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Abstract
Energy-efficient scheduling has been attracting a considerable amount of attention in
recent years. This trend is most likely to continue in the future since energy-efficient
scheduling helps to achieve and maintain production sustainability, improve energy
efficiency, and reduce energy costs.

This thesis focuses on offline energy-efficient scheduling in environments where
the state of the resource changes in time and influences energy consumption.
Examples of such resources include industrial furnaces used for steel hardening,
manufacturing equipment (e.g., CNC), or even embedded electronic systems on a
chip.

We focus especially on the modeling of the resource state and design of energy-
aware optimization methods, including the integration of the resource model into
the methods. The goal is to show how suitable resource modeling combined with an
appropriate optimization method can improve state-of-the-art solutions. To reach
that goal, we study three use-case problems representing samples of both theoretical
and practical problems involving offline energy-aware scheduling with a complex
resource model.

The first problem is motivated by the steel-hardening production line in Škoda
Auto. The objective is to analyze and model the hardening furnace and propose
an optimization method to minimize energy consumption during the time intervals
when the furnace is idle. The second problem involves a general resource that can be
characterized by the finite state machine in the environment where the energy prices
change in time. Again, the goal is to have an optimization method incorporating
the finite state machine model of the resource that would optimize overall energy
consumption cost. Finally, the third problem defined by Honeywell company,
involves energy-efficient scheduling of safety-critical tasks on a multiprocessor
system on a chip under temporal isolation constraints.

Considering our solution approach, we analyze the behavior of the steel-hardening
furnace and identify a bilinear system model that can faithfully simulate it. Then,
we derive an optimal control of the furnace for any idle interval length. The optimal
cost is then abstracted and captured by the so-called idle energy function. Using this
abstraction, we propose a scheduling algorithm solving the studied single-machine
fixed-sequence scheduling problem in polynomial time complexity. To solve the
second problem, we extend the notion of idle energy function to include not only
the idle period length but also the energy costs. Then, we propose a mathematical
model that efficiently integrates this extended energy function. Finally, to solve the
third problem, we analyze the behavior of several real physical platforms mounting
modern multiprocessor systems on a chip. Then, we propose several power models
and optimization methods and provide a comparative study addressing models
fidelity, methods performance, and scalability.

The results across all studied problems show that with careful design choices, the
optimization performance can be substantially improved, and the state-of-the-art
methods used in the respective fields can be outperformed.

Keywords: scheduling, energy, modeling, optimization
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Abstrakt
Energeticky efektivńı rozvrhováńı si v posledńıch letech źısaklo značnou pozornost
vědecké komunity. Tento trend bude s největš́ı pravděpodobnost́ı pokračovat i v
budoucnu, protože energeticky efektivńı rozvrhováńı pomáhá dosáhnout udržitelnosti
výroby, zlepšit energetickou účinnost a sńıžit tak náklady na spotřebu energie.

Tato práce se zaměřuje na offline rozvrhováńı s d̊urazem na energetickou efek-
tivitu v prostřed́ıch, kde se stav zdroje měńı v čase a ovlivňuje spotřebu energie.
Př́ıklady takových zdroj̊u zahrnuj́ı např́ıklad pr̊umyslové pece použ́ıvané pro kaleńı
oceli, výrobńı zař́ızeńı (CNC) nebo dokonce vestavěné systémy na čipu.

Velký d̊uraz je v této práci kladen zejména na modelováńı stavu zdroje a
návrh energeticky efektivńıch optimalizačńıch metod, které tento model zdroje
integruj́ı. Ćılem je ukázat, jak může vhodné modelováńı zdroj̊u v kombinaci s
vhodnou optimalizačńı metodou překonat doposud použ́ıvané metody a postupy.
Abychom tohoto ćıle dosáhli, studujeme tři nezávislé problémy představuj́ıćı pr̊uřez
teoretických i praktických výzkumných problémů zahrnuj́ıćıch energeticky efektivńı
offline rozvrhováńı s netriviálńım zdrojem.

Motivace pro prvńı problém vznikla během spolupráce s firmou Škoda Auto.
Ćılem je analyzovat a modelovat kaĺıćı pec, které je součást́ı linky na kaleńı oceli,
a navrhnout optimalizačńı metodu pro minimalizaci spotřeby energie v časových
intervalech, kdy je pec nečinná. Druhý problém se zaměřuje na obecný zdroj,
který lze charakterizovat konečným automatem v prostřed́ı, kde se ceny energie
měńı v čase. Opět je ćılem navrhnout optimalizačńı metodu zahrnuj́ıćı model
zdroje, která by optimalizovala celkové náklady na spotřebu energie. Třet́ı problém,
definovaný ve spolupráci se společnost́ı Honeywell, zahrnuje energeticky efektivńı
rozvrhováńı bezpečnostně kritických úkol̊u na v́ıceprocesorovém systému na čipu,
kde rozvrhováńı jednotlivých úloh podléhá omezeńım časové izolace.

Pro řešeńı prvńıho problému analyzujeme chováńı pece na kaleńı oceli a iden-
tifikujeme bilineárńı model, který jej dokáže věrně simulovat. Na základě tohoto
modelu jsme schopni poté odvodit optimálńı ř́ızeńı pece pro jakoukoli délku intervalu
jej́ı nečinnosti. Optimálńı spotřeba energie pro libovolně dlouhý interval je pak
abstrahována a zachycena tzv. energetickou funkćı. Pomoćı této abstrakce jsme
schopni navrhnout rozvrhovaćı algoritmus řeš́ıćı studovaný problém (rozvrhováńı na
jednom zdroji s fixńım pořad́ım úloh) v polynomiálńı časové složitosti. Abychom
vyřešili druhý problém, rozš́ı̌ŕıme definici energetické funkce tak, aby zahrnovala
nejen délku intervalu nečinnosti, ale také náklady na energii. Poté můžeme vyvinout
matematický model integruj́ıćı tuto rozš́ı̌renou energetickou funkci. Abychom vyřešili
třet́ı problém, analyzujeme chováńı několika reálných fyzických platforem reprezen-
tuj́ıćı moderńı multiprocesorové systémy. Poté navrhneme několik model̊u př́ıkonu,
které integrujeme do několika optimalizačńıch metod. Výsledkem je srovnávaćı
studie hodnot́ıćı věrnost model̊u př́ıkonu, výkon metod a jejich škálovatelnost.

Výsledky např́ıč všemi studovanými problémy ukazuj́ı, že pečlivým návrhem
modelu a optimalizačńı metody lze dosáhnout výsledk̊u podstatně překonávaj́ıćı
nejmoderněǰśı metody a postupy použ́ıvané v př́ıslušných oblastech.

Kĺıčová slova: rozvrhováńı, energie, modelováńı, optimalizace
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Goals and Objectives
This thesis investigates scheduling problems where the overall energy consumption
depends on the state of the resource. The main objectives can be summarized as
follows:

1. Study the selected scheduling problems where the state of the resource signifi-
cantly impacts energy consumption.

2. Review the existing literature considering the resource-state modeling and
energy optimization, identify the weak points, and suggest possible improve-
ments.

3. For several selected use-case problems, propose suitable resource models and
their integration with the optimization procedures in the context of energy
consumption minimization.

4. Present how suitable resource modeling combined with appropriate optimiza-
tion techniques can improve state-of-the-art solutions.
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Preface
Optimization has become an integral part of our everyday lives [67, 112]. Both
the individuals and companies optimize, be it profit, welfare, or influence. Since
the 1940s, the optimization trend has been on the rise1. Especially today, at times
of tense geopolitical situation and turbulent energy prices, optimization shows its
importance.

According to the Merriam-Webster dictionary [93], optimization is a process
of making something as good as it can be. More specifically, within the scope of
this thesis, we are interested in the specific mathematical procedures, models, and
algorithms involved in the optimization process. However, to be able to apply the
optimization techniques, we need the formal model of the system itself, which serves
as an abstraction of reality, and enables us to perform the optimization without the
need to conduct physical experiments.

As an example, assume that we want to optimize the utilization of the resources
in a factory. It would be very inconvenient, time-consuming, and expensive to
prepare, say, a thousand different scenarios, execute each of them in reality, and
then select the one that performed the best. Instead, the system model (including
models of the resources, production tasks, and other relevant factors) is prepared
first. Then, an appropriate optimization technique is selected, and the whole system
is optimized. Finally, the solution is tested in practice and possibly deployed.

In that context, the overall process from the problem specification up to the
deployment of the optimized solution can be illustrated, as shown in Figure 1. The
primary focus of this thesis is on the selection of the appropriate system model and
optimization techniques and on the possible interplay between them. Specifically,
we ask questions like:

• Does the model selection influence the optimization step?

• How much can we benefit by selecting the appropriate system model and
optimization routine?

Problem Formalization System Model Optimization
Evaluation and
Deployment

primary focus of this thesis

Figure 1: From problem specification towards the optimal solutions and their deployment.

Of course, this thesis does not have the ambition to solve all the optimization
problems and provide the best models and optimization routines for each of them.

1We can simply observe the trend by examining the word ‘optimize’ in a wider context using
the English language corpus. According to the Ngram Viewer by Google [94], the frequency of
using the word ‘optimize’ increased by more than 15 percent between 2000 and 2019 and is still
rising.

3



4 Preface

Instead, we concentrate on three use-case problems that serve as samples to illustrate
the modeling, optimization, and their possible synergy. Each of these use-cases
constitutes a single chapter of this thesis.

In the first chapter, we analyze a single-machine scheduling problem, for which
we took inspiration from Škoda Auto. There, they have a segment of a production
line where the steel parts are being hardened in electric vacuum furnaces. Each such
furnace has a relatively high power consumption (up to 160 kW); furthermore, it
takes a relatively long time to heat the furnace up to the operating temperature, and
its overall dynamics is rather slow. The goal is to schedule the loading and unloading
of the parts to the furnace, as well as the behavior of the furnace during the periods
when nothing is being processed, such that the overall energy consumption is as
low as possible.

In the second chapter, we change the problem a bit by considering any machine
that can be modeled by a state transition graph, which is a model commonly used
in the literature. Further, we consider time-dependent energy prices (e.g., low and
high tariffs or 15-minutes pricing intervals). The goal is to find an optimization
algorithm that will scale better than the state-of-the-art methods.

Finally, we study the problem of thermally-constrained safety-critical task allo-
cation and scheduling on a heterogeneous multi-core embedded platform. Although
this problem seems completely different from the previous two, it shows that the
concepts are the same, be it production scheduling or embedded systems scheduling.
Still, proper selection of the system’s model and optimization technique has a crucial
impact on the solution quality.

Although the problems are rather diverse, several unifying concepts put them
to the same scope, namely:

• Scheduling: Scheduling is understood as a process of assigning tasks
to resources in time. It has large importance across various domains. In
production processes, plant and machinery resources are allocated to process
the tasks such that some criterion (e.g., the production cost) is optimized.
In the computing domain, resources such as processors or network links
are assigned to perform tasks. Although scheduling is as old as humanity,
it started to gain significance during the industrial revolution in the 18th
century. The rapid growth followed in the 20th century mainly due to
advances in computer technology, which allowed to solve the scheduling
problems previously intractable by humans [64]. Nowadays, scheduling is an
active research area with many practical application areas; further advances
in modeling and optimization can therefore have a substantial impact in many
domains.

• Energy Optimization: Typically, the scheduling is done with the aim
of optimizing some objective function. In the past, this function was often
connected to the timeliness of the system (finish as soon as possible, finish
all tasks before their due dates, minimize the number of tardy jobs, etc.).
However, with the increasing demand for sustainability, other factors gained
their importance. Among those, energy optimization ranks among the most
important. One of the reasons is that ever-increasing energy prices make
energy one of the non-negligible production costs. Also, the recent geopolitical
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situation and unstable market have further contributed to the importance of
energy management.

Not only is energy optimization important in the production processes, but
it also has significant importance in embedded systems, be it to prolong
the operating time of battery-powered devices or to avoid the permanent,
irreversible failures caused by the system’s overheating.

To conclude, although energy optimization became an important part of the
decision process, it also brought additional complexity and new challenges
to the optimization models and algorithms design. Therefore, it became an
important research topic.

• State of the Resource: The complexity of the systems is steadily increas-
ing. In manufacturing, we observe a shift from mass production toward mass
customization and personalization. This is further complemented by robotiza-
tion, digitization, and process automation, which are among the recent trends
incorporated by the widely adopted Industry 4.0 paradigm. All of these factors
contribute to a complexification of the manufacturing process, which leads
to a need to develop new and more complex system models. In consequence,
accurate modeling of each resource and its state is nowadays an indispensable
part of any system model especially considering the system’s heterogeneity,
complex machine environments, including heat-intensive or reconfigurable
machines, and the necessity to model multiple production stages to get the
best possible results.

This situation and trends are not exclusive to just manufacturing scheduling.
Take, as an example, the scheduling of workloads in embedded systems. The
ever-increasing high-computing demand has led to the development of rather
complex heterogeneous multi-processor systems-on-chip, which are being
deployed in many applications, including automotive and aerospace. The state
of such a system can be associated with its temperature or other quantities,
including the operating frequency or the bus/memory load. Having an accurate
resource model integrating (some of) these quantities might be essential in
order to avoid problems such as interference on the shared resources (e.g.,
memory, cache), thermal interference of the individual computing elements,
etc.

Literature Survey

The detailed problem-specific literature reviews are presented in the respective chap-
ters. Here, we summarize the commonly used resource modeling and optimization
techniques.

Resource Modeling

In production, besides investing money to buy newer and more energy-efficient
resources, the energy cost can be reduced by using one of two basic means [116,
51]: (i) by relying on the pricing mechanism (the energy consumption remains
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the same, but the workload is shifted towards time intervals when the energy
price is cheaper), or (ii) directly through intelligent planning and scheduling. The
latter option relies on the assumption that the resource can scale processing speed
(changing the resource state during the task processing) or that the resource can be
switched to some power-saving state (changing the resource state during idle time
intervals). With this in regard, we analyze what resource models are being used in
the literature.

Considering the resource state during idle time intervals, Gahm et al. distinguish
between energy demand incurred by machine setups and machine power-saving
states (turn-on/off or idling) [51]. Considering the setups, the resource model is
often simple. Sometimes, just a constant cost is incurred for each setup [136]. Other
times, the setup cost is job/machine-dependent [63] or even sequence-dependent
[27, 81]. But even in such cases, the resource is characterized just by a matrix
of pre-defined constant numbers representing the setup times/costs. Considering
the power-saving states, the situation is very similar. The predominant approach
relies on the finite state machine to describe the machine states and the transition
between them. Typically, just several states are considered, e.g., ‘processing state’,
‘idle state’, and ‘turn-off state’ [97, 133, 121, 136, 29, 2]. There are some papers,
especially related to heat-intensive processes, that adopt more complex machine
models [61, 60]. Furnace loading and unloading are then modeled, possibly together
with melting, holding, and other processes. These processes are integrated into
standard mathematical models by introducing additional variables and constraints.
Such machine models are rather problem-specific, and their re-usability in other
domains becomes limited. Sometimes, the authors concentrate just on numerical
simulation and energy performance analysis without implementing any optimization
[62, 98]; such physics-based models are indeed complex; however, they are often
unsuitable for further integration within common optimization methods, such as
mathematical programming.

With regard to the resource state modeling during processing intervals, the
energy consumption can depend on the type of the machine [47, 14, 79] or on the
type of the processed task [47, 85, 86]. In both cases, the typical way to handle
the resource model is to introduce a set of constants specifying the processing time
and energy consumption of each task on each machine (and possibly also in each
machine mode, which can be associated with machine processing speed).

In the embedded systems domain, we may find many parallels with the production
scheduling domain. Again, energy consumption might be influenced by the type
of the resource to which the task is allocated (heterogeneous systems provide
CPU clusters of different power characteristics), resource processing mode (CPU
frequency), or resource state during idle time intervals (some components has
different power modes, such as ‘standby’, or ‘off’).

Considering the resource state during idle time intervals, there exists a research
community centered around dynamic power management (DPM), i.e., a system-
level power management technique that can selectively shut down idle electrical
components to lower energy consumption [22, 77]. Contrary to the production
scheduling domain, where the resource states and transitions between them are
often encoded directly within the optimization method, DPM researchers often rely
on the notion of the energy function [68, 56], which is an abstraction capturing an
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optimal energy consumption of the resource for any idle period length. Values of this
function can be pre-computed based on the component characteristics described by
the manufacturer. Often, however, the situation is simpler, as many authors assume
two states only (on/off) [13, 7, 45]. Then, the resource can be again characterized
by several parameters representing the switching time and cost.

Contrary to that, resource models are more complicated when considering the
processing intervals and dynamic voltage and frequency scaling, which is a dominant
power-saving approach in the literature [145, 120]. The majority of the models
are based on the CMOS circuit power model, which describes power consumption
as a function of supply voltage, clock frequency, and other parameters [120]. The
so-called short-circuit part of the power is neglected, as it is deemed insignificant
compared to the dynamic and static power. Static (leakage) power is associated
with the existence of the leakage current; mostly, this part is also disregarded as
well. However, as it depends on the temperature, techniques that aim to reduce the
on-chip temperature also indirectly lead to a reduction of this leakage power [145].
The remaining part of the power consumption Pd corresponds to dynamic power
and is often expressed as Pd = αV 2

ddCf , where α is the switching factor, Vdd is the
supply voltage, C is the load capacitance, and f is the clock frequency [120].

Still, even such a model might be prone to errors. One problem is that the
switching factor is dependent on the type of workload that is being executed [11,
20]. This is often disregarded in many works, where the experiments are mostly
based on simulation only [32, 28, 6, 108]. Furthermore, it is often assumed that the
execution time of each task scales linearly with frequency [6, 45, 108]. However,
that is also not correct since the memory latency does not scale with processor
frequency [40, 95]. Therefore, some of the authors prefer to learn the power model
from data using, e.g., the AI techniques [122, 139, 41].

The resource model becomes even more complicated when the thermal behavior
of the chip is considered. In that case, the authors rely on substitute resistance-
capacitance (RC) networks that can model the thermal dissipation through the chip
[119]. This leads to a system of differential equations relating the temperature in
each thermal zone with the power consumption of the individual components. Given
the initial condition, the system can be simulated; however, that is often rather
computationally demanding. Therefore, for optimization purposes, the authors
often simplify the model, e.g., by considering only the steady state [28].

In the context of related literature, this thesis includes problems with rather
complex resource models. The heat-intensive industrial furnace is studied in Chap-
ter 1. A general machine with states characterized by the finite state machine in a
complex environment with changing energy prices is discussed in Chapter 2, and,
finally, a heterogeneous multiprocessor system on a chip is studied in Chapter 3 in
the context of the steady-state temperature minimization.

Optimization

Based on our experience, review of related works, and recent surveys [51, 52], we
identify one dominant optimization approach used in the production scheduling
community. The majority of the authors model the problem using a mixed integer
(possibly non-linear) model and solve it with some of the off-the-shelf solvers. Then,



8 Preface

if the scalability is not enough, the majority of the authors propose some heuristic
algorithm (often metaheuristics, such as genetic algorithms, are used [52]). We
attribute the popularity of this trend to its simplicity – it is simple to formulate
the problems in mixed integer programming (even if it does not scale well), and
it is simple to use metaheuristics (even if they do not necessarily need to perform
well). Of course, other approaches exist, including decompositions [42], multi-stage
heuristics [29], polynomial-time algorithms [34], etc., but the combination of mixed
integer programming and metaheuristics is the most prominent.

The situation is more complex in the embedded community as the designed
algorithms are often working online [69, 38, 5]. In that case, the algorithms are
often rule-based, building upon EDF or similar rules [12]. As the online methods
are out of the scope of this thesis, we further analyze offline ones, which might
also be quite diverse [119, 120]. They include greedy methods [74], approximation
methods [69], polynomial-time algorithms [7, 13, 56], decoupled methods [141], or
even methods based on mathematical programming [32, 28, 45].

Regarding the optimization methods, this thesis has quite a wide coverage. In
Chapter 1, a polynomial algorithm is proposed, integrating the information on the
optimal control of the resource. In Chapter 2, we propose a mixed integer linear
programming formulation that uses data obtained by polynomial pre-processing and
therefore provides superior scalability to a generic MILP model. In Chapter 3, we
compare many different approaches, including informed and uninformed heuristics,
metaheuristics, and mathematical programming models.

Contributions

The key contributions of this thesis are:

• Three use-cases are presented, highlighting the appropriate system modeling
and optimization importance.

• The results show that selecting the system model and optimization jointly
brings significant benefits, independently of the specific problem to be solved.

• Individually, the state-of-the-art methods are compared with the proposed
modeling and optimization approaches showing significant improvements
achieved for each of the studied use-cases. Specifically:

– In Chapter 1, we study optimal furnace control and its integration within
the scheduling algorithm. An idle energy function is used to abstract the
energy consumption of the furnace during idle periods. Based on this
function, a polynomial algorithm is proposed to optimize the overall idle
energy consumption. A set of simulations based on data obtained in real
production show that the proposed solution provides significantly lower
energy consumption compared to the existing modeling approach based
on explicit modeling of the machine modes [97, 121, 29, 2].

– In Chapter 2, we describe a novel pre-processing technique to solve
problem 1,TOU| states |TEC introduced by Shrouf et al. [121]. The
pre-computed costs of the optimal resource state switchings allow us to
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design an exact Integer Linear Programming model, which scales several
times better compared to the previous state-of-the-art [4].

– In Chapter 3, we implement and compare several power models and
optimization methods to solve thermal-aware task allocation under tem-
poral isolation constraints on a heterogeneous multiprocessor system on
a chip. Experimental results show that our methods outperform the
greedy solution based on the principles commonly used in the relevant
literature [142, 74].

Other specific contributions are further listed in each of the chapters.

Outline

This thesis is divided into three separate chapters, where each chapter describes a
single use-case.

Chapter 1 studies a single-machine scheduling problem inspired by production in
Škoda Auto company, where the scheduling resource is an electric vacuum furnace.
The scheduling problem is formally defined (Section 1.3), and an appropriate opti-
mization algorithm is proposed to solve it (Section 1.4). Further, the thermal model
of the furnace is described and analyzed (Section 1.5). Then, model parameters
are identified based on real data (Section 1.6). Finally, experiments show that
the proposed resource model, in combination with the optimization algorithm,
outperforms the commonly used approaches (Section 1.7).

Chapter 2 presents a use-case combining machine state modeling with the time-
dependent energy prices. The scheduling problem is similar to the one discussed
in Chapter 1, but the variable energy pricing makes the situation more complex.
Throughout the chapter, we assume a widely studied general resource model describ-
ing the resource behavior by a transition graph. First, the problem and the resource
model are formally introduced (Section 2.3). Then, a novel pre-processing technique
is presented and integrated with the optimization models (Section 2.4). Finally,
the proposed approach is validated on a set of benchmark instances (Section 2.5).
The results show that significant improvements are achieved when the optimization
model is integrated with the proposed pre-processing technique.

Chapter 3 focuses on thermal-aware task allocation on a heterogeneous multi-
processor system on a chip (MPSoC) under temporal isolation constraints. First,
the problem is informally introduced (Section 3.2), and the related work is reviewed
(Section 3.3). Second, system modeling is formalized in detail (Section 3.4). Then,
as we target real modern MPSoC systems, several such systems used for solution
validation are presented together with industrial benchmarks representing the work-
load (Section 3.5). Afterward, thermal modeling is discussed in detail (Section 3.6).
Finally, optimization methods integrating described power models are described
(Section 3.7). Everything is then experimentally validated (Section 3.8). The results
underline the importance of appropriate resource model selection and its integration
within the optimization method.

The individual chapters are based on the original scientific publications [17,
16, 20]. For the reader’s convenience, each of the chapters starts with a summary
introducing its content within the context of this thesis.
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1
Chapter

Scheduling of Industrial Furnace

1.1 Chapter Summary and Motivation

This line of research originated from the collaboration with Škoda Auto. As part of
his master’s theses [43], Josef Dušek went to Škoda Auto and analyzed part of the
steel-hardening production line, see Figure 1.1. The results of his analysis showed
that there is a significant potential to reduce the energy production of the line, as
vacuum hardening furnaces (the major energy consumer of the analyzed production
line) were being unnecessarily heated to high temperatures even when processing
nothing.

Figure 1.1: A steel hardening production line in Škoda Auto consisting of electrical vacuum
furnaces [43].

Building upon this promising analysis, we extracted the data describing the
behavior of the furnaces in time1 and we started thinking about how to improve
the energy consumption by means of scheduling. We published some preliminary
results at the international conferences:

1Note that most of the original data were acquired only in the form of time plots (images)
exported by diagnostic software in Škodad Auto; therefore, it actually took a great effort to digitize
them.

11



12 Introduction

• Ondřej Benedikt, Přemysl Š̊ucha, István Módos, Marek Vlk, and Zdeněk
Hanzálek. “Energy-Aware Production Scheduling with Power-Saving Modes”.
In: Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research. Ed. by Willem-Jan van Hoeve. Cham: Springer International
Publishing, 2018, pp. 72–81. isbn: 978-3-319-93031-2. doi: 10.1007/978-3-
319-93031-2_6,

• Ondřej Benedikt., Přemysl Š̊ucha., and Zdeněk Hanzálek. “On Idle Energy
Consumption Minimization in Production: Industrial Example and Mathemat-
ical Model”. In: Proceedings of the 9th International Conference on Operations
Research and Enterprise Systems - ICORES,. INSTICC. SciTePress, 2020,
pp. 35–46. isbn: 978-989-758-396-4. doi: 10.5220/0008877400350046,

where the latter was awarded the Student Paper Award at the ICORES 2020
conference.

It showed that one of the challenging parts of this research is related to the
furnace’s dynamics, as the heating and cooling take substantial time and cannot
be neglected. Therefore, we decided to simplify the problem and analyze a single
furnace in detail. This led to a major contribution

• Ondřej Benedikt, Baran Alikoç, Přemysl Š̊ucha, Sergej Čelikovský, and Zdeněk
Hanzálek. “A polynomial-time scheduling approach to minimise idle energy
consumption: An application to an industrial furnace”. In: Computers &
Operations Research 128 (2021), p. 105167. issn: 0305-0548. doi: 10.1016/
j.cor.2020.105167

accepted in Computers and Operations Research journal. There, we describe and
identify a bilinear model that is used to simulate continuous-time furnace dynamics.
Furthermore, we derive an energy-optimal control law to manage the furnace during
the idle time intervals. Finally, we propose a scheduling method that incorporates
the thermal model in a smart way (in the form of idle energy function) and provides
an energy-optimal schedule for a set of tasks that are scheduled in a given fixed
order in polynomial time complexity.

This whole study and its results highlight the importance of proper resource
modeling (here, the thermal behavior modeled by a bilinear model) and its integra-
tion with the optimization method (here, the idle energy function abstraction and
the problem reduction to the shortest path problem solvable in polynomial time
complexity). The first chapter of this thesis presents this contribution (i.e., [17]).

1.2 Introduction

The machines in heat-intensive processes (such as furnaces) are highly energy-
demanding, and therefore their energy consumption optimization usually provides
a significant reduction in production costs. In this chapter, we focus on the idle
energy consumption optimization, which has been widely studied in recent years,
see, e.g., [59, 97, 121, 51, 29, 2]. The research presented in this chapter is inspired
by a heat-intensive production process from Škoda Auto. There, steel hardening is
performed in electric vacuum furnaces, which require high power input to reach and

https://doi.org/10.1007/978-3-319-93031-2_6
https://doi.org/10.1007/978-3-319-93031-2_6
https://doi.org/10.5220/0008877400350046
https://doi.org/10.1016/j.cor.2020.105167
https://doi.org/10.1016/j.cor.2020.105167
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maintain the specific operating temperature. In this production line, all furnaces
are heated to the operating temperature at the beginning of the week and turned off
at its end. However, this strategy is very wasteful because a considerable amount
of energy is consumed for heating even during periods when no material is being
processed. The problem of energy-wasting during prolonged idle periods is not
specific only to this particular plant. Similar observations have already been made
in other companies as well [97].

