrinos are right-handed), where a factor of 1/2 comes from averaging over the
initial spin states of the electron. Using the polarization sums from Eq. (1.63), the spin-summed
scattering amplitude squared can be brought into the form of a product of traces of two tensor
currents, and subsequently evaluated by employing the standard techniques for calculation of
traces of products of the gamma matrices:

Tr 1= 4, Tr W5 = 0,
Tr(W` . . . Wa︸   ︷︷   ︸

1, 3, 5, ...

) = 0, Tr(W` . . . Wa︸   ︷︷   ︸
1, 3, 5, ...

W5) = 0,

Tr(W`Wa ) = 46`a , Tr(W`WaW5) = 0,
Tr(W`WaWdWf ) = 4 (6`a6df − 6`d6af + 6`f6ad), Tr(W`WaWdWf ) = −48 n`adf ,

(1.76)

where n`adf is the totally antisymmetric rank-4 pseudotensor (n0123 = −n0123 = +1). In the case
of neutrinos, we get:

|"5 8 |2 =
1
2

∑
BℎB ′ℎ′

"5 8 "
∗
5 8

=
�2
F
4

Tr[/:′ W` (1 − W5) /: Wa (1 − W5)] Tr[(/?′ +<4) W` (�+ −�� W5) (/? +<4) Wa (�+ −�� W5)]

= 16�2
F [(�+ +��)2 (: · ?) (:′ · ?′) + (�+ −��)2 (: · ?′) (? · :′) − (�2

+ −�
2
�)<

2
4 (: · :′)],

(1.77)

while the result for antineutrinos can be obtained simply by swapping the initial and �nal
neutrino four-momenta: : ↔ :′.
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1.5 Form Factor

In order to proceed, we must evaluate the inelastic atomic form factor �UV ( ®@) for the electron
transition U = (1, 0, 0) −→ V = (:, 0, 0):

�1: ( ®@) =
∫

d3®A Ψ∗
:00(®A ) Ψ100(®A ) 4−8 ®@·®A . (1.78)

Here, the nonrelativistic electron wave functions Ψ=;< (®A ) are obtained as the solutions of the
Schrödinger equation for a hydrogen-like atom:[

− 1
2<4

®∇2 ++ (A )
]
Ψ=;< (®A ) = �= Ψ=;< (®A ) (1.79)

with the Coulomb potential: + (A ) = −U/
A

, where U ≈ 1/137 is the �ne-structure constant and
/ is the atomic number of the nucleus.

The energy eigenvalues of this Hamiltonian are well known in the literature:

�= = −
1
2
<4 (U/ )2

1
=2
, (1.80)

where for the binding energies we take the positive values �̂= = |�= | > 0. The corresponding
energy eigenfunctions with separated radial (A ≡ |®A |) and angular (o , i) variables read:

Ψ=;< (®A ) = '=; (A ) .;< (o, i), (1.81)

where '=; (A ) and .;< (o, i) are the radial wave functions and spherical harmonics,
respectively:

'=; (A ) =

√(
2/
=00

)3 (= − ; − 1)!
2= (= + ;)!

(
2/A
=00

);
!
(2;+1)
=−;−1

(
2/A
=00

)
4
− /A
=00 ,

.;< (o, i) = (−1)<
√

2; + 1
4c

(; −<)!
(; +<)! %

(<)
;
(coso) 48<i . (1.82)

Here, = = 1, 2, . . . is the principal quantum number, ; = 0, 1, . . . , = − 1 is the orbital
quantum number,< = −;, . . . , +; is the magnetic quantum number, 00 = 1/(U<4) is the Bohr
radius, !(2;+1)

=−;−1 [2/A/(=00)] are the associated Laguerre polynomials, and % (<)
;
(coso) are the

associated Legendre polynomials. These wave functions are mutually orthogonal and properly
normalized to unity: ∫

d3®A Ψ∗
=;<
(®A ) Ψ=′; ′<′ (®A ) = X==′ X;; ′ X<<′, (1.83)

which implies:

∞∫
0

'=; (A ) '=′; (A ) A 2 dA = X==′,

c∫
0

2c∫
0

. ∗
;<
(o, i) .; ′<′ (o, i) sino do di = X;; ′ X<<′ . (1.84)
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Figure 1.9: Inelastic atomic form factor �1: ( | ®@ |) as a function of the momentum transfer
| ®@ | = | ®: ′ − ®: | for the atoms of chemical elements: hydrogen (1H), carbon (6C), and oxygen
(8O).

For the electron transitions between the s states, the radial and angular wave functions
simplify as follows (`= ≡

√
2<4 �̂=):

'=0(A ) =
2 `3/2=

=
!
(1)
=−1(2`=A ) 4

−`=A , .00 =
1
√
4c
. (1.85)

Thus, in the case of 1s −→ :s electron transitions, the integration over the angular variables
o and i is trivial and we are left with:

�1: ( | ®@ |) =
1
| ®@ |

∞∫
0

'10(A ) ':0(A ) sin( | ®@ |A ) A dA =
4 (`1`:)3/2

: | ®@ |

∞∫
0

!
(1)
:−1(2`:A ) 4

−(`1+`: )A sin( | ®@ |A ) A dA .

(1.86)
Applying the table of integrals in Ref. [34], we were able to derive an exact analytic closed-
form expression for the inelastic atomic form factor, which drastically improved the accuracy
and computational e�ciency of subsequent numerical calculations:

�1: ( | ®@ |) =
2 (`1`:)3/2

8 | ®@ |

[
(`1 − `: − 8 | ®@ |):−1

(`1 + `: − 8 | ®@ |):+1
− (`1 − `: + 8 | ®@ |)

:−1

(`1 + `: + 8 | ®@ |):+1

]
. (1.87)

In Fig. 1.9, we show the inelastic atomic form factor �1: ( | ®@ |) as a function of the momentum
transfer | ®@ | = | ®:′ − ®: | for the atoms of chemical elements: hydrogen (1H), carbon (6C), and
oxygen (8O). Note that at zero momentum transfer (| ®@ | = 0), orthogonality of the electron
wave functions from Eq. (1.83) implies that no transition can occur: �UV (®0) = XUV .

In order to take into account the shielding e�ect of nuclear charge by other electrons
present in the atom, we replace the atomic number / by the e�ective atomic number / ∗= < /

experienced by a bound electron in the =th electron shell, which can be determined from
Eq. (1.80) using the electron binding energies �̂= for atoms of various chemical elements which
have been measured experimentally. In Table 1.2, we present the chemical elements ZX of
atoms chosen as the targets for inelastic scattering, the principal quantum numbers : of the
lowest-lying electron shells with at least one vacant s orbital, the semiempirical values of the
electron binding energies �̂= from Ref. [35], and the relative atomic masses<0 (which will be
used later for estimation of the event rates). Since this source presents the binding energies
for occupied subshells up to �̂:−1 only, we derived the values of �̂: based on Eq. (1.80) and
assuming that the shielding e�ect for the: th and (:−1)th electron shell is the same (/ ∗

:
≈ / ∗

:−1),
which gives: �̂: ≈

(
1 − 1

:

)2
�̂:−1.
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Table 1.2: Chemical elements ZX of atoms chosen as the targets for inelastic scattering, the
principal quantum numbers : of the lowest-lying electron shells with at least one vacant s
orbital, the semiempirical values of the electron binding energies �̂= from Ref. [35], and the
relative atomic masses<0 .

ZX : �̂1 [keV] �̂: [keV] <0

1H 2 0.0136 0.00340 1.00794
6C 3 0.284 0.00800 12.0107
8O 3 0.532 0.0127 15.9994
32Ge 5 11.1 0.00320 72.6400

1.6 Cross Section

The in�nitesimal transition rate (i.e., number of transitions per unit time) into the �nal-state
phase-space element d3®:′:

d,1: =
1
)
|)5 8 |2 dΦ =

(2c) X (�: + l′ − �1 − l)
+ 2�1 2l 2�:

|�1: |2 |"5 8 |2
d3®:′

(2c)3 2l′ (1.88)

is de�ned as the transition probability |)5 8 |2 per unit time with a measure given by the phase-
space factor for all �nal-state particles with de�nite momentum ®? 5 (i.e., in the continuous
spectrum):

dΦ =
∏
5

+

(2c)3 d
3 ®? 5 =

+

(2c)3 d
3®:′, (1.89)

which provides the Lorentz-invariant phase space: d3®: ′
(2c)3 2l ′ . The square of the delta function

was evaluated with the help of normalization to the large time interval ) :

[(2c) X (�: + l′ − �1 − l)]2 ≈ ) (2c) X (�: + l′ − �1 − l). (1.90)

For a generic scattering processes, the di�erential cross section df is de�ned as the
constant of proportionality in the following relation:

d, = 9 # df = 9 #

(
df∏
5 d3 ®? 5

) ∏
5

d3 ®? 5 , (1.91)

where d, is the transition rate into a �nal-state phase-space element
∏

5 d3 ®? 5 (or some region
of the �nal-state phase space after a proper integration), 9 = E/+ is the �ux of incident particles
(i.e., number of projectiles per unit area per unit time) with density 1/+ and velocity E in the
rest frame of the target particles (E = 1 for massless neutrinos), and # is the total number of
target particles. In the laboratory frame, where the single target electron is at rest (# = 1),
the volume + -independent di�erential cross section df1: = d,1:/ 9 for inelastic scattering
of neutrinos and antineutrinos by bound electrons, associated with the electron transition
1s −→ :s, �nally becomes:

df1: =
(2c) X (�: + l′ − �1 − l)

2�1 2l 2�:
|�1: |2 |"5 8 |2

d3®:′
(2c)3 2l′ . (1.92)
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Figure 1.10: Total cross section f1: for inelastic scattering of electron (anti)neutrinos by atomic

electrons: 4−b +
(−)
a4 −→ 4−∗b +

(−)
a4 , leading to a transition of the bound electron: 1s −→ :s (where

: is the principal quantum number of the lowest-lying electron shell with at least one vacant
s orbital), as a function of the initial (anti)neutrino energy l in the atoms of: hydrogen (1H),
carbon (6C), oxygen (8O), and germanium (32Ge) with : = 2, 3, 3, 5, respectively.

The total cross section f1: (l) was calculated by performing a numerical integration
over the Lorentz-invariant phase space d3®: ′

(2c)3 2l ′ of the �nal-state (anti)neutrino, where
d3®:′ = | ®:′|2 sino d| ®:′| do di . Choosing the I-axis in the direction of ®: , the initial and �nal
(anti)neutrino momenta become: ®: = l (0, 0, 1) and ®:′ = l′ (sino cosi, sino sini, coso)
(recall that | ®: | = l and | ®:′| = l′ due to the approximation of zero neutrino mass). The integral
over i immediately yields a factor of 2c , while the integral over l′ can be easily evaluated
using the delta function, which leads to the energy conservation law:

l′ = �1 − �: + l = �̂: − �̂1 + l. (1.93)

Thus, the only nontrivial integration is the one over the polar angle o between the vectors
®: and ®:′, which can be transformed into an integral over the magnitude of the transferred
momentum: | ®@ | =

√
l2 + l′2 − 2ll′ coso and computed numerically. The result is universal

for both electron neutrinos a4 and antineutrinos a4 , and can be generalized to the other
neutrino �avors U = `, g by the following substitution inside the scattering amplitude |"5 8 |2:
�+ ↦→ 6+ and �� ↦→ 6�.

In Fig. 1.10, we show the total cross section f1: for inelastic scattering of electron
(anti)neutrinos by atomic electrons: 4−b +

(−)
a4 −→ 4−∗b +

(−)
a4 , leading to a transition of the

bound electron: 1s −→ :s (where : is the principal quantum number of the lowest-lying
electron shell with at least one vacant s orbital), as a function of the initial (anti)neutrino
energy l in the atoms of: hydrogen (1H), carbon (6C), oxygen (8O), and germanium (32Ge)
with : = 2, 3, 3, 5, respectively. Qualitatively, this result di�ers from elastic scattering of
neutrinos and antineutrinos by free electrons due to the existence of an interaction threshold
given by Eq. (1.93): lmin = �̂1−�̂: and due to the fact that—because of the form factor �1: ( | ®@ |)—
with increasing initial neutrino energyl the total cross section f1: is asymptotically constant,
whereas for free electrons the total cross section grows linearly with l . Quantitatively,
the total cross section f1: ∼ 10−50 cm2 is suppressed by several orders of magnitude when
compared to elastic scattering, in which case the total cross section typically ranges from
10−49 cm2 to 10−44 cm2 for sub-MeV neutrinos. A comprehensive review of the theory and
phenomenology of neutrino interactions and their cross sections can be found, e.g., in Ref. [36].

The event rate (i.e., number of events per unit time) can be roughly estimated as follows:

,1: ∼ 9 (l)
∑
/

#/ f1:,/ (l), (1.94)
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1. Inelastic Sca�ering of Low-Energy Neutrinos by Atomic Electrons

where 9 (l) is the �ux of electron neutrinos a4 or antineutrinos a4 with average energy l and
#/ is the total number of K-shell electrons of the chemical element ZX present in the detector.
In general, the neutrino �ux density � (l) (i.e., projectile �ux per unit energy) also depends
on the neutrino energy, in which case: ,1: =

∑
/ #/

∫
dl � (l) f1:,/ (l), where we assumed

a monoenergetic distribution: � (l) ≈ 9 X (l −l). A considerable number of modern neutrino
experiments is based on scattering of neutrinos by electrons, which are then most frequently
detected using water Cherenkov detectors (e.g., Super-Kamiokande [21]), organic scintillators
(e.g., Borexino [37]), or semiconductor detectors (e.g., GEMMA [38]). Since the cross section
of the competing process of elastic scattering increases with the neutrino energy, the process
of inelastic scattering is most likely to be observed at the low end of the energy domain, which
requires that the detection threshold must be su�ciently low: lmin ∼ keV.

At present, the most sensitive solar-neutrino detector is Borexino [37], which contains
278 t of pseudocumene C9H12 (a liquid scintillator). This experiment is primarily involved
with the detection of sub-MeV solar neutrinos: the monoenergetic 7Be neutrinos with energy
l = 862 keV and total �ux 9 ≈ 4×109 cm−2 s−1 (of which only about 1/3 are electron neutrinos
a4 due to neutrino oscillations) and the ?? neutrinos with average energy l ≈ 300 keV and
total �ux 9 ≈ 6 × 1010 cm−2 s−1 [39]. These values predict the event rates: ,7Be ∼ 10−2 yr−1
and,?? ∼ 1 yr−1, which are negligible when compared to the measured event rates of several
104 yr−1. Furthermore, the detection threshold lmin = 150 keV is still relatively high.

On the other hand, the spectrometer GEMMA [38], which aims for the measurement
of the neutrino magnetic moment `a at the Kalinin Nuclear Power Plant, is based on a HPGe
detector with a total mass of 1.5 kg and a very low detection threshold lmin = 2.8 keV. The
setup is exposed to a �ux 9 ≈ 3×1013 cm−2 s−1 of reactor antineutrinos a4 at a distance of 13.9m
from a 3GW nuclear reactor. Nevertheless, due to the small detector mass, the expected event
rate is only:, ∼ 10−4 yr−1.

1.7 Conclusion

In the present Chapter, we have calculated the total cross section for inelastic scattering of
low-energy solar neutrinos and reactor antineutrinos by atomic electrons bound in atoms of
various chemical elements often found in modern ultrasensitive neutrino detectors, leading
to a 1s −→ :s transition (excitation) of the target bound electron, where : is the principal
quantum number of the lowest-lying electron shell with at least one vacant s orbital. While
the probability of this process is suppressed by several orders of magnitude when compared
to elastic scattering, the main focus was on the development of a formalism for the detailed
description of bound states in neutrino interactions, which can also be applied to study the
e�ects of atomic structure in V decay, double-V decay, and related processes. Observation of
inelastic scattering remains a challenging task for the future neutrino detectors with large
sensitive volume and low energy threshold.

In the future, a more precise treatment of the total cross section for inelastic scattering
could take into account all neutrino �avors U = 4, `, g and include a summation over all
possible electron transitions (=, ;, <) −→ (=′, ;′, <′) from the occupied orbitals (including
the states with higher angular momenta) into any available vacancy in both the discrete and
the continuous spectrum. On the other hand, a more accurate estimation of the event rates
could utilize realistic neutrino spectra.
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2
Neutrinoless and Two-Neutrino
Bound-State Double-Beta Decay

2.1 Introduction

A
mong the most important milestones in physics of the 20th century was the discovery
of neutrino oscillations from angular dependence of atmospheric-neutrino �uxes by
the experiment Super-Kamiokande in 1998 [21], which brought clear evidence that

neutrinos are massive particles and marked the beginning of a new era in modern neutrino
physics driven by the challenging question of neutrino mixing and Dirac vs. Majorana nature
of neutrino masses. If the massive neutrinos a8 (8 = 1, 2, 3) with de�nite masses <8 are
Majorana fermions, the �avor neutrinos aU (U = 4, `, g) are identical to their respective
antineutrinos aU and total lepton number ! =

∑
U !U (de�ned as +1 for leptons and −1 for

antileptons) is not conserved [40]. Observation of neutrinoless double-beta (0aVV) decay
would establish the Majorana nature of massive neutrinos, which would be of great value
to extensions of the SM and constitute one giant leap towards the underlying Grand Uni�ed
Theory [41]. Measurement of the 0aVV half-lives (for which only lower bounds currently
exist) would provide us with a key to the absolute scale of the neutrino masses <8 and shed
light on the mechanism of leptonic CP violation necessary in order to explain the observed
baryon asymmetry of the Universe [42]. Given the potential to answer so many fundamental
open questions in a wide range of �elds from particle and nuclear physics to astrophysics and
cosmology, it is understandable that in the recent decades the search for 0aVV decay has drawn
great attention of both theorists and experimentalists.

Neutrinoless (two-neutrino) double-beta decay of a parent nucleus A
ZX into a daughter

nucleus A
Z+2Y involves an emission of two electrons 4− (and a pair of electron antineutrinos a4 )

from the atom, and is usually denoted as 0a (2a)V−V−:

0a (2a)V−V−: A
ZX −→ A

Z+2Y + 4− + 4− + (a4 + a4). (2.1)

First proposed by Goeppert-Mayer in 1935 [43], 2aV−V− decay is allowed in the 2nd order
of perturbation theory within the SM weak interaction and as such it conserves total lepton
number: Δ! = 0. It represents the dominant decay channel of V radioactivity of the even–
even isotopes for which the single-V− decay into the odd–odd intermediate nucleus is either
energetically forbidden or substantially suppressed by spin selection rules. The double-beta
decay has so far been observed in 11 out of 35 candidate isotopes, with the 2aV−V−-decay half-
lives typically ranging between: ) 2aVV

1/2 ∼ 1019–1021 yr, making it the rarest known spontaneous
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Figure 2.1: Illustration of the 0a (2a)EPV− decay modes, in which a parent nucleus A
ZX decays

into a daughter nucleus A
Z+2Y, a bound electron 4−b directly produced in a vacant orbit above the

subshells occupied by / atomic electrons, and a single free electron 4− (and a pair of electron
antineutrinos a4 ) emitted from the atom. Upon deexcitation, the resulting A

Z+2Y
2+ ion radiates

X-ray photons W which might contribute to a slight heating (∼ 10 eV) of the detector.

decay in nuclear physics. First theorized by Furry in 1939 [44], 0aV−V− decay—on the other
hand—requires Majorana mass terms beyond the SM and violates total lepton number by two
units: Δ! = +2. This process could be observed above the background as a monoenergetic
peak at the 2aV−V−-decay spectrum endpoint in calorimetric measurements of the sum of
electron energies. Its detection remains elusive, with the current limits on the 0aV−V−-decay
half-lives as high as [1]: ) 0aVV

1/2 > 1026 yr at 90%C.L. In what follows, we restrict ourselves to
the ground-state to ground-state (g.s.) 0+ −→ 0+ nuclear transitions.

In 1961, Bahcall developed a formalism for the description of bound-state V− decay, in
which the V-electron is directly produced in an atomic K or L shell while the monochromatic
antineutrino a4 carries away the entire energy of the decay [45]. In 1992, Jung et al. observed
this process for a �rst time in bare 163

66Dy
66+ ions collected in the heavy-ion storage ring ESR at

GSI, Darmstadt, with a measured half-life of 47 d for the otherwise stable nuclide [46]. In the
present Chapter, we develop a formalism for the description of neutrinoless (two-neutrino)
bound-state double-beta decay, which we denote as 0a (2a)EPV−:

0a (2a)EPV−: A
ZX −→ A

Z+2Y + 4− + 4−b + (a4 + a4). (2.2)

In these new modes, the emission of a single free electron 4− from the atom is accompanied
by an electron production (EP) of a bound electron 4−b in one of the available s1/2 or p1/2
subshells above the valence shell of the daughter ion A

Z+2Y
2+, as shown in Fig. 2.1. Inclusion of

atomic orbitals with higher angular momenta is not necessary, because their wave functions
exhibit only a negligible overlap with the nucleus. Since the 0aEPV−, 0aV−V−, 2aEPV−, and
2aV−V− decay modes represent 1-, 2-, 3- and 4-body decays, respectively, they could be
distinguished by their characteristic kinematics in the measured single- and two-electron
energy distributions.

Neutrinoless double-beta decay with two bound electrons 4−b in the �nal state had
already been discussed in the context of resonant neutrinoless double-electron capture
(0aECEC) as its inverse process of neutrinoless double-electron production, denoted as
0aEPEP [47]:

0aEPEP: A
ZX −→ A

Z+2Y
∗ + 4−b + 4

−
b . (2.3)

A resonant enhancement of the transition probability can occur in case of quasi-degeneracy of
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the initial-state and excited �nal-state atomic masses. In particular, the g.s. 0+ −→ 0+ nuclear
transition of the isotope 148

60Nd into the 1.921MeV excited state of 148
62Sm

∗ ful�lls the resonance
condition with an experimental accuracy of ≈ 10 keV. Nevertheless, the associated half-life
) 0aEPEP
1/2 > 1027 yr obtained assuming the e�ective Majorana neutrino mass |<VV | = 1 eV was

too large and at the present stage far beyond the experimental reach.
The present Chapter is outlined as follows. First, we describe the relativistic electron

wave functions as one-particle solutions of the Dirac equation with Coulomb potential
and derive expressions for the relativistic Fermi function and its analogous bound-state
counterpart. Then, we calculate the 0a (2a)V−V− decay rates within the SM + − � weak
interaction including mixing of Majorana neutrinos. Here, we restrict ourselves to the g.s.
0+ −→ 0+ nuclear transitions and obtain the kinematical phase-space factors entering the
decay rates. Next, we describe the computation of relativistic bound-electron wave functions
near the origin via the multicon�guration Dirac–Hartree–Fock package Grasp2K. Finally, we
evaluate the ratios between the 0a (2a)EPV− and 0a (2a)V−V− decay rates, provide numerical
estimates of the corresponding partial half-lives, and derive the shapes of the one- and two-
electron energy spectra. In the end, we draw conclusions regarding a possible experimental
observation of bound-state double-beta decay and provide motivation for further studies.

2.2 Relativistic Electron Wave Functions

The electronic structure of atoms is described by the shell-model relativistic electron wave
functions obtained as solutions to the Dirac equation with a self-consistent spherically
symmetric potential, which is a superposition of a central Coulomb �eld of the nucleus and
an external screening potential of the surrounding electron cloud. The corresponding four-
component bispinors with separated radial (A ≡ |®A |) and angular (Â ≡ ®A/|®A |) variables take the
form [48]:

k^` (®A ) =
(
5^ (A ) Ω^` (Â )
86^ (A ) Ω−^` (Â )

)
. (2.4)

Here, ^ = (; − 9) (2 9 + 1) = ±1, ±2, . . . collectively labels all possible combinations of the
orbital ; = 0, 1, . . . and spin B = 1

2 angular momenta (^ = −1, +1 for s1/2 and p1/2 states,
respectively), while ` = − 9, . . . , + 9 and f = ±1

2 denote the projections of the total angular
momentum ®9 = ®; + ®B (with 9 = |; + f |) and spin ®B onto an arbitrary axis. Furthermore, the
spinor spherical harmonics with parity (−1); :

Ω^` (Â ) =
∑
f=± 1

2

�
9 `

;,`−f, 12 ,f
.;,`−f (Â ) jf (2.5)

generalize the concept of spherical harmonics .;< (o, i) to spin-1/2 particles, where � 9 `

;,`−B, 12 ,B
are Clebsch–Gordan coe�cients and the two-component spinors jf form an orthonormal and
complete set. Finally, the relativistic radial wave functions 5^ (A ) and 6^ (A ) are determined by
the source potential and additionally depend on the electron energy (discrete or continuous).
In what follows, we consider the solutions of the Dirac equation with screened Coulomb
potential: + (A ) = −U/e�/A , where U ≈ 1/137 is the �ne-structure constant and /e� is
the e�ective atomic number of the daughter nucleus A

Z+2Y experienced by the �nal-state
electrons. For the free electron, the shielding e�ect of nuclear charge was shown to be rather
insigni�cant, and hence we retain the full charge of the daughter nucleus [49]: /e� = / + 2.
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

For the bound electron, the presence of inner atomic orbitals was taken into account by means
of the general-purpose relativistic atomic structure package Grasp2K, as discussed below.

In the continuous spectrum, it is su�cient to consider only the leading s1/2 term from
the partial-wave expansion [50]:

kfs1/2 ( ®?, ®A ) =
(

5−1(�, A ) jf
6+1(�, A ) ( ®f · ?̂) jf

)
, (2.6)

where 5−1(�, A ) and 6+1(�, A ) are the free-electron radial wave functions normalized to the
Dirac delta function X (?−?′), � =

√
®?2 +<2

4 is the energy of a free electron with momentum ®?
and mass<4 , and ®f = (f1, f2, f3) is the vector of 2×2 Pauli matrices. In the theory of V decay,
the radial wave functions are evaluated on the surface of a nucleus with radius ' ≈ 1.2 fm�1/3

and appear in the Fermi function � (/+2, �), which represents a correction due to the Coulomb
interaction of the emitted electron with the daughter nucleus A

Z+2Y:

� (/, �) = 5 2−1(�, ') + 62+1(�, ') = 4
[
|Γ(W + 8a) |
Γ(2W + 1)

]2
(2?')2W−2 4ca , (2.7)

where W =
√
^2 − (U/ )2 and a = U/�/? with ? =

√
�2 −<2

4 . Let us note that � (/, �) → 1 as
/ → 0 (i.e., the Coulomb interaction is switched o�). In the nonrelativistic case when U/ � 1
and ; = 0, the Fermi function � (/, �) coincides with the Gamow–Sommerfeld factor [51,
52, 53]. The Fermi function � (/ + 2, �) is given by a standard approximation in which the
relativistic electron wave function for a uniform distribution of nuclear charge is considered
and only the lowest-order terms of the power expansion in A are taken into account [50]. The
exact Dirac electron wave function, which accounts for a �nite size of the nucleus and electron-
shell screening e�ects [54], modi�es the 0aV−V−-decay phase-space factor of the isotope 150

60Nd
by 30% (see Ref. [49] and Table I therein), which results in an increase of the 0aV−V−-decay
half-life. The 0a (2a)EPV− decay rate with only one electron in the continuum is thus less
sensitive to the details of the Dirac electron wave function, since only one Fermi function
enters the corresponding phase-space factor. This justi�es our restriction in the continuous
spectrum to the solutions of the Coulomb problem for+ (A ) = −U (/ + 2)/A , where / + 2 is the
atomic number of the �nal-state isotope A

Z+2Y.
In the discrete spectrum, the bound-electron radial wave functions 5=^ (A ) and 6=^ (A )

in the Coulomb potential are associated with the discrete energy eigenvalues [55]:

�=^ =<4

[
1 + (U/ )2
(W + =A )2

]− 1
2

, (2.8)

where = = 1, 2, . . . is the principal quantum number of a bound electron and =A = =− |^ | is the
radial quantum number which counts the number of radial nodes, and are properly normalized
to unity:

∫ ∞
0 [5

2
=^ (A ) + 62=^ (A )] A 2 dA = 1. At small distances from the origin A ∼ ' such that

2_A � 1, where _ =
√
<2
4 − �2=^ , the exact radial wave functions for a point-like source can be

expanded into a Taylor series up to O(2_A ) [47]:

5=^ (A ), 6=^ (A ) ≈ ±
(2_)3/2

Γ(2W + 1)

√√√ (<4 ± �=^) Γ(2W + =A + 1)

4<4
U/<4
_

(
U/<4
_
− ^

)
=A !

(
U/<4

_
− ^ ∓ =A

)
(2_A )W−1. (2.9)

These functions enter the 0a (2a)EPV− decay rate in the bound-state Fermi function:

�= (/ ) = 5 2=,−1(') + 62=,+1('). (2.10)
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While formally analogous to the s1/2-wave Fermi function � (/, �) from Eq. (2.7), here the two
terms originate from EP in the =s1/2 and =p1/2 subshells, respectively. In the nonrelativistic
limit U/ � 1 and ; = 0, we have: 5=^ (A ) ≈ −^/|^ | '=; (A ) and 6=^ (A ) ≈ 0, where '=; (A )
are the nonrelativistic radial wave functions obtained by solving the Schrödinger equation
for a hydrogen-like atom. The screening of the Coulomb potential modi�es the short-
distance behavior of the radial wave functions. This e�ect was taken into account via the
Dirac–Hartree–Fock method implemented by the general relativistic atomic structure package
Grasp2K.

In order to e�ectively describe bound electrons in quantum �eld theory in a consistent
way, we change the de�nition of the electron �eld 4 (G) to include both the discrete-spectrum
and the continuous-spectrum relativistic wave functions obtained as the solutions of the Dirac
equation with the Coulomb potential [45]:

4 (G) =
∑
=^`

0=^`k=^` (®A ) 4−8�=^C +
∫

d3 ®?
(2c)3

∑
B=±1/2

0B®? k
B ( ®?, ®A ) 4−8� ®?C + 1B†®? k̃

B ( ®?, ®A ) 48� ®?C . (2.11)

Here, 0=^` and 0B®? form two independent sets of annihilation operators for electrons with
energies in the discrete and continuous spectrum, respectively, while 1B®? are the annihilation
operators for positrons (there are no bound states for positrons in the Coulomb �eld of a
positively charged nucleus);k=^` (®A ) andk B ( ®?, ®A ) are the energy eigenfunctions for the discrete
and continuous spectrum de�ned in Eq. (2.4), respectively, where the latter is for a de�nite
momentum ®? given as a superposition of spherical waves:

k B ( ®?, ®A ) =
∑̀̂

FB
^` (?̂)k^` (�, ®A ), (2.12)

where the weight factor equals: FB
^` (?̂) = 4c8; � 9 `

;,`−B, 12 ,B
. ∗
;,`−B (?̂), while k̃ B ( ®?, ®A ) are the

energy eigenfunctions of positrons which do not concern us here; and �=^ from Eq. (2.8)
and � ®? =

√
®?2 +<2

4 are the energy eigenvalues for electrons in the discrete and continuous
spectrum, while the latter is also valid for positrons. With the Coulomb interaction
switched o� (/ → 0), the continuum wave functions in Eq. (2.11) reduce to plane waves:
k B ( ®?, ®A ) → 1√

2� ®?
DB (?) 48 ®? ·®A and k̃ B ( ®?, ®A ) → 1√

2� ®?
EB (?) 4−8 ®? ·®A , where DB (?) and EB (?) are the

momentum-space solutions of the Dirac equation for a free electron and positron, respectively.
These wave functions enter the transition amplitude though external-leg contractions of the
electron �eld:

4 (G) |4−(?, B)〉 = k B ( ®?, ®A ) 4−8�?C ,

4 (G) |4−b (=, ^, `)〉 = k=^` (®A ) 4
−8�=^C . (2.13)

2.3 Phase-Space Factors

Double-beta decay is a 2nd-order weak-interaction process governed by the e�ective V-decay
Hamiltonian [40]:

HV (G) =
�V√
2
9` (G) 4 (G) W` (1 − W5) a4 (G) + H.c. (2.14)

Here, the V-decay constant�V = �F cos\C includes the Fermi constant�F = 1.166×10−5 GeV−2
together with the Cabibbo angle \C = 13◦ due to weak quark mixing [1], 4 (G) and a4 (G) denote

35



2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

𝑛

𝑛

𝑝

𝑝

𝑒−

𝑒−

𝜈M

Figure 2.2: Feynman diagram for the process 0aV−V−: A
ZX −→ A

Z+2Y+4−+4− in the leading order
of perturbation theory within the e�ective low-energy SM weak interaction with Majorana
neutrinos, realized by exchange of a light Majorana neutrino aM between the two weak-
interaction vertices. Due to exchange symmetry, the transition amplitude is given by a sum
of two terms in total, related by interchange of the �nal-state electron lines.
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Figure 2.3: Feynman diagram for the process 2aV−V−: A
ZX −→ A

Z+2Y + 4− + 4− + a4 + a4 in the
leading order of perturbation theory within the e�ective low-energy SM weak interaction. Due
to exchange symmetry, the transition amplitude is given by a sum of four terms in total, related
by interchange of the �nal-state electron and electron-antineutrino lines.

the electron and electron-neutrino �elds, respectively, and the hadronic charged current
9` (G) = ? (G) W` (6+−6� W5) =(G) couples the proton ? (G) and neutron=(G) �elds via the vector
6+ = 1 and (unquenched) axial-vector 6� = 1.27 weak coupling constants. The+ −� structure
ofHV (G) ensures that only the left-handed components of the lepton �elds participate in the
weak interaction. Due to neutrino mixing, the �avor-neutrino �elds aU (G) (U = 4, `, g), which
couple to the, and / bosons, are given as linear combinations of the massive-neutrino �elds
a8 (G) (8 = 1, 2, 3), which have de�nite masses<8 , described by the unitary 3 × 3 Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) lepton mixing matrix* :

aU (G) =
∑
8

*U8 a8 (G). (2.15)

In Figs. 2.2 and 2.3, we show the Feynman diagrams of 0aV−V− and 2aV−V− decays, respectively,
in the leading order of perturbation theory. Observation of 0aV−V− decay would provide
evidence that massive neutrinos a8 are Majorana fermions with �elds invariant under charge
conjugation [41]: a�8 (G) = a8 (G), which would imply that �avor neutrinos aU are their own
antiparticles and total lepton number ! is not conserved. In the minimal extension of the
SM, 0aV−V− decay is most commonly assumed to be realized by the light Majorana-neutrino
exchange mechanism between the decaying nucleons in the parent nucleus.

