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Introduction

Hadron beams used in the COMPASS experiment are a mixture of particles, e.g.
a 190 GeV negative hadron beam contains about 97 % of π−, 2.5% of K− and < 1%
of p̄. CEDAR detectors,based on Cenernkov e�ect, in the COMPASS experiment
beamline were designed to identify a particles in limited intensity beams with a di-
vergence below 65 µrad. For this purpose two alike CEDARs are positioned upstream
the target. However, during the 2018 data taking, a beam with 15 times higher in-
tensity was used. CEDARs were prepared to withstand such conditions by a major
upgrade of the frontend electronics and photomultipliers as well as a redesign of the
corresponding �rmware. In addition, the beam divergence of those runs was up to
300 µrad with only 10-15 % of particles being within the designed divergence range.
Hence, the previous method of data analysis using the likelihood approach cannot
be used in this case. [1][36][42]

The goal of this thesis is to investigate di�erent machine learning approaches and
their usage. Upon selecting a suitable approach, a new machine learning based
method for beam particle identi�cation in COMPASS using data from CEDARs
should be implemented and con�gured. The solution should be then tested and
integrated back into the current software for the data analysis written in C++.

The �rst chapter brie�y describes the COMPASS experiment, the software used for
its data analysis and other utilized software tools.

Chapter 2 deals with the principles of CEDAR detectors and previous methods of
data analysis.

The next chapter introduces classi�cation problem and its possible solution using
machine learning, or more precisely arti�cial neural networks. Di�erent types and
architectures of networks are presented.

In chapter 4, some alternatives of a new method for beam particle identi�cation
together with motivation to develop a new one are introduced. Subsequently, a
procedure for obtaining training data is outlined.

The last chapter describes the implementation of aforementioned methods and tools
for its analysis. A genetic algorithm based approach for meta parameters optimiza-
tion is described, the new methods and types of networks are compared and the best
performing model is selected. A procedure for integration of a trained network into
the current data analysis software is developed. On top of that, multiple datasets
are examined and the �ndings are presented.

13
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Chapter 1

COMPASS Data Analysis Software

1.1 COMPASS experiment

COMPASS or Common Muon Proton Apparatus for Structure and Spectroscopy
is a high-energy physics experiment with �xed target. The experimental hall is sit-
uated on a beamline of the Super Proton Synchotron (SPS) particle accelerator,
which is located at the CERN laboratory's North area in Geneve, Switzerland. The
goal of the experiment is the study of hadron structure and spectroscopy using high
intensity muon and hadron beams. In 2012, the original experiment was replaced by
COMPASS II focusing on the Deeply Virtual Compton scattering, Hard Exclusive
Meson Production, Semi-inclusive Deeply Inelastic Scattering, polarized Drell-Yan
processes and Primako� reactions. Around 200 physicists from 13 di�erent coun-
tries and 25 institutions work on the experiment. COMPASS II ended in 2022 and
will be replaced by AMBER or Apparatus for Meson and Baryon Experimental
Research. [1][46][49][51]

1.1.1 AMBER

COMPASS evolution into the AMBER will consist of upgrades of the existing com-
ponents as well as installation of new detectors, targets and updates in the read-out
technology. AMBER will focus on three main goals, which are:

1. An independent precision determination of the electric mean-square charge
radius of the proton,

2. Drell-Yan and J/ψ production experiments using the conventional M2 pion
beam,

3. measurement of proton-induced antiproton production cross sections.

To achieve these goals, beams consisting of muons, pions, kaons and (anti-)protons
impinged on liquid hydrogen, helium-4 or nuclear targets will be used. The beam
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composition is important especially for the separation as discussed in chapter 5.7.2.
The outcome of this work is expected to be applicable for the AMBER experiment
as well. [22][46]

1.2 DAQ and CORAL

The COMPASS DAQ is a hybrid system consisting of hardware and software parts
for reading out analog signals directly from experiments' detectors, converting them
to digital values and saving them. The current system replaced the previous one in
2014 and has been in use since then. [1][4][26][38][40]

Data taking is separated into measurements of a single physics event. An event
represents a single collision of particles (or a collision of a particle and a �xed target
as is the case of the COMPASS experiment) and its trajectories. This data taking
process is controlled by Trigger Control System (TCS) that discards uninteresting
data based on prede�ned criteria in order to lower the data volume. This is important
because the detectors produce around 400 MB/s of data, which yearly accounts for
around 1 PB of data or equivalent of 1015 bytes. [1][4][26][26]

Since individual detectors record only subevents (i.e. partial information about the
trajectory of a particle in the detector), the next step is to assemble those subevents
into events. A C++ program called CORAL is used for this task. Resulting �les
are saved to CASTOR (CERN Advanced STORage manager) in ROOT trees called
mini Data Summary Trees (mDST) as elaborated in chapter 1.4.1. [1]

1.2.1 DAQ hardware structure

DAQ contains several layers of FPGAs1 modules that process information recorded
by detectors and build the physics events. The �rst layer consists of front-end cards
that readout analog data from the detectors and convert them to digital form. There
are around 300 000 data channels coming from the detectors. [4][26][40]

In the next step, data �ow into three layers of multiplexers that combine several
inputs into a single output data stream. E�ectively, this means sorting the data
into subevents. The �rst two layers consist of HGeSiCA, CATCH and GANDALF
modules, Slink multplexers and TIGER VXS data concentrators. There are 8 FPGA
cards (referred to as Data Handling Cards or DHC) in the next layer. [4][26][40]

The next layer is a single FPGA module with switch �rmware that handles event
building. Data of the same events recorded by di�erent detectors and transmitted
through di�erent channels are grouped together. The last layer consists of readout
computers with DAQ software. Data are readout and temporarily saved to local
hard drives before moving to CASTOR. The scheme of this structure can be seen
in �g. 1.1. [4][26][40]

1FPGA or �eld programmable gate array chips are special integrated circuits whose behavior
can be programmed. [3]
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Figure 1.1: The structure of the DAQ hardware. [26]

1.3 Other CERN services

Some software and hardware provided by the IT Department of CERN will be
utilized.

1.3.1 CERN CentOS

CERN CentOS is CERN customized distribution that is built on top of the CentOS
Core and is tailored to integrate within the CERN computing environment. [50]

CERN CentOS is fully compatible with CentOS Core, therefore with the (Red Hat)
Enterprise Linux: all software used or built on one of the versions should function
properly on any other version. [50]

For this work, CERN CentOS 7.1 will be used for any local development.

1.3.2 Linux Public Login User Service

LXPLUS is the interactive logon service to Linux for all CERN users. The cluster
consist of public machines running Linux (mainly CERN CentOS 7) in 64 bit mode
for interactive work. One can access LXPLUS using SSH protocol. It grants access
to public services, namely to:

17



• networked �le storage for CERN users AFS

• various versions of numerous compilers and interpreters: GCC, G++, Python,
Ruby, Perl etc.

• the CERN Mail Server

• CERN Print System

• CERN storage center EOS

• CASTOR

• the CERN batch system (HTCondor)

[62]

1.3.3 CERN Batch Service

CERN Batch Service is based on HTCondor, an open-source High-Throughput Com-
puting (HTC) software framework for distributed parallelization of computationally
intensive tasks.2 It allows users to queue up jobs in the system and maximize the
utilisation of the batch farm of around 100 000 cores with respect to a fair-shared
system. [47][54]

The batch service also o�ers use of GPUs3, mainly NVidia Tesla T4 with CUDA
Toolkit extension. This is especially bene�cial for neural networks training as it
comes down to matrix multiplication for gradient computations (see [41]), where
GPUs perform very well thanks to parallel computing. [47]

Figure 1.2: Schematic view of the CERN HTCondor service. [48]

2HTCondor uses computing power of machines connected over a network by e�ectively harness-
ing shared resources with distributed ownership. [54]

3Graphics processing units.
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1.4 ROOT

ROOT is an object oriented framework for data processing and analysis developed at
CERN. It was designed especially for data analysis in particle physics experiments,
thus it is optimized to handle large amount of data in the most e�cient way. [8][58]

ROOT allows its users to save and access data in a compressed binary form, to
mine data, to create graphics and visualizations (histograms, scatter plots, curve
�tting) and to build custom applications. ROOT code can run in an interactive
mode thanks to Cling C++ interpreter or it can be compiled. A graphical user
interface can be created in both cases. ROOT can also be integrated with other
programming languages such as Python and R. [8][58]

When saving �les, ROOT by default splits events into its pieces (the variables)
and builds the �le by putting together those variables. This allows for maximum
e�ciency of the internal compression and speeds up the process of looping over few
variables of each event thanks to caching mechanisms present in disk controllers and
in the operating system. [8][58]

Another key feature of ROOT is its data container - tree. It can contain branches or
leafs. While a branch can be an arbitrarily complex object and even another tree,
a leaf is always a simple variable and is therefore the end point of a branch. This
design resembles the data structure of operating systems. Trees are usually split into
branches when saving to a �le as mentioned above. [8][58]

ROOT v6.24 is used for this work.

1.4.1 mDST

The mini data summary tree denoted by mDST is a ROOT �le containing recon-
structed events data from the experiment or Monte Carlo simulations. Speci�cally,
it includes:

1. Event dependent information

• Tracks

• Vertices

• Calorimeter clusters

• Hits

• Raw information (DAQ digits)

2. Event independent information

• Tracking detectors geometry

• Calorimeters geometry

• RICH geometry
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• Magnetic �eld maps

• Material maps

[16]

1.5 PHAST

PHAST (PHysics Analysis Software Tools) is another C++ framework developed at
CERN speci�cally for COMPASS data analysis on the level of mDST. It o�ers an
access to reconstructed events information and detector properties as well as tools
for visualization (see chapter 1.5.1) and mDST processing and �ltering. It can also
output in mDST format at the stage of event reconstruction (called microDST or
shortly µDST). [15][16]

PHAST data analysis is done via a so called user function. It is a function to be
called for every event in the input mDST �le. This can be done recursively, i.e.
using the output microDST and reading it again by PHAST for further processing.
Multiple �les processing can also be done at once as well as using multiple user
functions one after another. [15]

The user function is to be speci�ed only inside ./user directory and de�ned as
UserEventN() with N being a natural number that is not yet used. For each N

there are really 3 user functions:

• UserEventN() - function is called for every event

• UserRunEndN() - function is called every time run number is changing in the
input stream

• UserJobEndN() - function is called upon the job end

[15]

When a user function is developed and put into ./user directory, it will be auto-
matically compiled, put to shared library and linked to executable by running make

command in top PHAST directory. This has to be done every time any source code
�le is added or modi�ed4. [15]

Events are in PHAST represented by PaEvent class with many methods for data
access. Event dependent information can be therefore described as a tree of objects of
class PaEvent . Event independent information are represented by PaSetup class.
Detailed documentation can be found on PHAST Class List website.5 [15]

PHAST v8.022 is used for this work.
4When existing �les are modi�ed, only the a�ected �les are recompiled.
5http://ges.web.cern.ch/ges/phast/doxygen-html/annotated.html
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1.5.1 PHAST Event Display

PHAST can be also compiled with activated graphics mode ( touch WITH_GRAPH

prior to compilation). Input mDST �les can then be inspected using PHAST Event
Display, which outlines the experiment schematic structure with an event. An event
(a particle collision) contains at least one particle and its trajectory, but usually
contains multiple. Phast Event Display shows a schematic of this event with multiple
�ltration options and context menus. [16]

Figure 1.3: PHAST Event Display example. Rectangles represent detectors, dots
represent particles and lines their trajectories.

1.6 TensorFlow

TensorFlow is a free open source library for all sorts of machine learning with focus
on deep neural networks. It was originally developed for Google's internal use and is
still used in its production. TensorFlow can run on multiple CPUs as well as GPUs
with possibility to use CUDA Toolkit extension. Version 2.8.0 is used. [55][61]

1.6.1 Keras

Keras is an open-source API speci�cation written in Python that describes how a
deep learning framework should implement certain parts. It was framework agnostic
and supported di�erent backends (Theano, TensorFlow), but over the time Ten-
sor�ow has fully adopted Keras API and integrated it as a sub-module. Keras is
therefore the high-level API of TensorFlow 2, which is the only supported backend
since version 2.4. Keras is focused on enabling fast experimentation and develop-
ment. [55]
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The installation and development setup of above mentioned software tools can be
challenging and was therefore described in detail in preceding work [41].

1.6.2 Frugally-deep

Frugally-deep is a header-only library for exporting a TensorFlow model and using
it for forward pass in C++ programs without linking it against TensorFlow, because
its parts needed for prediction are re-implemented in C++. This reduces executable
size signi�cantly. [19]

It requires C++ 14 and three additional, also header-only, libraries: json , fplus

and Eigen . Version 0.15.16 is used.
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Chapter 2

CEDAR detectors

CEDAR is an abbreviation for `CErenkov Di�erential counters with Achromatic
Ring focus'. It is used for beam particle identi�cation of the particles that cross it.

To distinguish pions, kaons and antiprotons from which the negatively charged
hadron beam is mainly composed, two alike CEDAR detectors are positioned ap-
proximately 30 meters upstream of the COMPASS target. [1][42][43]

Figure 2.1: Schematic view of a CEDAR detector. [1]

2.1 Detector principle

The CEDARs make use of Cherenkov radiation, which is emitted by charged parti-
cles passing through a dielectric medium at a speed greater than the phase velocity
of light in that medium. Beam particles of di�erent types with the same momentum
that traverse the CEDAR counter emit Cherenkov light in di�erent angles due to
unalike masses. [1][42]
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This light is focused onto a ring shaped diaphragm by a concave mirror and a system
of lenses (lens, corrector, condenser). The diaphragm is located in the focal plane
perpendicular to the beam direction whereby compensating for the chromatic aber-
ration1 in the gas helium with which the vessel is �lled. It is set to select photon
rings with a �xed radius. The radius of the photon ring and diaphragm is matched
by adjusting the pressure in the vessel. [1][42][43]

Figure 2.2: CEDAR schematic - two particles with the same momentum but with
di�erent masses, represented by red and green lines, radiate Cherenkov light at
di�erent angles. This results in rings with di�erent radii. A diaphragm selects the
rings from the required particle type (green line), while the radiation from the other
particle does not go through the diaphragm to trigger signal from the PMTs. [1]

At last, the Cherenkov photons are detected by 8 photomultipliers (PMTs) arranged
in a ring around the optical axis of the detector behind the diaphragm.