A common approach in the area of the idle energy consumption optimization
is to define a set of machine modes, typically “off”, “on”, and “stand-by” [97,
121, 29, 2]. The feasible transitions between the modes are then represented by
a static transition graph defining the time and energy needed to switch from one
mode to another and thus describing the machine dynamics to some extent. In
this chapter, we argue that this type of model might be too restrictive for some
types of machines (e.g., the furnaces). For such machines, we propose to employ
the complete time-domain behavior of the machine, when available, in contrast to
the use of the finite number of stand-by modes as in the existing literature. The
relation between the length of the idle period and the possible minimal energy
consumption is then represented by the idle energy function, which is used by the
proposed scheduling algorithm. This way, the whole energy minimization problem
is decomposed into two independent optimization problems: (i) determination of
the idle energy function and (ii) optimal scheduling of the tasks.

For the scheduling part, we examine a single machine problem where tasks are
characterized by release times, processing times, and deadlines while the objective is
to minimize the idle energy consumption. Besides, we assume a fixed order of tasks.
The reason for this assumption is that the single machine problem with release times
and deadlines is already NP-hard [53]. Therefore, it is reasonable to solve the entire
production problem by a heuristic. In this case, a decision concerning the order
of tasks and their assignment to machines is often determined by a local-search or
meta-heuristic. These techniques can employ the scheduling approach proposed in
this chapter for finding the optimal start times of the tasks given their order. We
prove that whenever the idle energy function is concave, the scheduling problem
can be solved in polynomial time by reduction to the shortest path problem. The
main advantage of this transformation is that the size of the reduced problem is
independent of the length of the scheduling horizon.

The determination of the idle energy function is specific to the considered
machine. In this chapter, we take as an example electric furnaces widely used in
industrial production lines such as steel hardening and glass tempering, operating
at a specified temperature. Using the Pontryagin’s minimum principle (PMP) to
analyze a realistic bilinear model of the continuous-time furnace dynamics, we prove
that the energy-optimal control law during any idle period is to switch from zero
input power (cooling) to the maximum applicable input power (maximal heating)
at some convenient switching time. This optimal control law is then shown to result
in the concavity of the idle energy function, which enables to employ the proposed
optimal scheduling algorithm. The theoretical approach and findings are validated
through a case study investigating an industrial furnace in a real production line.
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1.2.1 Related Work

Concerning the research of energy-efficient manufacturing systems, one of the
first analyzes in this area was performed by Mouzon et al. [97], who observed
that a significant amount of energy could be saved by managing the state of the
machine. They proposed several dispatching rules for online production, considering
operating and idle states of the machine. Specifically, rules were devised to turn
the non-bottleneck machines off when they were idle for a certain amount of time.
Experimental results showed that, compared to the worst-case policy (no switching),
substantial energy savings could be achieved. This research laid the foundations
for further works investigating the minimization of (idle) energy in production.
Often, following the example of Mouzon et al., authors consider only a simple
case with two states, the processing (operational) state and off state. That is
also the case in the work of Che et al. [30], who proposed a mixed-integer linear
programming (ILP) model and heuristics for bi-objective minimization of the energy
and maximum tardiness. Another example can be found in the work of Zhou et al
[143], who proposed a mathematical model and a differential evolution algorithm for
a parallel batch processing machine scheduling problem considering minimization
of the makespan and total energy consumption. Two states of the batch processing
machine were assumed for the modeling, namely the processing and idle state. Angel
et al. [7] analyzed a single machine problem with tasks characterized by release times
and agreeable deadlines and showed that the problem of idle energy minimization
can be solved in polynomial time when only on-off switching is considered. Machines
characterized by three states (processing, idle, and shutdown) were studied by both
Shrouf et al. [121] and Aghelinejad et al. [4], who addressed energy minimization
under variable energy prices. A common aspect of all previously mentioned works
is that the dynamics of the machine is simplified to several constants (representing
the transition times/costs between pairs of modes) only. Contrary to that, we show
that by using a more precise model of the machine dynamics, higher energy savings
can be achieved. Our claim is supported by a case study examining a heat-intensive
system employing a steel-hardening furnace.

Regarding scheduling for heat-intensive production systems and industrial fur-
naces, the literature is still very sparse. Some authors have studied re-heating
furnaces [137, 125], which are used to heat steel slabs to a specified temperature
before they enter the next production stage. Typically, the duration which the slabs
spend inside the furnace (i.e., the processing time), and the sequence of the slabs are
optimized. Häıt et al. [61] studied the problem where the metal is melted in several
induction furnaces. The melting time can be shortened by increasing the input
power. In contrast, the processing time, as well as the temperature, are specified
in our case to ensure the desired quality of the product. Liu et al. [87] addressed
a glass production flow-shop problem, modeling multiple stages, and optimizing
the makespan and total energy consumption. However, only the processing and
idle states were considered to approximate the furnace dynamics in the scheduling
model.

In addition to the manufacturing processes mentioned previously, the research
on power-saving states has a broad base in the domain of embedded systems, where
energy savings are crucial to prolonging the battery life [68, 13, 56]. The considered
devices typically have only a small number of power-saving states [56], which are
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specified by the manufacturer. Sometimes authors assume only the processing state
and the off-state [68, 13]. The studied problems commonly lead to online scheduling
algorithms because of their real-time character or uncertainties in the arrival times of
the tasks. In contrast to embedded systems, the dynamics of machines in production
lines, e.g., for the heat-intensive systems investigated in our case study, is typically
much slower. Thus, by assuming only on and off states for such machines, the
idle periods between two consecutive tasks would need to be very long to make the
transitions possible. Another difference is the possibility of solving the production
problems offline with respect to known, or a priori approximated, parameters of the
tasks and the identifiable dynamic behaviors. However, despite all differences, some
concepts originating from the domain of embedded systems are general and can still
be used even for production scheduling. Frequently, the idle energy consumption is
captured by an idle energy function, E : R≥0 → R≥0, mapping the length of the
idle period to energy consumption [56]. Such a function E is typically assumed to
be non-decreasing piecewise-linear concave where each linear segment corresponds
to a single power-saving state. Adopting this concept, we mainly propose a new
polynomial-time scheduling algorithm, also suitable for production line machines
whose dynamics can be captured by a concave idle energy function.

1.2.2 Contributions and Outline

The main contribution of this chapter is twofold. First, we propose a new polynomial
scheduling algorithm using the concept of the idle energy function. Second, we
show that the idle energy function can be used to better represent the dynamics of
the machine compared to the approaches that are just approximating it with few
states only. As the experimental results show, we can achieve much better energy
savings. Further, we list the particular contributions of our article in the context of
the present related works:

1. We define the problem of idle energy consumption minimization for a single
machine scheduling with release times, deadlines, and the fixed order of tasks
where the consumption of the machine is defined by the idle energy function
(Section 1.3).

2. We suggest decomposing the studied problem to (i) the determination of
the idle energy function with respect to the machine dynamics, and (ii) the
optimal scheduling of tasks.

3. We show that the scheduling problem can be solved in O(n3), where n is the
number of tasks, assuming that the idle energy function is concave (Section 1.4).
To the best of our knowledge, the closest work that can be adapted to our
problem is the algorithm for a fixed sequence of tasks proposed by Aghelinejad
et al. [3]. The complexity of their algorithm is O(|H|2n), where |H| is the
length of the scheduling horizon. Since for practical applications |H| ≫ n,
our approach exhibits a better complexity (Section 1.7.3).

4. Utilizing a bilinear system approximation of furnace dynamics, we propose
an energy-optimal control law for fixed idle period lengths and show that the
idle energy function under this control law is concave (Section 1.5).
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5. Combining the scheduling approach and the idle energy function derived for a
real industrial furnace at Škoda Auto (in Section 1.6), we verify the proposed
approach on a set of instances and show (in Section 1.7.2) that the proposed
solution provides significantly less energy consumption as compared with the
existing modeling approach based on explicit modeling of the machine modes
[97, 121, 29, 2].

The rest of the article is organized as follows. Section 1.3 provides the problem
description and assumptions. In Section 1.4, the dominant structures in schedules are
identified, and it is shown that the scheduling problem can be solved in polynomial
time by finding the shortest path in a directed acyclic energy graph. Section 1.5
addresses the modeling of the furnace; a bilinear model is described, and the energy-
optimal control law is derived. The case study in Section 1.6 describes a real furnace
used in the production; bilinear model parameters are identified, and the idle energy
function is derived. The case study is followed by Section 1.7, which shows the
results of the numerical scheduling experiments using the identified model of the
real furnace in contrast to the state-of-the-art modeling techniques assuming a finite
number of machine modes. Finally, Section 1.8 concludes the article.

1.3 Problem Statement

We study a scheduling problem denoted 1 | rj , d̃j ,fixed order |ΣE, i.e., the mini-
mization of the idle energy consumption on a single machine where the order of
the tasks is fixed. Formally, let T = {1, 2, . . . , n} denote the set of tasks sorted
according to the given order. Each task i ∈ T is characterized by three integers:
release time ri ∈ Z≥0, deadline d̃i ∈ Z>0, and processing time pi ∈ Z>0, such that

ri + pi ≤ d̃i ∀i ∈ T .
A schedule is defined by vector of start times s = (s1, s2, . . . , sn) ∈ Rn

≥0. A
feasible schedule is such a schedule that satisfies the following constraints.

(C1) Each task i is processed within its execution time window [ri, d̃i].

(C2) The processing order of the tasks is given and fixed.

(C3) At most, a single task is processed at one time.

(C4) The processing is done without preemption.

For the rest of this work, when we talk about a schedule, we always mean a feasible
schedule.

We assume that the machine is turned on (e.g., heated to the operating temper-
ature from off state in case of a furnace) just before the first task is processed, and
it is turned off immediately after the last task is processed. When the machine is
off, the power consumption is zero. Costs for turning the machine on and shutting
it off are constant and cannot be optimized.

When a task is processed, the machine operates in the processing state given
by the respective technological process (e.g., the furnace is heated to the operating
temperature, which is the same for all tasks). Therefore, energy consumption cannot
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be optimized in this case, as well. However, during the idle periods, the machine
can change its state to lower the energy consumption (i.e., the temperature of the
furnace can be lowered to save energy). At the end of the idle period, the machine
needs to be switched back to the processing state before the next task is processed.

The objective is to find start times s, such that the idle energy consumption
Etotal (s), i.e., the total energy consumption during idle periods, is minimized. An
idle period is defined as the duration between the completion time of a task and
start time of the following one. Since the execution order of the tasks is fixed, we
can assume that the tasks are sorted in the given order, i.e., si + pi ≤ si+1 ∀i ∈
{1, 2, . . . , n− 1}. Then, the objective can be written as

min
s
Etotal (s) = min

s

n−1∑
i=1

E (si+1 − (si + pi)) , (1.1)

where E : R≥0 → R≥0 represents the idle energy function, which encodes the
relationship between the idle period length and the consumed energy (taking into
account various power-savings). The idle energy function is further discussed in
Section 1.5.3, and a real example for an industrial furnace is shown in Figure 1.8 in
Section 1.6.

Note that because of the fixed order, release times and deadlines can be propa-
gated. Specifically, taking tasks from left to right, release times can be shifted such
that

ri := max{ri−1 + pi−1, ri}, ∀i ∈ {2, 3, . . . , n}, (1.2)

and taking the tasks from right to left, deadlines can be adjusted such that

d̃i := min{d̃i+1 − pi+1, d̃i}, ∀i ∈ {n− 1, n− 2, . . . , 1}. (1.3)

If there exists a task such that its propagated execution window is shorter than its
processing time, then the instance does not have a feasible solution for the given
order. For the rest of this article, we assume that release times and deadlines are
propagated and a feasible solution exists.

1.4 Scheduling Algorithm and Complexity Analy-
sis

In this section, we show that 1 | rj , d̃j ,fixed order |ΣE can be solved in polynomial
time under the assumption that the energy function E is concave. Note that if
the order was not fixed, the problem would be NP-hard because its underlying
problem 1|rj , d̃j |− is NP-complete in a strong sense [53].

A special version of the problem studied here was addressed by Gerards and
Kuper [56], who assumed a so-called frame-based system, i.e., a system where
ri = (i − 1) · T and d̃i = i · T for some constant number T . In frame-based
systems, execution windows of the tasks do not overlap. Gerards and Kuper showed
that idle energy minimization in frame-based systems can be done in polynomial
time, assuming that the idle energy function is concave. We extend their result to
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1 | rj , d̃j ,fixed order |ΣE, i.e., to systems with arbitrary release times and deadlines,
assuming that the execution order of the tasks is fixed.

Further, we describe the structure of the energy graph, and show that
1 | rj , d̃j ,fixed order |ΣE can be solved by finding the shortest path in that graph.
But first, we provide necessary definitions and show that only schedules in a special
form (so-called block-form schedules) can be assumed for the optimization.

1.4.1 Definitions

A basic structure that appears in the feasible schedules is called a block of tasks or
simply block, and is widely used [10, 13].

Definition 1.4.1 (Block of tasks). A sequence of tasks B = (b1, . . . , bm), which are
scheduled on the same machine, is called a block of tasks if the following properties
hold:

sbi + pbi = sbi+1
, ∀i ∈ {1, 2, . . . ,m− 1}, (1.4)

∀i ∈ T \B : (si + pi < sb1) ∨ (si > sbm + pbm). (1.5)

Property (1.5) states that block B is maximal, i.e., it cannot be extended to
the left or right. Every feasible schedule is composed of blocks of tasks, which are
separated by idle intervals. Blocks are, therefore, fundamental building elements
out of which the resulting schedule is created.

Even though all schedules are composed of blocks of tasks, some schedules are
special in a certain sense. We call them block-form schedules.

Definition 1.4.2 (Block-form schedule). A schedule consisting of k blocks B1, B2,
. . . , Bk is in the block form if each block of tasks Bj contains at least one task,
which starts at its (propagated) release time or ends at its (propagated) deadline;
such a task is called the support of block Bj .

Thanks to the properties of the block-form schedules, the idle energy optimization
can be made simple, as shown in Section 1.4.2 and Section 1.4.3.

1.4.2 Dominance of Block-Form Schedules

In this section, we show that block-form schedules weakly dominate all other
schedules. To prove this, we utilize the following lemma.

Lemma 1.4.3. Given a concave idle energy function E : R≥0 → R≥0, for 0 ≤ ϵ ≤
x ≤ y it holds that

E (x− ϵ) + E (y + ϵ) ≤ E (x) + E (y) . (1.6)

Proof. Property (1.6) is directly implied by the concavity of E, see Gerards and
Kuper [56].

Lemma 1.4.3 implies that, in the case of having two idle periods x and y, energy
E (x)+E (y) decreases or remains the same even if the shorter idle period of length
x is reduced on behalf of the longer idle period of length y. Then, we have the
following theorem.
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Theorem 1.4.4. Given a concave idle energy function E, for every feasible schedule
S1 defined by start times s1, there exists a feasible schedule S2 defined by start times
s2, such that S2 is in a block form and Etotal (s1) ≥ Etotal (s2).

Proof. If S1 is already in a block form, nothing has to be done. Otherwise, S1

consists of k blocks

{B1, B2, . . . , Bk} = Bfixed ∪ Bfree, Bfixed ∩ Bfree = ∅,

where Bfixed is the set of blocks that contain at least one support, and Bfree are the
blocks without supports. The blocks in Bfixed will not be moved, while the blocks
in Bfree will be shifted to gain a support. By shift, we mean adding a non-zero
constant to all start times of the tasks in the block.

Let us assume that there is an infinitely long idle period before the first block
in S1 and after the last one. Now, every block is separated from the other blocks
by two idle periods (before and after the block).

Let us take an arbitrary block B ∈ Bfree. Since it does not contain a support,
it can be shifted. The direction of the shift can be selected according to Lemma
1.4.3 such that the idle energy consumption does not increase (i.e., shift the block
such that the shorter neighbouring idle period decreases its length). Note that the
leftmost (rightmost) block is always shifted right (left) to prolong the time when
the machine is off (idle energy consumption does not increase).

After the block is shifted as much as possible, there are two possible outcomes.

1. Some task i ∈ B reaches its release time or deadline.

In this case, block B gains a support and joins Bfixed; the cardinality of Bfree

decreases by one.

2. Block B reaches its neighbouring block Bneigh.

In this case, block B joins its neighbouring block. If Bneigh ∈ Bfixed, then B
gains a support and joins Bfixed. Otherwise, Bfree := (Bfree\{B,Bneigh})∪{B⊕
Bneigh}, i.e., B and Bneigh are joined (operator ⊕). Anyway, the cardinality
of Bfree decreases by one.

If cases 1. and 2. happen at the same time, both B and Bneigh gain a support,
join Bfixed, and the cardinality of Bfree decreases by at least one.

It can be seen that after one shift, the cardinality of Bfree decreases, and the idle
energy consumption does not increase (by Lemma 1.4.3). By iteratively shifting the
blocks without supports, every block will eventually join Bfixed. Since there are at
most n blocks in Bfree at the beginning, and the cardinality of Bfree decreases after
each shift, Bfree will be empty after at most n iterations. Also, there are at most
n tasks in each block. Therefore, each shift can be done in O(n) steps (shifting
one task after another). Hence, the transformation can be done in O(n2) steps.
Schedule S2 is then given by the start times of the tasks in Bfixed.

Theorem 1.4.4 shows that it is sufficient to optimize only over schedules in the
block form.
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1.4.3 Finding an Energy-Optimal Block-Form Schedule

Here we show how the schedules can be represented as paths in an oriented directed
acyclic energy graph. The graph-based approach was originally introduced for
frame-based systems by and Kuper [56], but since the release times and deadlines
in their frame-based systems do not overlap, the graph had a very simple structure.
In our case, we need to non-trivially extend the idea, relying on Theorem 1.4.4.

By Definition 1.4.2, each block of a block-form schedule contains at least one
support. The main idea leading to a graph-based approach is to represent the
supports of the schedule by nodes of the energy graph. In the following, we will
show that paths in the energy graph can be associated with the block-form schedules
and that the shortest path corresponds to the optimal block-form schedule.

Our extended version of the energy graph can be represented as a triplet
G = (VG, EG, c), where VG is set of its vertices, EG is set of its oriented edges,
and c : EG → R≥0 is the cost function. For each task i ∈ T , we define vertices

v r
i and v d̃

i representing situations when task i starts at its release time and ends
at its deadline, respectively. Let start(v x

i ) be the actual start time of the task i
represented by vertex v x

i , i.e.,

start(v x
i ) =

{
ri, if x is r,

d̃i − pi, if x is d̃.
(1.7)

Furthermore, let us define two additional dummy vertices, the starting vertex v s

and the ending vertex v e. We will define the edges in such a way that the paths
between v s and v e represent block-form schedules. The set of edges EG consists of

three types of edges, EG = E
(1)
G ∪ E(2)

G ∪ E(3)
G , where

E
(1)
G =

{
(v s, v x

i )
∣∣ i ∈ T, x ∈ {r, d̃} such that the partial schedule given by

si := start(v x
i ), si′ := si −

i−1∑
k=i′

pk ∀i′ ∈ {1, 2, . . . , i− 1} is feasible
}
,

(1.8)

E
(2)
G =

{
(v x

i , v
e)
∣∣ i ∈ T, x ∈ {r, d̃} such that the partial schedule given by

si := start(v x
i ), si′ := si +

i′−1∑
k=i

pk ∀i′ ∈ {i+ 1, i+ 2, . . . , n} is feasible
}
,

(1.9)
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i− 1. . .1 i

ri

i+ 1 . . . ni

ri d̃i ri

i + 1 . . . k k + 1 . . . i′ − 1

tf

(
v d̃
i , v r

i′
)

i i′

(a) (b) (c)

Figure 1.2: Examples of the partial schedules corresponding to the edges between (a)

(v s, v r
i ), (b) (v

r
i , v

e), and (c)
(
v d̃
i , v

r
i′

)
.

E
(3)
G =

{
(v x

i , v
y
i′ )
∣∣ i ∈ T, i′ ∈ T, i < i′, x, y ∈ {r, d̃} and

∃k ∈ {i, i+ 1, . . . , i′ − 1} such that the partial schedule given by

si := start(v x
i ), si′ := start(v y

i′ ),

sa := si +

a−1∑
l=i

pl ∀a ∈ {i+ 1, i+ 2, . . . , k},

sb := si′ −
i′−1∑
l=b

pl ∀b ∈ {k + 1, . . . , i′ − 1} is feasible
}
.

(1.10)

In E
(1)
G , edges connect the starting vertex v s and vertex v x

i , x ∈ {r, d̃}, i ∈ T ,
associated with task i. Each edge represents the situation when task i is the support
and tasks {1, 2, . . . , i − 1} are aligned to the right, joining the block supported

by task i, see Figure 1.2(a). Similarly, edges in E
(2)
G link v x

i , x ∈ {r, d̃}, i ∈ T ,
with the ending vertex v e. Each edge represents the situations when task i is the
support, and tasks {i + 1, i + 2, . . . , n} are aligned to the left, joining the block

supported by i, see Figure 1.2(b). Finally, set E
(3)
G represents situations when

there are two blocks of tasks supported by i and i′, respectively. All the tasks
{i+ 1, i+ 2, . . . , k} are aligned to the left and join the block supported by i and
tasks {k + 1, k + 2, . . . , i′ − 1} are aligned to the right and join the block supported
by task i′, see Figure 1.2(c).

Now, we define the cost function c. We set the costs of edges in E
(1)
G and E

(2)
G

to zero because the tasks represented by these edges are processed without any

idle periods. The costs of edges in E
(3)
G correspond to the idle energy consumption

between two blocks of tasks. Even though there might be multiple possible ways
to schedule the tasks between the two supports, the processing time of each task
is assumed to be constant and so the length of the idle period is invariant for a
fixed pair of supports. Let us denote the length of the idle period between blocks
supported by v x

i and v y
i′ , where i

′ > i, by tf (v
x
i , v

y
i′ ), defined by

tf (v
x
i , v

y
i′ ) = start(v y

i′ )− (start(v x
i ) + pi)−

i′−1∑
k=i+1

pk. (1.11)
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Now, the cost function can be defined in the following way:

c(e) =

{
0, if e ∈ E

(1)
G ∪ E(2)

G ,

E (tf (v
x
i , v

y
i′ )) , if e = (v x

i , v
y
i′ ) ∈ E

(3)
G .

(1.12)

Explanatory example. To illustrate the energy graph, let us consider an arbitrary
concave idle energy function E and four tasks characterized by parameters given in
Table 1.1. The corresponding energy graph is shown in Figure 1.3. Each edge e is
labeled by its cost c(e), defined by (1.12).

Note that there is no edge between v s and v r
3 because if task 3 started at

its release time, it would not be possible to execute the previous tasks without
introducing an idle period (d̃2 = 40 < 45 = r3). But in that case, the previous
tasks would form a different block, having its own support. Therefore, edge (v s, v r

3 )
does not bring any additional useful information. The situation is similar for other
‘missing’ edges.

Table 1.1: Example task parameters.

i 1 2 3 4

ri 0 15 45 80

d̃i 20 40 70 100
pi 10 15 5 10

v s

v r
1 v r

2 v r
3 v r

4

v d̃
1 v d̃

2 v d̃
3 v d̃

4

v e

0
0

0

E (5)

E (15)

E (10)

E (5)

E (15)

E (35)

E (5)

E (25)

E (30)

E (40)

E (10)

E (20)

0

0

E(30)

Figure 1.3: Energy graph constructed for the tasks specified by Table 1.1.

The connection between the paths in the energy graph and block-form schedules
is explained by the following two lemmas.

Lemma 1.4.5. For every block-form schedule S, there exists a path in the corre-
sponding energy graph, such that length of the path equals the idle energy consumption
of schedule S.

Proof. This is assured by the structure of the energy graph. Given a block-form
schedule with blocks B1, B2, . . . , Bk and their supports a1, a2, . . . , ak, the corre-
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sponding path in the energy graph is v s, v
x(a1)
a1 , v

x(a2)
a2 , . . . , v

x(ak)
ak , v e, where

x(ai) :=

{
r if ai starts at its release time,

d̃ if ai ends at its deadline.
(1.13)

Nodes on the path correspond to the supports of the individual blocks, and because
the cost of each edge directly corresponds to the idle energy consumption, the length
of the path is the same as the idle energy consumption of the schedule.

Lemma 1.4.6. For every path P between the start node v s and end node v e in
the energy graph, there exists a feasible block-form schedule S, such that the idle
energy consumption cost of S is the same as the length of path P .

Proof. Again, this is trivially given by the structure of the energy graph, where
nodes represent supports of the blocks. According to (1.8)–(1.10), an edge between
two nodes representing the supports is added only if there exists a feasible schedule
of the tasks between them.

Finally, by Lemmas 1.4.5 and 1.4.6, we see that problem 1 | rj , d̃j ,fixed order |ΣE
can be solved by finding the shortest path in a directed acyclic graph. The graph
contains O(n) vertices and at most O(n2) edges. Whether edge e belongs to the
graph or not can be verified according to (1.8)–(1.10) in linear time O(n). Therefore,
the number of steps needed to build the graph is upper bounded by O(n3). The
shortest path itself can be found in linear time with respect to the size of the graph
by the dynamic programming, see Sec. 24.2 in [37]. So the overall complexity is
bounded by O(n3).

Explanatory example (continued). The schedule corresponding to path

v s, v d̃
1 , v

r
3 , v

r
4 , v

e is depicted in Figure 1.4. It consists of three blocks, B1 = (1, 2),
B2 = (3), and B3 = (4). Supports of these blocks are tasks 1, 3 and 4, respectively.
Idle energy consumption of the schedule equals the sum of energy consumed during
the first idle period (from time 35 to time 45), plus energy consumed during the
second idle period (from time 50 to time 80).

0 10 20 30 40 50 60 70 80 90

1 2 3 4
E (10) E (30)

d̃1 r3 r4

B1 B2 B3

Figure 1.4: Feasible schedule corresponding to path v s, v d̃
1 , v

r
3 , v

r
4 , v

e.

Remark 1. Note that edges in E
(3)
G might not imply one particular schedule of

the tasks between the supports. Therefore, for a given path, there might exist
multiple feasible schedules with the same idle energy consumption. Similarly, as
each block might contain multiple supports, there might be multiple different paths
corresponding to one block-form schedule.
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Remark 2. The graph-based approach described above can handle arbitrary concave
idle energy function, which is a common shape of the idle energy function used in
the literature [68, 56]. However, it is still an open question if the problem would be
polynomial even if the idle energy function was not concave but arbitrary.

Remark 3. The energy graph could also be used to find the schedules minimizing
the number of idle periods longer than 0. Such an application is useful when the
stress of the machine caused by excessive switching needs to be minimized. The
problem reduces again to the shortest path problem. The structure of the graph

remains the same, but the edges in E
(3)
G should be labeled by some positive constant,

e.g., 1. Note that it is again possible to optimize only over the block-form schedules
because the shifts described in the proof of Theorem 1.4.4 might join some blocks
but never split them.

1.5 Electric Furnaces: Modeling, Optimal Control
and Energy Function

Up till now, we have discussed how to solve scheduling problem
1 | rj , d̃j ,fixed order |ΣE, assuming that the energy function is given and
concave. The majority of the existing papers addressing the idle energy optimiza-
tion assume that the dynamics of the machine is described by a static transition
graph, and its parameters are given. Obtaining those parameters or the idle energy
function can be simple in some cases (e.g., for some hardware components in the
embedded systems, the parameters or the idle energy function can be extracted
from the data provided by the manufacturer), but becomes quite challenging in
others. Since the idle energy optimization aims at a large variety of machines
ranging from processors to huge furnaces, it is not possible to provide a single
approach for obtaining the parameters of the transition graph or the idle energy
function. Therefore, we concentrate on heat-intensive systems that are the most
frequently addressed in connection with the idle energy optimization in production.

In this section, we discuss the electric furnace models and present a bilinear
modeling approach, which is shown to provide a good approximation of industrial
electric furnace dynamics. Further, the open-loop control for minimum energy
consumption during idle periods, concerning the studied scheduling problem, is
given based on the considered bilinear system approximation. Then, we show that
the idle energy function as an input to the scheduling problem is concave under the
proposed approximation and control, thus confirming the use of the above-proposed
algorithm is correct.