Introducing the standard approximations for the g.s. 0+ −→ 0+ nuclear transitions [56],
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the leading-order (-matrix element of 0aV−V− decay becomes:

(
(2)
5 8

= 28
(
�V√
2

)2
<VV

∫
d3®A1 d3®A2k 1(®A1) (1 + W5)�k

T
2 (®A2)

×
∫

d3®@
(2c)3

48 ®@·(®A1−®A2)

| ®@ |
〈0+
5
|�` (®A1) � ` (®A2) |0+8 〉

| ®@ | + 〈�〉 − "8+"5

2

2c X (�1 + �2 +"5 −"8). (2.16)

Here,k1(®A ) andk2(®A ) are the general wave functions of the two V-electrons (k B ( ®?, ®A ) for free
and k=^` (®A ) for bound electrons) with energies �1 and �2, respectively, and � = 8 W2W0 (in the
Dirac representation of gamma matrices) is the charge-conjugation matrix:

�T = −�, �† = �−1,

� WT` �
−1 = −W`, � (W5)T�−1 = W5, � (f`a )T�−1 = −f`a . (2.17)

This matrix comes from the propagator of a Majorana neutrino with four-momentum
@ = (@0, ®@)T joining the two weak-interaction vertices at G1 and G2:

〈0|T {a4! (G1) aT4! (G2)}|0〉 = −8 <VV

∫
d4@
(2c)4

4−8@·(G1−G2)

@2 + 8Y
1 − W5

2
�, (2.18)

where |0〉 denotes the vacuum state, T stands for the time-ordering operator, and Y > 0 is
an in�nitesimal parameter (the 8Y prescription). By neglecting the squared neutrino masses
<2
8 � |®@ |2 in the denominator: @2 −<2

8 + 8Y ≈ @2 + 8Y, the amplitude becomes proportional to
the e�ective Majorana neutrino mass:

<VV =
∑
8

* 2
48<8 . (2.19)

After the long-wave approximation for the emitted leptons: 48 ®? ·®A ≈ 1 (| ®? | ' � 1), their
wave functions are approximated by their values on the surface of a nucleus with radius
' = 1.2 fm�1/3: k1,2(®A ) ≈ k1,2('), and we can further separate the NME of 0aV−V− decay:

"0aVV = −4c'
62
�

∫
d3®A1 d3®A2

∫
d3®@
(2c)3

48 ®@·(®A1−®A2)

| ®@ |
〈0+
5
|�` (®A1) � ` (®A2) |0+8 〉

| ®@ | + 〈�〉 − "8+"5

2

. (2.20)

Finally, � ` (®A ) is the one-body nuclear weak CC, |0+8 〉 and |0+
5
〉 are the states of the initial AZX and

�nal A
Z+2Y nuclei with masses "8 and "5 , respectively, and the average excitation energy 〈�〉

comes from the closure approximation for the intermediate nuclear states |=〉: ∑= |=〉 〈= | ≈ 1.
Squaring the amplitude and performing a summation over the spin projections (B or `)

of unpolarized electrons, the lepton currents rearrange into the following trace:∑
B1,B2

[
k 1(®A1)

(
1 + W5

)
�k

T
2 (®A2)

] [
k 1(®A ′1)

(
1 + W5

)
�k

T
2 (®A ′2)

]∗
= −Tr

�
[∑
B2

k2(®A ′2)k 2(®A2)
]T
�−1(1 − W5)

[∑
B1

k1(®A ′1)k 1(®A1)
]
(1 + W5)

 = 8�1�2. (2.21)

The density matrices
∑
B k (®A ′)k (®A ) =

∑8
8=1 28 %8 for both free and bound electrons take the

form of a linear combination of the following eight projection operators: %8 = 1, W0, ( ®W · Â ),
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

W0 ( ®W · Â ), ( ®W · Â ′), W0 ( ®W · Â ′), ( ®W · Â ′) ( ®W · Â ), W0 ( ®W · Â ′) ( ®W · Â ) (8 = 1, . . . , 8). In the end, only the
coe�cients of the projector W0 will survive, which we have denoted �1 and �2 for k1(®A ) and
k2(®A ), respectively. For a free (top) and bound (bottom) electron, its coe�cient equals:

� =


5 2−1(�, ') + 62+1(�, ')

2
=
1
2
� (/ + 2, �),

1
4c

5 2=,−1(')
2

+ 1
4c

62=,+1(')
2

=
1
2

1
4c

�= (/ + 2),
(2.22)

where the bottom two contributions (which are eventually summed in the total decay rate)
originate from the =s1/2 and =p1/2 bound states, respectively.

The inverse 0aV−V−-decay and 2aV−V−-decay half-lives factorize as follows [54]:

() 0aVV
1/2 )

−1 = 64��
0aVV (/, &) |"0aVV |2

����<VV

<4

����2 ,
() 2aVV

1/2 )
−1 = 64��

2aVV (/, &) |<4 "
2aVV |2, (2.23)

where �0a (2a)VV (/, &) is the kinematical two-body (four-body) phase-space factor as a
function of the atomic number / of the parent nucleus and the total released kinetic energy
& , "0a (2a)VV is the nuclear matrix element (NME), and (assuming the light Majorana-neutrino
exchange mechanism) <VV is the e�ective Majorana neutrino mass, while the normalization
to the electron mass <4 makes the factors |<VV/<4 | and |<4 "

2aVV | dimensionless. Since
the absolute scale of neutrino masses <8 and the Majorana phases U1 and U2 entering the
PMNS-matrix elements *48 are unknown, the value of |<VV | is treated as a free parameter.
Nevertheless, the experimental lower bounds on the half-lives) 0aVV

1/2 imply an upper bound on
|<VV |, provided that the corresponding NMEs "0aVV have been evaluated within the theory
of nuclear structure. The most stringent limit has so far been obtained for the isotope
136
54Xe in the double-V-decay experiment KamLAND-Zen [31]: ) 0aVV

1/2 > 1.07 × 1026 yr at
90%C.L., which translates to: |<VV | < 61–165meV, where the range of values re�ects the
factor 2–3 discrepancy between the calculated values of "0aVV due to uncertainties inherent
in di�erent nuclear-structure models. In the case of the inverted hierarchy of neutrino
masses, the e�ective Majorana neutrino mass is constrained by cosmology to the interval:
|<VV | = 20–50meV. We will estimate the 0aV−V−-decay and 0aEPV−-decay half-lives assuming
an optimistic value: |<VV | = 50meV. Since the 2aV−V−-decay half-life ) 2aVV

1/2 is free of any
unknown parameters and unambiguously de�ned within the SM, its measured values can be
used to �x various phenomenological parameters, compare the quality of di�erent nuclear-
structure methods for calculation of the NMEs "2aVV and improve their predictions for the
NMEs "0aVV , and probe the possible quenching of the axial-vector weak coupling constant:
6e�
�

< 6� = 1.27.
Neglecting the nuclear recoil and small neutrino masses, the energy conservation in

0a (2a)V−V− decay implies: "8 = "5 + �1 + �2 + (l1 + l2), where "8 and "5 are the masses
of the initial and �nal nuclei, �1 and �2 (and l1 and l2) are the total energies of the emitted
electrons (and antineutrinos), respectively. The total released kinetic energy in both processes
equals: & = "8 −"5 −2<4 . Due to the indistinguishability of the �nal-state leptons, the NMEs
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contain a superposition of the following two (four) energy denominators [56]:

"0aVV :
1

�= −"8 + �1,2 + @0
≈ 1

�= −
"8+"5

2 + @0
,

"2aVV :
1

�= −"8 + �1,2 + l1,2
≈ 1

�= −
"8+"5

2

, (2.24)

where �= denotes the =th energy level of the intermediate nucleus and @ = (@0, ®@) is the
four-momentum transferred by the propagating Majorana neutrino (common to all mass
eigenstates, because the neutrino masses <8 � |®@ |). Since @0 =

√
®@2 +<2

8
≈ |®@ | ∼ 200MeV,

the di�erence between the lepton energies ∼ a few MeV can be safely neglected:

−"8 + �1,2 + (l1,2) = −
"8 +"5

2
± �1 − �2

2
±

(l1 − l2

2

)
≈ −

"8 +"5

2
. (2.25)

In the case of 0a (2a)EPV− decay, a similar approximation ensures that the corresponding
NME remains essentially unchanged: "0a (2a)EPV ≈ "0a (2a)VV and the distinction between the
0a (2a)EPV− and 0a (2a)V−V− decay modes is fully captured by the corresponding phase-space
factors �0a (2a)EPV (/, &).

For the 0a (2a)EPV−-decay phase-space factors we obtain the following expressions:

�0aEPV (/, &) =
�4
V
<2
4

32c4 '2 ln 2

∞∑
===min

�= (/ + 2) � (/ + 2, �) � ?,

�2aEPV (/, &) =
�4
V

8c6<2
4 ln 2

∞∑
===min

�= (/ + 2)
<4+&∫
<4

d� � (/ + 2, �) � ?
<4+&−�∫
0

dl1l
2
1 l

2
2 . (2.26)

Here, the summation is performed over the principal quantum numbers = of all electron shells
of the daughter ion with vacancies available for EP (in principle, =min can be di�erent for the
s1/2 and p1/2 bound states) and the nuclear radius ' was introduced in order to make the NME
"0aVV dimensionless. It turns out that the phase-space factor�0a (2a)EPV (/, &) can be formally
obtained from the standard one �0a (2a)VV (/, &) by the phase-space substitution:

d3 ®?
(2c)3 � (/ + 2, �) ↦−→

1
4c

�= (/ + 2), (2.27)

where d3 ®? = 4c�? d�. The corresponding rule for the integrated phase space leads to a
replacement of the Fermi integral by a sum of the bound-state Fermi functions:

1
2!

∫
d3 ®?
(2c)3

d3 ®?′
(2c)3 � (/+2, �) � (/+2, �

′) ↦−→ 1
4c

∫
d3 ®?
(2c)3 � (/+2, �)

∞∑
===min

�= (/+2), (2.28)

where we have taken into account the identity of the electrons: the integrated phase space
of 0a (2a)V−V− decay contains a statistical factor of 1/2!, which is not present in the case of
0a (2a)EPV− decay, since the free and bound electrons occupy complementary regions in the
phase space (no double counting occurs). The energy conservation in 0aEPV− decay implies
that the free electron carries away the entire energy released in the decay: � =<4+& , whereas
in 2aEPV− decay the energy is distributed between the electron and the two antineutrinos:
l2 =<4 +& − � −l1. In bound-state double-beta decays, the binding energy of the produced
electron (. 10 eV) can be safely neglected, i.e.: �=^ ≈ <4 . Such an approximation has no
e�ect on the required accuracy and greatly simpli�es the computation, since an in�nite sum
of integrals factorizes into the Fermi sum

∑∞
===min �= (/ + 2) and just one double integral

independent of =.
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

2.4 Grasp2K

The multicon�guration Dirac–Hartree–Fock package Grasp2K solves the stationary # -body
Dirac equation with separable central atomic Hamiltonian [57, 58, 59, 60, 61]:[

#∑
8=1
−8 ∇8 · ®U +<4 V −

U/

A8
++ (A8)

]
Ψ = � Ψ, (2.29)

where ®U = W0 ®W and V = W0 are the anticommuting Dirac matrices and the individual
terms describe the kinetic energy, rest mass, potential energy from electron–nucleus Coulomb
attraction, and potential energy due to electron–electron Coulomb repulsion of the 8th electron,
respectively, where the last one is approximated by a spherically symmetric mean �eld
+ (A8) generated by the surrounding electron cloud. The separability ensures that the energy
eigenvalues are additive: � =

∑#
8=1 �8 , while the many-electron wave functions are expressed

in terms of the Slater determinants:

Ψ ≡ Ψ1...# (®A1, . . . , ®A# ) =
1
√
# !

∑
%

(−1)?
#∏
8=1

k% (8) (®A8) =

�������
k1(®A1) . . . k1(®A# )
...

. . .
...

k# (®A1) . . . k# (®A# )

������� , (2.30)

i.e., antisymmetrized products of the one-electron spin-orbitals k8 (®A8) ≡ k=8^8`8 (®A8), where %
is a permutation of the quantum numbers with parity (−1)? . The nuclear part of the total
wave function is disregarded by virtue of the Born–Oppenheimer approximation. The self-
consistent-�eld procedure then varies the radial wave functions 5=^ (A ) and 6=^ (A ) in iterative
cycles until convergence is achieved.

The values of radial wave functions at the nuclear radius 5=,−1(') and 6=,+1(') were
computed in the Coulomb potential of the daughter nucleus A

Z+2Y for the ground-state electron
con�guration of the parent atom A

ZX with an additional V-electron occupying an empty orbit
(due to which the total angular momentum of the electron con�guration is changed by ±1

2 ).
Since the convergence cannot be always guaranteed and the program only provides the
electron-shell wave functions up to = = 9, we employed a combined approach:

1. The radial wave functions 5=,−1(') and 6=,+1(') were calculated based on initial
estimates provided by the Thomas–Fermi model.

2. If the convergence could not be achieved within a speci�ed number of iterations, the
radial wave functions 5=,−1(') and 6=,+1(') were calculated based on initial estimates
provided by the nonrelativistic Hartree–Fock approximation.

3. If both methods failed for an atomic number / , we looked for the values of / ′ ≠ / for
which the calculation could be completed. The squares of the radial wave functions
were then estimated by �tting the available values for a given orbit using the power-
law function: 5 2=,−1('), 62=,+1(') ≈ 0/1 .

4. Finally, the squares of the radial wave functions with the principal quantum number
above = = 9 were estimated by �tting the available values (with = ≤ 9) for a given
isotope using the power-law function: 5 2=,−1('), 62=,+1(') ≈ 2=3 .

In Fig. 2.4, we show �tting of the squared radial wave functions 5 2=,−1(') and 62=,+1(') at the
nuclear radius ' for the subshells 8s1/2 and 8p1/2, respectively, by the power-law function
0/1 of the initial atomic number / . In Fig. 2.5, we show �tting of the squared radial wave
functions 5 2=,−1(') and 62=,+1(') for the isotope 82

34Se by the power-law function 2=3 of the
principal quantum number =. In these plots, the results are expressed in atomic units (a.u.),
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Figure 2.4: Squared radial wave functions 5 2=,−1 (') and 62=,+1 (') in atomic units (a.u.) at the
nuclear radius ' for the subshells 8s1/2 and 8p1/2, respectively, computed using the Grasp2K
package (points) and predicted from a �t of the data by the power-law function of the initial
atomic number / (curves): 5 2=,−1 ('), 62=,+1 (') ≈ 0/1 . The parameters determined from the �t
read: 0 = 1.1 × 10−10 and 1 = 6.2 for the 8s1/2 subshell and 0 = 8.1 × 10−12 and 1 = 6.4 for the
8p1/2 subshell.
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Figure 2.5: Squared radial wave functions 5 2=,−1 (') and 62=,+1 (') in atomic units (a.u.) at
the nuclear radius ' for the isotope 82

34Se computed using the Grasp2K package (points) and
predicted from a �t of the data by the power-law function of the principal quantum number =
(curves): 5 2=,−1 ('), 62=,+1 (') ≈ 2=3 . The parameters determined from the �t read: 2 = 1.1 × 106

and 3 = −6.1 for the =s1/2 subshells (with =min = 5) and 2 = 4.6 × 106 and 3 = −10 for the =p1/2
subshells (with =min = 4).

in which the reduced Planck constant ℏ, electron mass<4 , elementary charge 4 , and vacuum
permittivity Y0 are chosen as follows: ℏ = <4 = 4 = 1/4cY0 = 1. Although the convergence
could not be achieved for all orbitals, the power-law dependence is in excellent agreement
with the observed behavior of the computed data. In atomic spectroscopy, power functions
are often used to �t the dependence of observables on the atomic number/ (e.g., see Ref. [62]).
On the other hand, the power law of the principal quantum number = is motivated by the fact
that—in the absence of shielding—the squares of the nonrelativistic radial wave functions for
the =s1/2 states decrease at the origin as '2=0(0) ∝ =−3. This simple power law enabled us to
explicitly perform the summation

∑∞
===min �= (/ + 2) of the bound-state Fermi functions over

the vacancies in the electron shells. The sum can be analytically expressed in terms of the
Riemann zeta function Z (I) = ∑∞

==1 1/=I . On average, the contribution of the radial wave
functions with = > 9 to the 0a (2a)EPV− decay rate amount to only about 4% of the total value.

A simple qualitative explanation of the dependence of the bound-electron radial wave
functions on / and = at A = ' stems from the following considerations. The nodes of the
radial part of a nonrelativistic wave function with ; = 0 are localized partially outside of the
atom at A & 1 and partially inside the atom at A . 1 (in a.u.). The number of nodes inside the
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

atom can be estimated for highly excited states using a semiclassical approximation, which
is justi�ed for / � 1 and A . 1. At the boundary of the atom, the phase of the radial wave
function is estimated to be:

∫ 1
0

√
2[� −+ (A )] dA ∼ / 1/3, so that the number of nodes inside

the atom equals: =0 ∼ / 1/3. In the Coulomb potential, the squared radial wave function for
small A behaves like ∼ 1/=3. The atomic radius ∼ 1 is small compared to the average orbital
radius ∼ =2 of the bound V-electron. The ratio '=0(1)/'=0(0) is independent of = for large =
and tends to 0.283 at the in�nity. Since =0 nodes moved inside the atom, the square of the
wave function at the atomic boundary becomes: '2=0(1) ∼ 1/(= − =0)3. The matching at A ∼ 1
of the outer part of the wave function with the semiclassical wave function at A . 1 leads to
the appearance of an additional factor / at A ∼ 0 (e.g., see [63]), so that:

'2=0(0) ∝
/

(= − =0)3
. (2.31)

The same result follows from the requirement of orthogonality of the wave function of the
bound V-electron to the electron wave functions in the atom. The number of electrons
occupying the atomic levels up to the principal quantum number =B with a completely �lled
outer shell is expressed as follows:

/ =

=B∑
==1

=−1∑
;=0

2 (2; + 1) = 1
3
=B (2=B + 1) (=B + 1). (2.32)

In agreement with the semiclassical arguments given above, we have: =B ∼ (3//2)1/3. To
ensure orthogonality, the bound V-electron should have one more node inside the atom
compared to =B − 1. One can verify that for =0 ∼ =B Eq. (2.31) reproduces the qualitative
behavior of the upper radial function at A = '. The dependence on / for = = 8, shown in
Fig. 2.4, appears to be reasonable for / & 20. In the case of the dependence on = for 82

34Se,
shown in Fig. 2.5, the approximation (2.31) works reasonably well for = & 7. We remark that
Eq. (2.31) is justi�ed for = � =0 and / ∼ =30 � 1.

In Appendix A, we describe the key principles of the Dirac–Hartree–Fock
approximation in more detail. For a potential user, we then give practical instructions for
operation of the Grasp2K package and related programs as well as examples of their possible
application. In the end, we provide our original code (a Bash script) for automation of the
Grasp2K computations, extraction of the radial wave functions 5=,−1(') and 6=,+1('), and
calculation of the Fermi sums

∑∞
===min �= (/ + 2) for the purpose of the present Chapter. In

the case of bound electrons, the need for a detailed description of the atomic-shell structure
in terms of many-electron wave functions and the Hartree–Fock approximation implemented
by advanced programs frequently employed in quantum chemistry like Grasp2K—rather than
the much simpler relativistic one-electron wave functions with e�ective atomic number /e�—
stems from the observation that a naïve assumption of complete shielding (i.e., /e� = 2)
leads to underestimation of the 0a (2a)EPV− decay rate by 2–3 orders of magnitude (more for
the heavier elements). Since our calculation is formulated in a way suitable for treatment of
isolated atoms, the results are directly applicable only to gaseous substances, such as krypton
(36Kr) or xenon (54Xe). While the collective e�ects of crystal-lattice structure cannot be a priori
deemed negligible, it is nevertheless reasonable to expect that the provided computations yield
valid estimates also for solids.

42



2.5. Decay Rates

2.5 Decay Rates

In Table 2.1, we present the double-V-decay isotopes A
ZX together with: (a) the& values adopted

from a recent evaluation of the atomic masses [64], (b) the Fermi sums
∑∞
===min �= (/ + 2) (in

a.u.) computed using the multicon�guration Dirac–Hartree–Fock package Grasp2K [57, 58,
59, 60, 61], (c) the phase-space factors�0a (2a)EPV and�0a (2a)VV associated with the g.s. 0+ −→ 0+
nuclear transitions, and (d) the decay-rate ratios:

Γ0a (2a)EPV

Γ0a (2a)VV
≈ �

0a (2a)EPV

�0a (2a)VV , (2.33)

which are independent of the NMEs "0a (2a)VV and the e�ective Majorana neutrino mass<VV ,
and hence are free of the peculiarities of nuclear and neutrino physics. In Fig. 2.6, we show
the Fermi sum

∑∞
===min �= (/ + 2) of the bound-state Fermi functions (in a.u.) over all electron

shells = of the daughter ion A
Z+2Y

2+ with available =s1/2 and =p1/2 vacancies for EP as a function
of the initial atomic number / of the parent nucleus A

ZX. We observe that the Fermi sum tends
to increase with / , with sudden drops occurring whenever the valence shell becomes fully
occupied (so that the summation must start from the next electron shell =min + 1). In Figs. 2.7
and 2.8, we show the decay-rate ratios Γ0a (2a)EPV/Γ0a (2a)VV as functions of the initial atomic
number / of the parent nucleus A

ZX and the & value. We see that the decay-rate ratios reach
their maximum for the isotopes with very low & values: 98

42Mo, 80
34Se, and 146

60Nd, and decrease
rapidly with both / and & . The 2aEPV−-to-2aV−V− decay-rate ratios exhibit values by one
order of magnitude larger than the ones obtained for the 0aEPV−-to-0aV−V− decay channels.
The overall suppression is mainly attributed to the presence of other electrons in the atom: the
lowest-lying inner electron shells (which would otherwise provide the largest contribution)
are already occupied, while the shielding e�ect of nuclear charge substantially reduces the
bound-electron wave functions on the surface of the nucleus.

In Table 2.2, we present the double-V-decay isotopes A
ZX with available NMEs"0a (2a)VV

together with their partial half-lives) 0a (2a)EPV
1/2 and) 0a (2a)VV

1/2 . The NMEs"0aVV were calculated
via the spherical pn-QRPA approach including the CD-Bonn nucleon–nucleon potential with
short-range correlations and partial isospin-symmetry restoration [65], except for the isotope
150
60Nd which was treated separately within the deformed pn-QRPA model [66]. We estimate

the half-lives ) 0aEPV
1/2 and ) 0aVV

1/2 assuming the unquenched value of the axial-vector weak
coupling constant: 6� = 1.27 and the e�ective Majorana neutrino mass at the top of the
allowed inverted-hierarchy region: |<VV | = 50meV. The half-lives) 2aEPV

1/2 are derived from the

experimentally measured values of) 2aVV
1/2 [67], which are also used to extract the NMEs "2aVV

for 6� = 1.27. In Figs. 2.9 and 2.10, we show the partial half-lives ) 0a (2a)EPV
1/2 and ) 0a (2a)VV

1/2 for
the double-V-decay isotopes A

ZX with available NMEs"0a (2a)VV . While the 0aEPV− decay mode
is strongly suppressed and its experimental observation in the near future is rather unlikely,
the half-lives of its 2aEPV− counterpart are already comparable to the present sensitivity to
0aV−V− decay.

In Table 2.3, we present the most important double-V-decay experiments, their source
isotopes A

ZX, the lower bounds on the half-lives ) 0aVV
1/2 at 90%C.L., the NMEs "0aVV calculated

within the pn-QRPA approach including the CD-Bonn two-nucleon potential with short-
range correlations and partial isospin-symmetry restoration [65], and the corresponding upper
bounds on the e�ective Majorana neutrino mass |<VV |, assuming the unquenched value of the
axial-vector weak coupling constant: 6� = 1.27. We see that the value of |<VV | = 50meV
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay
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Figure 2.8: Decay-rate ratio Γ2aEPV/Γ2aVV as a function of the initial atomic number / of the
parent nucleus A
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2aEPV− decay channel, but its relative frequency is by one order of magnitude higher.
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2.6. One-Electron and Two-Electron Spectra

Table 2.1: Double-V-decay isotopes A
ZX with the corresponding& values adopted from a recent

evaluation of the atomic masses [64], Fermi sums
∑∞
===min �= (/ + 2) (in a.u.) computed using

the multicon�guration Dirac–Hartree–Fock package Grasp2K [57, 58, 59, 60, 61], phase-space
factors �0a (2a)EPV and �0a (2a)VV associated with the g.s. 0+ −→ 0+ nuclear transitions, and
decay-rate ratios Γ0a (2a)EPV/Γ0a (2a)VV ≈ �0a (2a)EPV/�0a (2a)VV .

A
ZX & [MeV] ∑

= �= [a.u.] �0aEPV [yr−1 ] �0aVV [yr−1 ] Γ0aEPV/Γ0aVV �2aEPV [yr−1 ] �2aVV [yr−1 ] Γ2aEPV/Γ2aVV

46
20Ca 0.988 2.246 × 101 9.343 × 10−22 1.499 × 10−16 6.23 × 10−6 2.262 × 10−27 4.734 × 10−23 4.78 × 10−5
48
20Ca 4.268 2.245 × 101 9.227 × 10−21 2.632 × 10−14 3.51 × 10−7 5.923 × 10−23 1.594 × 10−17 3.72 × 10−6
70
30Zn 0.997 5.180 × 101 2.302 × 10−21 2.463 × 10−16 9.34 × 10−6 8.521 × 10−27 1.239 × 10−22 6.88 × 10−5
76
32Ge 2.039 7.495 × 101 9.491 × 10−21 2.615 × 10−15 3.63 × 10−6 1.621 × 10−24 5.280 × 10−20 3.07 × 10−5
80
34Se 0.134 9.482 × 101 7.822 × 10−22 4.724 × 10−18 1.66 × 10−4 6.761 × 10−32 6.119 × 10−29 1.10 × 10−3
82
34Se 2.998 9.476 × 101 2.263 × 10−20 1.152 × 10−14 1.97 × 10−6 3.250 × 10−23 1.779 × 10−18 1.83 × 10−5
86
36Kr 1.257 1.087 × 102 7.120 × 10−21 6.798 × 10−16 1.05 × 10−5 1.068 × 10−25 1.354 × 10−21 7.88 × 10−5
94
40Zr 1.145 5.933 × 101 3.736 × 10−21 6.725 × 10−16 5.56 × 10−6 3.773 × 10−26 9.254 × 10−22 4.08 × 10−5
96
40Zr 3.356 5.928 × 101 1.867 × 10−20 2.440 × 10−14 7.65 × 10−7 5.714 × 10−23 7.899 × 10−18 7.23 × 10−6
98
42Mo 0.109 2.447 × 102 2.358 × 10−21 6.769 × 10−18 3.48 × 10−4 7.509 × 10−32 3.198 × 10−29 2.35 × 10−3
100
42Mo 3.034 2.445 × 102 6.792 × 10−20 1.890 × 10−14 3.59 × 10−6 1.255 × 10−22 3.816 × 10−18 3.29 × 10−5
104
44Ru 1.299 2.887 × 102 2.343 × 10−20 1.270 × 10−15 1.84 × 10−5 5.050 × 10−25 3.676 × 10−21 1.37 × 10−4
110
46Pd 2.017 3.537 × 102 5.601 × 10−20 5.778 × 10−15 9.69 × 10−6 1.284 × 10−23 1.624 × 10−19 7.91 × 10−5
114
48Cd 0.545 1.091 × 102 3.520 × 10−21 1.795 × 10−16 1.96 × 10−5 8.819 × 10−28 6.703 × 10−24 1.32 × 10−4
116
48Cd 2.813 1.089 × 102 2.987 × 10−20 2.064 × 10−14 1.45 × 10−6 4.243 × 10−23 3.311 × 10−18 1.28 × 10−5
122
50Sn 0.373 1.531 × 102 3.682 × 10−21 9.414 × 10−17 3.91 × 10−5 1.293 × 10−28 4.986 × 10−25 2.59 × 10−4
124
50Sn 2.291 1.527 × 102 3.131 × 10−20 1.132 × 10−14 2.77 × 10−6 1.577 × 10−23 6.822 × 10−19 2.31 × 10−5
128
52Te 0.867 1.953 × 102 1.139 × 10−20 7.291 × 10−16 1.56 × 10−5 3.634 × 10−26 3.349 × 10−22 1.09 × 10−4
130
52Te 2.528 1.952 × 102 4.845 × 10−20 1.810 × 10−14 2.68 × 10−6 4.327 × 10−23 1.893 × 10−18 2.29 × 10−5
134
54Xe 0.824 2.154 × 102 1.251 × 10−20 7.487 × 10−16 1.67 × 10−5 3.201 × 10−26 2.776 × 10−22 1.15 × 10−4
136
54Xe 2.458 2.152 × 102 5.349 × 10−20 1.883 × 10−14 2.84 × 10−6 4.310 × 10−23 1.795 × 10−18 2.40 × 10−5
142
58Ce 1.417 1.046 × 102 1.353 × 10−20 4.564 × 10−15 2.96 × 10−6 6.332 × 10−25 2.873 × 10−20 2.20 × 10−5
146
60Nd 0.070 1.152 × 102 1.886 × 10−21 1.907 × 10−17 9.89 × 10−5 6.262 × 10−33 9.236 × 10−30 6.78 × 10−4
148
60Nd 1.928 1.151 × 102 2.398 × 10−20 1.358 × 10−14 1.77 × 10−6 5.933 × 10−24 4.253 × 10−19 1.40 × 10−5
150
60Nd 3.371 1.150 × 102 5.437 × 10−20 8.829 × 10−14 6.16 × 10−7 2.700 × 10−22 4.815 × 10−17 5.61 × 10−6
154
62Sm 1.251 1.361 × 102 1.685 × 10−20 4.413 × 10−15 3.82 × 10−6 4.478 × 10−25 1.617 × 10−20 2.77 × 10−5
160
64Gd 1.731 1.592 × 102 3.198 × 10−20 1.336 × 10−14 2.39 × 10−6 4.892 × 10−24 2.658 × 10−19 1.84 × 10−5
170
68Er 0.655 1.963 × 102 1.464 × 10−20 1.513 × 10−15 9.68 × 10−6 1.442 × 10−26 2.202 × 10−22 6.55 × 10−5
176
70Yb 1.085 2.297 × 102 3.150 × 10−20 6.129 × 10−15 5.14 × 10−6 4.633 × 10−25 1.272 × 10−20 3.64 × 10−5
186
74W 0.491 3.759 × 102 2.789 × 10−20 1.508 × 10−15 1.85 × 10−5 6.473 × 10−27 5.220 × 10−23 1.24 × 10−4
192
76Os 0.406 3.139 × 102 2.200 × 10−20 1.292 × 10−15 1.70 × 10−5 1.881 × 10−27 1.651 × 10−23 1.14 × 10−4
198
78Pt 1.050 2.199 × 103 3.976 × 10−19 1.231 × 10−14 3.23 × 10−5 5.701 × 10−24 2.503 × 10−20 2.28 × 10−4
204
80Hg 0.420 4.906 × 102 4.237 × 10−20 2.121 × 10−15 2.00 × 10−5 4.630 × 10−27 3.456 × 10−23 1.34 × 10−4
232
90� 0.837 6.081 × 102 1.508 × 10−19 2.696 × 10−14 5.59 × 10−6 8.012 × 10−25 2.070 × 10−20 3.87 × 10−5
238
92U 1.145 5.579 × 102 2.058 × 10−19 6.981 × 10−14 2.95 × 10−6 6.096 × 10−24 2.902 × 10−19 2.10 × 10−5

chosen for our estimation of the 0aEPV−-decay and 0aV−V−-decay half-lives corresponds to
the expected sensitivity of the next-generation experiment SuperNEMO [68].