Because the momentum of beam particles is approximately the same, the emitted
Cherenkov radiation angle is the same for particles of the same type. This means
that CEDARs do not need to measure the actual emission angle value. To select
certain particle species, pressure inside the vessel and the diaphragm opening is
tuned so that the light is focused onto the PMTs, while Cherenkov light of the other
species with di�erent photon ring radius is shielded by the diaphragm. [1]

1Chromatic aberration is a failure of a lens to focus all wavelengths to the same point, making
resulting re�ection look blurry.

24



2.2 Problems using CEDAR information

The photon rings are smeared by several e�ects, e.g. beam divergence, over time
temperature changes and imperfect precision of alignment. In order to keep the
refractive index constant along the whole 6 meters long vessel, good thermal in-
sulation and conduction is obligatory. Beam divergence can be compensated only
by broadening the diaphragm opening, which leads to lower purity of the particle
identi�cation. In addition, CEDARs parameters change drastically over time which
requires a run-by-run calibration. [42]

The original paper [5] describes the maximum beam divergence for the detector to
operate properly for beams of di�erent energies up to 370 GeV. For 190 Get beams
it is around 65 µrad.

(a) Beam parallel to optical axis.
(b) Beam with an inclination with respect

to optical axis.

Figure 2.3: Ilustration of the Cherenkov rings of a pion (red) and a kaon (green)
without and with an inclination with respect to optical axis of CEDAR, when the
detector is set to select kaons. The gray ring represents the acceptance area of
the diaphragm. One can observe how an inclination of the beam in�uences PMTs
receiving signals. Here a kaon would not give signal in the topmost and bottommost
PMT while a pion would hit the topmost PMT.2 [42]

Taking the above mentioned into account, a signal in at least a certain number of
PMTs (usually 6 out of 8) is required in order to identify a particle. This is known
as the majority approach, however it works only when the particles traverse the
CEDARsparallel to its optical axis. Otherwise, the photon rings are tilted out o� or
into the acceptance of the diaphragm as illustrated in �g. 2.3. Because the spread in
the inclination of particles is of the same order of magnitude as the distance between
kaon and pion Cherenkov angles, particles traversing at larger angles of the optical
axis of CEDAR have to be excluded from further analysis.3 The majority approach
was shown to have a low e�ciency of about 40 % to 50 %. [42][43]

2In reality, the PMTs are shifted by 22.5◦ clockwise.
3Until 2018, the inclination was measured by a silicon beam telescope at the target position
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2.2.1 Likelihood method

Although the beam inclination leads to a low e�ciency of the majority approach,
�g. 2.3 shows that a certain PMTs hit pattern is characteristic for di�erent particle
species at a given inclination. This phenomenon was utilized to develop a likelihood
ansatz as described in detail in [42] to better compensate for the aforementioned
issues. It led to a higher e�ciency of about 87 % for kaon identi�cation and 99
% for pion identi�cation. It is integrated as a PHAST user event (�tting the free
parameters of the parameterization) and it is commonly used in analyses of hadron
induced processes. [42]

The main idea is to use the response of PMTs separately. The probability of a PMT
response on kaons or pions is parameterized as a function of the direction of the emit-
ted photons. The direction depends on the particle species and the beam inclination
θx and θy with respect to nominal beam axis. [42][43]

(a) Possible beam kinematics of the same

particle species (red and orange points).

(b) A particle with arbitrary kinematics

(purple point).

Figure 2.4: An inclination space of a beam particle with respect to the CEDAR
optical axis. The gray box represents the sensitivity area of a PMT. The �rst plot
shows Cherenkov rings hitting the observed PMT in centrally for points lying on
top of the green dashed circle. [42]

The coordinate system is then designed in a way that the hit probability does not
depend on the Cherenkov angle and thus on the particle type. The di�erence of angles
of di�erent particle species are included in the coordinate system and a common
parameterization of the CEDARs response can be used for both pions and kaons.
The probability of a PMT signal is parameterized as a function of the particle

and then calculated at the CEDAR position using known beam optics and a so called transport
matrix. This is important especially for the Likelihood method. [42]
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kinematics (j∆K , jϕ). This approach leads to 73 free parameters to be �tted from
data for a single CEDAR. [42]

In �g. 2.4, the particles of a certain type that hit the PMT centrally, lie on a cir-
cle around the PMT with radius determined by the corresponding Cherenkov ring
(green dashed circles). For a particle of a type K and arbitrary kinematics, the
probability of the PMT being triggered mainly depends on the distance from the
ideal kinematics (green dashed circle) j∆K , Additionaly, it depends on the angle
of the tilt of the Cherenkov ring jϕ. This transformation from (θx, θy) to (j∆K , jϕ)
is di�erent for each PMT and particle species the CEDAR is supposed to select.
Hence, the parameterization is independent on the particle species as the di�erent
Cherenkov angles are included in the coordinate system used. [42]

However, the 2018 COMPASS data taking used a much higher beam intensity than
ever before (15 times higher than in previous COMPASS runs in 2008 or 2009). In
addition, the beam divergence RMS during those runs was ≈ 120µrad per plane4

with only about 10 - 15 % of events falling into the designed operating radius. A
major upgrade of the fronted electronics and PMTs at CEDARs as well as a redesign
of the corresponding �rmware took place to prepare for this data taking. The previ-
ously used analysis method using likelihood approach is not applicable, though, as
elaborated in 4.1.

4Thus beam divergency of 300 µrad is not uncommon.
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Chapter 3

Machine Learning approach

Machine learning (ML) is vaguely de�ned as computational methods that use experi-
ence and data to improve performance or make predictions and decisions. It involves
creating computer programs that are able to carry out certain tasks without being
explicitly programmed to do so, based on available data. [2][10][24]

Because data are used for the learning, their quality and volume are crucial to
ML algorithms. As in other areas of computer science, analysis of time and space
complexity of the algorithm is critical to measure its quality. In addition, a notion
of sample complexity is needed to evaluate the amount of sample data required for
the algorithm to learn. ML is therefore inherently related to statistics and data
analysis. [24]

The problem at hand is an archetypal example of classi�cation problem solvable by
supervised learning approach.1

3.1 Classi�cation

Classi�cation is the problem of determining a category or categories (called classes)
of some item(s). This is often performed by analyzing the observations (called in-
stances) into some set of quanti�able properties (called features) and comparing
those with corresponding properties in sample data. Other option is to compare ob-
servations to previous observations using some similarity or distance function. These
algorithms are called classi�ers. [10][24]

Classi�cation can be performed on structured or unstructured data. Examples of
classi�cation could be reading hand written digits, dividing incoming e-mails into
spam and non-spam, labeling documents based on their topic or image classi�cation
tasks such as recognizing shapes and objects in photos. [2][24]

1The computer is presented with sample input data and desired output (labels), with its goal to
�nd a relationship between the training data features and its labels in order to be able to predict
the label of an unseen data. This is the most common approach in classi�cation, regression and
ranking problems. [2][24]
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The number of classes is usually not large, but can actually be unbounded as is
the case of text classi�cation or speech recognition. As the goal of this thesis is
to develop a machine learning algorithm that is able to predict a likelihood for a
particle traversing CEDAR detector to be a pion or a kaon, it is a problem of binary
classi�cation.

There are plenty of methods for solving binary classi�cation problems, such as De-
cision tree learning, Bayesian networks, Logistic regression or Support-
vector machines. This thesis will not go into further details about any of these
as it was already discussed in the preceding work [41] and instead solely focus on
the selected technique called Arti�cial neural networks. The main reasons for
selecting neural networks are:

1. Outstanding results - NNs generally achieve very good performance for
classi�cation tasks and act as an universal approximator. [31]

2. Advanced software toolkit - with TensorFlow and Keras, development and
deployment of neural networks is achievable and developed code is easily trans-
ferable.

3. Previous experience - NNs were successfully used for di�erent projects in
the collaboration, thus some of the gained knowledge can be utilized.

3.2 Arti�cial neural networks

Neural networks, vaguely inspired by the biological constitution of a brain, consist of
a system of nodes (arti�cial neurons or just neurons) and connections between those
nodes with weights assigned to each connection. These nodes are usually divided into
layers, where neurons from one layer are connected to neurons in the next layer, i.e.
the output from one layer is the input for the next one.2 One layer serves for initial
input values and one for the output of the network (i.e. the classi�cation result in
our case), with optional so called hidden layers in between.3

w1

...

wn

bx1

xn

σ(~wT · ~x+ b) ∈ [a, b]

Figure 3.1: Schematic view of an arti�cial (sigmoid) neuron that converts multiple
inputs into a single output in some interval based on the activation function.

2These are called feedforward neural networks, because data �ows in one direction from the
input layer to the output layer.

3There is no special meaning for them to be called `hidden'. It simply means they are not input
nor output layers.
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The output of a neuron is determined by the weights ~w associated with each of its
inputs x and a so called bias b which are transformed by an activation function σ:
a function that maps the real numbers to some arbitrary interval.
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Figure 3.2: A deep neural network 4 with arbitrary hidden layers and arbitrary num-
ber of neurons in each layer.

3.2.1 Activation functions

There is a number of activation functions to choose from. Particularly, one could
consider the following:

1. Sigmoid function
Sigmoid function is used as an alias for the logistic function:

sigmoid(z) =
exp(z)

1 + exp(z)
=

1

1 + exp(−z)
= 1− sigmoid(−z). (3.1)

Writing it out for every weight, input and bias, we receive

sigmoid(~w, ~x, b) =
1

1 + exp(−~wT · ~x− b)
=

1

1 + exp(−
∑n

i=1wixi − b)
. (3.2)

The main advantage of using the sigmoid function is the easy computation of
corresponding derivatives in learning algorithms.

2. Swish function
The swish function is de�ned as

swish(z) = z · sigmoid(βz) =
z

1 + exp(−βz)
, (3.3)

4Deep refers to having 2 or more hidden layers.
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where β is either constant or a trainable parameter. In Keras, β = 1 and the
function becomes equivalent to the Sigmoid-weighted Linear Unit (SiL).

3. ReLU function
The recti�er or ReLU (Recti�ed Linear Unit) activation function, also known
as the ramp function, is de�ned as the positive part of its argument, i.e.:

ReLU(z) = z+ = max(0, z). (3.4)

It was found that ReLU enables better training of deep networks, compared to
some other activation functions such as the sigmoid function. This is mostly
caused due to the sparse activation, better gradient propagation, fast compu-
tation and scale-invariance. [32]

Potential problems can arise due to its non-di�erentiability at zero or un-
bounded character. However, the biggest problem is that in certain condi-
tions, a neuron can become inactive for all inputs, therefore no gradients �ow
backwards through that neuron and it essentially blocks learning. Some mod-
i�cations aim to solve these problems, Keras allows to specify 3 parameters:

ReLU(z, α,M, T ) =

{
min(z, T ) ... if z > T

αz ... otherwise
(3.5)

4. Softmax function
Softmax is usually used for the last layer of a classi�cation network because
the result can be interpreted as a probability distribution as it is in range (0, 1)
and sum over all output neurons is equal to 1.

softmax(~z)i =
exp(zi)∑n
j=1 exp(zj)

for i = 1, ..., n and ~z = (z1, ..., zn)T ∈ Rn (3.6)

5. Tanh function

tanh(z) =
sinh(z)

cosh(z)
=

exp(z)− exp(−z)

exp(z) + exp(−z)
=

exp(2z)− 1

exp(2z) + 1
(3.7)

6. ELU function
Exponential Linear Unit diminishes the vanishing gradient e�ect and enables
faster learning as the mean activations are closer to zero and thus the gradient
is brought closer to the natural gradient.

elu(z) =

{
z ... if z > 0

α(exp(z)− 1) ... otherwise
(3.8)

A slight modi�cation called SELU (Scaled Exponential Linear Unit ) can be
obtained by simply scaling ELU by some factor to ensure a slope larger than
one for positive inputs.

[29]
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Figure 3.3: Graphs of some of the presented activation functions.

3.2.2 Cost functions

In order to quantify how well is the NN performing, we de�ne a cost function.5

To put it plainly, the cost function simply compares how much on average the NN
deviates from the correct output. The aim is going to be to minimize this non-
negative function.

There is a reason why we de�ne a cost function instead of directly trying to maximize
the number of correct classi�cations. The problem with approaching the task directly
is that the number of correct classi�cations is not a smooth6 function of the weights
and biases. In general, making small changes to these weights and biases will not
cause a change in the number of correctly classi�ed training data points. This makes
it di�cult to assess expedient changes in order to improve the performance.

The cost function instead quanti�es exactly how much the NN deviates from the
correct result. This function is smooth, which allows us to use powerful algorithms
such as the gradient descent.

There are multiple of loss functions to choose from, such as:

5Sometimes also called objective or loss function.
6A smooth function is in�nitely di�erentiable over some domain.
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1. Quadratic cost function
Quadratic cost function or mean squared error, denoted by MSE, is de�ned
as:

MSE(W1, ...,Wk, ~b1, ..., ~bk) = MSE(W,b) =
1

2n

n∑
i=1

∥∥~yxi − ~ai∥∥2 , (3.9)

where Ws, s ∈ k̂ is a matrix of all weights for s-th layer with elements wsji
representing a weight for connection of i-th neuron in (s−1)-th layer and j-th
neuron in s-th layer, ~bs, s ∈ k̂ is a vector of all biases for neurons in s-th layer,
~yxi is the correct label for i-th training data ~xi and ~ai is the output of the NN
for this data. We sum over n available training data points and the NN has
(k + 1) layers including the input and the output layers. The input layer will
have index 0 and the output layer index k.

The ordering of the j and i indices in weights matrices may seem counter-
intuitive. The advantage of ordering weights in such fashion is that the acti-
vation (i.e. the output) of the s-th layer is

as = σ(Wsas−1 + bs). (3.10)

Note that σ(~z) :=

σ(z1)
...

σ(zp)

, that is applying the activation function element-

wise with a vector as a result.7 [41]

2. Binary Crossentropy
Speci�cally for a binary classi�cation problems, using Binary Crossentropy8

as a loss function can prove very bene�cial, and the output can be interpreted
as approximated probability.

