FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Randomized Indexing for Approximate Selection Queries on
Multidimensional Arrays

by

Lubos Kréal

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Theoretical Computer Science

Prague, August 2021

Supervisor:
Prof. Ing. Jan Holub, Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9
160 00 Prague 6
Czech Republic

Copyright © 2021 Lubos Kré¢él

ii

Abstract

Multidimensional data, either in the form of dense arrays, or sparse relational data are a
common data structure for effective storage, access, management, querying, disseminat-
ing, analysis, and visualization of scientific datasets. Array data are being used in many
scientific domains, including computational fluid dynamics, oceanography, spatiotemporal
climate analysis, forecasting, medical, biomedical, astronomical and satellite data process-
ing. Efficient processing of high dimensional data is difficult due to the arbitrary size,
cardinality, and so called curse of dimensionality.

Bitmap indices are widely used in commercial databases for processing complex queries,
due to the efficient use of hardware accelerated bit-wise operations and their space-
efficiency. Compressed, hierarchical, multi-component bitmap indices have also been used
for relational data.

Inverted indexing is another commonly used technique in a variety of high dimensional
data applications, such as exact search, similarity search, or machine learning. Inverted
index maps multidimensional data points into lists based on some discretization of their
dimension values. Similarly, a column index of a relational database may map individual
column values to lists of corresponding rows. To evaluate a query, inverted lists are usually
intersected to obtain a list of points satisfying all the constraints. Our interest is in a
more generalized approach, where each query evaluates similarity based on the number of
matched dimensions.

In this work, we have designed, implemented and evaluated two methods of indexing
multidimensional array data for selection queries, and an extension of data parallel inverted
index as part of generic framework for similarity search on the GPU. Following is a list of
individual contributions:

For the purpose of efficient execution of various spatiotemporal selection queries in large
distributed array databases, we have designed a multidimensional array inverted index
based on grid transformations. We demonstrate the efficiency of our multidimensional
array index on a complete, large-scale satellite dataset. The work was implemented and
integrated as an extension of a distributed open-source array database SciDB.

iii

Next, we have proposed a hierarchical indexing scheme for multidimensional arrays that
overcomes the dimensionality-induced inefficiencies of standard spatial and bitmap index-
ing techniques on dense multidimensional arrays. The index is based on novel n-dimen-
sional sparse trees for dimension partitioning, with bound number of individual, adaptively
binned indices for attribute partitioning. This indexing performs well on queries involving
both dimensions and attributes constraints, as it prunes the search space early.

Lastly, we have improved query performance of generic similarity search in GENIE
(Generic inverted index on GPU) by incorporating compressed inverted index on GPU
with data parallel decoding. Multiple decoding schemes were designed, implemented, and
evaluated for a fully data parallel decoding and query execution. The implementation
has sped up total query processing time in 3-4 times on real world datasets. All the
components were integrated into publicly available similarity search framework GENIE in a
robust and modular architecture, with configurable query compiler and index management
components. The extensions of GENIE were designed for multi-GPU and multi-node
distributed deployment with an implementation of the distributed functionality publicly
available.

Keywords:

Multidimensional Arrays, Array Database, SciDB, Scientific Computing, Bitmap Index,
Inverted Index, Similarity Search, Approximate Nearest Neighbors, GPU Accelerated
Database, Index Compression, Data Parallel Decoding, GENIE

v

Acknowledgements

First and foremost, the completion of my dissertation would not be possible without my
supervisor, professor Jan Holub, who has been guiding me throughout my research track
for the last almost 10 years. He started as my master’s thesis supervisor, then continues
as my doctorate supervisor and the principal investigator of several research projects. He
has always shown relentless support, exceptional stability and resolve, while providing me
with enough freedom to explore related research topics of interest.

I would also like to express deep gratitude to my supervisor at Nanyang Technological
University in Singapore, professor Shen-Shyang Ho, who has introduced me to the research
environment in Singapore. Shen-Shyang always had constructive advice, and always dis-
played great compassion, support, and guidance. He also went far out of his way to help
me find more research opportunities after his departure from Singapore.

Many thanks go to all my research colleagues at NTU: Jianjun Zhao, Tianyi Zhou,
Pei-Hung Chen, Woon Huei Chai, Thet Mon Htwe, Tzu-Yi Hung, Vidhya Natarajan,
and Cheng Seng Low. And to my friends from the CIR lab: Tim Muller, Ali Alizadeh
Mansouri and Sun Zhu. You all have created an amazing and friendly work environment.
Additionally, I would like to also thank the ACM ICPC head coaches and coordinators, Rui
Fan and Kevin Anthony Jones, with whom we traveled to many programming competitions.

My gratitude also goes to my supervisors at National University of Singapore, professor
Anthony Tung and professor Bingsheng He. Anthony has shown great leadership, support
and valuable scientific insight. Bingsheng has forever motivated me with his outstanding
ambition and exceptional knowledge. Both Anthony and Bingsheng have inspired me with
their focus and intellectual capability, and it would have been great honor for me to keep
working with them had I stayed in Singapore longer.

I also had great pleasure of working with my colleagues from NUS: Yuxin Zheng, Guo
Qi, Yifan Lei, Fei Wang, Pingyi Luo, Jisong Yang, Christian von der Weth, Yueji Yang,
Siyuan Liu, and Jae Ramon Bespinyowong. Thank you for all the support, awesome work
environment, insightful lunches, and for all the fixes you did after I repeatedly broke the
Servers.

Big thank you to my colleagues from our research group at the Czech Technical Uni-
versity in Prague, namely Ondfej Cvacho and Petr Prochazka. I am grateful for the
opportunity to expand my knowledge and learn about other related topics from you.

Many thanks to my friends from Nyriad, New Zealand, especially my former seniors,
John Mackenzie and Daein Choi, and colleagues Mitch Turnbull and Robbie Litchfield, who
all supported me in one way or another after we departed the company. I have learned a
great deal from my managers as well. Thank you for the experience.

Last, I would also like to thank my current coworkers from Edgeworx, USA, namely
Rashmi Modhwadia, Christina Dang, Alex de Wergifosse, Serge Radinovich, Neha Naithani,
Saeid Rezaei Baghbidi, Todd Papaioannou and Kilton Hopkins. With some I worked longer
than with others, but I have learned something from everyone.

Throughout most of my doctorate studies, I have found reprieve in practicing martial
arts. And I would like to thank my Brazilian jiu-jitsu coaches: Christian Rodrigues,
Vincent Tan, Harvey Skinner and Errol Watson, especially for teaching me persistence and
never quitting on my long term goals. Having the opportunity to teach kids classes myself,
I have made an observation, that just a bit of focus and effort at the right time makes a
huge difference.

Honorary mention at the end goes to Libor Bus, my former manager at Eccam in
Prague. Unbeknownst to him, inspired me to pursue the highest form of education. Libor
got his Ph.D., established a company, and started a family all at the same time, while
preserving his humble attitude.

This research has been partially supported by the following:

o Czech Science Foundation (GACR) project No. GA13-03253S (Text and Tree Struc-
tures Processing and Their Applications) by Ministry of Education, Youth, and Sport
of the Czech Republic

o SGS project SGS14/101/OHK3/1T/18 by Czech Technical University in Prague,
Czech Republic

o Academic Research Fund (AcRF) Tier 1 Grant RG-18/14 (Array-Based Database
Technology for Large-Scale Satellite Data and Their Analysis) by Ministry of Educa-
tion, Singapore; at School of Computer Science and Engineering (SCSE), Nanyang
Technological University (NTU), Singapore

o National Research Foundation Singapore under Indirect Research Cost (IRC) Fund-
ing at Interactive Digital Media Institute (IDMI), National University of Singapore
(NUS), Singapore

vi

1

3

Abstract

Introduction

1.1 Contributions
1.2 Structure of The Document

Background and State-of-the-Art

2.1 Mutlidimensional Array Model
2.1.1 Multidimensional Selection Queries
2.2 Multidimensional Spatial Indexing
2.2.1 Point Access Methods
2.2.2 Spatial Access Methods
2.2.3 Tilings of the Domain Space
2.2.4 Space-Filling Curves
2.3 Spatial Indexing of Arrays
2.3.1 Array Indexing of Arrays
2.3.2 Tree Indexing of Arrays
2.3.3 Tree Indexing of Array Blocks

2.3.4 Indexing of Triangular Blocks on a Sphere

2.4 Bitmap Indexingo
2.5 Bucket Indexing Methods
2.6 Similarity Hashing
2.7 Spatiotemporal Indexing and Databases
2.8 Approximate Array Pattern Matching

Inverted Regridding Indexing

3.1 Indexing Spatiotemporal Data
3.1.1 Regridding Index

vii

Contents

CONTENTS

viii

3.1.2 Cartesian Index 21
3.1.3 Hierarchical Structure of Indices 21

3.2 Use Case Scenario: Select QuikSCAT data given tropical cyclone trajectory 22
3.3 Retrieving Data Regions — Pointers into the original data 22
3.4 Time Complexity 23
3.5 Conclusion. 24
Hierarchical Bitmap Index 25
4.1 Related Work and Previous Results 25
4.2 Problem Statement 27
4.3 Description of Hierarchical Bitmap Array Index 27
4.3.1 Partitioning of Arrayso Lo 28

4.3.2 Structure of the Array Chunk Index 29
4.3.3 Structure and Construction of the Hierarchical Bitmap Array Index 29
4.3.4 Bin Boundaries Merging in Parent Nodes. 30
4.3.5 Double Range Encoding of Bitmap Indices in Internal Nodes 32
4.3.6 Locality of the Hierarchical Index 33
4.3.7 Appending and Modifying Data 34

4.4 Querying Dimensions And Attributes L. 34
4.4.1 Attribute based Matcheso 35
4.4.2 Dimension based Matches 36
4.4.3 Partial and Complete Matches 37
4.4.4 Estimating Cardinality of Results; Membership Queries 39

4.5 Experimental Evaluation 00 L 39
4.5.1 Fastbit Integration Lo 40
4.5.2 Bitmap Indexing Methods 40
4.5.3 Range Queries 40
4.5.4 Parameterization Lo 42

4.6 Conclusion. e 42
Compressed Inverted Index on GPU 43
5.1 Introduction Lo 44
5.2 Related Worko 46
5.2.1 Integer Lists Compressions 47
5.2.1.1 Integer Lists Compressions on GPUs 50

5.2.1.2 Integer Lists Compressions on FPGAs 50

5.2.2 Database Acceleration using GPUs 50
5.2.3 Exact Similarity Search on CPUs and GPUs 51
5.2.3.1 Similarity Search Using Heterogeneous Architectures . . . 53

5.2.4 Approximate Similarity Search 54
5.2.4.1 Approximate Similarity Search on GPUs. 55

5.2.4.2 Locality Sensitive Hashing 95

5.2.4.3 Locality Sensitive Hashing on GPU 56

Contents

5.2.5 GPGPU and CUDA 56

5.3 GENIE . . . o . 57
5.3.1 Problem Statement oL 58

5.3.2 Using LSH For Approximate Nearest Neighbors 61

5.3.21 Re-Hashingo oL 63

5.3.3 Examples of LSH Function Families. 63

5.3.4 Preprocessing Data Using Other Sources 64

5.4 Compressed Match Counting in GENIE 65
5.4.1 CUDA Kernel Models For Decompression 65

5.4.1.1 Delta Encoding 65

5.4.1.2 Varint Encoding o000 66

5.4.1.3 Bitpacking Encoding 0oL 67

5.4.1.4 Composite Codec 72

5.4.1.5 Parallel Models for Decoding 72

5.4.2 Further Reducing Time by Suppressing Multi-Load 74

5.4.3 Efficient Inverted Lists Balancing 74

5.4.4 Integration Into GENIE 75

5.5 Experimental Evaluation 0L, 76
5.5.1 Description of Datasets 7

5.5.2 Environment And Settings 78

5.5.3 Analysis of Inverted Tables 78

5.5.4 Analysis of Individual Compression Schemes 79

5.5.5 Efficiency of Inverted List Encoding 80

5.6 Conclusion. 83
5.6.1 Future Work 84

5.6.2 Acknowledgemento 85

6 Conclusion 87
6.1 Future Work 88
References 89
Publications of the Author 109

ix

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9
3.1

3.2

4.1

4.2
4.3

4.4

5.1

5.2
9.3
5.4

List of Figures

An example of a range query on a two-dimensional array.
Basic quadtrees for indexing point data in two dimensional space.
Hierarchical taxonomy of point access structures developed in [174].
Quadtrees for indexing line segments and rectangular objects.
Planar decomposition of two dimensional space into recursive patterns.

Space filling curves on a [4%] tiling — two dimensional array.
Hierarchical triangular mesh. L.
Bitmap index for attribute a of the array A from Figure 2.1: empty bitmask
EBM, equality encoded index E, range encoded index R and interval encoded
index I. e
An example of World Aligned Hybrid (WAH) bitmap compression.

Array regridding scheme used during incremental generation of Latitude-
Longitude-Time index.
Trajectory and a corresponding mask — sequence of hyperrectangles on lati-
tude, longitude and time dimensions.

Example of merging |B| = 8 bin boundaries to |R| = 4 bin boundaries for 4
child nodes
Processing of a query in a single node of the hierarchical index.
Query execution time and disk space required to store the indices for different
aITaY SIZES. e e e
Query execution time for 2D, 3D and 4D queries of various hit ratios.

Integer lists encoding and decoding pipeline (with linear delta encoding and
Bitpacking32) in inverted index setting. 0L
Generic nature of GENIE, showing the relationship with different data types. .
Example of (dy,ds, p1, p2)-sensitive hash function.
Example of locality sensitive hashes based on p-stable distribution in 2 dimen-
sional space.

co 3D

11
14

14
15

19

22

31
38

List of Figures

9.5
0.6
5.7
0.8
5.9

5.10

Visualization of Parallel Varint decoding 68
Visualization of parallel Bitpacking32 decoding 70
High level parallel execution model of a query set. 73
Distribution of inverted list lengths across the datasets. 79
Query time analysis of GENIE with various integrated (encoding and match-

ing) kernels. 82
Memory usage analysis of GENIE with various integrated (encoding and

matching) kernels.o oo 83

X1

3.1

5.1
5.2
9.3
5.4

9.5

List of Tables

Timing results of a query - Select QuikSCAT Data Along Trajectory 23
Sample dataset and queries represented by 5 dimensional objects. 59
Example of inverted index stored in GENIE. 60
Summary of inverted index for each dataset. 78
Codec comparison of compression ratio (bits per integer), encoding and de-

coding times (S). 80
Query time and memory usage measurements of GENIE with various inte-

grated (encoding and matching) kernels. 81

Xii

4.1
4.2

5.1
5.2

List of Algorithms

Iterative equi-depth binning approximation 32
Evaluation of partial and complete match bitmaps for a single node. 35
Parallel Varint decoding implementation 69
Parallel Bitpacking32 decoding implementation 71

xiii

CHAPTER

Introduction

Multidimensional arrays are a common data structure for effective storage, access, man-
agement, querying, disseminating, analysis, and visualization of scientific datasets [213].

Arrays are also often referred to as raster data, gridded data, or datacubes. Multidimen-
sional array data are being used in many domains, including computational fluid dynamics,
oceanography [197], spatiotemporal climate analysis [119], hurricane forecast [184], medi-
cal [19], biomedical [178], astronomical [208, 193, 206], and satellite [84, 85, 165, 55| data
processing.

Multidimensional arrays are also widely used as an access structure for general spa-
tiotemporal data. Many other problems can be transformed into lower dimensional struc-
tures using locality preserving transformations, such as locality sensitive hashing, most
often for the purpose of location based selection queries or similarity search [174].

Efficient processing of multidimensional data is difficult due to the arbitrary size, dimen-
sionality and cardinality of the arrays. Large spectrum of array processing tasks consists
of data selection and querying (“subseting”) [84], aggregating data, searching based on
template patterns [15] or aggregate constraints [215], contrast set discovery [235], spatial
pattern mining [83], and general computation [196].

Most of these array processing tasks are computationally very intensive and thus require
some form of index structure in order to increase the access efficiency. Furthermore, the
size of array data in scientific application often reaches the order of terabytes, effectively
enforcing usage of distributed storage and parallel processing.

Multidimensional array storage and processing is implemented in distributed open-
source array-based data management and analytics systems, examples of which are Ras-
DaMan [18], SciDB [196], and MonetDB [90]. Array databases provide extensive data
processing and frameworks with storage and computational functionality built natively on
top of arrays, compared to their more general distributed counterparts such as MapReduce
[55, 47] and SciHadoop [32, 217].