1.5.1 A Bilinear Model Approximation of Furnaces

Obtaining and identifying a reasonable physical model of an industrial furnace is
usually very difficult due to unspecified characteristics, imperfections or degradation
of insulation materials, and time/temperature dependency of the physical parame-
ters. Thus, instead of proposing a physical model and identifying its parameters,
it is usual in practice to approximate the furnace dynamics with reasonable linear
and nonlinear mathematical models; see, e.g., [129] for a linear model, [96] for a
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fuzzy system approximation, [130] for a direction-dependent model, and [135, 31]
for bilinear system approximations.

Our decision to use the bilinear approximation of the furnace dynamics is
motivated by the existing literature. For example, Derese and Nodulus [39] have
reported that the bilinear model for heat-transfer processes is more suitable than
the linear model. Chook and Tan [31] considered the identification of a first-order
bilinear model for an electric tube furnace and showed experimentally that the
bilinear model provides the most accurate description as compared with the linear
and direction-dependent models. Another advantage of the bilinear model is its
simplicity and well-understood behavior in the class of nonlinear systems. Thus, we
also consider the approximation of the furnace dynamics similarly as in [31] with
the bilinear model

ẋ(t) = −αx(t) + βu(t)− ρx(t)u(t), x(t) ∈ R, u(t) ∈ [0, ū], α, β, ρ ∈ R>0

(1.14)
where u is the applied electric power (in kilowatts), i.e., the input to the system,
and x is the deviation of the furnace temperature Tf (in kelvins) from the constant
ambient temperature Te, x(t) := Tf (t)− Te, i.e., the variable to be controlled. The
model (1.14) slightly differs from that in [31], because we additionally accommodate
constraints on control and system parameters regarding the reality for furnaces.
First, we do impose the upper bound ū on the admissible control power, which
is important in practice. Second, based on physical modeling considerations, it is
assumed in (1.14) that the system parameters α, β, and ρ are positive constants.
That is due to [31], where Section IV provides successful identification of α, β, ρ,
resulting as positive numbers for their furnaces operational data. Note, that physical-
principle-based modeling provided in [31] actually gives the following model

Ṫf (t) =
1

Cf

(
−Tf (t)− Te

R
+ u(t)−K(T 4

f (t)− T 4
e )

)
, (1.15)

where Cf is the thermal capacitance, R is the thermal resistance, and K is a
constant regarding the emissivity of the furnace. Obviously, Cf , R, K > 0; as
already noted, Te stands for the ambient temperature, which is assumed constant
since its possible variations are negligible compared to extremely high furnace
temperatures. Due to its complexity, instead of (1.15) [31] study simpler bilinear
model (1.14) and provide some arguments for such a simplification. Indeed, there
is a kind of trade-off: higher-order nonlinearity of (1.15) is replaced by bilinear
dependence in (1.14), so rigorously (1.14) is not a simplification or approximation
of (1.15). Yet, as shown in the sequel, (1.14) can be handled in an easier way,
and some rigorous mathematical statements can be proved for it. Besides easier
theoretical analysis, another argument justifying replacement of (1.15) by (1.14)
given in [31] is that the nonlinearities that arise in heat-transfer processes may be
represented by characteristics that are similar to those of a bilinear system. In
such a way, we join the existing literature mainstream represented by Chook and
Tan [31] and concentrate on the model (1.14) only. Note, that the constraints on
α, β, ρ hold for the electrical vacuum furnace, which is studied in Section 1.6 as a
case study. As shown in Section 1.6.1 later on, these parameters α, β, ρ can be
quite precisely identified based on the real data, and the resulting estimates comply
with the above assumptions.



26 Electric Furnaces: Modeling, Optimal Control and Energy Function

1.5.2 Solving the Ordinary Differential Equation with a Dis-
continuous Right-Hand Side

Before formulating the main theorem of this section analyzing the optimal control
of system (1.14), let us briefly recall the definition of the solution of the ordinary
differential equation (ODE) with the possibly discontinuous right-hand side. This
overview is presented in a rather casual way; rigorous and detailed theory can be
found, e.g., in [49, Chapter 1]. Indeed, as it will be seen, the optimal control is a
discontinuous function in time and thereby after substituting it into (1.14) one gets
ODE with discontinuous (in time variable) right-hand side. Namely, consider ODE

ẋ(t) = f(x(t), t), x ∈ Rn. (1.16)

The usual definition of the solution of (1.16) for its continuous right-hand side
f(x, t) is that the solution x(t) is a continuously differentiable function of time
converting the above ODE into equality valid for all times. As there are infinitely
many such solutions, the specific unique solution is determined by the so-called
initial condition

x(t0) = x0, x0 ∈ Rn, t0 ∈ R, (1.17)

where t0, x0 are given initial time and initial condition, respectively. The relations
(1.16) and (1.17) are usually referred to as the initial value problem, or Cauchy
problem. When the right-hand side of (1.16) is discontinuous, the solution of (1.16)
cannot be continuously differentiable in time. When the discontinuity is with respect
to time only, the usual way to handle this situation is to define the solution in
Caratheodory sense; namely, the initial value problem (1.16) and (1.17) is replaced
by the following integral equation

x(t) = x(t0) +

∫ t

t0

f(x(τ), τ)dτ, (1.18)

where the solution x(t) is required to be continuous only. Note, that the solution
of the integral equation (1.18) automatically satisfies the initial condition (1.17)
and, moreover, where x(t) is in addition continuously differentiable, it implies the
validity of (1.16). As already noted, Caratheodory approach helps to handle the
discontinuity with respect to the time variable only. The discontinuity with respect
to state variable x presents even more tough challenge and even more abstract
solution is required, namely the so-called solution in the Fillipov’s sense.

In the subsequent analysis, all the time discontinuities will be of the simplest
kind, i.e., they will be piecewise continuous. In this case, Caratheodory solution
can also be obtained in the following intuitively clear way. Namely, ODE is solved
together with the initial condition on the largest time interval where f(x, t) is
continuous. When reaching discontinuity point tdc ∈ R, the resulting solution value
x(tdc) is taken as the initial condition for the next time interval where f(x, t) is
continuous; ODE is solved again and this procedure can be repeated.

Note that such an approach correctly represents reality. In the case of furnace
heating, it means that discontinuous jump change of heating influences further
development of the temperature, but the temperature has to stay continuous even
at the point where heating intensity experiences jump, see Figure 1.7. Obviously,
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such an understanding of the solution of the ODE with time discontinuity at its
right-hand side is the only acceptable one from the natural and practical point of
view. Putting it in different words, under quite mild and reasonable mathematical
technical assumptions imposed on the right-hand side f(x, t), there is a unique
solution that satisfies ODE in a classical sense everywhere except some isolated
time moments, where this unique solution is at least continuous. In other words,
many solutions are possible, but only one of them is everywhere at least continuous.

In the sequel, we will use exactly the latter approach to obtain the unique solution
of the initial value problem when heating intensity (the input) is piecewise constant.
Namely, we compute the solution to the initial value problem on time subinterval
where heating intensity is constant. Then, at the time where heating intensity
jumps to a different constant value, we use the terminal value of temperature on
the first time subinterval as the initial condition for the ODE solution on the next
time subinterval.

1.5.3 Minimum-Energy Control and the Related Idle Energy
Function

This subsection aims to study the optimal control of furnaces during an idle period,
based on the approximate bilinear model (1.14).

Recall that our aim is to find an energy-efficient behavior of the furnace in an
idle period. Thus, we look for an optimal control law, which minimizes the power
consumption for any fixed idle period length. Then, our problem for furnaces turns
into finding a control minimizing the performance index

J(u) =

∫ tf

0

|u(t)|dt (1.19)

which is called as minimum-control-effort problem [73]. Obviously, tf can be
considered as the idle period length, i.e., (si+1 − (si + pi)) in (1.1). Then J(u) is
the energy (in kilowatt-hours) consumed during the corresponding idle period, i.e.,
E(si+1 − (si + pi)) in (1.1). Note, that it is sufficient to consider an open-loop
control to heat the furnace to the (close neighborhood of) operating temperature
at the end of the idle period (assuming constant ambient temperature), whereas
a closed-loop control is necessary to maintain the operating temperature. Such
a control strategy is actually common in process control applications, e.g., see
Figure 1.5 with the temperature data of the real industrial furnace controlled to
operate at different temperatures in our case study. As we seek a control minimizing
energy consumption during the idle periods, we give the following theorem for the
open-loop optimal control problem for the industrial furnaces which can be modeled
as the bilinear system in (1.14).

Theorem 1.5.1. Consider the following optimal control problem: minimize the
performance index (1.19) subject to constraints

x(0) = x(tf ) = x0 ∈ R, x0 > 0, (1.20)

where x(t) is the solution of the system (1.14) and tf > 0 is a given fixed terminal
time. Further, assume that

(β − ρx0)ū− αx0 > 0, (1.21)
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where ū is the upper bound on u(t). Then there exists the unique optimal control
u∗(t) solving the above-defined optimal control problem and this optimal control
takes the following form

u∗(t) =

{
0, ∀t ∈ [0, tsw)

ū, ∀t ∈ [tsw, tf ],
(1.22)

where tsw ∈ (0, tf ) is the switching time. Finally, tsw is the solution of the following
equation

x0 = exp ((−α− ρū)(tf − tsw))

(
x0 exp(−αtsw)−

βū

α+ ρū

)
+

βū

α+ ρū
, (1.23)

this solution exists and is unique for any given tf > 0. Furthermore, defined in such
a way function tsw(tf ) satisfies

dtsw
dtf

= 1− αx0
(β exp(αtsw)− ρx0)ū

. (1.24)

Proof. Pontryagin’s minimum principle (PMP) is used [73]. To do so, realise that
|u(t)| in (1.19) can be replaced simply by u(t) because u(t) > 0∀t in (1.14). Further,
the appropriate Hamiltonian function for the performance index (1.19) and the
system (1.14) is given by

H(x(t), u(t), ψ(t)) = u(t)− αψ(t)x(t) + ψ(t)[β − ρx(t)]u(t) (1.25)

where ψ(t) represents the usual adjoint variable. By PMP, the necessary conditions
for u∗(t) to be an optimal control are

ẋ∗(t) =
∂H(x∗, u∗, ψ∗)

∂ψ
= −αx∗(t) + βu∗(t)− ρx∗(t)u∗(t), (1.26a)

ψ̇∗(t) = −∂H(x∗, u∗, ψ∗)
∂x

= ψ∗(t)(ρu∗(t) + α), ψ(0) = ψ0 ∈ R \ {0}, (1.26b)

H(x∗(t), u∗(t), ψ∗(t)) = min
u∈[0,ū]

H(x∗(t), u(t), ψ∗(t)) ∀t ∈ [0, tf ] ⇒ (1.26c)

u∗(t) + ψ∗(t)[β − ρx∗(t)]u∗(t) = min
u∈[0,ū]

(u(t) + ψ∗(t)[β − ρx∗(t)]u(t)) ∀t ∈ [0, tf ].

(1.26d)
Indeed, the boundary conditions (1.20) of the investigated control problem are fixed,
so that ψ(t) can be any nontrivial solution of the adjoint equation (1.26b).

Before analyzing the above necessary condition for the optimality, let us give
the following property useful later on. Namely, (1.26a) and (1.26b) can be solved
analytically giving that

x∗(t) = exp

(
−αt− ρ

∫ t

0
u∗(η)dη

)(
x0 + β

∫ t

0
exp

(
αη + ρ

∫ η

0
u∗(s)ds

)
u∗(η)dη

)
, (1.27)

ψ∗(t) = ψ0 exp

(
αt+ ρ

∫ t

0

u∗(η)dη

)
. (1.28)



Scheduling of Industrial Furnace 29

To analyze (1.26a)–(1.26d) subject to the control constraint u(t) ∈ [0, ū], consider
the function

ϕ(ψ∗(t), x∗(t)) = ψ∗(t)(β − ρx∗(t)) + 1 (1.29)

to investigate the minimum of the Hamiltonian with respect to u. Further,
realise that the necessary condition (1.26c)–(1.26d) implies that u(t) = ū if
ϕ(ψ∗(t), x∗(t)) < 0; u(t) = 0 if ϕ(ψ∗(t), x∗(t)) > 0; whereas for ϕ(ψ∗(t), x∗(t)) = 0
it is always satisfied. As a consequence, the optimal control, if it exists, satisfies

u∗(t)


= ū, for ϕ(ψ∗(t), x∗(t)) < 0

= 0, for ϕ(ψ∗(t), x∗(t)) > 0

∈ [0, ū], for ϕ(ψ∗(t), x∗(t)) = 0.

(1.30)

Furthermore, by (1.27) and (1.28) it holds that

ϕ(t) = 1− ψ0x0ρ+ ψ0β exp

(
αt+ ρ

∫ t

0

u(η)dη

)
−ψ0βρ

∫ t

0

exp

(
αt+ ρ

∫ η

0

u(s)ds

)
u(η)dη,

dϕ(t)

dt
= ψ0β (α+ ρu(t)) exp

(
αt+ ρ

∫ t

0

u(η)dη

)
−ψ0βρu(t) exp

(
αt+ ρ

∫ t

0

u(η)dη

)
,

(1.31)

which implies
dϕ(t)

dt
= ψ0αβ exp

(
αt+ ρ

∫ t

0

u(η)dη

)
. (1.32)

Now, using (1.31) and (1.32) one concludes that

ϕ(0) = ψ0(β − ρx0) + 1, (1.33)

sign

(
dϕ

dt

)
= sign(ψ0), ψ0 ̸= 0. (1.34)

Note that by (1.34) ϕ(t) is obviously a strictly monotonous function. In such a way,
ϕ(t) either vanishes at a single isolated point only, or it never vanishes. As ψ0 ̸= 0,
only the following four options are possible for u∗(t) to be optimal.

1. If ψ0 > (ρx0 − β)−1 > 0, then ϕ(0) > 0 and dϕ(t)
dt > 0, ∀t ≥ 0, which means

ϕ(t) > 0, ∀t ≥ 0. By (1.30), then u∗(t) ≡ 0. However, it is clear from (1.27)
that (1.14) with u(t) ≡ u∗(t) ≡ 0 does not satisfy (1.20).

2. If (ρx0 − β)−1 > ψ0 > 0, then ϕ(0) < 0 and dϕ(t)
dt > 0, ∀t ≥ 0. By (1.30),

then u∗(t) = ū, t < tsw and u∗(t) = 0, t > tsw. However, this option is not
possible because (ρx0 − β) > 0 contradicts the assumption (1.21) as α, ū and
x0 are positive.

3. If ψ0 < (ρx0 − β)−1 < 0, then ϕ(0) < 0 and dϕ(t)
dt < 0, ∀t ≥ 0, which means

ϕ(t) < 0, ∀t ≥ 0. By (1.30), then u∗(t) ≡ ū. However, by assumption (1.21)
and by (1.27) it holds that x(tf ) > x0. Thus, (1.20) is violated.
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4. If (ρx0−β)−1 < ψ0 < 0, then ϕ(0) > 0 and dϕ(t)
dt < 0, ∀t ≥ 0. By (1.30), then

u∗(t) = 0, t < tsw, u
∗(t) = ū, t > tsw; tsw = α−1 log ((ρx0ψ0 − 1)/(βψ0)) .

(1.35)
Moreover, it can be seen through some straightforward analysis that when ψ0

ranges through ((ρx0 − β)−1, 0), the expression ((ρx0ψ0 − 1)/(βψ0)) ranges
through (1,∞), i.e., ψ0 can always be chosen in such a way that any tsw ∈
(0,∞) is possible.

Summarizing, the control satisfying PMP and (1.20) under assumption (1.21) should
have the form (1.35) for some suitable switching time tsw. To conclude the proof, it
remains to show that there is a unique tsw ∈ [0, tf ) such that (1.14) with u(t) ≡ u∗(t)
given by (1.35) satisfies the boundary conditions (1.20). Such a property follows
straightforwardly by (1.27) and (1.21), moreover, also by (1.27), the switching time
tsw is the solution of

x0 = exp ((−α− ρū)(tf − tsw))

(
exp(−αtsw)x0 −

βū

α+ ρū

)
+

βū

α+ ρū
. (1.36)

Indeed, on the right-hand side of (1.36) there is a value of temperature trajectory
x(t) at time tf obtained by solving (1.14) on subinterval [0, tsw) with initial condition
x(0) = x0 applying the input (applied power) u ≡ 0 and then solving (1.14) with
initial condition x(tsw) = exp(−αtsw)x0 and the input u ≡ ū on subinterval [tsw, tf ].

Note, that tsw solving (1.36) exists and is unique for any given tf > 0. Indeed, the
right-hand side of (1.36) is a smooth function of tsw and it is equal to exp (−αtf )x0 <
x0 if tsw = tf and to

exp ((−α− ρū)tf )

(
x0 −

βū

α+ ρū

)
+

βū

α+ ρū
> x0,

if tsw = 0. The last inequality straightforwardly holds thanks to the assumption
(1.21) and exp ((−α− ρū)tf ) ∈ (0, 1). As a consequence, there exists at least one
tsw solving (1.36) thanks to the well-known basic property of continuous functions.
To show that such tsw is unique, note that the right-hand side of (1.36) is strictly
decreasing function of tsw since its derivative with respect to tsw is

ū · exp((−α− ρū)(tf − tsw)) · (ρx0exp(−αtsw)− β),

which is negative since by the assumption (1.21) β > ρx0 and obviously
ρx0 > ρx0exp(−αtsw) as α > 0, tsw ≥ 0. In such a way, the value tsw solving
(1.36) exists and is unique. Finally, to prove (1.24) apply the well-known formula
to compute the derivative of the implicitly defined function and perform some
straightforward, though laborious computations. The proof is complete.

Remark 4. The assumption (1.21) is equivalent to αx0/(β − ρx0) ∈ (0, ū). The
value αx0/(β − ρx0) is the constant trim control keeping the state x0 as the
equilibrium, i.e., x(t) ≡ x0 and therefore the assumption (1.21) should be valid in
any reasonable practical setting. Indeed, if the assumption (1.21) is to be replaced
by (β − ρx0)ū − αx0 = 0, then the optimal control is u∗(t) = ū, ∀t ∈ [0, tf ], i.e.,
as if tsw = 0 in (1.35). As such, ū = αx0/(β − ρx0) is the trim control value
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that ensures x(t) ≡ x0; practically, such a situation is not acceptable because any
small perturbation pushing the state to a value slightly lower than x0 cannot be
compensated for.

Remark 5. We consider the optimal control law with the state constraint (1.20)
because a single operating temperature x0 for the scheduling problem is considered.
Definitely, the furnace temperature is x0 at the beginning of each idle period and
should also be x0 at the end of the idle period to execute the consecutive task. In
fact, Theorem 1.5.1 can be easily extended to a more general case with boundary
conditions of the form x(0) = x0, x(tf ) = xf , x0 > 0, xf > 0 and, possibly, x0 ̸= xf .

Let us finally show that the energy function of the idle period length, for a
furnace described by the bilinear model (1.14) and optimally controlled as proposed
in Theorem 1.5.1, is concave.

Theorem 1.5.2. The idle energy function E : R≥0 → R≥0 of system (1.14) under
control (1.22) assuming (1.21) is described by equation E(tf ) = ū · (tf − tsw(tf ))
for any tf ∈ R≥0, where tsw(tf ) is the function existing by (1.23). Moreover, E(tf )
is concave.

Proof. Recall that ū is constant maximal value of the applied electric power in
(1.14). Also recall from the proof of Theorem 1.5.1 that tsw in control (1.22) applied
to system (1.14) is uniquely determined with the implicit solution of (1.23) for given
tf and fixed parameters α, β, ρ, x0, and ū. Thus, the energy consumption during
an idle period, i.e., idle energy function, can be described as

E(tf ) = ū · (tf − tsw(tf )). (1.37)

Then, for concavity of E(tf ), it remains to show that

∂2E(tf )

∂t2f
= −ū d2tsw

dt2f
(1.38)

is negative ∀tsw. Substituting further differentiation of (1.24) to (1.38) gives

∂2E(tf )

∂t2f
= − α2βx0 exp(αtsw)

(ρx0 − β exp(αtsw))2
dtsw
dtf

. (1.39)

To prove (1.39), first note that by assumption (1.21), it holds β > ρx0 and therefore,
the denominator of the fraction in (1.39) is positive. The numerator α2βx0 exp(αtsw)
is positive as well, since β > 0 by definition (1.14) and x0 > 0 by (1.20). Therefore,
to prove that (1.39) is negative, it remains to show that (dtsw)/(dtf ) > 0∀tsw. By
(1.21) we have αx0 < (β − ρx0)ū, which also implies αx0 < (β exp(αtsw)− ρx0)ū
since α > 0 by definition (1.14) and tsw ≥ 0. It follows that αx0

(β exp(αtsw)−ρx0)ū
< 1,

which in turn proves that (dtsw)/(dtf ) > 0. As a consequence, E(tf ) is concave,
and the proof is complete.

By Theorem 1.5.2, we conclude that problem 1 | rj , d̃j ,fixed order |ΣE can be
solved in polynomial time for furnaces that can be modeled as (1.14), and controlled
by (1.22). In the following section, the proposed approach is shown on a real
industrial electric furnace from Škoda Auto.
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Figure 1.5: Relationship between the temperature and power when cooling to 600 °C and
heating back to operating temperature

1.6 Case Study: An Industrial Electric Furnace

Škoda Auto has a production line employing a ModulTherm® system by ALD,
containing electric vacuum furnaces used for the steel hardening. The outer steel
shells of the furnaces are cooled by a central cooling system of circulating water at
∼35 °C to avoid overheating of the system. Thus, we can assume that the ambient
temperature (Te) is constant. The operating temperature of the furnaces is set to
960 °C for the hardening process, which takes about 2.5 hours on average.

The heating of the furnaces has a substantial energy demand across the whole
production line. In a normal regime, all furnaces are turned on and heated to the
operating temperature. The operating temperature is preserved even if nothing is
being processed. To investigate the potential for energy savings, an experiment has
been performed, during which the furnace was cooled to 600 °C, and its steady-state
power consumption was measured. Afterwards, the furnace was heated back to the
operating temperature again. Measured data are shown in Figure 1.5 [43]. It can
be seen that the steady-state power consumption for 600 °C and 960 °C is about
18 kW and 40 kW, respectively.

Clearly, if the idle period is long enough, significant energy savings can be
achieved by lowering the temperature of the furnace, i.e., turning off the furnace for
a longer time and then reheating it back at the right time. This can be achieved by
the optimal control law described in the previous section. The rest of the section
documents the identification of the furnace in Škoda Auto and shows the resulting
idle energy function.

1.6.1 Identification of the Furnace Model

We employ the bilinear model given by (1.14) to the furnace mentioned above
and estimate the parameters α, β, ρ in the model. For this purpose, we use the
temperature data collected by Dušek [43] shown by dashed lines in Figure 1.6, with
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a sampling time of 30 s. The system parameters are estimated as

α = 0.003821964, β = 0.175187494, ρ = 0.000094367 (1.40)

by the least-squares method using the measured temperature samples and their
derivatives obtained via a polynomial regression. The simulated response of the
system (1.14) with (1.40) is illustrated by red lines in Figure 1.6, when the experi-
mental input power is applied. It is seen that the utilized bilinear model provides a
reasonable fit to the measured temperature values of the furnace. Note, that all the
measurements were carried out during production and it was not possible to test
arbitrary input signals (i.e., power). Nevertheless, the mean absolute percentage
error over all experiments for the identified model is found as 4.49%, which is
sufficiently accurate for the system identification.

1.6.2 Idle Energy Function of the Furnace

To reveal the idle energy function of the furnace, let us first demonstrate the furnace
temperature response under the proposed energy-optimal control law given by
Theorem 1.5.1. In Figure 1.7, the time response of the furnace model (1.14) with
the parameters (1.40) is illustrated via simulations for two different terminal times

(t
(1)
f and t

(2)
f ), i.e., idle periods, when the optimal control (1.22) is applied. Indeed,

the applied input power is switched from zero to the maximum applicable power ū

(160 kW) at the appropriate switching times tsw(t
(1)
f ) and tsw(t

(2)
f ) calculated by

(1.23), to ensure reaching the operating temperature (960 °C) at the end of each

idle period. The corresponding minimal energy consumption E(t
(1)
f ), and E(t

(2)
f )

(calculated by (1.37)), is also illustrated in the lower part of Figure 1.7.
Performing the above explained calculations for an appropriate sampling of

the idle period length tf , one can obtain the idle energy function E, as shown in
Figure 1.8. Function E is bounded by a constant shown by the dashed line, which
is the energy for heating the machine from the ambient temperature (35 °C) to
the operating temperature. Clearly, it is seen that E is concave, as declared by
Theorem 1.5.2.

Remark 6. Note that for the real furnace application the proposed control may not
be precisely optimal, and the operating temperature may not be reached exactly at
t = tf , inherently due to the uncertain dynamics and the approximate modeling.
Nevertheless, the proposed approximation is acceptable for achieving almost optimal
control in practice. The reach of the operating temperature can be guaranteed with
a simple if case control as is actually done in switching to feedback control around
the operating point in practical process control approaches.

1.7 Comparison to the State-of-the-Art Ap-
proaches

As it was explained in the introduction, conventional scheduling approaches to idle
energy optimization assume only a small number of machine modes to approximate
the dynamics of the machine [97, 121, 29, 2]. To represent the machine modes,
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Figure 1.6: Comparison of the measured data and simulation using a bilinear model.

the authors typically use the static transition graph, where the vertices represent
the modes, and the edges represent the available transitions between them. The
edges are labeled by the time, which is needed for the transition, and the power,
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Figure 1.9: Examples of the transition graphs for the furnace model (1.14) with parameters
(1.40).

which is consumed during the transition. Examples of the transition graphs for
the furnace model (1.14) with parameters (1.40) are shown in Figure 1.9. These
graphs represent simple scenarios, with a single processing mode (960 °C) and one
(G600, G700), or two (G600,700), standby modes. The standby modes correspond to
allowed temperatures, to which the furnace can be cooled during the idle periods
(here 600 °C, and 700 °C).

The primal aim of this section is to show, why representation via an idle energy
function is better than a transition graph. This is illustrated by an experiment
described in Section 1.7.2. Secondly, we compare complexity of the algorithm for
problem 1 | rj , d̃j ,fixed order |ΣE described in Section 1.4 with the state-of-the-art
approaches. This analysis is described in Section 1.7.3.

1.7.1 Benchmark Instances

Considering the behavior of the machine, we use the idle energy function E depicted
in Figure 1.8 for the minimization of the objective (1.1). Our approach is compared
to the dynamic programming adopted from [3], which represents the behavior of
the machine by a finite transition graph. For the comparison, we use the transition
graphs G600, G700, and G600,700 depicted in Figure 1.9.

Now we describe, how we generate the tasks parameters for the benchmarks
instances. A set of 6750 instances was generated using Algorithm 1. Specif-
ically, 10 instances were generated for each combination of n ∈ {30, 40, 50},
γ ∈ {0.2, 0.4, . . . , 3.0}, and δ ∈ {0.2, 0.4, . . . , 3.0}. A wide range of parameters
γ and δ was used to generate data of different characteristics. Constants pmin

and pmax, denoting the minimal and the maximal processing time, were set to
1 and 300, respectively. Note that Algorithm 1 is designed such that only feasi-
ble instances are generated. By U {a, b}, we denote integer uniform distribution
on set {a, a + 1, . . . , b}; here Exp(x) denotes exponential distribution with scale
parameter x.