BC(W,b) = − 1

n

n∑
i=1

~yxi log(~ai) + (1− ~yxi) log(1− ~ai), (3.11)

Reading the formula, log(~ai) is added to the loss for each input with label 1.
Conversely, log(1 − ~ai) is added to the loss for each input with label 0. For
inputs within a small phase space, we can assume the output of the network
to be constant. We can then rewrite the sum as:

BC(W,b) = S log(p) +B log(1− p), (3.12)

where S = #events labeled as 1 and B=#events labeled as 0 and p is the
network output. Taking a derivative of eq. 3.12 and setting it equal to 0, we
conclude:

∂

∂p
(S log(p) +B log(1− p)) = 0

S

p
− B

1− p
= 0

p =
S

S +B
.

(3.13)

7Without this notational trick the weights matrix would have to be transposed.
8The function is derived using entropy and information theory.
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Therefore the minimum is realized by the probability and all of the statistical
tools can be used. MSE leads to the same result, but binary crossentropy is usu-
ally preferred in classi�cation problems while MSE in regression taksk. Binary
crossentropy can be generalized for multi-class classi�cation into a Catebori-
gal Crossentropy. [17][35]

3.2.3 Optimizers

So far, we presented a basic NN model, but we restrained from a crucial part:
learning. When we talk about learning, what we want is an algorithm which lets us
�nd weights and biases such that the NN approximates correct output ~y = y(~x) for
all training data ~x.

Again, there is a number of learning algorithms to choose from. They all make use
of computing (or approximating) gradients and modifying the weights and biases
in a fashion to improve loss function. For the computations of gradients, backward
propagation of errors or simply backpropagation algorithm is used.

1. Gradient Descent
The foundation for all algorithms is the gradient descent, which derivation was
shown in the preceding work [41]. Let ~v be vector of all weights and biases.
Than we can iteratively update the weights and biases using this formula:

~v → ~̃v = ~v − ξ #    ”∇C, (3.14)

Where ξ is a positive parameter known as the learning rate and
#    ”∇C is the

gradient9 of the cost function. Eq. 3.14 gives a prescription of how to iteratively
adjust the variables so that the value of a loss function C(~v) keeps decreasing.

Notice that cost functions have the form C = 1
n

∑n
i=1Ci, i.e. an average over

costs of every individual training data. This means we would need to compute
the gradients

#     ”∇Ci for all training inputs and then average them to get the
resulting gradient

#    ”∇C = 1
n

∑n
i=1

#     ”∇Ci, which is extremely computationally
laborious and learning will therefore occur slow. [41]

2. Stochastic Gradient Descent (SGD)
To accelerate learning we can use a method called stochastic gradient descent.
Instead of computing the gradient for every training data and then modifying
the weights and biases, we divide the training dataset into groups of random
m items (referred to as mini-batch)10 and average their gradients. This gives
us a good estimate of the true gradient

#    ”∇C while accelerating the learning
signi�cantly:

#    ”∇C =
1

n

n∑
i=1

#     ”∇Ci ≈
1

m

m∑
j=1

#       ”∇Cij , (3.15)

9Note the arrow above gradient symbol: in this context we consider gradient to be a vector,
somehow inconveniently written using two symbols.

10It is worth mentioning that this adds another meta-parameter besides the learning rate ξ.
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where ij is a random index from all indices of training data. To connect this
with the NN, lets label vector of all of the weights as ~w = (w1, ..., wp)

T and
vector of all of the biases as ~b = (b1, ..., bq)

T ,11 C = C(~w,~b). We can now
write the gradient descent in terms of components k ∈ p̂ and l ∈ q̂ for a given
mini-batch as

wk → w̃k = wk −
ξ

m
∇C(k)

ij
= wk −

ξ

m

m∑
j=1

∂Cij
∂wk

(3.16)

bl → b̃l = wk −
ξ

m
∇C(l)

ij
= bl −

ξ

m

m∑
j=1

∂Cij
∂bl

, (3.17)

where ∇C(k)
ij

is a k-th element of gradient
#       ”∇Cij . [41]

3. Stochastic Gradient Descent with momentum
SGD with momentum aims to speed up convergence through denoising the
derivatives by exponentially weighting averages of the gradients. This function
is called momentum. The momentum is computed using all previous gradients
and giving higher weights to the most recent updates. [9]

4. Adaptive Gradient (AdaGrad)
The key idea of AdaGrad is to allow an adaptive learning rate for each of the
weights. The learning rates are adapted relative to how frequently a parameter
gets updated during training through dividing the learning rate by the square
root of the cumulative sum of the current and past squared gradients. The
more updates a parameter receives, the smaller the learning rate becomes. It
can have problems with slow convergence for high number of iterations. [20][56]

5. AdaDelta
AdaDelta tries to solve the problem of slow convergence of AdaGrad by slowing
down the learning rate diminution, or more precisely by updating the learning
rates based on a moving window of gradient updates instead of using all past
gradients. [21][20][56]

6. RMSprop
RMSprop is also an improvement of AdaGrad, but instead of using cumulative
sum of squared past gradients, it uses exponential moving average of these
gradients, similar to momentum. [20][56]

7. Adaptive moment estimation (Adam)
Adam is a combination of RMSprop and a momentum. It uses the exponential
moving average of the past gradients for computing the new gradients (like
SGD with momentum) and updates the learning rate in the same fashion as
RMSprop. [21][20][33][56]

11Notice the vectors are of di�erent sizes: in a given layer there is a weight for every connection
to every neuron, but only one bias for every neuron.

36



Other optimizers are for example Adamax, Nadam or FTRL algorithm. When
training a network, data are shu�ed and then presented to do network iteratively in
batches of prede�ned size. This process is repeated with reshu�ed data in so called
epochs (a full cycle through a dataset).

3.2.4 Types of neural networks

Recurrent neural networks

So far we considered exclusively feedforward networks, i.e. networks that do not get
any feedback from themselves. This means that information �ows in one direction
from the input layer to the output layer. However, di�erent approach is possible:
allowing loops in the network and hence creating a recurrent neural network. This
is in fact much closer to the biological analogy of how neurons work. [24][27]

When reading this sentence, understanding of each word is based on understanding
the previous words.12 It is unclear how a feedforward NN could use its reasoning
about previous words to make predictions. This is where recurrent NN o�er a solu-
tion by allowing the information to persist because of the loops present in them. [27]

It can be di�cult to understand what is going on in the loop, but really it is just
multiple copies of the same network, each passing information to the next one as
illustrated in �g. 3.4. This shows that recurrent NN are tied to sequences of data
(e.g. audio, time series or natural language). In essence, they are able to connect
previous information to the present task, such as using previous words in a sentence
to make predictions about the next word. [27]

Because physical events being recorded by the CEDARs ought to be independent,
usage of recurrent networks do not seem to provide any bene�ts.
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Figure 3.4: A recurrent neural network as multiple copies of a single feedforward
network passing information to each other, where xi ∈ n̂ and oi, i ∈ n̂ is the input
and the output, respectively.

12Another example would be listing the alphabet forwards and backwards. It is much easier to
remember (or predict) the next letter when the sequence leads to it as opposed to starting from,
say, the letter F.
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Convolutional neural networks

Convolutional neural networks (CNNs), as the name indicates, use convolution13 in
place of general matrix multiplication in at least one of its layers. These are called
convolutional layers. The element involved in carrying out the convolution operation
is called a kernel or a �lter 14, which is a matrix of prede�ned dimensions. This matrix
is than multiplied by a portion of the input of the same size, gradually sliding from
the beginning of the input to its end. This reduces the input into a form that is
easier to process, without losing features critical for reliable prediction. [30]

The reduction is further achieved by using pooling layers that use either max pooling
or average pooling. Pooling returns a maximum or an average from a portion of the
input covered by the kernel.

CNNs are mostly used in image and video recognition because they are generally
very good in capturing patterns (the spatial and temporal dependencies) and can
process large inputs while reducing the number of learnable parameters compared
to a simple feedforward network. [30]

Random Vector Functional Link neural networks

Optimization of the network over all of its parameters (weights and biases) can be
very computationally intensive. Furthermore, backpropagation based algorithms of-
ten su�er from slow convergence, getting stuck in a local minimum and high sensitiv-
ity to the learning parameters. For these reasons, a di�erent approach was proposed
and later evaluated in [45]. A RVFL network has randomly generated weights and
biases that stay constant during the learning phase between the input and hidden
layers. These constants are generated such that the activation functions are not all
saturated, i.e. a(0)i − b

(0)
i < 0 for at least one i. It was shown that such network is a

universal approximator for continuous functions on compact sets. An enhancement
to RVFL are direct links from the input layer to the output layer, which were proven
in [45] to have a signi�cant e�ect on the overall performance. [45]

In RVFL network, the input features (let xi be i-th input feature) are transformed
into the so called enhanced features (let x̃i be i-th enhanced feature), by feeding
it through the enhancement nodes which are present in the hidden layers (with
randomly generated weights and biases). The enhanced and the original features
are then fed-forward to the output neurons (with weights and biases to be opti-
mized). [45]

In this structure, only the output weights (both for the connections from last hidden
layer and input layer) W (k−1) and W (∗) are to be optimized. This means solving the
problem:

ti =

(
xi
x̃i

)T

·

(
w

(k−1)
•i
w

(∗)
•i

)
(3.18)

13A function derived from two given functions by integration that expresses how the shape of
one is modi�ed by the other.

14A �lter could for example detect edges, geometrical shapes etc.
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Figure 3.5: A RVFL network with arbitrary hidden layers and an arbitrary number
of neurons in each layer. Red lines represent direct connections between input and
output layers with weights matrix W (∗) and blue lines connections between last hid-
den layer and output layer with weights matrixW (k−1). Only the colored connections
have trainable parameters.

for i ∈ N̂ , where N is the number of data samples and ti is the target i-th output
neuron value.15 [45]

Directly solving eq. 3.18 can be prone to over�tting. A regularization on the solution
by e.g. least square method or preference of the solution with a smaller norm value
is usually performed to obtain the solution in practice. The optimization of the
output weights can be divided into two classes based on the algorithm used. One
is an iterative RVFL, which uses gradient of the error function and iteratively tries
to minimize the error. The second is a closed-form based RVFL, which obtains the
weights in a single step. This is done using pseudo-inverses, out of which Moore-
Penrose pseudo-inverse is the most commonly used one. [45]

Developing a RVFL using Keras is possible, because Keras layers may receive a
trainable parameter to indicate whether the layer should be trained. Adding
direct connection from the input to the output layer can be done using multiple
inputs and merging it. The functional API has to be used for this purpose.

Radial basis function network

RBF networks usually consist of three layers: input, output and one hidden layer.
The input layer feeds the features to the hidden layer, which increases its dimen-

15For simplicity of notation, the formulation is the same even for cases with biases in the output
neurons.
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sion by applying non-linear radial basis function16 as the activation function. This
transformation is performed because non-linearly separable classi�cation problems
are more linearly separable in higher-dimensional space, according to Cover's theo-
rem. [11][28]

Therefore
# features ≤ #hidden neurons ≤ # samples. (3.19)

The radial basis function compares each input to some prototype, which is a vector
from the training set. Each neuron in the hidden layer has a prototype vector and
hence computes the similarity between the input vector and its prototype vector.
The most commonly used is Gaussian basis function:

ai = φ(~x− ~ci) = exp(−‖~x− ~ci‖
2

2δ2i
), (3.20)

where ~ci is the prototype of i-th neuron and δi 6= 0 is the neurons bandwidth (a non-
trainable parameter to be optained by e.g. a clustering algorithm). The activations
tend towards a typical bell curve, where ~ci describes its center and δi its width. The
output is then computed in a standard fashion, i.e.:

yj = σ(Σiwjiai + bj), (3.21)

where yj is the output of j-th neuron and wji is the weight associated with the
connection between i-th hidden neuron and j-th output neuron. More often than
not, the bias is left out and identity function is used for activation. Note that wji
describes the height of the bell curve's peak. [28]

Besides classi�cation, RBF networks can be used for function approximation or time
series prediction.

RBF network can be implemented in Keras by reimplementing a subclass of
tensorflow.keras.layers.Layer .

16RBF is a function φ : • −→ R that measures distance of the input and some �xed point, either
the origin or some other �xed point called the center.
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Chapter 4

New methods for beam particle

identi�cation

This chapter will provide theoretical proposition of three di�erent methods for beam
particle identi�cation using data from CEDARs and reasoning for a need to develop
a new one.

4.1 Problems with the 2018 data taking

Because the 2018 data taking used a beam with much higher intensity, the silicon
beam telescope had to be removed as it could not withstand the increased radiation.
Instead, �ber detectors were installed. While measurements of beam position have

Figure 4.1: Two �ber detectors measuring beam angle.

alike precision when performed by the silicon telescope or �bre detectors, �bre de-
tectors have around 5− 10 times higher error margin for beam slope measurements.
On the other hand, �bre detectors have better time resolution.
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The spatial resolution of a beam telescope can be even further improved, while
the same does not apply for �ber detectors. This is because of the nature of �ber
detectors, where a signal gets picked up by a slot of certain width as shown on
�g. 4.1. For a reasonable distance between �ber detectors, there is a small number
of angle values that can be measured, which leads to correlated input data and
inaccurate transport matrix (eq. 4.1) as there is a small discrete set of angles dXspect

and dYspect. Another factor is that signal at `borders' of the slots gets picked up by
one of the neighboring slots, so a smearing must be taken into account.

This results in e�ect shown in �g. 4.2.

Figure 4.2: A correlation between beam angles caused by low angle measurement
precision of �bre detectors.

From the X and Y position at the spectrometer and corresponding angles dX and
dY , the angle at CEDAR location is calculated using transport matrix given by the
beam group. Note that the beam position at CEDAR does not interest us as the
detector was designed such that only the beam angle at CEDAR is of importance
(see chapter 2).

The matrix is basically assuming the angle at CEDAR position to be a linear com-
bination of aforementioned parameters, i.e.

dXcedar = a ·Xspect + b · dXspect. (4.1)

The same equation holds for Y and dY . In 2008, b = 0, so the angle at CEDAR
position depended only on the position at spectrometer.
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However, b = 0 is not the case for the 2018 data taking and the low angle precision
of �bre detectors is thus a big factor. The fact that b 6≈ 0 is caused by having beam
with higher intensity and colliding particles with polarized target, hence needing
to keep it at low temperature. The target is enlarged in order to prevent it from
overheating, which requires di�erent settings of focusing magnets and by that means
changes the beam optics for which CEDARs were built.