2.6 One-Electron and Two-Electron Spectra

The 0a (2a)EPV− and 0a (2a)V−V− one-electron spectra are determined by the di�erential
decay rates (1/Γ) dΓ/dY, conventionally normalized to unity and expressed as functions of
the dimensionless portion of the electron kinetic energy Y = (� −<4)/& :

dΓ0aEPV

dY
= 64�

�4
V
<2
4

32c4'2
|"0aVV |2

����<VV

<4

����2& ∞∑
===min

�= (/ + 2) � (/ + 2, �) � ? X (<4 +& − �),

dΓ2aEPV

dY
= 64�

�4
V

8c6<2
4

|<4 "
2aVV |2&

∞∑
===min

�= (/ + 2) � (/ + 2, �) � ?
(1−Y)&∫
0

dl1l
2
1 l

2
2 . (2.34)
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

Table 2.2: Double-V-decay isotopes A
ZXwith the corresponding calculated NMEs"0aVV [65, 66],

partial half-lives) 0aEPV
1/2 and) 0aVV

1/2 estimated assuming the unquenched value of the axial-vector
weak coupling constant: 6� = 1.27 and the e�ective Majorana neutrino mass: |<VV | = 50meV,
and NMEs "2aVV and partial half-lives ) 2aEPV

1/2 extracted from the experimentally measured

values ) 2aVV
1/2 [67].

A
ZX |"0aVV | )

0aEPV
1/2 [yr] )

0aVV
1/2 [yr] |<4 "

2aVV | )
2aEPV
1/2 [yr] )

2aVV
1/2 [yr]

48
20Ca 0.594 1.23 × 1034 4.32 × 1027 2.341 × 10−2 1.18 × 1025 4.40 × 1019
76
32Ge 5.571 1.36 × 1032 4.95 × 1026 6.642 × 10−2 5.38 × 1025 1.65 × 1021
82
34Se 5.018 7.05 × 1031 1.38 × 1026 4.846 × 10−2 5.04 × 1024 9.20 × 1019
96
40Zr 2.957 2.46 × 1032 1.88 × 1026 4.600 × 10−2 3.18 × 1024 2.30 × 1019
100
42Mo 5.850 1.73 × 1031 6.21 × 1025 1.191 × 10−1 2.16 × 1023 7.10 × 1018
110
46Pd 6.255 1.83 × 1031 1.78 × 1026
116
48Cd 4.343 7.13 × 1031 1.03 × 1026 6.360 × 10−2 2.24 × 1024 2.87 × 1019
124
50Sn 2.913 1.51 × 1032 4.18 × 1026
128
52Te 5.084 1.36 × 1032 2.13 × 1027 2.396 × 10−2 1.84 × 1028 2.00 × 1024
130
52Te 4.373 4.33 × 1031 1.16 × 1026 1.716 × 10−2 3.02 × 1025 6.90 × 1020
134
54Xe 4.119 1.89 × 1032 3.16 × 1027
136
54Xe 2.460 1.24 × 1032 3.52 × 1026 9.888 × 10−3 9.12 × 1025 2.19 × 1021
150
60Nd 3.367 6.51 × 1031 4.01 × 1025 3.120 × 10−2 1.46 × 1024 8.20 × 1018
238
92U 2.573 × 10−2 9.52 × 1025 2.00 × 1021

Table 2.3: Double-V-decay experiments, their source isotopes A
ZX, the lower bounds on the half-

lives) 0aVV
1/2 at 90%C.L., the NMEs"0aVV calculated within the pn-QRPA approach including the

CD-Bonn two-nucleon potential with short-range correlations and partial isospin-symmetry
restoration [65], and the corresponding upper bounds on the e�ective Majorana neutrino mass
|<VV |, assuming the unquenched value of the axial-vector weak coupling constant: 6� = 1.27.

Experiment A
ZX )

0aVV
1/2 [yr] |"0aVV | |<VV | [meV]

NEMO-3 [69] 100
42Mo > 1.1 × 1024 5.850 < 376

EXO-200 [70] 136
54Xe > 1.8 × 1025 2.460 < 221

CUORE [71] 130
52Te > 1.5 × 1025 4.373 < 139

GERDA [72] 76
32Ge > 8.0 × 1025 5.571 < 124

KamLAND-Zen [31] 136
54Xe > 1.07 × 1026 2.460 < 90.7

SuperNEMO [68] 82
34Se & 1026 5.018 . 50
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2.6. One-Electron and Two-Electron Spectra
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Figure 2.9: Partial half-lives ) 0aEPV
1/2 and )

0aVV
1/2 for the double-V-decay isotopes A

ZX with
calculated NMEs "0aVV [65, 66], estimated assuming the unquenched value of the axial-vector
weak coupling constant: 6� = 1.27 and the e�ective Majorana neutrino mass: |<VV | = 50meV.
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Figure 2.10: Partial half-lives ) 2aEPV
1/2 and )

2aVV
1/2 [67] for the double-V-decay isotopes A

ZX
observed experimentally. The 2aEPV−-decay half-lives are already comparable to the present
0aV−V−-decay sensitivity.

In Figs. 2.11 and 2.12, we show the 0a (2a)EPV− and 0a (2a)V−V− one-electron spectra for the
isotope 82

34Se. The 0aEPV− peak consists of a large number of discrete contributions, each
shifted beyond the & value by the electron binding energy (. 10 eV); however, these are
indistinguishable under any realistic energy resolution. The 2aEPV− spectrum exhibits a
distinct shape along the entire energy range, which could lead to a slight deformations of
the measured 2aV−V−-decay data. The one-electron spectra are studied with unprecedented
accuracy in the tracking-and-calorimetry double-V-decay experiments based on the external-
source technique at the Modane Underground Laboratory (LSM), France. The NEMO-3
detector [69], which operated between the years 2003–2011, exploited a cylindrical geometry
and observed more than 7×105 positive 2aV−V−-decay events with a high signal-to-background
(S/B) ratio for 7 kg of its primary source isotope 100Mo during 3.5 yr of data taking (the
low-radon phase) [73]. The next-generation detector SuperNEMO [68], which is currently
under construction, will deploy source modules comprising 20 thin foils totalling in 100 kg
of enriched and puri�ed 82

34Se, with the possible addition of the 48
20Ca or 150

60Nd isotopes. The
tracking chamber will consist of nine planar high-granularity drift cells operating in Geiger
regime in a magnetic �eld of 2.5mT, and thus enable charge-sign particle identi�cation and
vertex reconstruction, secure enhanced background rejection, and provide means to study
angular correlations in addition to the one-electron spectra. The calorimeter walls will be
composed of segmented low-/ organic-scintillator blocks connected to photomultiplier tubes
(PMTs), striving to achieve the energy resolution: FWHM/& = 7%/

√
&/MeV in the region of

interest (ROI) 2.8–3.2MeV around the endpoint & = 2.998MeV. The �rst planar SuperNEMO
module “Demonstrator” with 7 kg of the source isotope 82

34Se is currently in its �nal stages of
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay
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Figure 2.11: The 0aEPV− and 0aV−V− one-electron spectra (1/Γ0aVV ) dΓ/dY (the latter
normalized to unity) as functions of the portion of electron kinetic energy Y = (� − <4 )/&
for the isotope 82

34Se. For illustration, the 0aEPV− peak is represented by a Gaussian with
FWHM/& = 7%/

√
&/MeV, which corresponds to the planned energy resolution of the

SuperNEMO calorimeters, and scaled by a factor of 104. The composition and detailed structure
of the 0aEPV− peak beyond the endpoint Y = 1 is displayed in the upper left corner.
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Figure 2.12: The 2aEPV− and 2aV−V− one-electron spectra (1/Γ) dΓ/dY (both normalized to
unity) as functions of the portion of electron kinetic energy Y = (�−<4 )/& for the isotope 82

34Se.

development.
While the calorimetric measurements of the sum of electron energies are unable to

distinguish between the 0aEPV− and 0aV−V− peaks, the 2aEPV− decay mode can also be
identi�ed by studying the two-electron spectra, which measure the total energy deposited by
the emitted electrons. The normalized 2aV−V− di�erential decay rate (1/Γ2aVV) dΓ2aVV/dY12
expressed as a function of the sum of electron kinetic energies Y1 = (�1 − <4)/& and
Y2 = (�2 −<4)/& can be derived from the standard 2aV−V− one-electron energy distribution
via the substitutions Y12 = Y1 + Y2 and d = Y1/(Y1 + Y2):

dΓ2aVV

dY12
= 64�

�4
V

8c7<2
4

|<4 "
2aVV |2&2 Y12

×
1∫

0

dd � (/ + 2, �1) �1 ?1 � (/ + 2, �2) �2 ?2

(1−Y12)&∫
0

dl1l
2
1 l

2
2, (2.35)

where �1, �2 and ?1, ?2 are the energies and momenta of the free V-electrons and the energy
conservation yields: l2 = (1− Y12)& −l1. In Fig. 2.13, we show the 2aEPV− and 2aV−V− two-
electron spectra for the isotope 76

32Ge. Once again, these two decay modes manifest through
qualitatively di�erent spectral shapes. Since the two-electron spectra are usually measured
with much higher event rates and less complicated background, a signi�cant 2aEPV− discovery
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2.6. One-Electron and Two-Electron Spectra
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Figure 2.13: The 2aEPV− and 2aV−V− two-electron spectra (1/Γ) dΓ/dY12 (both normalized to
unity) as functions of the sum of electron kinetic energies Y12 = Y1 + Y2 for the isotope 76

32Ge.
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Figure 2.14: Ratios between the integrated 2aEPV− and 2aV−V− one-electron (left) and two-
electron (right) spectra as functions of the energy intervals [Ymin, Ymax] and [Y12min, Y12max] for
the isotopes 82

34Se and 76
32Ge, respectively. The ROIs with the highest 2aEPV−-decay sensitivity

are con�ned to the opposite ends of the energy domain, near Y = 1 and Y12 = 0.

potential is expected in the calorimetric double-V-decay experiments, in particular CUORE
(13052Te) [71], EXO-200 (13654Xe) [70], and GERDA (7632Ge) [72].

For data analysis, it is often desirable to specify the ratios:∫ Ymax

Ymin
dY (dΓ2aEPV/dY)∫ Ymax

Ymin
dY (dΓ2aVV/dY)

,

∫ Y12max

Y12min
dY12 (dΓ2aEPV/dY12)∫ Y12max

Y12min
dY12 (dΓ2aVV/dY12)

(2.36)

between the integrated 2aEPV− and 2aV−V− one-electron and two-electron spectra as functions
of the energy intervals [Ymin, Ymax] and [Y12min, Y12max], respectively, in order to identify the
ROIs in which the 2aEPV− decay is best visible relative to its 2aV−V− counterpart. While the
one-electron spectral ratios are maximal in a small ROI located at the spectrum endpoint & ,
the two-electron spectral ratios reveal the highest 2aEPV−-decay sensitivity near the opposite
end of the energy domain. In these ROIs, the 2aEPV− decay mode could for the given
isotopes account for as much as ∼ 100 ppm of the registered events. In Fig. 2.14, we show
the one-electron and two-electron spectral ratios associated with the isotopes 82

34Se and 76
32Ge,

respectively.
According to the semiclassical picture, the standard derivation of the 0aV−V− and

2aV−V− decay rates overlooks the fact that a V-electron created with kinetic energy insu�cient
to overcome the attractive Coulomb electrostatic force of the shielded nucleus remains bound
by the potential well of the daughter ion A

Z+2Y
2+. Therefore, the 0a (2a)EPV− decay rate can
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2. Neutrinoless and Two-Neutrino Bound-State Double-Beta Decay

be interpreted as the part of the 0a (2a)V−V− one-electron spectrum in which the V-electron
fails to acquire the escape velocity: Γ0a (2a)EPV ∼

∫ Y0

0 dY (dΓ0a (2a)VV/dY) ≈ Y0 (dΓ0a (2a)VV/dY)
��
Y=0,

where the critical electron kinetic energy Y0 . 10 eV/& is completely determined by
the atomic-shell structure rather than the kinematics of the decay (this also explains
the preference of the 0a (2a)EPV− decay mode for the isotopes with very low &

values). Consequently, the relative frequency of the 0aEPV− and 2aEPV− decays is
simply given by the ratio between their one-electron spectra evaluated near the origin:
Γ0aEPV/Γ2aEPV ∼ (dΓ0aVV/dY)

��
Y=0 / (dΓ

2aVV/dY)
��
Y=0. By similar reasoning, the two-neutrino

double-electron production (2aEPEP) process:

2aEPEP: A
ZX −→ A

Z+2Y + 4−b + 4
−
b + a4 + a4 (2.37)

with two bound electrons 4−b and two electron antineutrinos a4 in the �nal state—which is
allowed regardless of any resonance conditions but di�cult to detect due to no emitted charged
particles—is presumably suppressed by twice the orders of magnitude than 2aEPV− decay:
Γ2aEPEP/Γ2aVV ∼ (Γ2aEPV/Γ2aVV)2. Note that since Y0 � 1, its 0aEPEP counterpart with just
two bound electrons in the �nal state is forbidden by the energy and momentum conservation
laws, unless the condition of resonant enhancement due to quasi-degeneracy of the initial and
�nal atomic masses is satis�ed, as already discussed in Eq. (2.3).

At temperatures ) � U2 / 2<4 ∼ 108 (//34)2 K, atoms become fully ionized and the
V-electrons can occupy all discrete levels, provided that the Debye screening length _D is
su�ciently large. In bare ions, all orbitals are available for electron production (EP) and the
shielding e�ect of nuclear charge is not present. In this case, the Fermi sum

∑∞
==1 �= (/ + 2)

in the pure Coulomb potential with /e� = / + 2 is enhanced by as much as 3–5 orders of
magnitude (more for the heavier elements). This e�ect can be interpreted as follows: the
sum

∑∞
===min '

2
=0(0) ∼ //(=min − =0)2 from Eq. (2.31) is replaced due to full ionization by its

hydrogen-like analog
∑∞
==1 '

2
=0(0) ∼ / 3. For the parent isotope 82

34Se with=min = 5 (for the=s1/2
states) and =0 = (3//2)1/3, the enhancement factor can be estimated to a value of about 2×103
and it increases with / . As a result, some of the decay-rate ratios Γ0a (2a)EPV/Γ0a (2a)VV exceed
unity and the bound-state decay channel becomes the dominant mode of 0aV−V− decay for
the fully ionized atoms of several isotopes: 98

42Mo and 146
60Nd, in addition to 80

34Se, 114
48Cd, 122

50Sn,
134
54Xe, and the rest of double-V-decay isotopes starting from 170

68Er in the case of 2aV−V− decay.
While atomic ionization is known to a�ect the nuclear half-lives, the recombination

times inside the double-V-decay detectors are too short to generate any measurable outcome.
As already stressed in the case of bound-state V− decay [45], the 0a (2a)EPV− decay modes
could nevertheless play an important role in astrophysical processes where highly ionized
atoms in the plasma of stars participate in stellar nucleosynthesis. In plasma conditions,
there is a shift and broadening of the atomic levels which a�ect the bound-state decay
rates [74]. In an extreme case when the Debye screening length _D drops below the Bohr
radius 00 = ℏ/(<4 2 U) = 5.29×104 fm, the discrete levels of atoms are pushed to the continuum
and, as a result, the bound states cease to exist. This phenomenon is known as the Mott
transition [75]. In the cores of the Sun and Sun-like stars, where _D . 00, the discrete levels
of hydrogen are nonexistent. A similar situation occurs in the inner layers of white dwarfs.
In the radiative zone of the Sun, where _D = (0.7–4) 00, the lowest discrete levels of hydrogen
become a discrete part of the spectrum but remain vacant because of ionization. The bound-
state double-beta decays can thus occur in the outer layers of stars where the screening length
is su�ciently large.
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2.7 Conclusion

In this Chapter, we studied neutrinoless (0aEPV−) and two-neutrino (2aEPV−) bound-state
double-V decay in connection with bound-state V− decay �rst observed about 30 years ago [46].
The corresponding phase-space factors were calculated in the framework of the SM + − �
theory of the weak interaction including mixing of Majorana neutrinos. The relativistic
electron wave functions in the continuous spectrum were approximated by the solutions to
the Dirac equation in the Coulomb potential of the daughter nucleus, while in the discrete
spectrum they were computed using the multicon�guration Dirac–Hartree–Fock package
Grasp2K [57, 58, 59, 60, 61].

The ratios between the 0a (2a)EPV− and 0a (2a)V−V− decay rates, which are
independent of the NMEs and the e�ective Majorana neutrino mass, are maximal for the
isotopes with very low & values and revealed that the bound-state double-V decay modes
are suppressed by several orders of magnitude. Consequently, the 0aEPV− decay channel
is not very suitable to the search for LNV. In contrast, the 0aV−V−-decay sensitivity of the
modern double-V-decay experiments is already su�cient to observe the 2aEPV− process.
The search for these new decay modes will pose a serious experimental challenge due to
the requirement of very high event rates and large S/B ratios needed in order to eliminate
all other possible sources of background. We propose to set experimental limits on the
0aEPV− peak and to search for the characteristic 2aEPV− signal in the one-electron spectra
examined by the tracking-and-calorimetry double-V-decay experiment NEMO-3 [69] and its
next-generation successor SuperNEMO [68], in addition to the two-electron spectra measured
by the calorimetric experiments CUORE [71], EXO-200 [70], and GERDA [72], as well as their
upcoming tonne-scale upgrades.

In the future, it would be desirable to generalize the proposed formalism to a more
realistic description including the collective e�ects of electron shells which belong to atoms
embedded in a periodic crystal-lattice structure, since under the standard conditions for
temperature and pressure most of the double-V-decay isotopes are solids. Moreover, the
dominance of the bound-state single- and double-V decay channels in highly ionized atoms
should be taken into account in future calculations of the relative isotopic abundances in stars.
Finally, the 0aEPV− decay mode could be generalized to various hypothetical mechanisms of
LNV, in particular: heavy Majorana-neutrino exchange, left-right symmetric models, majoron
emission, supersymmetric extensions, etc. In such a way, atomic physics could provide us with
a valuable insight into the possible LNV beyond the SM.
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3
Light- and Heavy-Neutrino Exchange in

Left-Right Symmetric Model

3.1 Introduction

D
ue to being electrically neutral fermions, neutrinos could be either Dirac or Majorana
particles. Majorana nature of the massive neutrinos a8 (8 = 1, 2, 3) would imply
identity of the �avor neutrinos aU (U = 4, `, g) and their corresponding antineutrinos

aU as well as nonconservation of total lepton number !, making processes such as neutrinoless
double-beta (0aVV) decay possible. In what follows, a′ = (a4, a`, ag )T and a = (a1, a2, a3)T
denote three-component columns of the active-neutrino aU (G) and massive-neutrino a8 (G)
�elds, respectively. Furthermore, any bispinor �eld k = k! + k' can be written as a sum
of its left-handed and right-handed chiral components k!,' = %!,'k (i.e., eigenvectors of the
chirality matrix: W5k!,' = ∓k!,'), where %!,' = 1

2 (1∓W
5) are the chirality projection operators

with the following properties:

%2!,' = %!,',

%! %' = %' %! = 0,

%! + %' = 1. (3.1)

Finally, k� = �k
T
, with k� = −kT�†, represents the operation of charge conjugation, where

k = k † W0 stands for a Dirac-adjoint �eld and� = 8 W2W0 (in the Dirac representation of gamma
matrices) is the charge-conjugation matrix. For a Majorana �eld, its chiral components are
not mutually independent: k�

!,'
= k',! , and therefore it is invariant under charge conjugation:

k� = k .
If neutrinos are purely Dirac particles, their mass term in the electroweak Lagrangian

takes the form [40]:
LD = −a′

'
"D a

′
! + H.c., (3.2)

where"D is a complex 3×3 Dirac mass matrix. This matrix can be diagonalized by a biunitary
transformation: a′

!
= * a! , a′

'
= + a' , and "D = + �* †, where * and + are unitary matrices

and � = diag(<1, <2, <3) is a diagonal matrix containing the neutrino masses<8 :

LD = −a' � a! + H.c. = −a � a = −
∑
8

<8 a8 a8 . (3.3)

The Dirac mass term LD preserves total lepton number !, and thus 0aVV decay is forbidden.
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On the other hand, if massive neutrinos are Majorana particles, their �elds satisfy the
Majorana condition: a�8 = a8 , with a�

8!,'
= a8',! , and their corresponding mass term reads:

LM = −1
2
a′�
!
"M a

′
! + H.c., (3.4)

where "M is a complex symmetric 3 × 3 Majorana mass matrix. Its diagonalization requires
a unitary transformation: a′

!
= * a! and "M = * ∗�* †, where * is a unitary lepton mixing

matrix and � = diag(<1, <2, <3) is a diagonal matrix of the neutrino masses<8 :

LM = −1
2
a�
!
� a! + H.c. = −

1
2
a � a = −1

2

∑
8

<8 a8 a8 . (3.5)

Under the Majorana mass term LM, total lepton number ! is no longer conserved and lepton-
number-violating processes such as 0aVV decay become possible.

However, the most plausible seesaw mechanism incorporates massive neutrinos into
the theory via the general Dirac–Majorana mass term:

LD+M = −a′
'
"D a

′
! −

1
2
a′�
!
"! a

′
! −

1
2
a′
'
"' a

′�
' + H.c. = −

1
2
=′�
!
M =′! + H.c., (3.6)

where "! and "' are complex symmetric 3 × 3 Majorana mass matrices, =′
!
= (a′

!
, a′�

'
)T

is a six-component column of the active left-handed aU! (G) and sterile right-handed aU' (G)
(U = 4, `, g) �avor-neutrino �elds, andM is a generalized complex symmetric 6 × 6 neutrino
mass matrix:

M =

(
"! "D
"T

D "'

)
. (3.7)

Just like in the case of purely Majorana neutrinos, diagonalization of the mass matrixM is
achieved by a unitary transformation: =′

!
= U =! andM = U∗DU†, where= = (a, # )T, with

=! = (a!, #�
'
)T, is a six-component column of the massive-neutrino �elds a8 (G) and#8 (G) with

masses<8 and "8 , respectively, andU is a unitary lepton mixing matrix of dimension 6 × 6:

U =

(
* (

) +

)
, (3.8)

composed of complex 3 × 3 blocks * , ( , ) , and + , with D = diag(<1, <2, <3, "1, "2, "3)
being a diagonal matrix of the six eigenvalues<8 and "8 (8 = 1, 2, 3) of the mass matrixM:

LD+M = −1
2
=�
!
D =! + H.c. = −

1
2
=D = = −1

2

∑
8

<8 a8 a8 +"8 #8 #8 . (3.9)

Once again, all massive neutrinos are Majorana particles and, as a result, total lepton number
! is violated and 0aVV decay is in general allowed.

The Dirac–Majorana mixing scheme is particularly attractive, since it allows for a
natural explanation of the smallness of neutrino masses. If we assume that the eigenvalues of
the matrix blocks"! ,"D, and"' follow the scales:<! �<D �<' , then the six eigenvalues
<8 and "8 (8 = 1, 2, 3) of the full matrix M will be (in order of magnitude) given by the
scales: <8 ∼ <2

D/<' and "8 ∼ <' (i.e., <8 � "8 ). This so-called “seesaw mechanism”
naturally leads to the existence of three light left-handed and (yet unobserved) three heavy
right-handed neutrinos, where the gap between their masses <8 and "8 is controlled by
the mass scale <' , while <D acts as a fulcrum: <D ∼

√
<8 "8 (a geometric mean) or,
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equivalently, <8 : <D ∼ <D : "8 . If we interpret the Dirac scale <D as the Higgs scale
(i.e., the scale of electroweak-symmetry breaking): <D = ΛH ∼ 102 GeV and the right-
handed Majorana scale <' approaches the GUT scale (i.e., the scale of uni�cation of the
electroweak and strong interactions): <' = ΛGUT ∼ 1016 GeV, the masses of light Majorana
neutrinos obtain their predicted meV scale: <8 ∼ 10−12 GeV and the mass-scale ratios equal:
<8 : <D ∼ <D : "8 ∼ 10−14. One possibility how the Dirac–Majorana neutrino-mass scheme
might have emerged in the Nature is represented by the left-right symmetric model (LRSM)
presented below.

Because 0aVV decay is a process which involves lepton-number violation (LNV) by two
units: Δ! = 2, it is forbidden in the SM (where total lepton number ! is conserved). In general,
there are two possible sources of LNV: Majorana neutrino mass and LNV interaction vertices.
The latter may emerge from numerous high-energy-scale models giving rise to various
mechanisms of 0aVV decay. Once this process is observed, the necessity of distinguishing
between di�erent mechanisms and identifying the dominant ones will arise. Unfortunately,
this task is highly nontrivial. For instance, one might hope that measurement of 0aVV-decay
half-lives for di�erent isotopes would facilitate its solution due to variability of the nuclear
matrix elements (NMEs) for particular mechanisms between individual isotopes. In the present
Chapter, we show that at least the light and heavy Majorana-neutrino exchange mechanisms
are indistinguishable in this way without additional hypothesis. This fact can be understood
in terms of a simple analytic interpolating formula, which estimates the NMEs as a function
of Majorana neutrino mass covering a wide range of neutrino masses (from light to heavy
neutrinos) and allows for a clear physical interpretation of the underlying mechanisms. We
demonstrate that the interpolating formula is valid for all available nuclear-structure methods
for calculation of the NMEs with an accuracy of 20%–25% or better, which is su�cient for
all practical purposes (taking into account that our knowledge of the NMEs is limited), and
elucidate some of its other useful properties. For illustration, we consider 0aVV decay mediated
by exchange of a Majorana neutrino with arbitrary mass, arising from contributions of both the
left-handed and the right-handed weak charged currents (CCs) within the LRSM, and extend
our analysis towards some more particular mixing scenarios.

3.2 Left-Right Symmetric Model

The LRSM was introduced in an attempt to understand the origin of parity violation in low-
energy weak interactions (which we observe in a laboratory), caused by the spontaneous
electroweak-symmetry breaking (EWSB), which occurs below the Higgs scale ΛH ∼ 100GeV.
The LRSM is based on an extension of the SM electroweak symmetry group SU(2)! × U(1).
to the gauge group [76, 77, 78, 79, 80]:

LRSM: SU(2)! × SU(2)' × U(1)�−!, (3.10)

where local gauge transformations from the �rst two factors act on the left-handed and the
right-handed fermion doublets, respectively, while the last one is responsible for conservation
of � − ! (baryon minus lepton) number, and local gauge invariance implies the existence of
additional charged, ±

'
and neutral /' vector bosons. The spontaneous left-right-symmetry

breaking (LRSB) down to the SM symmetry group occurs at a su�ciently high (but otherwise
unknown) energy scale ΛLRSM, which gives rise to e�ective low-energy current× current four-
fermion interaction involving left-handed as well as right-handed weak CCs and the extra
gauge bosons,' and /' acquire very large masses <,',/' ∼ ΛLRSM. In addition, the LRSM
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provides a natural explanation for the smallness of neutrino masses via the seesaw mechanism
while opening the possibility to study various LNV processes and new sources of CP violation
beyond the SM.

Within the LRSM, 0aVV decay is realized via the Majorana-neutrino exchange
mechanism in the 2nd order of the e�ective low-energy V-decay Hamiltonian [81]:

HLRSM
V
(G) =

�V√
2
[�!` (G) 9 `†! (G) + _ �'` (G) 9

`†
'
(G)] + H.c. (3.11)

Here, �V = �F cos\C is the V-decay constant, where �F = 1.166 × 10−5 GeV−2 is the
Fermi constant and \C = 13◦ is the Cabibbo angle (due to weak quark mixing), � `

!,'
(G) and

9
`

!,'
(G) are the left-handed (+ − �) and right-handed (+ + �) hadronic and leptonic weak

CCs, respectively, and _ is a dimensionless parameter which depends on the underlying
high-energy-scale model and determines the strength of the right-handed currents after the
LRSB. For simplicity, we ignore the possibility of mixing between the vector bosons,!,' and
their mass eigenstates ,1,2 and, as a result, the interference terms with combined left-right
current products �!,'` (G) 9 `†',! (G) do not appear in the e�ective Hamiltonian. From the present
constraint on the,'-boson mass [82]:<,'

> 2.9 TeV, one obtains the following upper bound
on the parameter _:

_ = (<,!
/<,'

)2 < 7.7 × 10−4, (3.12)

where<,!
= 80GeV and<,'

(<,!
� <,'

) are the masses of the,! and,' gauge bosons,
respectively. From this point onward, we adopt the most optimistic value: _ = 7.7× 10−4. Due
to helicity matching of the Majorana neutrino with four-momentum @ propagating between
the two interaction vertices: (a) if both vertices feature either + − � or + + � coupling,
the amplitude of the process is proportional to the mass term <8/(@2 −<2

8 ) of the neutrino
propagator (i.e., ∝ <8/@2 for light and ∝ −1/"8 for heavy neutrinos), and (b) if one vertex is
+ − � and the other is + + �, a nonzero contribution originates from the momentum term
/@/(@2 −<2

8 ). In what follows, we assume the dominance of the mass mechanism mediated by
a ,!–,! pair (standard mechanism) or a ,'–,' pair (_2 mechanism) over the momentum
mechanism mediated by a,!–,' pair (_ mechanism) in 0aVV decay.

The left-handed and right-handed leptonic weak CCs take the form:

9
`

!
(G) = a4! (G) W` (1 − W5) 4 (G) = 2a4! (G) W` 4! (G),

9
`

'
(G) = a4' (G) W` (1 + W5) 4 (G) = 2a4' (G) W` 4' (G), (3.13)

where 4 (G) is the electron �eld, while the explicit form of the left-handed and right-handed
hadronic weak CCs � `

!,'
(G) can be found, e.g., in Ref. [49]. The three active left-handed aU! (G)

and sterile right-handed aU' (G) (U = 4, `, g) �avor-neutrino �elds can be then expressed as
linear combinations of the three light left-handed a8! (G) and three heavy right-handed #8' (G)
(8 = 1, 2, 3) Majorana-neutrino �elds with de�nite masses<8 and "8 , respectively:

aU! (G) =
∑
8

*U8 a8! (G) + (U8 #�
8' (G),

aU' (G) =
∑
8

) ∗U8 a
�
8! (G) ++

∗
U8 #8' (G). (3.14)

Here, the mixing coe�cients are the elements of four 3×3matrix blocks* , ( ,) , and+ in �avor
space, which describe the active–light, active–heavy, sterile–light, and sterile–heavy neutrino
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mixing, respectively, and constitute a unitary 6 × 6 generalization of the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) lepton mixing matrix:

U =

(
* (

) +

)
. (3.15)

This mixing matrix can be fully parameterized by 15 mixing angles \8 9 (8, 9 = 1, . . . , 6 with
8 < 9 ), 10 Dirac phases X8 9 , and 5 Majorana phases U8 (8 = 1, . . . , 5) and diagonalizes the
symmetric 6 × 6 mass matrix:

M =

(
"! "D
"T

D "'

)
, (3.16)

which consists of the Dirac"D and Majorana"!,' mass matrices, in the basis =! = (a!, #�
'
)T,

where a! = (a1!, a2!, a3!)T and #' = (#1', #2', #3')T, leading to three light <8 and three
heavy "8 neutrino masses.

3.3 Neutrinoless Double-Beta Decay

By employing the standard approximations, the inverse 0aVV-decay half-life within the LRSM
becomes:

() 0aVV
1/2 )

−1 = 64�<
2
? �

0aVV (/, &)
[�����∑

8

* 2
48<8 "

′0aVV
!!
(<8) + (248 "8 "

′0aVV
!!
("8)

�����2
+ _2

�����∑
8

) 2
48<8 "

′0aVV
''
(<8) ++ 2

48 "8 "
′0aVV
''
("8)

�����2
]
, (3.17)

where 6� = 1.27 is the unquenched axial-vector weak coupling constant,<? = 0.938GeV is the
proton mass,�0aVV (/, &) is the kinematical two-body phase-space factor as a function of the
atomic number / and& value, tabulated for various double-V-decay isotopes in Ref. [54], and
"
′0aVV
!!,''

are the NMEs which, in general, do not factorize from the LNV part of the expression.
Quenching e�ectively reduces the axial-vector weak coupling constant to a renormalized value
6e�
�
∼ 1 < 6�, so that the primed matrix elements would coincide with the ordinary ones in

the case of no quenching [83]: "′0aVV
!!,''

= (6e�
�
/6�)2"0aVV

!!,''
.