Inverted indexing is a commonly used technique in a variety of selection query or
search applications. Examples of large data intensive applications come from astronomy
and astrophysics [87], finance [43] neuroscience, engineering, multimedia and others [236].

1

1. INTRODUCTION

In a domain, where each document consists of a list of terms, inverted index maps
the individual terms to documents using lists of document identifiers. Similarly, a column
index of a relational database may map individual column values to a list of corresponding
TOWS.

Multidimensional data points can be also seen as column values (where each column
corresponds to a single dimension), and thereby indexed using inverted indexes. To evaluate
a query, inverted lists are usually intersected to obtain a list of points satisfying all the
constraints. Our interest is in a more generalized approach, where each query evaluates
similarity based on the number of matched dimensions.

We use a distributed open source array database SciDB as the platform for our work
on multidimensional array indexing and searching.

For the purpose of inverted indexing research on more generic multidimensional data,
we use a publicly available, GPU-accelerated generic similarity search framework GENIE
(Generic inverted index on GPU). Additionally, we extend GENIE with multiple inverted
index encoding schemes in order to speed up execution on large datasets.

1.1 Contributions

We have proposed, designed, implemented and tested two methods of indexing multidimen-
sional array data for selection queries, and an extension of data parallel inverted index as
part of generic framework for similarity search on the GPU. Following is a list of individual
contributions:

o We have designed and implemented a multidimensional array inverted index based
on grid transformation. The index allows for efficient execution of various spatiotem-
poral selection queries.

o We have demonstrated the efficiency of the multidimensional array index on a com-
plete dataset of large-scale satellite sensor data (QuikSCAT). Given a trajectory
query into a satellite sensor data, we perform accurate data retrieval of relevant
regions.

o The work was implemented (including visualizations) and integrated as an extension
of the distributed open-source array database SciDB.

o We have proposed and implemented a multidimensional array hierarchical indexing
scheme that overcomes the dimensionality-induced inefficiencies.

o The indexing scheme is based on a novel n-dimensional sparse trees for dimension par-
titioning, with bound number of individual, adaptively binned indices for attribute
partitioning.

1.2. Structure of The Document

o We have improved query performance of generic high dimensional data similarity
search in GENIE (Generic inverted index on GPU) by incorporating compressed
inverted index, query compiler, and data parallel decoding on GPU.

o Multiple decoding schemes were designed, implemented, and evaluated for fully data
parallel decoding and query evaluation. We use heuristics for encoding selection
based on the properties of the dataset, and properties of the inverted lists.

o This data parallel decoding and query evaluation have sped up total query processing
time in GENIE 3-4 times on real world datasets.

o All the components were integrated into the publicly available framework GENIE
in a robust and modular architecture, with configurable query compiler and index
management components.

o The extensions of GENIE were designed for multi-GPU multi-node distributed de-
ployment with initial implementations of the distributed functionality publicly avail-
able.

1.2 Structure of The Document

This Chapter 1 (Introduction) goes over the general problem and objectives of this thesis,
describes the motivation behind our effort, our goals, and main contributions.

Chapter 2 (Background and State-of-the-Art) provides an in-depth survey on several
topics closely related to the subsequent chapters. These topics are categorized and struc-
tured according to general research areas and their influence on the research work.

Following are three chapters, each focused on one original research topic. Each of the
following chapters states the motivation, contributions, and options for future work in the
respective area.

Chapter 3 (Inverted Regridding Indexing) describes our work on inverted grid indices
with application in effective execution of various spatiotemporal selection queries on satel-
lite data. This work has been published in [A.1]. This work was part of a project Array-
Based Database Technology for Large-Scale Satellite Data and Their Analysis and had been
carried out in its entirety at the Computational Intelligence Laboratory (CIL), School of
Computer Science and Engineering (SCSE), Nanyang Technological University (NTU),
Singapore.

Chapter 4 (Hierarchical Bitmap Index for Range and Membership Queries on Multi-
dimensional Arrays) proposes a novel method for multidimensional array indexing called
ArrayBit that overcomes the dimensionality-induced inefficiencies. This work has been pub-
lished in [A.4]. This work had been carried out in its entirety at the Computational Intel-
ligence Laboratory (CIL), School of Computer Science and Engineering (SCSE), Nanyang
Technological University (NTU), Singapore.

1. INTRODUCTION

Chapter 5 (Similarity Search Using Compressed Inverted Lists on Graphic Processing
Units) describes an approach on indexing large high-dimensional datasets for similarity
search queries using compressed inverted list compression on GPUs. Part of this work
has been published in the original GENIE paper [A.2], in extended technical report [A.5].
The remaining part is primarily focused on inverted index compression and data parallel
decoding and matching is described in this chapter. This research work, including GENIE,
had been partially carried out at the SeSaMe Centre, under Interactive Digital Media
Institute (IDMI), National University of Singapore (NUS), Singapore.

The last Chapter 6 (Conclusion) summarizes the results of our research, suggests pos-
sible topics of further research, and concludes the report.

CHAPTER 2

Background and State-of-the-Art

2.1 Mutlidimensional Array Model

An array A consists of cells with dimensions indexed by dy, ..., d,. Each cell is a tuple of
several attributes aq,...,a,,. We assume the structure of the attributes is the same for all
cells in the array. The array is denoted as A{ay, ..., an)|d, ..., d,]. For example, satellite

data may have latitude, longitude, altitude, and time as dimensions, and precipitation,
temperature, wind speed, etc. as attributes.

Due to the large size of scientific data, it is often necessary to split the data into
subarrays called chunks.

There are two commonly used strategies. Regularly gridded chunking, where all chunks
are of equal shape and do not overlap. This array data model is known in SciDB
as MAC (Multidimensional Array Clustering) [196]. This array model works well for
coarse dimension-based queries, but requires either additional indexes or filtering for fine
dimension-bases and for any attribute-based queries. This array data model is the foun-
dation (the lowest level) of our hierarchical bitmap array index. The second strategy is
irregularly gridded chunking, which is one of the chunking option in RasDaMan [18].

2.1.1 Multidimensional Selection Queries

Focusing on multidimensional arrays, we first describe selection queries, where our objective
is to design a family of indexing schemes for multidimensional array data that allows for
fast selection queries and general computational operations on the results.

First, we define the multidimensional query with dimension and attribute constraints.
Second, we describe our array regridding based approach resembling inverted indexing of
array ranges.

The selection query parameters are a set of dimension values or ranges; dimension
result range constraints; attribute values or ranges; attribute template patterns, including

2. BACKGROUND AND STATE-OF-THE-ART

sparse and don’t care cells, with distance measure definition and corresponding value; and
aggregate conditions.

Computational operation run on top of selection results include result aggregations,
exploratory tasks and general purpose array operations.

We form a query on arrays based on constraints. A dimension and attribute constraint
is a constraint on a dimension and attribute in one of the following formats. A one-sided
range query: y < 45; two-sided range query: 23.4 < y < 73.2, equality query: y = 89;
membership query: y € {2,4,6,8,10}, where y is either dimension or attribute of the array.
Figure 2.1 shows a query that has a two-sided constraint on an attribute a and a one-sided
constraint on dimension dy on a 2-dimensional array and the (shaded) query outcome.
Note that equality query is a special case of membership query, and that all queries can
be rewritten to a set of range queries. Mized queries are queries that pose constrains on
at least one dimension and one attribute.

An example query on array SATELLITEARRAY (snowfall, rainfall, temperature) [lati-
tude, longitude, altitude, time] may look like this:

SELECT * FROM SATELLITEARRAY WHERE 50.68 < latitude < 50.88 AND 14.37 < longitude
< 14.57 AND 30.0 < snow fall.

The result would then be a possibly empty subarray of the same format as SATEL-
LITEARRAY.

A<a>[d,,d,] A'<a>[d,,d,]
31312 ~| ~ SELECT * FROM A 31312 ~| ~
2121105 WHERE2 =a =4 MBI E

d, AND d, = 2; d,
11417132 1147|132
ol ~[514]1 ol ~|5(4]1
0 1 2 3 0 1 2 3
d; d;

Figure 2.1: An example of a range query on a two-dimensional array.

2.2 Multidimensional Spatial Indexing

Traditional spatial indexing works with multidimensional spatial points or spatial regions
are a more common setup in many past applications, due to their convenient representation
of location (arbitrary precision) and their sparse nature. Majority of the indexing methods
use trees that recursively split the domain space. Indexing methods described in this
section are not directly applied in indexing arrays, but are a prerequisite.

Based on the data and application, index structures can be divided into point access
methods for indexing multidimensional points only, and spatial access method for indexing
non-zero objects, e.g. regions, polygons, etc. We will first describe point access methods.

2.2. Multidimensional Spatial Indexing

2.2.1 Point Access Methods

The most frequently used one-dimensional indexing method is the B-tree. Its variant,
BT tree is used in majority of database management systems. The multidimensional B-tree
[180, 75] is a hierarchy of interconnected B-trees to each dimension.

Multidimensional range tree [23] is an embedding of d binary range trees (i.e. binary
tree of binary range trees for 2 dimensions). The leaves to binary range search trees
represent data points sorted by a double linked list.

Quadtrees [58, 171, 172] are simple two dimensional 4-ary trees, which adaptively de-
compose the domain space into a grid. There are two major categories of quadtrees: point
quadtrees and trie-based quadtrees. The former uses data points as internal nodes, thereby
splitting the domain space according to the location of data points; whereas the latter
uses data independent internal node boundaries, i.e. equal size grid in the simplest form.
See Figure 2.2 for an example. Mutlidimensional extension of quadtrees are known as
d-dimensional 2%-ary trees. Three dimensional tree is called octree.

(a) Point quadtree (b) PR quadtree

Figure 2.2: Basic quadtrees for indexing point data in two dimensional space. Note that
in PR quadtree, the space delimiters are at fixed positions, while in point quadtree, the
delimiters are aligned with data points.

KD-trees [22] are de facto a modification of quadtrees. Since quadtrees have exponential
fanout based on the dimensionality — 2¢, they tend to have many empty cells. K-d trees are
binary trees that at each level split the space along a single dimension. There are many
variations of k-d trees, most notable point k-d trees are adaptive k-d tree, which store
data only in leaves, thereby having the opportunity to freely move dimension boundaries,
e.g. by median [59]; or bucket k-d trees [135]. Similarly to quadtrees, trie-based k-d
trees exist as well. The most common unbalanced trie-based k-d tree is PR k-d trie [150].

7

2. BACKGROUND AND STATE-OF-THE-ART

There are improvements over the PR k-d trie in terms of bucketing, moving dimension
boundaries (instead of always placing them in a fixed position), and many more. Interesting
modification of k-d trie is the balanced box decomposition tree [12], which uses two types of
of internal nodes: split (tradition k-d tree node) and shrink (hypercube bounding box for
child node, and a remainder for the second child).

R-trees [77], R*-trees [20] are another elementary data structure. R-trees are based on
hierarchical structure of minimum bounding boxes (regions). R-trees and their variations
can be used either as a point access method or a spatial access method, indexing hyperrect-
angles or polygons. There are plenty many indexing methods that use the idea of buckets
— storing a list of values within a single node or leaf of the tree. These methods are used
especially in relation to a slower data storage medium. Their description is out the scope
of this work.

For an overview of point access method and their hierarchical organization, see Figure
2.3.

@ L] 4 * .
. . !

* -

o S— 3 > L

T «° + - +|
. . +

Grid file Point K-dtree Adaptive
— et }. i quadtree k-d tree
Sequential Inverted Fixed- P[] I H .
list list grid : PR PR k-d
method S -
%‘ quadtree tree
EXCELL sal
31)
® IDE I
MX
quadtree

Figure 2.3: Hierarchical taxonomy of point access structures developed in [174]. Letters at
each node represent: D — organize data based on its values; EE — organize the embedding
space from which data is drawn; N — organize neither; H — hybrid of two form D, E or
N. The depth in the taxonomy tree also represents how flexible and adaptable the data
structure is. Figure taken from [174].

2.2.2 Spatial Access Methods

Now we will describe some basic spatial access methods. These methods are used for
indexing more complex spatial objects than point, such as lines, rectangles, polygons,
objects with boundaries aligned with hyperplanes of the domain space or objects with

2.2. Multidimensional Spatial Indexing

arbitrary boundaries. There are also two main methods of object representation: interior-
based and boundary-based representation, as identified in [174]. Based on the complexity
and alignment of indexed objects, we may be able to decompose the object into cells whose
boundaries are parallel to the coordinate axes of our domain space. In case this does not
hold, in many cases there are representation of such objects based on decompositions into
cells whose boundaries are parallel to the coordinate axes.

Basic boundary representations are used for lines and curves. Compared to R-trees,
which use coordinate aligned bounding hyperrectangles, a strip tree [16] consists of a hi-
erarchy of arbitrarily aligned hyperrectangles enclosing given lines and curves. The strip
tree is a binary tree built top-down by partitioning the bounding boxes at each level in
the points where the curve touches the bounding box. Arc tree [73] builds a complete
binary tree by splitting the curve into line length segments, then enclosing these segments
in ellipses.

Examples of quadtree based methods for lines and regions indexing consist of MX
quadtrees [88] which approximate the line segments by cells the segments intersect; and a
family of PM quadtrees [144]. See Figure 2.4 for examples of MX and PM quadtrees.

A

=
A
i)

11
\
TL—EIJL 1N

_:E]
:FJ_

(a) PM; quadtree (b) MX quadtree

Figure 2.4: Quadtrees for indexing line segments and rectangular objects. PM quadtrees
(and MX quadtrees) are used for indexing line segments. The condition to split internal
nodes is the presence of multiple segments, unless they are incident at the same vertex.
MX-CIF quadtrees are used for indexing of relatively small rectangular objects. These
rectangles are always associated with a single node of the tree.

For full overview of both points access methods and spatial access methods, refer to
complete surveys [60, 174, 175].

2. BACKGROUND AND STATE-OF-THE-ART

2.2.3 Tilings of the Domain Space

A common modeling approach is a decomposition of the domain space into a regular struc-
ture of unit-size cells. Ideally, such structure should be infinitely repetitive and recursively
decomposable. Most of the previously described methods used some form of partitioning
of the domain space. The time complexity, space requirements and accuracy of

Large number of polygonal tilings is described in [21]. See Figure 2.5 for examples.
The tiling are distinguished based on their ability to decompose recursively infinitely —
unlimited, versus limitedtilings that don’t have this property. If a tiling has the same
shape on all the levels, it’s called similar.

In our work, we focus on the [2d?9] tiling, i.e. a regularly gridded space, which is both
unlimited and similar.

[4.8%]

[36] [32.4.3.2]

[34.6] [44] [63]

[33.42] [3.6.3.6] [4.6.12]

sy
%@%%

Figure 2.5: Planar decomposition of two dimensional space into recursive patterns. The
array model is [4%] in this figure. There are altogether 11 types of different adjacency
structure. The notation [31.6] means the first 4 vertices are incident with 3 edges and the
fifth vertex is incident with 6 edges. Figure modified from [176].

2.2.4 Space-Filling Curves

Space-filling curves [168] are a tool to linearize / map addressed from d-dimensional space
into a linear space. There are many differed space-filling curves, but the most notable
include C-style row-major order, row-prime order, Z-order (Morton) [150], Peano-Hilbert
(also knows as Hilbert) [82], Cantor-diagonal order, spiral order, Gray order, double Gray
order, or most recently U-order [122].

An important property of space filling curves is the computation time needed to trans-
form the higher dimensional space into an integer — single dimensional space on the curve.

10

2.3. Spatial Indexing of Arrays

D 1 . Z eailanlasikan Enilanilasil=n)
et ! be e B ey Ry =)
CoT 1 AT ailan |Galkaa Sahand handhany
et ! (S 4G LV HIE HRIEH
D 1 h Z adlan\landia Eallaliasilas)
il s ! i i o [dle|[d [45 e L.——‘ o [H
R 1 b b e lkand |Gaakan A [~
4 d re LR HHR[HBH
C-style row-order row-prime order z-order gray order double gray order
[endlananilanan) = Endlanifandlan)
B e R R uny ey sy pas,
[andkakandkans e Rand i) kain)
usgpus e o1 s N4 ?--‘ N4
andkandk ks aan) < FlNHy ey
HEH e
anilan re L-? o L—? g *—-?
THTHH TR e THNHVE SR
Peano-Hilbert order cantor-diagonal order spiral order u order

Figure 2.6: Space filling curves on a [4%] tiling — two dimensional array. Figure modified
from [176].