One of the factors influencing the final energy savings is the utilization of the
machine, which is calculated as the ratio between the sum of processing times and
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input :Number of tasks n, bounds on processing time pmin, pmax, params. γ, δ
output :Vectors r, d̃, p

1 // generate processing times

2 foreach i← 1 to n do pi ∼ U {pmin, pmax};
3 // generate release times and deadlines

4 r1 := 0 ;

5 d̃1 ∼ ⌈r1 + p1 + Exp(δ · Average(p))⌉ ;
6 foreach i← 2 to n do
7 ri ∼ ⌈ri−1 + pi−1 + Exp(γ · Average(p))⌉;
8 d̃i ∼ ⌈ri + pi + Exp(δ · Average(p))⌉ ;

9 // propagate deadlines by (1.3) (release times are already propagated)

10 foreach i← (n− 1) to 1 do d̃i := min{d̃i+1 − pi+1, d̃i};
Algorithm 1: Generation of task parameters

Table 1.2: Number of generated instances with respect to utilization (columns) and number
of tasks (rows).

Utilization

(0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9]

30 12 532 621 391 286 193 125 90

n 40 2 508 672 383 273 191 113 108

50 5 520 672 376 252 195 121 109

Total 19 1560 1965 1150 811 579 359 307

length of the scheduling horizon, i.e.,
∑n

i=1 pi / (d̃n − r1). Based on the machine
utilization, the generated instances were divided, as indicated by Table 1.2.

1.7.2 Transition Graph vs. Idle Energy Functions

For the experiment, we optimized all generated instances with respect to the
idle energy functions E (our approach), and transition graphs G600, G700, and
G600,700 (representing the state-of-the-art approaches assuming only a small number
of modes). The instances with transition graphs G600, G700, and G600,700 were
optimized using the dynamic programming adopted from [3].

To compare the results, we define the average power per idle time P as

P =
E⋆

total

(d̃n − r1)−
n∑

i=1

pi

, (1.41)

where E⋆
total is the optimal total idle energy consumption (with respect to given idle

energy function or transition graph). It is assumed that the machine is underutilized,
i.e., (d̃n−r1)−

∑n
i=1 pi > 0. For the considered models, it holds that 0 ≤ P ≤ Pmax,

where Pmax is the theoretical worst case, representing the situation when the furnace
is heated to the operating temperature all the time.
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Figure 1.10: Average power per idle time P depending on the modeling of the machine
dynamics and utilization of the machine.

Results for different utilizations of the machines are shown in the form of boxplots
in Figure 1.10. Clearly, our approach using E dominates all the transition graphs,
as the power saving modes modeled by G600, G700, and G600,700 are only a subset of
all possible modes implicitly encoded in E. The difference increases when utilization
is lowered as the idle periods become longer. For example, the average P for E is
less than half compared to G600,700 for utilization (0.1, 0.2].

It can be seen that P optimized with respect to G600 nearly converges to steady-
state power compensating for the energy loss at 600 °C, which is approximately
18 kW. Similar observation also holds for G700, and G600,700. Using G700 is slightly
better than G600 only when the utilization is high because shorter idle periods do
not allow the standby mode corresponding to 600 °C to be reached.

1.7.3 Time Complexity Comparison

The authors of conventional scheduling approaches to idle energy optimization use
the ILP formalism for the modeling [97, 121, 29, 2]. The scheduling horizon is
discretized into a set of intervals H (e.g., one minute long), and for each interval
k ∈ H and each possible mode of the machine m, binary variables encode whether
the machine operates in mode m during interval k or not [2, 121, 4]. The main
weakness in these approaches is that the size of the model depends on the number of
intervals in H as well as on the number of machine states. Therefore, the model can
be used successfully only for small instances of the problem. When long scheduling
horizon is considered (e.g., 7200 minutes in a work-week), building and optimization
of such model become intractable.

To the best of our knowledge, the nearest polynomial-time approach that can be
adopted to solve the problem addressed in this chapter is described in [3]. Assuming
that the scheduling horizon is discretized and the order of the tasks if fixed, the
problem can be transformed to the shortest path problem. Aghelinejad et al.
construct graph G having |H| layers, each of which is containing about

∑
i∈T pi
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nodes. Node n(i, k) in layer k encodes that i intervals were spent for the processing
from the beginning till time k. The graph contains O(|H|∑i∈T pi) nodes, and
O(|H|2∑i∈T pi) edges. The shortest path representing the schedule with lowest
energy consumption can be found by dynamic programming in O(|H|2∑i∈T pi).
In the original paper [3], the authors did not assume release times and deadlines.
However, their approach can be easily extended by removing the edges, which
would cause the processing of the task i outside of its execution window defined
by [ri, d̃i]. Further, in the case of the problem studied in this chapter, it is not
necessary to model every unit of tasks’ processing times. Thus, term

∑
i∈T pi

can be substituted by n (processing units corresponding to a single job can be
joined together). Therefore, the complexity of solving our problem by the approach
described in [3] is O(|H|2n) assuming that the scheduling horizon is discretized into
|H| intervals.

In comparison, the energy graph proposed in this chapter contains O(n) nodes
and O(n2) edges and can be constructed in O(n3) steps. The overall complexity of
our approach is therefore O(n3). Taking into account that for a real production |H|
is typically larger than n, the complexity of our approach is significantly better.

Summarizing, we believe that there are two main drawbacks in the adaptation
of the state-of-the-art approaches (including both the ILP models as well as the
graph proposed in [3]). First, the complexity of the state-of-the-art approaches
sharply grows with the length of the scheduling horizon H, while our approach is
independent on it. Second, a finite number of machine modes cannot fully describe
the behavior of more complex systems. For example, see function E in Figure 1.8
representing the energy consumption w.r.t. the length of the idle period for our
case study. The shape of this function cannot be reasonably approximated by a
simple transition graph with several modes only.

1.8 Chapter Conclusions

This chapter has two aims. The first one is to show that for some machines, e.g.,
furnaces and other heat-intensive systems, when approximating their dynamics by
a simple transition graph, the scheduling algorithm cannot achieve the maximum
energy savings. For such systems, we propose a different concept incorporating the
complete dynamics and the optimal control of the machine into the idle energy
function, which represents the energy consumption of the machine much better. The
analysis in Section 1.7.2 on an electric furnace from Škoda Auto company shows the
significant difference between these two concepts. Second, we show that problem
1 | rj , d̃j ,fixed order |ΣE can be solved in polynomial time, assuming that the idle
energy function is concave. The time complexity of our algorithm is better than the
complexity of related state-of-the-art algorithms, as it is explained in Section 1.7.3.

Our analysis is focused on heat-intensive processes, as the most typical appli-
cations in the domain of idle energy optimization and scheduling. Indeed, our
analysis cannot be applied to an arbitrary machine, and we cannot analyze every
possible one. Nevertheless, many energy demanding systems have very similar
properties, often resulting in a concave idle energy function. Moreover, the concept
of energy function allows integrating the system dynamics and its energy-optimal
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control, studied in the control engineering domain, into the scheduling domain. As
we believe, this synergy is essential for achieving maximal energetic efficiency. A
related example can be found in papers [23, 24] studying energy optimization of
robotic cells, where very complex dynamics of a robotic manipulator is also encoded
into an energy function. Those papers do not study idle energy consumption but
address the relation between the speed limit of a robot movement and its energy
consumption. Unlike the case with the furnaces, this function is convex; nevertheless,
the idea of the decomposition is the same. Therefore, as we believe, there are other
applications where the complex dynamics of a machine can be expressed using
a nonlinear function and exploited in a scheduling algorithm to achieve the best
savings. Therefore, finding other scenarios where an energy function can be used is
the real challenge for future research.
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Chapter

Scheduling with Resource
States and Variable Energy
Prices

2.1 Chapter Summary and Motivation

In Chapter 1, we successfully applied the concept of idle energy function in the
scope of hardening furnace scheduling. This smart abstraction incorporating the
optimal control applied to the furnace bilinear dynamics model was crucial for the
design of the efficient scheduling algorithm. Albeit this application was successful,
industrial furnace modeling and optimization are not widely studied in the research
community.

In this chapter, we extend the ideas of the idle energy function to a different
problem, this time combining two highly researched paradigms – the variable energy
prices and a machine with several energy-saving states modeled by a finite state
machine/automaton (FSM). As in the previous chapter, the goal is to schedule the
workload together with machine states such that the overall energy consumption is
minimized.

Previously, the situation was simple in the sense that the energy price was
assumed to be constant, and so the optimal energy consumption of the furnace
depended only on the idle period length ∆ giving us the idle energy function
E : R+

0 → R+
0 capturing the optimal energy consumption E(∆) during any idle

period of length ∆. Now, however, the situation is more complicated. The energy
cost varies in time, and so the optimal energy consumption cost depends not only
on the idle period length ∆ but also on its start. Still, we can abstract the optimal
behavior of the furnace in a similar manner, and derive an idle energy (cost) function,
this time two-dimensional.

We show that not only the idle energy function extension is possible, but
also it brings significant benefits in terms of computation speed when properly
integrated within the optimization method. This time, we compare the state-of-the-
art mathematical model based on integer linear programming (ILP) with the ILP
model integrating the pre-computed optimal costs (idle energy cost function). This
chapter is based on paper

• Ondřej Benedikt, István Módos, and Zdeněk Hanzálek. “Power of Pre-
Processing: Production Scheduling with Variable Energy Pricing and Power-
Saving States”. In: Constraints 25.3–4 (Dec. 2020), pp. 300–318. issn:
1383-7133. doi: 10.1007/s10601-020-09317-y

published in Constraints journal. Also, the contribution was presented at the
CPAIOR 2020 conference, where it was awarded the Best Student Paper award.
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2.2 Introduction

Energy-efficient scheduling has been attracting a considerable amount of attention
lately, as reported by both Gahm et al. [51] and Gao et al. [52]. The trend is
most likely to continue in the future since the energy-efficient scheduling helps to
achieve sustainability of the production by both decreasing the production cost
and minimizing its environmental impact. Gahm et al. [51] identified promising
approaches to energy-aware scheduling, including, among others, (i) the optimization
of the energy demand by considering the power-saving states of the machines, and
(ii) the participation in demand response programs, which are used by the electric
utilities to reward the energy consumers for shifting their energy consumption to
off-peak intervals [92].

In this chapter, we study a single machine scheduling problem to minimize the
total energy cost (TEC) of the production. We consider both the power-saving
states of the machine and the time-of-use (TOU) pricing. The TOU pricing is one
of the demand response programs in which the electricity price may differ every
hour. The scheduling problems with TOU pricing have been extensively addressed
in the literature [48, 57, 60].

Considering the power-saving states of the machine, Mouzon et al. [97] identified
that a significant energy cost reduction could be attained. However, the switchings
between the machine states need to be planned carefully because of their non-
negligible energy costs and transition times.

The integration of the power-saving states and the TOU pricing was initially
proposed by Shrouf et al. [121], who designed an integer linear programming (ILP)
model for the single machine problem with the fixed order of the jobs. However,
it was proven by Aghelinejad et al. [3] that the problem with the fixed order of
the jobs can be solved in polynomial time. Aghelinejad et al. [4] improved and
generalized the existing ILP model by removing the restriction on the fixed order
of the jobs, in which case the problem is NP-hard [3]. However, in both works of
Aghelinejad et al. [4] and Shrouf et al. [121], only small instances of the problem
have been solved optimally.

In this chapter, we study a single machine problem introduced by Shrouf
et al. [121] and further studied by Aghelinejad et al. [4], and describe a novel
pre-processing technique to solve it efficiently. Our pre-processing technique pre-
computes the optimal switching behavior in time w.r.t. the energy costs. The
pre-computed costs of the optimal switchings allow us to design exact ILP and
constraint programming (CP) models. In contrast, the ILP model proposed by
Aghelinejad et al. [4] explicitly formulates the transition behavior of the machine,
which needs to be optimized jointly with the scheduling of the jobs. As shown by
the experiments, our approach outperforms the existing ILP model [4], which is, to
the best of our knowledge, the state-of-the-art among the exact methods for this
problem. Our ILP model can solve all benchmark instances with up to 190 jobs and
1277 pricing intervals within the time limit. On the other hand, the state-of-the-art
ILP model from the literature scales only up to instances with 60 jobs and 316
intervals. This shows that our approach can tackle production-size problems. For
example, creating a schedule of one workweek (5 days) with start times granularity
of 5 minutes requires 1440 intervals.
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2.3 Problem Statement

Let I = {I1, I2, . . . , Ih} be a set of intervals, which partition the scheduling horizon.
The energy costs for the intervals are given by the vector c = (c1, c2, . . . , ch),
where ci ∈ Z≥0 is the energy (electricity) cost associated with interval Ii. It is
assumed, that every interval is one time unit long, i.e., I1 = [0, 1), I2 = [1, 2), . . . ,
Ih = [h− 1, h). Note that the physical representation of the time unit length can
be different depending on the required granularity of the scheduling horizon.

Let J = {J1, J2, . . . , Jn} be a set of jobs, which must be scheduled on a single
machine that is available throughout the whole scheduling horizon; we assume that
n ≥ 1. Each job Jj is characterized by its processing time pj ∈ Z>0, given in the
number of intervals. Scheduling of the jobs is non-preemptive, and the machine can
process at most one job at a time. All the jobs are available at the beginning of the
scheduling horizon.

During each interval, the machine is operating in one of its states s ∈ S or
transits from one state to another. Let us denote the transition time function by T :
S ×S → Z≥0∪{∞}, and the transition power function by P : S × S → Z≥0 ∪ {∞}.
The direct transition from state s to state s′ ≠ s lasts T (s, s′) intervals and has
power consumption P (s, s′), which is the constant rate of the consumed energy at
every time unit. The value ∞ means that the direct transition does not exist. For
ease of notation, we set T (s, s) = 1 for each s ∈ S, by which we represent that the
machine is remaining in the state s for the duration of one interval. Correspondingly,
we assume that P (s, s) denotes the power consumption of the machine while staying
in state s for the duration of one interval.

Note that the transition time/power functions are general enough to represent
many kinds of machines used throughout the literature [4, 19, 97, 121]. Often, the
machine states and transitions are represented by a transition graph instead of the
transition time/power function. Then, the graph nodes correspond to the machine
states, while the edges represent the allowed direct transitions between the states.
The edges are labeled by the corresponding values of the transition time/power
functions. An example of a transition graph is shown in Fig. 2.1.

During the first and the last interval, the machine is assumed to be in off state
off ∈ S. Besides, the machine has a single processing state, proc ∈ S, which must
be active during the processing of the jobs. Due to the transition from/to the
initial/last off state, the machine cannot be in proc state during the early/late
intervals. Hence, we denote the earliest and the latest interval during which the
machine can be in proc state by Iearl and Ilate, respectively.

A solution is a pair (σ,Ω), where σ = (σ1, σ2, . . . , σn) ∈ Zn
≥0 is the vector

denoting the start time of the jobs, and Ω = (Ω1,Ω2, . . . ,Ωh) ∈ (S ×S)h represents
the active state or transition in each interval. The solution is feasible if the following
four conditions are satisfied.

1. the machine processes at most one job at a time;

2. the jobs are processed when the machine is in proc state, i.e.,
∀Jj ∈ J ∀i ∈ {σj + 1, . . . , σj + pj} : Ωi = (proc, proc),

where {a, . . . , b} is {a, a+ 1, . . . , b};
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3. the machine is in off state during the first and the last interval, i.e.,
Ω1 = (off, off), and Ωh = (off, off);

4. all transitions are valid with respect to the transition time function, i.e.,
∀i ∈ {1, 2, . . . , h− 1} such that Ωi = (s, s′), Ωi+1 = (s′′, s′′′), it holds that

(a) Ωi and Ωi+1 encode only feasible states/transitions: 0 < T (s, s′) < ∞,
0 < T (s′′, s′′′) <∞,

(b) only feasible zero-time transitions are allowed between Ωi and Ωi+1:
either s′ = s′′ or there exists a sequence of states (s′, s1, . . . , sk, s′′) such
that T (s′, s1) = T (s1, s2) = · · · = T (sk−1, sk) = T (sk, s

′′) = 0,

(c) the non-zero-time transitions respect the transition time function: if
s′′ ̸= s′′′ and Ωi ̸= Ωi+1 then there exists Ωℓ with ℓ being the small-
est index larger than (i + 1) such that Ωℓ ̸= Ωi+1, and it holds that
ℓ− i− 1 = T (s′′, s′′′).

The total energy cost (TEC) of solution (σ,Ω) is∑
Ii∈I

ci · P (Ωi), (2.1)

where P (Ωi) represents P (s, s′) for Ωi = (s, s′). The goal of the scheduling problem
is to find a feasible solution minimizing the total energy cost (2.1).

The above-defined problem was introduced by Shrouf et al. [121] and is denoted
in standard Graham’s notation as 1,TOU| states |TEC. The problem was shown
to be NP-hard [3].

Example: Here, we present a small example to illustrate the proposed notation.
Let us consider a scheduling horizon consisting of 16 intervals, I = {I1, . . . , I16},
and the associated energy costs c = (2, 1, 2, 1, 6, 16, 14, 3, 2, 5, 3, 15, 3, 2, 1, 2). Let us
have three jobs, J = {J1, J2, J3} with processing times p1 = 2, p2 = 1, and p3 = 2.
Considering the machine states, we assume S = {proc, off, idle}. The values of
the transition time function and the transition power function are given in Fig. 2.1.
For the given transition time function, we have Iearl = I4 and Ilate = I14. Note
that the same machine states and transitions were originally proposed by Shrouf et
al. [121].

The optimal solution to the given instance is depicted in Fig. 2.2, where

σ = (9, 3, 12), and

Ω = ((off, off), (off, proc), (off, proc), (proc, proc), (proc, off), (off, off),

(off, off), (off, proc), (off, proc), (proc, proc), (proc, proc), (idle, idle),

(proc, proc), (proc, proc), (proc, off), (off, off)).

The TEC of this optimal solution is equal to 133.

2.4 Solution Approach

In this section, we first describe how to pre-compute the optimal switching behavior
of the machine and the corresponding costs. Afterward, we design efficient ILP
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Figure 2.1: Parameters of the transition power function P (s, s′) and the transition time
function T (s, s′), and the corresponding transition graph, where every edge from s to s′ is
labeled by T (s, s′)/P (s, s′).
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Figure 2.2: The optimal schedule for the example instance. Each cell, corresponding to
interval Ii and a state/transition, contains the value ci · P (Ωi). The sum over all these
values gives the TEC equal to 133.

(called ILP-SPACES) and CP models that integrate the pre-computed optimal
switching costs.

2.4.1 Instance Pre-processing: Computation of the Optimal
Switching

Given two states s, s′ in which the machine is during two intervals Ii, Ii′ such that
i < i′, the pre-processing computes the optimal transitions from (s, Ii) to (s′, Ii′)
over all possible states w.r.t. the energy cost. Formally, the pre-processing solves
the following optimization problem

min
Ωi+1,Ωi+2,...,Ωi′−1

i′−1∑
i′′=i+1

ci′′ · P (Ωi′′). (2.2)

such that ((s, s),Ωi+1,Ωi+2, . . . ,Ωi′−1, (s
′, s′)) are valid transitions w.r.t. to the

transition time function. We call this an optimal switching problem. As an illus-
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tration, the cost of the optimal switching in Fig. 2.2 from (proc, I4) to (proc, I10)
equals to 31. Interestingly, the optimal switching problem can be solved in polyno-
mial time by finding the shortest path in an interval-state graph, which is explained
in the rest of this section.

The interval-state graph is defined by a triplet (V,E,w), where V is the set of
vertices, E is the set of edges and w : E → Z≥0 are the weights of the edges. The
set of the vertices and edges of this graph are defined as follows:

V = {v1,off} ∪ {vi,s : Ii ∈ I \ {I1}, s ∈ S} ∪ {vh+1,off}, (2.3)

E = {(v1,off, v2,off)}
∪ {(vi,s, vi+T (s,s′),s′) : s, s

′ ∈ S, Ii ∈ I \ {I1},
T (s, s′) ̸= ∞, (i− 1) + T (s, s′) ≤ h− 1}

∪ {(vh,off, vh+1,off)} .

(2.4)

Informally, each vertex vi,s ∈ V represents that at the beginning of interval Ii
the machine is in state s. Each edge (vi,s, vi′,s′) ∈ E corresponds to the direct
transition from state s to state s′ that lasts T (s, s′) = (i′ − i) intervals. The
condition (i − 1) + T (s, s′) ≤ h − 1 ensures, that only transitions completing at
most at the beginning of interval Ih are present in the interval-state graph.

The edges are weighted by the total energy cost of the corresponding transition
w.r.t. the costs of energy in intervals, i.e., weight of edge (vi,s, vi′,s′) ∈ E is defined
as

w(vi,s, vi′,s′) =

i′−1∑
i′′=i

ci′′ · P (s, s′) . (2.5)

Note that by the definition, the interval-state graph encodes all the feasible transi-
tions between the machine states in time.

Returning to the optimal switching problem (2.2), the optimal transitions from
(s, Ii) to (s′, Ii′) w.r.t. the energy cost can be obtained by finding the shortest path
from vi+1,s to vi′,s′ in the interval-state graph. We denote the cost of the optimal
switching by function l : V × V → Z≥0.

Example (continued): Continuing with the Example, Fig. 2.3 shows the
whole interval-state graph for the given instance. The green dashed path shows the
optimal transition of the machine assuming that the machine is in proc state during
intervals I4 and I10; at first the machine is turned off (during I5), then it remains
off (during intervals I6 and I7), and is turned on afterward (intervals I8, I9). In
this case, l(v5,proc, v10,proc) = 31.

The values of l can be computed using the Floyd-Warshall algorithm in
O(h3 · |S|3) time. However, for the scheduling decisions, only some of the switchings
are interesting. Since all the jobs need to be scheduled in the proc state, the optimal
switchings have to be resolved only in the ‘space’, i.e., the sequence of intervals:
(i) between the two consecutive intervals with proc; (ii) between the first off and
the first proc; and (iii) the last proc and the last off. The cost of the switchings
between s, s′ ∈ {off, proc}2 are recorded by function c⋆ : I2 → Z≥0 defined as

c⋆(i, i′) =


l(vi+1,proc, vi′,proc) i > 1, i′ < h case (i)

l(v2,off, vi′,proc) i = 1, i′ < h case (ii)

l(vi+1,proc, vh,off) i > 1, i′ = h case (iii)

(2.6)
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Figure 2.3: Interval-state graph for the Example instance from Section 2.3 with highlighted
optimal switching behavior from (proc, I4) to (proc, I10).

for each i < i′. The vector of states corresponding to c⋆(i, i′), i.e., the optimal
switching behavior of the machine between i and i′, is denoted by Ω⋆(i, i′). As
an example, see the Fig. 2.2, where intervals {I5, I6, . . . , I9} represent the space
between two consecutive jobs J2, J1 with cost c⋆(4, 10) = l(v5,proc, v10,proc) = 31.
The optimal switching behavior is

Ω⋆(4, 10) = ((proc, off), (off, off), (off, off), (off, proc), (off, proc)) , (2.7)

which is depicted by the green dashed path in Fig. 2.3.

Values of c⋆ can be computed efficiently using an algorithm that we call the
Shortest Path Algorithm for Cost Efficient Switchings (SPACES). In every iteration
Ii ∈ I \ {Ih}, SPACES computes all values c⋆(i, i+ 1), c⋆(i, i+ 2), . . . , c⋆(i, h) by
finding the shortest paths from vi+1,proc (or v2,off if i = 1) to all other vertices in
the interval-state graph. The shortest paths are obtained with Dijkstra algorithm
that runs in O(|E|+ |V | · log |V |) if implemented using the priority queues. Since
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the Dijkstra algorithm is started h times, the complexity of SPACES is

O(h · (|E|+ |V | · log |V |)) = O(h2 · |S| · (|S|+ log h · |S|)) . (2.8)

To increase the performance further, iterations i can be computed in parallel since
they are independent of each other. Moreover, the shortest paths between states
could be cached, and might be re-used between the iterations of the algorithm.
However, for the size of the benchmark instances considered in the experiments,
the runtime of the SPACES without caching is negligible in comparison to the
total solving time. Hence, we did not implement SPACES with the shortest paths’
caching.

2.4.2 Integer Linear Programming Model ILP-SPACES

In the ILP model proposed by Aghelinejad et al. [4], the state transition functions
are explicitly encoded. In contrast, our ILP-SPACES model works only with the
optimal switching costs pre-computed by the SPACES algorithm, thus encoding the
transitions implicitly without sacrificing the optimality. The only task of the ILP
solver is then to schedule the jobs, and select appropriate spaces in between, such
that the TEC is minimized. Thus, the structure of our model is greatly simplified,
with positive impact on its performance.

Formally, the variables used in the ILP-SPACES model are

• job start time sj,i ∈ {0, 1}: equals 1 if job Jj starts at the beginning of
interval Ii, otherwise 0;

• space activation xi,i′ ∈ {0, 1}: equals 1 if the machine undergoes the optimal
switching defined by Ω⋆(i, i′), otherwise 0.

The complete model follows.

min
∑

Ii,Ii′∈I
i<i′

xi,i′ · c⋆(i, i′) +
∑
Jj∈J
Ii∈I

sj,i · c(job)j,i , (2.9)

∑
Ii∈I

sj,i = 1, ∀Jj ∈ J , (2.10)

sj,i = 0, ∀Jj ∈ J ,∀i ∈ {1, . . . , earl− 1} ∪ {late− pj + 2, . . . , h}, (2.11)∑
Jj∈J

i∑
i′=max{2,i−pj+1}

sj,i′ +

i−1∑
i′=1

h∑
i′′=i+1

xi′,i′′ = 1, ∀Ii ∈ {I2, I3, . . . , Ih−1}. (2.12)

The objective (2.9) minimizes the total energy cost, consisting of the optimal
switching cost of the active spaces, and the cost of the jobs processing, where

c
(job)
j,i =

i+pj−1∑
i′=i

ci′ · P (proc, proc) (2.13)

for job Jj ∈ J and i ∈ {earl, . . . , late− pj + 1}.
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Constraint (2.10) forces every job to be scheduled exactly once, and con-
straint (2.11) forbids the job to be scheduled before Iearl and after Ilate. Finally, the
last constraints (2.12) force the machine to be processing a job or to be undergoing
some transition during every interval and forbid overlaps between them.

2.4.2.1 Search Space Reduction

Various methods can be employed to reduce the search space without sacrificing
the optimality. One of such methods is pruning of the spaces variables that lead to
infeasible solutions if activated.

The pruning works as follows. For each Ii, Ii′ such that i < i′, the available
time for processing the jobs is computed for both left (before Ii) and right (after
Ii′) part of the scheduling horizon, i.e., i− earl + 1 and late− i′ + 1, respectively.
Then, activating the switching behavior Ω⋆(i, i′) leads to an infeasible solution if
one of the following pruning conditions holds

PC.1: The largest job can be fitted in neither part, i.e.,

max
Jj∈J

pj > i− earl + 1 ∧ max
Jj∈J

pj > late− i′ + 1 . (2.14)

PC.2: The total available time for processing is less than the sum of all the
processing times, i.e.,

(i− earl + 1) + (late− i′ + 1) <
∑
Jj∈J

pj . (2.15)

If any of these conditions holds, the corresponding space variable xi,i′ is not created
in ILP-SPACES.

2.4.3 Constraint Programming Models

Thanks to the expressiveness of the CP, there are multiple possibilities on how to
model our scheduling problem. Since the performance of each model is not easily
predictable beforehand, we decided to try different combinations of the jobs’ and
spaces’ modeling.

In the end, we selected the best model by performing a preliminary experiment,
see Section 2.5.2. The best model is called Element-Free-SumLengths and is denoted
as CP-SPACES.

In the following, we describe the CP-SPACES model formally. High-
level description of all the tested CP models is in Section 2.4.3.3. Also,
all the source codes are publicly available at https://github.com/CTU-IIG/

EnergyStatesAndCostsScheduling. In the text, we use the IBM CP formalism [75]
for describing the models.

2.4.3.1 CP-SPACES Model

The idea of the CP-SPACES model is similar to the ILP-SPACES, with the exception
that the spaces are not fixed – they are allowed to ‘float’ within the scheduling

https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
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horizon. In consequence, the spaces do not have fixed costs because the cost depends
on the position of the space in the horizon and its length. In our CP-SPACES
model, costs are formulated with an Element expression, which is integrated in the
objective.