The quenched NMEs for the ,!–,! and ,'–,' mechanisms as functions of the
propagating Majorana-neutrino mass< explicitly read [84]:

"
′0aVV
!!,''
(<) = 1

<4<?

'

2c2 62
�

∫
d3®G d3 ®H d3 ®?

∑
=

〈0+
5
|�!,'` ( ®G) |=〉 〈= |� `!,' ( ®H) |0

+
8 〉√

®?2 +<2
(√
®?2 +<2 + �= −

�8−�5
2

) 48 ®? ·( ®G−®H) .
(3.18)

Here, <4 = 0.511MeV is the electron mass and ' = 1.2 fm�1/3 is the nuclear radius
for atomic number �, which makes the NME dimensionless and eventually cancels with a
similar expression inside the phase-space factor �0aVV (/, &). Furthermore, ®G and ®H are the
interaction-vertex coordinates and ®? is the momentum transferred by a Majorana neutrino
with arbitrary mass <. The initial |0+8 〉 and �nal |0+

5
〉 nuclear ground states correspond to

the energy levels �8 and � 5 , respectively, while the summation runs over all intermediate
nuclear states |=〉 with energies �= . The one-body nuclear weak CCs � `

!,'
( ®G) depend on the
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renormalized e�ective axial-vector weak coupling constant 6e�
�

. In the leading order of the
nonrelativistic approximation, the left-handed current � `

!
( ®G) can be replaced by the standard

hadronic current � ` ( ®G) which is independent of the right-handed interactions. Since we
discard the,!–,' mechanism, the corresponding left-right interference term does not enter
the NME.

Two opposing scenarios are most frequently assumed for the 0aVV-decay mechanism
in the literature, namely the light<8 � ?F and heavy "8 � ?F Majorana-neutrino exchange,
where ?F ∼ 270MeV is the Fermi momentum, i.e., the average momentum of the nucleons
inside the nucleus. For these extreme cases, the formula for the inverse 0aVV-decay half-life
simpli�es as follows:

() 0aVV
1/2 )

−1 = 64��
0aVV (/, &) ×

{
|"′0aVVa |2 [2a , <8 � ?F,

|"′0aVV
#
|2 [2

#
, "8 � ?F.

(3.19)

Here, we have introduced the LNV parameters:

<2
4 [

2
a =

�����∑
8

* 2
48<8

�����2 + _2
�����∑
8

) 2
48<8

�����2 ≈
�����∑
8

* 2
48<8

�����2 ,
1
<2
?

[2# =

�����∑
8

(248
1
"8

�����2 + _2
�����∑
8

+ 2
48

1
"8

�����2 , (3.20)

and the e�ective NMEs for the light and heavy Majorana-neutrino exchange mechanisms are
de�ned as follows:

1
<4<?

"
′0aVV
a = "

′0aVV
!!,''
(<8 → 0),

1
"2
8

"
′0aVV
#

= "
′0aVV
!!,''
("8 →∞). (3.21)

3.4 Interpolating Formula

A simple analytic interpolating formula has been proposed to estimate the NMEs "′0aVV
!!,''

, and
by extension also the half-lives ) 0aVV

1/2 , for the light and heavy Majorana-neutrino exchange
mechanisms realized at arbitrary neutrino-mass scale <, without the necessity of detailed
nuclear-structure calculations. The interpolating formula can be expressed through properly
normalized ratios of the limiting NMEs "′0aVV

a,#
[84]:

"
′0aVV
!!,''
(<) = 1

〈?2〉 +<2 "
′0aVV
#

, (3.22)

where the parameter 〈?2〉 is de�ned as follows:

〈?2〉 =<4<?

�����"′0aVV#

"
′0aVV
a

����� . (3.23)

In Table 3.1, we present the values of the parameter
√
〈?2〉 and its average

√
〈?2〉 (together with

the sample standard deviation B) over all listed 0aVV-decay isotopes of experimental interest,
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Table 3.1: Values of the parameter
√
〈?2〉 and its average

√
〈?2〉 (with sample standard deviation

B) over the listed double-V-decay isotopes A
ZX of experimental interest, obtained from the NMEs

"
′0aVV
a,#

calculated using di�erent nuclear-structure methods: the interacting shell model (ISM)
of the Strasbourg–Madrid (SM) [86] and the Central Michigan University (CMU) [87] groups,
the interacting boson model (IBM) [88], the quasiparticle random-phase approximation (QRPA)
of the Tübingen–Bratislava–Caltech (TBC) [65, 66] and Jyväskylä (J) [89] groups, the projected
Hartree–Fock–Bogoliubov (PHFB) approach [90], and the covariant density-functional theory
(CDFT) [91], assuming various values of the unquenched axial-vector weak coupling constant
6� and SRC functions: Argonne, CD-Bonn, and UCOM.

Method 6� SRC
√
〈?2 〉 [MeV]

√
〈?2 〉

48
20Ca

76
32Ge

82
34Se

96
40Zr

100
42Mo 110

46Pd
116
48Cd

124
50Sn

128
52Te

130
52Te

136
54Xe

150
60Nd [MeV]

ISM-SM 1.25 UCOM 178 150 149 160 161 159 160± 10
ISM-CMU 1.27 Argonne 178 134 138 153 159 170 155± 16

CD-Bonn 203 165 162 177 184 197 181± 15
IBM 1.27 Argonne 113 103 103 129 136 135 130 109 109 109 107 155 120± 16
QRPA-TBC 1.27 Argonne 189 163 164 180 174 166 157 186 178 180 183 175± 10

CD-Bonn 231 193 194 211 204 194 182 214 207 209 211 205± 13
QRPA-J 1.26 CD-Bonn 191 192 217 207 187 177 202 196 201 175 195± 12
PHFB 1.25 Argonne 130 127 124 131 132 121 128± 4

CD-Bonn 150 145 143 150 150 139 146± 4
CDFT 1.25 Argonne 122 129 131 129 131 133 138 138 137 138 133± 5

obtained from the limiting NMEs "′0aVV
a,#

calculated via di�erent nuclear-structure methods
and assuming various models of two-nucleon short-range correlations (SRCs). We observe
that the parameter

√
〈?2〉 is largely independent of the particular choice of a double-V-decay

isotope (B amounts to only 3%–13%), and thus it can be represented for any given method
by the average value

√
〈?2〉. On the other hand, there is a rather strong dependence of the

value of
√
〈?2〉 on the chosen nuclear-structure approach and SRC function, with the largest

average value
√
〈?2〉 = 205MeV obtained for the quasiparticle random-phase approximation

(QRPA) method with partial isospin-symmetry restoration and CD-Bonn SRC. In Fig. 3.1, we
show the parameter

√
〈?2〉 averaged over the available values for di�erent double-V-decay

isotopes including its uncertainty B for each of the considered nuclear-structure approaches.
Since

√
〈?2〉 ∼ 200MeV for all listed isotopes, it is possible to interpret this quantity as the

characteristic momentum of the propagating Majorana neutrino. From the phenomenological
viewpoint, its constant value for di�erent isotopes also implies that it might not be possible
to identify the dominant contribution to 0aVV decay via the Majorana-neutrino exchange
mechanism through independent observations of 0aVV decay in several di�erent isotopes, as
proposed in the statistical treatment of the 0aVV-decay NMEs [85].

Here, we comment on the analytic properties of the NME "
′0aVV
!!,''

given by the
interpolating formula in Eq. (3.22) as a function of the propagating Majorana-neutrino mass
< in the complex plane. Numerically, this so-called “monopole” approximation is already
very close to the “exact” NMEs from Eq. (3.18) calculated within di�erent nuclear-structure
methods. However, in addition to a good numerical precision, one may sometimes need the
approximate formula to have the same or similar analytic properties in the complex plane of
< as the exact expression. The monopole approximation exhibits two imaginary poles, which
are absent in the exact expression. Below, we shall describe a class of functions with suitable
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Figure 3.1: Values (points) of the parameter
√
〈?2〉 averaged over the available values for

di�erent double-V-decay isotopes including its uncertainties B (bars) calculated using various
nuclear-structure approaches and SRC functions.

analytic properties. First, let us write the exact NME as follows:

"
′0aVV
!!,''
(<) = 4c

(2c)3

∞∫
0

q (?)
� ®? (� ®? + Δ)

?2 d?, (3.24)

where ? = | ®? | is the momentum magnitude, � ®? =
√
®?2 +<2 is the corresponding energy,

Δ = �= −
�8−�5

2 > 0, and q (?) is the spectral function:

q (?) =
∫

d3®G d3 ®H q ( ®G, ®H) 48 ®? ·( ®G−®H), (3.25)

in which the function q ( ®G, ®H) describes the distribution of hadronic CCs inside the nucleus:

q ( ®G, ®H) = 1
<4<?

4c'
62
�

∑
=

〈0+
5
|�!,'` ( ®G) |=〉 〈= |� `!,' ( ®H) |0

+
8 〉 . (3.26)

Analytic properties of functions de�ned in terms of a contour integral are �xed by the Landau
rules [92, 93]. Singular points of the �rst kind are associated with singular behavior of the
integrand at the endpoints of the integration contour. In the exact NME, the neutrino mass<
appears in the denominator of the integrand and such singularities could arise provided that
j (?) ≡ � ®? (� ®? + Δ) = 0 at ? = 0 or ? → ∞. For ? = 0, this equation can be ful�lled only if
< = 0 or< = ±Δ. The latter two points are located on di�erent sheets of the Riemann surface
of the exact NME, and thus it is clear that model-dependent features of the nuclear structure
entering the function q ( ®G, ®H) do not a�ect the endpoint singularities. Singular points of the
second kind are associated with the pinch singularities of the integrand. In order to �nd them,
one must solve the set of equations: j (?)/q (?) = 0 and [j (?)/q (?)]′ = 0, which localize the
high-order poles of the integrand in the complex plane of ? . These singularities depend on
q ( ®G, ®H), and therefore also on the nuclear-structure model. Analytic properties of the NME
"
′0aVV
!!,''

as a function of Δ are particularly simple. Changing the variable to ? = < sinho , we
arrive at the dispersion integral:

"
′0aVV
!!,''
(<) = 4c<

(2c)3

∞∫
0

q (< sinho)
cosho − b sinh2 o do, (3.27)
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3.4. Interpolating Formula

where b = −Δ/<. This equation shows that "′0aVV
!!,''

is an analytic function in the complex
plane of the variable b with the cut (1, +∞) corresponding to the cut (−Δ, 0) in the plane
of <. If q (?) is an analytic function for |? | < ∞ and the integral converges, "′0aVV

!!,''
(<)

turns out to be an analytic function in the complex plane of < with the cut (−Δ, 0). On
the other sheet of the Riemann surface, one �nds a branch point < = +Δ. As stated before,
the monopole parameterization is very accurate and corresponds to an approximation of the
spectral function with the delta function: q (?) = X (?2 − 〈?2〉). In order to construct a formula
with the correct analytic properties, we choose a similar spectral function to guarantee its
numerical accuracy comparable with the monopole parameterization:

q (?) = sinh(??0d2)
??0d2

exp
(
−1
2
?2d2

)
, (3.28)

in which the free parameters ?0 ∼ 〈?2〉1/2 and d can be �xed by a proper normalization to the
exact values at zero and in�nity. The function q (?) for ? = ?0 is close to its maximum, while
the value of d−1 determines the width of the momentum distribution. This spectral function
is analytic for |? | < ∞ and generates only model-independent endpoint singularities. The
corresponding interpolating formula appears to be an analytic function in the complex plane
of < with the cut (−Δ, 0), position of which is model-independent, while the discontinuity
depends on q (?) and depends on the model. A particularly strong e�ect on the behavior
of analytic functions in a �xed domain comes from their nearest singularities. Taking into
account that Δ ∼ 10MeV, an improved description of the neutrino-mass dependence can
be expected around < = 0 in a circle with a radius of a few tens of MeV. This scale is
smaller than the characteristic momentum transfer ?0 ∼ 200MeV. Reasonable accuracy is also
expected for a large domain of<, provided that the spectral function closely approximates the
monopole spectral function, which was found to be successful phenomenologically. In Fig. 3.2,
we show the ratio between the NME "

′0aVV
!!,''

as a function of the neutrino mass < obtained
from the interpolating formula in Eq. (3.22) within the monopole approximation and the exact
nuclear-structure calculation for the isotope 76

32Ge, in comparison with the ratio obtained from
the interpolating formula with the analytic spectral function from Eq. (3.28) and parameters
?0 = 0.84 fm−1 and d = 5 fm. For small neutrino masses up to about 40MeV, the analytic
interpolation formula approximates the exact result with slightly better accuracy. For larger
neutrino masses, the nuclear structure becomes important at about 200MeV. This could re�ect
a contribution of the model-dependent pinch singularities, which we do not consider here.

The interpolating formula allows us to approximate the inverse 0aVV-decay half-life
by the following expression valid for arbitrary mass of the propagating Majorana neutrino:

() 0aVV
1/2 )

−1 = 64��
0aVV (/, &) |"′0aVVa |2︸                          ︷︷                          ︸

�a#

[2a# , (3.29)

where we have de�ned the prefactor �a# and the general LNV parameter for the light and
heavy Majorana-neutrino exchange mechanisms (for 〈?2〉 we take the squared average value

of the momentum
√
〈?2〉: 〈?2〉 =

(√
〈?2〉

)2
):

<2
4 [

2
a# =

������∑8 * 2
48

<8

1 + <2
8

〈?2〉

+ (248
"8

1 + "2
8

〈?2〉

������
2

+ _2
������∑8 ) 2

48

<8

1 + <2
8

〈?2〉

++ 2
48

"8

1 + "2
8

〈?2〉

������
2

. (3.30)
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Figure 3.2: Ratio between the NME "
′0aVV
!!,''

from Eq. (3.18) as a function of the propagating
Majorana-neutrino mass < obtained from the interpolating formula in Eq. (3.22) within the
monopole approximation (M) and the exact nuclear-structure calculation for the isotope 76

32Ge
vs. ratio obtained from the interpolating formula with the analytic spectral function (A) from
Eq. (3.28) and parameters ?0 = 0.84 fm−1 and d = 5 fm.

Table 3.2: Values of the prefactor�a# for the listed double-V-decay isotopes A
ZX, obtained from

the phase-space factors �0aVV (/, &) and the NMEs " ′0aVVa calculated using di�erent nuclear-
structure methods, assuming various values of the unquenched axial-vector weak coupling
constant 6� and SRC functions.

Method 6� SRC �a# [10−14 yr−1 ]
48
20Ca

76
32Ge

82
34Se

96
40Zr

100
42Mo 110

46Pd
116
48Cd

124
50Sn

128
52Te

130
52Te

136
54Xe

150
60Nd

ISM-SM 1.25 UCOM 4.38 4.56 17.3 15.1 24.4 17.1
ISM-CMU 1.27 Argonne 4.12 6.96 26.8 9.38 11.8 10.0

CD-Bonn 4.98 7.81 30.3 10.8 13.7 11.7
IBM 1.27 Argonne 19.7 13.4 36.7 42.7 73.5 20.5 41.6 23.9 2.56 50.5 35.2 27.0
QRPA-TBC 1.27 Argonne 1.88 16.3 56.7 39.5 120.0 41.4 70.7 15.4 3.17 55.8 18.0

CD-Bonn 2.24 19.0 66.4 46.8 141.0 48.9 81.6 19.9 3.93 70.4 22.9
QRPA-J 1.26 CD-Bonn 16.5 35.6 51.1 61.0 51.6 76.4 64.0 3.59 57.3 31.1
PHFB 1.25 Argonne 40.5 132.0 59.6 2.18 50.4 23.7

CD-Bonn 44.6 143.0 64.7 2.39 55.0 25.6
CDFT 1.25 Argonne 47.3 22.4 74.0 216.0 173.0 128.0 42.3 88.2 68.0 113.0

In Table 3.2, we present the values of the prefactor �a# for all listed double-V-decay isotopes,
obtained from the phase-space factors�0aVV (/, &) and the light Majorana-neutrino exchange
NMEs "′0aVVa calculated using di�erent nuclear-structure methods and SRC functions. When
compared with the exact QRPA result, the interpolating formula is accurate for both the light
and heavy Majorana-neutrino exchange mechanisms, except for the transition region where
the discrepancy is about 20%–25%. The LNV parameter [a# does not depend on the isotope
under consideration, which means that the dominance of either light or heavy Majorana-
neutrino exchange mechanism could not be established solely by observation of 0aVV decay in
di�erent nuclei without additional theoretical assumptions or experimental input concerning
neutrino mixing and masses, in contrast to previous expectations in the literature [94, 95].
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3.5. Seesaw Scenarios

3.5 Seesaw Scenarios

In order to distinguish between various contributions to 0aVV decay within the LRSM, we
study the general LNV parameter [a# for the light and heavy Majorana-neutrino exchange
mechanisms assuming several viable particle-physics scenarios. In a model with three right-
handed singlet neutrinos #1,2,3' , the full 6 × 6 mixing matrix U is completely parameterized
by 15 mixing angles \8 9 (8, 9 = 1, . . . , 6 with 8 < 9 ), 10 Dirac phases X8 9 , and 5 Majorana phases
U8 (8 = 1, . . . , 5). Let us consider some particular structures of this mixing matrix.

Uncoupled light- and heavy-neutrino sectors: If there is no mixing between the
active and heavy as well as sterile and light neutrinos, the 6 × 6 mixing matrix is separated as
follows:

U =

(
*0 0

0 +0

)
, (3.31)

where 0 is the 3×3 zero matrix while*0 and+0 are 3×3 matrices for mixing between the active
aU! (U = 4, `, g) and light a8! (8 = 1, 2, 3) left-handed neutrinos and between the sterile aU'
and heavy#8' right-handed neutrinos, respectively. Taking into account the experimental data
on neutrino oscillations, the matrix*0 can be identi�ed as the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) lepton mixing matrix* : *0 = * , parameterized by three mixing angles \12, \13,
\23, one Dirac phase X , and two Majorana phases U1, U2 as follows (B8 9 ≡ sin\8 9 , 28 9 ≡ cos\8 9 ):

* =
©«

212 213 4
8U1 B12 213 4

8U2 B13 4
−8X

(−B12 223 − 212 B13 B23 48X ) 48U1 (212 223 − B12 B13 B23 48X ) 48U2 213 B23
(B12 B23 − 212 B13 223 48X ) 48U1 (−212 B23 − B12 B13 223 48X ) 48U2 213 223

ª®¬ , (3.32)

i.e., the Majorana phases U1 and U2 enter the �rst and second columns of the PMNS matrix* .
The exact structure of the matrix+0 is unknown, but it is reasonable to expect that it is similar
to*0, and thus in this scenario we assume: +0 = * . The LNV parameter then reads:

<2
4 [

2
a# = |<VV |2 + |"VV |2, (3.33)

with the e�ective Majorana neutrino masses for the light and heavy neutrinos:

<VV =
∑
8

* 2
48

<8

1 + <2
8

〈?2〉

≈
∑
8

* 2
48<8,

"VV = _
∑
8

* 2
48

"8

1 + "2
8

〈?2〉

≈ _ 〈?2〉
∑
8

* 2
48

1
"8

. (3.34)

In Fig. 3.3, we show the regions of allowed values of the e�ective Majorana neutrino mass |<VV |
as a function of the lightest-neutrino mass<0 for the normal (NH) and inverted (IH) hierarchy
of neutrino masses, obtained by varying the Majorana phases in the interval U1,2 ∈ [0, c) and
assuming the best-�t values of the neutrino-oscillation parameters from the global analysis of
the neutrino-oscillation data [25]. For simplicity, we consider two di�erent types of relation
between the light- and heavy-neutrino masses:

"8 =

{
<8/ZA (constant ratios),
Z?/<8 (constant products).

(3.35)
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Figure 3.3: The e�ective Majorana neutrino mass |<VV | as a function of the lightest-neutrino
mass <0 for the normal (NH) and inverted (IH) hierarchy of neutrino masses, assuming the
best-�t values of the neutrino-oscillation parameters from the global analysis of the neutrino-
oscillation data [25].

In the case of constant ratios, the light- and heavy-neutrino masses follow identical
hierarchies with a common scale shift given by the small dimensionless parameter ZA =<8/"8

(8 = 1, 2, 3) and the heavy-neutrino parameter reads:

"VV = _ 〈?2〉 ZA
∑
8

* 2
48

1
<8

. (3.36)

In Fig. 3.4, we show the e�ective Majorana neutrino mass |"VV | for the heavy neutrinos,
obtained by varying the Majorana phases in the interval U1,2 ∈ [0, c) and assuming
the parameter values _ = 7.7 × 10−4 from the lower bound on the ,'-boson mass and
〈?2〉 = (175MeV)2 from the average value

√
〈?2〉 calculated using the QRPA-TBC nuclear-

structure method with partial isospin-symmetry restoration and Argonne two-nucleon SRC
function (6� = 1.27). The scale above which the heavy Majorana-neutrino exchange
mechanism starts to dominate is then fully determined by the parameter ZA . For the chosen
value of ZA = 10−17 (which corresponds to"8 ∼ 1016 eV = 104 TeV), the contribution of |"VV | to
the LNV parameter [a# becomes comparable to that of |<VV |. One interesting feature of |"VV |
in contrast with |<VV | is the reversed role of the mass hierarchies: the NH does not exhibit
any region unbounded from below, while the IH does.

In the case of constant products, the light- and heavy-neutrino masses follow opposite
hierarchies mirrored through the parameter Z? = <8 "8 (8 = 1, 2, 3) with dimension 2, and
thus the heavy-neutrino parameter |"VV | becomes proportional to |<VV |:

"VV = _
〈?2〉
Z?

<VV . (3.37)

As a result, the LNV parameter simpli�es to:

<2
4 [

2
a# =

(
1 + _2 〈?

2〉2

Z 2?

)
︸            ︷︷            ︸

^2

|<VV |2 (3.38)

and the presence of heavy neutrinos leads only to an upward shift of the standard logarithmic
plot for |<VV | by a constant factor ^ =

√
1 + _2 〈?2〉2 Z −2? > 1. If Z? = _ 〈?2〉 ≈ 24MeV2,
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Figure 3.4: The e�ective Majorana neutrino mass |"VV | for the heavy neutrinos as a function
of the lightest-neutrino mass<0 for the normal (NH) and inverted (IH) hierarchy of neutrino
masses in the scenario with uncoupled light- and heavy-neutrino sectors and the mass
relation: "8 = <8/ZA (constant ratios) with ZA = 10−17, assuming the LRSM parameter value
_ = (<,!

/<,'
)2 = 7.7×10−4 and the average Majorana-neutrino momentum

√
〈?2〉 = 175MeV

for the QRPA nuclear-structure method with 6� = 1.27 and Argonne SRC function.

contributions of the light and heavy neutrinos to the general LNV parameter [a# are equal:
|<VV | = |"VV |. For Z? � _ 〈?2〉, the heavy Majorana-neutrino exchange mechanism dominates
and the experimental upper bounds on |<VV | based on the measured limits on the 0aVV-decay
half-lives ) 0aVV

1/2 become much more stringent.
Seesaw-mixed light- and heavy-neutrino sectors: If there is a small amount of

�avor-universal mixing between the active and heavy as well as sterile and light neutrinos
characterized by a single parameter Z , the 6 × 6 mixing matrix has the following structure:

U =

(
*0 Z 1

−Z 1 +0

)
, (3.39)

where 1 is the 3×3 identity matrix. Here, Z =<D/<LNV � 1 is the small dimensionless seesaw
parameter, where<D represents the Dirac mass scale of charged leptons and<LNV is the LNV
scale which determines the new physics beyond the SM. The seesaw mechanism then predicts
the mass scales of the light and heavy neutrinos:<8 ∼<2

D/<LNV and "8 ∼<LNV, respectively

(<8 �
√
〈?2〉 � "8 ). In order of magnitude, the light- and heavy- neutrino masses satisfy the

relations: <8 ∼ Z 2"8 and<8 "8 ∼<2
D. Unitarity of the 6 × 6 mixing matrixU:

U†U =

(
*
†
0 −Z 1

Z 1 +
†
0

) (
*0 Z 1

−Z 1 +0

)
=

(
*
†
0 *0 + Z 2 1 Z (* †0 −+0)
Z (*0 −+ †0 ) +

†
0 +0 + Z 2 1

)
=

(
1 0

0 1

)
= 16×6 (3.40)

implies the following conditions:

*
†
0 *0 = (1 − Z 2) 1,
+
†
0 +0 = (1 − Z

2) 1,
+0 = *

†
0 . (3.41)

It is reasonable to expect that a small violation of unitarity of the matrices *0 and +0
is beyond the current experimental accuracy of phenomenological determination of the
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neutrino-oscillation parameters \12, \13, \23, and X entering the elements of the PMNS matrix
* . Just like in the uncoupled scenario, we can therefore identify the matrix*0 for active–light
neutrino mixing as the PMNS matrix* : *0 = * . However, the matrix+0 (an analogue of+0 for
sterile–heavy neutrino mixing) is now �xed by virtue of unitarity of the matrix U: +0 = * †,
which explicitly reads:

* † =
©«
212 213 4

−8U1 (
−B12 223 − 212 B13 B23 4−8X

)
4−8U1

(
B12 B23 − 212 B13 223 4−8X

)
4−8U1

B12 213 4
−8U2 (

212 223 − B12 B13 B23 4−8X
)
4−8U2

(
−212 B23 − B12 B13 223 4−8X

)
4−8U2

B13 4
8X 213 B23 213 223

ª®¬ . (3.42)

When compared with the matrix * , the Majorana phases U1 and U2 enter only the �rst and
second rows (instead of columns) of the matrix * †, respectively, where each element of the
corresponding row is multiplied by the same phase factor 4−8U1 and 4−8U2 . Consequently, the
Majorana phases U1 and U2 do not a�ect the heavy-neutrino parameter |"VV |. On the other
hand, the Dirac phase X , which has no e�ect on the light-neutrino parameter |<VV |, will
in�uence the value of |"VV |. If <LNV �

√
〈?2〉, we can neglect the terms proportional to

Z 2 � 1 and the LNV parameter once again reads:

<2
4 [

2
a# = |<VV |2 + |"VV |2, (3.43)

where<VV remains unchanged, but "VV now contains the elements from the �rst row of the
matrix* †:

"VV = _
∑
8

(* †)248
"8

1 + "2
8

〈?2〉

≈ _ 〈?2〉
∑
8

(* †)248
1
"8

. (3.44)

Same as before, we assume two di�erent scenarios for the light- and heavy-neutrino masses:

"8 =

{
<8/Z 2 (constant ratios),
<2

D/<8 (constant products).
(3.45)

In the case of constant ratios, the light- and heavy-neutrino masses are related by the
seesaw parameter Z 2 =<8/"8 (8 = 1, 2, 3) and the heavy-neutrino parameter reads:

"VV = _ 〈?2〉 Z 2
∑
8

(* †)248
1
<8

. (3.46)

In Fig. 3.5, we show the e�ective Majorana neutrino mass |"VV | for the heavy neutrinos,
obtained by varying the Dirac phase in the interval X ∈ [0, 2c) and assuming that
_ = 7.7 × 10−4, 〈?2〉 = (175MeV)2, and Z 2 = 10−17. This value of Z 2 ensures that the
contributions of the light and heavy Majorana-neutrino exchange mechanisms to 0aVV decay
are roughly of the same order of magnitude. We observe that variation of the Dirac phase X
allows only for a very narrow range of |"VV | values, which is especially true for the NH of
neutrino masses.

In the case of constant products, the light- and heavy-neutrino masses depend on each
other through the Dirac mass scale<2

D =<8 "8 (8 = 1, 2, 3) and the heavy-neutrino parameter
takes the form:

"VV = _
〈?2〉
<2

D

∑
8

(* †)248<8 . (3.47)

In Fig. 3.5, we show the modulus of this parameter, obtained by varying the Dirac phase in
the interval X ∈ [0, 2c). For the adopted value of <D = 5MeV, the coe�cient _ 〈?2〉<−2D is
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Figure 3.5: The e�ective Majorana neutrino mass |"VV | for the heavy neutrinos as a function
of the lightest-neutrino mass<0 for the normal (NH) and inverted (IH) hierarchy of neutrino
masses in the scenario with seesaw-mixed light- and heavy-neutrino sectors and the mass
relation: "8 = <8/Z 2 (constant ratios) with Z 2 = 10−17, assuming the parameter values
_ = 7.7 × 10−4 and

√
〈?2〉 = 175MeV.

Table 3.3: Experimental lower bounds on the 0aVV-decay half-lives ) 0aVV
1/2 for various double-

V-decay isotopes A
ZX and the corresponding upper bounds on the LNV parameter[a# calculated

using the maximum and minimum values of the prefactor�a# for a given isotope from Table 3.2.

48
20Ca

76
32Ge

82
34Se

100
42Mo 116

48Cd
130
52Te

136
54Xe

)
0aVV
1/2 [yr] 2.0 × 1022 [96] 5.3 × 1025 [97] 2.5 × 1023 [98] 1.1 × 1024 [69] 1.7 × 1023 [99, 100] 4.0 × 1024 [101] 1.07 × 1026 [31]
[a# × 106 10.3–33.8 0.290–0.643 2.32–4.81 0.724–1.22 2.14–3.76 0.532–1.455 0.117–0.306

close to unity and the light-neutrino |<VV | and heavy-neutrino |"VV | parameters are likely
to have similar values. However, |"VV | is no longer proportional to |<VV |, because the o�-
diagonal elements of the matrices* and* † are di�erent. Therefore, in this scenario a detailed
analysis to establish a useful constraint on the Yukawa potential associated with neutrinos is
necessary. In this model, the range of possible |"VV | is much more restricted in the case of the
IH of neutrino masses.

In Table 3.3, we present the experimental lower bounds on the 0aVV-decay half-lives
)
0aVV
1/2 for various double-V-decay isotopes and the corresponding upper bounds on the LNV

parameter [a# calculated using the maximum and minimum values of the prefactor�a# for a
given isotope from Table 3.2. From the measurement of the 0aVV-decay half-life of the isotope
136
54Xe by the KamLAND-Zen experiment [31]: ) 0aVV

1/2 > 1.07×1026 yr at 90%C.L., we obtain the
most stringent bound on the LNV parameter: [a# < (0.117–0.306) × 10−6. In what follows,
we adopt the constraint which corresponds to the prefactor �a# = 18.0 × 10−14 yr computed
for the isotope 136

54Xe via the QRPA-TBC method with 6� = 1.27 and Argonne SRC function:
[a# < 0.228 × 10−6.

In Fig. 3.7, we analyze the individual contributions |<VV | and |"VV | originating from the
light and heavy Majorana-neutrino exchange mechanisms, respectively, to the LNV parameter
[a# in the scenario with seesaw-mixed light- and heavy-neutrino sectors and assuming the
mass relation: "8 = <8/Z 2 (constant ratios) and the parameter values _ = 7.7 × 10−4
and 〈?2〉 = 175MeV. For this purpose, we divide the <0–Z parameter space into three
parts: (a) the region of dominance of the light Majorana-neutrino exchange mechanism
(|<VV | > |"VV |), (b) the region of dominance of the heavy Majorana-neutrino exchange
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Figure 3.6: The e�ective Majorana neutrino mass |"VV | for the heavy neutrinos as a function
of the lightest-neutrino mass<0 for the normal (NH) and inverted (IH) hierarchy of neutrino
masses in the scenario with seesaw-mixed light- and heavy-neutrino sectors and the mass
relation: "8 = <2

D/<8 (constant products) with <D = 5MeV, assuming the parameter values
_ = 7.7 × 10−4 and

√
〈?2〉 = 175MeV.

mechanism (|<VV | < |"VV |), and (c) the region excluded by the experimental lower bound
on the 0aVV-decay half-life of 136

54Xe measured by the KamLAND-Zen experiment [31]:
)
0aVV
1/2 > 1.07 × 1026 yr at 90%C.L. and the prefactor �a# = 18.0 × 10−14 yr for 136

54Xe
from the QRPA nuclear-structure method with 6� = 1.27 and Argonne SRC function
([a# < 0.228 × 10−6). We observe that in the case of NH and IH of neutrino masses, the
seesaw parameter obeys the experimental constraints: Z < 1.75 × 10−8 and Z < 1.65 × 10−8,
respectively. In addition, the heavy Majorana-neutrino exchange mechanism can be dominant
only if the lightest-neutrino mass is restricted to: <0 < 0.08 eV and<0 < 0.065 eV.