All the transformations are relatively simple and fast to compute, except for the Peano-
Hilbert curve.

Another important property is a stability through different levels of the curves. A
stable order preserves the relative ordering of the individual locations when the resolution
is doubled (for each dimension). For example Z-order , U-order, Gray and double Gray
orders are stable, while row-major, row-prime, Cantor-diagonal, spiral and Peano-Hilbert
are not stable. See Figure 2.6 for example of space filling curves.

2.3 Spatial Indexing of Arrays

Array data is fundamentally different from standard spatial data. The data is sparse, but
forms continuously dense regions with values that do not vary as much — they have high
value locality.

Since our focus is on regularly gridded space, we’ll assume the cells are of uniform size
hyperrectangles, where each cell has a fixed set of attributes. See Section 2.1 for formal
definition of the array model.

There are two general ways to model indexing.

The second general approach to model the index is to index individual cells. This
approach never forms hyperrectangles (as the objects are treated as individual cells. Z-
order curve is the most commonly used method for linearization. Basic B-trees based
method built on top of the Z-order curve is for example N-tree [216], or on top of U-order
curves [122].

Family of binning bitmap indexing algorithms on top of linearized arrays is another
example of this model. See Section 2.4 for more details.

11

2. BACKGROUND AND STATE-OF-THE-ART

The first model treats sets of hyperrectangles (subarrays) of certain value ranges in the
array as objects, thereby we may assume our objects are interior represented and can be
decomposed into cells whose boundaries are parallel to the coordinate axes of our domain
space (or can be transformed into such representation). It is then plausible to use standard
spatial access methods for indexing hyperrectangles over integral domain (dimensions of
this array). An static method was used in Searchlight [100] — a SciDB based system for
range queries with aggregation constraints, using constraints programming on top of array
Synopsis.

There are several approximate indexing structures for regularly gridded space (arrays).
A common technique is a P-tree [94], which is built on top of recursive space filling curves to
describe the object of interest. Next, convex hull (both free and aligned with the coordinate
axes) has been used in many solutions [181]. Many other combination of geometric object
can be used, such as an intersection of minimum bounding boxes with minimum bounding
spheres used in SR-trees [101].

2.3.1 Array Indexing of Arrays

Spatial indexing with arrays is a specific case of spatial access methods. It is possible to
use arrays as an implicit representation of regularly gridded space. Retrieval of objects
(connected components) can be done using depth first search. It is also possible to locate
object by having and index — one representative location for each object.

Effective methods of indexing advanced spatial features, such as points, regions and
objects are still an open problem. !

This approach has also been explored in a work by the author using array regridding.
See Chapter 3 for details.

2.3.2 Tree Indexing of Arrays

Since the arrays may be sparse and objects contained in them can be larger than one cell
(or alternatively, there may be large areas of the same values), it is not space efficient to
use arrays directly for indexing.

We can use previously described spatial access methods from Sections 2.2.1 and 2.2.2.
Both options are viable: using point access methods and spatial access methods on points,
respective regions or more complex objects; or using linearization of the data and subse-
quently one-dimensional index structures on non-empty cells of the arrays. Some of the
data structures, such as MX quadtrees allows searching for adjacent cells without separate
tree queries [173].

This approach has been explored in a work by the author using hierarchical binning
bitmap indexing. See Chapter 4 for details.

!This is a part of a research project called Array-based Database Technology for Large-Scale Satellite
Data and Their Analysis. The author worked on this project at Nanyang Technologicla University in
Singapore.

12

2.3. Spatial Indexing of Arrays

2.3.3 Tree Indexing of Array Blocks

We may relax the regularly gridded domain space and allow for disjoint rectangular unions
of cells, called blocks, such that all the cells in a block either belong to the same object
(or equivalently have the same value). The process of aggregation of cells into blocks itself
is not trivial. Let’s assume we have some fixed dimension ordering. We then determine
the locations and sizes of the blocks based on predefined criteria and block dimension
restrictions, construct a spatial access structure on top of these blocks and associate objects,
resp. values with each of the block.

A simple method is a one-dimensional aggregation similar to run-length encoding. we
create blocks over same-valued cells along one dimension. 2

An efficient method to find a set of maximal blocks is medial axis transformation [107],
also known as squarecode or rectangular coding, originally designed for encoding arbitrary
planar shapes, but later adapted to regularly gridded space. Medial axis transformation is
based on the distance of the cells from the boundary of the block. Subsequently, only the
maximal squares (on the skeleton of the object) are stored.

Another option is to use irregularly gridded array. Where the grid boundaries are
aligned with object boundaries. This is a form of compressed array representation. Addi-
tional d linear data structures called linear scales are needed to access the offsets of the
grid boundaries. This approach is commonly used for example in SciDB.

Region quadtrees and region octrees are an adaptation of standard quadtrees and oc-
trees for representing objects in arrays. However they lack in space efficiency due to the
restriction of n-dimensional trees in terms of possible sizes n-dimensional trees can encode.
Combination of quadtrees and medial axis transform, called quadtree medial axis trans-
form [170], overcomes this problem by storing the maximal blocks and the quadtree itself
represents skeletons of the objects.

Other variations include Atrees [28], which divide the domain space into a different
amount of blocks along different dimensions; bintrees [177], which are an adaptation of PR
k-d trees; X-Y trees, which generalize k-d trees into splitting the space into two or more
parts along a dimension at the same time.

2.3.4 Indexing of Triangular Blocks on a Sphere

In many Earth science and astronomical domains, array (regularly gridded square cells)
representation is not ideal. Instead, a spherical representation is more convenient.
Hierarchical Triangular Mesh (HTM) [200] is a tree data structure that indexes a
sphere by recursively subdividing the surface of the sphere into finer triangles. It is based
on sphere quadtrees [57] HTM allows to linearize a spherical model (two planar or three
spatial dimensions) into single dimensional data. This single dimension represent a pre-
order linearization of a tree. Models consisting of additional dimensions then form an array;,
where one dimensions is the linearized HTM. See Figure 2.7 for a visualization of HTM.

2This block aggregation method is implemented in current version mesh query module in Fastbit for
aggregating bitmaps.

13

2. BACKGROUND AND STATE-OF-THE-ART

¢ Q

Figure 2.7: Hierarchical triangular mesh.

2.4 Bitmap Indexing

Bitmap indices, originally introduced in [37], were shown to be very effective for read-only
or append-only data, and are used in many relational databases and for scientific data
management [68, 189, 190, 42].

Bitmaps can either be created for a single attribute value, called low-level bitmaps, or
for multiple values, called high-level bitmaps, where the bitmap is set to 1 for the cell of
the arrays whose indexed value is in the value range of such bitmap.

The structure of high-level bitmaps is determined by a binning strategy. For high
cardinality attributes, binning is the essential minimum to keep the size of the index
reasonable [223, 222]. Binning effectively reduces the overall number of bitmaps required
to index the data, but increases the number of cells that have to be later verified. This
is called a candidate check. Two most common binning strategies are equi-width binning,
which divides the attribute domain into equal intervals, and equi-depth binning, which
divides the attribute domain into intervals covering equal (or near equal) number of cells.
Equi-width binning is highly prone to excessive candidate checks, especially on skewed
data.

dy|dz| @ [EBM| |Eq|E |Egsy |Euar |Eisi | Eier | Enr | | Rinu| Revar| Ris| Revar| Revsi| Rer| Rnt| | lwar |zt [Nz | a7
0/o0|3]| 0 olo|1|0|lo0|o0|o0 oo |1 |1|1]1]1 1|1]1]o0
0|12 0 ol 1|0/ 0|o0]| oo o | 1| z1|1]|z1]1]1 1]1]0]o0
02|~ 1 ololo|o|lo| oo o|lo|o|o|o|o]o o|lo oo
03|~ 1 ololo|o|o| oo o|lo|o|o0o|o0o|o]o o|lo|o]o
1/(o|a| o 0olo|lo|1|o0]| o0 o oo o |1|1]1]1 1|1 |11
112 0 ol 1|0/ 0|o0| o0 o0 o 1|1 |1|1]1]1 1|1]0]o0
121 o 1/0l0|lo|lo|o]| o 1|11 z1|1]1]1 1]0]o0]o
13|50 olo|lo|o| 1|0 o0 o|lo|o|o|1]1]1 o111
2|04 o olo|lo|1|0]|o0] o0 o|lo]|o|1]|z1]1]1 11|11
2(1]7] o olo|lo|o|o]| o] 1 o|lo|lo|o|o]|o]1 oo o1
223 o olo|1|0|0]| 0o o|lo |1 |1]|z1]1]1 1| 1]1]o0
2(3]2] o ol 1|0/ 0|o0]| 0] o0 o 1|1 |1|1]1]1 1|1]0]o0
3(o0|~] 1 ololo|o|o| oo o|lo|o|o|o0o|o]o 0|00 o
3[1]5] o olo|lo|o| 1|0 o0 o|lo|o|o|1]1]1 o111
324 0 olo|lo|1|o0]| o0 o o|lo o |1]|z1]1]1 11|11
331 0 1/0/0|l0|]0| 0] o0 1| 1|1]1]1]1]1 1|0]|o0]o0

Figure 2.8: Bitmap index for attribute a of the array A from Figure 2.1: empty bitmask
EBM, equality encoded index E, range encoded index R and interval encoded index I.

Another crucial aspect of bitmap indexing is encoding [37]. which determines how a
set of bins, B, of attribute domain is encoded in each bitmap and consecutively into a

14

2.4. Bitmap Indexing

bitmap index. The simplest encoding, called equality encoding, encodes each bin with one
bitmap for a total of | B| bitmaps. Processing of equality queries reads a single bitmap, but
processing of range queries has to read at most half of all the bitmaps. Range encoding uses
B — 1 bitmaps, each bitmap R; encodes a range of bins [By, B;]. The processing of range
encoded bitmap index for range queries reads at most two bitmaps. Interval encoding [36]

uses ‘QE‘ bitmaps, each bitmap /; is based on range encoded bitmaps R; ® R, Interval

1Bl
encoding uses at most two bitmaps to process range queries. Compared to rangé encoding,
it uses only half the space. Figure 2.8 shows an example of equality, range and interval
bitmaps for the array in Figure 2.1.

Bitmap indices, based on the number of bins, may take up to |B|-C, where C'is the car-
dinality of the indexed attribute, leading to a situation, where even a very small number of
bins exceeds the size of the raw data. Binary run-length compression algorithms are usually
applied on bitmap indices to reduce the overall size. However, another requirement is posed
to these compression algorithms, such that it must be possible to run bit-wise operations
effectively on the compressed bitmaps. There are two main representative compression al-
gorithms, namely Byte-aligned Bitmap Code — BBC [7] and Word-Aligned Hybrid (WAH)
compression [220], which is depicted in Figure 2.9. Many other algorithms that improve on
BBC or WAH are described in [40]. Research in bitmap index compression is still ongoing,
with the currently state-or-the-art algorithm called Super Byte-aligned Hybrid (SBH) [103].
All the current research on compressed bitmap indexing is focus on single-dimensional data.

101100100...0000...000000...00100..0000...000000...00001100010...0000...0000 Uncompressed bit sequence of 1736 bits.

101100100...0000...000000...00100..0000...000000...00001100010...0000...0000 Grouping literals and runs.
N e A e A e e A e e e e e, e
31 2x31 31 36x31 31 31 14x31
‘ 0101100100...00 | 100...00010 | 00...010000 | 100...100100 | 00...00110 | 0010...000 | 100...1110 WAH encoding.

Figure 2.9: An example of World Aligned Hybrid (WAH) bitmap compression. WAH is
a form of runtime length encoding compression, where only runs of zeros are run length
encoded, while runs with ones are treated as literals. [103]

In order to facilitate effectively high cardinality attributes with space efficient indices
and fast querying, two composite methods were introduced. The first method is multi-
component, where the attribute value is decomposed into multiple components, which are
then indexed independently. An example of multi-component index is a bit-sliced index
[149], where each component corresponds to a bit of the value. Second composite method is
called multi-level indexing [190], where the binning of the attribute becomes progressively
more precise with increasing levels.

Thorough performance analysis of bitmap indexing, especially multi-level and multi-
component both uncompressed and compressed is presented in [221]. An open-source
bitmap indexing framework Fastbit [219] implements most of currently existing indexing
schemes, mainly two-level indices.

15

2. BACKGROUND AND STATE-OF-THE-ART

2.5 Bucket Indexing Methods

Many spatial indexing data structures aggregate individual data points into buckets in
order to save the overall size of the index and to reduce the number of potential disc access
requests.

Simple extension of k-d trees called k-d-B trees [166] is a hybrid between k-d trees and
B-trees. In k-d-B trees, it is possible for one internal node to consist of a set of adjacent
regions, and for leaves to consist of multiple points. There are many improvements on k-
d-B trees, including LST tree, hB-tree, k-d-b-trie, but their description is out of the scope
of this work.

Grid indexing methods are much closer to array data model than trees. Gird methods
split the domain space into non-regularly gridded space. Grid file [145] is the basic method
of griding the domain space along all axes at the same time. Grid file requires the index
to maintain another data structures called linear scales. EXCELL [201] is a modification
of grid file that allows to split the domain space along a single dimension only and splits
the domain space in predefined manner.

Many more bucket indexing methods are described in [174].

2.6 Similarity Hashing

Similarity hashing is a method for hashing similar items into the same buckets (as opposed
to random hashing). This property is widely used in similarity searching systems. Its fea-
sibility for multidimensional (as opposed to multi-attribute) indexing has not been deeply
explored to date.

There are many ways to measure similarity between 2 data items. One of the major
types of distances are feature-based,which rely most often on n-dimension vector or a set
of values.

For such n-dimensional vectors, randomized fingerprinting schemes using features hash-
ing were introduced. The most famous is the similarity hash (simhash) [38]. Min-wise
independed hashing minhash first introduced in [29] deals with dimension reduction using
multiple independent hashing functions. Minhash estimates the Jaccard similarity. A sin-
gle hash function probes the Jaccard similarity on a single pair from the sets. Similar
techniques are Sdhash [167] and Sketching [132, Chapter 19].

Locality Sensitive Hashing originally introduced in [91] uses these similarity hashing
techniques to find the approximate nearest neighbors.

2.7 Spatiotemporal Indexing and Databases

Extending spatial data with a time dimension yield so called spatiotemporal data. The
temporal dimension is usually treated in a special manner, especially due to the semantics.
In many cases, however, the indexing can be generalized into n+1 dimensions. In arrays,

16

2.8. Approximate Array Pattern Matching

the most common modeling scenario is a dedicated linear scale index for the temporal
dimension.

Following is a list of common temporal and spatial predicates and operators

o Temporal predicates: overlap, precede, contain, equal, meet, intersect,...

o Temporal operators: intersect, following, preceding,...

o Spatial predicates: equal, disjoint, overlap, meet, contain, adjacent and common

border,...

o Spatial operators: intersect, area, perimeter, distance,...

For a broader overview of spatiotemporal operators and indexing, see [204]. For
overview of spatiotemporal idexing methods for both past, present and current events,
see a thorough overview in [140].

Spatio-temporal databases, sometimes also known as moving objects databases or
STDBMS, are popular database and computational platforms for spatiotemporal data
of various kinds. The most known representative of spatiotemporal databases is Secondo
[76]. Many spatial and spatiotemporal indexing algorithms have found their application in
these databases.

2.8 Approximate Array Pattern Matching

Approximate pattern matching problems are a specific case of general searching problems
with a user-defined template pattern (or a set of template patterns) and a pre-defined
similarity measure and error bound.

The goal is to find a set of locations in the original array, where the distance to the
pattern is less or equal to a given threshold.

Standard approximate pattern matching algorithms are not applicable in large multi-
dimensional arrays due to the necessarily distributed nature of such large data and due
to the high complexities of such algorithms. Although more advanced pattern searching
algorithms use filtering to minimize the search space, it is still not applicable for large scale
array data. Good overview on multidimensional approximate pattern searching algorithms
is available in [15].

Many pattern matching solutions are limited to two dimensions, as such problems relate
well to computer graphics and image processing. Some extensions allow for rotations as
well [2].

17

CHAPTER

Inverted Regridding Indexing

In this section, we describe our work on inverted indices that allow effective execution of
various spatiotemporal selection queries on satellite data. This work is more application

oriented.