Variables. Two types of interval variables are used in the CP-SPACES model.
To represent each job Jj ∈ J and the intervals in which the job is allocated,

we use interval variable zj of fixed length pj . This interval variable represents the
time interval in which the corresponding job is processed, i.e, the job starts at time
StartOf(zj) and completes at time EndOf(zj).

The spaces in the schedule are modeled by using the optional interval variables,
where xℓ,k represents the ‘floating’ spaces of fixed length ℓ. For each possible length

ℓ ∈ {1, 2, . . . , h− 2−∑Jj∈J pj}, we create K(ℓ) =

⌊
h−2−∑

Jj∈J pj

ℓ

⌋
variables that

are indexed by k ∈ {1, 2 . . . ,K(ℓ)}. Note that the number K(ℓ) gives the upper
bound on the number of the spaces of length ℓ that may appear in a feasible schedule,
while ℓmax = h− 2−∑Jj∈J pj gives an upper bound on the space length.

Constraints. Since the machine is assumed to be in off state during I1 and
Ih, the earliest and the latest interval during which a switching might occur is I2
and Ih−1, respectively. Hence, starts (ends) of the spaces are restricted by

StartOf(xℓ,k) ≥ 1

EndOf(xℓ,k) ≤ h− 1

}
∀ℓ ∈ {1, . . . , ℓmax}, k ∈ {1, . . . ,K(ℓ)}. (2.16)

As mentioned previously, the spaces have fixed lengths, i.e.,

LengthOf(xℓ,k) = ℓ, ∀ℓ ∈ {1, . . . , ℓmax}, k ∈ {1, . . . ,K(ℓ)}. (2.17)

To ensure that the jobs and the spaces are not overlapping, we use the NoOverlap
constraint,

NoOverlap({xℓ,k : ℓ ∈ {1, . . . , ℓmax}, k ∈ {1, . . . ,K(ℓ)}} ∪ {zj : Jj ∈ J }). (2.18)

The lengths of the spaces are constrained by

ℓmax∑
ℓ=1

K(ℓ)∑
k=1

LengthOf(xℓ,k) = ℓmax, (2.19)

to ensure that the whole scheduling horizon is filled.
Objective. The objective is to minimize the TEC, here expressed as

ℓmax∑
ℓ=1

K(ℓ)∑
k=1

Element(c
(space)
ℓ ,StartOf(xℓ,k)) +

+
∑
Jj∈J

Element(c
(job)
j ,StartOf(zj) + 1),

(2.20)

where the first part corresponds to the cost for optimal switchings between the
job processings, and the second part corresponds to the cost for job processing. To
compute the cost of the present spaces, vector

c
(space)
ℓ = (c⋆(1, 1 + ℓ+ 1), c⋆(2, 2 + ℓ+ 1), . . . , c⋆(h− ℓ− 1, h)) (2.21)
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is used to represent the optimal switching costs for the given length ℓ addressed by
the start of space xℓ,k (indexed from 1). Similarly, to compute the cost of the jobs,
vector

c
(job)
j = (c

(job)
j,1 , c

(job)
j,2 , . . . , c

(job)
j,h ) (2.22)

is used.

2.4.3.2 Interval-state Graph as a Global Constraint

Note that a structure like the interval-state graph could be used even for the filtering
of the variables domains, and could be embedded to a global constraint in CP.
Imagine having variables x1, . . . , xh with domains D1, . . . , Dh, representing the
states of the machine in each interval. Then whenever a value is filtered from a
domain, we could remove the edges in the interval-state graph that are leading to
the state corresponding to the removed value. Afterward, by forward and backward
search in the graph, we could make the other domains consistent. This is similar
to the filtering techniques used for the grammar constraints [109, 71] or knapsack
constraints [128]. We believe that efficient global propagation based on the interval-
state graph for this unrolled transition diagram can be designed. However, its
formal derivation is beyond the scope of this chapter.

2.4.3.3 Evaluated CP models

In this section, we describe the variations of the CP-SPACES model, which were
implemented and evaluated in the preliminary experiment. The description is
divided into three parts, namely the modeling of the jobs, the modeling of the spaces,
and the linking constraints.

Modeling of the jobs: All the models contain an interval variable zj with a fixed
length of pj for each job Jj ∈ J . This interval variable represents the time interval
in which the corresponding job is processed, i.e, the job starts at time StartOf(zj)
and completes at time EndOf(zj). The models for the jobs differ primarily in how
the cost of scheduling the jobs is formulated in the objective.

• OPTIONAL: For each job Jj ∈ J and interval Ii ∈ I, create an optional
interval variable zj,i having fixed length pj and fixed start meaning that the
job Jj starts to be processed at the beginning of interval Ii. By enforcing
Alternative(zj , {zj,i : ∀Ii ∈ I}) on every job Jj ∈ J , we constraint that only
one such variable will be present in the schedule. Then, every pair of job Jj ∈ J
and interval Ii ∈ I adds term PresenceOf(zj,i) · c(job)j,i into the objective.

• LOGICAL: Every pair of job Jj ∈ J and interval Ii ∈ I adds term

(StartOf(zj) = i− 1) · c(job)j,i into the objective, i.e., if Jj starts at the be-

ginning of Ii, the contribution of Jj into objective is c
(job)
j,i .

• ELEMENT: Each Jj ∈ J adds term c
(job)
j,StartOf(zj)+1 into the objective. The

indexing by a variable can be done using Element expression.

• OVERLAP: Every pair of job Jj ∈ J and interval Ii ∈ I adds term
Overlap(zj , Ii) · ci · P (proc, proc) into the objective.



52 Solution Approach

• STEPFN: For every unique processing time p ∈ {pj : Jj ∈ J }, create
a step function Fp representing the cost of starting a job with process-
ing time p at the beginning of an interval. Each job Jj ∈ J adds term
StartEval(StartOf(zj), Fpj

) into the objective.

Modeling of the spaces: Similarly as with the jobs, the modeling techniques for
the spaces differ in how they contribute into the objective.

• FIXED: For each pair of intervals Ii, Ii′ ∈ I such that i < i′, create an
optional interval variable xi,i′ having fixed start to i and having fixed end to
i′ − 1. Each such pair of intervals adds term PresenceOf(xi,i′) · c⋆(i, i′) into
the objective.

• FREE: For each possible space length ℓ ∈ {1, . . . , h}, we create K(ℓ) =
⌊
h
ℓ

⌋
optional interval variables xℓ,k that are indexed by k ∈ {1, 2 . . . ,K(ℓ)} and
have fixed length ℓ. Each pair of length ℓ ∈ {1, . . . , h} and k ∈ {1, 2 . . . ,K(ℓ)}
adds term c⋆(StartOf(xℓ,k),EndOf(xℓ,k) + 1) into the objective.

The difference between FIXED and FREE is that in FREE the start times of
the space variables are not fixed.

• NOVARS: In this case, the spaces are not modeled by variables at all. Instead,
we create a sequence variable π over all jobs variables zj . Each position
ℓ ∈ {1, . . . , n− 1} in π adds term c⋆(EndOf(πℓ),StartOf(πℓ+1) + 1) into the
objective (for brevity of the description, the cost of the switching from the
first off and to the last off is omitted).

Linking constraints: The formulations of the jobs and spaces must be linked
together with a linking constraint ensuring that every time instant of the scheduling
horizon is occupied by either a job or a space interval variable. Moreover, we use
NoOverlap on the jobs and spaces variables so that they do not overlap each other.
Note that since NOVARS does not use variables for modeling the spaces, the linking
constraint is not necessary in this case.

• SUM: Here we simply constraint that the sum of the lengths of all present
jobs and spaces variables equals to the length of the scheduling horizon.

• PULSE: For each job and space variable, we create a pulse function having
height of 1. Then, all the pulse functions are summed together into a cumul
expression, which is forced to be 1 in every time instant of the scheduling
horizon.

• STARTOFNEXT: We create a sequence variable π over all jobs and spaces
variables. Then we constraint that each variable on position πℓ ends at the
start of variable πℓ+1.

2.4.4 Symmetry Breaking Constraints

Symmetries in connection with the CP and ILP are widely studied [36, 54, 91].
Some of the symmetries in combinatorial problems arise when multiple feasible
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solutions with the same objective value, and which differ only in the values of the
variables, correspond to the same “canonical” feasible solution. For example, the
jobs in our scheduling problem are identical, thus replacing one job in a feasible
solution with another one having the same processing time will not influence the
objective value.

The symmetries might negatively affect the performance of the models due
to enlarged search space. To break the symmetries without losing the optimality,
symmetry breaking constraints are employed. In the CP models, we use the following
symmetry breaking constraints.

1. Fixed ordering on the jobs having the same processing time: Let Jj , Jj′ ∈ J ,
such that j < j′, be two jobs having the same processing time. The symmetry
breaking constraint is EndBeforeStart(zj , zj′).

To reduce the size of the models, the constraint is not created for every pair
of jobs; instead, the jobs having the same processing time are sorted by their
indices and the constraint is created only for every pair of two consecutive
jobs along this sorted sequence.

2. Fixed ordering on the spaces having the same length: Similarly as with
breaking the symmetries on identical jobs, we can break symmetries on
identical spaces for FREE space modeling. That is, let ℓ ∈ {1, . . . , h} be a
space length and let k, k′ ∈ {1, 2 . . . ,K(ℓ)} such that k < k′. Then we add
the following two constraints

PresenceOf(xℓ,k′) ≤ PresenceOf(xℓ,k) , (2.23)

EndBeforeStart(xℓ,k, xℓ,k′) . (2.24)

We also tried to fix the ordering of the jobs with the same processing time in
the ILP-SPACES model using either constraint (2.25a) or (2.25b)∑

Ii∈I
sj,i · i+ pj ≤

∑
Ii∈I

sj′,i · i, ∀Jj , Jj′ ∈ J , pj = pj′ , j < j′ , (2.25a)

sj′,i ≤
∑

Ii′∈I:i′<i

sj,i′ , ∀Jj , Jj′ ∈ J , pj = pj′ , j < j′,∀Ii ∈ I . (2.25b)

However, the performance of the resulting model was inferior to the original model
without the constraints. Thus, the symmetry breaking constraints are omitted for
the ILP-SPACES.

2.5 Experiments

This section evaluates how ILP-SPACES and the CP models perform in comparison
to the ILP-REF model proposed by Aghelinejad et al. [4]. The comparison is made
on a set of randomly generated instances; see Section 2.5.1 for the description of
the generated dataset. Due to the space constraints, we only compare the best
CP model which is selected according to the results of the preliminary experiment;
see Section 2.5.2. The final results are presented in Section 2.5.3.
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All the experiments were executed on 2x Intel(R) Xeon(R) Silver 4110 CPU
2.10GHz with 188GB of RAM (16 cores in total). For solving the ILP and CP
models, we used Gurobi 8 and IBM CP Optimizer 12.9, respectively. Except for
the time-limit and the search phases in CP-SPACES, which branched on the jobs
first, all the solver parameters were set to the default values.

The source codes and the experimental data (instances and solutions) are publicly
available at https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling

and https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData, re-
spectively.

2.5.1 Instances

The instances in the dataset can be divided according to

1. a number of jobs:

(a) MEDIUM: medium instances with n ∈ {30, 60, 90};
(b) LARGE: large instances with n ∈ {150, 170, 190};

2. a machine transition graph:

(a) NOSBY: a simple graph with no standby state [4, 121], see Fig. 2.1 for
its description;

(b) TWOSBY: a graph with two standby states shown in Fig. 2.4.

For fixed n and a machine transition graph, 12 random instances are generated in
the following way (48 instances in the whole dataset). The processing times of the
jobs are randomly sampled from discrete uniform distribution U{1, 5}. The number
of intervals in each instance is obtained as a multiple of the total processing time
plus the required number of intervals to turn the machine on and off, where this
multiple Hmul is taken from set {1.3, 1.6, 1.9, 2.2}. The energy cost in each interval
is randomly sampled from U{1, 10}. For instances differing only in the number of
intervals, the energy costs are sampled gradually, i.e., the energy costs of all the
intervals in an instance with a shorter horizon are the same as for the corresponding
intervals in an instance with a longer horizon.

The dataset for the preliminary CP experiments is generated using a similar
scheme as described above with the following differences: n ∈ {30, 60}, Hmul = 1.2
and NOSBY transition graph is used. For each fixed n, we generate 6 random
instances. Thus, the dataset for the preliminary experiments has 12 instances in
total. We denote this dataset as PRELIM.

Note that the distributions for sampling the processing times and the energy
costs of the intervals for all the datasets are the same as proposed by Aghelinejad
et al. [4] and Shrouf et al. [121].

2.5.2 Preliminary CP Experiments: Results for PRELIM

The purpose of the preliminary experiments is to compare different CP modeling
strategies and to select the best-performing model that will be compared against
ILP-SPACES and ILP-REF.

https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData


Scheduling with Resource States and Variable Energy Prices 55

proc idle

off

sb1

sb2

0/0

0/0

1/2 4/15

1/2

3/13

1/2

2/12

1/10

1/8

1/0

1/2

1/4

Figure 2.4: Example of a transition graph with multiple standby states; every edge from s
to s′ is labeled by T (s, s′)/P (s, s′).

The results aggregated over the instances are presented in Table 2.1, where gap
stands for the average optimality gap, time is the average runtime in seconds and
#best represents the number of times the model achieved the best upper bound
among all the tested models including the ILP-REF. The optimality gap on each
instance is defined as

ub− lbbest

ub
· 100 [%] , (2.26)

where lbbest is the best lower bound obtained over all models (including the ILP-REF)
on that instance. The time limit is set to 600 s per instance.

For each instance of PRELIM dataset, none of the CP models is able to prove
the optimality of the found solution in the given time-limit. In Table 2.1, it can be
observed how the quality of the best found solution varies across the tested models.
Based on the lowest achieved gap, we choose the model Element-Free-SumLengths
for the following experiments, which we denote as CP-SPACES.

Since we are looking for the optimal solutions, we have also experimented with
the settings of FailureDirectedSearchEmphasis parameter for the CP-SPACES
model. We run one additional experiment with CP-SPACES model on PRELIM
dataset, but with FailureDirectedSearchEmphasis set to 16, i.e., 16 threads of
the CP solver were dedicated to failure-directed search. However, we were not
able to obtain better lower bounds or upper bounds within the given time-limit,
compared with the default setting of the parameter. Hence, the default setting of
FailureDirectedSearchEmphasis is used for the rest of the experiments.

2.5.3 Results for MEDIUM and LARGE Instances with Dif-
ferent Machine Transition Graphs

Both the presented Tables 2.2, 2.3 have the same structure: each row represents
one instance characterized by the number of jobs n and the number of intervals
h. The objective value ub of the best found feasible solution, lower bound lb and
the running time t are reported for each tested model. If the objective value or
the lower bound is in bold font, the corresponding value is known to be optimal.
Therefore, if both objective and the lower bound are in bold, the solver was able to
prove the solution optimality within the time-limit. If the solver reached its given
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Table 2.1: Comparison of different CP modeling techniques on PRELIM dataset.

Model gap [%] time [s] #best [-]

Element-Free-SumLengths 0.15 600.0 6
Optional-Free-Pulse 0.18 600.0 6

StepFunction-Free-SumLengths 0.22 600.0 6
Optional-Free-StartOfNext 0.25 600.0 4
Element-Free-StartOfNext 0.26 600.0 5
StepFunction-Free-Pulse 0.28 600.0 5

Element-Free-Pulse 0.33 600.0 6
Optional-No 0.33 600.0 5

Optional-Free-SumLengths 0.35 600.0 4
Logical-Free-SumLengths 0.37 600.0 6

Logical-Fixed-Pulse 0.42 600.0 4
Logical-Free-StartOfNext 0.43 600.0 5

StepFunction-Free-StartOfNext 0.43 600.0 4
Logical-Free-Pulse 0.47 600.0 4

Element-Fixed-Pulse 0.52 600.0 4
Overlap-Free-SumLengths 0.54 600.0 3

Element-Fixed-SumLengths 0.59 600.0 4
Overlap-Free-Pulse 0.61 600.0 4

Logical-Fixed-SumLengths 0.65 600.0 2
StepFunction-Fixed-Pulse 0.70 600.0 4

StepFunction-Fixed-SumLengths 0.73 600.0 3
Overlap-Free-StartOfNext 0.82 600.0 2

Optional-Fixed-SumLengths 0.82 600.0 3
Optional-Fixed-Pulse 0.83 600.0 3

StepFunction-Fixed-StartOfNext 0.98 600.0 4
Optional-Fixed-StartOfNext 0.98 600.0 4

StepFunction-No 1.02 600.0 2
Overlap-Fixed-Pulse 1.06 600.0 2

Overlap-Fixed-SumLengths 1.12 600.0 2
Overlap-Fixed-StartOfNext 1.17 600.0 3
Element-Fixed-StartOfNext 1.19 600.0 3
Logical-Fixed-StartOfNext 1.22 600.0 3

Overlap-No 1.66 600.0 2
Element-No 1.69 600.0 1
Logical-No 2.24 600.0 0

ILP-SPACES 0.00 4.6 12

time-limit on an instance without proving the optimality of a solution, the value in
the corresponding cell in t column is TLR.

The last rows in each table show the average running time of each model and
the average optimality gap, defined by (2.26). The average time is computed over
all instances; if the solver timed-out on some instance, the specified time-limit is
taken as the running time on that instance.

Additionally, we report the pre-processing time P-P for the large instances. For
the medium-size instances, the comparison between the pre-processing time and
the solving time of ILP-SPACES is shown in Fig. 2.5. The pre-processing takes in
average only 2.8% of the the total solving time (pre-processing plus the solving of
the ILP-SPACES model) for NOSBY and 1.8% for TWOSBY. Overall medium-size
instances, the average and maximum pre-processing times were 0.69 s and 2.93 s,
respectively.
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Figure 2.5: Comparison between the running times of the pre-processing and ILP-SPACES
model for MEDIUM dataset.

2.5.3.1 Results for Medium Instances

The results of this experiment are shown in Table 2.2. In this table we can see
that ILP-SPACES solves all the instances within the time-limit (600 s). On the
other hand, the model ILP-REF proposed by Aghelinejad et al. [4] finds the
optimal solution and proves the optimality only for 11 instances out of 24 within
the time-limit. Moreover, some of the non-optimal solutions found by ILP-REF
are far from the optimum, for example, the objective of the solution found for
n = 90, h = 621 on TWOSBY is more than twice the objective of the optimal one
found by ILP-SPACES.

Unfortunately, CP-SPACES is not able to prove the optimality of any instance
within the time-limit. However, the average optimality gaps (1.73% for NOSBY
and 0.84% for TWOSBY) reveals that it can find near-optimal solutions. The
performance of both CP-SPACES and ILP-SPACES is slightly influenced by a
more complex transition graph, whereas the performance of ILP-REF deteriorates
significantly (average optimality gap 1.99% for NOSBY increased to 16.02% for
TWOSBY).

2.5.3.2 Results for Large Instances

The results of this experiment are shown in Table 2.3. The results for CP-SPACES
are not included, since we were unable to obtain solutions to all the instances from
the IBM CP Optimizer. We observed that the solver used all the available RAM
and started swapping, which negatively affected the runtime. Thus, we excluded
CP-SPACES from the comparison on the LARGE dataset.

Looking at the results of ILP-SPACES, we can see that it solved all 24 instances
within the time-limit (3600 s). On the other hand, ILP-REF was able to find
the optimal solutions for only two smallest instances. Comparing the average
optimality gaps, ILP-REF achieved 7.58% on NOSBY transition graph and 34.39%
on TWOSBY, whereas ILP-SPACES achieved 0% optimality gap on both transition
graphs.



58 Chapter Conclusions

Table 2.2: Comparison of upper bound ub, lower bound lb and runtime t between the
models on MEDIUM dataset. Time-limit is 600 s and TLR stands for time-limit reached.

Instance ILP-REF [4] CP-SPACES ILP-SPACES

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] ub [-] lb [-] t [s]

30 104 1426 1426 3.7 1435 496 TLR 1426 1426 1.3
30 127 1394 1394 4.9 1396 488 TLR 1394 1394 1.7
30 150 1394 1394 5.7 1396 484 TLR 1394 1394 2.4
30 173 1394 1394 7.0 1408 484 TLR 1394 1394 3.1
60 258 4290 4290 88.5 4339 1724 TLR 4290 4290 7.7
60 316 3994 3994 344.7 4048 1584 TLR 3994 3994 29.0
60 374 3836 3826 TLR 3925 1424 TLR 3836 3836 29.0
60 432 3956 3800 TLR 3986 1380 TLR 3833 3833 46.9
90 363 6044 5839 TLR 5963 2328 TLR 5920 5920 7.0
90 445 5778 5567 TLR 5769 2232 TLR 5686 5686 166.0
90 528 5916 4695 TLR 5670 2168 TLR 5431 5431 64.5
90 610 5901 4514 TLR 5590 1832 TLR 5373 5373 147.1

Average time [s]: 337.9 >600 42.1
Average optimality gap [%]: 1.99 1.73 0.00

MEDIUM+TWOSBY

Instance ILP-REF [4] CP-SPACES ILP-SPACES

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] ub [-] lb [-] t [s]

30 106 3815 3815 29.4 3815 1240 TLR 3815 3815 1.4
30 129 3804 3804 30.7 3815 1220 TLR 3804 3804 2.3
30 152 3804 3804 42.0 3815 1210 TLR 3804 3804 7.0
30 175 3804 3804 61.4 3815 1210 TLR 3804 3804 9.5
60 254 10 863 10 863 588.1 10 863 4190 TLR 10 863 10 863 2.0
60 311 10 289 10 087 TLR 10 401 3860 TLR 10 248 10 248 43.3
60 368 9917 9696 TLR 10 104 3470 TLR 9917 9917 82.1
60 426 20 346 9133 TLR 9954 3340 TLR 9874 9874 233.9
90 370 17 179 14 818 TLR 15 401 5900 TLR 15 379 15 379 140.2
90 454 22 808 12 951 TLR 14 973 5680 TLR 14 923 14 923 138.6
90 538 25 992 11 868 TLR 14 729 5500 TLR 14 548 14 548 403.8
90 621 29 558 11 406 TLR 14 900 4620 TLR 14 392 14 392 225.8

Average time [s]: 412.6 >600 107.5
Average optimality gap [%]: 16.02 0.84 0.00

2.6 Chapter Conclusions

Continuing on the recent research of the single-machine scheduling problem with
the variable energy costs and power-saving machine states, we propose a pre-
processing algorithm SPACES, which pre-computes the optimal switching behavior
of the machine for all possible spaces in the schedule. The pre-processing runs in
polynomial time and works well even for large instances of the problem, e.g., it
takes 23 s to pre-process our largest benchmark instance with 190 jobs and 1277
intervals. The pre-computed switching costs are successfully integrated into novel
ILP and CP models, which are compared to the state-of-the-art exact ILP model
on a set of benchmark instances. Results show that our approach outperforms the
existing methods considering all aspects – the runtime, the provided lower bounds,
and the upper bounds. Using our models, we obtain the optimal solutions even
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Table 2.3: Comparison of upper bound ub, lower bound lb and runtime t between the
models on LARGE dataset. Time-limit is 3600 s and TLR stands for time-limit reached.

LARGE+NOSBY

Instance ILP-REF [4] ILP-SPACES P-P

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] t [s]

150 527 8582 8567 TLR 8582 8582 187 1.0
150 647 8726 8240 TLR 8409 8409 277 2.9
150 767 8557 7787 TLR 8132 8132 624 5.5
150 888 8976 6780 TLR 8078 8078 511 9.1
170 650 10 596 9628 TLR 10 068 10 068 290 2.3
170 799 10 794 8832 TLR 9820 9820 1087 4.6
170 948 10 940 8343 TLR 9637 9637 806 9.3
170 1097 11 189 8124 TLR 9620 9620 1345 13.4
190 757 12 555 11 206 TLR 12 008 12 008 246 3.9
190 930 12 882 10 521 TLR 11 758 11 758 942 6.9
190 1104 12 791 9949 TLR 11 611 11 611 3147 13.3
190 1277 12 757 0 TLR 11 465 11 465 1348 22.7

Average time [s]: >3600 901 7.9
Average optimality gap [%]: 7.58 0.00

LARGE+TWOSBY

Instance ILP-REF [4] ILP-SPACES P-P

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] t [s]

150 529 21 910 21 562 TLR 21 910 21 910 130 1.1
150 649 29 425 20 685 TLR 21 821 21 821 702 3.1
150 769 37 764 18 140 TLR 21 353 21 353 949 5.2
150 890 43 929 16 799 TLR 21 266 21 266 701 8.5
170 651 28 425 24 983 TLR 25 807 25 807 809 2.6
170 799 39 095 21 981 TLR 25 518 25 518 1244 5.0
170 948 46 083 20 709 TLR 25 279 25 279 2922 8.5
170 1096 53 177 20 091 TLR 25 279 25 279 2162 14.1
190 756 38 471 27 984 TLR 30 563 30 563 797 4.2
190 929 46 319 26 166 TLR 30 224 30 224 1069 7.5
190 1102 53 751 24 630 TLR 30 224 30 224 2069 13.6
190 1275 61 547 0 TLR 30 071 30 071 2572 23.7

Average time [s]: >3600 1344 8.1
Average gap [%]: 34.39 0.00

for the large instances with up to 190 jobs and 1277 intervals, which have been
previously tackled only heuristically [4].
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3
Chapter

Scheduling for Multi-Processor
Systems on a Chip

3.1 Chapter Summary and Motivation

The content of the third chapter of this thesis resulted from our collaboration with
Honeywell. As part of the European Union Clean Sky 2 Joint Undertaking under
the H2020 Framework Programme, we have researched software techniques aimed
at reducing the on-chip temperature while executing some given workload.

The global problem defined by Honeywell includes two types of workload – the
safety-critical (SC) tasks and the best-effort (BE) tasks. All tasks are executed within
windows that implement the temporal isolation needed for system certifiability.
Each window contains a part reserved for the safety-critical tasks and a part
reserved for the best-effort tasks. The safety-critical tasks are indispensable for the
proper operation of the system. They are executed at a pre-defined clock frequency.
Contrary to them, the best-effort tasks represent a workload that might improve the
quality of the service but can be skipped if a thermal emergency occurs. Best-effort
tasks do not have an assigned fixed frequency – it can be changed at runtime as
necessary. To goal is to produce an offline thermal-efficient schedule (and possibly
some online policies managing the best-effort tasks in case of emergencies) that will
be periodically repeated. A simple illustration of one hyper-period (called a major
frame) containing three windows is provided in Figure 3.1.

The validation of the proposed methods should be done on a real physical
platform. Honeywell proposed a platform mounting i.MX 8QuadMax processor
by NXP, which is a modern heterogeneous multi-core processor based on ARM
big.LITTLE architecture with the potential to be used in future aerospace systems.

During the course of the project, we put a lot of effort into our testbed, which
was described in

0 hMajor frame

SC SC SCBE BE BE

Window 1 Window 2 Window 3

CPU 0
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Figure 3.1: Schema of time-partitioned scheduling of safety-critical and best-effort tasks.
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• Michal Sojka, Ondřej Benedikt, Zdeněk Hanzálek, and Pavel Zaykov. “Testbed
for thermal and performance analysis in MPSoC systems”. In: 2020 15th
Conference on Computer Science and Information Systems (FedCSIS). 2020,
pp. 683–692. doi: 10.15439/2020F174,

and presented at the IWCPS workshop (part of the IEEE FedCSIS confer-
ence). In order to have accurate and repeatable measurements, an open-source tool
called Thermobench was developed (https://github.com/CTU-IIG/thermobench).
Furthermore, to mimic the avionics operating systems implementing time-
partitioned scheduling, another open-source tool called DEmOS was created
(https://github.com/CTU-IIG/demos-sched). Finally, to perform thermal imag-
ing, open-source software for finding thermal hot spots was programmed
(https://github.com/CTU-IIG/thermocam-pcb), and some preliminary results were
published at the EMSOFT conference:

• Michal Sojka, Ondřej Benedikt, and Zdeněk Hanzálek. “Work-in-Progress:
Determining MPSoC Layout from Thermal Camera Images”. In: 2021 Inter-
national Conference on Embedded Software (EMSOFT). 2021, pp. 39–40.