Figure 4.3: Histogram of PMTs response ratio in Xspect and dXcedar coordinates. [36]

The transport matrix given by the beam group seems incorrect, as PMT response
(color maps) in �g. 4.3 show clear correlation between dXcedar and Xspect, while e�-
ciency should be constant for the given dXcedar. One can �nd better transformation
matrix by `rotating' the histogram in �g. 4.3 in such way that the PMT response
indeed only depends on its angle at CEDAR: [36]

dXcedar ≈ 0.18(cos (1.15)
1000dXspect − 1.891

0.172
+ sin (1.15)

Xspect + 0.4323

0.8852
)

dYcedar ≈ −0.12(cos (0.47)
1000dYspect − 0.07835

0.2071
+ sin (0.47)

Yspect − 0.1654

0.6209
).

(4.2)

Therefore all four position parameters could be aggregated into two. It is worth
investigating the performance of the NN, when it is given the four original values
versus the 2 computed angles. If all is well, there should not be much di�erence
- although the NN could actually be able to �nd a better approximation for the
angles at CEDAR position. A good exercise is to present the NN with both the
original data and the approximations. If the learning phase is successful (depends
on many factors including the NN structure, data labeling etc.), there should not
be any improvement when inputting more parameters as the information is already
present in the 4 original parameters.

Results of this exercise were as expected, although the network with 4 input vari-
ables describing angle and position seem to perform slightly better and using all 6
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parameters also resulted in an insigni�cant improvement. However, this conclusion is
not entirely clear due to the problems with kaon proxy as discussed in chapter 5.5.1.
The results can be found in app. A.1.

4.2 Using neural networks for classi�cation

There are three distinct methods proposals to examine. While the �rst one tries
to directly predict the particle type, the other two formulate and compare two
hypothesis to get the �nal likelihood.

4.2.1 Method 1: NN as a direct classi�er

The most straightforward approach is to use the data about beam position and
angle at spectrometer together with responses from PMTs of each CEDAR separated
bitwise for the input and have a single output neuron. Note that its value cannot
be directly interpreted as a likelihood, due to the imbalance between the kaon and
the pion samples, referred to as the signal and the background sample. For each
CEDAR, one model will be trained on a dataset with mixed background (pion) and
signal (kaon) data.

The outputs of the two models should be combined so as to aggregate the informa-
tion, e.g. by addition, multiplication, logical AND and so on1. A threshold should
be then selected in a way that the sample is proportionally divided into two sets
(2.5 % of events in the background sample should be labeled as kaons and the rest
as pions) or by selecting a desired e�ciency working point.

4.2.2 Method 2: NN as a PMTs response predictor

The second approach is to use the network to predict a probability that certain
PMT �res assuming the event is induced by kaon or by pion. Therefore there will
be at least two models: one trained on the background dataset and the other on the
signal dataset.

The input will consist of 4 nodes corresponding to beam position and angle at
spectrometer or the 2 computed e�. angles. However, it is unclear how each of the
models should be built in terms of the output layer. One could try predicting all 16
PMTs responses at once, separating it into two models based on CEDARs or building
a network for each of the PMTs response individually. This is to be investigated in
the implementation phase.2

The probabilities outputted by the NN would then be compared with the actual
CEDARs responses and a likelihood (or log-likelihood) function could be formulated

1Using a single network for both CEDARs is problematic ad elaborated in chapter 5.5.1
2Obviously, one would start with one network for all PMTs responses and check its stability

and performance and only after that divide it into smaller networks.
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for the particle to trigger a certain PMTs response pattern when being a kaon or
a pion (denoted by S and S

′
).

SL(S,X, Y, dX, dY )

S′L(S
′
, X, Y, dX, dY ).

(4.3)

Note that the likelihood function is dependent not only on the input variables, but
on the trained NN as well. This is emphasized by the left superscript, which is
formally redundant.

We then calculate both of these likelihoods for a given event. Lets consider a model
trained on signal �rst, i.e. on kaons. Lets assume the NN predicted a certain PMT
to �re for with probability pi, i ∈ {1, 2, ..., 16}, e.g. when p1 = 0.3 we expect the
�rst PMT to �re with 0.3 probability and not give signal with 0.7 probability. Lets
denote the PMTs actual responses by xi ∈ {0, 1}. Lets denote the probability of
obtaining given response by `i, that is:

`i =

{
pi ... if xi = 1

1− pi ... if xi = 0.
(4.4)

Calculating SL(S,X, Y, dX, dY ) :=
∏16

i=1 `i we get a likelihood of the given response
pattern occurring assuming the particle is a kaon.3 Doing the same for the model
trained on pions, we obtain the value for S

′
L(S

′
, X, Y, dX, dY ), i.e. the probability

of this PMTs response pattern occurring for a pion.

The thing to keep in mind with this approach is that the likelihood is not really
a probability as it does not take into account the correlation between PMTs patterns.

4.2.3 Method 3: NN as PMTs pattern predictor

The aim of this method is to take into account the above mentioned correlation
between PMTs responses. There will be two networks for each CEDAR, one trained
on the signal sample and the other trained on the background sample. Each of
these networks will have 256 neurons in the output layer, each neuron accounting
for a certain combination of PMTs.4. Note that the output layer should use an
activation function such that a sum over all output neurons is one.

The hope is that the network would be able to predict the probability for a given
particle to produce a particular CEDAR response based on its position and angle
at spectrometer, hence the output of the model will be a likelihood of the observed
PMTs pattern occurring assuming a species of the particle that induced it. The

3Because the numbers will be generally very small, it can be bene�cial to de�ne a log-likelihood
function and calculating

∑16
i=1 log(`i)

4There are 8 PMTs in one CEDAR that can output 2 values, which results in 28 = 256 combi-
nations.
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likelihoods of both hypothesis are divided and the result is compared to some pre-
de�ned threshold, similarly to method 1.

Note that we need to create a network for each CEDAR due to the exponential
growth of the possible combinations. Trying to predict both CEDARs responses
at once would require 216 = 65536 neurons in the output layer. Given four input
parameters the NN will de�nitely be very unstable, i.e. it will get perturbed a lot
by minor changes to its inputs.

This concern holds even for the architecture with 4 (or 2) input neurons and 256
output neurons. This may lead to a need for further reduction of the output layer,
which on the other hand results in overlooking correlation between PMTs response.

If the learning phase is successful, method 1 and 3 are expected to give rather similar
results, while method 2 might perform worse due to the aforementioned correlation.

4.3 Training data

As discussed, in order to utilize neural networks one needs enough data of high
quality for the learning phase. The aforementioned methods will be tested on the
real data as well as di�erent Monte Carlo simulations.

4.3.1 Dataset types

When a neural network is being trained, three datasets are usually used. The �rst
one is called the training dataset and it is used to �t the parameters (compute the
gradient), i.e. the weights and biases of the connections between neurons. Also dur-
ing the training phase, a so called validation dataset is used to provide an unbiased
evaluation of a model �t on the training dataset while adjusting the model's hyper-
parameters5. In Keras, it is easy to set the training to validation dataset ratio by
de�ning a validation_split parameter in tf.keras.models.Model.fit func-
tion call used for training. The validation is then performed after every epoch. [6]

Another validation approach is using a k-Fold Cross-Validation algorithm. First, the
training dataset is split into k equal sized groups. One of the groups is then used
as the validation dataset, while the rest is used for training. The cross-validation
process is repeated k times, with each of the subsamples being used exactly once.
This way, each group is used once for validation and k−1 times for training. Using k-
Fold Cross-Validation algorithms is especially useful in situations with limited data
samples. [7]

A potential improvement for unbalanced datasets is o�ered by the Strati�ed k-Fold
Cross-Validation algorithm. It extends the regular k-fold Cross Validation through
maintaining the same class ratio for all k folds as the ratio in the original dataset.

5The hyperparameters do not get adjusted automatically, but the information allows the devel-
oper to tune it accordingly. It is also a good indicator of over�tting.
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The third dataset is called the test dataset and is only used after the training is
�nished. It gives an unbiased evaluation of the �nal model. It is important that this
data were not used during the training phase.

4.3.2 Measured data

Data from mDST reconstructed in CORAL were further processed using one of
existing PHAST user events used for previous analysis. The resulting .root �les
contain a ROOT tree with number of variables. The position and angle at spec-
trometer are represented by beamX , beamY , beamdX and beamdY variables. The
CEDARs response is encoded as a byte data type6 and represented by CE1PMn

and CE2PMn variables. These will form the foundation for our NN to learn. Other
variables contain information about pressure, run number, time etc.

We will be using several datasets. First of all, using the variable nBeamTracks we
will separate events with only one detected track and events with multiple tracks.
As one beam events are the least complicated, the most meaningful results are to
be expected. This accounts for approx. 40 % of all events.

Unfortunately, not all tracks get detected and so even some events from the �rst
dataset may be caused by multiple particles. This correlated noise is expected to be
the main issue in the classi�cation task.

As the CEDARs were set to select kaons, which account only for ≈ 2.5 % of the
events, this data will be labeled as pions (note that this label is correct only for 97.5
% of the events, so one needs to be aware of that not only when using these data for
validation and testing, but even for training). We will call this the background sample
and there is no trouble obtaining more than su�cient number of those events. For
the background sample, run 287510 will be used.

Kaon proxy

A worse situation is with obtaining a kaon sample, since in reality there is no such
thing. However, as presented in chapter 2, the refractive index and thus the resulting
Cherenkov ring of a particle depends also on the pressure inside the CEDAR vessel.
This can be utilized to obtain some sort of kaon proxy. In certain pressure range
photon rings of pions have the same diameter as the photon rings of kaons at the
working pressure, hence the CEDARs treat it like a kaon sample. For CEDAR 2,
which overall performs better, the pressure range that accounts for the working

6Because there are 8 PMTs for one CEDAR, when we index them, we can represent their
response as a binary number with 8 digits (for example 10100001 means that the �rst, the third
and the eighth PMTs gave signal). This gives us 28 = 256 combinations, so it can be represented
by an integer in this range. This is the equivalent of byte data type. Thus, the example binary

number is equal to 161. When selecting events where a certain PMT �red, one can use bitwise AND
with the corresponding decimal number. Lets say we want to select all events where the fourth
PMT �red. This can be simply achieved by converting the binary number 00010000 to decimal,
which results in 16, and then specifying condition (CE1PMn&16)>0 . This is useful for CEDAR
e�ciency plots.
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pressure of 10.31 bar is somewhere between 10.20 bar and 10.24 bar7. We will call
this the signal sample.8

Usually, it is important to handle the cases with unbalanced training data with care
as the NN could tend to over�t. There are number of techniques that can be used for
such cases. From the easiest approaches, one could try undersampling, oversampling
or synthetic sampling. While undersampling means removing some data from the
class with more observations, the other two do the exact opposite. Oversampling
is basically just duplicating existing data of the class with less observations and
synthetic sampling aims to synthetically manufacture observations of unbalanced
classes which are similar to the existing using nearest neighbors classi�cation.

To get events in the working pressure range where pions can be used as a proxy
kaons, we use run 287088, during which a so called pressure scan was performed.
This means �lling the vessel of CEDARs rapidly with He gas and then slowly letting
it out, hence decreasing the pressure again. To select events only after the vessel was
already �lled all the way up, a cut based on time of the event has to be done as
shown in �g. 4.4. For the selection, variables timestamp and CE2Pressure present
in the ROOT �le will be used.

Figure 4.4: A pressure scan with cuts to select events where pion can be used as
kaon proxy.

Because both CEDARs operate at di�erent pressures and the �lling of the vessel
takes place simultaneously, data from only one of the detectors can be utilized at
the given moment. For run 287088, CEDAR 2 gives good results and therefore will

7This range also accounts for smearing, i.e. selecting events with not fully clear signal. For this
reason, also samples with smaller pressure range will be prepared in order to examine whether
better purity compensates for smaller sample size.

8Like for the background sample, the label will be correct for only ≈ 97.5 % of events.
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be used. CEDAR 1 was performing under special hardware conditions (di�erent
diaphragm opening size), so its data are generally not suitable for training.

The main problem with the kaon-proxy approach is that pressure scans are formally
performed only once per year (although usually with higher frequency). Combined
with the speed of the gas releasing, only around 43000 events �t the �ltration criteria
for this run and this number further decreases when the pressure range is reduced.

Both samples will be combined, creating a mixed dataset (for method 1); the back-
ground sample will be labeled as 0 representing pion while the signal sample as 1
for a kaon.

Electronic stability

Unfortunately, from time to time part of CEDAR 2 and/or part of CEDAR 2 and
full CEDAR 1 were not read due to electronic instability. Those events should be
eliminated from the sample used for training. To do so, one can create a spill by
spill histogram and �ll it with number of events in the given timestamp range and
a second histogram with events where e.g. PMT 1 �red.

When everything is �ne, the ratio of these two plots should be more or less �at.
However, one can see that for some spills PMT 1 �res much less often then for
others. These are considered bad spills and they ought to be eliminated from the
training samples. This should be done for all 16 PMTs. The expectation is that there
are two groups: �rst group containing PMTs 5�8 from CEDAR 2 and the second
one with full CEDAR 1 and PMTs 1�4 from CEDAR2. This can be seen in �g. 4.5.

Figure 4.5: A single bad spill for PMT 5 in CEDAR 2.
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4.3.3 Monte Carlo simulations

Besides data from detectors, some Monte Carlo (MC)9 simulations will be utilized in
order to provide more training data10 as well as identify main issues causing troubles
in separation. Only a single CEDAR MC data exist.

The original MC data were `too perfect', because it did not include angle smearing,
correlated and random noise and ine�ciency. These e�ects had to be taken into
account to better �t the data. When e�ciency vs beam angle for di�erent number of
PMTs �ring is plotted, one can see that the MC simulations do not copy the reality.
For example, the bottom left plot of �g. 4.6 shows almost a perfect e�ciency of
selecting 0.025 kaons, slowly decreasing with the increase of the angle. Unfortunately,
that is not the case in the measured data.

(a) MC (b) Measured data

Figure 4.6: E�ciency vs beam angle for 2 (top) and 8 (bottom) PMTs �ring.

There were four `damages' done to the MC to better account for data. These abbre-
viations will be used when talking about these dataset:

1. MC-1xx: additional not detected track (correlated noise)

2. MC-x1x: additional random noise and ine�ciency (two similar damages per-
formed at once)

3. MC-xx1: bad knowledge of beam angle at the CEDAR

For example, a dataset with both additional undetected track and bad knowledge
of the beam angle at CEDAR will be denoted by MC-101.