In Fig. 3.8, we examine the regions of dominance of the contributions |<VV | and |"VV |
originating from the light and heavy Majorana-neutrino exchange mechanisms, respectively,
to the LNV parameter [a# in the<0–<D parameter space in the scenario with seesaw-mixed
light- and heavy-neutrino sectors and the mass relation: "8 = <2

D/<8 (constant products),
where the excluded region represents the KamLAND-Zen limit [31]: ) 0aVV

1/2 > 1.07 × 1026 yr
at 90%C.L. with �a# = 18.0 × 10−14 yr ([a# < 0.228 × 10−6). We see that for the NH and
IH of neutrino masses, the Dirac scale is constrained by the existing experimental 0aVV-
decay data to: <D > 1.4MeV and <D > 2.9MeV, respectively. Again, dominance of the
heavy Majorana-neutrino exchange mechanism is possible only if the lightest-neutrino mass
is su�ciently small: <0 < 0.08 eV and<0 < 0.065 eV. In Fig. 3.9, we show the heavy-neutrino
masses "8 = <2

D/<8 as functions of the lightest-neutrino mass <0, where the Dirac scale is
constrained by the KamLAND-Zen result. We observe that in the case of the NH and IH of
neutrino masses, these plots imply the following lower bounds on the masses of the lightest
among the heavy neutrino species: "3 > 38 TeV and "2 > 171 TeV, respectively, far beyond
the reach of present collider experiments.

3.6 Majorana Mass Matrix

Finally, we present the explicit form of the neutrino mass matrix in the scenario with the
light- and heavy-neutrino sectors coupled via the seesaw mechanism. In this particular case
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Figure 3.7: Regions of dominance of the contributions |<VV | and |"VV | originating from the
light and heavy Majorana-neutrino exchange mechanisms, respectively, to the LNV parameter
[a# in the <0–Z parameter space for the NH (left) and IH (right) of neutrino masses in the
scenario with seesaw-mixed light- and heavy-neutrino sectors, assuming the mass relation:
"8 = <8/Z 2 (constant ratios) and the parameter values _ = 7.7 × 10−4 and

√
〈?2〉 = 175MeV.

The excluded region corresponds to the experimental lower bound on the 0aVV-decay half-
life of 136

54Xe set by the KamLAND-Zen experiment [31]: ) 0aVV
1/2 > 1.07 × 1026 yr at 90%C.L.

([a# < 0.228 × 10−6).

of neutrino mixing, the Dirac–Majorana mass term reads:

LD+M = −1
2

(
a′�
!

a′
'

) (
"! "D
"T

D "'

) (
a′
!

a′�
'

)
+ H.c. = −1

2

∑
8

<8 a8 a8 +"8 #8 #8 . (3.48)

Here, a′
!
= (a4!, a`!, ag!)T and a′

'
= (a4', a`', ag')T are three-component columns of the

active left-handed aU! (G) and sterile right-handed aU' (G) (U = 4, `, g) �avor-neutrino �elds,
respectively, a8 (G) and #8 (G) (8 = 1, 2, 3) are the light and heavy massive-neutrino �elds with
masses<8 and "8 , and "D, "! , and "' are the complex 3 × 3 Dirac and complex symmetric
3 × 3 left-handed and right-handed Majorana mass matrices.

The full complex symmetric 6×6 Dirac–Majorana mass matrixM can be diagonalized
by the following unitary transformation:(

a′
!

a′�
'

)
=

(
* Z 1

−Z 1 * †

) (
a!
#�
'

)
,

M =

(
"! "D
"T

D "'

)
=

(
* Z 1

−Z 1 * †

)∗ (
< 0

0 "

) (
* Z 1

−Z 1 * †

)†
, (3.49)

where * is the PMNS matrix and Z is the seesaw parameter, while < = diag(<1, <2, <3),
" = diag("1, "2, "3), 1, and 0 are two diagonal, identity, and zero 3×3matrices, respectively.
By assuming the seesaw relation between the light- and heavy-neutrino masses: <8 ∼ Z 2"8

(8 = 1, 2, 3), the elements of the mass matrixM can be expressed in terms of the three mixing
angles \12, \13, \23, the Dirac phase X , two Majorana phases U1, U2, six neutrino masses<1,<2,
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Figure 3.8: Regions of dominance of the contributions |<VV | and |"VV | originating from the
light and heavy Majorana-neutrino exchange mechanisms, respectively, to the LNV parameter
[a# in the <0–<D parameter space for the NH (left) and IH (right) of neutrino masses in the
scenario with seesaw-mixed light- and heavy-neutrino sectors, assuming the mass relation:
"8 =<

2
D/<8 (constant products) and the parameter values _ = 7.7×10−4 and

√
〈?2〉 = 175MeV.

The excluded region represents the KamLAND-Zen limit [31]: ) 0aVV
1/2 > 1.07×1026 yr at 90%C.L.

([a# < 0.228 × 10−6).

<3 and "1, "2, "3, and the seesaw parameter Z as follows (B8 9 ≡ sin\8 9 , 28 9 ≡ cos\8 9 ):

("!)44 = 2212 2213 4−82U1<1 + B212 2213 4−82U2<2 + B213 482X<3 + Z 2"1,

("!)4` = −212 213 (B12 223 + 212 B13 B23 4−8X ) 4−82U1<1 + B12 213 (212 223 − B12 B13 B23 4−8X ) 4−82U2<2

+ B13 213 B23 48X<3,

("!)4g = 212 213 (B12 B23 − 212 B13 223 4−8X ) 4−82U1<1 − B12 213 (212 B23 + B12 B13 223 4−8X ) 4−82U2<2

+ B13 213 223 48X<3,

("!)`` = (B12 223 + 212 B13 B23 4−8X )2 4−82U1<1 + (212 223 − B12 B13 B23 4−8X )2 4−82U2<2 + 2213 B223<3

+ Z 2"2,

("!)`g = (−B12 B23 + 212 B13 223 4−8X ) (B12 223 + 212 B13 B23 4−8X ) 4−82U1<1

− (212 B23 + B12 B13 223 4−8X ) (212 223 − B12 B13 B23 4−8X ) 4−82U2<2 + 2213 B23 223<3,

("!)gg = (B12 B23 − 212 B13 223 4−8X )2 4−82U1<1 + (212 B23 + B12 B13 223 4−8X )2 4−82U2<2 + 2213 2223<3

+ Z 2"3, (3.50)

("�)44 = Z [−212 213 4−8U1<1 + 212 213 48U1 "1],
("�)4` = Z [−B12 213 4−8U2<2 + B12 213 48U2 "1],
("�)4g = Z [−B13 48X<3 + B13 4−8X "1],
("�)`4 = Z [(B12 223 + 212 B13 B23 4−8X ) 4−8U1<1 − (B12 223 + 212 B13 B23 48X ) 48U1 "2],
("�)`` = Z [−(212 223 − B12 B13 B23 4−8X ) 4−8U2<2 + (212 223 − B12 B13 B23 48X ) 48U2 "2],
("�)`g = Z [−213 B23<3 + 213 B23"2],
("�)g4 = Z [−(B12 B23 − 212 B13 223 4−8X ) 4−8U1<1 + (B12 B23 − 212 B13 223 48X ) 48U1 "3],
("�)g` = Z [(212 B23 + B12 B13 223 4−8X ) 4−8U2<2 − (212 B23 + B12 B13 223 48X ) 48U2 "3],
("�)gg = Z [−213 223<3 + 213 223"3], (3.51)
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Figure 3.9: The heavy-neutrino masses "8 as functions of the lightest-neutrino mass <0 for
the NH (left) and IH (right) of neutrino masses in the scenario with seesaw-mixed light- and
heavy-neutrino sectors, assuming the mass relation: "8 = <

2
D/<8 (constant products), where

the Dirac scale is constrained by the KamLAND-Zen limit [31]: ) 0aVV
1/2 > 1.07×1026 yr at 90%C.L.

([a# < 0.228 × 10−6).

("')44 = Z 2<1 + 2212 2213 482U1 "1 + (B12 223 + 212 B13 B23 48X )2 482U1 "2

+ (B12 B23 − 212 B13 223 48X )2 482U1 "3,

("')4` = B12 212 2213 48 (U1+U2)"1 − (B12 223 + 212 B13 B23 48X ) (212 223 − B12 B13 B23 48X ) 48 (U1+U2)"2

− (B12 B23 − 212 B13 223 48X ) (212 B23 + B12 B13 223 48X ) 48 (U1+U2)"3,

("')4g = 212 B13 213 4−8X 48U1 "1 − 213 (B12 B23 223 + 212 B13 B223 48X ) 48U1 "2

+ 213 (B12 B23 223 − 212 B13 2223 48X ) 48U1 "3,

("')`` = Z 2<2 + B212 2213 482U2 "1 + (212 223 − B12 B13 B23 48X )2 482U2 "2

+ (212 B23 + B12 B13 223 48X )2 482U2 "3,

("')`g = B12 B13 213 4−8X 48U2 "1 + 213 (212 B23 223 − B12 B13 B223 48X ) 48U2 "2

− 213 (212 B23 223 + B12 B13 2223 48X ) 48U2 "3,

("')gg = Z 2<3 + B213 4−82X "1 + 2213 B223"2 + 2213 2223"3. (3.52)

Due to the seesaw relation: <8 ∼ Z 2"8 (Z � 1), the terms proportional to Z <8 and Z 2<8

entering the elements of the matrices"D and"' can be safely neglected, in contrast with the
terms Z 2"8 appearing on the diagonal of the matrix "! , which are comparable with<8 . We
conclude that in the LRSM scenario with seesaw-mixed light- and heavy-neutrino sectors, the
usual e�ective Majorana neutrino mass<VV cannot be identi�ed with the �rst element ("!)44
of the Dirac–Majorana mass matrixM, which contains the additional term Z 2"1 of the order
of<1. The corresponding term in<VV has been neglected, as it is suppressed by the properties
of the neutrino propagator for large neutrino mass. Similarly, the parameter "VV , in which
the heavy-neutrino masses "8 appear in the denominator, is not the same as the mass-matrix
element ("')44 .
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3.7 Conclusion

In this Chapter, we studied the light and heavy Majorana-neutrino exchange mechanisms of
0aVV decay within the LRSM. We have demonstrated that the ratio between the corresponding
NMEs "′0aVVa and "′0aVV

#
is practically independent of the choice of double-V-decay isotope

for all considered nuclear-structure methods. When properly normalized, this ratio can
be interpreted as the mean square momentum 〈?2〉 of the propagating Majorana neutrino.
Universality of the average value of

√
〈?2〉 ∼ 200MeV allowed us to employ the interpolating

formula for estimation of NMEs at arbitrary neutrino mass without necessity of complicated
nuclear-structure calculations.

This approximation let us de�ne a general LNV parameter [a# , which takes the form
of a sum of two contributions to the 0aVV decay rate given by the parameters <VV and "VV

characterizing the light and heavy Majorana-neutrino exchange mechanisms, respectively.
Thus, a measurement of the 0aVV-decay half-lives for multiple isotopes would only allow
us to determine the value of [a# , but otherwise it would provide no information about the
relative contribution of each individual term. Additional theoretical or experimental input
about neutrino mixing and masses is required in order to shed light on the particular role of
each of these mechanisms.

For illustration, we analyzed a couple of simpli�ed scenarios for neutrino mixing with
various relations between the masses<8 and "8 (8 = 1, 2, 3) of the light and heavy neutrinos,
respectively. From the experimental limits on the 0aVV-decay half-lives, we obtained useful
constraints on the mixing parameters and neutrino masses and identi�ed the regions of
dominance of the light and heavy Majorana-neutrino exchange mechanisms in the neutrino
parameter space. In the seesaw model, where unitarity of the 6 × 6 lepton mixing matrix
implies the appearance of Hermitian conjugate* † of the PMNS matrix in the heavy-neutrino
sector, we derived the explicit form of the underlying Dirac–Majorana mass matrix.
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4
Quark-Condensate Seesaw Mechanism

for Majorana Neutrino Mass

4.1 Introduction

B
y comparison with all other elementary fermions in the Standard Model (SM), the
smallness of neutrino masses remains a mystery of particle physics. Common wisdom
suggests that this phenomenon might be related to some broken symmetry. One of the

most natural candidates is the U(1)! symmetry of the lepton number !, broken at a su�ciently
high energy scale Λ. At the electroweak scale, this gives rise to the lepton-number-violating
(LNV) Weinberg operator with Δ! = 2:

OW =
5

Λ
!� � !�, (4.1)

where 5 is a dimensionless coupling constant, ! = (aU!, ;U!)T is the weak-isospin SU(2)!
doublet of the left-handed �avor-neutrino aU! (G) and charged-lepton ;U! (G) �elds (with �avor
U = 4, `, g), and� = (�+, � 0)T is the doublet of the charged�+(G) and neutral� 0(G) complex
scalar Higgs �elds. After the electroweak-symmetry breaking (EWSB), which leads to the
Higgs vacuum expectation value (VEV) E =

√
2 〈� 0〉 = 246GeV, the Weinberg operator OW

generates Majorana neutrino mass at a scale:

<a = −5 E
E

Λ
. (4.2)

For a generic case with 5 ∼ 1 and <a at a sub-eV scale, this formula gives an estimate
of Λ ∼ 1014–1015 GeV, putting the new LNV physics far beyond the experimental reach.
This happens in tree-level realizations of the Weinberg operator in the celebrated seesaw
mechanisms of Type I, II, and III, where Λ is equal to the masses " of the corresponding
seesaw messengers which, being very heavy, have no phenomenological signi�cance. In order
to escape this situation and open up the possibility for a nontrivial phenomenology, various
models have been proposed in the literature which relax the abovementioned limitation of the
LNV scale Λ (for a recent review, see Ref. [102]). Introducing new (softly broken) symmetries,
one can forbid the Weinberg operator at the tree level while allowing it at a certain loop level
; , so that a loop suppression factor 5 ∼ (1/16c2); appears in the Majorana neutrino mass<a .
With appropriate ; , the LNV scale Λ can be reduced down to phenomenologically interesting
values in the TeV ballpark (e.g., see Refs. [103, 104, 105, 106, 107, 108, 109] and references
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therein). Another possibility is to resort to symmetries forbidding the Weinberg operator
completely, but at the same time allowing higher (5+=)-dimensional operators which provide
an extra suppression factor (E/Λ)= after the EWSB. As in the loop-based models, the LNV
scale Λ can be made for su�ciently large = as low as the current experimental limits. In some
models, both the loop suppression and the higher-dimensional suppression can be combined.

In the present Chapter, we consider another class of the SM gauge-invariant e�ective
dimension-7 operators:

OD7 =
6D
UV

Λ3 !
�
U !V � & D',

O37 =
63
UV

Λ3 !
�
U !V � 3' &, (4.3)

where 6
D,3

UV
(U, V = 4, `, g) are two 3 × 3 matrices of �avor-dependent dimensionless coupling

constants, & = (D!, 3!)T is the weak-isospin SU(2)! light-quark doublet of the left-handed
up-quark D! (G) and down-quark 3! (G) �elds, D' (G) and 3' (G) are the corresponding singlets
of the right-handed up- and down-quark �elds, and all possible SU(2)! contractions are
implicitly assumed. These operators were previously studied in the literature as a source of
LNV interactions with Δ! = 2 able to induce 0aVV decay with no explicit dependence on the
Majorana neutrino mass [110, 111, 112, 113]. On the other hand, it was observed that this
operator generates a mass matrix " of Majorana neutrinos due to the spontaneous chiral-
symmetry breaking (jSB) via the quark condensate 〈@@〉 = −l3 ≠ 0 involving the up and
down light quarks @ = D, 3 [114]. This vacuum expectation value determines the jSB scale l ,
so that after the spontaneous EWSB and jSB one arrives at the following contribution to the
Majorana mass matrix:

"UV = −
6UV√
2
E
〈@@〉
Λ3 =

6UV√
2
E

(l
Λ

)3
, (4.4)

with 6UV = 6D
UV
+ 63

UV
and 〈@@〉 = 〈DD〉 ≈ 〈33〉 ≈ 2 〈D! D'〉 ≈ 2 〈3' 3!〉, where we omitted a

possible contribution of other less relevant mass-generation mechanisms in order to derive
conservative limits on the coupling constants 6UV . This kind of seesaw formula relates the
smallness of Majorana-neutrino masses to the large ratio between the LNV scaleΛ and the jSB
scale l = −〈@@〉1/3, which we refer to as the quark-condensate seesaw mechanism (QCSM).
From lattice QCD within the minimal subtraction renormalization scheme MS at a �xed scale
` = 2GeV, the quark condensate equals [115]:

〈@@〉1/3 = −283MeV, (4.5)

which for Λ of a few TeV yields a neutrino mass in the sub-eV ballpark.
First, we study implications of the requirement of dominance of the operators OD,37 for

ultraviolet (UV) model building and certain phenomenological aspects of the QCSM. Then, we
extract limits on the coupling constants of nonstandard contact neutrino–quark interactions
appearing in the QCSM. Finally, we analyze contributions of the operators OD,37 to neutrinoless
double-beta (0aVV) decay and derive strong constraints on the QCSM from this LNV process.

4.2 E�ective Lepton–Quark Operator

To begin with, let us discuss the conditions for dominance of the operatorsOD,37 in the Majorana
mass matrix" . As usual, this can be guaranteed by imposing an appropriate symmetry group
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G on the theory, which could be either discrete or continuous. General properties of this kind
of symmetries were previously studied in Ref. [114]. This symmetry must forbid the Weinberg
operator OW, but at the same time allow the operators OD,37 . Therefore, the lepton bilinear !!
must be a G-nonsinglet. Requiring that G remains a good symmetry after the EWSB and still
forbids any contribution to the Majorana neutrino mass term:

LM = −1
2

∑
UV

a�
U!
"UV aV! + H.c. (4.6)

while allowing the lepton–quark coupling:

L7 =
1
√
2
E

Λ3

∑
UV

a�
U!
aV! (6DUV D! D' + 6

3
UV
3' 3!) + H.c. (4.7)

implies that we claim the SM Higgs boson� to be a G-singlet. As a result, the condition of G-
invariance of the operators OD,37 requires that one of the quark bilinears& D' and 3' & or both
must be G-nonsinglets. The latter implies that the Yukawa couplings of the D and 3 quarks:

� †& D', � & 3' (4.8)

are not G-invariant and forbidden by this symmetry. Consequently, the light quarks do not
receive their masses as a result of the EWSB. In principle, this is in line with the fact that the
light quarks D and 3 are particular among other quarks by being much lighter than the rest.
However, the statement of vanishing D- and 3-quark masses <D,3 = 0, or even one of them,
seems to contradict the well-known results of lattice calculations [116] and experimental data
on the light-meson masses. Thus, small light-quark masses <D,3 ≠ 0 must be generated in
some way in order to make our scenario viable. In principle, it is not necessary for this scenario
that both Yukawa couplings in Eq. (4.8) are forbidden. As seen from the operators OD,37 , it is
su�cient if only one of them—say the D-quark Yukawa coupling—is forbidden, as suggested
in Ref. [114].

In what follows, we assume that the 3-quark mass <3 is generated via an e�ective
Yukawa coupling from Eq. (4.8), realized at some loop level making it su�ciently small in
comparison with the other heavier quarks. On the other hand, we require that the Yukawa
coupling for the D quark is forbidden by G symmetry, so that above the electroweak scale
its current-quark mass <D = 0. Therefore, in this setup we require that the quark bilinears
transform under the symmetry group G as:

G-nonsinglets: & D',

G-singlets: 3' &. (4.9)

Consequently, in the operator O37 we should set 63
UV

= 0. Note that the hypothesis of vanishing
current-quark mass <D has long been considered in the literature as one of the possible
solutions to the strong CP problem, allowing one to rotate away the CP-violating angle \ from
the QCD Lagrangian. However, the key question is whether this hypothesis is compatible with
the lattice-QCD value [116]: <QCD

D = (2.78 ± 0.19)MeV and the light-meson masses. We start
with an observation that the requirement of<D = 0 at some high-energy cuto� scale does not
prevent the generation of nonzero e�ective D-quark mass<e�

D at low sub-GeV energy scales.
There are several possible sources of<e�

D ≠ 0 stemming from the strong-interaction dynamics.
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First, we note that in a generic e�ective theory the light-quark masses can be generated
due to the jSB via the following e�ective SM-invariant dimension-6 operators:

O@@6 =
^@@

Λ2
@@

& &' &' &,

OD36 =
^D3

Λ2
D3

& D' & 3', (4.10)

where the index @ = D, 3 , ^@@ and ^D3 are dimensionless coupling constants, Λ@@ and ΛD3 are
the energy scales of new physics underlying these operators, and &' = (D', 3')T is the weak
isodoublet of the right-handed up-quark D' (G) and down-quark 3' (G) �elds. These operators
include the following terms:

O@@6 ∝ D! D' D' D! + 3! 3' 3' 3!,
OD36 ∝ D! D' 3! 3', (4.11)

which can contribute to the e�ective light-quark masses<e�
D,3

after the spontaneous jSB and
formation of the quark condensate 〈@@〉. Note that the operatorO@@6 conserves chiral symmetry
while OD36 breaks it explicitly. In our setup from Eq. (4.9), the operator OD36 is forbidden by G
symmetry. In a scenario with both<D =<3 = 0, this operator is allowed above the electroweak
scale and can have interesting implications if its scale ΛD3 is not very high. This scenario will
be addressed elsewhere.

The chiral-symmetric operator O@@6 is well known in the context of the Nambu–Jona-
Lasinio model considered as a chiral low-energy e�ective �eld theory of QCD. Recall that in
this approach, the Feynman diagram of one-gluon exchange with the amplitude:

(& W` _0&) � (6)01`a (&' Wa _1 &'), (4.12)

where W` (`, a = 0, 1, 2, 3) are the four anticommuting 4 × 4 gamma matrices and _0

(0, 1 = 1, . . . , 8) are the eight 3 × 3 Gell-Mann matrices, turns to a point-like four-quark
operator in the truncated theory, in which the gluon propagator � (6)01`a (@2) is replaced by
6`a/Λ2

QCD. Here, 6`a = diag(1, −1, −1, −1) is the metric tensor and ΛQCD ∼ 100MeV is the
characteristic scale of nonperturbative QCD. After Fierz rearrangement, one �nds the operator
O@@6 with the scale ^@@/Λ2

@@ ∼ −Us/(4Λ2
QCD), where Us ∼ 1 is the strong coupling constant,

renormalized at the / -boson mass scale to the value Us(</ ) = 0.118. After the spontaneous
jSB, this operator renders a contribution to the masses of the D and 3 current quarks:

<e�
D,3

=<c
D,3

= ^
〈@@〉
Λ2
@@

=
Us

4
l

(
l

ΛQCD

)2
∼ l, (4.13)

converting them to the so-called constituent quarks with an e�ective mass<c
@ ∼ 100MeV.

However, the spontaneous jSB cannot be the only source of the quark masses. They
must also contain a piece<D,3 ≠ 0 which breaks chiral symmetry explicitly. According to the
Gell-Mann–Oakes–Renner relation [117], this is needed in order for pions, as the Goldstone
bosons of the spontaneous jSB, to acquire nonzero masses. In our setup from Eq. (4.9), the
3 quark has nonzero mass <3 ≠ 0 at a high-energy cuto� scale due to the Yukawa coupling
in Eq. (4.8) explicitly breaking chiral symmetry. Additionally, the D quark is also required to
contribute to this explicit jSB, as follows from the analysis of the meson mass spectrum (for
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4.2. E�ective Lepton–�ark Operator

Figure 4.1: The 1-loop contribution<1-loop
a of the operator OD7 to the Majorana neutrino mass.

instance, see Ref. [118] and references therein). Here, we adopted the value <D = 0 above
the electroweak scale. In Ref. [119], it was argued that at the QCD scale ΛQCD ∼ 100MeV
the next-to-leading-order terms of the chiral Lagrangian together with the QCD instanton are
able to induce a contribution to theD-quark mass which explicitly breaks chiral symmetry. The
resulting e�ective mass is compatible with the lattice-QCD value<QCD

D = (2.78 ± 0.19)MeV.
The e�ective D-quark mass due to these two sources was estimated to give the result [118]:

<
jSB
D = (2.33 ± 0.20)MeV. (4.14)

According to the authors, this value is compatible with the light-meson masses. Nevertheless,
there is certain tension with the lattice-QCD result. In our opinion, this situation requires
further study and clari�cation. Having this point in mind, we adopt the setup from Eq. (4.9)
and examine its phenomenological consequences.

Before we proceed, the following important comment is in order. In our scenario, it is
crucial that a nonzero e�ective mass<e�

D of the D quark is generated at a low energy scale of
the order of the typical QCD scale ΛQCD ∼ 100MeV. In fact, if the D quark acquires a mass
<e�
D ≠ 0, regardless of its origin, one can close the& D' legs of the operator OD7 via theD-quark

mass term<e�
D , as shown in Fig. 4.1.1 This will lead to a 1-loop contribution to the Majorana

neutrino mass, which can be estimated as follows:

<
1-loop
a ∼ 1

√
2

6D
UV

4c2 E
1
Λ3 <

e�
D Λ2

D, (4.15)

where ΛD is the scale at which<e�
D is generated. In our model, we have<e�

D =<c
D +<

jSB
D . Both

of these contributions are generated at a scale around ΛQCD ∼ 100MeV. At higher energy
scales, they are rapidly decreasing (as any nonperturbative QCD e�ect), providing a cuto� in
the loop integral. Thus, in <1-loop

a we substitute ΛD ↦→ ΛQCD and <e�
D ↦→ <c

D to obtain the
following Majorana mass matrix including the 1-loop correction:

"UV ≈
6UV√
2
E

(l
Λ

)3 (
1 + Us

16c2

)
. (4.16)

The 1-loop correction is small and irrelevant for our estimations based on the mass-matrix
elements "UV with 6UV = 6D

UV
(let us recall that in our setup we have 63

UV
= 0). It is

worth mentioning that, in general, the loop could present a problem. In the case when
ΛD ∼ Λ ∼ 1 TeV, its contribution to the neutrino mass would be unacceptably large:
<a ∼ 103–105 eV. As we have already shown, our setup is free of this problem.

1We are thankful to Martin Hirsch for drawing our attention to this fact.
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4.3 Majorana Mass Matrix

The Majorana mass term for three active left-handed neutrino types explicitly reads [40]:

LM = −1
2

∑
UV

a�
U!
"UV aV! + H.c. = −

1
2

∑
8

<8 a8 a8, (4.17)

where aU (G) (U, V = 4, `, g) are the �avor-neutrino �elds, which participate in the SM weak
interaction via exchange the, and / bosons, and a8 (G) (8 = 1, 2, 3) are the massive-neutrino
�elds with de�nite masses<8 , which satisfy the Majorana condition: a�8 = a8 (witha�

8!,'
= a8',!).

Diagonalization of the complex symmetric 3 × 3 Majorana mass matrix " requires a
unitary transformation between the left-handed �avor- and massive-neutrino �elds:

aU! =
∑
8

*U8 a8! . (4.18)

Here,*U8 are elements of the unitary 3×3 Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton
mixing matrix * , which can be parameterized by three mixing angles \12, \13, \23, one Dirac
phase X , and two Majorana phases U1, U2 (B8 9 ≡ sin\8 9 , 28 9 ≡ cos\8 9 ):

* =
©«
1 0 0
0 223 B23
0 −B23 223

ª®¬ ©«
213 0 B13 4

−8X

0 1 0
−B1348X 0 223

ª®¬ ©«
212 B12 0
−B12 212 0
0 0 1

ª®¬ ©«
48U1 0 0
0 48U2 0
0 0 1

ª®¬
=

©«
212 213 4

8U1 B12 213 4
8U2 B13 4

−8X

(−B12 223 − 212 B13 B23 48X ) 48U1 (212 223 − B12 B13 B23 48X ) 48U2 213 B23
(B12 B23 − 212 B13 223 48X ) 48U1 (−212 B23 − B12 B13 223 48X ) 48U2 213 223

ª®¬ . (4.19)

In turn, the neutrino masses <8 (8 = 1, 2, 3) can be parameterized by the lightest-
neutrino mass<0 (a free parameter) and the mass-squared di�erences Δ<2

8 9 = <
2
8 −<2

9 (with
Δ<2

21 and |Δ<2
31 | ≈ |Δ<2

23 | known from the neutrino-oscillation experiments), opening the
possibility of two types of the neutrino-mass ordering:
• Normal hierarchy (NH) with<1 < <2 �<3:

<1 =<0,

<2 =
√
<2

0 + Δ<2
21,

<3 =
√
<2

0 + Δ<2
31. (4.20)

• Inverted hierarchy (IH) with<3 �<1 < <2:

<1 =
√
<2

0 − Δ<2
31,

<2 =
√
<2

0 + Δ<2
21 − Δ<2

31,

<3 =<0. (4.21)

Elements "UV = "VU of the Majorana mass matrix " = * ∗�* †, where
� = diag(<1, <2, <3), can be then expressed in terms of the mixing parameters and neutrino
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masses as follows:

"44 = 2
2
12 2

2
13 4
−82U1<1 + B212 2213 4−82U2<2 + B213 482X<3,

"4` = −212 213 (B12 223 + 212 B13 B23 4−8X ) 4−82U1<1 + B12 213 (212 223 − B12 B13 B23 4−8X ) 4−82U2<2

+ B13 213 B23 48X<3,

"4g = 212 213 (B12 B23 − 212 B13 223 4−8X ) 4−82U1<1 − B12 213 (212 B23 + B12 B13 223 4−8X ) 4−82U2<2

+ B13 213 223 48X<3,

"`` = (B12 223 + 212 B13 B23 4−8X )2 4−82U1<1 + (212 223 − B12 B13 B23 4−8X )2 4−82U2<2 + 2213 B223<3,

"`g = −(B12 B23 − 212 B13 223 4−8X ) (B12 223 + 212 B13 B23 4−8X ) 4−82U1<1

− (212 B23 + B12 B13 223 4−8X ) (212 223 − B12 B13 B23 4−8X ) 4−82U2<2 + 2213 B23 223<3,

"gg = (B12 B23 − 212 B13 223 4−8X )2 4−82U1<1 + (212 B23 + B12 B13 223 4−8X )2 4−82U2<2 + 2213 2223<3.

(4.22)

4.4 LNV Neutrino–Quark Interactions

Let us derive phenomenological constraints on the coupling constants of the e�ective
LNV lepton–quark operator OD,37 predicted by the QCSM. It is convenient to introduce the
dimensionless parameters:

YUV =
6UV E/Λ3

�F
, (4.23)

which measure the relative strength of the nonstandard contact four-fermion neutrino–quark
interactions L7 with respect to the Fermi constant �F ≈ 1.166 × 10−5 GeV−2 of the SM weak
interaction, where 6UV = 6D

UV
(in our setup, we set 63

UV
= 0).

Assuming the dominance of the QCSM in the generation of Majorana neutrino mass,
we can extract limits on the LNV lepton–quark parameters |YUV | from the neutrino-oscillation
data, since these are directly related to the elements of the Majorana mass matrix through
Eq. (4.4):

YUV = −
"UV/〈@@〉
�F/
√
2
. (4.24)

In Fig. 4.2, we show the regions of allowed values of the LNV lepton–quark parameters |YUV |
as functions of the lightest-neutrino mass<0 for the normal (NH) and inverted (IH) hierarchy
of neutrino masses, obtained by varying the Dirac and Majorana phases in the intervals
X ∈ [0, 2c) and U1,2 ∈ [0, c), respectively, and assuming the best-�t values of the neutrino-
oscillation parameters \12, \13, \23, and Δ<2

21, Δ<
2
31 from Ref. [120], which are summarized in

Table 4.1.
The most stringent upper bound on the sum of neutrino masses, obtained from model-

dependent cosmological measurements of the CMB anisotropies by Planck [26, 27]:

Σ =
∑
8

<8 < 0.12 eV at 95%C.L., (4.25)

implies the following constraints on the lightest-neutrino mass: <0 < 30.1meV for the NH
and<0 < 15.9meV for the IH. From these plots, it is possible to extract the intervals of allowed

79



4. �ark-Condensate Seesaw Mechanism for Majorana Neutrino Mass
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Figure 4.2: The LNV lepton–quark parameters |YUV | as functions of the lightest-neutrino mass
<0 for the normal (NH) and inverted (IH) hierarchy of neutrino masses, assuming the best-�t
values of the neutrino-oscillation parameters [120]. The vertical bands represent the regions
excluded by the Planck limit [26, 27]:

∑
8<8 < 0.12 eV at 95%C.L. (<0 < 30.1meV for the NH

and<0 < 15.9meV for the IH).

values of the parameters |YUV | = |YVU | for both types of the neutrino-mass orderings:

NH: |YUV | ∈
©«
(0, 1.7) (0, 1.3) (0, 1.5)

(0.9, 2.4) (0.7, 2.4)
(0.5, 2.3)

ª®¬ × 10−4,
IH: |YUV | ∈

©«
(0.9, 2.7) (0, 1.9) (0, 2.1)

(0, 1.7) (0.1, 1.8)
(0, 1.9)

ª®¬ × 10−4. (4.26)

To the best of our knowledge, the only analysis of phenomenological limits on the strength Y
of LNV lepton–quark interactions existing in the literature is given in Refs. [114, 121], where
the supernova SN 1987A and meson decays were studied. In the former case, these limits on
Y . 10−3 are by one order of magnitude weaker than our limits on |YUV | . 10−4. As to the
LNV meson decays, no reasonable limits on Y could be extracted from the experimental data.
Indeed, considering as an example the LNV decay  + −→ c− + `+ + `+, one �nds a branching
ratio [122]: BR( + −→ c− + `+ + `+) ∼ |Y`` |2 × 10−30, which should be compared with the
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Table 4.1: Best-�t values and 1f range of the neutrino-oscillation parameters from the global
analysis of the neutrino-oscillation data [120].