Since the SC and BE tasks are isolated, the expected hyper-period length is
in the range of seconds, and the system used for validation has slower thermal
dynamics, we decided to take a decoupled approach and tackle safety-critical and
best-effort task scheduling separately.

For the BE tasks, we use DVFS to lower the platform temperature. The
preliminary study, including task-to-frequency mapping and some simple online
backup strategies, was done in conjunction with student Radek Bumbálek, resulting
in his master’s thesis

• Radek Bumbálek. “Proactive and reactive approaches for non-critical tasks
scheduling under thermal constraints in the avionics domain”. MA thesis.
2022. url: https://dspace.cvut.cz/handle/10467/99111,

which has further publication potential.
Because the frequency of SC tasks is given, we use task allocation as a primary

power-saving mechanism. Originally, we intended to apply the idle energy function
in this context as well since some of the system’s components support power-saving
states as part of so-called dynamic power management (DPM). However, direct
control of the component states proved to be quite difficult to achieve in practice.
For the thermal-aware SC task allocation, we develop an empirical power model and
integrate it within an integer linear programming model. The preliminary study

• Ondřej Benedikt, Michal Sojka, Pavel Zaykov, David Hornof, Matěj Kafka,
Přemysl Š̊ucha, and Zdeněk Hanzálek. “Thermal-Aware Scheduling for MPSoC
in the Avionics Domain: Tooling and Initial Results”. In: 2021 IEEE 27th
International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). 2021, pp. 159–168. doi: 10.1109/RTCSA52859.
2021.00026

was presented at the RTCSA 2021 conference and was awarded the Best Paper
Award. The rest of this chapter presents an extension to this submission, which is
(at the time of writing) under review in a highly impacted scientific journal.

https://doi.org/10.15439/2020F174
https://github.com/CTU-IIG/thermobench
https://github.com/CTU-IIG/demos-sched
https://github.com/CTU-IIG/thermocam-pcb
https://dspace.cvut.cz/handle/10467/99111
https://doi.org/10.1109/RTCSA52859.2021.00026
https://doi.org/10.1109/RTCSA52859.2021.00026
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In the context of this thesis, modeling a multi-processor system on a chip
(MPSoC) presents a great challenge – the chip contains multiple cores, which
consume power and heat up. As the system is heterogeneous, the power consumption
of different cores might be different. Furthermore, the individual cores influence
each other after heating up. Moreover, MPSoCs are quite complex nowadays, and
so other undesired events, such as memory interference, influencing the power
consumption might take effect. Considering the optimization, the problem at hand
is also quite challenging; not only do we look for optimal task-to-core mapping, but
we also need to find task-to-window assignment such that the windows fit into the
pre-defined hyper-period. This temporal isolation further complexifies the already
complex assignment problem. Finally, as we look for a thermal-efficient schedule,
the thermal model must be integrated into the optimization somehow, but classical
thermal models might be too complex to be efficiently optimized.

3.2 Introduction

Increasing demand for computing power has led to the deployment of Multi-Processor
System-on-Chips (MPSoC) in many industrial domains. These include even the
ones in safety-critical domains, such as aerospace and automotive [115, 80]. In-
evitably, the usage of such complex systems in safety-critical applications brings
new challenges related to thermal management. Overheating has a negative impact
on the reliability and safety of the systems [76], e.g., due to thermal degradation
of hardware components. Moreover, the rise in the operational temperature of
on-chip components may lead to irreversible permanent failures [106]. Furthermore,
reduction of the on-chip temperature leads to a reduction of the leakage power,
which is nowadays a significant part of the modern MPSoC power consumption [145,
110]. Therefore, the thermal-aware design became a crucial part of the development
across all system levels.

Many approaches exist to reduce MPSoC temperature, including (i) thermally
aware hardware design, (ii) active cooling, and (iii) software-based optimization.
Examples of the latter-most subsume dynamic power management (DPM), dy-
namic voltage and frequency scaling (DVFS), or thermal-aware task mapping and
scheduling. Many works address individual problems such as power or thermal
modeling [66, 134], design of efficient scheduling algorithms [142, 33, 143], the study
of thermal behavior of hardware platforms [84, 113]. However, these are often
studied separately, while our ambition is to look at a subset of those problems
relevant for safety-critical applications and study them together.

In the deployment of safety-critical applications, it is required to avoid unex-
pected interference between tasks. One potential source of interference is DVFS,
which is therefore deemed unsuitable for these applications [46]. Another source of
interference can be the operating system scheduler. Therefore, avionics applications
adopt time-partitioned scheduling [35], where the tasks are scheduled into temporal
isolation windows. Although some authors have already addressed thermal-efficient
task mapping on heterogeneous MPSoCs [142, 1], the integration with temporal
isolation windows, which makes the problem even more complex, has not yet been
studied.
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In this chapter, we study thermal modeling in connection with the design
of optimization algorithms and how the imprecision of the former influences the
efficiency of the latter. Throughout this chapter, we target the problem of thermally
efficient task allocation under temporal isolation constraints on heterogeneous
MPSoC. We assume that the allocation is computed offline (in the design phase)
and that DVFS is not used due to the safety certification requirements [46]. The
temporal isolation constraints are used to separate the critical workloads in time as
implemented in many avionics operating systems based on the ARINC-653 standard
[9]. In our experiments, we use an open-source ARINC-653-like Linux scheduler
called DEmOS1, providing independence of proprietary avionics RTOSes.

We focus on analyzing three hardware platforms (I.MX8QM MEK, I.MX8QM
Ixora, NVIDIA TX2) representing the modern MPSoCs. Further, we discuss thermal
and power modeling and propose multiple optimization methods incorporating the
power models. Finally, we evaluate the models and methods on physical platforms
and summarize their advantages and disadvantages. As required by our industrial
partner, we emphasize the data-driven evaluation based on measured characteristics
of real physical platforms.

Contributions.

• We demonstrate that an empirical sum-max power model (SM) integrated
within an Integer Linear Programming formalism outperforms the other
methods across all tested scenarios on all platforms.

• For comparison, we implement a new power model based on linear regression
(LR) and its simplified variant providing an upper bound of the estimated
power consumption (LR-UB).

• We discuss the trade-offs between the power model accuracy and optimization
method performance based on the integration of all our power models with
several optimization methods for task allocation on heterogeneous MPSoC.

• Overall, we evaluate three power models, four optimization methods inte-
grating our power models, one local informed heuristic based on related
works, and two uniformed heuristics. All of this is evaluated on three hard-
ware platforms. All measured data as well as the source code of the opti-
mization methods are publicly available at https://github.com/benedond/
safety-critical-scheduling.

This chapter extends the preliminary study [20] as follows:

• The original empirical power model proposed in [20] is properly evaluated
and compared with another model based on linear regression.

• The optimization model proposed in [20] is compared with several other
informed and uninformed models and heuristics. Their performance is tested,
and strengths and weaknesses are discussed.

• Two additional hardware platforms (NXP I.MX8 Ixora, NVIDIA TX2) are
used in the experimental measurements to validate the proposed solution
approach.

1https://github.com/CTU-IIG/demos-sched

https://github.com/benedond/safety-critical-scheduling
https://github.com/benedond/safety-critical-scheduling
https://github.com/CTU-IIG/demos-sched
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• New benchmarks based on the industrial standard EEMBC Autobench 2.0
are used in addition to small and synthetic benchmarks used in [20]. Many
new measurements are collected, and the results are reported.

Outline. The rest of this chapter is organized as follows. Section 3.3 summarizes
the related works. Section 3.4 describes the system model and formalizes the
scheduling problem definition. The physical hardware used for the experiments and
the benchmarking kernels are summarized in Section 3.5. Thermal modeling with
regard to the allocation of the safety-critical tasks and implementation of specific
models are addressed in Section 3.6. Integration of the thermal models with the
optimization procedures is discussed in Section 3.7. Experimental evaluation follows
in Section 3.8. Finally, Section 3.9 concludes the chapter.

3.3 Related Work

Thermal-aware and energy-efficient scheduling for real-time systems has been studied
for many years [55]. The approaches found in the literature differ in many aspects.
We identified three steps, illustrated in Figure 3.2, that need to be performed to
implement thermally efficient scheduling: the benchmarking, the optimization and
the evaluation. The decisions made at each step relate to the other steps and have
an influence on the overall properties of achieved results. In the next subsections,
we describe each step and related decisions in more detail and review the relevant
literature. Finally, we summarize the choices made in this chapter and relate them
to the current state-of-the-art.

Task set

Hardware
platform

Benchmarking

Algorithm

Thermal
model

Optimization

Task Characteristics

Platform Characteristics

Evaluation on the
physical platform

Data Collection

Statistical evaluation

Evaluation

ScheduleProblem
instance

Done only once Done for each instance

Figure 3.2: Three steps (bechmarking, optimization and evaluation) towards the thermally
efficient scheduling.

3.3.1 Benchmarking

To perform the thermal optimization, the algorithm needs to be provided with
information about the platform itself and the tasks to be executed. In the rest
of the chapter, we call this information the platform characteristics and task
characteristics. In the literature, the characteristics are usually obtained by two
means: from documentation or by benchmarking.
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Platform characteristics describe the thermal/power behavior without relation
to the executed workload. The platform characteristics might include, e.g., the
area of the chip, power consumption under various frequency settings, and thermal
conductances and capacitances of the thermal nodes to be modeled. Often, the
authors take these parameters for granted, relying on the information from the
technical documentation of the platform [107, 100], or using the pre-defined configu-
rations provided with the simulation software like HotSpot [89, 72]. This, however,
might not reflect reality accurately as thermal parameters are often influenced
by the printed circuit board (PCB) layout chosen by a particular board manufac-
turer and/or by variations in the manufacturing process. Therefore, identifying
target platform characteristics by benchmarking [124, 8] provides more accurate
parameters.

Task characteristics allow us to distinguish between the individual workloads
and describe their thermal effects, which can differ due to their different nature,
such as using different parts of the chip, being more or less memory intensive,
etc. Task characteristics are typically obtained by benchmarking, but authors use
characteristics of varying complexities. Some works assume all tasks to be identical
(therefore, no task-specific characteristics are needed) [32], while other works assume
a single numerical coefficient [140, 89], multiple coefficients [20, 114, 11], or even
very complex characteristics obtained, e.g., from many CPU performance counters
[118] or by training a neural network [139].

Since benchmarking tends to be time-consuming, proper care must be taken when
selecting the characteristics. The benchmark engineer needs to ensure that they
describe the platform and task behavior well while avoiding unnecessary complexity.
In this chapter, we show that even simple characteristics can be sufficient for
significant temperature reduction.

3.3.2 Optimization

Platform and task characteristics, together with the instance parameters, serve as
an input to the optimization procedure, which integrates the scheduling algorithm
and the thermal model. The algorithms can operate online, at system run time, or
offline. Online algorithms are typically used in areas like cloud or high-performance
computing [126]. Offline algorithms are often required for safety-critical applications
such as in avionics [35], which is the target domain for the work in this chapter. In
offline scheduling, the algorithm decides the task’s allocations and their start times
while ensuring that all other timing, thermal, and other resource constraints are
met. For this, the algorithm must interact with the thermal model.

3.3.2.1 Thermal Model

The thermal model serves to predict the evolution of on-chip temperature in time
based on the state of the system and the workload that is being executed. From
the viewpoint of the systems dynamics we differentiate between the transient-state
and the steady-state models [28]. The former is more general and can be used to
predict the transient states of the system (i.e., the heating and cooling trajectories)
[8, 50, 142, 82]. Contrary to that, the latter model provides only the steady-state
temperature but tends to be much simpler to implement [144, 114, 89, 1]. According
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to Chantem et al. [28], the steady-state model is sufficient if the temporal parameters
of the workload are short enough.

From the spacial point of view, we distinguish between the single-output and
multi-output thermal models. Single-output model provides a prediction for a single
thermal node only, modeling, e.g., the average on-chip temperature [20, 70]. The
multi-output model can be used when more precise spatial granularity is needed
(modeling, e.g., per-cluster or per-core temperatures) [8, 1, 83].

In this chapter, we evaluate the thermal properties of our platforms experimen-
tally and relate them to the thermal and power models.

3.3.2.2 Optimization Algorithms

Many different approaches to task scheduling and allocation have been studied. Due
to the inherent complexity of thermal-aware scheduling, authors often rely on local
or greedy heuristics even when constructing the schedule offline [1, 106, 83, 144, 74,
142]. Other approaches include meta-heuristics such as evolutionary algorithms [89,
26, 87], or even exhaustive (optimal) approaches mainly based on mixed-integer
linear programming [89, 1, 28, 70]. In this chapter, we use all three approaches and
compare them.

The scheduling algorithm and the thermal model can interact in many ways; (i)
In the simplest form, the thermal model is used to validate whether the schedule
provided by the scheduling algorithm can be executed under the given thermal
constraints or not [8]; (ii) In more complex cases, the loop is closed, and the thermal
model provides the information about the violation of the thermal constraints back
to the scheduling algorithm, which, in turn, tries to rebuild the schedule [1, 107]; (iii)
Finally, the thermal model and the thermal constraints can be integrated directly
within the scheduling algorithm, thus providing the most integrated solution [28,
20]. In this chapter, we implement and evaluate all three approaches.

3.3.3 Evaluation

When the optimization is completed, one needs to evaluate the performance of the
resulting schedule. In that regard, two common approaches can be found in the
literature: (i) evaluation by simulation and (ii) evaluation on a physical platform.
Simulation-based approaches are found more often [1, 106, 83, 143, 72, 28, 74, 70].
The reasons justifying this approach include simpler execution of the experiments
and better reproducibility of the results. On the other hand, simulation is always
based on models, which might fail to capture all details of the hardware platform
properly. Thus some authors evaluate thermal effects of the schedules experimentally
on real hardware [88, 90, 78, 105, 8]. In this chapter, we follow this experimental
approach.

3.3.4 Summary

None of the above-mentioned works tackles the same problem as this chapter.
Our work is unique in combining avionics ARINC-653-inspired time-partitioned
scheduling of safety-critical workloads with thermal issues on real hardware platforms.



68 Goal and System Model Formalization

Table 3.1: Design choices and their coverage (✓) in this chapter.

Design choice Options 1 Option 2 Reference
Thermal model dynamics ✓ Steady-state ✗ Transient Section 3.6.1.1
Thermal model output ✓ Single ✗ Multiple Section 3.6.1.2
Optimization w.r.t model ✓ Heuristics ✓ Exhaustive Section 3.7
Search strategy w.r.t. temperature parameters ✓ Uninformed ✓ Informed Section 3.7
Evaluation ✗ Simulation ✓ Experimental Section 3.8

With respect to the design choices presented in this section, we target the steady-
state thermal model due to the character of the workload (short task execution
time). In addition, we adopt a single-output system model based on experimental
evaluation and benchmarking performed on three different hardware platforms.
Considering the optimization methods, we compare both heuristics and exhaustive
approaches. The overview of design choices and their coverage in this chapter is
summarized in Table 3.1.

3.4 Goal and System Model Formalization

In this section, we define the goal of the thermal optimization and formalize
the system model and input parameters defining the scheduling problem of the
thermal-aware safety-critical tasks allocation on MPSoC under temporal isolation
constraints.

3.4.1 Goal

We want to find an assignment of tasks to CPUs of a heterogeneous multi-core
platform together with an allocation of tasks to the temporal isolation windows
such that the steady-state temperature of the platform is minimized.

There are at least three factors that make this problem complex. (i) All the
tasks must be scheduled within the pre-defined scheduling hyper-period, which
repeats indefinitely; therefore, any task allocation with the makespan exceeding the
hyper-period is not feasible. (ii) The number of isolation windows and their lengths
are not known a priori. (iii) The steady-state temperature depends on the thermal
interference of the tasks running in parallel on different CPUs.

3.4.2 System Model and Input Parameters

We define our model and parameters as follows.
Model of Processing Elements. We assume a heterogeneous architecture, i.e.,

MPSoC having m computing clusters (possibly of different hardware architecture)
denoted by {C1, C2, . . . , Cm} = C. Cluster Ck has ck ∈ Z>0 cores, which are
assumed to be identical. All cores in the cluster share the same clock frequency,
which we assume to be fixed due to typical safety requirements [46]. Different clusters
can have different frequencies. We assume that the platform has so-called platform
characteristics (features) denoted as F (p), which are obtained by benchmarking and
characterize the platform’s thermal/power behavior.
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Task Model. We assume a set of independent, non-preemptive, periodic tasks
T = {τ1, τ2, . . . , τn}. By ei,k ∈ Z>0 we denote the worst-case execution time of task
τi ∈ T on cluster Ck ∈ C. All tasks are ready at time 0 and have a common period
h ∈ Z>0, which is called a major frame length. We assume that the deadline of
each task is equal to period h. Each task represents a single-threaded safety-critical
process that needs to be executed on one of the platform cores. We denote the task

characteristics associated with task τi as F (t)
i . Note that both task characteristics

and platform characteristics are platform-specific, i.e., they need to be obtained
separately for each tested platform.

Temporal Isolation. The temporal isolation of the safety-critical tasks is
ensured by so-called scheduling windows, which are non-overlapping intervals parti-
tioning the hyper-period (see Fig. 3.3) inspired by ARINC-653 standard; more details
are discussed in [20]. We denote the set of such windows as W = {W1,W2, . . . ,Wq}.
Length of window Wj ∈ W is denoted by lj ∈ Z≥0. Each task needs to be assigned
to a single window, within which it will be executed at the core of one of the clusters.
At most one task per core can be executed within each window. Note that the
number of windows q is not known a priori but can be upper-bounded by n since
the tasks are non-preemptive and so only one task will be present in each window
in the worst case.

Used notation is illustrated in Figure 3.3, where the schedule of seven tasks is
presented.

0 hMajor frame (hyper-period)

l1 l2 l3

Window W1 Window W2 Window W3

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Cluster C1

c1 = 4

Cluster C2

c2 = 2

τ2

τ4

τ7

τ3

τ6

Task τ1

τ5

e1,2

Figure 3.3: Illustration of the used notation.

3.5 Hardware Platforms and Benchmarks

As we discussed previously, we opt for an experimental evaluation instead of sim-
ulation. To make the comparison of optimization methods and power models
more representative, we conduct the benchmarking and evaluation phases on three
platforms, which are briefly described in Section 3.5.1. Further, we describe the
benchmarking kernels selected for the experiments in Section 3.5.2. Finally, Sec-
tion 3.6 summarizes the thermal model together with the selected platform and
task characteristics.
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(a) (b) (c)

Figure 3.4: Embedded platforms used for the evaluation: (a) I.MX8QuadMax Multisensory
Enablement Kit by NXP (I.MX8 MEK), (b) Toradex Apalis I.MX8 board (I.MX8 Ixora),
(c) Nvidia Jetson TX2 Developer Kit (TX2).

3.5.1 Physical Hardware for Evaluation

We selected modern high-performing MPSoCs for the evaluation, namely
I.MX 8QuadMax by NXP [102] and Nvidia Tegra X2 T186 [101]. Both of these are
based on ARM big.LITTLE heterogeneous architecture hosting two CPU clusters
including so-called high-performing and energy-efficient cores.

The I.MX 8QuadMax features four ARM Cortex-A53 cores and two ARM Cortex-
A72 cores. Each of the cores has 32 kB data cache, and each cluster has 1MB L2
cache. We set the clock frequency of each cluster to the highest values, which is
1200MHz for the A53 cluster, and 1600MHz for the A72 cluster, respectively.

Similarly, Nvidia Tegra X2 T186 hosts four energy cores and two high-performing
cores, which are of ARM Cortex-A57 architecture and Nvidia Denver architecture,
respectively. Each A57 core has 32 kB data cache, and each Denver core has 64 kB
data cache. The size of the L2 cache of each cluster is 2MB. We set the clock
frequency of both clusters to 2035MHz.

In our testbed, we have two boards with I.MX8, namely I.MX8QuadMax
Multisensory Enablement Kit (MEK) [103], and Ixora carrier board with Toradex
Apalis I.MX8 module [127]. In the further text, these platforms are denoted as
I.MX8 MEK and I.MX8 Ixora, respectively. Besides their different form factor and
PCB layout, the first one has an Aluminum heat sink mounted on the chip while
the latter has none, but we cool it by airflow from an external fan. In this way, the
latter chip can be observed by a Workswell infrared camera [132]. We have extended
both I.MX8 boards with external power meters. Besides I.MX8, we have Nvidia
MPSoC, which is mounted on NVIDIA Jetson TX2 Developer Kit carrier board
[99]. We henceforth denote this platform simply as TX2. A part of our testbed
is shown in Figure 3.4. The configuration and used sensors are described in more
detail in [124].

3.5.2 Benchmarking Kernels

To mimic the safety-critical workloads used in avionics and other similar domains,
we use a set of relatively simple applications (kernels) written in C. The set contains
selected kernels based on EEMBC AutoBench 2.0 [44] together with custom memory
stressing tool membench and software rendering tool based on OpenGL tinyrenderer
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[124]. We use tinyrenderer in two configurations – rendering boggie objects (-boggie)
and diablo objects (-diablo).

AutoBench is a general-purpose benchmark set containing generic workload tests,
as well as automotive and signal-processing algorithms. We use twelve of its kernels
including: a2time (angle to time conversion), aifirf (finite impulse response filter),
bitmnp (bit manipulation), canrdr (CAN remote data request), idctrn (inverse
discrete cosine transform), iirflt (infinite impulse response filter), matrix (matrix
arithmetic), pntrch (pointer chasing), puwmod (pulse width modulation), rspeed
(road speed calculation), tblook (table lookup and interpolation), and ttsprk (tooth
to spark). Each benchmark is used in two variants, i.e. -4K and -4M, representing
two different input data sizes (4 kB and 4MB). Further information about the
benchmarks can be found in [111].

Membench is a tool that stresses the memory hierarchy. It can be configured in
many ways. We use it in three different configurations with respect to the working
set size (WSS), i.e. -1K, -1M and -4M, representing WSS of 1 kB, 1MB, and
4MB, respectively. Further, we test both sequential (-S ) and random (-R) memory
accesses in both read-only (-RO) and read-and-write (-RW ) variants. Therefore,
we have twelve membench kernels in our benchmark set.

Each of the kernels (12× 2 autobench, 12 membench, 2 tinyrenderer) is wrapped
inside of an infinite loop. A single iteration represents one execution of the kernel.
We report the iterations per second (IPS) of each kernel (executed on a single core,
without any interference) for each tested hardware platform in Table 3.2.

Figure 3.5 shows the relative speedup s on a high-performing (big) cluster
compared to the energy-efficient (little) cluster, i.e., the ratio between runtimes e
on these two clusters normalized by their frequencies f . We calculate the relative
speedup s as:

s =

elittle
flittle
ebig

fbig

=
IPSbigfbig

IPSlittleflittle
. (3.1)

We observe that big cluster of I.MX8 (TX2) platform is, on average, about 2.8×
and (1.3×) more performant than the little one.



72 Hardware Platforms and Benchmarks

Table 3.2: Iterations per second (IPS) of used kernels.

I.MX8 MEK I.MX8 Ixora TX2 Developer Kit

little (A53) big (A72) little (A53) big (A72) little (A57) big (Denver)
1200.00MHz 1600.00MHz 1200.00MHz 1600.00MHz 2035.00MHz 2035.00MHz

a2time-4K 32 612.42 56 012.34 32 392.47 55 925.02 64 788.87 90 732.49
a2time-4M 32.10 54.60 31.59 54.51 58.05 117.38

aifirf-4K 3179.22 8806.25 3152.15 8800.54 10 512.20 15 104.39
aifirf-4M 3.11 8.75 3.09 8.74 10.39 15.24

bitmnp-4K 11 763.41 24 485.25 11 655.71 24 536.22 27 287.52 47 289.58
bitmnp-4M 9.84 21.65 9.76 21.54 20.20 34.08
canrdr-4K 33 409.00 62 938.10 33 078.74 63 262.99 163 382.51 189 621.55
canrdr-4M 35.57 68.12 35.20 68.02 182.91 226.16
idctrn-4K 6966.36 20 301.27 6914.02 20 269.73 24 190.64 28 626.42
idctrn-4M 6.86 20.49 6.81 20.47 24.24 28.86
iirflt-4K 8253.34 23 629.72 8178.40 23 748.03 23 785.59 35 237.47
iirflt-4M 8.23 18.83 8.17 18.81 22.54 35.31

matrix-4K 4029.86 10 552.83 4002.32 11 235.61 12 562.78 9796.33
matrix-4M 14.76 41.73 14.60 41.65 43.02 34.85

membench-1K-RO-R 11.89 11.87 11.80 11.87 14.93 20.04
membench-1K-RO-S 11.88 11.87 11.80 11.87 14.93 20.04
membench-1K-RW-R 4.46 7.92 4.42 7.91 14.94 20.00
membench-1K-RW-S 4.46 7.92 4.42 7.91 14.93 19.99
membench-1M-RO-R 2.11 1.63 1.70 1.50 2.09 2.44
membench-1M-RO-S 4.23 3.32 3.99 3.17 6.18 5.02
membench-1M-RW-R 1.42 1.27 1.15 1.29 1.89 2.56
membench-1M-RW-S 3.78 2.94 3.49 2.80 5.27 4.68
membench-4M-RO-R 0.15 0.20 0.14 0.18 0.23 0.18
membench-4M-RO-S 0.71 2.42 0.63 2.01 1.49 4.25
membench-4M-RW-R 0.15 0.19 0.13 0.17 0.23 0.18
membench-4M-RW-S 0.63 1.50 0.48 1.36 1.46 3.69

pntrch-4K 279.39 773.88 277.13 815.54 843.55 1053.43
pntrch-4M 0.27 0.79 0.27 0.79 1.01 1.44

puwmod-4K 18 709.96 35 919.98 18 547.46 35 863.73 45 702.33 79 401.37
puwmod-4M 19.03 37.41 18.86 37.38 47.51 87.53

rspeed-4K 53 498.40 136 629.65 52 959.46 136 940.36 171 090.58 140 909.26
rspeed-4M 56.07 168.75 54.88 168.47 198.18 188.11
tblook-4K 19 232.01 59 599.44 19 025.71 60 082.12 73 168.14 82 280.66
tblook-4M 19.59 63.66 19.33 62.50 73.65 86.65

tinyrenderer-boggie 3.25 6.33 3.17 6.23 5.67 6.26
tinyrenderer-diablo 2.85 5.72 2.81 5.68 5.01 5.68

ttsprk-4K 67 723.01 138 148.80 67 350.74 137 949.16 172 158.44 242 422.26
ttsprk-4M 183.36 390.49 180.60 388.72 483.17 645.50
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Figure 3.5: Relative speedup on a CPU from the high-performing cluster.

3.6 Thermal Modeling

A lot of attention must be paid when designing a thermal model. In our view,
the main aspects of the thermal model to be considered and balanced are its
simplicity and accuracy. A simpler model is easier to integrate with the optimization
procedures. Also, it takes less effort to identify its parameters. However, a too
simple model fails to predict the system’s behavior accurately. Therefore, the
trade-off between simplicity and accuracy needs to be taken into account.

The rest of this section is divided into three parts. In Section 3.6.1, we experi-
mentally justify the use of our thermal model. Then, we discuss the transition from
thermal to power modeling in Section 3.6.2. Finally, we describe the specific power
models in Section 3.6.3.

3.6.1 Thermal Experiments with Used Platforms

To justify our thermal model selection (steady-state, single-output), we perform a set
of experiments. First, we analyze the platform’s thermal dynamics in Section 3.6.1.1,
and then we assess the relationship between the temperatures of little and big CPU
clusters in Section 3.6.1.2.
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Figure 3.6: Influence of the on-chip temperature near the high-performing cluster on the
major frame length (hyper-period) for three instance alternating between computing and
idling.