9MC datasets were obtained from COMPASS collaboration and were not prepared as a part of
this thesis.

10This is especially important for method 3, for which there is not enough training data.
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It turned out the most crucial for the distribution description is correlated noise.
Without it, no reasonable match between data and MC could be achieved. Tails
description remain problematic even after the modi�cations as shown in �g. 4.7.
Because determining which of the aforementioned issues has the biggest impact on
the separation can provide valuable information about potential for improvement,
all combinations of problems were examined.

Figure 4.7: E�ciency vs beam angle for 0, 1, ..., 8 PMTs �ring. The red curves rep-
resent data from detectors and the blue curves modi�ed MC data.

51



52



Chapter 5

Implementation

This chapter describes the implementation of aforementioned methods, tools for its
testing, analysis and optimization and at last the integration process of a trained
classi�er into the C++ physics analysis software PHAST with no dependence on a
Python Interpreter.

Because of the nature of this classi�cation problem, the development phase included
examination of the preliminary results and adaption with respect to the �ndings. The
most important discoveries that determined the direction of the next development
will be presented in this chapter as well.

At last, some future suggestions especially concerning the AMBER experiment are
presented .

5.1 Datasets preparation

The �rst step to this work was the preparation of data. In order to prepare data for
training one must �lter respective events from the ROOT �le created by PHAST
user event associated with CEDARs analysis.

Method TTree::Draw() available in ROOT can be used to select events passing
a certain criteria. One can then loop over leafs of the tree (variables) and save
the content of the ones that are of interest. This procedure is shown in list. 5.1
with a code excerpt of looping over ROOT tree and saving contents of the beamX

variable from events that pass the condition upon nBeamTracks , CE2Pressure

and timestamp to a �le.

The background dataset as well as kaon proxy can be obtained in this fashion.

It is also advisable to convert the datasets into .npy format ties together with
the Python Numpy package, which is optimized for reading and writing speed. For
simplifying the conversion, a Python class called FileConverter was developed.
It can convert a single text �le or loop over a whole directory and convert all of its
contents.
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1 // access file and tree

2 TFile *f = new TFile("pscan2.root", "READ");

3 TTree* tree = (TTree*)f->Get("U32_CEDAR/USR32");

4 std:: string condition = "nBeamTracks ==1 && CE2Pressure >=10.20

↪→ && CE2Pressure <=10.24 && timestamp >1540323600"

5 //save events that pass conditions to event_list

6 tree ->Draw(">>event_list",condition.c_str(), "goff");

7 TEventList *list = (TEventList *) gDirectory ->

↪→ Get("event_list");

8 tree ->SetEventList(list);

9 Double_t beamX;

10 Byte_t CE1PMn ,CE2PMn;

11 //set branch address of beamX to beamX variable address

12 tree ->SetBranchAddress("beamX",&beamX);

13 std:: ofstream outFile;

14 outFile.open (out);

15 //loop over events

16 for(int i=0; i<list ->GetN(); i++){

17 //get entry from the event list

18 tree ->GetEntry(list ->GetEntry(i));

19 outFile << beamX <<std::endl;

20 }

Listing 5.1: Example code of preparing data from a ROOT tree.

5.2 New methods for particle identi�cation

As presented in chapter 4.2, there are three methods to be implemented. The �rst
one is a direct classi�er, while the other two try to utilize a likelihood approach and
hence require a model for both hypothesis.

All of these methods utilize the CModel class that implements a neural network to-
gether with methods for its training and predictions. Usually, each CModel instance
will account for one CEDAR.

The class contains the following public methods:

• __init__ - The constructor that initializes speci�ed attributes and loads a
model.

• loadModel - Loads a speci�ed neural network model and assigns it to the
instance that invoked it.

• saveModel - Saves the model currently linked to this instance.

• trainModel - Creates a new model and trains it according to passed parame-
ters. Most of the work related to neural networks is performed by this method
as elaborated in chapter 5.2.1,
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• evalModel - Evaluates the model on a given test dataset.

• clearTempDir - Clears a directory used for saving partial progress of the
training. It is called automatically upon training �nish, but has to be called
explicitly in case of an early termination.

• predict - Computes (and optionally saves) a prediction given by the current
model for the passed dataset.

• loadPrediction - Loads a prediction from speci�ed �le.

• setThreshold - Sets the threshold above which particles are considered kaons.

• computeThreshold - Computes the threshold for which speci�ed number of
events are above in a given prediction.

• getE�Points - Computes the threshold and purity for which the model has
speci�ed e�ciency.

• setE�Point - Sets the e�ciency working point for this model.

• setThresholdByE�Point - Sets the threshold to match the speci�ed e�-
ciency working point.

• getAllE�Points - Computes the threshold and purity for which the model
has all e�ciencies in range of 1 to 100.

• exportModel - Exports the model into binary .h5 �le for further processing.

• convertToJson - Converts the speci�ed model in .h5 format to .json

using the frugally-deep library.1

• appendToExportedModel - Appends a list of the input variables and all
working points to an exported model.

• exportToJSON - Exports the model into the .json format readable by
the C++ CModel class to be used in PHAST. Combination of the former
3 methods.

5.2.1 Neural networks implementation

As mentioned, TensorFlow or more precisely the included Keras module will be used
for neural networks development.2 In total, three network types were developed to
be used in all methods. Number of input and output neurons as well as the input
and output data are di�erent for each method, but the same for each network type.

1See chapter 5.6.
2Note that Keras exists as a standalone API as well and may di�er from the one included in

TensorFlow.
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Plain network

The most straightforward approach is to build a simple deep feedforward neural
network by linearly stacking hidden layers on top of the input layer. This is achieved
by using tf.keras.Sequential . It also allows for adding Dropout layers, which
randomly set input units to 0 with a speci�ed rate at each step of the training
process. This feature is used to prevent over�tting. Other inputs are then scaled by
1/(1− rate ) in order to preserve the same sum over all inputs.

1 def __buildPlain(self ,activations ,dropRates):

2 #add normalization layer

3 mean ,var=self.__compMeanVar(X_train)

4 layer = Normalization(mean=mean ,variance=var ,

5 input_dim=self.structure [0])

6 #input and first hidden layer is different

7 model=Sequential ([layer ,Dense(self.structure [1],

8 activation=activations [0],

9 input_dim=self.structure [0])])

10 #loop from the second to the end

11 for idx ,size in enumerate(self.structure [2:]):

12 if dropRates[idx]: model.add(Dropout(dropRates[idx]))

13 model.add(Dense(size , activation=activations[idx +1]))

14 return model

Listing 5.2: Example code for creating a plain neural network using TensorFlow.3

RBF network

1 def __buildRBF(self ,X_train ,betas ,activation ,dropRate ,kmeans):

2 #first , select the initializer for the centers

3 if kmeans: initializer=InitCentersKMeans(X_train)

4 else: initializer=InitCentersRandom(X_train)

5 #create a RBF layer

6 rbflayer = RBFLayer(self.structure [1],

7 initializer=initializer ,

8 betas=betas ,

9 input_shape =(self.structure [0],))

10 #build the model as: input layer -->RBF layer -->output Layer

11 model=Sequential ([rbflayer ,

12 Dropout(dropRate),

13 Dense(self.structure [2], activation=activation)

14 ])

15 return model

Listing 5.3: Example code for creating a RBF neural network using TensorFlow and
an external library [39].

3The normalization was originally performed manually as the
tf.keras.layers.Normalization was still experimental in the version used at that time.

It was implemented with it for easier use in C++ only after the other network types were
discarded and hence no normalization layer is present in the list. 5.5 and list. 5.4.
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In order to create a RBF network, one must reimplement tf.keras.layer.Layer

with its constructor and three core methods: __init__ , build , call and
compute_output_shape . This layer was already developed in [39] and is used in
this work4 together with its random centers and k-means clustering initializers. An
example usage is shown in list. 5.5.

RVFL network

Unlike the previous cases, developing RVFL network cannot be done using
tf.keras.Sequential because of the direct connections from the input layer to
the output layer, known as skip or residual connections. However, building a model
with non-linear topology can be achieved by using the functional API. A deep neural
network can be interpreted as a directed acyclic graph and the functional API makes
use of that: it o�ers tools for building a graph of layers.

1 def __buildRVFL(self ,activations):

2 #define two identical input layers

3 input1 = Input(shape=(self.structure [0],))

4 input2 = Input(shape=(self.structure [0],))

5 #create the first hidden layer using input1

6 layers =[( Dense(self.structure [1],

7 activation=activations [0],

8 trainable=False)(input1))]

9 #add more hidden layers with input being the previous layer

10 for idx ,size in enumerate(self.structure [2: -2]):

11 if dropRates[idx]:

12 layers.append(Dropout(dropRates[idx])(layers[idx]))

13 layers.append(Dense(size , activation=activations[idx+1],

14 trainable=False)(layers[idx +1]))

15 #create the last hidden layer

16 if dropRates [-2]:

17 layers.append(Dropout(dropRates [-2])(layers [-1]))

18 x2=Dense(self.structure [-2],

19 activation=activations [-2],

20 trainable=False)(layers [-1])

21 #add the unused input neurons to the last hidden layer

22 conc = Concatenate ()([input2 , x2])

23 #create the output layer

24 if dropRates [-1]:

25 layers.append(Dropout(dropRates [-1])(conc))

26 out = Dense(self.structure [-1])(layers [-1])

27 #return model with the specified input and output nodes

28 return Model(inputs =[input1 , input2], outputs=out)

Listing 5.4: Example code for creating a RVFL network using TensorFlow functional
API.

4Some import statements in the code had to be updated for a newer TensorFlow version.
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The process is then simple: we create two input layers and build an ordinary lin-
ear model using one of them (the second stays unconnected) while setting the
trainable parameter to False . We append5 the unused input layer to the last
hidden layer and connect both to the output layer, this time with trainable=True .

Training the network

Training of di�erent networks is alike once the model is built. CModel class o�ers
three validation approaches: simple validation split, k-fold cross-validation and strat-
i�ed k-fold cross-validation. The latter two only di�er in the instance kf passed as
a parameter that can be either sklearn.model_selection.KFold or
sklearn.model_selection.StratifiedKFold . A simpli�ed method for training
with (strati�ed) k-fold cross-validation could look like the following:

1
...

2 losses =[]

3 idx=0

4 #loop over folds

5 for train_index , val_index in

↪→ kf.split(np.zeros(len(Y_train)),Y_train):

6 train_x = X_train[train_index]

7 train_y=Y_train[train_index]

8 validation_x = X_train[val_index]

9 validation_y= Y_train[val_index]

10 for x in range(iterations):

11 #checkpoint if better solution found for different folds

12 checkpoint = tf.keras.callbacks.ModelCheckpoint(

13 self.TEMPDIR+self.modelTitle+str(idx),

14 monitor='val_loss ',

15 save_weights_only=True ,

16 save_best_only=True ,

17 mode='min')

18 callbacks = [checkpoint]

19 #fit the model , i.e. train it

20 history=model.fit(train_x ,train_y ,

21 validation_data =( validation_x ,validation_y),

22 callbacks=callbacks ,** kwargs)

23 #get best val loss value and save

24 losses.append(np.min(history.history['val_loss ']))

25 idx+=1

26 #find best model

27 bestIdx=np.argmin(losses)

28 #load the best model weights

29 model.load_weights(self.TEMPDIR+self.modelTitle+str(bestIdx))

30
...

Listing 5.5: Example code for training a network.

5By appending we mean stacking neurons of both layers into a single one.
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Setting a checkpoint and callback makes Keras save the best model after each it-
eration (each time the loss function improves between two epochs, the old �le is
overwrote). This way, the best model over all of the folds, iterations and epochs
can be chosen and training phase can be interrupted without loosing any of the
progress. The temporary �les containing the parameters are afterwards discarded
upon normal termination or by calling the clearTempDir method.

5.2.2 Method 1: NN as a direct classi�er

The �rst method takes the beam angle at CEDAR and the counter's response as the
input. We usually create a model for each CEDAR and then combine both outputs
using some transformation, i.e. addition, multiplication, logical AND etc. One could
also create a single network with both CEDARs information as input, for which the
CModel class can be used.

This might show problematic especially for the current data, though, because the
signal proxy is obtained only from CEDAR 2 as the working pressures of both
detectors di�er. In the signal sample, CEDAR 1 response is replaced by CEDAR 2
response. The network might be able to pick up on this pattern and over�t. This
is what was observed as shown in �g. 5.9 in chapter 5.5.1. Thus, one model per
CEDAR is used.

1
...

2 #define datasets

3 trainingDataset="/path/to/datasets/trainingDataset.npy"

4 testDataset="/path/to/datasets/ttestDataset.npy"

5 #create a Classifier instance with No models

6 meth1Classifier=Classifier(None ,inputCols1=np.r_[1:5 ,7:15] ,

7 inputCols2=np.r_[1:5 ,15:23] ,

8 labelCol =27, multiplicityCol1 =25,

9 multiplicityCol2 =26, effPoint =0.6,

10 DEFAULT=False)

11 #train and save models as "example -model1", "example -model2"

12 #it can be later loaded using Classifier.loadModels (" example ")

13 meth1Classifier.trainModels(trainDataset ,"example")

14 #evaluate model and print results

15 print(meth1Classifier.evalModel(testDataset))

16 #generate predictions , average them and save

17 prediction="/path/to/predictions/example.npy"

18 meth1classifier.predict(testDataset ,prediction)

19
...

Listing 5.6: Example code for creating a model, training it, evaluating and generating
predictions using the �rst method and the Classifier class.

Class Classifier ties together two models and contains among others the same
methods as CModel . It allows for easy usage of both of the models at once by calling
its methods. The prediction can be treated separately, or combined in a speci�ed
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way. This class also contains a method analyze2models that plots a histogram
of the outputs of each model on one axis and computes number of events above
threshold for each model and when combined. Example usage of this class is shown
in list. 5.6.6

5.2.3 Method 2: NN as PMTs response predictor

Method 2 requires one model for the signal identi�cation and one for the back-
ground identi�cation. For working with these models, a child class of CModel called
PmtResponseModel was created. It adds two more methods speci�c for methods 2
and 3. Method compareProbs computes the probabilities as shown in eq. 4.4 and
method getCondProb returns a probability of a PMT response (method 2) or pat-
tern (method 3) assuming it is induced by kaon or pion (depending on the training
dataset used for the model).