Parameter Best �t ± 1f

NH IH

sin2 \12 0.320+0.020−0.016 0.320+0.020−0.016
sin2 \13 0.02160+0.00083−0.00069 0.02220+0.00074−0.00076
sin2 \23 0.547+0.020−0.030 0.551+0.018−0.030
X [c] 1.21+0.21−0.15 1.56+0.13−0.15
Δ<2

21 [10−5 eV2] 7.55+0.20−0.16 7.55+0.20−0.16
Δ<2

31 [10−3 eV2] 2.50+0.03−0.03 −2.42+0.04−0.03

current experimental upper bound [1]: BR( + −→ c− + `+ + `+) < 4.2 × 10−11 at 90%C.L. Of
course, this gives no practical information on the parameter |Y`` |.

4.5 Quark Condensate

After the EWSB, the operator OD7 generates the following e�ective LNV interactions which
contribute to 0aVV decay:

L7 =
�F√
2
Y44 (4! a�4! D' 3! + a�4! a4! D' D!) + H.c. (4.27)

In Fig. 4.3, we present the leading-order (tree-level) Feynman diagrams for the amplitudes
of 0aVV decay originating from these two terms. In Fig. 4.3(a), we show the contribution of
the �rst term combined with the SM weak CC interaction, in which the Majorana-neutrino
propagator∝ %! (/@+<8) %' = /@ with mass<8 and momentum@ is independent of the neutrino-
mass term due to helicity matching in the two vertices. Clearly, this a manifestation of the fact
that the LNV by two units (Δ! = 2) is not provided by the neutrino mass, but rather solely by
the upper interaction vertex. In Fig. 4.3(b), we show the additional contribution of the second
term via the neutrino-mass mechanism, which occurs due to the jSB caused by the formation
of the quark condensate. In our QCSM model, this term is the only source of neutrino mass.
However, there is a subtlety which must be taken into account: 0aVV decay is a process which
takes place in nuclear environment, where the chiral quark condensate 〈@@〉# is reduced in
comparison with the vacuum value 〈@@〉 by a factor of ∼ 1/2. Below, we investigate the e�ect
of nuclear environment on the formation of the light-quark condensate in more detail.

Chiral symmetry is approximate invariance of the QCD Lagrangian LQCD under the
global SU(3)! × SU(3)' gauge transformations, which separately act on the left-handed @! (G)
and right-handed @' (G) chiral components of the quark �elds @(G) = @! (G) + @' (G) in the
space of the lightest-quark �avors (@ = D, 3, B). Below the chiral scale 4c 5c ∼ 1GeV, where
5c = 92MeV is the pion decay constant, this symmetry is spontaneously broken due to the
formation of a strong condensate 〈@@〉 ≡ 〈0|@@ |0〉 ≠ 0 of scalar quark–antiquark pairs @@ in
the QCD ground state (vacuum) |0〉. The corresponding Goldstone bosons associated with
such a broken symmetry form the octet of light pseudoscalar mesons c±, c0, [,  ±,  0, and
 
0
. In addition, chiral symmetry is also broken explicitly due to the presence of the light
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Figure 4.3: Contributions (a) and (b) of the �rst and second term in the e�ective interaction
Lagrangian L7 originating from the LNV lepton–quark operator OD7 to 0aVV decay.

current-quark mass terms in the QCD Hamiltonian:

HQCD =<D DD +<3 33 +<B BB + . . .

=
1
2
(<D +<3) (DD + 33) +

1
2
(<D −<3) (DD − 33) +<B BB + · · · = 2<@ @@ + . . . , (4.28)

where<@ =
1
2 (<D +<3) is the average D- and 3-quark mass, @@ = 1

2 (DD + 33) is the isospin-
conserving scalar current, and we have separated the singlet and triplet quark combinations
while retaining the isospin singlet and considering only the lightest quarks D and 3 . The
(pseudo-)Goldstone bosons acquire their nonzero masses precisely as a result of this explicitly
broken symmetry (in the chiral limit: <D,3,B → 0, these mesons become massless as well).
In the QCSM model, the mass <D of the D quark, which is responsible for the explicit jSB,
does not originate from the EWSB like all other current-quark masses<2,C,3,B,1 , but rather from
nonperturbative QCD behavior, and thus it is implied that: <D =<

jSB
D .

Using the Hellmann–Feynman theorem, it is possible to study the quark condensate in
nuclear medium in a model-independent way up to the 1st order in nucleon density [123]:

〈k (_) | d
d_
� (_) |k (_)〉 = d

d_
� (_), (4.29)

where |k (_)〉 and � (_) are normalized energy eigenstates and energy eigenvalues of a
Hamiltonian � (_) with explicit dependence on a continuous parameter _, respectively.
Choosing as an input _ =<@ and � (_) =

∫
d3®GHQCD(<@), we get:

2<@ 〈k (<@) |
∫

d3®G @@ |k (<@)〉 =<@

d� (<@)
d<@

, (4.30)

where both sides of this equation were multiplied by<@ in order to ensure renormalization-
group invariance [124]. Let us consider two di�erent eigenstates |k (<@)〉, namely the QCD
vacuum |0〉 and the ground state |d# 〉 of nuclear matter at rest with uniform nucleon density
d# . Subtracting the two expressions from one another, we obtain:

2<@ (〈d# |@@ |d# 〉 − 〈0|@@ |0〉) =<@

dE#
d<@

, (4.31)
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where E# is the energy density of nuclear matter. Provided that the kinetic and potential
energies of nucleons are small, this quantity is proportional to the nucleon mass<# :

E# =<# d# . (4.32)

On the other hand, there is a current-algebra relation [125]:

f# =<@

d<#

d<@

, (4.33)

where f# is the pion–nucleon sigma term, which measures the shift of the nucleon mass<#

from the chiral limit <D,3 → 0. Within the approximation of independent nucleons, we can
employ the Gell-Mann–Oakes–Renner relation [117]:

2<@ 〈@@〉 = −5 2c <2
c , (4.34)

which relates the quark parameters to the pion decay constant 5c and the charged-pion
mass <c , where the former comes from the Bethe–Salpeter wave function Ψ(G1, G2) of two
constituent quarks in a bound state after closing two lines of a four-fermion quark vertex into
a loop: 5c = Ψ(0).

In this way, we arrive at a model-independent formula which characterizes the degree
of partial restoration of chiral symmetry in dense nuclear medium [123]:

〈@@〉#
〈@@〉 = 1 + f# d#

2<@ 〈@@〉
= 1 − f# d#

5 2c <
2
c

, (4.35)

where we have denoted as 〈@@〉# ≡ 〈d# |@@ |d# 〉 the in-medium quark condensate, which
decreases as a linear function of the surrounding nuclear density d# . In order to estimate
the nuclear-matter e�ect on the quark condensate, we adopt the usual value of the nucleon
density d# = d? + d= = 0.17 fm−3 (a sum of the proton d? and neutron d= densities), the large
value of the sigma term f# = 64 ± 7MeV obtained from the recent partial-wave analysis of
pion–nucleon scattering [126], the pion decay constant 5c = 92MeV (sometimes de�ned as
�c =

√
2 5c = 130MeV), and the charged-pion mass<c = 140MeV:

〈@@〉# = 0.5 〈@@〉. (4.36)

This result demonstrates a signi�cant suppression of the quark condensate in nuclear matter.
The quantity 〈@@〉# can be interpreted as the sum of scalar densities of the D (or 3) quarks
in vacuum and inside nucleons. The nucleon component of 〈@@〉# was estimated to about
(100MeV)3 [121]. The sign of the nucleon component is opposite to the sign of the vacuum
component and the latter is also numerically higher.

4.6 Neutrinoless Double-Beta Decay

In the QCSM model, the 0aVV decay rate can be calculated from the e�ective V-decay
Hamiltonian which contains terms of both the nonstandard LNV (pseudo)scalar lepton–quark
interaction and the SM weak interaction:

HV =
�V√
2
Y44

4
4 (1 + W5) a�4 D (1 − W5) 3 +

�V√
2
4 W` (1 − W5) a4 D W` (1 − W5) 3 + H.c., (4.37)
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where the V-decay constant �V = �F cos\C includes the Fermi constant �F together with the
Cabibbo angle \C = 13◦ due to weak D- and 3-quark mixing.

In higher-order perturbations of the strong and electromagnetic interactions, the quark
currents are converted into nucleon currents:

〈? (? ′) |D (1 − W5) 3 |=(?)〉 = ? (? ′) [6( (@2) − 6%( (@2) W5] =(?),

〈? (? ′) |D W` (1 − W5) 3 |=(?)〉 = ? (? ′)
[
6+ (@2) W` − 8

6" (@2)
2<?

f`a @a − 6� (@2) W`W5 +
6% (@2)
2<?

W5 @`
]
=(?). (4.38)

Here, ? and ?′ are the four-momenta of the neutron = and proton ? , respectively, @ = ?′ − ? is
the momentum transfer with@2 = ®@ · ®@ (i.e., a small energy transfer in the nucleon vertex can be
safely neglected),<? = 938GeV is the proton mass, and 60 (@2) (where 0 = (, + , ", �, %(, %

refers to scalar, vector, weak magnetism, axial vector, pseudoscalar, and induced pseudoscalar,
respectively) are the @2-dependent nucleon form factors, with 6(,+ ,",� (@2) parameterized in
the dipole form, 6% (@2) in the dipole × monopole form, and the induced pseudoscalar form
factor 6% (@2) based on the partially conserved axial-vector current (PCAC) hypothesis [127]:

6(,+ ," (@2) =
6(,+ ,"

(1 + @2/<2
+
)2
,

6� (@2) =
6�

(1 + @2/<2
�
)2
,

6%( (@2) =
6%(

(1 + @2/<2
+
)2

1
1 + @2/<2

c

,

6% (@2) =
6�

(1 + @2/<2
�
)2

1
1 + @2/<2

c

4<2
?

<2
c

(
1 −

<2
c

<2
�

)
, (4.39)

where 60 = 60 (0) are the experimentally measured renormalization constants which
determine the form factors 60 (@2) at zero momentum transfer [128, 129]: 6( = 6+ = 1,
6" = `?−`= = 3.70 (i.e., the isovector anomalous magnetic moment of the proton and neutron),
6� = 1.27, and 6%( = 349, while<+ = 0.84GeV and<� = 1.09GeV, and<c = 138MeV is the
pion mass.

In order to obtain the 0aVV-decay NMEs within the QCSM model, we employ the
nonrelativistic expansion of the nucleon matrix elements in terms of the ( − % (scalar minus
pseudoscalar) and + −� (vector minus axial vector) nuclear currents:

�(−% ( ®G) =
�∑
==1

g=+ �(−% ( ®@) X ( ®G − ®A=),

�
`

+−� ( ®G) =
�∑
==1

g=+ �
`

+−� ( ®@) X ( ®G − ®A=). (4.40)

Here, the summation is performed over all of the � nucleons, g=+ = 1
2 (g1 + 8 g2) =

( 0 1
0 0

)
and g=− = 1

2 (g1 − 8 g2) =
( 0 0
1 0

)
are the raising and lowering operators acting on the nucleon

isodoublet ( ?= ) of the =th nucleon, respectively, where g: (: = 1, 2, 3) are the Pauli matrices in
the proton–neutron isospin space, ®A= is the coordinate of the =th nucleon, and the momentum-
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space nuclear currents read:

�(−% ( ®@) = 6( (@2) 1= −
6%( (@2)
2<?

®f= · ®@,

� 0+−� ( ®@) = 6+ (@2) 1=,

®�+−� ( ®@) = −8
6" (@2)
2<?

®f= × ®@ − 6� (@2) ®f= +
6% (@2)
4<2

?

( ®f= · ®@) ®@, (4.41)

where 1= is the 2 × 2 identity matrix and ®f= = (f1, f2, f3) is the vector of Pauli matrices,
both operating in the spin space of the =th nucleon. The nucleon-recoil terms associated with
the initial and �nal vertices in the 0aVV-decay transition amplitude contain the nucleon-recoil
momenta ®@= and ®@′= , respectively, which are opposite in direction and roughly equal to the
neutrino momentum ®? in magnitude [50]:

®@= = −®@′= ≈ ®?. (4.42)

In the transition amplitude, only the term linear in Y44 is taken into account. The main
contribution to the corresponding NME for ground-state 0+ −→ 0+ nuclear transition is given
by combinations of the %( term with the� and % terms of the nuclear currents and the spatial
component of the neutrino propagator, proportional to the neutrino momentum ®? .

Within these approximations, the total 0aVV decay rate becomes:

Γ0aVV = ln 2�0aVV (/, &)
����6�"0aVV

Y Y44 + 62�"
0aVV
a

<VV

<4

����2 , (4.43)

where�0aVV (/, &) is the kinematical two-body phase-space factor of the �nal-state electrons
for a double-V-decay isotope A

ZX with total released kinetic energy & , 6� = 1.27 is the
unquenched axial-vector weak coupling constant, "0aVV

Y and "0aVV
a are the NMEs associated

with the QCSM and standard 0aVV-decay mechanisms shown in Figs. 4.3(a) and 4.3(b),
respectively, which depend on the nuclear structure of the particular isotopes A

ZX, A
Z+1X, and

A
Z+2X under consideration,<VV is the e�ective Majorana neutrino mass:

<VV =
∑
8

* 2
48<8, (4.44)

which is a complex combination of the elements*48 from the �rst row of the PMNS matrix*
and the neutrino masses<8 (8 = 1, 2, 3), and<4 = 0.511MeV is the electron mass.

By comparing<VV with Eq. (4.22), we see that it is equal to the complex conjugate of the
�rst element of the Majorana mass matrix:<VV = "

∗
44 . However, since 0aVV decay is a process

which takes place in nuclear matter rather than vacuum, the neutrino masses<8 entering<VV ,
which are generated by the nonzero value of the quark condensate, are suppressed by the same
amount in nuclear medium: <8 ↦→ 〈@@〉#

〈@@〉 <8 = 0.5<8 . Thus, the QCSM predicts the following
relationship between the e�ective Majorana neutrino mass<VV and the Majorana mass matrix
"UV :

<VV =
〈@@〉#
〈@@〉 "

∗
44 . (4.45)

This �nding contrasts with conventional neutrino-mass models, in which the e�ective
Majorana neutrino mass is identical to the complex-conjugated �rst element of the Majorana
mass matrix expressed in the diagonal charged-lepton basis.
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The explicit form of the standard NME "
0aVV
a can be found, e.g., in Refs. [130, 65],

while the nonstandard NME "0aVV
Y is presented below. This NME takes the form of a sum of

the Gamow–Teller (GT) and tensor () ) parts:

"
0aVV
Y = "

0aVV
Y,GT +"

0aVV
a,)

. (4.46)

In the framework of the quasiparticle random-phase approximation (QRPA) nuclear-structure
method, the NMEs "0aVV

Y and "0aVV
a are written as sums over the virtual intermediate states

labeled by their angular momenta and parities � c and indices :8 and : 5 . Using the notation
common in theory of nuclear structure, for the NMEs "0aVV

Y,0 (0 = GT, ) ) we have [130, 65]:

"
0aVV
Y,0 =

∑
�c ,:8 ,:5 ,J

∑
?,=,? ′,=′

(−1) 9=+ 9? ′+�+J
√
2J + 1

×
{
9? 9= �

9=′ 9? ′ J

}
〈? (1), ?′(2); J‖OY,0‖=(1), =′(2); J〉

× 〈0+
5
‖ [�2†

? ′ 2̃=′] � ‖ �
c : 5 〉 〈� c : 5 |� c :8〉 〈� c :8 ‖ [2†? 2̃=] � ‖0+8 〉 . (4.47)

Here, we have introduced the Wigner 6- 9 symbol, which is a function of the underlying
Clebsch–Gordan coe�cients for addition of angular momenta [131], |0+8 〉 and |0+

5
〉 are the

initial and �nal nuclear states for a ground-state 0+ −→ 0+ transition, respectively, 2†? 2̃= are
the one-body operators (where tilde denotes the operation of time reversal: C ↦→ −C ), and
OY,0 are the corresponding two-body operators. The reduced matrix elements of the one-body
operators 2†? 2̃= depend on the so-called Bardeen–Cooper–Schrie�er coe�cients D8 and E 9 as
well as on the QRPA vectors - and . . On the other hand, the two-body operators OY,0 contain
the neutrino potentials, spin and isospin operators, and the RPA energies �:8 ,:5

�c
:

OY,GT(A12, �:�c ) = g+(1) g+(2)�Y,GT(A12, �
:
�c ) f12,

OY,) (A12, �:�c ) = g+(1) g+(2)�Y,) (A12, �
:
�c ) (12, (4.48)

where ®A1 and ®A2 are the coordinates of the nucleons undergoing 0aVV decay, ®A12 = ®A1 − ®A2,
A12 ≡ |®A12 |, Â12 ≡ ®A12/A12, f12 = ®f1 · ®f2, (12 = 3 ( ®f1 · Â12) ( ®f2 · Â12) − f12, and the neutrino
potentials as integrals over the exchanged momentum @ are de�ned as follows:

�Y,0 (A12, �:�c ) =
2
c
'

∞∫
0

50 (?A12)
ℎY (?2) ? d?

? + �:
�c
− 1

2 (�8 + � 5 )
. (4.49)

Here, 5GT(@A12) = 90(@A12) and 5) (@A12) = − 92(@A12) are spherical Bessel functions and the
functions ℎY (?2) explicitly read:

ℎY (?2) =
1
12

6� (?2) � (3)% (?
2)

6�

?2

<4<?

(
1 − ?2

?2 +<2
c

)
. (4.50)

The neutrino potentials �Y,0 (A12, �:�c ) depend explicitly—although rather weakly—on the
energies �:

�c
of the virtual intermediate states.

Finally, we obtain a formula for the inverse 0aVV-decay half-life in the QCSM model:

() 0aVV
1/2 )

−1 = 62��
0aVV (/, &) |"0aVV

Y |2
����Y44 + 5NME

<VV

<4

����2
= 62��

0aVV (/, &) |"0aVV
Y |2 |Y44 |2 |1 + 5NME 0a |2, (4.51)
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where we have introduced the nuclear-structure factor 5NME de�ned as a ratio between the
two NMEs as well as a constant 0a :

5NME = 6�
"

0aVV
a

"
0aVV
Y

,

<VV = 0a<4 Y44 . (4.52)

Using Eqs. (4.24) and (4.45), the latter can be expressed as follows:

0a =
<VV

Y44<4

= −"
∗
44

"44

〈@@〉# �F√
2<4

, (4.53)

with the absolute value:
|0a | = 1.83 × 10−4. (4.54)

Given �xed experimental lower bounds on the 0aVV-decay half-lives) 0aVV
1/2 , we derived

conservative (worst-case) upper bounds on the parameters |Y44 |. Since 5NME and 0a are complex
numbers, |Y44 | reaches its maximum possible value if |1+ 5NME 0a | is at its minimum, i.e., if there
is a destructive interference between the two terms due to a total phase factor 48c = −1:

|1 + 5NME 0a | = |1 − |5NME | |0a | |. (4.55)

In Table 4.2, we present the most important double-V-decay isotopes A
ZX, their corresponding

phase-space factors �0aVV (/, &) [49], NMEs "0aVV
Y and "

0aVV
a calculated within the QRPA

method with partial restoration of isospin symmetry while assuming the Argonne v18
nucleon-nucleon potential and the unquenched value of the axial-vector weak coupling
constant 6� = 1.27 [65], the nuclear-structure factors 5NME = 6�"

0aVV
a /"0aVV

Y , the present
most stringent experimental lower bounds on the 0aVV-decay half-lives ) 0aVV

1/2 , and the
corresponding upper bounds on the LNV lepton–quark parameter Y44 . We see that the NME
"

0aVV
Y is larger than"0aVV

a by a factor of about 200 due to the additional factor of ?/(2<4) in the
neutrino potentials�Y,0 (A12, �:�c ). It is worth noting that within the considered approximations
the NME "0aVV

Y does not depend on the axial-vector weak coupling constant 6�.

4.7 Limits on Neutrino Mass

From the experiments searching for 0aVV decay, it is possible to extract phenomenological
limits on the neutrino masses within the QCSM model. So far, the most stringent lower bound
on the 0aVV-decay half-life has been measured for the isotope 136

54Xe by the KamLAND-Zen
experiment [31]:

)
0aVV
1/2 > 1.07 × 1026 yr at 90%C.L. (4.56)

In this case, the term 5NME 0a is found to be very small (and similarly for all other isotopes):

|5NME | |0a | = 2 × 10−7 � 1. (4.57)

Thus, the nonstandard mechanism from Fig. 4.3(a) gives a dominant contribution to 0aVV
decay in the QCSM scenario, while the standard mechanism from Fig. 4.3(b) can be neglected
for most practical purposes.

87



4. �ark-Condensate Seesaw Mechanism for Majorana Neutrino Mass

Table 4.2: The most important double-V-decay isotopes A
ZX, their corresponding phase-space

factors �0aVV (/, &) [49], NMEs "0aVV
Y and "0aVV

a calculated within the QRPA method with
partial restoration of isospin symmetry while assuming the Argonne v18 nucleon-nucleon
potential and the unquenched value of the axial-vector weak coupling constant 6� = 1.27 [65],
the nuclear-structure factors 5NME = 6�"

0aVV
a /"0aVV

Y , the present most stringent experimental
lower bounds on the 0aVV-decay half-lives ) 0aVV

1/2 , and the corresponding upper bounds on the
LNV lepton–quark parameter Y44 .

A
ZX �0aVV [yr−1] |"0aVV

Y | |"0aVV
a | |5NME | )

0aVV
1/2 [yr] |Y44 |

76
32Ge 0.237 × 10−14 5140 5.16 1.27 × 10−3 > 8.0 × 1025 [72] < 3.52 × 10−10
82
34Se 1.018 × 10−14 4702 4.64 1.25 × 10−3 > 2.4 × 1024 [132] < 1.07 × 10−9
100
42Mo 1.595 × 10−14 5751 5.40 1.19 × 10−3 > 1.1 × 1024 [69] < 1.03 × 10−9
116
48Cd 1.673 × 10−14 3232 4.04 1.59 × 10−3 > 2.2 × 1023 [133] < 4.02 × 10−9
130
52Te 1.425 × 10−14 4530 3.89 1.09 × 10−3 > 3.2 × 1025 [134] < 2.57 × 10−10
136
54Xe 1.462 × 10−14 2530 2.18 1.09 × 10−3 > 1.07 × 1026 [31] < 2.49 × 10−10

For the isotope 136
54Xe, we also obtain the most stringent limit on the LNV lepton–quark

parameter:
|Y44 | < 2.49 × 10−10. (4.58)

Via Eq. (4.52), this limit translates into the following upper bound on the e�ective Majorana
neutrino mass, which characterizes the less relevant 0aVV-decay mechanism from Fig. 4.3(b):

|<VV | < 2.33 × 10−5meV. (4.59)

Comparing the limit in Eq. (4.58) with the regions of allowed values of the parameter |Y44 | for
the NH and IH of neutrino masses in the �rst plot of Fig. 4.2, which was derived from the
neutrino-oscillation data, we conclude that the QCSM predicts the NH of the neutrino-mass
spectrum. This is in agreement with the recent global analysis of the neutrino-oscillation
parameters in Ref. [120], which favors the NH at a statistical signi�cance of more than 3f .

In addition, we observe that lightest-neutrino mass is constrained to a relatively narrow
interval which could be soon reached by cosmological measurements:

2.65meV < <0 =<1 < 6.84meV. (4.60)

Using the 1f ranges of the neutrino-oscillation parameters sin2 \12, sin2 \13 and Δ<2
21, Δ<

2
31

from Ref. [120], which are listed in Table 4.1, we derive the corresponding ranges of the other
two neutrino masses obeying the NH:

9.0meV < <2 =
√
<2

0 + Δ<2
21 < 11.2meV,

49.8meV < <3 =
√
<2

0 + Δ<2
31 < 50.8meV. (4.61)

From these ranges, we �nd the following range of the cosmological parameter given as a sum
of the neutrino masses, which is consistent with the Planck limit from Eq. (4.25) [26, 27]:

61.4meV < Σ =
∑
8

<8 < 68.8meV. (4.62)
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Finally, we obtain the QCSM prediction for the e�ective electron-neutrino mass measured in
tritium (31H) V−-decay experiments:

9.0meV < <V =

√∑
8

|*48 |2<2
8
< 11.4meV, (4.63)

which is currently beyond the reach of the present and near-future experiments (for instance,
some recent reviews can be found in Refs. [135, 30]).

Since |Y44 | is very small, the range in Eq. (4.60) was calculated as the set of<0 values
for which the minimum of the parameter |"44 | as a function of the Majorana phases U1 and U2
is equal to zero. The �rst element "44 of the Majorana mass matrix from Eq. (4.22):

"44 =

3∑
8=1

A8 4
8i8 (4.64)

is a sum of three complex numbers with polar coordinates A8 = |*48 |2<8 (8 = 1, 2, 3) and
i1 = −2U1, i2 = −2U2, i3 = 0 in the complex plane ℂ (one of the three phases, say the Dirac
phase X , is redundant in our study of the modulus |"44 |):

A1 = 2
2
12 2

2
13<1,

A2 = B
2
12 2

2
13<2,

A3 = B
2
13<3. (4.65)

It contains the neutrino-oscillation parameters \12, \13, Δ<2
21, Δ<

2
31 with best-�t values from

Ref. [120], which are summarized in Table 4.1, and can be treated as function of the free
variables U1, U2,<0 as well as hierarchy of the neutrino masses (NH vs. IH). From the limit on
|Y44 | in Eq. (4.58), the QCSM predicts a very small value:

|"44 | < 4.65 × 10−5meV, (4.66)

which can be treated as zero. Thus, the range of allowed <0 values from Eq. (4.60) can be
found from the condition: minU1,U2 |"44 | = 0, which is equivalent to the requirement that the
three terms A8 48i8 which constitute "44 must satisfy the triangle inequality:

|A1 − A2 | ≤ A3 ≤ A1 + A2, (4.67)

In Fig. 4.4, we show the regions of allowed values of the parameter |"44 | as a function of the
lightest-neutrino mass <0 for the NH and IH of neutrino masses, obtained by varying the
Majorana phases in the interval U1,2 ∈ [0, c) and assuming the best-�t values of the neutrino-
oscillation parameters from the global analysis of the neutrino-oscillation data [120]. We also
indicate the regions excluded by the cosmological Planck limit [26, 27]:

∑
8<8 < 0.12 eV at

95%C.L., which implies that: <0 < 30.1meV for the NH and<0 < 15.9meV for the IH.
In Fig. 4.5, we illustrate a geometrical method to constrain a Majorana phase, say U1, for

�xed values of the lightest-neutrino mass<0 (which determines the radii A8 ) and the parameter
|"44 | ≡ d while the other Majorana phase U2 ∈ [0, c) is free to take arbitrary value and form
a circle with radius A2 ≡ '. A given value of U1 is allowed if and only if the sum I =

∑3
8=1 A8 4

8i8

can achieve a modulus equal to |"44 |: |I | = d , i.e., if the circles with radii d and ' intersect.
Again, this condition is equivalent to the triangle inequality:

|3 − d | ≤ ' ≤ 3 + ', (4.68)
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Figure 4.4: Modulus |"44 | of the �rst element of the Majorana mass matrix as a function of
the lightest-neutrino mass <0 for the normal (NH) and inverted (IH) hierarchy of neutrino
masses, assuming the best-�t values of the neutrino-oscillation parameters [120]. The vertical
bands represent the regions excluded by the Planck limit [26, 27]:

∑
8<8 < 0.12 eV at 95%C.L.

(<0 < 30.1meV for the NH and<0 < 15.9meV for the IH).

where the distance between the centers of the two circles equals:

3 =
√
(A3 + A1 cosi1)2 + (A1 sini1)2 =

√
A 23 + 2 A3 A1 cosi1 + A 21 . (4.69)

By swapping the indices 1 ↔ 2, the same method can be used to constrain the Majorana
phase U2, and thus the conditions which identify the allowed values of U1,2 for �xed <0 and
|"44 | read:

U1:
����√A 23 + 2 A3 A1 cosi1 + A 21 − |"44 |

���� ≤ A2 ≤ √
A 23 + 2 A3 A1 cosi1 + A 21 + |"44 |,

U2:
����√A 23 + 2 A3 A2 cosi2 + A 22 − |"44 |

���� ≤ A1 ≤ √
A 23 + 2 A3 A2 cosi2 + A 22 + |"44 |. (4.70)

In Fig. 4.6, we show the regions of allowed values of the Majorana phasesU1,2 as functions of the
parameter |"44 | for �xed values of the lightest-neutrino mass<0 = 2.65, 3, 4, 5, 6, 6.84meV.
CP symmetry is conserved if each of the Majorana phases satis�es: U1,2 = : c

2 (: ∈ ℤ), i.e.,
U1,2 = 0 (bottom of the plot), U1,2 = c

2 (the dashed line in the middle), and U1,2 = c (top of the
plot). For |"44 | → 0, both Majorana phases U1,2 converge to sharp values fully determined
by <0, as their allowed intervals gradually reduce to points. With <0 increasing within the
allowed range from Eq. (4.60), these unique U1,2 values move along the vertical axis over the
whole interval [0, c) and could only be constrained in case of further limits on<0 within that
range from GUTs or cosmology. When |"44 | ≡ d = 0, the three terms in "44 form a triangle
with sides A1,2,3, and the Majorana phases U1,2 can be expressed using the law of cosines:

U1 =
1
2

[
arccos

(
A 23 + A 21 − A 22

2 A3 A1

)
+ c

]
,

U2 =
1
2

[
arccos

(
A 23 + A 21 − A 22

2 A3 A1

)
+ arccos

(
A 21 + A 22 − A 23

2 A1 A2

)]
. (4.71)

In Fig. 4.7, we show the Majorana phases U1,2 as functions of the lightest-neutrino mass<0 for
the parameter |"44 | = 0. Due to symmetry of the geometrical method along the real axis, i.e.:
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Figure 4.5: Geometrical method to constrain the Majorana phase U1 for �xed values of the
lightest-neutrino mass<0 and the parameter |"44 | and free Majorana phase U2 ∈ [0, c).

|"44 (i8) | = |"44 (2c − i8) |, there are two pairs of mutually corresponding sharp U1,2 values
related as follows: U′1,2 = c − U1,2. With increasing<0, the U1,2 pair goes up while the U′1,2 pair
goes down until the two Majorana phases change places. CP symmetry is conserved only for
the extreme values<0 = 2.65meV and<0 = 6.84meV.

4.8 Particular Realization of the QCSM Model

There is one potential �aw in the model described above: the quark bilinear 3' & , being a G-
singlet, allows the tree-level Yukawa coupling of the3 quark from Eq. (4.8). This leads to a tree-
level 3-quark mass<3 after the EWSB, which makes its smallness rather weird. The common
wisdom, which allows one to avoid �ne-tuning, is to impose on the theory an additional softly
broken symmetry forbidding the tree level Yukawa couplings of the light quarks, but at the
same time allowing them at a certain loop level (for a recent review, e.g., see Ref. [102]). To this
end, we can extend the previously used group G to a symmetry group G′ = G × G3 requiring
that all �elds, except for the 3-quark �eld, must be neutral with respect to the subgroup G3 .
In this way, we can forbid with the help of G3 the tree-level 3-quark Yukawa coupling. Once
this symmetry is softly broken, the 3-quark Yukawa coupling can appear at some loop level,
in which case the 3-quark mass could gain the necessary loop suppression.