3.6.1.1 Thermal Dynamics and the Major Frame Length

Based on the typical lengths of the major fame used in avionics applications (less
than one second), we decided to have a steady-state thermal model. This decision
is supported by the following experiment: a schedule containing two windows of
the same length is created. These two windows constitute the major frame. In the
first window, all the cores are loaded, executing some workload (here pntrch-4M ),
whereas, in the second window, all cores are idling. We alternately execute these
two windows and monitor the temperature and power consumption of the platform.
We create three instances, which differ in the major frame length – the first (denoted
with suffix -1s) has the major frame length equal to 1 s (each window is 500ms
long), the second (-10s) has the major frame length 10 s, and the third (-100s)
has the major frame length 100 s. The resulting temperatures measured in the
proximity of the big cluster are shown in Figure 3.6.

Indeed, when the major frame length of the instance are long enough, such as
in the -100s case, we clearly observe the heating and cooling curves corresponding
to the individual scheduling windows. However, for our use-case (-1s), we see that
the temperature is almost constant.

Note that the power consumption of both platforms based on I.MX8 is nearly
the same; however, their thermal trajectories differ significantly due to different
physical parameters (heat sink versus no heat sink, with/without airflow).
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Figure 3.7: Temperatures obtained for pntrch-4M-100s from on-chip sensors near little
and big cluster thermal zones.

3.6.1.2 Investigating Spatial On-Chip Temperatures

One of the decisions to take into consideration is whether to use a single- or multi-
output thermal model. We decided on a single-output model. Here, we reason
why.

When scheduling a workload, different parts of the chip start to produce heat.
Ideally, we would like to monitor the temperature of each core. However, per-core
temperature monitoring might not be possible for many platforms, including ours.
Our three platforms provide us with just several temperature sensors associated
with the major thermal zones (little cluster, big cluster, PMIC, GPU, etc.). We
visualize the temperatures measured for the pntrch-4M-100s benchmark (the one
used in the previous section) near little and big clusters in Figure 3.7.

We observe that the temperature difference on I.MX8 Ixora is smaller compared
to I.MX8 MEK, because of the absence of a heat sink on the Ixora board and active
cooling that is employed. Considering the TX2 platform, we observe that both
thermal zones report the same value. This might be caused by a massive heatsink,
combined with the imprecision of the sensors and their possible spatial proximity.

To further investigate the thermal behavior near the CPU clusters, we look
at I.MX8 Ixora using the Thermal camera. We execute pntrch-4M on all cores
of each cluster and compare the resulting images. Figure 3.8 shows the spatial
on-chip temperature T (x, y), where the x and y coordinates are in pixels (each pixel
corresponds to 0.29mm). Also, we show the heat sources on a chip h(x, y), where
h(x, y) = max{0,−κ∇2T (x, y)} is a positive part of negative Laplacian of T (x, y)
scaled by factor κ > 0, which follows from heat diffusion equation as explained in
[138, 124].

Figure 3.8 shows that the big cluster is heating the platform much more (the
peak of h(x, y) is about 2.5× higher) compared to the little one. Also, the left part
of the figure shows how the on-chip heat spreader distributes the heat from the
heat source to the borders of the chip. When only the little cluster is executing the
workload, the difference between the individual cluster zones’ temperatures is nearly
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Figure 3.8: Spatial on-chip temperature T (x, y) on the left and hot spots h(x, y) on the
right of I.MX8 Ixora with little (A53) cluster stressed at the top, and big (A72) cluster
stressed at the bottom.
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negligible. When the big cluster is performing the computations, the difference is
more apparent, but still only about 1 °C for this particular workload.

To summarize the observations: although we see some differences between the
temperatures measured in the vicinity of the individual clusters, both of their
thermal trajectories are similar, as seen in Figure 3.7. Due to the heat spreader
and relative proximity of both clusters, the change of the temperature near one of
the clusters influences the temperature near the other one as shown in Figure 3.8.
Taking that into account, we decided to model only the temperature near the big
cluster, which is thermally dominant.

3.6.2 Transition from Thermal to Power Model

A single-output steady-state thermal model of MPSoC adopted in this chapter can
be tightly related to a simpler model based on average power consumption. In
some sense, they can be used interchangeably, but from the practical viewpoint,
the difference is very important. Deviations in the ambient temperature cause
deviations in the steady-state temperature. Therefore, measuring the power input
is usually more stable and easily reproducible. Further, the time needed to reach
stabilized temperature can be rather long, whereas the power measurements reflect
the immediate state.

Widely used methodology for creating thermal models of MPSoC relies on
resistance-capacitance (RC) thermal networks [66, 104, 107]. The system is modeled
as a set of thermal nodes, that are interconnected via thermal conductances and
associated with thermal capacitances. The relation between the temperature of
every thermal node, its power consumption, and the ambient temperature can then
be expressed by a set of differential equations [104]:

AT ′ +BT = P +GTamb, (3.2)

where η is the number of thermal nodes, A ∈ Rη×η is a matrix of capacitances,
B ∈ Rη×η is a matrix of thermal conductances, T ∈ Rη×1 is a vector of temperatures
at each node, P ∈ Rη×1 is a vector of power consumption of the nodes, andG ∈ Rη×1

is a vector containing the thermal conductance between each node and the ambient.
When the system reaches a steady state, AT ′ becomes zero as the temperature

remains constant in time. Then, considering a single thermal node only, B, G and
P become scalars (denoted by B, G, and P ) and the whole system reduces to linear
relation with respect to P :

T =
1

B
P +

G

B
Tamb, (3.3)

where T is the steady-state temperature at the thermal node (here, at the thermal
zone near the big cluster), and P is the power consumption.

We, indeed, observe this linear relation in reality, as shown in Figure 3.9. There,
we plot the average power and steady-state temperature of various benchmarks
(both memory and CPU-bound) executed on our platforms. Clearly, both measured
quantities are strongly correlated.

In the rest of the chapter, we work with the power model instead of the thermal
model, assuming that the final transformation from the average power to the
steady-state temperature can be done according to (3.3).
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Figure 3.9: Average power and steady-state temperature of various benchmarks executed
on tested platforms.

Note that model (3.2) does not take into account the temperature-dependent
leakage power, contrary to, e.g., Guo et al. [58]. While this might look like a
significant drawback, our results in Section 3.8 show that even such a model
is sufficient for temperature reduction when integrated within the optimization
framework.

3.6.3 Power Models

Following the general discussion on thermal modeling, we continue with descriptions
of specific models. As noted in Section 3.6.2, since the average power and the steady-
state temperature are linearly related, we implement just the models estimating
the average power consumption.

3.6.3.1 Empirical Sum-Max Model

First, we summarize the sum-max model (SM) proposed in [20]. The model is
purely empirical; given a scheduling window with the allocated tasks, it predicts
the average power consumed during the execution of such a window.

Specifically, given window Wj of length lj and tasks allocation (T j
1 , . . . , T j

m),

where set T j
k represents tasks allocated to cluster Ck in window Wj , SM model

predicts the average power consumption P (Wj) as:

P (Wj) =
∑
Ck∈C

∑
τi∈T j

k

(
ai,k · ei,k

lj

)
+ max

Ck∈C
τi∈T j

k

oi,k + Pidle, (3.4)

where Pidle is the idle power consumption of the platform, and oi,k and ai,k are task-
specific coefficients obtained via benchmarking. The average power of a schedule
consisting of multiple windows is calculated as a weighted average of their individual
contributions (the weights correspond to the window lengths).

The model is built upon the assumption that power consumption of z instances
of task τi executed independently and in parallel on z ∈ {1, 2, . . . , ck} cores of
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cluster Ck can be expressed as (z · ai,k + oi,k + Pidle). Coefficients ai,k and oi,k can
be related to dynamic and static power consumption incurred by execution of task
τi on Ck. At the end of this chapter, we present a numerical example illustrating
the calculation of SM power model for one specific window.

Platform Characteristics. In the context of the modeling and optimization
framework discussed in this chapter, platform characteristics F (p) constitute a single
parameter only, which is the idle power consumption, F (p) = (Pidle). The idle power
consumption of each tested platform is listed in Table 3.3.

Table 3.3: Idle power consumption Pidle of tested platforms.

Platform Pidle [W]

I.MX8 MEK 5.5
I.MX8 Ixora 5.5

TX2 2.6

Task Characteristics. The sum-max model needs two coefficients for each task
and cluster, i.e., task characteristics F (t)

i are represented by a four-tuple for each

τi ∈ T , F (t)
i = (ai,1, oi,1, ai,2, oi,2). Following the methodology introduced in [20],

we identify the coefficients for all benchmarks on each tested platform. Their values
are visualized in Figure 3.10, and further listed in Table 3.4 and Table 3.5. Note
that the sum of oi,k and ai,k (i.e., the height of the bar in Figure 3.10) represents
the increase the power consumption of the platform w.r.t. Pidle when executing the
benchmark on a single core of cluster Ck.

Table 3.4: Task characteristics coefficients identified for used kernels on little cluster.

I.MX8 MEK I.MX8 Ixora TX2 Developer Kit

oi,1 [W] ai,1 [W] oi,1 [W] ai,1 [W] oi,1 [W] ai,1 [W]

a2time-4K 0.25 0.25 0.24 0.24 0.29 0.58
a2time-4M 1.38 0.35 0.95 0.32 0.51 0.70

aifirf-4K 0.20 0.26 0.23 0.24 0.34 0.84
aifirf-4M 0.95 0.37 0.66 0.32 0.51 0.89

bitmnp-4K 0.21 0.22 0.25 0.20 0.28 0.46
bitmnp-4M 1.20 0.29 0.83 0.27 0.50 0.49
canrdr-4K 0.16 0.37 0.23 0.33 0.34 0.75
canrdr-4M 1.36 0.41 0.93 0.38 0.59 1.00
idctrn-4K 0.23 0.28 0.23 0.26 0.36 0.86
idctrn-4M 1.15 0.35 0.77 0.31 0.50 0.92
iirflt-4K 0.21 0.25 0.22 0.23 0.33 0.77
iirflt-4M 1.20 0.32 0.80 0.29 0.59 0.80

matrix-4K 0.22 0.35 0.20 0.33 0.33 0.92
matrix-4M 0.65 0.51 0.46 0.43 0.43 0.94

membench-1K-RO-R 0.22 0.17 0.23 0.15 0.25 0.34
membench-1K-RO-S 0.24 0.16 0.22 0.15 0.23 0.34
membench-1K-RW-R 0.25 0.20 0.21 0.18 0.29 0.62
membench-1K-RW-S 0.23 0.19 0.21 0.18 0.31 0.63
membench-1M-RO-R 0.37 0.57 0.57 0.35 0.32 0.41
membench-1M-RO-S 0.55 0.77 0.57 0.53 0.40 0.56
membench-1M-RW-R 0.48 0.63 0.57 0.40 0.29 0.54
membench-1M-RW-S 0.40 0.90 0.60 0.53 0.28 0.88
membench-4M-RO-R 1.81 0.24 1.23 0.19 0.48 0.37
membench-4M-RO-S 1.81 0.45 1.27 0.36 0.69 0.48
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membench-4M-RW-R 1.78 0.31 1.24 0.23 0.49 0.49
membench-4M-RW-S 2.02 0.48 1.37 0.34 1.21 0.65

pntrch-4K 0.23 0.26 0.21 0.24 0.40 0.76
pntrch-4M 0.44 0.41 0.31 0.34 0.40 0.77

puwmod-4K 0.25 0.32 0.22 0.29 0.32 0.69
puwmod-4M 1.36 0.36 0.91 0.33 0.59 0.81

rspeed-4K 0.19 0.38 0.20 0.33 0.41 0.84
rspeed-4M 1.52 0.49 1.04 0.43 0.91 1.23
tblook-4K 0.21 0.25 0.20 0.24 0.40 0.80
tblook-4M 1.33 0.26 0.82 0.27 0.43 0.90

tinyrenderer-boggie 1.37 0.29 0.90 0.26 0.49 0.59
tinyrenderer-diablo 1.33 0.28 0.86 0.26 0.46 0.58

ttsprk-4K 0.19 0.40 0.19 0.34 0.39 0.67
ttsprk-4M −0.16 0.71 0.16 0.48 0.38 0.71

Table 3.5: Task characteristics coefficients identified for used kernels on big cluster.

I.MX8 MEK I.MX8 Ixora TX2 Developer Kit

oi,2 [W] ai,2 [W] oi,2 [W] ai,2 [W] oi,2 [W] ai,2 [W]

a2time-4K 0.16 1.05 0.19 0.98 0.36 1.51
a2time-4M 1.63 1.14 1.10 1.08 0.50 2.05

aifirf-4K 0.14 1.47 0.17 1.39 0.38 1.81
aifirf-4M 1.08 1.72 0.70 1.61 0.48 1.89

bitmnp-4K 0.22 0.74 0.21 0.72 0.35 1.49
bitmnp-4M 1.31 0.88 0.93 0.79 0.53 1.45
canrdr-4K 0.29 1.08 0.14 1.11 0.37 1.84
canrdr-4M 1.59 1.32 1.05 1.26 0.55 2.23
idctrn-4K 0.19 1.51 0.10 1.50 0.36 2.11
idctrn-4M 1.27 1.68 0.71 1.65 0.49 2.21
iirflt-4K 0.30 1.31 0.21 1.28 0.42 1.38
iirflt-4M 1.43 1.47 0.85 1.44 0.54 1.59

matrix-4K 0.90 1.30 0.41 1.59 0.38 1.79
matrix-4M 0.99 1.92 0.59 1.79 0.38 1.83

membench-1K-RO-R 0.25 0.41 0.21 0.41 0.37 0.60
membench-1K-RO-S 0.25 0.42 0.19 0.41 0.38 0.58
membench-1K-RW-R 0.22 0.83 0.18 0.78 0.42 1.34
membench-1K-RW-S 0.21 0.81 0.17 0.77 0.39 1.36
membench-1M-RO-R 1.48 0.67 1.05 0.52 0.97 0.28
membench-1M-RO-S 1.22 1.24 0.96 0.90 −0.27 1.87
membench-1M-RW-R 1.58 0.81 1.15 0.55 1.01 0.60
membench-1M-RW-S 1.86 1.01 1.43 0.66 −0.75 2.86
membench-4M-RO-R 1.80 0.51 1.33 0.37 0.39 0.54
membench-4M-RO-S 3.18 0.26 2.19 0.30 0.90 1.66
membench-4M-RW-R 1.90 0.55 1.37 0.43 0.43 0.67
membench-4M-RW-S 3.17 0.35 2.35 0.29 1.63 2.02

pntrch-4K 0.39 1.25 0.10 1.33 0.32 1.58
pntrch-4M 0.74 1.59 0.40 1.47 0.44 1.55

puwmod-4K 0.24 1.19 0.17 1.14 0.37 1.80
puwmod-4M 1.53 1.39 0.95 1.35 0.52 1.99

rspeed-4K 0.15 1.65 0.14 1.47 0.39 1.24
rspeed-4M 1.76 2.21 1.14 2.08 0.75 1.70
tblook-4K 0.29 1.50 0.15 1.45 0.38 1.48
tblook-4M 1.35 1.68 0.78 1.62 0.47 1.61

tinyrenderer-boggie 1.47 1.09 1.02 0.96 0.52 0.98
tinyrenderer-diablo 1.34 1.14 0.93 1.00 0.52 0.91

ttsprk-4K 0.20 1.29 0.24 1.15 0.41 1.46
ttsprk-4M −0.34 2.06 0.05 1.58 0.35 1.50
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Figure 3.10: Values of task characteristics coefficients oi,k and ai,k of tested benchmarks
on little (top semi-axis) and big (bottom semi-axis) clusters.
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Figure 3.11: Illustration of processing-idling intervals needed for the LR model.

3.6.3.2 Linear Regression Model

The sum-max model was designed to estimate the average power consumption of
a whole isolation window. Its simple form allows for relatively straightforward
integration with the optimization methods, e.g., with Integer Linear Programming,
as shown in [20]. However, the model may fail to provide accurate prediction when
the tasks of very distinct lengths are present in the window. Specifically, the max
term counts with the largest oi,k only, which might represent one of the short tasks
that possibly ends early in the window. In that case, the predicted power might
overestimate the actual one.

To overcome this shortcoming, we designed another power estimation model
based on linear regression, which was successfully used in the context of power
consumption estimation [117]. Instead of estimating the average power of the whole
window, we split the window into several intervals, within which each core either
executes a single benchmark for the whole time or remains idle for the whole time.
We call them processing-idling intervals. The situation is illustrated in Figure 3.11.
Then, the model estimates the power consumption of each such interval. Similarly
to the SM model, the overall average power consumption is then estimated by a
weighted average of the intervals’ individual contributions.

Thanks to the decomposition into the processing-idling intervals, data acquisition
and fitting of the model become easier since the timing and overlaps of the individual
tasks do not need to be considered (each core is either processing or idling for the
whole interval). A further advantage is that such a model can be used even if the
temporal isolation constraints (windows) are not considered since essentially any
multi-core schedule can be divided into such intervals (simply by projecting the
start times and end times of tasks to the time axis; the intervals are then defined
by every two consecutive projected time points). On the contrary, the integration
of the LR model with the optimization might be harder since the lengths of the
processing-idling intervals are not known a priori as they depend on the allocation
of the tasks to windows.

To describe the linear regression model (LR), let us assume that we have some
interval I with allocated tasks. By i(k, r) we denote the index of task, which is
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allocated in interval I to cluster Ck ∈ C and its core r ∈ {1, . . . , ck}. If the core is
idle, we assume i(k, r) = 0 (where τ0 represents an idle task). Now, let us assume
that behavior of task τi on each cluster Ck is characterized by a vector of real
numbers x̂i,k (e.g., x̂i,k = (oi,k, ai,k)). We assume that idle task τ0 is characterized
by zero vector, x̂0,k = 0 ∀Ck ∈ C. Then, the average power consumption of interval
I can be estimated by LR model as:

P (I) =
∑
Ck∈C

ck∑
r=1

(
x̂i(k,r),k ◦ βk,r

)
+ Pidle, (3.5)

where ◦ is the scalar product operator and Pidle is the constant intercept term.
Note that when no task is executed (all are idle), the prediction is exactly Pidle,
which is the platform’s idle power consumption. In this general form, the regression
coefficients βk,r are possibly different for each core. However, we assume that all
cores of each cluster are identical, so arbitrary permutation of tasks allocated to a
single cluster should lead to the same power consumption. By this, we can simplify
the model (3.5) to:

P (I) =
∑
Ck∈C

ck∑
r=1

(
x̂i(k,r),k ◦ βk

)
+ Pidle

=
∑
Ck∈C

βk ◦
(

ck∑
r=1

x̂i(k,r),k

)
+ Pidle,

(3.6)

where all cores of the single cluster have the same regression coefficients. For simpler
understanding of the calculation of LR power model, we present a numerical example
at the end of this chapter.

Platform and Tasks Characteristics. Similarly to SM model, LR model
needs just the idle power Pidle as platform characteristic. On the other hand, the
individual tasks characteristics now correspond to the elements of input vector x̂i,k.
For simplicity and better comparison, we can use already identified coefficients
oi,k and ai,k, which are also the only tasks characteristics used by SM model. In
general, we could also include more characteristics obtained, e.g., by monitoring
the performance counters during the tasks execution [118].

Identification of Regression Coefficients. To identify the regression coeffi-
cients, we created 1000 unique instances (each representing one interval I), which
were randomly populated with the benchmarking kernels described in Section 3.5.2.
Specifically, each interval was 1 s long and contained from zero (all cores idling)
up to 6 (all cores processing) kernels randomly picked from the set. All these in-
stances were executed on all tested platforms (each for 180 s), and the average power
consumption was measured. Detailed evaluation of LR model and its comparison
with SM model is presented in Section 3.8.1. Here, we just report the identified
coefficients (i.e., elements of vectors βk for each cluster Ck ∈ C) in Table 3.6.

Example. To illustrate the the calculation of both power models numerically,
let us assume three tasks, as illustrated in Fig. 3.11. The first task executes a2time-
4K kernel for 450ms at little cluster (k = 1). The second task, also assigned
to a the little cluster, executes canrdr-4M kernel for 550ms. Finally, the third
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Table 3.6: Regression coefficients identified for all tested platforms and coefficient of
determination R2.

little cluster (β1) big cluster (β2)

platform β1,1 β2,1 β1,2 β2,2 R2

I.MX8 MEK 1.205 0.270 0.969 0.456 0.822
I.MX8 Ixora 1.227 0.232 0.981 0.420 0.814

TX2 0.857 0.648 0.946 0.801 0.974

corresponding independent var. → ai,1 oi,1 ai,2 oi,2

task, which is assigned to the big cluster (k = 2), executes membench-1M-RO-
S kernel for 700ms. The length of the window is hence 700ms. Considering
the I.MX8 MEK, the relevant task characteristics coefficients (see Table 3.4 and
Table 3.5) are: a1,1 = 0.25, o1,1 = 0.25, a2,1 = 0.41, o2,1 = 1.36, a3,2 = 1.24, and
o3,2 = 1.22. The SM power model just takes the maximum offset coefficient (1.36)
and adds the activity coefficients contributions of the individual tasks, i.e., the
estimated power consumption is Pidle+1.36+

(
0.25 · 450

700 + 0.41 · 550
700 + 1.24 · 700

700

) .
=

8.58W. To evaluate the LR model, the whole window is split to three processing-
idling intervals. The first interval is 450ms long and all three tasks are executed
during it. The second interval is 100ms long and covers the second and third
task. The last interval is 150ms long, and covers only the third task. The power
is estimated individually for each interval, and averaged out in the end. The
linear regression coefficients are listed in Table 3.6. For the first interval, the
prediction is [β1,1(a1,1 + a2,1) + β1,2 · a3,2] + [β2,1(o1,1 + o2,1) + β2,2 · o3,2], which is
[1.205 · (0.25+0.41)+0.969 · 1.24]+ [0.270 · (0.25+1.36)+0.456 · 1.22] .= 2.99. Since
this interval lasts only 450ms, this number is then averaged to 2.99 · 450

700

.
= 1.92W.

The calculations for the other two intervals are analogous; we report just their
averaged contributions, which are 0.37W and 0.38W, respectively. In total, the
power predicted by LR power model is Pidle + 1.92 + 0.37 + 0.38 = 8.17W. The
visual comparison is shown in Fig. 3.12.
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Figure 3.12: Visualization of power models evaluation.
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3.7 Optimization Methods

In Section 3.6, we revised the thermal modeling, and summarized two specific power
models, namely SM and LR models. Further, we identified all the necessary platform
and task characteristics. In this section, we continue with the integration. We
take the power models and design optimization methods that solve the problem of
safety-critical task allocation while minimizing the estimated power consumption.

First, we summarize the optimizer based on Integer Linear Programming (ILP)
and SM model proposed in [20] in Section 3.7.1. Second, we discuss the optimization
based on LR power model in Section 3.7.2. Finally, we introduce an informed
greedy heuristic and uninformed idle-time optimizers used for further comparison
in Section 3.7.3 and Section 3.7.4, respectively.

3.7.1 ILP and Sum-Max Model

The original implementation proposed in [20] relies on a simple encoding of the
scheduling problem to the ILP formalism. Binary variable xi,j,k is equal to 1 if and
only if task τi ∈ T is allocated to window Wj ∈ W and cluster Ck ∈ C. All the
resource constraints can be then simply written as:

∑
Wj∈W

∑
Ck∈C

xi,j,k = 1 ∀τi ∈ T , (3.7)

∑
τi∈T

xi,j,k ≤ ck ∀Wj ∈ W, Ck ∈ C, (3.8)

meaning that each task is assigned to some cluster and core and that capacity of
each cluster is respected. To model the length of the individual windows, continuous
variable l̂j is introduced for each window Wj ∈ W. Length is then linked to the
assignment variables by

l̂j ≥ xi,j,k · ei,k ∀τi ∈ T ,Wj ∈ W, Ck ∈ C, (3.9)

and constrained by the major frame length h:∑
Wj∈W

l̂j ≤ h. (3.10)

Finally, the SM model (3.4) is linearized to fit the ILP formalism and rewritten to
the objective function (3.11). The idle power Pidle is not included in the objective
since it is considered to be constant. The power consumption predictions are
averaged over all windows with the weights corresponding to the windows lengths.
The non-linear max term is (in each window Wj ∈ W) replaced by continuous
variable yj , which serves as its upper bound. When the solver reaches the optimum,
this upper bound becomes tight. The link between Yj and xi,j,k is formed by big-M,
whereM is sufficiently large constant. The objective (3.11) represents the estimated
average power consumption. The whole ILP model encoding the scheduling problem
and integrating SM model then becomes:
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ILP-SM: min
1

h

∑
Wj∈W

(∑
τi∈T

∑
Ck∈C

(xi,j,k · ai,k · ei,k) + yj

)
(3.11)

subject to:

yj ≥ oi,k · l̂j −M · (1− xi,j,k) ∀τi ∈ T ,Wj ∈ W, Ck ∈ C, (3.12)

(3.7), (3.8), (3.9), (3.10).

3.7.2 Optimization Based on the Linear Regression Model

Contrary to SM model, which predicts the power for each isolation window, LR model
predicts the power for processing-idling intervals only. Direct integration within the
ILP formalism proved to be quite laborious2; therefore, we followed different paths.
First, we neglect the processing-idling intervals and assume that each task executes
for the whole duration of the window to which it is allocated. We call this simplified
model as LR-UB. Then we can simply formulate the optimization as a quadratic
programming optimization problem as shown in Section 3.7.2.1. Second, we use a
different optimization framework, namely the black-box optimization based on a
genetic algorithm, which can simply integrate the LR model as a part of the fitness
evaluation. We describe this approach in Section 3.7.2.2.

3.7.2.1 Integration of LR to QP

We assume that all tasks allocated to one isolation window are executed for the
whole length of the window. Therefore, the execution times of the individual tasks
are potentially assumed to be longer than they are in reality. In consequence,
processing-idling intervals are completely neglected (each whole window becomes a
single processing-idling interval). In Fig. 3.13, we illustrate the assumed extensions
of the task execution times in gray (the original processing-idling intervals are shown
in Fig. 3.11). In a sense, the idea is similar to the max term in the SM model. We
hope that by minimizing the upper bound instead of the original objective, we get
a schedule that performs reasonably well in practice while keeping the formulation
relatively simple.

Then, we follow the same steps as for the integration of the SM model with
the ILP. We use the same binary variables xi,j,k deciding whether task τi ∈ T is
allocated to window Wj ∈ W and cluster Ck ∈ C. Constraints modeling the task
allocation and the resource capacity and limiting the major frame length are the
same as before, only the objective changes, as the power is now predicted by the LR
model for each window. The whole model is now as follows:

2We implemented the model, but it became rather complex, mainly due to the necessary
linearization, and its performance was poor even for small instances (we failed to obtain reasonable
upper and lower bounds for instance with 20 tasks even after one day of solving by state-of-the-art
solver Gurobi).
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Figure 3.13: Illustration of a simplified window with a single processing-idling interval
only, as used by LR-UB.

QP-LR-UB:
1

h
·
∑

Wj∈W
l̂j ·

∑
τi∈T

∑
Ck∈C

xi,j,k · (ai,k · β1,k + oi,k · β2,k)︸ ︷︷ ︸
⋆

(3.13)

subject to:

(3.7), (3.8), (3.9), (3.10).

Clearly, the objective becomes quadratic (due to multiplication of xi,j,k and l̂j).
3

Note that for all the texted benchmarking kernels (see Table 3.4 and Table 3.5)
and identified linear regression coefficients (see Table 3.6), the expression denoted
by ⋆ in (3.13) is positive. Furthermore, ⋆ is zero for the idle task. Therefore, the
objective (3.13) becomes an upper bound on the original LR value (by the original
LR we mean the LR model, which does not neglecting the processing-idling intervals).

3.7.2.2 Black-Box Optimizer

Instead of using Mathematical Programming and building a complicated model, we
could also use the black-box optimization framework, which is conceptually different.
The objective function is not given in a closed form, but only its outputs can be
observed provided the inputs. For us, given the full tasks allocation (schedule), we
can compute the average power consumption based on the LR model (or possibly
any other model). The black-box optimization algorithm searches through the space
of all allocations and tries to find the best one w.r.t the given fitness function (here
the LR model).