Similarly to the previous case, a child class of Classifier called M23Classifier

was created wrapping the two models in order to simplify the work�ow. It adds
several methods needed for handling the likelihoods, namely meth2Predict and
meth3predict .

5.2.4 Method 3: NN as PMTs pattern predictor

The third method tries to resolve correlation present in the previous method by pre-
dicting the exact PMT response pattern. Therefore, the output layer consists of 256
neurons, each representing one combination of responses of the 8 photomultipliers.
In order for method 3 to work, the PMTs response encoded as byte (see 4.3.2) is
converted into a binary matrix with 256 columns �lled with 0 and a single 1. This
is achieved using tf.keras.utils.to_categorical after the dataset is loaded.
Another option is to use tf.keras.losses.SparseCategoricalCrossentropy as
the loss function. It accepts the labels as integer, each corresponding to a di�erent
class.

Because making predictions of 256 neurons is memory intensive, meth3predict

performs these predictions in batches and converts them into a single value based
on the PMT pattern that occurred for each of the models after each batch. Finally,
it returns the ratio of these likelihoods, i.e. L(signal)

L(background)
.

5.3 Analyses

As mentioned, the results are thoroughly analyzed in order to decide the direction
of following development. For this reason, the most robust class eventually turned
out to be PredictionAnalyzer .

6One can of course use two CModel instances instead, which in fact o�ers more �exibility as it
allows specifying di�erent function arguments for each model.
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It works by tying it with an instance of the CModel ( PmtResponseModel ) or the
Classifier ( M23Classifier ) class and the test dataset that was used to generate
predictions (or that the analyzer should use for creating predictions). Afterwards,
the prediction can be analyzed using number of methods or simply by running
its method analyzePrediction . This method generates a report with numerous
insightful information.

The class contains these public methods:

• __init__ - The constructor that initializes speci�ed attributes and gener-
ates prediction if none was passed.

• getConfusionMatrix - Returns confusion matrix of the prediction.

• getConfusionStats - Prints confusion matrix of the prediction together with
some derived statistics such as sensitivity, sensibility, error rate and precision.

• dividePredictionToBins - Divides the prediction into speci�ed number of
bins based on its values and return the bins or its count together with the
interval size.

• plotHist - Plots a histogram of the prediction with optional cut.

• plotHistCurve - Plots a histogram of the prediction divided into speci�ed
number of bins and �ts a curve with optional cut.

• custAngleFilt - Filters prediction and angle based on speci�ed column and
respective threshold value together with an operator (>, < or =). This is
especially helpful when distinguishing multiplicities in the analyses.

• plotAngleScatter - Plots a scatter plot of the prediction with respect to
beam angle.7

• getOutputWithPmts - Get means of the prediction based on number of
PMTs �ring.

• getOutputCumSum - Calculate a vector of cumulative sum of the bin size
(a number that describes the number of events that have bigger output than
the bin maximum value), i.e. for bins=[1,3,6,15] the function iterates from the
end and returns [25,23,21,15]) .

• plotAngleHist - Plots a histogram of the prediction with respect beam angle.

• plotAngleBins - Plots means and RMS of binned prediction based on beam
angle.

• plotAngleHistBins - Plots histograms of the prediction based on beam angle
with means of bins and RMS (basically combination of plotAngleHist and
plotAngleBins methods in one plot).

7Beam angle at CEDAR position is known for the MC simulations and estimated for the mea-
sured data using eq. 4.2.

61



• computeForRoc - Computes coordinates of points for a pseudo ROC curve
(see chapter 5.5.1). For generating the points, np.percentile is used as it
proved faster than a custom implementation which can still be accessed inside
the computeForRocUsingThreshold method.

• plotRoc - Plots a ROC curve, possibly with logscale to measure the model
performance.

• plotMultRoc - Plots multiple ROC curves into a single plot. This is used for
models comparison.

• plotMultRocDivided - Plots multiple ROC curves into a single plot with
the base being a speci�ed curve. The base is used to divide all other curves by.

• plotPredMultRoc - Makes predictions with the same dataset using the
passed models and plots the corresponding ROC curves into a single plot.

• printSelectionVSmultiplicity - Prints a table with number of total signal
and background events before rejection, selected signal events, not selected
signal events, selected background events and e�ciency based on multiplicity
and thresholds.

• printStats - Print some computed statistics about the prediction (see chap-
ter 5.5.1)

• computeForFalse Computes points for a false positive curve (only for mea-
sured data).

• plotFalse Plots a false positive curve used to measure over�tting.

• plotMultFalse Plots multiple false positive curves into a single plot.

• plotPredMultFalseMakes predictions with the same dataset using the passed
models and plots the corresponding false positive curves into a single plot.

• computeForExpPur - Computes the points of an expected purity curve (only
for measured data).

• plotExpPur - Plots a expected purity curve used to measure over�tting.

• plotMultExpPur - Plots multiple expected purity curves into a single plot.

• plotPredMultExpPur - Makes predictions with the same dataset using the
passed models and plots the corresponding expected purity curves into a single
plot.

• meth3plots - Plots the prediction of the third method as a colormap in a e�.
angle x and e�. angle y coordinates for a given set of patterns.

• meth3plotsBySingleMultiplicity Plots the prediction of the third method
as a colormap in a e�. angle x and e�. angle y coordinates for some multiplicity.
That is, group all patterns containing a speci�ed number PMTs �ring.

62



• meth3plotsByMultiplicity Plots the prediction of the third methodas a
colormap in a e�. angle x and e�. angle y coordinates for all PMT patterns
for all multiplicities (256 �gures).

• meth3plotsBySymmetry - Plots the prediction of the third method as a col-
ormap in a e�. angle x and e�. angle y coordinates for grouped PMTs, such as
00000011, 00000110, ..., 1100000 and 11111000, 01111100, 00111110, 00011111.

For all of the plots, one can specify more parameters using **kwargs , which is
directly passed to the corresponding plot function. A modul matplotlib and es-
pecially matplotlib.pyplot is used for the plotting.

These classes were grouped into a package cedarSeparation . A scheme can be
seen in �g. 5.1

Figure 5.1: Class diagram of the cedarSeparation package.
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5.4 Meta parameters optimization

Choosing the meta parameters of a neural network (i.e. the structure, activation
functions, learning constants etc.) is no easy task. One can tune the parameters by
trial and error or design a heuristic approach of some kind.

Both were tested in this work. A genetic heuristic inspired by biological evolution
was developed. It mimics the laws of genetics with the goal of iteratively improving
a solution.

We start by having a population and a �tness (or objective) function that measures
the `quality' of our individuals. Then, we create a new generation by combining the
best individuals from the previous one.

The heuristic has the following steps: [23]

1. Initialize: Randomly generate a population of N candidate solutions. The
properties (also called chromosomes or genotypes) are generated from prede-
�ned solution space that contains all permissible values (in this case all possible
values of the meta parameters).

2. Fitness: Calculate the �tness (validation loss in our case) of all candidate
solutions.

3. Create a new generation:

(a) Selection: Stochastically select a prede�ned number of chromosomes
from the population. Individuals with better �tness are more likely to
be selected.

(b) Crossover: Perform a crossover analogically to biological reproduction,
i.e. combine each property of two individuals in order to create an o�-
spring for the next generation that inherits traits of both parents.

(c) Mutation:Analogically to biological mutation, change the new o�spring
by randomly changing some properties with prede�ned probability in
order to maintain genetic diversity from one generation to the next.

(d) New generation: Replace the current population with the new popula-
tion.

(e) Test: Test whether the end condition (prede�ned number of iterations,
�tness function value) is satis�ed. If so, stop. If not, go back to Step 2.

A �owchart of this algorithm can be seen in �g. 5.2. Each iteration of this process
is called a generation. The entire set of generations is called a run.

Parameters of the genetic algorithm must be tuned as well. For example, too small
mutation rate may lead to genetic drift (change of frequency of some gene occurring)
while too high mutation rate could cause a loss of good candidate solutions.
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Figure 5.2: Flowchart of the genetic algorithm.

In this context, each individual is one neural network and therefore a training have to
occur for each individual at every generation. For these reasons, HTCondor Service
is used in order to run the algorithm.

Validation loss is used as a �tness function. In order to correctly compare individuals,
a validation dataset is created and used for each network. In the end, a di�erent test
dataset is used to compare the result of the genetic algorithm and structures found
by trial and error.

5.4.1 Running the algorithm

In order to run a script using HTCondor Service, the script is transferred onto the
LXPLUS together with all the dependencies (plus training and validation datasets).
The next step is to de�ne a submit description �le that speci�es information needed
by HTCondor to properly run the job. It contains path to the executable to run,
input and output �les, running duration etc. An example submit �le can be seen in
list. 5.7.
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1 executable = job.sh

2 arguments = $(ProcId)

3 output = out

4 error = err

5 log = log

6 transfer_input_files = GADriver.py, CModel.py, genAlg.py,

↪→ montecarloOrig.npy

7 when_to_transfer_output = ON_EXIT

8 request_GPUs = 1

9 request_CPUs = 1

10 +JobFlavour = "testmatch"

11 queue

Listing 5.7: An example of the job description �le to be submitted to HTCondor.

The next step is to write the executable .sh �le. This �le must begin with the line
#!/bin/bash and contain installations of the used packages and the python scripts
to run. For using TensorFlow with the current setup, one must also wrap the script
in scl enable devtoolset-9 to enable GCC 9. An example is shown in list. 5.8.

1 #!/bin/bash

2 scl enable devtoolset -9 - <<EOF

3 python3 -m venv myvenv3

4 source myvenv3/bin/activate

5 pip3 install tensorflow

6 pip3 install tensorflow -gpu

7 pip3 install matplotlib

8 pip3 install tabulate

9 python3 GADriver.py

10 EOF

Listing 5.8: An example of the executable �le that installs required packages and
runs GADriver.py script.

Finally, the script GADriver.py simply runs the genetic algorithm with population
of 40 individuals for 500 generations as shown in list. 5.9.

1 from genAlg import genAlg

2 import numpy as np

3 import os

4

5 dataset=np.load(os.getcwd ()+"/path/to/dataset.npy")

6 x=genAlg(dataset ,40,500, verbose =0).run()

Listing 5.9: Example code of using genetic algorithm with the genAlg class. Note
the appendix of the full path needed for HTCondor to correctly locate the dataset
�le.
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After 500 generations with population of 40 individuals8, the best performing model
was compared to a model with its parameters selected by hand. The results shown
in �g. 5.3 appear very similar (the validation loss of the architecture selected by
hand was circa 1 % lower), indicating that the problem seems to be insensitive to
architecture of the network.

Figure 5.3: ROC curves of the best model created by genetic algorithm and by hand.

5.4.2 Network type selection

As mentioned, three network types were implemented. All were tested using
tf.keras.eval . The results are shown in �g. 5.6 and 5.4. It shows that the
plain network performs overall slightly better than RBF network in terms of val-
idation loss, but signi�cantly in terms of background reduction. The RVFL net-
work performs the worst. The same conclusion was made by further inspecting the

Figure 5.4: Values of loss function for a test dataset of di�erent network types.

performance using the PredictionAnalyzer class and namely its printStats ,
printSelectionVsMultiplicity and printConfusionStats (�g. 5.5). At last,

8Multiple algorithm runs with di�erent settings took place, all with similar results.
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plain RBF RVFL
True negative 483846 477976 471186
False negative 6088 6088 6088
False positive 3978 9848 16638
True positive 6088 6088 6088

Table 5.1: Confusion matrix of di�erent network types at 50 % e�ciency (sensitivity).

respective ROC curves (their meaning is further explained in chapter 5.5.1; generraly
the higher the curve, the better) in �g. 5.6 show this trend.

For analysis related to the �rst method, a plain network with 2 hidden layers contain-
ing 50 and 20 neurons was used. Furthermore, binary crossentropy, Nadam optimizer
and swish activation function were selected. Learning rate was set to 0.01, betas to
0.99 and 0.999 and �nally the drop rate to 0.2.

Figure 5.5: Output of PredictionAnalyzer.printConfusionStats for the plain
network. The other network types can be found in app. A.2.

5.5 Comprehension of gradual results

This section goes over some of the most important �ndings.

5.5.1 Estimating e�ciency

The classi�cation problem at hand has several problems. One being the incorrect
labeling ought to be further examined. For the measured data, the sample is labeled
as 0 even though around 2.5 % are signal events. When the proxy signal is added
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Figure 5.6: ROC curves of di�erent network types. The plain network is used as the
base for the second plot.

from the pressure cut, the whole training dataset still contains more incorrectly than
correctly labeled kaons.

The problem does not exist in the available Monte Carlo simulations. In order to
examine the e�ect of labels mismatch, the MC �le was modi�ed by duplicating the
signal events and relabeling the duplicates to background. For a similar experiment,
the kaons were not duplicated but half of them were relabeled. Both approaches led
to a reasonably similar result (see �g. 5.5.1): the network's ability to classify did not
notably worsen, but the mean value dropped to half. This can be seen as a shift in
the NN output peak as shown in �g. 5.8

Figure 5.7: ROC curves of models trained on original dataset, dataset with doubled
and relabeled kaons and a dataset with half of the kaons relabeled. The second plot
uses the original curve as base.

This experiment represents a proof of work of using pressure cuts as the kaon proxy.
More precisely this proves that the labels mismatch does not have a signi�cant e�ect
on the network training.

Another ancillary problem of labels mismatch concerns e�ciency calculations. Be-
cause the labels in measured data are not fully correct, the e�ciency can only be
estimated. This is especially problematic for comparing models because the problem
concerns validation and test datasets as well.
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(a) No doubling of kaons (b) Doubling of kaons

Figure 5.8: The shift in NN output when the incorrect relabeling is present in method
1. Note that only predictions higher than 0.1 are selected for these plots, which only
accounts for ≈4.5 % of all of the tested events.