Let us give an a example of such a symmetry group G′ for the QCSM model:

G′ = ℤ4 × ℤ2
soft−−→ ℤ4, (4.72)

with the following ℤ4 × ℤ2 charge assignment of the �elds:

!: (8, 1), 4' : (8, −1),
& : (1, 1), D' : (−1, 1),
� : (1, 1), 3' : (1, −1).

(4.73)

Here, we limit ourselves only to the �rst generation of fermions. With this charge assignment,
the Yukawa couplings of the D and 3 quarks in Eq. (4.8), the analogous electron coupling
� ! 4' , as well as the operators OW in Eq. (4.1), O37 in Eq. (4.3), and OD36 in Eq. (4.10) are all
forbidden by the group G′. On the other hand, this group allows the operators OD7 in Eq. (4.3)
and O@@6 in Eq. (4.10). The soft G′-symmetry breaking in Eq. (4.72) then lets the electron and
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Figure 4.6: The Majorana phases U1,2 as functions of the parameter |"44 | for �xed values of
the lightest-neutrino mass <0 = 2.65, 3, 4, 5, 6, 6.84meV. The CP-conserving values of the
Majorana phases are: U1,2 = 0, c2 , c (bottom, the dashed line, and top of the plot, respectively).

3-quark Yukawa couplings arise at a certain loop level. As a result, these couplings acquire
the loop suppression factors necessary to make their respective masses<4 and<3 smaller in
comparison with the other SM fermions. The loop order depends on the particular UV model.

In principle, we can introduce extra loop suppression to the electron Yukawa couplings
in order to achieve that<3 > <4 . This can be easily done by extension of the group G′ from
Eq. (4.72) to the scenario:

G′′ = ℤ4 × ℤ2 × ℤ42
soft[1]
−−−−−→ ℤ4 × ℤ42

soft[2]
−−−−−→ ℤ4, (4.74)

with all �elds neutral with respect toℤ42, except for the electron having a−1 charge assignment
in this subgroup. In this case, the electron Yukawa coupling appears at the second stage of
the soft symmetry-breaking chain, and therefore it can be realized at a higher loop order
than the one of the 3 quark. In this way, the mass hierarchy of the SM fermions can
be generated by sequential loop suppression [136], resulting from a certain chain of soft
symmetry breakings [108].
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Figure 4.7: The Majorana phases U1,2 as functions of the lightest-neutrino mass <0 for the
parameter |"44 | = 0. The yellow region indicates the range of <0 values from Eq. (4.60) for
which this condition can be satis�ed.

4.9 Conclusion

We studied the quark-condensate seesaw mechanism (QCSM) of generation of the mass matrix
of Majorana neutrinos due to the spontaneous breaking of chiral symmetry. The e�ect of the
formation of a chiral condensate is transmitted to the neutrino sector via the dimension-7
lepton–quark operator OD7 , which can originate in the low-energy limit from a certain class of
UV models. On these models, we imposed a symmetry G forbidding the Weinberg operator
OW while allowing the operator OD7 . In this case, the QCSM dominates over the ordinary tree-
level Majorana neutrino mass generated by the EWSB. The symmetry G inevitably forbids the
D-quark Yukawa coupling, making its mass vanish at the high-energy cuto� scale: <D = 0.
Following the existing literature, we argued that theD quark receives a nonzero e�ective mass
<e�
D from nonperturbative QCD e�ects at the scale ΛQCD ∼ 100MeV. We pointed out that<e�

D

generated in this way is compatible with the mass spectrum of the light hadrons, but shows
certain tension with the lattice-QCD simulations. This issue will be studied in more detail
elsewhere.

In this scenario, we discussed how the electron and the 3 quark can be made naturally
lighter than the other SM fermions. We proposed to introduce a softly broken symmetry G′
forbidding the tree-level electron and 3-quark Yukawa couplings, but unlocking them at some
loop level. This mechanism can bring the loop suppression factors into the electron and 3-
quark masses<4 and<3 , respectively, necessary for making them naturally small. The order
of loop suppression depends on the particular UV model. We postpone the study of the possible
UV completions of the QCSM scenario for future publications. We also noted that the D- and
3-quark masses always receive a contribution proportional to the quark condensate 〈@@〉 via
four-quark operators generated by nonperturbative QCD e�ects, which convert the current
quarks to the constituent ones.

Ultimately, we derived phenomenological constraints on the dimensionless LNV
lepton–quark parameters YUV , which characterize the relative strength of the nonstandard
contact four-fermion interactions arising from the e�ective LNV lepton–quark operator OD7 .
These limits could be relevant in further studies of the implications of the QCSM for particle
physics and astrophysics. Moreover, we analyzed the predictions of the QCSM model for
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0aVV decay. We calculated the corresponding NMEs "0aVV
Y and "0aVV

a via the QRPA nuclear-
structure method with partial restoration of the isospin symmetry. We demonstrated that
the mass-independent 0aVV-decay mechanism shown in Fig. 4.3(a) dominates in the QCSM
scenario, while we commented on the role of nuclear-matter e�ects in the neutrino-mass
mechanism shown in Fig. 4.3(b). Based on the experiments searching for 0aVV decay, we
concluded that the QCSM predicts the NH of neutrino-mass spectrum and relatively narrow
ranges of the individual neutrino masses <8 (8 = 1, 2, 3). This �nding is in accord with
the recent global analysis of the neutrino-oscillation data from Ref. [120], which favors the
NH over IH at more than 3f . Finally, we set limits on several other important observable
parameters related to neutrino mixing and masses: the sum of neutrino masses Σ measured
in cosmology, the e�ective electron-neutrino mass<V determined from tritium (31H) V− decay,
and the e�ective Majorana neutrino mass <VV , which drives the light Majorana-neutrino
exchange mechanism, constrained by the experiments searching for 0aVV decay.
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Main Results

D
issertation submitted for the degree of Doctor of Philosophy in Nuclear Engineering
at the Department of Dosimetry and Application of Ionizing Radiation, Faculty of
Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

by Andrej Babič (the Author) is divided into four parts, main results of which (including the
Author’s contributions) are summarized below.

In Chapter 1, we studied inelastic scattering of low-energy solar neutrinos a4 and
reactor antineutrinos a4 by bound electrons 4−b in atoms of chemical elements frequently
found in neutrino detectors, leading to a transition of the target electron from the ground
state 1s to an excited state :s just above the last occupied (valence) electron shell, within the
framework of relativistic quantum �eld theory and assuming only the SM weak interaction of
neutrinos while neglecting their small but nonzero masses. In his Master’s Thesis, the Author
had previously derived a preliminary result for the total cross section f1: of this process by
employing substantial numerical approximations. Revisiting our earlier calculations, this time
the nontrivial task was a proper description of bound states in quantum �eld theory, which
was achieved by a nonrelativistic approximation for the bound electron and introduction of
the Coulomb wave functions at the quantum-�eld level. This gave us an expression for the
di�erential cross section df1: in which the conservation of four-momentum is reduced just
to the conservation of energy, since the momentum delta function is replaced by an atomic
form factor �1: ( | ®@ |) containing the wave functions of the initial and �nal electron bound
states Ψ100(®A ) and Ψ:00(®A ), respectively. Unexpectedly, the Author was able to �nd a way
to evaluate the atomic form factor exactly and express it in a an analytic closed form using
mathematics textbooks involving tables of integrals of various special functions, so that the
numerical integration over the last remaining kinematical variable o (the polar angle of the
scattered neutrino) provided us with more accurate results for the total cross section, which is
no longer an increasing function of the initial neutrino energy l . The Author then calculated
simple estimates of the expected event rates F for this process in the neutrino experiments
Borexino and GEMMA with very low detection thresholdslmin and found that its observation
at the present stage is still rather unlikely. Nevertheless, it is known that detailed information
about neutrino–electron scattering could shed light on secret neutrino interactions beyond
the SM and possibly probe the nature of neutrino mass (Dirac or Majorana) in the future.

In Chapter 2, we studied new modes 0aEPV− and 2aEPV− of neutrinoless and two-
neutrino double-beta decay, respectively, with emission of only one electron 4− from the atom,
while the second electron 4−b is directly produced in an available s1/2 or p1/2 atomic bound state.
The Author derived the corresponding total decay rates Γ0a (2a)EPV by assuming the standard
+ −� theory of the weak interaction including mixing of massive Majorana neutrinos and by
introducing relativistic electron wave functions k^` (®A ) at the quantum-�eld level, along the
lines of the previous Chapter. The decay rates for all modes of double-beta decay factorize into
a kinematical phase-space factor�0a (2a)EPV or�0a (2a)VV (which contains all information about
the electron wave functions), the NMEs "0a (2a)EPV ≈ "0a (2a)VV (which are subject to large
theoretical uncertainties), and a LNV parameter known as the e�ective Majorana neutrino
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mass<VV (which is unknown). In order to determine the relative signi�cance of the new decay
modes, the Author evaluated the ratios Γ0a (2a)EPV/Γ0a (2a)VV between the decay rates for all 35
double-V-decay isotopes A

ZX, which to a good approximation are independent of the NMEs
and<VV and given simply by the ratios�0a (2a)EPV/�0a (2a)VV between the corresponding phase-
space factors, giving results of the order of 1 : 104. Then, by extracting the NMEs "2aVV from
the experiments, the Author was able to estimate the 0a (2a)EPV−-decay half-lives) 0a (2a)EPV

1/2 for
the observed double-V-decay isotopes. Finally, the Author derived the shapes of the associated
one-electron spectra dΓ0a (2a)EPV/dY as functions of the kinetic energy Y = (� − <4)/& of
the free electron, as well as the two-electron spectrum dΓ2aEPV/dY12 as a function of the
sum Y12 = Y1 + Y2 of the kinetic energies Y1,2 of the two electrons available in calorimetric
measurements, which could be compared with the experiments. In order to obtain accurate
results, it was necessary to employ a detailed description of atomic electron-shell structure
including ab initio treatment of electron shielding of nuclear charge as well as exchange and
overlap e�ects of many-electron wave functions (our initial estimates involving relativistic
one-electron wave functionsk^` (®A ) as solutions of the Dirac equation with Coulomb potential
with e�ective atomic number /e� underestimated the likelihood of the processes 0a (2a)EPV−
by two orders of magnitude). Our tool of choice was the multicon�guration Dirac–Hartree–
Fock packageGrasp2K and it was entirely the Author’s responsibility to prepare the necessary
scripts and compute the required bound-electron wave functions. The Author has presented
this work at numerous international schools and conferences, most notably: (a) the MEDEX’17
workshop (IEAP CTU in Prague, Czech Republic, 29 May – 2 June 2017), where it was very
well received by the physics community including respected �gures from the experimental
collaborations SuperNEMO and EXO-200, and (b) a guest talk at the SuperNEMO Collaboration
Meeting (LAL Orsay, France, 6 – 8 November 2017), based on which the Author was invited
to organize a seminar at the CENBG, University of Bordeaux, France, in the future.

In Chapter 3, we studied the light and heavy Majorana-neutrino exchange mechanisms
of 0aVV decay within the LRSM. In Ref. [84], an interpolating formula had been derived for
the 0aVV-decay NME "′0aVV

!!,''
(<) within the LRSM as a function of the arbitrary mass< of the

propagating Majorana neutrino. It was found that a properly normalized ratio "′0aVV
#
/"′0aVVa

of these NMEs for< → ∞ and< → 0, respectively, is practically independent of the double-
V-decay isotope A

ZX under consideration, and thus it can be interpreted as the average squared
momentum 〈?2〉 ∼ (200MeV)2 of the Majorana neutrino. The average root mean square√
〈?2〉 of this parameter over all available isotopes would depend only on the nuclear-structure

method used, where the calculation of the light and heavy Majorana-neutrino NMEs "′0aVVa

and"′0aVV
#

via the QRPA approach with short-range correlations and partial isospin-symmetry
restoration had been performed in Ref. [65]. We studied the analytic properties of "′0aVV

!!,''
(<)

as a function in the complex plane of<. By virtue of the interpolating formula, the expression
for the 0aVV-decay half-life ) 0aVV

1/2 within the LRSM is given by a general LNV parameter [a# ,
which contains a contribution from both the light <VV and heavy "VV Majorana-neutrino
exchange mechanism. Considering various scenarios of mixing between the light- and heavy-
neutrino sectors and assuming di�erent seesaw relations between the light <8 and heavy
"8 neutrino masses, it was the Author’s task to analyze the parameter [a# as a function of
the neutrino-oscillation parameters: the mixing angles \12, \13, \23, the Dirac phase X , the
Majorana phases U1, U2, the mass-squared di�erences Δ<2

8 9 = <
2
8 −<2

9 , the lightest-neutrino
mass<0, and the hierarchy of the neutrino-mass spectrum (NH or IH). The Author derived the
explicit form of the unitary 6×6 generalization of the PMNS lepton mixing matrixU as well as
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the associated complex symmetric 6×6 Dirac–Majorana mass matrixM which it diagonalizes.
After preparing the necessary minimization routines, the Author was able to construct the
exclusion plots for [a# in the neutrino parameter space and draw conclusions about the
phenomenological predictions of each considered scenario for the 0aVV-decay experiments
and their prospects for measurement of the Majorana neutrino mass and identi�cation of the
dominant 0aVV-decay mechanism in case of observation of this extremely rare process in the
future.

In Chapter 4, we studied the quark-condensate seesaw mechanism (QCSM) of
generation of Majorana neutrino mass via the quark condensate 〈@@〉, formation of which is
responsible for the spontaneous breaking of chiral symmetry in QCD. In Ref. [121], exotic
scalar interactions between Majorana neutrinos and quarks and the e�ect of the quark
condensate 〈@@〉 on the e�ective Majorana neutrino mass<VV in nuclear medium had already
been studied. In our work, we proposed the QCSM as a result of some symmetry G which
forbids the usual Weinberg operatorOW while allowing the e�ective dimension-7 LNV lepton–
quark operatorOD7 to dominate in the neutrino sector. One consequence of such a softly broken
symmetry G is that the current-quark mass of the lightest quark D must vanish: <D = 0,
where we argued that its observed nonzero value could be attributed to nonperturbative QCD
e�ects. The Author’s task was a phenomenological analysis of the e�ective LNV lepton–
quark parameters YUV , which measure the relative strength of the nonstandard interactions
in comparison with the Fermi constant �F of the SM weak interaction. Within the QCSM,
the underlying coupling constants 6UV are proportional to the mass matrix " of Majorana
neutrinos, which the Author expressed in terms of the neutrino-oscillation parameters and
investigated by means of the minimization procedures developed earlier. As the next step, we
derived the amplitude of 0aVV decay within the SM weak interaction plus the operator OD7 ,
which is given by a sum of two contributions identi�ed as the mass-independent and mass-
dependent mechanism. After calculation of the corresponding formula for the 0aVV-decay
half-life ) 0aVV

1/2 including the NMEs "0aVV
Y and "

0aVV
a associated with the two mechanisms,

respectively, it became clear that while the former plays the dominant role in 0aVV decay,
the latter is subject to in�uence of the surrounding nuclear medium. The Author then
examined the e�ect of nuclear matter on the quark condensate and found that it leads to
its suppression by a factor of two: 〈@@〉# = 0.5 〈@@〉. Based on the Author’s analysis of the
e�ective LNV lepton–quark parameters YUV and the present experimental lower bounds on
)
0aVV
1/2 , we concluded that the QCSM predicts the NH of neutrino masses and a relatively narrow

range of the lightest-neutrino mass: 2.65meV < <0 = <1 < 6.84meV. The Author then
utilized this constraint to set limits on other neutrino-mass parameters, namely the neutrino
masses<2 and<3, the sum of neutrino masses Σ determined from cosmological observations,
and the e�ective electron-neutrino mass <V measured in tritium (31H) V− decay. Finally, the
Author’s draft was supplemented by introducing an example of a softly broken symmetry
G′ = ℤ4 × ℤ2

soft−−→ ℤ4 as a speci�c particle-physics realization of the QCSM model. The
remaining open questions will be addressed elsewhere in the future.
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A
Grasp2K

A.1 Dirac–Hartree–Fock Method

E
arly 1960s saw the development of the General Relativistic Atomic Structure Package
(Grasp2K), which is nowadays one of the most prominent pieces of computational
software for atomic and molecular physics employed in academia [57, 58, 59, 60, 61].

Its original author, Grant, was the �rst person who carried out integration of matrix elements
through angular variables and expressed the result in terms of Wigner 6- 9 and 9- 9 symbols. The
program is continuously maintained and actively developed by a group of 10–15 specialists and
their progress is being regularly published in scienti�c journals, with a new version named
Grasp2018 having been recently released. In order to calculate relativistic wave functions
of bound electrons and a variety of other atomic properties, the program utilizes the Dirac–
Hartree–Fock method. As initial estimates of electron wave functions for the iterative self-
consistent �eld (SCF) procedure, it is possible to choose solutions of the Thomas–Fermi model.
Relativistic corrections for motion of the center of mass, �nite size and density pro�le of the
nucleus, and other e�ects are taken into account in detail. Below, we brie�y summarize the
key principles of the Dirac–Hartree–Fock approximation, illustrate the operation of various
programs included in the Grasp2K package, and �nally provide the computer code which was
used to obtain the results in Chapter 2.

The Grasp2K package works with atomic units (a.u.), in which the reduced Planck
constant ℏ, electron mass<4 , elementary charge 4 , and vacuum permittivity Y0 read:

ℏ =<4 = 4 =
1

4cY0
= 1, (A.1)

so that the speed of light equals: 2 = 1/U = 137.036 a.u. The natural unit of length is the Bohr
radius 00, while the energy is measured in Hartrees �h:

00 =
ℏ

<4 2 U
= 52, 917.6 fm, �h =<4 2

2 U2 = 27.2 eV. (A.2)

The Hartree–Fock (HF) or Dirac–Hartree–Fock (DHF) method solves the stationary
# -particle Schrödinger or Dirac equation, respectively:

� k = �k (A.3)

with a noncentral atomic Hamiltonian:

� =

#∑
8=1

)8 −
/

A8
+

∑
8> 9

1
|®A8 − ®A 9 |

, (A.4)
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where the kinetic terms equal )8 = −1
2 ∇

2
8 in the nonrelativistic case and )8 = −8 ∇8 · ®U 2 + V 22

in the relativistic case, and the remaining terms describe the electron–nucleus Coulomb
attraction and electron–electron Coulomb repulsion, respectively. In the discrete spectrum,
the atomic wave functions k (@1, . . . , @# ), where @8 (8 = 1, . . . , # ) collectively denotes all
discrete quantum numbers and continuous degrees of freedom of the 8th electron, must be
properly normalized to unity:∫

k ∗(@1, . . . , @# )k (@1, . . . , @# ) d@1 . . . d@# = 1. (A.5)

The following approximations are implicitly assumed:
• The Born–Oppenheimer approximation involves a factorization of the total atomic

wave function into the # -electron and nuclear parts. This way, the nuclear wave
function can be completely disregarded.
• Due to computational limitations, the complete basis set of energy eigenfunctions is

always truncated to some �nite, “almost” complete subset.
The calculation proceeds by �rst solving an auxiliary # -particle equation:

�0k0 = �0k0, (A.6)

with a separable central Hamiltonian:

�0 =

#∑
8=1

)8 −
/

A8
++ (A8), (A.7)

where + (A8) is some approximate mean �eld formed by the electron cloud. Since �0 is
separable, the energy eigenvalues are additive: �0 =

∑#
8=1 �8 and the energy eigenfunctions

factorize into products of one-particle solutions: k0 =
∏#
8=1 q8 (@8). Due to exchange symmetry,

the eigenfunctions must be further antisymmetrized:

k0 =
1
√
# !

∑
%

(−1)?
#∏
8=1

q% (8) (@8) =
1
√
# !

�������
q1(@1) . . . q1(@# )
...

. . .
...

q# (@1) . . . q# (@# )

������� (A.8)

to become the Slater determinants which obey the Pauli exclusion principle, where % is a
permutation of the quantum numbers with parity (−1)? . The one-electron functions are called
spin-orbitals and, in general, take the form of the following bispinor (A ≡ |®A | and Â ≡ ®A/|®A |):

q (@) =
(
5=^ (A ) Ω^` (Â )
86=^ (A ) Ω−^` (Â )

)
, (A.9)

where 5=^ (A ) and 6=^ (A ) are the (unknown) relativistic radial electron wave functions obtained
as solutions of the Dirac equation with a spherically symmetric potential + (A ), = = 1, 2, . . .
is the principal quantum number, ^ = (; − 9) (2 9 + 1) = ±1, ±2, . . . labels combinations of
the orbital ; = 0, 1, . . . and spin B = 1

2 angular momenta into the total angular momentum
®9 = ®; + ®B with projection ` = − 9, . . . , + 9 onto the I-axis, and Ω^` (Â ) are the spherical
spinors with parity (−1); . In the nonrelativistic limit: 5=^ (A ) → '=; (A ) and 6=^ (A ) → 0,
these objects reduce to: q (@) = '=; (A ) .;<; (Â ) j<B , where '=; (A ) are the nonrelativistic radial
electron wave functions obtained as solutions of the Schrödinger equation for a hydrogen-
like atom, .;<; (Â ) (with orbital angular momentum projection<; = −;, . . . , +; ) are the usual
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spherical harmonics, and j<B (with spin projection <B = ±1
2 ) are two mutually orthonormal

two-component spinors. Note that the spin–angular part is universal for all central problems,
whereas the radial part is dictated by the mean �eld+ (A8). The radial functions are normalized
to unity:

∞∫
0

[5 2=^ (A ) + 62=^ (A )] A 2 dA = 1. (A.10)

It is also useful to introduce the functions % (A ) = A 5 (A ) and & (A ) = A 6(A ). Near the origin,
the Taylor expansions of these functions can be approximated by the monomials: % (A ) ≈ ?0 A W
and& (A ) ≈ @0 A W (in fact, the power W coincides with |^ |). For a given = and ^, these functions
satisfy:

∞∫
0

[%2(A ) +&2(A )] dA = 1. (A.11)

Electron shells are distinguished by a principal quantum number =, whilst a pair of
principal = and orbital ; quantum numbers de�nes a subshell. Electrons within the same
subshell are said to be equivalent. Electron con�guration describes the distribution of electrons
(or spin-orbitals) in the subshells; it is given as a number of orbitals together with their
corresponding occupation numbers, e.g., 1s22s22p−2 2p2 or 1s22s22p4 (the notation =;± is used
for 9 = ; ± 1

2 ). By the octet rule, the valence shells of most elements (e.g., noble gases, but also
molecules, etc.) include 8 orbitals: =s2=p6; however, some transition metals include as much
as 18: =s2=p6=d10. All electrons in the closed shells below the valence shell (which participates
in chemical bonding) are referred to as core electrons. The shielding e�ect of nuclear charge
can be roughly evaluated using the semi-empirical Slater’s rules:1

1. Write the electron subshells in the following groups:
(1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) (5d) (5f) ...

2. Calculate a screening constant f by adding the following contributions:
Group of electron of interest Contributions to screening constant sigma
(1s) 0.30 for other electrons in group
(ns, np) 0.35 for other electrons in group

0.85 for electrons with (n - 1)
1.00 for rest of electrons to the left

(nd), (nf) 0.35 for other electrons in group
1.00 for electrons to the left

3. Calculate the e�ective nuclear charge: /e� = / − f .
In general, angular momenta of individual electrons can couple in a variety of

ways, leading to slightly di�erent energies once the noncentral interaction � is considered.
Thus, one is also required to specify the term symbol 2(+1!� , which describes the total
angular momentum in a multi-electron atom (2( + 1 is called multiplicity). As a rule,
a level |!( � 〉 contains 2� + 1 states |!( �"� 〉 and, in turn, a term |!(〉 consists of
(2! + 1) (2( + 1) = ∑!+(

�=|!−( | (2� + 1) states. The term symbol of an atomic ground state can be
conveniently found via the Hund’s rules as the state with maximum ! and ( :

1. Consider the most stable electron con�guration above the closed subshells; if all
subshells are closed, the ground-state term symbol is 1S0.

2. In each open subshell, �ll the orbitals with<B = +12 electrons in the decreasing order
of<; ; then repeat for<B = −1

2 .

1http://calistry.org/calculate/slaterRuleCalculator
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3. Sum the individual contributions: ( =
∑
<B , ! =

∑
<; , and � = |! − ( | for less than

half-�lled subshell, � = ! + ( for more than half-�lled subshell, and � = ( for exactly
half-�lled subshell (! = 0).

Alternatively, look up the terms at the NIST website.2 The notation used there is: X I for a
neutral atom of a chemical element X, then X II for an ion X+ (an isoelectronic sequence for the
element with atomic number / − 1), etc.

For each value of � within some speci�ed range, the program generates a symmetry
block called the con�guration state function (CSF). CSF Φ is a linear combination of Slater
determinantsk0 with same sets of= and ; (same electron con�gurations) but di�erent sets of<;

and<B (di�erent angular-momentum couplings) which couple to the same � and parity. In the
multicon�guration (MC) approach, it is possible to de�ne a multireference, i.e., to also include
the CSFs corresponding to electron con�gurations which can be obtained from the reference
con�guration by one, two, etc. simultaneous excitations; the untruncated multireference is
said to form a complete active space (CAS). According to whether the active electrons (with
allowed “virtual” excitations) are from core or valence shells, we distinguish core–core, core–
valence, and valence–valence correlations; these may provide better estimates for the excited
states, but their use is optional.

The approximate solution to the original eigenvalue problem is searched for in the
form of an atomic state function (ASF): k ≈ Ψ =

∑
8 28 Φ8 , which is a linear combination of the

CSFs from the multireference {Ψ8}. The mixing coe�cients 28 are then evaluated and the radial
functions %,& (A ) are estimated by means of variational techniques; the (MC)(D)HF calculation
operates in iterative cycles until a convergence is achieved. From the results, other atomic
properties can be inferred, e.g., energy eigenfunctions, energy eigenvalues, con�guration
interaction, transition amplitudes, hyper�ne structure, etc.

A.2 Instructions

Installation (Ubuntu 16.10): Install the latest GFortran compiler, MPI libraries for parallel
computing, and the newest version of the Grace (Xmgrace) plotting tool by issuing the
following commands in the Terminal:

sudo apt-get install gfortran
sudo apt-get install openmpi-bin
sudo apt-get install libopenmpi-dev
sudo apt-get install grace

Download the development version of Grasp2K and the manual,3 untar the downloaded �le,
set paths, and compile (takes about 5 minutes):

tar -zxvf grasp.tar.gz
mv grasp2Kdev GRASP2K
cd GRASP2K
source ./make-environment_gfortran
cd src
make clean
make

The directory GRASP2K/bin should now contain 51 programs, along with all future output �les.

2http://physics.nist.gov/PhysRefData/ASD/levels_form.html
3https://www-amdis.iaea.org/GRASP2K/
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HF: The program HF.f90 performs a nonrelativistic Hartree–Fock calculation (with relativistic
corrections). It produces a radial wave function binary �le wfn.out, which can be used as a
reliable starting point in subsequent MCDHF calculations. A sample run is demonstrated on
the example of 8O with 3P (ground-state) !( term. Displayed are the command-line prompts from
the interactive mode, the sample user input, the generated output files (preceded by >), and
comments (delimited by //).
Warning: The maximum principal quantum number in HF is = = 10, which is represented by
the symbol “:”.
Input data: name (string), atomic number / , electron con�guration, !( term.

./HF // NWF = max. number of wave functions, NO = number of grid points in max. range
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
O,3P,8. // Format: string,LS,Z.; AV for average energy (case-insensitive)
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
1s 2s // Include all fully occupied subshells here; align right

Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
2p(4) // Include all partially occupied subshells here; omit empty subshells: nl(0)
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
ALL // H for Help
Default electron parameters ? (Y/N/H)
Y
Default values for remaining parameters? (Y/N/H)
Y
Additional parameters ? (Y/N/H)
Y // Optional

Input number corresponding to your selection:
1 // Mean power of radius: <nl|r^k|nl> [a.u.]

INPUT LABEL FOR ELECTRON FOLLOWED BY k: Example
2p 3 FORMAT(1X,A3,I3)
2p 1 // Format: ..nl..k

Input number corresponding to your selection:
3 // Electron density at origin: |psi(0)|^2 [a.u.]

INPUT IDENTIFYING LABEL FOR ELECTRON: Example
1s FORMAT(1X,A3)
1s // Format: ..nl

Input number corresponding to your selection:
6 // Exit menu
Do you wish to continue along the sequence ?
N // Isoelectronic sequence: same configuration, different Z.
> hf.log, wfn.out, plot.dat

cp wfn.out 8O_3P.w

./wfnplot
Name of state:
8O_3P
To have r on x-axis: type "y" otherwise "n" for sqrt(r)
y

1s =<blank> // D/d to skip orbital
2s =<blank>
2p =<blank>

> octave_8O_3P.m, xmgrace_8O_3P.agr

cp xmgrace_8O_3P.agr 8O_3P.agr
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exit

Output �les:

• hf.log HF calculation input/log �le. Contains initial estimates, iteration cycles, radial
wave function data, energy eigenvalues, atomic total energy (both without and with
relativistic corrections), screening constants sigma, and additional parameters. Under
convergence: NORM ~ 1.0 and < 1s| 2s> ~ 0.0. By virtue of the virial theorem:

+ (A ) ∝ A= =⇒ 2 〈) 〉 = = 〈+ 〉, (A.12)

the potential-to-kinetic energy ratio equals ~ -2.0. A sample calculation for 1H
(2S term) yields: E_tot(non-rel) = -0.5, E_tot(rel) = -0.50000666, <1s|r|1s> = 1.5,
|psi(0)|^2 = 4.0.
• wfn.out Radial wave function binary �le. Can be copied as wfn.inp (and converted into

the Grasp2K format using ./rwfnmchfmcdf) to be used as initial estimate in future HF
(MCDHF) calculations.
• plot.dat Radial wave function unformatted ASCII data �le.
• octave_8O_3P.m GNU Octave input �le. Contains radial wave function formatted data.
• xmgrace_8O_3P.agr Xmgrace input �le. Contains radial wave function formatted data.

MCDHF: For our purpose, the atomic mass<0 [u] (in uni�ed atomic mass units), nuclear spin
� [ℏ], nuclear magnetic dipole moment ` [`# ] (in nuclear magnetons `# = 4ℏ

2<?
, where<? is

the proton mass), and nuclear electric quadrupole moment& [b] (in barns) can all be safely set
to 0, since they do not in�uence the radial wave functions. The atomic mass<0 has e�ect only
after the results have been improved by employing the relativistic con�guration interaction
(CI) with transverse photon (Breit) interaction as well as vacuum polarization and self-energy
(QED) corrections using the program rci. In turn, this only a�ects the calculated total atomic
energy (with no e�ect on the radial wave functions), and hence it can be disregarded for our
purpose. The other parameters may serve as an input for the transition property program
rtransition, hyper�ne interaction program rhfs, relativistic isotope shift program ris, etc.
Warning: The maximum principal quantum number in MCDHF is = = 15.
Input data: atomic number / , mass number �, electron con�guration, total angular
momentum � (range).

./rnucleus
Enter the atomic number:
8
Enter the mass number (0 if the nucleus is to be modelled as a point source:
16
Revise these values?
n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
0 // Only has effect if running ./rci
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
0
Enter the nuclear dipole moment (in nuclear magnetons):
0
Enter the nuclear quadrupole moment (in barns):
0
Do you want to revise these values (y/*)?
n
> isodata
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./rcsfexcitation
Select core
1 // Subshells will be included in core: equivalent to nl(x,c) [c = closed]
Number of reference configurations
1 // 1 for single reference, >1 for multireference
Give configuration 1
2s(2,i)2p(4,i) // Subshells will be included in peel: always use nl(x,i) [i = inactive],

// even for fully occupied subshells; omit empty subshells: nl(0,i);
// cannot be left blank

Give orbital set
2s, 2p // Format: n1s,n2p,n3d,...; highest n for each involved l (if blanks, aligned right)

// Alternatively: 15s,15p,15d,15f (redundant orbitals will be discarded)
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
4,4 // Range: 2*J_min,2*J_max; recommended: single J corresponding to ground-state term
Number of excitations (if negative number e.g. -2, correlation
orbitals will always be doubly occupied)
0 // >0 to include correlations ("virtual" excitations) from active orbitals:

// nl(x,*) [* = active, m = active with minimal occupation m]
Generate more lists ? (y/n)
n
> rcsfexcitation.log, excitationdata

./rcsfgenerate < excitationdata
> rcsf.log, rcsf.out, clist.new

cp rcsfexcitation.log 16O.exc
cp rcsf.out rcsf.inp

./rangular
Default settings? (y/n)
y
> mcp.30, mcp.31, ...