There are many algorithms that can be used for black-box optimization, includ-
ing, for example, Particle Swarm Optimization, Differential Evolution, or Genetic
Algorithms. Some of these algorithms are already implemented in existing libraries,
which are often optimized for speed, easily usable, and open-source. We use Genetic
algorithm (GA) from Evolutionary package implemented in Julia [131]. We use

3We use Gurobi solver for both Linear and Quadratic optimization.
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standard two-point crossover and BGA mutation; mutation and crossover rates
are set to 0.2 and 0.8, respectively. The selection is done according to a uniform
ranking scheme (discarding the lowest 10% of the population), and the population
size is set to 50 · |T |.

We represent the position of each task τi ∈ T in the schedule by continuous
variable xi ∈ [0, 1). In order to optimize the allocation problem using the continuous
variables, we introduce the following transformation: Each variable xi is evenly
split to m intervals, i.e., for two clusters, we obtain interval [0, 0.5) representing
the allocation to the first cluster and interval [0.5, 1) representing the allocation
to the second one. Each such sub-interval is then again evenly split to q intervals
representing the allocation to the individual windows.

Still, it might happen that allocation represented by variables xi would be
infeasible – either due to the major frame length (when allocated windows are too
long) or due to resource capacity constraints (when too many tasks are allocated
to the same window and resource). There are several ways to handle this issue.
One option is to use such a black-box solver that supports constrained optimization
(GA can do that). Another option is to introduce post-processing that would try to
reconstruct some feasible solution from the infeasible assignment. Even though it
would appear that solely the former option solves the problem, too many infeasible
solutions slow down the convergence of the optimization algorithm. Therefore, we
use both presented options – the former for the major frame length constraint and
the latter for the resource constraints.

The post-processing (reconstruction) procedure is described by Algorithm 2.
Informally, the preferred allocation of the tasks is pre-computed based on the
transformation described above. Then, starting from the first window, the allocation
of the tasks is iteratively fixed. If the task cannot be added to the current window
(i.e., the resource capacity would be exceeded), its preferred allocation is moved to
the next window (in a cyclic manner). The iteration over all windows is repeated
twice. If there are still some unassigned tasks or the major frame length is exceeded,
the solution is discarded; otherwise, feasible allocation of the tasks to windows and
clusters is returned.

The black-box optimizer iterates over many possible instantiations of xi. Every
time some instantiation is tested, the schedule (defined by allocations created
by Algorithm 2) is reconstructed and evaluated by the LR power model. After a
termination condition is met (e.g., time limit or iteration limit is exceeded), the
best-so-far solution is returned. We execute the algorithm with a pre-defined time
limit; if it terminates sooner, it is restarted from a random instantiation of xi until
exhausting the time limit.
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input : instantiation of variables xi ∀τi ∈ T
output :Functions mapping tasks to windows and tasks to clusters (or failure)

1 TaskAssignmentPreference(i)← x% 1
m

1
q·m

∀τi ∈ T
2 TaskAssignmentCluster(i)←

⌊
x
m

⌋
+ 1 ∀τi ∈ T

3 TaskAssignmentWindow(i)← ⌊TaskAssignmentPreference(i)⌋+ 1 ∀τi ∈ T
4 WindowCapacity(j, k)← ck ∀Wj ∈ W, Ck ∈ C
5 TasksInWindow(j)← {} ∀Wj ∈ W
6 WindowLength(j)← 0 ∀Wj ∈ W
7 TaskAssigned(i)← False ∀τi ∈ T
8 for Iteration ∈ {0, 2, . . . , 2 · q − 1} do
9 CurrentWindow ← (Iteration% q) + 1

10 TasksToCurrentWindow ← {i | τi ∈ T ∧ TaskAssignmentWindow(i) =
CurrentWindow ∧ ¬TaskAssigned(i)}

11 sort TasksToCurrentWindow by TaskAssignmentPreference in non-decreasing
order

12 for i ∈ TasksToCurrentWindow do
13 if WindowCapacity(j, TaskAssignmentCluster(i)) > 0 then
14 WindowCapacity(j, TaskAssignmentCluster(i)) −= 1
15 TasksInWindow(j)← TasksInWindow(j) ∪ {i}
16 TaskAssigned(i)← True
17 WindowLength(j)←

max{WindowLength(j), ei,TaskAssignmentCluster(i)}
18 else
19 if CurrentWindow = q − 1 then
20 TaskAssignmentWindow(i)← CurrentWindow + 1

21 else
22 TaskAssignmentWindow(i)← (CurrentWindow + 1)% q

23 TaskAssignmentPreference(i)← 0

24 if
∑

Wj∈W
WindowLength(j) > h ∨ ¬ ∧

τi∈T
TaskAssigned(i) then

25 return Schedule reconstruction failed.

26 else
27 return (TaskAssignmentWindow, TaskAssignmentCluster)

Algorithm 2: Get a feasible allocation from the instantiation of variables
xi, or report a failure.
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3.7.3 Greedy Heuristic

As a reference method, we describe a greedy heuristic. Contrary to all the previous
methods based on ILP, QP, or black-box optimization, the greedy heuristic does
not try to search through the whole optimization space (here, set of all possible
allocations). Instead, the search space is intentionally restricted in order to decrease
the computation time and improve the scalability.

The heuristic that we present is based on the works of Zhou et al. [142] and Kuo
et al. [74], but its main idea is rather general and applicable in the wider context.
The tasks are sorted by their energy consumption and processed one by one in a
non-increasing order (the most energy-consuming task goes first). In each iteration,
the currently processed task is assigned to the cheapest computing cluster (w.r.t.
energy consumption). The assignment is done only if some feasible schedule exists
even for all the remaining (still unprocessed) tasks, i.e., the assignment cannot be
fixed if it would cause infeasibility.

For the tasks ordering, we use analogous methodology that is used in [142] (in
Algorithm 1) – we can identify the parameter µi used in [142] with task characteristic
ai,k since both of these parameters represent tasks dynamic power consumption to
some extent. Then, the task τi is assigned to cluster Ck ∈ C that minimizes ai,k ·ei,k
(i.e., expected task energy consumption). Before each assignment, feasibility needs
to be checked. When considering the temporal isolation windows, it becomes a bit
tricky because these windows make the scheduling on the individual clusters and
their cores dependent on each other (without the windows, the situation is much
simpler since only the utilization bound needs to be checked).

To check the feasibility, we use a modified ILP model as presented in Section 3.7.1:

ILP-FEAS: min 0 (3.14)

subject to:∑
Wj∈W

xi,j,r(τi) = 1 ∀τi ∈ Tfixed (3.15)

(3.7), (3.8), (3.9), (3.10),

where Tfixed represents the set of tasks with already fixed assignment and r : T →
{1, . . . ,m} maps the tasks with fixed assignment to the index of their assigned
cluster. The whole greedy heuristic is summarized in Algorithm 3.

Note that solving ILP-FEAS model is easier compared to ILP-SM as the solver
can terminate after finding any feasible solution, whereas in the latter case, it
needs to explore the whole search space somehow (iterating over multiple feasible
solutions).
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input : set of tasks T , set of clusters C, major frame length h
output : assignment of the tasks to resources

1 Function CheckFeasibility(Tfixed ⊆ T , r : Tfixed → {1, . . . ,m}) is
2 if a feasible solution to ILP-FEAS with fixed tasks assignment of Tfixed given by

r exists then
3 return true

4 else return false;

5 sort all tasks τi ∈ T by maxCk∈C{ai,k · ei,k} in non-increasing order
6 Tfixed = {}
7 foreach task τi ∈ T do
8 Csorted ← sort C by maxCk∈C{ai,k · ei,k} in non-decreasing order
9 foreach cluster Ck ∈ Csorted do

10 assign τi to Ck, r(τi) = k
11 if CheckFeasibility(Tfixed ∪ {τi}, r) then
12 Tfixed ← Tfixed ∪ {τi}
13 break

14 if Tfixed = T then
15 return assignment of tasks to clusters and windows given by the solution of

ILP-FEAS with fixed cluster assignments defined by r

16 else
17 error: feasible assignment of tasks to resources does not exist

Algorithm 3: Greedy heuristic.

3.7.4 Optimizer Minimizing/Maximizing the Idle Time

Finally, we present two more optimizers, this time uninformed, i.e., not using any
task or platform characteristics. These methods simply optimize the idle (i.e.,
non-processing) time within the major frame. We present them as ILP models.

First, the total processing time tprocessing, can be expressed in terms of variables
xi,j,k introduced in ILP-SM as follows:

tprocessing =
∑
τi∈T

∑
Wj∈W

∑
Ck∈C

xi,j,k · ei,k. (3.16)

Then the total idle time tidle within the major frame is

tidle =

(
h ·

∑
Ck∈C

ck

)
− tprocessing. (3.17)

Now, the first model, ILP-IDLE-MAX, maximizes the idle time in the hope that
long idle periods allow for the platform to cool down. Also, a schedule with maximal
idle time is beneficial from the perspective of the practitioner. Sometimes the
instance changes and some more tasks need to be added for the execution; in such
a case, schedules with long idle periods offer the space to do so. The model can be
formalized as:
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ILP-IDLE-MAX: max tidle (3.18)

subject to:

(3.7), (3.8), (3.9), (3.10), (3.16), (3.17).

Contrary to that, the second model, ILP-IDLE-MIN minimizes the idle time. The
idea is that longer execution time is typically associated with the little cluster (see
Figure 3.5), which might be, however, more power-efficient. The model is described
as

ILP-IDLE-MIN: min tidle (3.19)

subject to:

(3.7), (3.8), (3.9), (3.10), (3.16), (3.17).

3.8 Experimental Evaluation and Results

To evaluate the described power models and the optimization methods, we conduct
a series of experiments on the three physical platforms. First, we assess the quality
of the power models in Section 3.8.1. Next, we compare the optimization methods
with respect to the capability of reducing the peak temperature (Section 3.8.2) and
based on their computational complexity and scalability (Section 3.8.3).

3.8.1 Power Model Evaluation

For each tested platform, we generate one thousand instances of CPU-bound workload
(all kernels except membench) and one thousand instances of mixed workload (all
kernels including membench), that is two thousand distinct instances in total. The
workload consists of a single periodically repeated window with a length of 1 s.
In that window, each CPU executes either nothing (probability 0.5) or a random
kernel. The kernels are executed for duration uniformly selected from interval 1ms
to 1000ms.

Each instance was executed for 60 s; this gives more than four days (100 hours)
of measured data in total. The power consumption was sampled every 10ms, and
the average value was reported. Further, we calculated the predicted power by SM,
LR, and LR-UB power models.

The results for mixed workload instances are shown in Fig. 3.14. The instances
are sorted by the measured power consumption on I.MX8 MEK. The Table 3.7
shows the mean absolute error of all power models on both types of workload. We
observe that the lowest prediction error is achieved by the linear regression (LR)
model. In relative terms (w.r.t. the idle power consumption), its error is 4.3%,
4.5% and 13.3% for I.MX8 MEX, I.MX8 Ixora and TX2, respectively. SM model
performed slightly worse, with average relative error of 11.2%, 5.6%, and 16.0%
for I.MX8 MEX, I.MX8 Ixora and TX2. Finally, LR-UB model failed to deliver
satisfactory predictions; its relative error is 24.3%, 19.3%, and 74.4% for I.MX8
MEX, I.MX8 Ixora and TX2.
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Figure 3.14: Measured and predicted power consumption of 1000 testing instances (mixed
workload windows); instances are sorted by I.MX8 MEK measured power consumption.

The trends are also clearly visible in Fig. 3.14; SM model is more pessimistic
than the LR model, which is expected due to the max term in Eq. (3.4). However,
it steadily provides an upper bound on the measured power consumption. Even
though the LR-UB mostly provides an upper bound as well, it is not as tight.

3.8.2 Optimization Methods Comparison

Here, we discuss how well the power models integrate with the optimization. We
compare the optimization methods on two types of workloads as in the previous
section: CPU-bound and mixed. For each workload type, we construct six different
instances. We follow the same instance generation scheme as in [20]. We generate

Table 3.7: Mean absolute error (in Watts) of the tested power models.

SM LR LR-UB

Platform mixed CPU mixed CPU mixed CPU

I.MX8 MEK 0.67 0.56 0.26 0.21 1.30 1.38
I.MX8 Ixora 0.35 0.27 0.28 0.21 1.00 1.12

TX2 0.17 0.66 0.24 0.45 1.54 2.33
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Table 3.8: List of compared optimization methods and corresponding power models.

Acronym Power model Optimization method
ILP-SM SM ILP

QP-LR-UB LR-UB QP
BB-LR LR BB (generic alg.)
BB-SM SM BB (generic alg.)
HEUR expected energy greedy

ILP-IDLE-MIN — ILP
ILP-IDLE-MAX — ILP

20 tasks; each of them executes a randomly selected kernel. Each task is assigned a
randomly generated execution time on the big cluster in the range 40ms to 160ms.
Execution time for the little cluster is scaled appropriately to perform the same
work. The scaling coefficient is calculated from Table 3.2. The major frame length h
is calculated as h = n·ē

κ , where ē is the average execution time across all clusters, n
is the number of tasks (here 20), and κ is empirical constant changing the tightness
of the schedules (here set to 3.5).

For each instance, all optimization methods, as listed in Table 3.8, were executed
to generate a schedule for each platform. For better comparison, we execute the
black-box optimizer with both SM and LR power models. The solving time limit was
set to 300 s per instance. The schedules found for the first instance are illustrated
in Fig. 3.15.

During the experiment, each schedule was executed on the respective platform
for 30min; this gives 42 hours of measured data per platform. We measured
the average power consumption and steady-state temperature. The power offset
(Pmeasured−Pidle) is reported in Table 3.9 (the rows are sorted by the average power
consumption on I.MX8 MEK). The ILP-SM method achieved the best results in
almost all cases. The difference from the lowest result is negligible in the few cases
where it was not the best. Slightly worse, but still good results were obtained by
the BB-SM method. One practical difference between these two methods is that
ILP-SM requires an ILP solver (here commercial Gurobi solver) for its operation,
while BB-SM can be implemented with freely available tools.

An interesting observation is that the best results are obtained with the SM

power model. Recall that the most accurate power model was LR, not SM. We
account that to the fact that even though the SM is systematically overestimating
the power consumption, it is consistent in a sense that windows with higher predicted
power consumption indeed consume more than windows with lower predicted power
consumption.

Figure 3.16 shows the temperatures near the individual clusters averaged over
all six instances. We observe that the difference between the worst- and the best-
performing methods are 5.5 °C, 4.9 °C, and 3.6 °C, corresponding to 22%, 19.6%,
and 14.4% differences relative to the ambient temperature (25 °C) for I.MX8 MEK,
I.MX8 Ixora, and TX2.

When comparing the greedy local heuristic HEUR with the ILP-SM method,
the exhaustive ILP-SM can save, in average, up to 1.6 °C, 1.3 °C, and 0.6 °C for
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Figure 3.15: Example schedules for instance no. 1 on I.MX8 MEK (mixed-workload).

I.MX8 MEK, I.MX8 Ixora, and TX2, respectively.

3.8.3 Performance evaluation

Finally, we evaluate the scalability of tested optimization methods. We study how
the computation time increases with the increasing instance size corresponding to
the number of tasks n.

Ten instances are randomly generated for each n ∈ {5, 10, . . . , 60} (120 instances
in total). Each optimization method is then executed for every instance; as some of
the methods might be rather time-demanding for larger instance sizes, we limit the
maximum computation time per instance to 300 s. We use the same generator as in
Section 3.8.2, but we perform the experiment only with the characteristics based
on I.MX8 MEK. The outcome would be quite similar for the other platforms.

The average computation times for different values of n are shown in Fig. 3.17.
As the black-box optimizer (BB) is programmed to randomly restart each time it
converges to some solution, it always consumes all the provided time. Besides, the
models globally optimizing the schedule w.r.t. the provided objective, i.e., QP-LR-UB
and ILP-SM, are the first to run out of time. Out of these two, the more complex
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Table 3.9: Power offset (Pmeasured − Pidle [W]) observed for six instances with mixed
workloads and six instances with CPU-bound workloads on tested platforms.

Mixed workloads instances CPU-bound instances

Method 1 2 3 4 5 6 1 2 3 4 5 6 average

I.MX8 MEK
ILP-SM 2.77 2.26 2.99 2.79 2.38 2.17 2.47 2.69 2.72 2.80 2.90 2.78 2.64
BB-SM 2.72 2.48 3.12 3.04 2.61 2.39 2.81 2.97 2.97 3.02 3.06 3.10 2.86
HEUR 3.16 2.71 3.17 3.20 3.12 2.44 2.90 3.01 3.00 3.26 3.16 3.36 3.04
BB-LR 3.09 2.82 3.36 3.22 3.01 2.63 2.94 3.03 2.98 3.18 2.93 3.31 3.04

ILP-IDLE-MIN 3.44 2.70 3.36 3.24 3.19 2.67 2.98 3.09 2.95 3.37 3.22 3.23 3.12
QP-LR-UB 3.61 2.84 3.50 3.48 3.24 2.44 3.12 3.51 3.11 3.35 3.30 3.21 3.23

ILP-IDLE-MAX 3.74 3.25 3.90 4.06 3.41 3.05 3.47 3.88 3.69 3.96 3.92 4.12 3.70

I.MX8 Ixora
ILP-SM 2.19 1.97 2.52 2.36 2.00 1.94 2.15 2.25 2.28 2.31 2.38 2.35 2.23
BB-SM 2.33 2.18 2.66 2.54 2.09 2.13 2.32 2.41 2.41 2.44 2.53 2.63 2.39
HEUR 2.54 2.21 2.58 2.53 2.46 2.23 2.45 2.41 2.42 2.59 2.56 2.77 2.48
BB-LR 2.54 2.28 2.65 2.63 2.44 2.12 2.40 2.48 2.41 2.51 2.51 2.75 2.48

ILP-IDLE-MIN 2.81 2.04 2.66 2.67 2.59 2.23 2.38 2.51 2.42 2.72 2.56 2.61 2.52
QP-LR-UB 2.69 2.24 2.87 2.86 2.37 2.05 2.51 2.90 2.69 2.69 2.71 2.94 2.63

ILP-IDLE-MAX 3.30 2.82 3.28 3.36 3.02 2.91 3.04 3.33 3.18 3.45 3.22 3.44 3.20

TX2
ILP-SM 3.53 3.22 3.23 3.78 3.44 3.03 3.55 3.90 3.45 3.96 3.57 4.16 3.57
BB-SM 3.71 3.41 3.36 3.88 3.74 3.29 3.76 3.98 3.64 4.18 3.76 4.32 3.75
HEUR 3.59 3.27 3.25 4.00 3.70 3.11 3.74 3.91 3.54 4.15 3.73 4.19 3.68
BB-LR 3.70 3.30 3.43 3.92 3.71 3.26 3.78 3.98 3.71 4.10 3.88 4.26 3.75

ILP-IDLE-MIN 4.34 3.51 4.21 4.28 4.02 3.88 3.80 4.06 4.44 4.31 3.93 4.53 4.11
QP-LR-UB 3.65 3.35 3.28 3.82 3.61 3.13 3.63 3.98 3.55 3.97 3.57 4.29 3.65

ILP-IDLE-MAX 4.63 4.02 4.37 4.82 4.49 3.88 4.71 4.87 4.66 5.19 4.99 5.31 4.66

model based on the quadratic programming (QP-LR-UB) is about 6× slower than
ILP-SM on instances with 15 and 20 tasks. Comparing the global methods to the
local one (HEUR) on instances with 20 tasks, we see that the global methods ILP-SM
and QP-LR-UB need about 18× and 95× more time, respectively. Performance of
the heuristic method (HEUR) is comparable with ILP-IDLE-MIN on instances with
30 and more tasks; for smaller instances, HEUR is a bit slower, especially due to the
overhead caused by performing the feasibility check (solving ILP-FEAS) multiple
times. Even though the ILP-IDLE-MAX scales the best, it fails to produce thermally
efficient schedules, as shown in Section 3.8.2.

3.8.4 Evaluation Summary

To summarize the results, the linear regression-based power model (LR) exhibited
lower errors than the empirical sum-max model (SM), but it proved to be harder
to integrate with the optimization methods. Its simplified variant LR-UB failed to
provide a tight upper bound and therefore performed rather poorly.

Considering the optimization methods, global ILP-SM based on the integer linear
programming and simpler SM power model provided overall best results. The black-
box approach based on metaheuristics proved to be competitive as well; especially, it
might be preferred for large-size instances, for which the integer linear programming
fails to deliver high-quality solutions in a reasonable time. Also, the BB approach is
based on an open-source implementation of a genetic algorithm, which might be an
advantage when compared to the other tested methods based on the commercial
Gurobi solver.
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Figure 3.16: Average difference between the measured steady-state temperature Tmeasured

and the average ambient temperature Tamb for tested optimization methods. Recall that
Ixora’s lower temperatures are caused by applied air flow.
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3.9 Chapter Conclusion

To conclude, this work studied the problem of offline task allocation on a heteroge-
neous multi-core platform for safety-critical avionics applications with the aim of
minimizing the platform’s steady-state temperature. The main limitations were un-
availability of DVFS due to safety requirements and necessity to schedule the tasks
into temporal isolation windows. Three power models were compared, including the
empirical sum-max model, the linear regression model, and its simplified variant
providing the upper bound. Furthermore, their integration within the optimization
procedures was discussed. Several optimization approaches, including those based
on mathematical programming, and both informed and uninformed heuristics, were
described and evaluated on three hardware platforms. The data and source code is
publicly available4.

Extensive experimental evaluation showed that the best-performing method
ILP-SM reduces the platform temperature by up to 16%, 14% and 10% for I.MX8
Ixora, I.MX8 MEK and TX2, when compared to the worst method ILP-IDLE-MAX.
Moreover, ILP-SM saves up to 4.7%, 4.6%, and 1.8% when comparing to the
heuristic method HEUR, which is a model-free approach popular due to its simplicity.
Furthermore, the second best method BB-SM provides better scalability and just 3%
higher temperatures on average while being implemented solely with open-source
software.

Surprisingly, all the best methods rely on the SM power model, which has the
mean absolute error by 66% higher (in average) than the LR model. This shows
the importance of the power model and optimization method co-design.

4https://github.com/benedond/safety-critical-scheduling

https://github.com/benedond/safety-critical-scheduling
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Chapter

Thesis Conclusion

This thesis investigated offline scheduling problems involving resource state modeling
and energy consumption (cost). As the research area itself is rather broad, we
have concentrated on several use-cases highlighting the importance of a ‘conjugate
approach’ involving the problem-tailored design jointly considering the resource
model and optimization method. The results showed that with careful design
choices, the optimization performance was substantially improved and, as such, the
state-of-the-art methods used in the respective fields were outperformed. In the
following lines, we summarize how the individual research objectives were fulfilled.

4.1 Fulfillment of the Goals

1. Study the scheduling problems where the state of the resource significantly
impacts the energy consumption.

This thesis studied three specific problems. First, we considered a production
scheduling problem involving an electric vacuum steel-hardening furnace in
Chapter 1. The problem inspiration and data came from our industrial
partner, Škoda Auto. Undeniably, heat-intensive furnaces rank among the
most-demanding energy consumers. Therefore, any energy optimization of
their operation could bring significant benefits.

Second, we moved to a general research problem in Chapter 2 involving the
resource states modeled by a finite state machine and variable energy prices.
Both of these provide rather general design concepts. Consider that: (i)
the majority of the research works involving general resources with power-
saving states adopt the finite state machine concept, and (ii) the time-of-use
energy pricing provides a general mechanism that can accurately reflect
the cost of electricity on the grid. Therefore, the proposed advances in
the solution methods scalability provide important theoretical results with
potential practical implications.

Third, we studied thermal-aware safety-critical task allocation on a heteroge-
neous multiprocessor system on a chip under temporal isolation constraints
in Chapter 3. That problem, defined by our industrial partner Honeywell, is
of great importance in the aerospace domain as the modern systems need the
high-computing power provided by modern MPSoC on the one hand but need
to compensate for the produced heat without the use of massive heat sinks or
mechanical fans on the other hand.

2. Review the existing literature considering the resource-state modeling and en-
ergy optimization, identify the weak points, and suggest possible improvements.

We studied the related literature. Even though energy optimization has been
extensively addressed in the last few decades, we conclude that there is still a
lot of space for improvement.

99
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One of the possible ways is to design a problem-tailored model and optimization
procedure, as we did in Chapter 1. That way, the model can include problem-
specific features, and thus, by being more informed than general models,
improvements can be achieved.

Many scheduling problems involving energy are, in fact, NP-hard. Therefore,
we can often see that the researchers formulate the model in a mathematical
programming language, but claiming that it lacks scalability, they move to
design various metaheuristics without even trying to improve the model itself.
Indeed, there will always be the instance size intractable by the mathematical
model. However, thanks to advances in the modeling, as well as in the solvers,
this size can be rather large. Thus, by proper pre-processing and integration,
we may be able to solve instances of the problem that are practically relevant,
as we show in Chapter 2.

Finally, as in embedded systems, modeling and optimization are two research
topics that are often studied separately. The resource model might be very
complex. As such, it might be rather hard to integrate it within an optimization
method that could scale well. However, the model is just a tool serving to
describe the system. In the end, it will always be prone to error because there
will always be some things neglected. Therefore, we might sacrifice some of
the model complexity in order to gain better integration ability and better
optimization scalability. This is also the path that we follow and investigate
in Chapter 3. We show that even though the resource model itself is not
perfect, it may still bring satisfactory and practically applicable results.

3. For several selected use-case problems, propose suitable resource models and
their integration with the optimization procedures in the context of energy
consumption minimization.

As mentioned above, we have studied three use-case problems in detail. In
Chapter 1, we studied furnace behavior and proposed a strategy for its efficient
management during idle periods. Further, we integrated the model within the
optimization method using the idle energy function abstraction. That way,
the addressed optimization problem was solved in polynomial time.

In Chapter 2, we extended the idea of idle energy function to work even with
variable energy prices. We designed a pre-processing technique that could
efficiently compute the function values. Further, we studied how to integrate
the function efficiently within the mathematical models.

Finally, in Chapter 3, we provided a comparative study of several power
models and optimization methods. We put a great emphasis on practicality;
all the approaches were tested on three hardware platforms regarding both
thermal efficiency and accuracy. We also included an additional experiment
testing the scalability of the method.

4. Present how suitable resource modeling combined with appropriate optimization
techniques can improve the state-of-the-art solutions.

In all chapters, we compared the proposed approaches to the relevant tech-
niques proposed in the literature. The results proved that suitable resource
modeling and integration indeed bring improvement over the state-of-the-art.
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4.2 Future Work

As the research path is never ending, there is still much to be done. The following
list presents several ideas that could suggest possible research directions.

1. In the first two chapters, the concept of idle energy function was successfully
applied in the process of solving two seemingly unrelated problems. Further,
the literature shows that it can also be successfully used in the embedded
systems domain for the management of components states during idle periods.
This indicates a unifying concept that could be used for idle time management
of any resource. Moreover, specific models and methods could be devised,
integrating this concept. Therefore, we believe that a unifying framework for
idle time resource management could be developed.

2. In Chapter 2, we integrated the idle energy function into the mathematical
model, which brought significant improvements in scalability. Besides this, we
have conducted a preliminary (unpublished) experiment, where we integrated
the idle energy function directly into a dedicated branch-and-bound procedure.
Preliminary results showed further 100× speed-up on the same instance set,
which is rather promising. Therefore, we believe that the development of
specialized algorithms integrating the models’ abstractions is also one of the
perspective ways.

3. We believe that there exists a gap between industrial problems and theoretical
research. The practical problems are often overly constrained and therefore
deemed unsuitable for scientific publications. On the other hand, the the-
oretical works are often highly abstract and frequently rely on models and
simulations that might be transferable to practice only with great difficulties
and unclear results. Thus we think that the works that will marginalize the
gap between theory and practice will be highly appraised.
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