Given a trajectory from a user and satellite sensor data, we perform accurate data
retrieval in the form of valid regions from the SciDB database containing complete ten-
year QuikSCAT ocean surface wind fields satellite data. Subsequently, we regridded the
regions and further processed the result, including visualization. This is a practical work

aimed at large data processing and simple indexing.

This section is partially taken from [A.1]

Raw QuikSCAT Data Array Redimensioned Update Array
CROSS dimension Redimension CONFLICTS (list) dimension
------------- .
c c | | " c c c .
o1 2 Time ol1oe |2 Swath
wn w w [[] —
S| & : S| 6|6 Along
£|E Latitude £|le|E
E s ' Longitude E E E Swath
< other =
=13 J L . : t| atrbutes E|[E|[F Along
< E|lOo
< % Swath
| | Time - Along
Latitude Swath
'y Longitude Along
- - - - - Other -
. attributes .

Aggregate along
CONFLICTS dimension

» Index Array

Swath_start
Swath”end
Along_start
Along”end
Swath_start
Swath”end
Alongstart
Along~end
Swath_start
Swath”end
Along start
Along_end

Swath_start
Swath”end
Along_start
Along~end

TIME dimension

LATITUDE dimension
LONGITUDE dimension

Figure 3.1: Array regridding scheme used during incremental generation of Latitude-

Longitude-Time index.

19

3. INVERTED REGRIDDING INDEXING

3.1 Indexing Spatiotemporal Data

3.1.1 Regridding Index

Latitude-Longitude-Time indezr is a form of regridding index. The processing is based
on a redimension operator of SciDB, where attributes of one array become dimensions of
another (new) array. The new array’s dimensions are usually rescaled compared to the
original attributes’ range. Conflicting cells (i.e. cells that are the target of multiple source
array cells) can be treated by concatenating the values into a list followed by computing
an aggregate function along the list of conflicting cells. Note the aggregation can be done
without explicitely storing the list of conflicting cells.

The regridding process is depicted in Figure 3.1. The dimensions of the original raw
data array swath and along, are turned into attributes, the cross dimension is discarded,
and the attributes latitude, longitude and time are discretized and turned into dimensions
by the redimension operation. Since there are many cells that ended up assigned the same
latitude, longitude and time, most of them with different values of swath and along, we
need to run an aggregate along the auxiliary dimension. This yields another array without
conflicts, where the attributes swath__start, swath__end, along start and along end define
a range on the swath and along dimensions in the original raw data array.

There is an array with dimensions representing latitude and longitude from
QuikSCAT D3 array and time from QuikSCAT D2 (see array schemes for QuikSCAT
data). The granularity of the target dimensions is determined by the use-cases or by
individual levels in the hierarchical indices (see Section 3.1.3). The four attributes,
swath_start, swath_end, along start, along_end, of the index define a range in the
data array, i.e. the values are pointers into the original data.

Every index cell covers a range in the data swath, possibly with overlaps. It is
possible that multiple source cells end up indexed into a single target cell. As men-
tioned previously, an aggregate function is used. This aggregate function returns the
range union of the swaths and along dimensions. For example, if there is an incom-
ing data point from swath=1863, along=341, while currently the values for that in-
dex cell are swath_start=1862, along_start=1860, swath_end=1862, along_end=2894,
then the index cell’s pointers get updates to swath_start=1862, along start=1860,
swath_end=1863, along_end=341.

Index generation is fully incremental. However, to maximize parallelism, it is better
to process swaths that are further apart. Therefore, the chunks accessed in the modified
index arrays are more or less random, compared to consequent chunks, where there may
be a lot of data-write dependencies due to a substantial amount of data being written to
the same physical chunk.

The array schema of Latitude-Longitude-Time index for QuikSCAT data is as follows:
/* Index array with pointers to projected data */

LatLongTime_Index

< swath_begin: uint32,
swath_end: uint32,

20

3.1. Indexing Spatiotemporal Data

>

1;

row_begin: uintl6
row_end: uint16
lat=0:720, 7, 0,

long=0:1440, 7, O,
time=0:96432, 7, O

B

3.1.2 Cartesian Index

An extension of Latitude-Longitude-Time index into Cartesian coordinates is Cartesian
Index.

The main idea of this index is to allow for faster and more convenient spatial queries.

Since SciDB uses Cartesian coordinates, it is more effective to keep index data in Cartesian
coordinates as well. Distance based queries, predicates and operators can be effectively
truncated based on the dimensions only. This effectively eliminates the need to read chunks
that may be possibly rendered unneeded when further processing a query.

An example of Cartesian index with support for data projections is as follows:

/* Index array with pointers to projected data */
Cartesian_Index

<

1;

swath_start:
swath_end:
row_start:
row_end:

int32
int32
int16
int16

not null,
not null,
not null,
not null,

/* earliest and lates time points covered by this cell */
datetime not null,

datetime not null,

/* direction of time flow within the cell (along swath path) x/

time_start:
time_end:

time_angle: float
/* 3d angle -- normal to
polar_angle: float
azimuthal_angle: float
/* projection pointer */
projection_ptr: int64
X = 0:1024, 7, O,
y = 0:1024, 7, O,
VA = 0:1024, 7, O,
time = 0:87600, 7, O

not null,

the plane of projection */
not null,
not null,

not null,

3.1.3 Hierarchical Structure of Indices

Our implementation of Latitude-Longitude-Time index consists of multiple levels of the
indexing arrays. Each indexing array has different granularity, i.e., its cells cover different
latitude, longitude and/or time. Due to uneven distribution of spatiotemporal data from

21

3. INVERTED REGRIDDING INDEXING

satellites, some array locations may contain denser or sparser data. For example, the data
density of scans around the equator is different from the density close to the poles. Note
that for swath data the biased distribution of the data does not occur when using Cartesian
indices.

With hierarchical indices, queries can be executed subsequently on more detailed (lower
level) indices where necessary. When generating indices on multiple levels, we do not need
to use online heuristics to determine where to use more levels. To do so, it would require
a complicated re-indexing and possible re-reading of the raw data. Instead, since we are
working with Earth observing satellite data, we can determine the boundaries for individual
levels statically prior to indexing.

3.2 Use Case Scenario: Select QuikSCAT data given trop-
ical cyclone trajectory

We demonstrate the spatiotemporal query capabilities on an example of data selection
along a moving object:

Select QuikSCAT data along a given cyclone trajectory, with lat-lon radius of 1.0 degree
from the cyclone eye and time span of [-3,+21] hours.

Cyclone trajectory is loaded into SciDB as a list of points in the following format:
<lat, lon, time >[i]. This is done using CSV preprocessing and directly loaded from
CSV into SciDB. Points of the trajectory are interpolated so that hyperrectangles on the
interpolated points completely cover the neighborhood. Note that all the processing is
done within SciDB, which also demonstrates the computational capabilities and the ease
of integration of our solution.

3.3 Retrieving Data Regions — Pointers into the original
data

Data is selected from a Latitude-Longitude-Time index array given the mask (as a list of
hyperrectangles) using cross_between operator. Figure 3.2 shows an example of a trajec-
tory mask, which is used as an argument for the index query.

Figure 3.2: Trajectory and a corresponding mask — sequence of hyperrectangles on latitude,
longitude and time dimensions.

22

3.4. Time Complexity

Table 3.1: Timing results of a query - Select QuikSCAT Data Along Trajectory

Cyclone Isabel Isabel Isabel Isabel
Data points 12 35 98 98 98 98

Radius [deg] 1.0 1.0 1.0 2.0 2.0 8.0
Span [hours] 24 24 24 24 96 168

Index query
time [sec] 0.91 145 4.15 4.73 546 8.97

3.4 Time Complexity

Individual operations on the index arrays that do not require data transfer between nodes,
i.e., lookup, cross between, filtering are all very fast.

Theoretical time complexities of such array operations used are at most linear (in size
of the array) with expected linear parallel speedup. This assumes asymptotically lower
initial overhead and coordination overhead, sufficient network speed for data retrieval (if
needed) and fine enough chunk granularity (i.e. not all data in a single big chunk).

Note that assuming the chunking allocation scheme (i.e. to which node each chunk is
placed) respects the neighborhood by allocating nearby chunks to different physical nodes,
we estimate that the physical locations of chunks retrieved after the operations on the
index arrays will be more or less random.

For a random allocation of the chunks to physical machine of both index and data
arrays, the speedup is linear in expectancy — with high probability, the speedup S > c¢-n
for some desired constant 0 < ¢ < 1.

Table 3.1 shows the timing results of the data retrieval query. Note that the time scales
mainly with the number of data points of the trajectory. This is due to the fact that each
data point is more likely to hit a brand new chunk in both the index arrays and the raw
data arrays.

Increasing the radius (space) 2 times, i.e., the total area is increased 4 time, has minimal
effect on the time. Based on the level of the index, the probability of hitting additional
chunks of the index that need to be retrieved increases with lover level indices (denser
mesh). Same goes for span (time). If we had a prior knowledge of our queries, we could
adapt the chunking scheme of the index array to accommodate more spatial or more
temporal data in a single chunk; thus, resulting in increasing performance for spatial,
respective temporal intensive queries. However, in our data retrieval query example we
kept the ratio balanced.

We run SciDB on a single physical server — Intel Xeon E5-2640 v3 2.6GHz, 20M Cache,
8.00GT /s QPI, 8 cores; 8x16GB RAM, 2133 MT /s, 4x1TB 7.2K RPM SATA 6Gbps. There
are 4 virtual machines, each with 2 cores, 1 hard drive, 16GB RAM, running Ubuntu
14.04.1 server (3.16.0-30 kernel). Timing was measured as an average of 3 runs with cold
start on the virtual machines. Note that the main server was kept running, which might

23

3. INVERTED REGRIDDING INDEXING

have incurred some bias. However, the variation between individual measurements was
negligible.

3.5 Conclusion

We described our work on the utilization of the distributed array-based SciDB database
management system to support range query and data retrieval based on inverted indexing
on arrays (regridding).

We demonstrated the regridding on Latitude-Longitude-Time index, which is the most
straightforward and easy to understand and required the least preprocessing during data
loading and index generating, assuming the original data contain latitude and longitude
as attributes, which is the case of QuikSCAT data used during the demonstration.

24

CHAPTER 4

Hierarchical Bitmap Index for Range
and Membership Queries on
Multidimensional Arrays

In this chapter, we propose a new method for multidimensional array indexing that over-
comes the dimensionality-induced inefficiencies. The hierarchical indexing method is based
on n-dimensional sparse trees for dimension partitioning, with bound number of individual,
adaptively binned indices for attribute partitioning. This indexing performs well on ranges
involving both dimensions and attributes, as it prunes the search space early, avoids read-
ing entire index data, and does at most a single index traversal. Moreover, the indexing is
easily extensible to membership queries.

The indexing method was implemented on top of a state of the art bitmap indexing
library Fastbit. We show that the hierarchical bitmap index outperforms conventional
bitmap indexing built on auxiliary attribute for each dimension. Furthermore, the adaptive
binning significantly reduces the amount of bins and therefore memory requirements.

This section is based on [A.4].

4.1 Related Work and Previous Results

Querying multidimensional array data requires effective index. Majority of the current
systems rely are either built on top of relational databases or require a linearization of
the array data, i.e., mapping the data into one dimension, enabling many one-dimensional
access methods to be used. Others, such as array databases [196, 18], work natively with
multidimensional arrays. Note that there are many schemes for linearization of array data,
called space-filling curves (see Section 2.2.4, and schemes for linearization of spherical
surface data [200], which have been used for partial linearization over spherical spatial
dimensions only.

25

4. HIERARCHICAL BiTMAP INDEX

Traditional indexing methods like B-trees and hashing are not effectively applicable to
indexing multidimensional arrays, and are being replaced by multidimensional indexing
methods, such as R-trees [77], R*-trees [20], KD-trees, n-dimensional trees (quadtrees,
octrees, etc.) [171, 172]. These methods are not very effective for high dimension arrays
with attribute constraints and are relatively space demanding. A good overview of spatial
indexing algorithms is in [174], though majority of the focus is on traditional spatial data
instead of multidimensional arrays.

Approximate pattern matching problems are a specific case of general searching prob-
lems with a user-defined template pattern (or a set of template patterns) and a pre-defined
similarity measure and error bound. Standard approximate pattern matching algorithms
are not applicable in large multidimensional arrays due to the necessarily distributed na-
ture of such large data and due to the high complexities of such algorithms. Although more
advanced pattern searching algorithms use filtering to minimize the search space, it is still
not applicable for large scale array data. Good overview on multidimensional approximate
pattern searching algorithms is available in [15].

Many pattern matching solutions are limited to two dimensions, as such problems relate
well to computer graphics and image processing. Some extensions allow for rotations as
well [2].

A popular and very effective method of indexing arbitrary data is bitmap indexing,
which is an index consisting of a set of bitmaps (bitvectors) with associated metadata.
Bitmap indices leverage hardware support for fast bit-wise operations (AND, OR, NOT,
XOR), and are very space-efficient, especially for low-cardinality attributes [219], although
this was partially overcome by sophisticated multi-level and multi-component indices.
Bitmap indices are used in majority of commercial relational databases [68, 189, 190, 42].

Compressed, hierarchical, multi-component bitmap indexing has also been used for
relational data [221] or in a simple form for sparse array data [143].

Other works utilize bitmap indexing for spatial applications, but do not model the data
as multidimensional arrays [124, 191, 195].

Many generalized searching problems on arrays have occurred recently as a result of a
boom in scientific computing based on data representation as multidimensional arrays. The
most prominent problem is constraint programming with aggregate-based constraints called
Searchlight [100], using simple synopsis indexes. Indexing for aggregate-based problems has
been investigated in a context of approximate aggregation problem in [215] and subgroup
discovery [214].

More general problems closely related to array searching problems involved data un-
certainty (both positional and values) [156], similarity search [207], similarity join [231]
iterative processing [193], data exploration [100] and other.

The multidimensional distributed array database SciDB has been used as a framework
for multiple applications on top of spatiotemporal data. From previously mentioned solu-
tions, Searchlight [100], AscotDB [208] iterative processing [193] is built on top of SciDB
as well.

Recently, a selective filtering (attribute-based search) improvement was introduced for
SciDB [104].

26

4.2. Problem Statement

4.2 Problem Statement

In our work, we focus on selection, searching, and exploratory tasks, which make up a
foundation for majority of other data processing tasks and scientific applications. Our
objective is to design a family of indexing schemes for multidimensional array data that
allows for fast selection queries and general computational operations.

The selection query parameters are a set of dimension values or ranges; dimension
result range constraints; attribute values or ranges; attribute template patterns, including
sparse and don’t care cells, with distance measure definition and corresponding value; and
aggregate conditions.

Computational operation run on top of selection results include result aggregations,
exploratory tasks and general purpose array operations.

An example of an array query is:

From SATELLITEARRAY, find all hyperrectangular regions R, such that Rllat] €
[—50,80] and R[long] € [20,150] and sizeof(R[lat]) > 5 and sizeof(R[long]) > 5
and 1420070400 < RJtime] < 1451606400, where avg RAINFALL in R > 100 and
WIND_DIRECTION in R matches TORNADOPATTERN with HAMMINGDIsTANCE < (.5,
output 100 region € R with max avg WINDSPEED;

Since the query execution leads to a multidimensional array optimization task, which
based on the region constraints may lead to optimization problem over integral domain
— equivalent to NP-Hard Integer Programming, we intend to employ randomization and
approximation techniques in the query execution.

We allow probability relaxation on the correctness of each result region, both in terms
of false positives and false negatives. Furthermore, we introduce accuracy relaxation in
terms of constraints satisfaction of selected regions.

4.3 Description of Hierarchical Bitmap Array Index

We now briefly discuss a common way of indexing multidimensional arrays using additional
bitmap indexes for each dimension. Then we describe the structure of our hierarchical
bitmap array index.

Arrays A{aq,...,am)|d1,. .., dy,] are usually stored in a linearized representation, most
commonly C-style row-major array representation. Creating one index Iy—x(dy,...,d,) for
each dimension d, which is set to 1 for cells of array A where d is equal to a value k. This
allows filtering out results based on dimensions using binary AND.

Note that the dimensions index I4,—x(dy, ..., d,) does not necessarily have to use equal-
ity encoding, but based on the expected queries, we may choose a better combination of
binning, encoding and compression. This approach is used in [215, 235] with equi-depth
binning or in [214] with v-optimized binning based on v-optimal histograms [95] and C-style
row-major linearization in [198].