// Following block is optional
{
./HF
...
> hf.log, wfn.out, plot.dat

cp wfn.out wfn.inp

./rwfnmchfmcdf
> rwfn.out
}

./rwfnestimate
Default settings ?
y
Read subshell radial wavefunctions. Choose one below

1 -- GRASP2K File
2 -- Thomas-Fermi
3 -- Screened Hydrogenic

2 // 1 if rwfn.out has been estimated
Enter the list of relativistic subshells:
*
> rwfn.inp, fort.734
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./rmcdhf
Default settings? (y/n)
y
Enter ASF serial numbers for each block
Block 1 ncf = 2 id = 2+
1
Enter orbitals to be varied (Updating order)
*
Which of these are spectroscopic orbitals?
*
Enter the maximum number of SCF cycles:
100
> rmcdhf.log, rmcdhf.sum, rmix.out, rwfn.out

./rsave 16O
{

cp rcsf.inp 16O.c
cp rwfn.out 16O.w
mv rmix.out 16O.m
mv rmcdhf.sum 16O.sum
mv rmcdhf.log 16O.log

}

./jj2lsj
Name of state
16O
Mixing coefficients from a CI calc.?
n
Default settings? (y/n)
y
> 16O.lsj.lbl

./rlevelseV 16O.m > 16O.lvl // Thanks to ./jj2lsj configuration will be included in 16O.lvl

./readrwf
Input mode pls. (1: Unformatted to Formatted; 2: other)
1
Enter the input file pls
16O.w
Enter the output file pls:
16O.dat
> 16O.dat

./rwfnplot
Name of state:
16O
To have r on x-axis: type "y" otherwise "n" for sqrt(r)
y

1s =<blank> // D/d to skip orbital
2s =<blank>
2p- =<blank>
2p =<blank>

> octave_16O.m, xmgrace_16O.agr

cp xmgrace_16O.agr 16O.agr
exit
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Output �les:

• isodata Isotope data input/log �le. If � ≠ 0, the nuclear charge follows the Fermi
distribution:

d (A ) = d0

1 + 4 A−20
. (A.13)

The radial grid is de�ned as follows: R(i) = RNT*(exp[(i - 1)*H] - 1), with
i = 1, 2, ... , NNNP.
• rcsfexcitation.log = 16O.exc Electron con�guration input/log �le.
• excitationdata Electron con�guration binary �le.
• rcsf.log CSF input/log �le.
• rcsf.out = rcsf.inp = 16O.c CSF �le. Contains *-delimited CSF symmetry blocks with
� and parity.

• clist.new CSF �le (incomplete).
• mcp.30, mcp.31, ... Angular integration binary �le.
• rwfn.inp Radial wave function estimation binary �le.
• fort.734 Radial wave function estimation binary �le (auxiliary).
• 16O.log MCDHF calculation input/log �le.
• 16O.sum MCDHF calculation summary �le. Relevant information: e (energy

eigenvalues), p0, gamma (for estimation of % (A ) ≈ ?0 A W near the origin, where W = |^ |;
unfortunately, @0 for & (A ) ≈ @0 A W is not provided), <r> (mean orbital radii) and atomic
Total energy [Hartrees] (same as in 16O.lvl).
• 16O.m Mixing coe�cient binary �le.
• rwfn.out = 16O.w Radial wave function binary �le.
• 16O.lsj.lbl 9 9- to !( � -coupling conversion binary �le.
• 16O.lvl Energy level table �le.
• 16O.dat Radial wave function unformatted ASCII data �le.
• octave_16O.m GNU Octave input �le. Contains radial wave function formatted data.
• xmgrace_16O.agr Xmgrace input �le. Contains radial wave function formatted data.

Most suitable for extraction of radial wave function values: use linear interpolation
of the two closest values. To plot & (A ), save data for each orbital into a separate �le
16O_nl.agr and issue the following command:
xmgrace -block 16O_1s.agr -bxy 1:2 -bxy 1:3 -block 16O_2s.agr -bxy 1:2 -bxy 1:3
-block 16O_2p-.agr -bxy 1:2 -bxy 1:3 -block 16O_2p.agr -bxy 1:2 -bxy 1:3

In Fig. A.1, we show an example of a result for the radial functions % (A ) (in a.u.) as functions
of the radial coordinate A for the subshells occupied by bound electrons in the ground-state
electron con�guration of the isotope 82

34Se, calculated using the MCDHF program set and
exported to the �le xmgrace_82Se.agr.

Bash: The program input can be either entered manually in the command prompt (interactive
mode) or read from a prede�ned script �le written, e.g., in Bash:

#!/bin/bash // Compulsory first line in every Bash script
# comments // Every other line beginning with # is a comment
commands

chmod +x filename // "Change mode" to "executable" (once); else: Permission denied
./filename // Run script

variable=value // Leave "value" blank to assign later; no spaces allowed
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Figure A.1: Radial functions % (A ) (in a.u.) as functions of the radial coordinate A for the
subshells occupied by bound electrons in the ground-state electron con�guration of the isotope
82
34Se.

$variable // Call for variable substitution

echo "text" // Print function; options: –n to suppress newline (\n);
// 'text' for verbose: no $variable substitutions

read variable // Read function; options: –n 1 to read 1 character, s to hide input

; // In-line command separator
\ // Special character suppressor: echo "\"" to print ", echo "\\" to print \, etc.
command1 && command2 // Run command2 iff command1 returns exit 0; return exit of command2
command1 || command2 // Run command2 iff command1 returns exit 1; return exit of command2
[ condition ] or [[ condition ]] or test condition // Test condition on Boolean
-lt -le -ge –gt = != // Test <, <=, >=, >, ==, !=
-f "filename" // Test whether file "filename" exists in the script directory
[ -f "filename" ] && rm "filename" // Safe and concise way to delete "filename"
$((+ - * / ** % = += -= ++ --)) // $(()) to execute substitutions and arithmetic (integers)

./program << ! // Run "program" and execute "commands" in its prompt ("here document")
commands // Bash commands and indentation disabled; $variable substitutions enabled
! // Input read terminated when reached line "!"

function name or name () // Define function "name"
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{
commands // Use $1, $2, ... to invoke argument1, argument2, ...

}

name argument1 argument2 ... // Call function "name" (with optional arguments)

if [ condition ]
then

statements
elif [ condition ]
then

statements
else

statements
fi

case $variable in
pattern) statements;; // "pattern" can be complex, e.g., character range [a-Z], etc.
...
pattern) statements // *) for "otherwise"

esac

for variable in words // "variable" can be internal; "words" can be list: word1 word2 ...
// or character range: {1..5} (e.g., {1..10} will not work)

do
statements

done

while [ condition ]
do

statements
done

until [ condition ] // Same as "while," but executes on condition=false
do

statements
done

break // Leave loop immediately
continue // Skip the rest of the loop and start another cycle
exit 0 // Place at the end of script to verify proper exit; exit 1-255 marks failure

AWK: For Grask2K output data processing, the program GAWK (language AWK) can be
used. The program reads its input �le(s) line by line and executes commands enclosed in
' '. Arithmetic operations work as expected:

awk options 'program' filename1 filename2 ... // Input files are loaded one at a time
program=pattern1 {statement1a; ...; statement1b}; ...; pattern2 {statement2a; ...; statement2b}

// Input is read line by line; iff pattern "x" is matched, statements "x" are executed

Option examples:

-v awkvar="$bashvar" // Load Bash variable into AWK; each variable requires separate –v

Pattern examples:

<blank> // Statements are executed for each line
BEGIN // Statements are executed before processing the first line
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END // Statements are executed after processing the last line
/string/ // True iff the line contains a string "string"
$0~string // Ditto, but here "string" can also be an AWK variable
NR<=3 // True for the first 3 lines in each input file ("NR" = "number of records")
FNR>100 // True for all lines starting from 101 collectively in all input files

Statement examples:

<blank> or {print} or {print $0} // Print line (default action)
// $0 refers to the entire line; $n refers to the n-th column (separated by blanks)

{} // Do nothing
{print $1, ..., $2} // Print data in the 1st ... 2nd column (separate by space)
{print $1 ... $2} // Print data in the 1st ... 2nd column (juxtaposition)
{var=0} // Declare variable
{var=var+$1} // Perform arithmetic (sum over 1st column)
ORS=" " // Separate output of different lines by space ("ORS" = "output record separator");

// default: newline ("\n"); place inside BEGIN {}

Electron con�gurations: From the following website4 (+ corrections):

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s

1_H 1
2_He 2
3_Li 2 1
4_Be 2 2
5_B 2 2 1
6_C 2 2 2
7_N 2 2 3
8_O 2 2 4
9_F 2 2 5
10_Ne 2 2 6
11_Na 2 2 6 1
12_Mg 2 2 6 2
13_Al 2 2 6 2 1
14_Si 2 2 6 2 2
15_P 2 2 6 2 3
16_S 2 2 6 2 4
17_Cl 2 2 6 2 5
18_Ar 2 2 6 2 6
19_K 2 2 6 2 6 1
20_Ca 2 2 6 2 6 2

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s

21_Sc 2 2 6 2 6 1 2
22_Ti 2 2 6 2 6 2 2
23_V 2 2 6 2 6 3 2
24_Cr 2 2 6 2 6 5 1
25_Mn 2 2 6 2 6 5 2
26_Fe 2 2 6 2 6 6 2
27_Co 2 2 6 2 6 7 2
28_Ni 2 2 6 2 6 8 2
29_Cu 2 2 6 2 6 10 1
30_Zn 2 2 6 2 6 10 2
31_Ga 2 2 6 2 6 10 2 1

4http://web.ift.uib.no/AMOS/Hartree/configs.html
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32_Ge 2 2 6 2 6 10 2 2
33_As 2 2 6 2 6 10 2 3
34_Se 2 2 6 2 6 10 2 4
35_Br 2 2 6 2 6 10 2 5
36_Kr 2 2 6 2 6 10 2 6
37_Rb 2 2 6 2 6 10 2 6 1
38_Sr 2 2 6 2 6 10 2 6 2
39_Y 2 2 6 2 6 10 2 6 1 2
40_Zr 2 2 6 2 6 10 2 6 2 2

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s

41_Nb 2 2 6 2 6 10 2 6 4 1
42_Mo 2 2 6 2 6 10 2 6 5 1
43_Tc 2 2 6 2 6 10 2 6 5 2
44_Ru 2 2 6 2 6 10 2 6 7 1
45_Rh 2 2 6 2 6 10 2 6 8 1
46_Pd 2 2 6 2 6 10 2 6 10
47_Ag 2 2 6 2 6 10 2 6 10 1
48_Cd 2 2 6 2 6 10 2 6 10 2
49_In 2 2 6 2 6 10 2 6 10 2 1
50_Sn 2 2 6 2 6 10 2 6 10 2 2
51_Sb 2 2 6 2 6 10 2 6 10 2 3
52_Te 2 2 6 2 6 10 2 6 10 2 4
53_I 2 2 6 2 6 10 2 6 10 2 5
54_Xe 2 2 6 2 6 10 2 6 10 2 6
55_Cs 2 2 6 2 6 10 2 6 10 2 6 1
56_Ba 2 2 6 2 6 10 2 6 10 2 6 2
57_La 2 2 6 2 6 10 2 6 10 2 6 1 2
58_Ce 2 2 6 2 6 10 2 6 10 1 2 6 1 2
59_Pr 2 2 6 2 6 10 2 6 10 3 2 6 2
60_Nd 2 2 6 2 6 10 2 6 10 4 2 6 2

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s

61_Pm 2 2 6 2 6 10 2 6 10 5 2 6 2
62_Sm 2 2 6 2 6 10 2 6 10 6 2 6 2
63_Eu 2 2 6 2 6 10 2 6 10 7 2 6 2
64_Gd 2 2 6 2 6 10 2 6 10 7 2 6 1 2
65_Tb 2 2 6 2 6 10 2 6 10 9 2 6 2
66_Dy 2 2 6 2 6 10 2 6 10 10 2 6 2
67_Ho 2 2 6 2 6 10 2 6 10 11 2 6 2
68_Er 2 2 6 2 6 10 2 6 10 12 2 6 2
69_Tm 2 2 6 2 6 10 2 6 10 13 2 6 2
70_Yb 2 2 6 2 6 10 2 6 10 14 2 6 2
71_Lu 2 2 6 2 6 10 2 6 10 14 2 6 1 2
72_Hf 2 2 6 2 6 10 2 6 10 14 2 6 2 2
73_Ta 2 2 6 2 6 10 2 6 10 14 2 6 3 2
74_W 2 2 6 2 6 10 2 6 10 14 2 6 4 2
75_Re 2 2 6 2 6 10 2 6 10 14 2 6 5 2
76_Os 2 2 6 2 6 10 2 6 10 14 2 6 6 2
77_Ir 2 2 6 2 6 10 2 6 10 14 2 6 7 2
78_Pt 2 2 6 2 6 10 2 6 10 14 2 6 9 1
79_Au 2 2 6 2 6 10 2 6 10 14 2 6 10 1
80_Hg 2 2 6 2 6 10 2 6 10 14 2 6 10 2

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s
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81_Tl 2 2 6 2 6 10 2 6 10 14 2 6 10 2 1
82_Pb 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2
83_Bi 2 2 6 2 6 10 2 6 10 14 2 6 10 2 3
84_Po 2 2 6 2 6 10 2 6 10 14 2 6 10 2 4
85_At 2 2 6 2 6 10 2 6 10 14 2 6 10 2 5
86_Rn 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6
87_Fr 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1
88_Ra 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2
89_Ac 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2
90_Th 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 2
91_Pa 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 6 1 2
92_U 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 2
93_Np 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 2
94_Pu 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 2

A.3 Applications

Here, we present the Bash script which the Author has developed and used to calculate the
relativistic bound-electron wave functions in Chapter 2. This script automatically feeds the
user input into the interactive mode of the relevant Grasp2K programs in the command
prompt, extracts the computed values of the radial electron wave functions 5 (') and 6(')
expressed in a.u. on the surface of a nucleus with radius ' = 1.2 fm�1/3 through linear
interpolation of the two neighboring points on the A -grid, and calculates the Fermi sum
1 (/, �) = ∑9

===min 5
2
=,−1(') + 62=,+1(') [a.u.] from the lowest unoccupied s1/2 and p1/2 subshells

=min up to = = 9 by parsing the �le output. The purpose and principle of each part of the script
is emphasized in the comments. The empty space between the lines No. 115–146 is necessary in
order to enter blank lines into the program rwfnplot.

Program documentation:

0n2nEPb Readme

"0n2nEPb" is a bash program which runs GRASP2K and extracts the radial wave functions at
nuclear radius in the context of bound-state double-beta decay modes 0nEPb^- and 2nEPb^-.

The program "0n2nEPb" comes in several different versions:
1. 0n2nEPb_debug: The most general version allows for a wide selection of options and
methods, but requires a more complex input. The user is prompted for:

(a) Name of the calculation;
(b) Atomic number Z of the parent nucleus;
(c) Its mass number A;
(d) Electron configuration (core + peel, possibly also in format suitable for the

non-relativistic program HF);
(e) Method for initial estimation of radial wave functions (non-relativistic HF

Thomas-Fermi model, or screened hydrogenic solutions);
(f) Range of the total-angular-momentum values 2*J;
(g) Lowest available energy level n for both s_1/2 and p_1/2 states of the EP electron

(negative if these subshells are non-empty);
(h) Possibility to modify the RMCDHF options (number of CSF from 1 up to NCSF,

statistical weight equal or standard (2J + 1), list of orbitals to vary, list of
spectroscopic orbitals, number of SCF cycles);

(i) Option to keep the .sum and .agr (XMGrace plot) files.
2. 0n2nEPb: The standard version assumes default options and requires simplified input

(initial estimation via Thomas-Fermi, J of the parent atom in ground state +- 1/2 due to
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the EP electron, ASF serial number = 1, standard statistical weight (2J + 1), vary all
orbitals, all orbitals are spectroscopic, max. 100 SCF cycles).

3. 0n2nEPb_HF: Same as 0n2nEPb, but initial estimation is provided by the non-relativistic
program HF.

4. 0n2nEPb_nospec: Same as 0n2nEPb, but no orbital is spectroscopic.
5. 0n2nEPb_Z: The simplest version assumes the default options of 0n2nEPb and is suited for

calculations involving noble gases.

All prompts include a sample input in square brackets. Since all programs are bash scripts,
they must be granted permission prior to execution, e.g.:

chmod +x 0n2nEPb
./0n2nEPb

The auxiliary scripts run* have been prepared in advance to automatically feed the input
for all relevant isotopes to the corresponding 0n2nEPb* programs.

The output of each program is a .dat file which contains:
- Table of values of f_n,-1(R) (ns_1/2 states) and g_n,+1(R) (np_1/2 states) up to n = 9 in
atomic units, which are obtained using a linear interpolation of two neighbouring points
on the radial grid.

- Self-consistency of each iteration procedure (the lower the better).
- Sum of squares b(Z,A) = sum_n f_n,-1(R)^2 + g_n,+1(R)^2 which must be further increased
by fitting the squared values by a power function c*n^d and summing over the tail beyond
n = 9 using the Riemann zeta function.

- Summary of user input (log data).

In each row of the table several scenarios can occur:
- Self-consistency is available and very low: this is a sign of healthy convergence and the
result depends very little on the chosen methods.

- Self-consistency is available and of the order of 10^-1: the radial wave functions can
exhibit strange properties (wrong number of nodes => wrong sign on tail), but it can be
cross-checked with other methods that the resulting value is nevertheless plausible and
valid.

- Self-consistency is missing: this occurs when convergence could not have been obtained
for one of the orbitals; the value of wave function is available, but cannot be accepted
as it often yields implausible result.

- Both wave-function value and self-consistency are missing: this marks a serious failure,
e.g., the calculation broke down already at the initial estimation level.

Since the convergence cannot be always guaranteed, a following strategy is proposed:
1. Calculate the wave functions using the program "0n2nEPb" (initial estimate via

Thomas-Fermi).
2. Calculate the wave functions which did not converge (self-consistency is missing) using

the program "0n2nEPb_HF" (initial estimate via HF).
3. Estimate the wave functions which did not converge using a power fit of all available

values for given orbital: a*Z^b.
4. Estimate the wave functions beyond n = 9 using a power fit of all available values for

given isotope: c*n^d.
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The program 0n2nEPb:
1 #!/bin/bash
2

3 # Declare variables:
4

5 name=
6 z=
7 a=
8 row=
9 core=

10 peel=
11 j=
12 jran=
13 n=4
14 nmins=
15 nminp=
16 peel0="-"
17 scf=
18 debug=
19

20 # Function to purge auxiliary files:
21

22 function delete
23 {
24 [ -f "rcsfexcitation.log" ] && rm "rcsfexcitation.log"
25 [ -f "excitationdata" ] && rm "excitationdata"
26 [ -f "rcsf.log" ] && rm "rcsf.log"
27 [ -f "rcsf.out" ] && rm "rcsf.out"
28 [ -f "clist.new" ] && rm "clist.new"
29 [ -f "rcsf.inp" ] && rm "rcsf.inp"
30 for i in {0..9}
31 do
32 [ -f "mcp.3$i" ] && rm "mcp.3$i"
33 done
34 [ -f "rwfn.inp" ] && rm "rwfn.inp"
35 [ -f "fort .734" ] && rm "fort .734"
36 [ -f "rwfn.out" ] && rm "rwfn.out"
37 [ -f "$name.log" ] && rm "$name.log"
38 [ -f "$name.sum" ] && rm "$name.sum"
39 [ -f "$name.m" ] && rm "$name.m"
40 [ -f "$name.w" ] && rm "$name.w"
41 [ -f "$name.c" ] && rm "$name.c"
42 [ -f "octave_$name.m" ] && rm "octave_$name.m"
43 [ -f "xmgrace_$name.agr" ] && rm "xmgrace_$name.agr"
44 }
45

46 # Function to run MCDHF procedure for EP electron in given ns_1/2 or np_1/2
state:

47

48 function rmcdhf
49 {
50 delete
51

52 if [ "$n" = "$((-$4))" ]
53 then
54 ./ rcsfexcitation << !
55 $core
56 1
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57 $peel0
58 15s,15p,15d,15f
59 $jran
60 0
61 n
62 !
63 else
64 ./ rcsfexcitation << !
65 $core
66 1
67 $peel$n$1(1,i)
68 15s,15p,15d,15f
69 $jran
70 0
71 n
72 !
73 fi
74

75 ./ rcsfgenerate < excitationdata
76

77 cp rcsf.out rcsf.inp
78

79 ./ rangular << !
80 y
81 !
82

83 ./ rwfnestimate << !
84 y
85 2
86 *
87 !
88

89 if [ "$j" = "0" ]
90 then
91 ./ rmcdhf << !
92 y
93 1
94 *
95 *
96 100
97 !
98 else
99 ./ rmcdhf << !

100 y
101 1
102 1
103 5
104 *
105 *
106 100
107 !
108 fi
109

110 ./rsave $name
111

112 ./ rwfnplot << !
113 $name
114 y
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115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147 !
148

149 if [ "$debug" = "true" ]
150 then
151 cp $name.sum ${name}_$n$1.sum
152 cp xmgrace_$name.agr ${name}_$n$1.agr
153 fi
154

155 # Convert exponential notation from "D" to "E":
156

157 sed -i 's/D/E/g' xmgrace_$name.agr
158

159 # Extract self -consistency:
160

161 scf=$(awk -v pattern="$n$1$2" 'BEGIN {count =1}; $0~pattern &&count ==1 {
print $7; count =0}' $name.sum)

162

163 # Extract radial -orbital values from grid:
164

165 awk -v pattern="# $n$1$2" -v row="$row" -v extract="$3" -v label="
$n$1_1 /2:" -v scf="$scf" 'BEGIN {ORS =""; count=-2; printf "%s", label};
$0~pattern {count =50+ row}; count ==0|| count==-1 {printf " %.16f %.16f",
$1, $extract }; {count --}; END {printf " %s\n", scf}' xmgrace_$name.agr
>> interpol.dat

166 }
167
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168 # Read user input:
169

170 echo "0n2nEPb"
171 echo "Andrej Babic , April 2017"
172 echo ""
173 echo "b(Z,A) = sum_n f_n ,-1(R)^2 + g_n ,+1(R)^2 [a.u.]"
174 echo ""
175 echo "Enter the name for this calculation [82Se]:"
176 read name
177 echo "Enter the atomic number of the parent nucleus [34]:"
178 read z
179 echo "Enter the mass number (max. 238) [82]:"
180 read a
181 if [ "$a" -le "1" ]
182 then
183 row=1
184 elif [ "$a" -le "2" ]
185 then
186 row=5
187 elif [ "$a" -le "3" ]
188 then
189 row=8
190 elif [ "$a" -le "4" ]
191 then
192 row=9
193 elif [ "$a" -le "5" ]
194 then
195 row=11
196 elif [ "$a" -le "6" ]
197 then
198 row=12
199 elif [ "$a" -le "7" ]
200 then
201 row=13
202 elif [ "$a" -le "8" ]
203 then
204 row=14
205 elif [ "$a" -le "10" ]
206 then
207 row=15
208 elif [ "$a" -le "12" ]
209 then
210 row=16
211 elif [ "$a" -le "14" ]
212 then
213 row=17
214 elif [ "$a" -le "16" ]
215 then
216 row=18
217 elif [ "$a" -le "19" ]
218 then
219 row=19
220 elif [ "$a" -le "22" ]
221 then
222 row=20
223 elif [ "$a" -le "26" ]
224 then
225 row=21
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226 elif [ "$a" -le "30" ]
227 then
228 row=22
229 elif [ "$a" -le "36" ]
230 then
231 row=23
232 elif [ "$a" -le "42" ]
233 then
234 row=24
235 elif [ "$a" -le "49" ]
236 then
237 row=25
238 elif [ "$a" -le "57" ]
239 then
240 row=26
241 elif [ "$a" -le "66" ]
242 then
243 row=27
244 elif [ "$a" -le "77" ]
245 then
246 row=28
247 elif [ "$a" -le "90" ]
248 then
249 row=29
250 elif [ "$a" -le "105" ]
251 then
252 row=30
253 elif [ "$a" -le "123" ]
254 then
255 row=31
256 elif [ "$a" -le "143" ]
257 then
258 row=32
259 elif [ "$a" -le "166" ]
260 then
261 row=33
262 elif [ "$a" -le "194" ]
263 then
264 row=34
265 elif [ "$a" -le "226" ]
266 then
267 row=35
268 else
269 row=36
270 fi
271 echo "Enter the electron configuration of the parent atom."
272 echo "Select the core [3]:"
273 echo " 0. No core"
274 echo " 1. He ( 1s(2) = 2 electrons)"
275 echo " 2. Ne ([He] + 2s(2)2p(6) = 10 electrons)"
276 echo " 3. Ar ([Ne] + 3s(2)3p(6) = 18 electrons)"
277 echo " 4. Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)"
278 echo " 5. Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)"
279 echo " 6. Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)"
280 read core
281 echo "Enter the peel [3d(10,i)4s(2,i)4p(4,i)]:"
282 read peel
283 echo "Enter the 2*J-number of the parent atom [4]:"
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284 read j
285 if [ "$j" = "0" ]
286 then
287 jran=1,1
288 else
289 jran=$((j-1)),$((j+1))
290 fi
291 echo "Enter the lowest available n for s_1/2 states (negative if not empty)

[5]:"
292 read nmins
293 echo "Enter the lowest available n for p_1/2 states (negative if not empty)

[-4]:"
294 read nminp
295 if [ "$nmins" -lt "0" ] || [ "$nminp" -lt "0" ]
296 then
297 echo "Enter the peel including the EP electron [3d(10,i)4s(2,i)4p(5,i)

]:"
298 read peel0
299 fi
300 echo "Do you wish to keep the .sum and .agr files? [Y/n]"
301 read debug
302 if [ "$debug" = "Y" ] || [ "$debug" = "y" ]
303 then
304 debug=true
305 else
306 debug=false
307 fi
308

309 # Delete previous files:
310

311 [ -f "isodata" ] && rm "isodata"
312 for k in {4..9}
313 do
314 for l in s p
315 do
316 [ -f "${name}_$k$l.sum" ] && rm "${name}_$k$l.sum"
317 [ -f "${name}_$k$l.agr" ] && rm "${name}_$k$l.agr"
318 done
319 done
320 [ -f "interpol.dat" ] && rm "interpol.dat"
321 [ -f "$name.dat" ] && rm "$name.dat"
322

323 # Define nuclear data:
324

325 ((z+=2))
326

327 ./ rnucleus << !
328 $z
329 $a
330 n
331 0
332 0
333 0
334 0
335 n
336 !
337

338 ((z-=2))
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339

340 # Run MCDHF cycles up to n = 9:
341

342 while [ "$n" -le "9" ]
343 do
344 if [ "$((n**2))" -ge "$((nmins **2))" ]
345 then
346 rmcdhf s "" 2 $nmins
347 fi
348 if [ "$((n**2))" -ge "$((nminp **2))" ]
349 then
350 rmcdhf p - 3 $nminp
351 fi
352 ((n++))
353 done
354

355 # Perform linear interpolation to obtain radial -orbital values at nuclear
radius:

356

357 awk -v n="$a" 'BEGIN {ORS =""; a=1/137.036; hc =197.327; me =0.511; a0=hc/(a*
me); r=1.2/a0*n^(1/3); print "====================================\ nnl_j:

psi_nk(R) [a.u.] self -con.\n------------------------------------\n"}; {
printf "%s %.16f %s\n", $1, ($3+(r-$2)*($5-$3)/($4-$2))/r, $6}' interpol.
dat >> $name.dat

358

359 # Append sum of squares and .log data to the output file:
360

361 awk -v name="$name" -v z="$z" -v a="$a" -v core="$core" -v peel="$peel" -v
j="$j" -v nmins="$nmins" -v nminp="$nminp" -v peel0="$peel0" 'BEGIN {b=0};
FNR >3 {b+=$2^2}; END {printf "------------------------------------\n%s %.16
f\n====================================\n\n%s %s\n%s %s\n%s %s\n%s %s\n%s %
s\n%s %s\n%s %s\n%s %s\n%s %s\n\n", "b(Z,A):", b, "Name: ", name , "Z:
", z, "A: ", a, "Core: ", core , "Peel: ", peel , "2*J: ", j, "nmins:
", nmins , "nminp: ", nminp , "Peel0: ", peel0}' $name.dat >> $name.dat

362

363 # Purge auxiliary files and exit:
364

365 [ -f "isodata" ] && rm "isodata"
366 delete
367 [ -f "interpol.dat" ] && rm "interpol.dat"
368 exit 0
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Input parameters:

==================================================================================
Name Z A Core Peel 2*J nmin_s nmin_p
----------------------------------------------------------------------------------
46Ca 20 46 3 4s(2,i) 0 5 4
48Ca 20 48 3 4s(2,i) 0 5 4
70Zn 30 70 3 3d(10,i)4s(2,i) 0 5 4
76Ge 32 76 3 3d(10,i)4s(2,i)4p(2,i) 0 5 -4
80Se 34 80 3 3d(10,i)4s(2,i)4p(4,i) 4 5 -4
82Se 34 82 3 3d(10,i)4s(2,i)4p(4,i) 4 5 -4
86Kr 36 86 3 3d(10,i)4s(2,i)4p(6,i) 0 5 5
94Zr 40 94 4 4d(2,i)5s(2,i) 4 6 5
96Zr 40 96 4 4d(2,i)5s(2,i) 4 6 5
98Mo 42 98 4 4d(5,i)5s(1,i) 6 -5 5
100Mo 42 100 4 4d(5,i)5s(1,i) 6 -5 5
104Ru 44 104 4 4d(7,i)5s(1,i) 10 -5 5
110Pd 46 110 4 4d(10,i) 0 5 5
114Cd 48 114 4 4d(10,i)5s(2,i) 0 6 5
116Cd 48 116 4 4d(10,i)5s(2,i) 0 6 5
122Sn 50 122 4 4d(10,i)5s(2,i)5p(2,i) 0 6 -5
124Sn 50 124 4 4d(10,i)5s(2,i)5p(2,i) 0 6 -5
128Te 52 128 4 4d(10,i)5s(2,i)5p(4,i) 4 6 -5
130Te 52 130 4 4d(10,i)5s(2,i)5p(4,i) 4 6 -5
134Xe 54 134 4 4d(10,i)5s(2,i)5p(6,i) 0 6 6
136Xe 54 136 4 4d(10,i)5s(2,i)5p(6,i) 0 6 6
142Ce 58 142 5 4f(1,i)5d(1,i)6s(2,i) 8 7 6
146Nd 60 146 5 4f(4,i)6s(2,i) 8 7 6
148Nd 60 148 5 4f(4,i)6s(2,i) 8 7 6
150Nd 60 150 5 4f(4,i)6s(2,i) 8 7 6
154Sm 62 154 5 4f(6,i)6s(2,i) 0 7 6
160Gd 64 160 5 4f(7,i)5d(1,i)6s(2,i) 4 7 6
170Er 68 170 5 4f(12,i)6s(2,i) 12 7 6
176Yb 70 176 5 4f(14,i)6s(2,i) 0 7 6
186W 74 186 5 4f(14,i)5d(4,i)6s(2,i) 0 7 6
192Os 76 192 5 4f(14,i)5d(6,i)6s(2,i) 8 7 6
198Pt 78 198 5 4f(14,i)5d(9,i)6s(1,i) 6 -6 6
204Hg 80 204 5 4f(14,i)5d(10,i)6s(2,i) 0 7 6
232Th 90 232 6 6d(2,i)7s(2,i) 4 8 7
238U 92 238 6 5f(3,i)6d(1,i)7s(2,i) 12 8 7
==================================================================================

Sample run:

#!/bin/bash

./0n2nEPb << !
82Se
34
82
3
3d(10,i)4s(2,i)4p(4,i)
4
5
-4
3d(10,i)4s(2,i)4p(5,i)
n
!
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Sample output:

====================================
nl_j: psi_nk(R) [a.u.] self-con.
------------------------------------
4p_1/2: 2.0803346934407889 9.964D-06
5s_1/2: 7.5238646495372201 1.621D-05
5p_1/2: 0.6590454549728999 1.813D-05
6s_1/2: 4.1624522360144933 8.172D-08
6p_1/2: 0.3919750234797083 4.529D-06
7s_1/2: 2.8065887133417733 3.545D-07
7p_1/2: 0.2724569720760353 3.330D-06
8s_1/2: 2.0620647939115466 1.205D-06
8p_1/2: 0.2043029058298318 1.998D-06
9s_1/2: 1.2864391580141246 4.363D-01
9p_1/2: 0.1607146083246139 1.254D-06
------------------------------------
b(Z,A): 92.7761044408549083
====================================

Name: 82Se
Z: 34
A: 82
Core: 3
Peel: 3d(10,i)4s(2,i)4p(4,i)
2*J: 4
nmins: 5
nminp: -4
Peel0: 3d(10,i)4s(2,i)4p(5,i)
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