The e�ciency estimations and subsequent calculations are performed as following:

1. Make a cut by setting a threshold, number of events to be selected or an
e�ciency working point (sensitivity)

2. Estimate e�ciency as the ratio of selected signal events over all signal events:
E = #selected signal events

#signal events

3. Compute:

• Expected number of kaons in BG sample: KBG = 0.025 ·#BG events

• Expected number of kaons to be found by NN: Kexp = E ·KBG

• Number of BG events labeled by NN as signal: KNN

• `False positive': F = KNN −Kexp
9

• Expected purity: Pexp = Kexp

KNN

• Selection purity (Signal/BG): P = Kexp

F

• BG reduction factor: R = #BG events

KNN

9Typically, number of false positives cannot be negative by de�nition. In this context, we rede�ne
this metric to better measure performance of a network with incorrect labels.
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Problems with false positive

Because we know how many kaons are in the data sample without any cuts (KBG),
based on e�ciency of the network we also know how many should be there after an
arbitrary cut. Di�erence between the number of observed kaons in the selection and
expected number of kaons in the selection is called `False positive'. These should in
fact be background pions passing kaon selection criteria. F = 0 means the selection
contained as much kaons as expected, but there is no room for background events.
Thus, background rejection should go to in�nity at the same e�ciency if all is
consistent. When F < 0, the network is basically `too good' in selecting the kaon
proxy.

Similarly, Pexp, i.e. the ratio of expected number of kaons to be selected Kexp divided
by the number of seleted BG events KNN . When Pexp > 1, describes how much the
e�ciency estimation is in fact overrated. For example, if Pexp = 2 and we expect
to see 10 thousand selected events from the measured data, then NN only selected
5 thousand. In addition, not all of those events are indeed kaons. This results in
e�ciency overestimation, which is exactly what was observed.

For more insights, we frequently plot these 3 curves:

1. ROC curve - the background rejection factor for di�erent e�ciencies.

2. False positive curve - the number of false positives for di�erent e�ciencies.
If all is well, F > 0.

3. Expected purity curve - expected purity for di�erent e�ciencies. If all is
well, Pexp ≤ 1.

Method 1 Method 2
Threshold 0.437273 8.96904
#Selected events 15107 25000
#Events 2394660 2394660
#Events labeled as BG 2364350 2364350
#Events labeled as Signal 43311 43311
Signal/Background ratio 0.0180888 0.0180888
#Selected signal events 12658 12658
E�ciency: E 0.292258 0.292258
#Selected BG events: KNN 2449 12342
#Events labeled as BG 2364350 2364350
#Kaons in BG: KBG 59859 59859
Kexp 17494 17494
#False positive: F -15045 -5152
Expected purity: Pexp 7.14332 1.41744
Selection purity - Signal/BG: P -1.16278 -3.39557

Table 5.2: E�ciency estimations (for alike e�ciency) for measured data showing the
problems of using a kaon proxy.
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Figure 5.9: Using one model for each CEDAR vs one model for both detectors
simultaneously.

These problems are apparent when using 1 model for both CEDARs versus using
a model for each CEDAR as shown in �g. 5.9. While the �rst plot indicates better
performance of the single model, the second and the third plot show that all the
gain seems to be fake. Note that due to the low volume of kaon proxy, the dataset
used for training is used for these predictions as well.10

Even with two models, the results are problematic as F < 0 for lower e�ciencies.
This is presented in tab. 5.2. For the second method, problems with over�tting seems
to be smaller and only apparent when selecting fewer events (�g. 5.10). This can also
be due to the method 2 being overall worse (the �rst plot in �g. 5.10) and having
lower background rejection rate. Due to the lack of data, there is no way of telling
which was the originator but as shown in �g. 5.18, method 2 performed worse on
MC, so we can assume it was the latter.

Similar conclusion can be deduced from looking on network output for a mixed
dataset (added kaon proxy) and a background dataset. One can see a `bump' at
model prediction value around 0.8 for the mixed dataset, but no such thing in the
background sample. Histograms of both networks (each based on one CEDAR) show
the same: a cluster at top right corner for mixed dataset is completely absent in the
background data prediction.

10A validation dataset was extracted to use for the analysis, but the results did not di�er from
the ones obtained using all available data, so it was proceeded using the whole dataset. Formally,
this could be an issue.
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Figure 5.10: Methods 1 and 2 comparison on measured data.

(a) Mixed dataset (b) Background dataset

Figure 5.11: Model prediction on di�erent datasets. Outputs < 0.1 are discarded.

In order to improve the results, the pressure range from pressure cut was further
reduced and examined. It was separated into four datasets within a pressure range
of 0.01 bar to see if a signal sample of higher purity leads to an improvement despite
the reduction of signal sample size for training.11 The results shown in �g. 5.13 and
in �g. 5.14 imply that except for the data in 10.20 - 10.21 bar, the ranges perform
very similar. Narrowing the pressure range to 10.21-10.24 bar seems reasonable, but
no signi�cant improvement is to be achieved.

11Non-intuitively, the best proxy would be the sample with the highest validation loss since it
implies a closer resemblance to the real data.
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(a) Mixed dataset (b) Background dataset

Figure 5.12: Prediction of a model based on CEDAR 1 (y-axis) and CEDAR 2
(x-axis) on di�erent datasets. Outputs < 0.1 are discarded.

Figure 5.13: ROC curves for smaller pressure ranges used for kaon proxy. The second
plot uses the orange curve as the base.

Figure 5.14: False positive and expected purity curves of the smaller pressure ranges
used for kaon proxy.

5.5.2 Methods analysis

The methods outputs were further analyzed in order to inspect their behavior and
�nd the best performing one. One of the interesting plots is the model output versus
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the angle at CEDAR12, �ltered by number of �ring PMTs. We should be able to
see mean of the output to increase with higher multiplicities and reduce with bigger
angles. This is shown in �g. 5.15. Especially at high multiplicities, outputs of the
measured data are more scattered than MC.

(a) MC simulations. (b) Measured data.

Figure 5.15: Output of method 1 based on e�. angle for MC and data of CEDAR 2
at multiplicities 0, 5 and 8.

Similar trends are observable for method 2. This is shown in �g. 5.16. The right side
plots of both �gures 5.15 and 5.16 were obtained using dataset without kaon proxy.

12Rather than the actual angle at CEDAR, the estimation as described in eq. 4.2 is used.
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It uncovers that the methods work as expected and with higher multiplicities, more
events are identi�ed as signal. Plots of all multiplicities can be found in app. A.3.

(a) MC simulations. (b) Measured data.

Figure 5.16: Output of method 2 based on e�. angle for MC and CEDAR 2 data at
multiplicities 0, 5 and 8.

The third method could only be tested using Monte Carlo simulation, because it
requires much more data for its training phase due to the output layer dimensions,
but the trend was consistent. However, more insightful can be to plot the e�. x angle
on x-axis, the e�. y angle on y-axis and �nally the method output, i.e. log(p(K)

p(π)
), on

z-axis for combinations of active PMTs13. In �g. 5.17 one can observe the pattern
13This was done for all 256 combinations, but only the most interesting were included in app. A.4.

The rest can be found on the attached CD.

76



`rotating' on the �rst three plots when di�erent PMT �red. The last plot shows that
for all 8 active PMTs, the output is higher with lower angles.

Figure 5.17: Output of method 3 as a colormap in e�. angle x and e�. angle y co-
ordinates. First 3 plot contain events with one PMT �ring, the last plot with all
8.

Figure 5.18: ROC curves of the three methods. For the second plot, curve of method
1 is used as the base.

The next step is to compare the methods. ROC curves mentioned earlier are a
good indication of the method performance. Since as for the moment there are no
good data to test and e�ciency can only be estimated, MC simulations were used
for the comparison shown in �g. 5.18. As expected, method 2 performed an order
of magnitude worse in terms of background reduction due to the correlation not
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taken into account. Surprisingly, method 3 gave basically the same results as the
�rst method and yet no problems with stability were observed. That being sad, the
architecture contained far more neurons and the training, evaluation and prediction
were more time and memory consuming. Because of that, the main focus is given to
the �rst method.

5.5.3 Hybrid method

Because the kaon proxy from pressure cut seems problematic, a dataset containing
measured background data and MC signal data was prepared. To estimate the angle
at CEDAR for measured data, eq. 4.2 was used.

Figure 5.19: ROC curves of a model based on CEDAR 2, hybrid model and combi-
nation of models based on both dataset.

The e�ciency estimations were compared with the ones of a single model based on
CEDAR 2 and an average of models for each CEDAR as shown in �g. 5.19 and in
�g. 5.20. It appears that the hybrid model performed the best in terms of over�tting
and an improvement also o�ers using only CEDAR 2 at low e�ciencies, but since
the labels are incorrect, one does not have a certainty whether the used kaon proxy
is better or the separation is simply worse.

Figure 5.20: False positive and expected purity curves of a model based on CEDAR
2, hybrid model and combination of models based on both dataset.
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5.5.4 Dataset size

Monte Carlo �les that were being used contain ≈ 80 million events. Such datasets
are very large and training using all available data takes a long time. The goal of
this exercise was to determine whether there is a limit of improving the results with
the use of more data. To do so, we start with using ≈ 5 million events for training
and gradually halve it. The performance is then evaluated using a test dataset.

The results presented in �g. 5.21 can be biased, because other parameters were
unchanged. Especially for batch size, this means that less weights and biases adjust-
ments occurred. For this reason, in the next step, also the batch size was halved.

The results show that the improvements are only signi�cant to around 300 thousand
events. It also implies that the reduction of batch size for a smaller dataset can
improve the overall performance to some extent. The next exercise was to also
reduce the network itself with the dataset reduction to avoid overtraining on the
small datasets. However, no di�erence was observed.

Figure 5.21: Values of loss functions and ROC curves of di�erent dataset sizes (di-
vided by curve of the largest dataset) used for training.

Figure 5.22: Values of loss functions and ROC curves of di�erent dataset sizes (di-
vided by curve of the largest dataset) used for training.
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5.5.5 MC �les analyses

In order to �nd what has the biggest impact on the network's ability to separate
kaons and pions, 8 MC �les containing all combinations of problems introduced in
chapter 4.3.3 were examined individually.

The most impactful problem seems to be random noise and ine�ciency (denoted by
MC-010, see chapter 4.3.3). With added bad beam angle knowledge (MC-011), worse
rejection rate than for MC-101 and MC-110 is obtained. This means that globally,
additional track is less important from the point of view of the performance losses,
despite the assumption.

Figure 5.23: ROC curves of single problems and combinations of two problems.
Curves ending prematurely imply that �neven very small change to e�ciency leads
to 100 % BG rejection and thus the factor goes to in�nity.

However, for high multiplicities, the additional track leads to bad e�ciency and
purity. That being said, multiplicities 5, 6 and 7 seem problematic for MC-101 only.
One can see the drop of e�ciency and selection purity compared to MC-011 and
MC-110. Note that the BG rejection rate does not worsen, in fact quite the opposite.
Another observation is that almost half of the signal events at multiplicity 8 is lost
due to ine�ciency.14 This is shown in �g. 5.24.

On average, the sample contains around 35 times more pions than kaons, but this
ratio di�ers for di�erent multiplicities of �red PMTs (the 4th column in the table
in �g. 5.24). This purity is very di�erent between MC-110 and MC-101 in contrast
to MC-011. Ine�ciency seems to be a bigger problem than random noise, but these
two modi�cations were done simultaneously. At the moment, CEDARs are assumed
to have high e�ciency of 93 %. The most surprising part is the high e�ciency and
selection purity at multiplicity 2 for MC-101, where the separation was expected to
be more di�cult compared to higher multiplicities.

The next step was to separate ine�ciency and random noise to investigate their
individual e�ects. For that, all �les have to be examined on at a time again. Further,
the notation is updated:

14Ine�ciency of photomultipliers simulated by relabeling PMT response from 1 to 0 with some
probability.
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(a) Statistics for MC-011 dataset.

(b) Statistics for MC-101 dataset.

(c) Statistics for MC-110 dataset.

(d) Statistics for MC-111 dataset.

Figure 5.24: Statistics of separation grouped by multiplicity (output of
PredictionAnalyzer.printSelectionVsMultiplicity ).

1. MC-1xxx: additional not detected track (correlated noise)

2. MC-x1xx: additional random noise

3. MC-xx1x: ine�ciency

4. MC-xxx1: bad knowledge of beam angle at the CEDAR

Interpreting these results is problematic. It appears that when comparing a single
e�ect, the most signi�cant is the additional not detected track. As expected, com-
bining the two biggest problems, i.e. adding not detected track and beam angle
smearing, we receive the worst combination of two problems.
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Figure 5.25: ROC curves of all combinations of a single, double and triple problems.
The last plot is the same as the previous one, but divided by MC-1011 curve.

However, for combination of three problems, it is a completely di�erent result. The
worst performing is MC-0111, i.e. the dataset without the biggest single problem,
additional undetected track.

Another issue that MC simulations show is the wide beam spread. According to
CEDAR speci�cation, the beam angle dR =

√
dX2 + dY 2 should be below 65 µrad

for a 190 GeV beam, while the current beam has RMS of dX and dY ≈ 120 µrad
each. Thus only ≈ 10-15 % of events are within the designed radius.

In the original MC �le before any damages, one can observe the e�ciency peak
moving in �g. 5.27. Events that trigger all 8 PMTs are mostly within the intended
working radius. The network is then able to separate with ease. Even when the
damages are performed, the separation depends on the angle greatly (see �g. 5.15).

These observations encourage the beam group to reduce angular spread of the beam.
In �g. 5.26, classi�cation improvements achieved by removing the most signi�cant
issue (combination of issues) is shown.

It appears that the best improvement can be achieved by removing the beam angle
smearing (MC-1110). This shows the need for better beam angle measurements,
hence usage of radiation resistant silicon beam telescopes.

However, if two problems were to be removed, better performance can be achieved
by eliminating correlated and random noise.
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Figure 5.26: The biggest improvements achievable by removing 1, 2 and 3 problems.

(a) 5 PMTs (b) 8 PMTs

Figure 5.27: Number of events for multiplicity 5 and 8 divided by all events based
on e�. angle in original MC with no `damages'.

5.5.6 Adding second track

So far, the easiest case was discussed, i.e. having only one particle crossing the
CEDAR. This unfortunately accounts only for around 40 % of events. The next
exercise is to test the model performance for cases with two tracks.

In order to do so, the MC �le without additional undetected track (MC-0111) was
modi�ed by combining pairs of original events. For CEDAR response, logical OR
was used and angles of both tracks were saved. Two situations were examined: one
with the detected second track with its angle available to the network, and one
without it.