Unfortunately, dimension bitmap index is not effectively compressible. Consider an
example of row-major ordering on 5x5 array. Then the row dimension index for column = 1

27

4. HIERARCHICAL BiTMAP INDEX

is 01000 01000 01000 01000 01000, which cannot be effectively compressed using either
BCC or WAH, since the compression context of both is a single bit. This can be partially
mitigated by stretching dimensions to multiples of bytes or words, and extending the run-
length compression to use byte or word in its compression context, instead of single bits.
Another option is to use either Z-order or Hilbert space filling curves to further increase
locality of the dimensions. Neither, however, solves the problem entirely.

4.3.1 Partitioning of Arrays

Non-partitioned data require much finer binning and the domain of the dimension is higher
than its partitioned counterpart, thus higher amount of bins is required. By partitioning
the array A{aq,...,an)[di,...,d,] into a set of regularly gridded chunks C' in the Multidi-
mensional Array Clustering fashion described in Section 2.1, such that:

Cilo1,09,...0n,€1,€2,...,6,] =
A(al,...,am>[01 <d; < €1y...,0np < dn < en]

All chunks in our data model are of the same shape, i.e., for all chunks C;, C; of array
A, it holds that

C’Z[ek} — CZ[Ok] = Cj [ek] — Cj[Ok]

for all dimensions k, and chunks are not overlapping and completely cover the whole array
A. In the chunk notation, o, stands for offset and e, stands for end of the chunk along
that dimension (exclusive boundary).

By chunking the array, we limit the domain of both attributes and dimensions in a
given partition. In our adaptive binning indices, we use the fact that the domain of the
attribute varies based on the location.

The first problem arising from the equal size chunking model is that within a single
chunk, we are still required to use either indexing or at least aggregate information on the
attributes, such as min and maz for precise queries or histograms for probabilistic queries,
or data exploration. We choose to use bitmap indexing on both attributes and dimensions
within the chunk. Note that the dimension indices are the same for all chunks in the
array, since for each chunk, we can simply subtract its offset from the dimensions query
constraints.

The second problem lies in the overall structure of the chunks. There is no direct, high
level index of the attributes for the chunks. It is necessary to scan through the synopsis of
all the individual chunks, or generate a hierarchical synopsis. The latter has been utilized
in [100] in a form of a graph generated over merging sub-arrays.

We propose a unified solution that solves both the problem with dimension attributes
and with synopsis of array chunks. Our solution is in a form of hierarchical bitmap index
on top of a n-dimensional tree (such as octree for 3 dimensions) with variable binning for
each node in the tree.

28

4.3. Description of Hierarchical Bitmap Array Index

4.3.2 Structure of the Array Chunk Index

The index is done separately for each attribute of the array A. Let’s fix an attribute a.
All the following functions refer to this attribute.

Each chunk C(oy, 09, ..., 0,) of array A(ay,...,am)[d1,. .., d,] is associated with exactly
one leaf Ny(01,09,...,0,). Independently, each leaf uses an equi-depth binning index with
a total of at most BINS bins, where bin boundaries bins(N, of the index are based on an
exact chunk values histogram. Note that this assumes uniform distribution of queries. If
we had any prior knowledge of the queries based on the attribute, we would instead opt for
weighted histogram to construct the binning. The leaf’s dimension boundaries correspond
to its associated chunk’s boundaries, clipped by the global shape of the array A.

Accounting for empty values (missing cells in A) is done using a special bitmask, known
as empty bitmask, for a total of BINS 4 1 indices. Only leaves with at least £ - BINS non-
empty cells are indexed, where the constant E is dependent on the data structure used for
the leaf representation, i.e., do not use bitmap indexing if listing the values is more space
efficient.

Encoding of the leaf indices is left as a parameter to the user, as the bitmap indexing
performance heavily depends on the cardinality of the array attribute, desired number
of bins, and query types. For generality, we assume high cardinality attributes, such as
integers and doubles and small number of bins such as BINS < 16.

Except for very narrow dimension range queries, a dimension query will either cover
the whole span of a leaf node, or result in a one-sided dimension range query once the
query processing reaches a single chunk. Thus, the ideal encodings for chunks are range
and interval encodings [36]. Our default encoding is interval encoding since it uses half
the memory range encoding does. Encoding of inner nodes is more complicated and we
describe it in Section 4.3.5.

4.3.3 Structure and Construction of the Hierarchical Bitmap Array
Index

To deal with the higher level index, we create a special composite index on tree similar to
n-dimensional tree. Each internal node of the index has at most F' children, where F' is
called a fanout. Note that, unlike in quadtrees, octrees or n-dimensional trees, F' is not
necessarily 2", where n is the number of dimensions. Our bitmap indices are based on the
fanout and we want to utilize binary operations as much as possible. For this reason, the
fanout F' should be a multiple of the processor word size W, or as close to it as possible.

The overall internal node fanout F' can be expressed in terms of a fanout Fy, for a
single dimension k as

n n
= <
P11 < (o P
Assuming that the dimension fanout Fj, is the same for all dimensions, we can get
1
Fy, = |F|

29

4. HIERARCHICAL BiTMAP INDEX

As we will see in Section 4.4.2, in order to facilitate efficient dimension range queries,
the size of F' cannot be too large, since the size of precomputed dimension clipping bitmaps
depends on F.

The index tree construction works in a bottom-up fashion, where the leaf nodes are
indexed at first. This allows both data appending and modification (see Section 4.3.7).
Each internal node is constructed from at most F' direct children and with at most BINS
attribute bins, with one additional index for empty bitmask. Each child node N; of internal
node N provides its attribute’s min(N;) and max(N;) values. These values are used for
the construction of the bitmap index of N.

Let B = (min(Ny), max(Ny)), ..., (min(Ng), max(Nr)) be the set of all intervals rang-
ing from the minimum to the maximum value of the indexed attribute a among all the
child nodes N;. The set B is the set of bins — the individual interval boundaries are de-
limiters, where the attribute’s a value a is in the attribute domain of different child nodes.
Formally, let nodesin(a) C N; be a function of a value a € « of attribute a, which returns
a subset of child nodes.

N; € nodesin(a) <= min(N;) < a < maz(N;)

The set nodesin(a) is used to construct the binning for index of this internal node. We
describe the encoding of this bitmap index in Section 4.3.5.

The index bins are aligned with the bins from B. This guarantees that no two indices
for different bins will be identical, i.e., represent the same set of children. It also directly
implies that adding more boundaries to B would be pointless.

4.3.4 Bin Boundaries Merging in Parent Nodes

The number of bins from all F' child nodes is higher than BINS for majority of the internal
nodes N, therefore it is necessary to reduce the size of the set of bins, B. There are several
strategies to choose B C D such that |B| = BINS. An example of such binning reduction
is in Figure 4.1.

The first strategy is to use an equi-width distribution of the bins. This is the ideal
choice assuming the attribute part of the query is uniformly distributed or when there is
no prior knowledge about the attribute query and assuming the data distribution is not
skewed.

The second strategy is to use equi-depth binning. This is ideal if the attribute distri-
bution of the child nodes is skewed. It is possible to maintain the weights of the bins for
leaf nodes, since those have direct access to the data. However, internal nodes can only
make estimates about the weight of merged bins. In each internal node and leaf, we store
the weight estimate w(b), where b € B. The weighted square error of a bin b is

wse(b) = ’w(b)

30

4.3. Description of Hierarchical Bitmap Array Index

N, —e * N, —eo ¢ R.(-=,1)= 0000
N> ¢ — N * —e— R.[1,3) = 0101
N, . . N, — . : R,[3,+=)= 1111
N, —e Ny ————é—o=o—d———— R (-=,6]= 1111
b S R.(6,8] = 0011
B : : : : A R.(8,+=)= 0000
R ; o . : © : — R : 1 : . i :

1 2 3 456 7 8 1 2 3 456 7 8 Bitmap index of

nodes that have

R -- Approximate bins for attribute index False positive attribute ranges started / ended

Figure 4.1: Example of merging |B| = 8 bin boundaries to |R| = 4 bin boundaries for 4
child nodes. False positive ranges are marked in red. Two sided range encoded bitmaps
are generated for R.

and the weighted sum square error is

wsse(B) = > wse(b)

To estimate the weight of merged bin r € R C B, we assume uniform distribution of
values over the intervals of bins b € B. Then the estimated weight of r is

w(r) =Y w(b) - sizeof(bNr)

beB

where sizeof(bN) is the size of the intersection of r and b.

We cannot use the trivial algorithm for equi-depth binning, because we can only iterate
by bins of variable weight, instead of iterating by single data points. This is why we need to
approximate the equi-depth using a simple iterative algorithm. Details on selecting R C B
approximately equi-depth bins are shown in Algorithm 4.1. We first start with equi-width
binning (line 1). Then, we generate sets of all possible bin splits and merges (lines 2-3),
setup two priority queues and evaluate all possible splits and merges in terms of weighted
sum square error (lines 4-11). After that, we perform one valid split and one merge on the
binning as long as this leads to an improvement of the overall binning (lines 14-18). This
preserves the total number of bins.

In case a node has either a low cardinality attribute throughout all the child nodes, we
create bins mapped to single values of the attribute and their corresponding bitmaps.

Note that v-optimal binning does not work in our case, since we don’t have the indi-
vidual data values available during construction of the internal nodes, although we could
approximate this using uniformly or normally distributed estimates within the bins of child
nodes, or by propagating at least basic data synopsis.

31

4. HIERARCHICAL BiTMAP INDEX

Input: set of bins B, set of weights w(b), b € B, number of output bins BINS
Result: approx equi-depth bins R C B, |R| =BINS

R < eq-width bins from B, |B| =BINS;
Bg « all possible split bins of R;
By < all possible merged bins of R;
Qsprrr ¢ priority_queue();
QumErGE priority queue();
for s € Bg do // bins to split

‘ add (s, Awse(s)) to QspriT;
end
for (m,m') € BM do // bins to merge

‘ add ((m,m’), Awse((m,m’)) to QumEercE;
end

// split that decreases wsse the most
12 (s, Awse(s) < min(QspriT);

// merge that increases wsse the least

13 ((m,m'), Awse((m, m'))) < min(QuEercE);
14 while Awse((m,m’)) > Awse(b) do

© W N O A W N e

e
= o

15 split b;

16 merge (b,0);

17 | update R, Bs, By, QuEercE, QspLiT;
18 end

Algorithm 4.1: [terative equi-depth binning approximation

4.3.5 Double Range Encoding of Bitmap Indices in Internal Nodes

Unlike in bitmap indexing in leaves where one encodes positions of individual values, we
encode sets of child nodes nodesin(a) for attribute values @ in the internal nodes. Our
binning B has the property that for all attribute values aj,a; € b € B it holds that
nodesin(ay) = nodesin(ay). Note that this does not hold for intervals r € R (See Figure
4.1 for an example).

We will now describe an effective bitmap encoding of nodesin(a), a € r € R. Let’s
have two adjacent intervals r € R and r’ € R, such that r, = 7, Note that since R C B, we
have nodesin(r) # nodesin(r’). If nodesin(r') D nodesin(r), then r’" corresponds to a bin,
where nodes are added, and we add 7’ to a set R,. Else, if nodesin(r") C nodesin(r), then
nodes are removed in set nodesin(r’), and we add ' to set R_. Otherwise, some nodes are
added and some are removed and we add 7’ to both R, and R_. In our example in Figure
4.1, Ry ={[1,3),[3,6)} and R_ = {(3,6], (6, 8]}.

There is no guarantee that |Ry| = |R_|. If we wanted, we could run Algorithm 4.1
separately on boundaries B, and B_ (likewise defined) and with BZ¥ bins, but then we’d
lose the equi-width approximation.

32

4.3. Description of Hierarchical Bitmap Array Index

Now, we encode |R,| + 1 bitmaps using range encoding, so that the index for bin
r+ € R, corresponds to children, whose attribute range minimum min(JV;) is < to the
upper boundary of interval r,. In our example, bitmap corresponding to r = [1,3) € R,
is 0101, indicating that N; and N3 have started in or before this interval. Similarly, we
encode |R_| + 1 bitmaps for values r_ using inverse range encoding, i.e., children, whose
attribute range maximum max(N;) is > to r_ are encoded by 0 in the bitmap, representing
children that have already ended before or in the interval r_.

These two bitmaps easily allow evaluation of partial and complete matches (see Section
4.4.1) using only two bitmap reads and one logical operation for both partial and complete

query.

4.3.6 Locality of the Hierarchical Index

In order to preserve locality of the data during queries, we store the whole index in a
locality preserving linearization of an n-dimensional tree. For each query, blocks of the
index are loaded sequentially and sparsely, based on the parameters in the query. Thus,
only one traversal, possibly incomplete, of the index data is needed. The index data consist
of bin boundaries, weight estimates and bitmap indices.

We use space filling curves, namely the Z-order curve to linearize the multidimensional
array index. We choose not to use recursive multi-level Z-order curves, as this would force
the query processing to be based on pre-order traversal of the index tree. We also choose
not to use row major ordering, since it has poor locality and it would slow down retrieving
locations child nodes and partitions. Hilbert curve has perfect locality, but it does not
preserve dimensions ordering. This means we would need to precompute bitmaps for
dimension constraints for each block of Hilbert curve separately. Z-order curve allows for
fast child and parent node index computations, preserves dimensionality between different
level and has a good locality.

The order Z, of the Z-order curve of level ¢ is determined by the maximal fanout
Frae = maxi<g<y, Fy, , where Fy, is a fanout of dimension £.

Zy =1V [logy Frnaz |

Assuming Fy, is the same for all dimensions, the order of Z-order curve is then
1
2y = (- [log, | F|]

and such a Z-order curve has length of (Z,)".

Several of the higher levels are stored in a dense vector, as specified by a user parameter.
These vectors are expected to be densely filled. The remaining levels are stored as non-
overlapping intervals on a Z-order dimension (1D) in continuous blocks, indexed by a binary
search tree. This is a compromise between sparse single node map and full vector used for
higher levels. Note that the blocks may not be sequential in memory, but at most a single
transition is guaranteed, i.e., no blocks are read twice during the processing of a single

query.

33

4. HIERARCHICAL BiTMAP INDEX

4.3.7 Appending and Modifying Data

Scientific data is often considered either fixed or append only, our indexing approach allows
for both appending and data modification, although the latter is not convenient.

To append data along any dimension, we apply the same bottom-up procedure to
update the index. It is necessary to update the dimension bounds of internal nodes (that
were possibly previously clipped by the global shape of the array) and bitmap indices (to
include the new child nodes). Note that we do not have to update the weight estimates
and bin boundaries (except min and max) in order to assure index correctness. However,
in order to assure the equi-depth optimal binning, we need to run the bin merge algorithm
again on affected nodes.

4.4 Querying Dimensions And Attributes

In this work, we focus on selection queries over dimensions and attributes of an array. Such
query consists of a set of dimension constraints and attribute constraints. Let’s specify a
query g over an array A(ay,...,an)[d,...,d,] as a set of ranges over dimensions ¢p and
attributes q4.

q=qaUqp ={(a,ae,an)} U{(d;, je, jn), - - -}

where (a, as,ay,) is a triple specifying attribute constraint: attribute, its lower bound and
its (exclusive) upper bound; same goes for dimensions. In this work, we focus on a single
attribute query. Therefore, we simplify g4 to (as, ap). It is possible for a query to not specify
constraints for some dimensions, in which case we fill all ¢ with remaining dimensions, to a
complete query. Dimensions, that were not specified, are filled with (d;, min(d;), maz(d;))
triples. One-sided range constraints are also extended in similar manner.

The core of the query algorithm is a breadth-first descent through the index tree. At
each level, the search space is pruned according to both dimension and attribute values.

Let N be the currently searched node, N; be its child nodes, where 0 < i < F'; multi-
dimensional range Dy be the set of dimension boundaries in the format [Dy/[d],, Dx[d]4],
where d is dimension, ¢ designates lower bound, h upper bound, associated with node N.

Throughout the query processing, we maintain a queue of partially matched nodes
P and a set of completely matched nodes C'. We start at a root node N, setting P =
{N,}, assuming that both: node N’s boundaries and query dimensions are not disjoint:
Dy N Qp # 0 and (min(N),max(N)) N Qa # (), otherwise node N ¢ P and N ¢ C.

Let p, p', px and ¢, ¢/, e¢x be zero bitmaps of size F'; the bitmaps p indicates partial
attribute matches among the children of node N, p’ indicated partial dimensions matches,
px indicates partial matches, similarly the vectors ¢, ¢/, ¢x indicate complete matches. We
will now set these vectors according to the query) for the first node in queue P. The
partial and complete matches bitmap computation is also described in Algorithm 4.2 and
in Figure 4.2.

34

4.4. Querying Dimensions And Attributes

Input: query ¢ = {(ay,an), (dq,de,dp), ...} with DIMS

dimension constraints; node N; node children Ny,..., Ng; boundaries
[Dy|d]¢, Dy[nl]p] for N and all N; and dimensions d;

Result: partial matches px; complete matches cx;

Pn.s, Cn.s < load index for node NV;
Ps.a> Csq; // precomputed;
p {0}, p {0}, px;
c+ {1}, ¢« {1}F, ex;
if aj, < min(N) or ap > mazx(N) then
| return px < {0}F, cx < {0}
c=c& Cnslagan);
p="p|Pnslaan) & ~c;
for dimensions d, 1 < d < DIMS do
if dj, < DNZ[d]g or ap > DNZ[d]h then
| return px < {0}7, cx + {0}
if dg > DN[d]g then
| P =1 | Psalde);
if dh < DN[d]h then
| P =0 | P a(dn);
d = & Cg 4(dy, dp);
end
pp&d;
d & ~p;
cx — c & d;
pr(ple)& (']) & ~ex
22 return px*, c*

© 00 N o ok~ W N =

e e = T =
cqR W N = O

NN e
= © © ®w N o

Algorithm 4.2: Evaluation of partial and complete match bitmaps for a single node.

4.4.1 Attribute based Matches

In this subsection, we explain how attribute bitmask is set. This subsection further de-
scribes lines 5-8 in Algorithm 4.2.

If a, < min(N), or a; > max(N), there are neither partial nor complete attribute
matches and we terminate processing the current node.

Let Pys(ae,an) be a partial attribute match bitmasks specific to node N of for an
array of shape &, with bits set to one corresponding to children N; so that the intersection
[ag, ap) N [min(N;), maz(N;)] # 0.

Pun.s(ae, ap)lil =1 <= Pgns(an)i] A ~Prn.s(ae)|i]
Pons(a)li] =1 < min(N;) < a
Peinvs(a)lil =1 <= max(N;) > a

35

4. HIERARCHICAL BiTMAP INDEX

The second expression describes bitmap set to 1 for children that have started before or at
value a, the third one describes children that have ended at or after a. The first expression
then combines both.

To evaluate Py s(ar, ap), we first use binary search on R, and R_ to find two bins
L € R, and H € R_ such that ay € L and a, € H. These bins L and H mark the
attribute boundary bins. Then, Ppy s(ay) is identical to Ry [H]| and =Ppy s(a) is identical
to R_[L], where R, and R_ are the bitmap indices described in Section 4.3.3, each queried
for a single bin. Then we add Py s(ae, ay) to p using bitwise OR.

Now, we process complete candidates in a similar fashion. Let Cy s(as, ar) be a complete
attribute match bitmask specific to node N for array of shape S, so that the intersection
[ag, ap] N [min(N;), max(N;)] = [ag, ap).

Cnslae, an)li] =1 <= Ppns(a)li] A =Ppn.s(an)|i]

This expression is very similar to Py s(as, ar), describing children that have started at
or before a, and have not ended at or before ay. To evaluate Cy s(ar, ap), we query Ry [L]
and R_[H]|. Then, we add the result to ¢ using bitwise OR and remove those from p, i.e.,
p=pA —c.

Note that both partial and complete attribute candidates use a total of 4 index queries.
An example of attribute query is displayed in the bottom row in Figure 4.2.

4.4.2 Dimension based Matches

Next, we explain how the dimension masks are set. This subsection further describes lines
9-17 in Algorithm 4.2.

If for any dimension d it holds that d, < Dy;,[d], or a; > Dy,[d]s, there are neither
partial nor complete dimension matches and we terminate processing the current node.

Unlike attribute query, the evaluation of dimension query is the same for all nodes N,
so all the bitmaps for processing dimensions queries are precomputed.

Let Pg 4(de,dn) be a partial dimension match, where d is a dimension in the query
constraint (d,dy, dy), for an array of shape S, indicating child nodes N; such that the
intersection [Dy,[d]¢, Dn,[d]n,] N [de, dp] # 0.

Let’s fix a dimension d for which we evaluate partial matcOhes Pg 4(dy, dp):

Pha(d)]i] =1 <= dy € Dy,[d] A dg # Dy, d]
Pha(d)lil =1 <= dy € Dy,[d] Ady, # Dy [d]s
Ps.alde;dn)li) =1 <= Ps 4(de)[i] V Ps a(dn)[i]
Ps(d, dn)i] = Kdgms Ps.al]

The first expression describes which children /N; have dimension d range such that the query
limit d, falls inside the range, but it is not equal to the lower limit of that range. The
second expression is similar, but for dj,. Third and forth expression combine the partial

36

4.4. Querying Dimensions And Attributes

matches over both query limits and all dimensions. Note that this results in excessive
partial candidates since all child nodes that intersect the query constraints along at least
one dimension qualify as partial candidates.
Partial dimension matches are evaluated using one precomputed bitmap index corre-
sponding to
Ps)li =1 < b= Dy[d]

where b is a bucket corresponding to the chunking of the array A. There are a total of Fy
such buckets along dimension d, resulting in a total of Fj - d bitmaps of size F. We query
these bitmaps for all dimensions and combine them using OR into p’

There is a special case of false negative dimension result. If d, or dj, is equal to the
d’th dimension range border of a child node NN;, and at the same time the other end of d,
or dj, causes the dimension to be fully covered in N;, i.e. dy = Dy;,[d]; and dj, > Dy, [d];,
or d, = Dpy,[d]p, and dy < Dpy,[d]e, the query is evaluated as partial match for N; and
dimension d, while in fact dimension d contributes to complete matches. A check for this
scenario requires comparing the dimension ranges of child nodes to the query range, and
was ignored on purpose, as it complicates and slows down the query process.

For complete candidates, we will slightly modify the definition of C used for attributes.
Let Cs 4(dg, dp,) be a complete dimension match for array of shape S, indicating which child
nodes N; are partially or fully covered by interval [dy, dy]. Despite the semantics indicating
partially matches should not be included, we later trim the complete dimension match
bitmap accordingly.

1

<= [dg,dp] N Dy, [n] # 0
N Csalil

1<n<DIMS

Cs.alde, dn)[1]
Cs(dy, dp)i]

Complete dimension matches are evaluated using two precomputed bitmap indices cor-
responding to

1/9|S,d(b)[i] =1 < b< Dy,[d]
Crisa®)i] =1 <= b> Dy,[d]

similarly to bitmaps used for partial matches. There is a total of 2 - Fy; - d bitmaps of size
F' for complete matches. We query these bitmaps for all dimensions and combine them
using AND into ¢.

We now combine the partial dimension matches bitmap ¢ with p’, such that p’ = p' Ac.
Then, we clip the complete dimension bitmap by the partial bitmap as ¢ = ¢ A—p’. During
the evaluation of dimension matches, we used a total of 3 - d index queries. An example of
dimension query is displayed in the top row in Figure 4.2.

4.4.3 Partial and Complete Matches

Now that we have both attribute and dimension, and both partial and complete candidates,
we may proceed to merging the candidates and generating a bitmap representing the set

37

4. HIERARCHICAL BiTMAP INDEX

of result node children Cy s and a bitmap representing the set of potential node children
Pi.s that will be recursively explored. This subsection further describes lines 18-22 in
Algorithm 4.2.

The C} s bitmap is easier to obtain, as it is the intersection of both complete bitmaps
without partial candidates bitmaps.

Cis = Cns ACs

We obtain the set of partial candidates Py s by joining the dimension-based partial
candidates with the attribute-based candidates and clipping both by complete candidates

Pys = (PnsVCns) A (Ps Vv Cs) A ~Cys

We then iterate through the results, adding child nodes from C} s to the result set C' and
the partial candidates P} s into the queue P to be processed subsequently. This process
is done on top of Z-order indices, as it is trivial to generate Z-order indices corresponding
to nodes in the lower levels. The Z-order ordering of the inner nodes and breadth-first
traversal also ensures single traversal through the index.

SELECT * FROM AWHERE 2 =a <4 AND 1.3 =<d; AND d, = 2.5;

3-5{2-3| ~ | ~ 35|23 ~ | ~ 3-5(2-3| £ < C' = C' AND NOT P'

4-5(2-4(5-7(1-3 4-5|2-4|5-7|1-3 4-5(2-4(5-7 1—3/P' = P' AND C'

'—
4-6|7-8|2-2|3-5 4-6|7-8|2-2|3-5 4-6|7-8(2-2(3-5 (P OR C) AND

(P' OR C') AND
NOT (C AND C)

~ |5-6|4-6|1-1 ~ |5-6(4-6|1-1 ~ |5-6|4-6|1-1

Partial dimension Complete dimension

matches - P matches - C' C/AND c’

3-5(2-3| ~ | ~ 3523 ~ | ~ 3-5(2-3| ~ | ~ Y23 - | -

4-5|2-4|5-7|1-3 4-5|2-4|5-7|1-3 4-5(2-4|5-7|1-3 4-5(2-4|5-7|1-3

4-6|7-8|2-2|3-5 4-6|7-8|2-2|3-5 4-6|7-8(2-2|3-5 4-6|7-8|2-2|3-5

~ |5-6[4-6|1-1 ~ |5-6|4-6[1-1 ~ [5-6[4-6[1-1 ~ |5-6|4-6|1-1
—) 7

B o TR

Figure 4.2: Processing of a query in a single node of the hierarchical index. Top row
represents dimension constraints, bottom row represents attribute constraints. Bottom
right is the final product. Blue nodes represent partial matches and green node represent
complete matches.

38

4.5. Experimental Evaluation

Running the algorithm for multiple queries or multiple attribute constraints in a single
query can be implemented using iteration through the constraints in the worst case.

4.4.4 Estimating Cardinality of Results; Membership Queries

It is fairly straightforward to output estimates on minimal and maximal number of match-
ing cells by iterating some bounded number of levels of the index. The minimal number
outputs the size of nodes in C', while the maximum outputs the size of nodes in C' U P.
Using the w(b) estimate, we may also provide estimates on aggregates over the attribute,
based on bin-wise linear approximation.

There is a simple modification of the algorithm for membership queries. (See Section 2.1
for details about membership queries). On top of two sided range indices Py s and Cy s for
attribute queries, we keep equality indices and iterate through the attribute constraint. For
dimension membership queries, we precompute an index for all dimension values (within
a single chunk), as opposed to buckets corresponding to child nodes, that are used in Pg ,
and Cg 4.

4.5 Experimental Evaluation

We have tested our implementation against several other solutions, of which none is specif-
ically tailored to mixed attribute and dimensions range queries, but those are the only
readily available solutions involving bitmap indices and being capable of executing range
queries.

We measured the time and space efficiencies for each individual query, i.e. total query
execution time, and space requirements for the index. Timing was measured as an average
of 3 runs with data preloaded into memory. For Fastbit queries, we use their internal wall
time measuring systems, meaning certain pre and post processing steps are not included in
the time measurements, such as query string parsing. Space requirements were measured
based on the disk space required to store the bitmap index together with all relevant
metadata.

The experiments were run on a single physical machine — Intel(R) Xeon(R) CPU
E5-1650 v2 @ 3.50GHz, 16 GB RAM, 1TB 7.2K RPM SATA 6Gbps; running Ubuntu
14.04.1 (3.19.0-32 kernel).

We use a synthetic dataset to test our queries on — randomly generated multidimensional
sum gaussian distribution SUMGAUSS. Its only attribute ag is a sum of G randomly
initialized Gaussian distribution in D dimensions:

" 3 & 1 ox (d =)57 (d =)
G(d)_;< 2m)P p< 2 >)

where p; and X; are randomly generated distribution mean vector and a bounded symmetric
positive definite covariance matrix for dimension i. For sparse arrays, a threshold for

39

4. HIERARCHICAL BiTMAP INDEX

the Gaussian functions is used. Attribute is treated as empty if the value is below this
threshold. Only partitions with at least one non empty value are generated.

4.5.1 Fastbit Integration

Fastbit [219] is an open source library that implements bitmap indexing. It’s not a com-
plete database management system, rather a data processing tool, as its main purpose
is to facilitate selection queries and estimates. Fastbit’s key technological features are
WAH bitmap compression multi-component and multi-level indices with many different
combinations of encoding and binning schemes.

We use Fastbit’s partitions to setup the lowest level of our indices (leaves), and base
our binning indices on Fastbit’s single-level binning index. This approach requires prepro-
cessing of the data into evenly shaped partitions, generating empty bitmasks and shape
metadata. Once a table is preprocessed into even partitions, it is indexed as described in
Section 4.3. The index generation processes one partition at a time, and once processed,
the partition is never accessed again during the index generation.

4.5.2 Bitmap Indexing Methods

BoxCLIP represents a naive algorithm using 32 equi-depth binned indices, interval encod-
ing and WAH compression. The result bitmask from the attribute query is transformed to
a set of “line” hyperrectangles (size of the hyperrectangle in all but one dimensions is 1),
which are filtered from the dimension query, then merged into a set of result hyperrectan-
gles. All the steps except filtering are built on top for Fastbit’s mesh query. The filtering
is implemented using recursive sweeping line algorithm.

DIMSATTS uses indexed uint auxiliary attributes made from dimensions (see Section
4.3). The dimension query is preprocessed into attributes, then run as a multi constraint
query in Fastbit. The configuration is the same as in BOXCLIP, using 32 binned indices,
range encoding and WAH compression on all attributes.

ARRAYBIT represents our hierarchical multidimensional index. We use 16 equi-depth
binned indices, range encoding and WAH compression to index the partitions, and 16
approximately equi-depth binned indices (described in Section 4.3.4) with two sided range
encoding and no compression for the hierarchical index. Note that compared to BoxCrip
and DIMSATTS, we only use half of the bins in the partition index. It is sufficient in our
algorithm, because the bin boundaries are adapted to the actual data in each partition,
and because we need to store the bin boundaries within the partitions.

4.5.3 Range Queries

In our work, we focus on mixed attribute and dimension queries. Regardless of the dataset,
we categorize the queries based on the overall ratio of the size of the query result to the
size of the total array size.

40

4.5. Experimental Evaluation

5 |08 BoxCrip | = 1.000
=~ ||l0 DIMSATTS g e |
o |00 o
21 ARRAYBIT | % 500 | |
* o
0 I |:|D:: D | . 0 = DD:: |:| D,
T T T T T T
SMB 128MB 1GB SMB 128MB 1GB
array size array size

Figure 4.3: Query execution time and disk space required to store the indices for different
array sizes.

4 1 8r 8 —o— BoxCLip
. 6l i 10 | ||—=— DIMSATTS
- Al | —o— ARRAYBIT
£2] i 51 :

) ./,,,,4/.\'\‘ 21 |

0 ¢ \ \ \ \ * | 0 | L] 0L \]

0 20 40 60 80 100 0 50 100 0 50 100
2D - result/array ratio [%] 3D — result/array ratio [%] 4D — result/array ratio [%]

Figure 4.4: Query execution time for 2D, 3D and 4D queries of various hit ratios. Queries
contained an attribute constraint and all dimension constraints, each constraint with ap-
proximately the same domain reduction.

Figure 4.3 shows the time required to return all results. The index file is preloaded
into memory prior to the test for all the systems used. We used 2D array for this experi-
ment. and a query with ~ 10% hit ratio. Both BoxCLIP and DIMSATTS run slower than
ARRAYBIT. In case of BOXCLIP, the reason is that all the attribute query results had
to be processed, while for DIMSATTS the reason is that the attribute made from second
dimension didn’t effectively compress. In terms of space requirements, all of the algorithms
save attribute index. ARRAYBIT uses less bins in the leaves, but stores bin boundaries
for all leaves and internal nodes, plus bitmaps for internal nodes, effectively taking up the
same space as BOXCLIP. On the other hand, DIMSATTS stores indices for all dimension
attributes. Row major ordering is used in this measurement.

Figure 4.4 demonstrates the dependency of the query processing time on a hit ratio of
the query, i.e., the ratio of selected cells vs total cells in the array. BoxCLiP algorithm does
not prune the search space based on the dimensions, resulting in number of hits dependent
on the attribute only. Filtering these is is time intensive. DIMSATTS depends linearly on
the total number of dimensions. This is because there is an additional attribute for each
dimension. There is also a small dependency on the hit ratio, where the increase is due to

41

4. HIERARCHICAL BiTMAP INDEX

the results retrieval. ARRAYBIT achieves very good results for low or high hit rate queries.
This is due to a large number of complete matches, and due to fast pruning of search space.
For medium hit rate queries, the algorithm has relatively high number of candidate nodes
to explore, but still manages to prune the search space faster.