The results in �g. 5.29 show that there was some improvement by knowing the
angle, but overall the performance dropped signi�cantly compared to the MC-0111
dataset.
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Figure 5.28: ROC curves of all problems combinations with MC-1111 as the base.

Figure 5.29: ROC curves of all MC-0111 dataset with added track and MC-1111
dataset.

5.5.7 Adding PMT pads to MC

So far, the PMT response was treated as a binary. In reality, each PMT consists of
4 pads that respond individually. Unfortunately, only the number of pads that gave
signal was present in the original MC simulation.

The performance of a network that received this information was tested. It turned
out that the results seem to improve signi�cantly as shown in �g. 5.30, almost
mimicking the ROC curve of dataset with the second track eliminated.

Even better results are expected when not only the number of pads were known,
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but the pads were indexed and instead of 8 PMTs responses for each CEDAR we
would have 32 responses of the pads.

Figure 5.30: Comparison of ROC curves with and without using pads. The second
plot uses curve of MC-1111 as the base.

5.5.8 Adding PMT pads to measured data

The responses of individual pads can be retrieved from data (unfortunately this
information is not present in the MC simulations yet). In addition, the time when
a pad gave signal is measured. For CEDAR 2, three models were tested. One with
the individual pads responses, the second one included the time of the hits RMS,
denoted by TRMS, and in the third, events with TRMS > 0.8 were discarded.

Figure 5.31: ROC curves of models with and without pads based on measured data,
with the original model using binary PMTs response as base, and their false curves.

As �g. 5.31 shows, it appears that the more information is fed to the network, the
more it is successful in selecting the kaon proxy. It is worth noting that when the
network was presented with the hit time RMS, the mean of this variable in the
selection for some high multiplicity (e.g. 5, which seemed the most problematic)
lowered compared to the original dataset. This implies that the model was able to
distinguish events caused by an undetected track to some extent.
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Subsequently, the hit time was used to remove some o�-time hits that were likely
caused by a second undetected track, while keeping the original track. Once again,
three datasets were inspected after the preprocessing: with individual pads, with
number of pads �ring and without any pad information. For each model, an alter-
native that included RMS of the hit time was examined as well.

Figure 5.32: Adding individual responses of pad to the model.

The results show in �g. 5.32 show the expected trend, that is that the more infor-
mation the model receives, the more it tends to select the kaon proxy. All of these
exercise call for a better kaon proxy, further discussed in chapter 5.7.1.

5.6 Integration to PHAST

In the preceding work [41], a handful of di�erent integration suggestions was pre-
sented both with and without introducing Python dependencies into PHAST. Since
only inference is required in the C++ PHAST code, training the model in Python
and then converting in for use in C++ with no further Python dependence was the
preferred alternative.

For this purpose, frugally-deep library was used. After the model is trained, it can
be saved into a binary .h5 �le. Frugally-deep then converts this �le into JSON

format readable for it in C++. Furthermore, all working points including e�ciency
with its corresponding threshold and purity together with the names of the input
variables are appended to the .json �le outside the main structure so that they
are ignored by frugally-deep. These points are calculated using a speci�ed dataset.
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Upon training, a normalization of the dataset takes place. This is performed using
a tensorflow.keras.layers.Normalization layer available outside the experi-
mental package since TensorFlow 2.6 and supported by Frugaly Deep since version
0.15.13. Using older versions requires performing the normalization by hand15 as
was performed in the early stages of this work.

For usage in PHAST, a C++ class called CModel , which handles model loading and
inference, was created. The constructor loads the model and runs automatic inference
tests to ensure the same behavior as inside Python environment and prints expected
input variables.

Overloaded method isSignal returns boolean value based on the speci�ed e�-
ciency and input in the form of std::vector<FDEEP_FLOAT_TYPE> or the model
output. FDEEP_FLOAT_TYPE is set to float by default and can be changed to
double by setting the macro. For debugging, a VERBOSE can be set to true to
print additional information into the console. In the verbose mode, list. 5.10 would
lead to an output similar to list. 5.11.

As illustrated, CModel can be used for inference in a standalone application. It
can also be imported into a ROOT script processing a TTree and therefore into
PHAST user event. For that, one must move the source codes of CModel class
and frugally-deep library together with its required libraries (json, fplus and Eigen)
into lib or user directory, where it is automatically compiled and linked upon
building PHAST. Note that PHAST must be built using at least C++ 14 and so
does ROOT.

1 #include "cmodel.h"

2

3 int main(int argc , char *argv [])

4 {

5 // create a CModel instance by loading json file

6 CModel model("/path/to/model.json");

7 // specify input vector

8 std::vector <FDEEP_FLOAT_TYPE > input {...};

9 // predict and compare to threshold of 50 % efficiency

10 bool isSignal=model.isSignal (0.5, input);

11

12 /* ******** Alternative way ********* */

13

14 // predict and get the model output

15 auto result=model.predict(input);

16 // compare the output to threshold of 80 % efficiency

17 isSignal=model.isSignal (80, result);

18 return 0;

19 }

Listing 5.10: Example code of using a trained model in C++ standalone application.

15The normalization must be performed for every prediction using the same values as the ones
used during training.
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1 Loading json ... done. elapsed time: 0.001462 s

2 Building model ... done. elapsed time: 0.002796 s

3 Running test 1 of 1 ... done. elapsed time: 0.000340 s

4 Loading , constructing , testing of /path/to/model.json took

↪→ 0.004999 s overall.

5 Loading working points ... done. elapsed time: 0.010254 s

6 Input variables: (12 inputs in total)

7 beamX , beamY , beamdX , beamdY , PMT1 , PMT2 , PMT3 , PMT4 , PMT5 ,

↪→ PMT6 , PMT7 , PMT8

8 Model output 0.1987298 < threshold 0.273611

9 Model output 0.1987298

10 Model output 0.1987298 > threshold 0.115984 --> signal event

↪→ identified!

Listing 5.11: An example output of a code that uses the CModel class.

In the user event where one wishes to use the network only the CModel class must
be included, in the standard way.

The execution time of the CModel.predict method was tested for di�erent sizes
of the network. For a network with 100 neurons the prediction took ≈ 0.5ms on
LXPLUS. With 10 times larger network (hence with 100 times more parameters),
the prediction took ≈ 2ms.

1 //open file and access tree

2
...

3 // declare variables

4 Double_t beamX , beamY ,beamdX ,beamdY;

5 Byte_t CE1PMn ,CE2PMn;

6 //link branch adresses to variables

7 tree ->SetBranchAddress("beamX",&beamX);

8
...

9 //loop over events

10 CModel NNpredictor("/path/to/model.json");

11 for(int i=0; i<list ->GetN(); i++){

12 tree ->GetEntry(list ->GetEntry(i));

13 //get input for the NN model

14 std::vector <FDEEP_FLOAT_TYPE >

↪→ input={ FDEEP_FLOAT_TYPE(beamX) ,...};

15 //get individual PMTs response

16 for(auto pmt: std::bitset <8>( CE2PMn).to_string ())

17 input.push_back(FDEEP_FLOAT_TYPE(pmt -'0'));

18 // compute model inference

19 auto modelOutput=NNpredictor.predict(input);

20
...

21 }

Listing 5.12: Example code of using a trained model in a ROOT script.
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Frugally-deep library together with its dependencies and CModel class were put into
a publicly accessible directory together with a model trained using kaon proxy16.
Working examples of usage in a standalone application, inside ROOT and �nally
in PHAST are included. In addition, one can always train and export a di�erent
model once e.g. a better kaon proxy is available using the cedarSeparation Python
package, which is also publicly available.

5.7 Future development

In this section, some ideas for an additional development behind the scope of this the-
sis are presented, particularly concerning the AMBER experiment, where a proper
kaon sample could potentially be obtained.

5.7.1 Improving kaon proxy

One of the problems the kaon proxy could su�er from is related to the undetected
second track. While in reality particle that is undetected is the most often a pion
(i.e. pion + pion or kaon + pion), the pressure scan gives a proxy of two kaons.

As chapter 5.5.5 explained, removing the angle smearing by using sillicon telescopes
would lead to the most signi�cant improvement. It would also make possible to
obtain a proper kaon sample.

The idea is to search for kaons that decay into a neutrino and a muon in between the
two sillicon telescope stations (each including two telescopes). The �rst station will
therefore detect the parameters of a kaon at CEDAR, while the second should be
able to detect a change in particle inclination, i.e a hint that the decay took place.17

In later part of the spectrometer this 'new' particle should be identi�ed as a muon
with energy below 100 GeV.18

Another improvement could be achieved by lowering the time for which a given pad
gives signal (currently it lasts for 10 ns with the time measurement precision of
0.5 ns). This would allow for better preprocessing in order to discard hits caused by
an undetected track.

16Note that working points are calculated by estimating e�ciency as explained in chapter 5.5.1.
17If the decay takes place before CEDAR, the muon crosses it at very large angle. If it happens

after CEDAR, but before the �rst beam telescope, only the muon parameters are known, but not
parameters of the kaon at CEDAR.

18Pions can decay into muons as well, but the minimum energy of muon from such decay is
about 107 GeV for the 190 GeV pion while for the kaon it can be between 8-190 GeV. Because
pions produced by the original beam can further decay into muons with low energy, kaons could
be identi�ed by selecting e.g. 50-100 GeV muons.
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5.7.2 Application for AMBER

The separation of pions and kaons is not an easy task because both of these particles
have relatively similar emission angle for Cherenkov radiation. This is due to the fact
that kaon is only ≈ 3.5 times heavier than pion. Another thing negatively a�ecting
the separation is the small kaon representation in the beam of only ≈ 0.025.

However, as mentioned in chapter 1.1.1, COMPASS is �nishing its data taking phase
and being replaced by the AMBER experiment, which will use a similar detector
setup. Besides the current beam, a di�erent beam consisting of 75 % protons and
25 % of pions with positive charge will be used for the AMBER data taking as well.
As proton has ≈ 7 times larger mass than charged pion and the ratio of the particle
types in the beam is 3:1, the separation based on CEDAR detectors will be much
easier in that case.

For these reasons, this newly developed procedure is expected to perform substan-
tially better when used for the AMBER data analysis with this beam.

5.7.3 Using the prediction as probability

As mentioned in chapter 3.2.2, the output of the network can be interpreted as a
probability when using certain cost functions such as binary crossentropy. Instead of
setting a threshold and selecting events that surpass it, all events can be used with
the predicted probability. In this way, the events are weighted in accordance to the
probability of being induced by kaons. From statistical point of view, this approach
gives more relevant results and stronger statistical tools can be applied.
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Conclusion

The focus of this thesis was on �nding and analyzing a new method for CEDAR
data analysis for the 2018 data taking and the upcoming AMBER experiment.
Three di�erent methods using arti�cial neural networks together with tools for its
analysis were implemented and tested. Three types of networks were compared and
a genetic algorithm for the meta parameters optimization was created. A procedure
for exporting a model trained in Python and importing it into a C++ program using
ROOT or PHAST with no Python dependence was developed.

Due to the problems with measured data mentioned throughout the thesis, more
than 30 di�erent datasets were examined, both from measured data and Monte
Carlo simulations. The most signi�cant problems aggravating particles separation
were identi�ed and some possible solutions suggested.

The �ndings presented in this thesis lies foundations and outlines direction of future
advancements. The thoroughly documented code base can be utilized and expanded
particularly for the AMBER experiment either by the author or another member of
the collaboration.

In conclusion, all of the goals of this thesis were ful�lled.
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Appendix A

Additional plots

In this appendix, some extra plots are included.

A.1 Using approximations of beam angles

Figure A.1: Curves of networks trained using the 4 original variables, using their
aggregation into 2 variables and using all six of these parameters.

99



A.2 Confusion matrices

This section contains the confusion matrices together with some derived statistics
for di�erent network types and �xed e�ciency 0.5.

(a) Plain network

(b) RBF network

100



(c) RVFL network

Figure A.2: Output of PredictionAnalyzer.printConfusionStats for di�erent
network types.

A.3 Model output vs. angle

This section contains plots for all multiplicities as shown in �g 5.15, i.e. the model
output versus angle at CEDAR and di�erent multiplicities. All of the used datasets
are taken from measured data and are therefore without added kaon proxy. Similarly,
no kaons are duplicated in MC �les. This is output of the method
PredictionAnalyzer.plotAngleHistBins .

A.3.1 Method 1 - Measured data
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Figure A.3: Network output based on e�. angle for di�erent multiplicities with both
CEDARs combined.
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Figure A.4: Network output based on e�. angle for di�erent multiplicities for CEDAR
2 only.

A.3.2 Method 1 - Monte Carlo simulations
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Figure A.5: Network output based on e�. angle for di�erent multiplicities for simu-
lation of one CEDAR only.
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A.3.3 Method 2 - Measured data
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Figure A.6: Network output based on e�. angle for di�erent multiplicities with both
CEDARs combined.
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Figure A.7: Network output based on e�. angle for di�erent multiplicities for CEDAR
2 only.
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A.3.4 Method 2 - Monte Carlo simulations
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Figure A.8: Network output based on e�. angle for di�erent multiplicities for simu-
lation of one CEDAR only.

A.4 Method 3 angle histograms

This appendix contains colormaps of the output of method 3 (i.e. log(p(K)
p(π)

)) as a
colormap in e�. angle x and ef.f angle y coordinates for symmetrical responses of
PMTs.
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Figure A.9: Predictions as a colormap in e�. angle x and e�. angle y coordinates
of symmetric responses, i.e. a group of PMTs responding together for method 3.
Output of the method PredictionAnalyzer.meth3plotsBySymmetry .
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Appendix B

CD contents

In the attached CD, several directories can be found beside the text of this thesis
in .pdf format. Namely, it includes:

• cedarSeparation - full Python package including source codes of CModel ,
PmtResponseModel , Classifier , M23Classifier and
PredictionAnalyzer classes.

• inference - source code of CModel C++ class together with frugally-deep
and its dependencies inside the includes subdirectory. In addition, a model
model.json trained using kaon proxy is present.

• inference examples - contains working example codes of using trained a
trained model in a standalone application, inside ROOT and inside PHAST. A
text �le README.txt describes the process of training a network and exporting
it for usage in PHAST.

• models - includes several trained models for loading in TensorFlow both for
measured data and Monte Carlo simulations.

• plots - contains plots present in this thesis and some additional ones.

• additional code - holds other Python scripts developed as part of this thesis.
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