4.5.4 Parameterization

We also experimented with different setups of our hierarchical index. The major objectives
remain the same: query execution time and space requirements of the index.

First, the partition size determines the ratio of partition index vs hierarchical index.
We set this in equilibrium with number of index bins, which increases the precision of the
binning and results in higher probability of pruning the search space earlier.

Another important parameter is a fanout of nodes. If we use a smaller fanout (the
smallest possible is 27), we may not fill a single memory word with the index, significantly
impair bit parallelism, furthermore the index size will be larger due to much deeper indexing
tree. If the fanout is too high, we will not prune infeasible candidates fast enough. We got
optimal results with a fanout close to a multiple of the word size, such as 8% = 64 for 2D
arrays, 43 = 64 for 3D, 4* = 256 for 4D, 3° = 243 for 5D, etc.

4.6 Conclusion

Most of the work on bitmap indexing to date focus on improving the space efficiency and
speed, while a few applied the bitmap indices to multidimensional data. However, the
linear form of bitmap indices was never adapted to support multidimensional array data.

We have proposed a bitmap indexing method that is designed for multidimensional
arrays and focuses on overcoming the dimensionality issue. The hierarchical nature of the
proposed method allows for continuous results and estimates to be output as intermediate
results. Our approach effectively prunes the search space, uses data adaptive, approximate
equi-depth binning. Furthermore, the index supports partitioned array data and allows
distributed storage.

Our experimental results show that the proposed bitmap indexing method outperforms
standard linearized approaches for mixed attribute and dimension range query processing.

There is a possible caveat that more complex multi-level and multi-component indices
exist. None of these indices overcome the problem of dimensionality, rather due to their ef-
fectiveness delay the threshold where the drawbacks became noticeable (in terms of number
of dimensions and size of the array).

Future work includes adapting the tree structure based on dimensions, such as adaptive
mesh refinement widely used in physical simulations [24]. Another interesting possibility
is multi-attribute index in a single hierarchical structure. Last, we want to use better
approximation algorithms to determine feasible regions from finer attribute bins.

42

CHAPTER 5

Similarity Search Using Compressed
Inverted Lists on Graphic Processing
Units

Similarity search using GPU-accelerated inverted index relies on the availability of large
amount of data in the GPU memory. Query execution requires frequent transfer of large
index data from CPU to GPU in order to resolve many top-k similarity queries in parallel.
This transfer often creates a bottleneck for such query execution.

In this chapter, we have designed, implemented, and evaluated multiple decoding
schemes for fully data parallel decoding and query evaluation, and a compressed repre-
sentation of inverted index for similarity search on the GPU. This improves the overall
query evaluation time by reducing the cost of data transfer. It comes with at a small cost
to computational time. The reduced transfer time often out-weights the minor computa-
tional increase needed to decode the inverted index, effectively reducing the overall query
execution time. In practical scenarios, the decoding cost is completely overshadowed by
data transfer in this data-bound problem. The data parallel implementations have sped up
query time of the system 3-4 times on most real world datasets. Compression of inverted
index also increases the overall amount of data to be simultaneously loaded for database
applications in GPU memory.

All the components were integrated into the publicly available generic similarity search
framework GENIE (Generic inverted index on GPU) in a robust and modular architecture,
with configurable query compiler and index management components. We modify the
standard inverted index models abstracting query compilation and index structures. These
extensions of GENIE were designed for multi-GPU multi-node distributed deployment with
initial implementations of the distributed functionality publicly available.

Furthermore, we use heuristics for encoding algorithm selection based on the properties
of the datasets and corresponding inverted list. We demonstrate this efficiency of our
system and compression on several real life datasets.

43

5. COMPRESSED INVERTED INDEX ON GPU

The original work on GENIE has been published in [A.2] (with additional technical
report [A.5]), which includes data preprocessing using locality sensitive hashing or shotgun
& assembly, the match counting algorithm for 7-ANN search, original match counting
GPU implementation, and comparison to other locality sensitive hashing schemes on GPU
and to other ANN search implementation on the GPU. This chapter mainly focuses on
contributions beyond the scope of the original paper.

This research work, including GENIE, had been partially carried out at the SeSaMe
Centre, under Interactive Digital Media Institute (IDMI), National University of Singapore
(NUS), Singapore, from October 2016 to August 2017. Afterwards, the work has been
carried out with main affiliation at the Department of Theoretical Computer Science,
Faculty of Information Technology, Czech Technical University in Prague.

The main contributions of the chapter are:

o We have improved query performance of generic high dimensional data similarity
search by implementing a compressed inverted index, query compiler, incorporating
data parallel decoding of the inverted index on GPU.

o Multiple decoding schemes were designed, implemented, and evaluated for fully data
parallel decoding and query evaluation. We use heuristics for encoding selection
based on the properties of the dataset being indexed, and properties of the inverted
lists.

o The data parallel implementations have sped up query execution time 3-4 times on
most real world datasets.

o All the components were integrated into the publicly available framework GENIE
(Generic inverted index on GPU)! in a robust and modular architecture, with con-
figurable query compiler and inverted index management components.

o The extensions of GENIE were designed for multi-GPU multi-node distributed de-
ployment with initial implementations of the distributed functionality publicly avail-
able?.

5.1 Introduction

Inverted indexing is a commonly used technique in a variety of indexing applications.
Examples of large data intensive applications come from astronomy and astrophysics [87],
finance [43] neuroscience, engineering, multimedia and others [236].

In a domain, where each document consists of a list of terms, inverted index maps
the individual terms to documents using lists of document identifiers — commonly known
as docld. Similarly, a column index of a relational database may map individual column
values to a list of corresponding rows. Alternatively, a multidimensional data points can

!The source code of released versions of GENIE (Generic inverted index on GPU) is available at
https://github.com/SeSaMe-NUS/genie, with optional compilation of the inverted index compression
functionality available with the CMake option GENIE_COMPR:BOOL.

2The optional compilation of the distributed capability of GENIE is available with the CMake option
GENIE_DISTRIBUTED:BOOL.

44

https://github.com/SeSaMe-NUS/genie

5.1. Introduction

be also seen as column values (where each column corresponds to a single dimension), and
thereby indexed using inverted indexes. To evaluate a query, inverted lists are usually
intersected to obtain a list of doclds satisfying all the constraints, i.e., matching exactly
the query terms in all columns. Our interest develops from the latter case by extending
the queries to top-k similarity search under a specific similarity model called match count
[A.2], which evaluates the similarity of searched objects by number of matching dimensions.
This prevents the use of common methods of list intersection, since such approach relies
on a full match in all the dimensions, In our approximate nearest neighbor problem, we
are most often accepting partial matches.

The problem of match counting itself calls for processing whole inverted lists, as opposed
to a list intersection, where we are able to discard invalid results relatively early. Cases
where we can discard a potential result in match counting are rare (few last processed lists
can all contain the same docslds, effectively bumping such docID into top-k results).

Evaluating multiple queries, where each query consists of inverted lists counting is a
highly parallel operation. Graphical Processing Unit (GPU) is a popular parallel archi-
tecture, previously chosen for both inverted indexing [153, 49] and compression of integer
lists [56]. One of the most commonly available general consumer (about USD 700) graphic
card to date is GeForce GTX 1080 Ti?, based on Pascal GPU architecture, with 11 GB
GDDRX5 RAM having effective bandwidth of 484.4 GB/s, with 3584 CUDA cores. One
of newest data center class GPUs is the A100 80GB SXM*, based on Ampere architecture,
with 6912 CUDA cores, 80 GB HBM2e memory having effective bandwidth of 2TB/s, and
a PCle Gen4 (64GB/s) and NVLink (600GB/s) interconnect.

Eight of such A100 GPUs interconnected with NVSwitch are packaged for example in
the new NVidia DGX A100° system. On top of the GPUs such system consists of two
64-core AMD EPYC 7742 CPUs, 1TB DDR4 system memory, 15TB high-speed NVMe
SSD, and eight Mellanox 200Gbps HDR adapters.

Even though the parallel processing power of these GPUs is unmatched by any CPU
to date, the memory size is a limiting factor in terms of usefulness for any in-memory
index. For large databases, we must rely on either partially loading the data into GPUs,
where the GPU memory transfer rate is a bottleneck, or on prediction of dataset partitions
containing the correct top-k results, which in turn necessarily introduces a potential error.
Therefore by efficiently compressing our dataset, we can maximize the utilization of the
limited GPU memory.

We build our system as an extension of GENIE (Generic Inverted Index on the GPU)
[A.2], which supports match count similarity model, and a simple query execution on single
GPU. To increase effective size of in-GPU-memory inverted index, we use compression of
the inverted index. Our goal is to maximize the amount of index that fits onto GPUs
at a single time and to minimize the index transfer between CPU and GPU (for indexes

Shttps://www.techpowerup.com/gpu-specs/geforce-gtx-1080-ti.c2877

‘https://www.techpowerup.com/gpu-specs/al00-sxm4-80-gb.c3746

Shttps://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-dgx-al00-datasheet.pdf

45

https://www.techpowerup.com/gpu-specs/geforce-gtx-1080-ti.c2877
https://www.techpowerup.com/gpu-specs/a100-sxm4-80-gb.c3746
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf

5. COMPRESSED INVERTED INDEX ON GPU

exceeding the portion of GPU memory allocated for index data). The system is built on
top of CUDA framework.

Compression for inverted indexing for similarity search on GPU is different from con-
ventional inverted lists compression mainly in terms of the objectives. In our work, we
focus on achieving high compression ratio of the index and efficient data parallel decom-
pression in order to keep the decompression time during query execution as low as possible.
The added decompression time on GPU during query execution is compensated for with
the decrease in index transfer time from main memory to GPU memory. Furthermore, we
deal with short and long inverted lists by balancing the sizes of inverted lists to maximize
parallelism of the GPU. Short lists often do not achieve good compression if compressed
standalone, while long lists add a layer of complexity in the CUDA framework, therefore
decreasing performance. For short inverted lists, we use different encoding to prevent such
inefficiencies. Additionally, the CPU side query compiler adds a constant size informa-
tion to compiled queries for GPU. The information is then used to initialize and aid the
decompression process.

In Section 5.2, we go through related work on topics of integer lists compression (on
CPU, using SIMD, and on GPU), acceleration of database operations using GPUs, sim-
ilarity search, approximate similarity search, similarity search engines on heterogeneous
architectures, and locality sensitive hashing. Most of the topics are elaborated from the
point of view of different architectures, such as CPU, SIMD instruction sets, GPUs, even
some on FPGAs and ASICs. The section further introduces basic concepts of GP-GPU and
CUDA. In Section 5.3, we introduce GENIE (GENeric Inverted indEx), a GPU framework
for approximate similarity search that is used as a foundation for this work. In Section 5.4,
we describe our extension and adaptation of GENIE’s query processor and data preprocess-
ing for the purposed of compressed match counting. In Section 5.5 we evaluate the work
with an analysis of individual compression schemes, data transfer time to decompression
time trade-offs, inverted lists balancing, and inverted lists partitioning. We conclude in
Section 5.6 with a summary of results and elaborating on future work directions.

5.2 Related Work

This section provides a broad overview of work and research on several topic related to
approximate similarity search on GPU using compressed inverted index. An overview of
integer lists compression is in Section 5.2.1 and GPU-accelerated integer list compression in
Section 5.2.1.1. Since GENIE is seen as GPU-accelerated similarity search database, some
closely related database operations are reviewed in Section 5.2.2. Next a GPU-accelerated
exact similarity search is summarized in Section 5.2.3 and approximate similarity search
in Section 5.2.4. The most common technique used for approximate similarity search is
locality sensitive hashing, which is further summarized in Sections 5.2.4.2 and 5.2.4.3.
Finally, a brief overview of GPGPU and CUDA is available in Section 5.2.5.

The closest related work to GENIE is GPU-LSH [153] (for similarity hashing) and
GPU k-selection [1] (for top-k results selection). Other GPU accelerated approximate

46

5.2. Related Work

exact nearest neighbor search systems exist, but mostly relying on brute force similarity
evaluation. See Section 5.2.4.1 for more details. However none of the other tools compare
to GENIE in terms of a complete k-ANN functionality. The closest related work to data
parallel decoding is ParaPFor [8], Para-EF from Griffin-GPU [123] and two decompression
schemes GPU-BP and GPU-VByte introduced in [131].

5.2.1 Integer Lists Compressions

Integer lists compression is very often used for compression of inverted lists (posting lists)
in search engines. The purpose of the compression is to minimize the storage overhead of
the cold-stored inverted lists.

Most inverted lists compression schemes also store additional inverted index metadata,
such as frequencies, positional information, document length, or compression metadata,
such as value ranges. Note that doclds are often sorted and therefore majority of the
compression schemes benefit from some type of delta encoding. Most metadata are not
sorted and often are saved in raw form.

The initial effort on integer lists compression has focused on efficient CPU only algo-
rithms. VByte [44] is a byte-aligned compression with variable representation size. This
means it first tries to store an integer value using one byte. If that fails, the algorithms
tries to use two bytes, and so on. The most significant bit serves as a control bit. This
compression has been extremely popular in industry, where it was used by Google (using a
4 integer packed version called Varint-GB) [46] or Amazon (using a vectorized, fixed size
8-byte packing called Varint-GS8IU). This concept has later been subsequently altered to
separate control bits and the data into two different arrays [113].

Another class of compression algorithms relies on a patched frame of reference (PFor)
concept to encode blocks of integers, where integers deviating form the frame are encoded
separately as exceptions. The most common examples are PForDelta [237], NewPFD
[224] which stores the exception offsets and overflows of the the exception values in two
separate arrays, and OptPFD [224], which finds the exceptions threshold as an optimization
function of the estimated decompression speed. The frame of reference has been vectorized
in SIMD-FastPFOR [110].

Linear Linear

Inverted differential Compression Co.mpr. Decompr. differential Inverted
list encoding > example: P lists ->| example: | decoding > list
is - is
Bitpacking32 index Bitpacking32
0i = @i — i1 P & () P & ;= 0;+ 21

Index compilation Query execution

Figure 5.1: Integer lists encoding and decoding pipeline (with linear delta encoding and
Bitpacking32) in inverted index setting.

47

5. COMPRESSED INVERTED INDEX ON GPU

Quasi-succinct indexes [210] represent another approach for encoding inverted indices.
This approach does not rely on delta-encoded block-based indexes, but is based on Elias-
Fano codes and bitpacking for dense sections on the lists.

Similar family of integer compression is called bit-packing (or binary packing). Bit-
packing often utilizes hardware vectorization due to the regular structure of the codewords.
The initial 32-bit codes were presented in [4] and consisted of Simple-9, Relative-10, and
Carryover-12. Each code represents a selection of sub-codes to pack a variable amount
of integers in 9, 10, resp 12 different ways. Additional coding families were subsequently
introduced, namely Slide [5], and interpolative codes [138, 41]. Majority of previous 32-bit
codes were subsequently extended to 64-bit versions [6]. Note that all these codes predate
common adoption of SIMD architectures. Significant amount of work has also been focused
on index list caching [229]

Later, majority of the codes were extended from 64-bit to 128-bit SIMD implemen-
tations. One of the first SIMD implementations was Elias gamma code called k-gamma
[182]. Two schemes were introduced using SSE2, namely bit-packing SIMD-BP128 and
frame of reference SIMD-FastPFOR [110]. Variable byte schemes were vectorized as well,
including a successor of VByte calledvarint-G8IU [194] using SSE3 (uses one control byte
for 8 bytes of data). QMX [205] combines bitpacking with RLE and also separates control
and data streams. Masked-VByte [162] used the original VByte format (i.e. no grouping
across multiple codewords), and Stream-VByte [113] also separates the control bits and
data into the streams. Roaring bitmaps [35, 112] use either RLE or bit-packing for dense
sequences, and array container for sparse sequences. Roaring bitmaps have been used for
example in Elasticsearch.

Reordering of docIDs Due to inverted index compression relying heavily on the av-
erage size of deltas, several approaches were developed to reorder (remap) docIDs of the
dataset in order to minimize the delta sizes. Document reordering has been processed us-
ing recursive similarity graph decomposition [27], by solving Traveling Salesman Problem
on similarity graph [185], or by reducing the dimensionality of the dataset with Singular
Value Decomposition [26]. In a newer work, a set of heuristics is used to maximize the runs
of deltas of 1s using intersection-based docID assignment(IBDA) followed by run-length
encoding [11]. Inverted index compression techniques for optimally ordered documents are
further elaborated in [224]. All of these reordering approaches are based on computing
the similarity between documents, and do no utilize other techniques such as similarity
hashing.

Partitioning Methods Improvements to the integer lists codes often incorporate some
form of partitioning of each inverted list into smaller sub-lists or blocks. VSEncoding [187]
using dynamic programming to find an optimal block length, given the integer logarithm
of every integer in the array, minimizing the total size of the index. Partitioned Elias-
Fano method (PEF) [151] uses dynamic programming for selecting chunk endpoint to
minimize the overall index size, creating a two level index (to store the chunk endpoints).

48

5.2. Related Work

Compression scheme MILC [212] achieves similar query performance similar to that on
uncompressed lists while keeping relatively low space overhead. MILC is built with SIMD
and uses input partitioning, offset-based encoding (not delta) and a fixed codeword size
within a block. A recursive partitioning data structure Slicing improves this by further
partitioning sparse sequences [157]. One of the latest contributions to the VByte family
introduced a variable length partitioning algorithm, where optimal VByte coding is used
for each partition in order to maximize compression [160].

Clustered Index Compression A grouping of inverted list into clusters has been pro-
posed in Clustered Elias-Fano coding [159], or in our previous work [A.6] for more generic
context. The main idea is to merge lists with similar values. Then for each cluster a refer-
ence list is created, and all lists in the cluster are encoded with reference to that list. This
clustering refers to whole list being clustered together, as opposed to clusters of similar
integer values withing a single list, which is a property many encoding schemes exploit.

Asymmetric Numerical Systems (ANS) Some list compression algorithms with high
frequency of repeated deltas rely on relatively new entropy coding — Asymmetric Numerical
Systems [52]. The ANS entropy coding becomes less efficient with large alphabet sizes.
Therefore a solution utilizing alphabet reduction stage has been used in [136], where ANS
was used in conjunction with VByte, Simple and Packed encodings. These techniques were
further adapted to include a two-dimensional context selection for blocks of inverted list
(such as max and median value in a block), and further improvements [137].

Dictionary Index Compression Another approach is to partially encode the integer
list using a dictionary. A DIctionary of INTegers [158] is based on 16-bit codewords for the
most frequent patterns. The algorithms further encodes runs and exceptions as separate
codewords. The decoding phase, which simply performs a lookup in the dictionary, is very
efficient. This approach has only been implemented on CPU, however thanks to its 16-bit
fixed codeword size could be very efficient on parallel architectures.

A GPU accelerated co-processor has been used as extension in MonetDB to compress
data columns [56]. Multiple compression schemes were used, including run-length encoding,
Null Suppression with Variable Length, Bitmap, Dictionary and their combinations. These
combinations are carefully selected per each column by a planner that uses heuristics based
on data properties in such column. The compression indirectly accelerates the query times
due to decreasing data load times and due to only having to perform partial decompression
for some compression plans.

Finally, several good comprehensive overview and experimentation works exist on in-
verted index compression. The latest survey [161] has wide scope of various techniques,
includes additional historical techniques mostly on the CPU. Another good overview of
CPU only techniques from the point of view of efficient decoding is available in [110].

49

5. COMPRESSED INVERTED INDEX ON GPU

5.2.1.1 Integer Lists Compressions on GPUs

Most of the GPU research focused on similarity search queries does not focus on index
encoding. In a few cases, GPU is used for index decoding, which was previously indexed
and encoded using CPU/SIMD.

A parallel version ParaPFor [8] of PFor has been implemented for GPUs, in which a
linked list of exception is placed in the original segment. In the same work, a linear regres-
sion has been applied to list compression, which was then directly used for list intersection.

Information retrieval system Griffin-GPU [123] uses a parallel decompression scheme
Para-EF (based on Elias-Fano code) to decompress inverted lists, and a parallel merge-
based intersection algorithm.

Two schemes for index decompression were introduced in [131], GPU-BP (based on bit-
packing) and GPU-VByte (based on variable byte). These GPU implementations achieve
significant speedup on very long lists, and a minimal speedup on shorter lists, at the cost
of a small size increment.

5.2.1.2 Integer Lists Compressions on FPGAs

Not a lot of work has been done solely on integer list compression on FPGA. A compression
scheme using VByte with Huffman coding was accompanied by an FPGA based decom-
pression [225]. BitWeawing [118], a bit-packed storage of database columns on FPGA, can
be seen as a form of lossless compression Another work focuses on bitpacking compression
[96], or a multi level bitpacking with prefix suppression [139].

5.2.2 Database Acceleration using GPUs

Significant focus in recent years closely related to similarity search has been on GPU accel-
eration of several database operations. This section describes GPU acceleration efforts on
database operations; some of which were integrated as co-processors into existing DBMS’s.
Another application of GPU accelerated database operations has been demonstrated
on sorting large wide-key datasets [69]. Sorting is a common operation in databases both
as part of query evaluation or a proxy to I/O operations. The work itself doesn’t integrate
the sort into any database, but demonstrates the capabilities on a database like data.
More applications integrated into DBSM have been implemented, such as predicates
(comparisons, semi-linear query), boolean combinations, and aggregate operations (count,
k-th largest number, sum, avg, etc.) [70]. The work was done on GPUs without integer
arithmetic cores. This is no longer a limitation for modern GPUs, which have many integer
arithmetic cores. Regardless, all of these operations are still relevant in modern DBSM.
An in-memory relational query co-processing system called GDB was a first compre-
hensive DBMS GPU accelerated solution [78]. It consisted of data parallel primitives (map,
scatter, gather, scan, split, filter, and sort), data access methods (table scan, B+ trees,
hash indexes), and relational operators (select, project, order, group and aggregate, and
several joins). This process depends on computing a prefix scan on the individual join

50

5.2. Related Work

operation to allocate the device memory for the resulting output. This is a commonly used
technique in modern GPU accelerated applications.

Similarity Join The problems of similarity join and self similarity-join (finds all objects
within a dataset that are within a search distance) are an extension to k-NN similarity
search. Super-EGO is a CPU only framework for similarity join [99]. The authors also
provide a CPU parallel implementation, and an in depth analysis of selectivity factor
of many algorithms. Original GPU implementation to relational joins (a predecessor to
similarity join) were elaborated in [79] and consist of lock-free and atomic-operations-free
three stage process. The first original approach to similarity join on GPU called LSS uses
space filling curves [121]. GPU-Join is an implementation of self-join using a grid-based
index, combined with index dimensionality reduction, reordering the data by the variance
in each dimension, and distance calculation reduction [71]. COSS is subsequent work on
self-join, which overcomes the curse of dimensionality by ignoring the coordinates values of
the data points and instead uses distances to reference points, with several reference point
placement strategies [51]. Many similarity join frameworks also elaborate the cases where
their implementation is more efficient than a simple brute force search, which comes with
a quadratic complexity based on the dataset size.

MapReduce Based Similarity Join A popular framework MapReduce [48] allows
users to easily run large scale parallel operations on a cluster. These operations are specified
in parallel friendly phases — map, shuffle, and reduce. Despite Google’s departure from the
framework and transition to more generic GCP Dataflow, the original implementation in
Apache Hadoop and concepts still remain very popular. MapReduce is used to perform
k-NN joins with Voronoi diagrams to partition the datasets [125]. The pipeline consists
of two MapReduce jobs, where the first job finds the nearest pivots for both datasets,
and the second phase find the nearest neighbors in each partition and then performs the
reduce step to obtain the kNN join. Subsequent work on k- NN join has used only a single
MapReduce phase, with supplementary histograms over values of the join attribute [179].
These histograms are then used to facilitate early termination and load balancing.

List Intersections A common operation for database purposes and information retrieval
system are lists intersections. For uncompressed sorted lists intersection, a linear regression
and hash segmentation techniques are used in [8]. Additional SIMD-enabled intersection
algorithms, namely V1, v3, and SIMD-Galloping were introduced in [111].

Additional related GPU accelerated work includes key-value stores [230], or online
transaction processing [80].

5.2.3 Exact Similarity Search on CPUs and GPUs

This section focuses on a more specialized operation from the area of similarity search,
which is often represented by the exact k-NN (k nearest neighbors) search problem.

51

5. COMPRESSED INVERTED INDEX ON GPU

Substantial amount of work has been invested into GPU accelerating k-NN and related
database operations.

Brute Force Multiple GPU accelerated implementations of exact k- NN algorithms ex-
ists. Relatively simple but efficient implementations use brute force approach. It usually
consists of a computation of distance matrix to all the query points, and subsequent selec-
tion of nearest neighbors. These algorithms mostly vary in methods of pruning the search
space and sorting algorithm used. In [106] radix sort is used, in [64] insert sort is used
instead, and in [105] quicksort is used. A set of truncated sort algorithms is used in [192].
Slightly different sorting approach is due to [120], which uses merging by thread blocks
to select the nearest neighbors. More advanced brute force GPU implementations [116]
uses truncated merge sort, or a combination of selection sort, quicksort and heaps-based
algorithms [17].

Brute Force With Partitioning Brute force implementations usually achieve high
performance in cases where GPU resources can be fully saturated (i.e. device memory
to hold the data space, and shared memory to hold the query space). However, these
approaches usually fall short in case of small queries, and do not support larger data spaces.
In larger data spaces, some form partitioning is used, which is processed in sequence, such
as in GPU-FS-kNN [10]. A modern and efficient implementation [209] uses symmetrical
data space partitioning and buffering of nearest neighbor results to save device memory.

Brute Force With Pruning Strategies Another class of GPU k- NN implementations
rely on usage of reference points to prune the overall distance evaluations. Example of this
is GPU-SME-ENN [74], which uses iterative distance evaluation to subsets of reference
points. Distances of queries to these reference points are then merged to provide candi-
date results sets. Several implementations also provide multi-GPU implementation, where
additional synchronization is used to accumulate candidate results [102, 133]. A different
heterogeneous (GPU and CPU) implementation utilizes threshold pruning compression
with a heap based partial sorting, where a GPU is used for distance computation and a
CPU for sorting [134]. The pruning is used to discard entries from the distance matrix
that cannot make candidates for the nearest neighbors.

Space Filling Curves All GPU accelerated algorithms naturally rely on highly parallel
operations, such as similarity hashing, brute force similarity evaluations and sorts. Notable
example of competitive multi-node CPU only implementation called FLANN [141] uses
space filling structures (randomized kd-trees) and a newly introduced algorithm based on
priority search k-means tree. Spatial indexing using R-trees has also been implemented on
the GPU [127], and using buffer kd-trees for exact nearest neighbor search [66].

The GPU-accelerated brute force k- NN approach was also used for calibration of eNN10
classifier using Artificial Bee Colony (ABC) algorithm [188].

52

5.2. Related Work

Exact similarity search is very often used in its simplest form in document retrieval and
full-text search systems, such as Apache Lucene [25], Apache Solr [183], and Elasticsearch
[67].

Another system uses WAND (Weak AND) ranking algorithm of [31] with two parallel
strategies, one for single queries and one for batch of queries [61]. For the latter case, three
threshold sharing policies are used to retrieve top-k results. In another work [62], the same
authors adapted the system for the MaxScore ranking.

5.2.3.1 Similarity Search Using Heterogeneous Architectures

Most GPU accelerated system only use CPU for general 10, scheduling and other orches-
tration. Other systems try to leverage the advantages of both CPU and GPU to carry the
bulk of the workload, splitting the queries and /or processing layers to the more appropriate
of the processing units. Some systems go even further by using either FPGAs of ASICs
instead of more generic GPUs.

FPGA One of the early FPGA solutions was used for text search and document relevance
evaluation, without any preprocessed index [72]. Later, a suite called Pinaka [226] including
inverted index search engine, decoder, matcher, and ranker was the first comprehensive
FPGA accelerated web search engine.

ASICs Inverted index search system called [IU [81] uses a specialized hardware archi-
tecture to accelerate inverted list queries, including intersections and unions. IIU uses a
standard pipeline of many inverted index search engines: load inverted lists for all query
terms, decompress, perform set operations, and evaluate the relevance for top k results.
The system uses inverted lists compression using a combination of delta encoding and per-
block bitpacking, where blocks are dynamically partitioned. ITU uses a concept of cores to
load balance the workload, which is controlled by schedulers. The system was evaluated
using a hardware simulator at the register-transfer level (RTL).

Heterogeneous by Design An information retrieval system [49] is one of the first that
uses heterogeneous computing with CPU and GPU scheduling to minimize response time
based on the queries. The system uses inverted lists compressed facilitating Rice and
PForDelta encoding. A GPU query processing method was proposed as an improvement
over [8] using pruned list caching to fit more lists in the GPU memory [211]. This system
only performs batching on queries to be executed on GPUs when there are enough caches
queries, otherwise it reverts to CPU. Griffin [123] is a heterogeneous CPU and GPU im-
plementation of information retrieval system (performing lists intersections). The system
uses a dynamic intra-query scheduling algorithm that breaks a query into sub-operations
and schedules them to the GPU or to the CPU based on their runtime characteristics.
Some systems solve a similar problem of data series similarity search. SING [155] is a
specialized CPU and GPU accelerated system, where the index structure consists of sum-
maries based on Piecewise Aggregate Approximation (uses mean value for approximation,

93

5. COMPRESSED INVERTED INDEX ON GPU

stored in GPU memory). MESSI [154] is a tree based indexing structure (stored on main
memory) on multi-socket and multi-core architectures.

5.2.4 Approximate Similarity Search

In many scenarios, most often due to data size, it is not feasible to retrieve k exact nearest
neighbors — k- NN. Hence more generic problem is defined as approximate nearest neighbor
— ANN; or k approximate nearest neighbors — k-ANN. The approximation constraint is
usually expressed by a constant ¢ > 1, which denotes a maximal multiplicative error from
the exact nearest neighbors. Similarly a 7 > 0 constraint is used as the additive error from
the exact nearest neighbors.

Many algorithms for k-ANN build a similarity graph that serves the purpose of an
index based on a similarity measure, where each data point is represented by a vertex, and
each vertex is connected with its true nearest neighbors. Examples of these are KGraph®,
HNSW (Hierarchical Navigable Small Word Graph) [129, 130], NN-Descent [50], and the
NGG family of algorithms [92, 93].

Other class of k-ANN algorithms relies on space partitioning using trees, such as kd-
trees [34] or M-trees [227], adaptive configuration of hierarchical k-means trees in FLANN
[142], random projections tree in Annoy’, or use of multiple random projection trees with
a voting scheme in MRTP [89].

MIH (Multi-Index-Hashing) [146] is a technique that aims to reduce the number of
empty buckets on binary codes by splitting them into shorter disjoint binary codes. This
hashing is very effective for Hamming distances. The general technique is also applicable
for exact nearest neighbor search [147] or for cosine similarity [54].

Majority of the k-ANN algorithms rely on some form of locality sensitive hashing
(LSH), which are described in more details in Section 5.2.4.2.

Different approach to LSH makes use of the data distribution in order to create a
similarity preserving index. The most common example of this is product quantization
(97, 65, 14], which has been improved throughout the last decade. Product quantization
decomposed the space into cartesian product of lower dimensional spaces, then performs
principal component analysis (PCA), followed by quantization step.

Another class of data dependent algorithms is using deep learning in what is referred
to as deep hashing or semantic hashing [169, 163, 228]. An overview and evaluation of
supervised deep hashing vs LSH is available in [33].

A good overview and a benchmark suite called ANN-Benchmark with recent exper-
imental evaluation of k-ANN algorithms was presented in [13]. Many CPU and SIMD
implementations are readily available as Docker images, with automated testing dataset
downloads. GPU support is very limited.

One of the latest overviews with experimental evaluation is available in [117]. The
overview focuses on both locality sensitive hashing (data independent method) and what

Shttps://github.com/aaalgo/kgraph
"https://github.com/spotify/annoy

o4

https://github.com/aaalgo/kgraph
https://github.com/spotify/annoy

5.2. Related Work

they refer as Learning to Hash, which is a set of data dependent hashing methods for ANN.
These data dependent methods are further split into pair-wise similarity preserving, multi-
wise similarity preserving, implicitly similarity preserving, and quantization methods.

A brief overview of approximate similarity search, current algorithms and main appli-
cations is alsoavailable in [53].

5.2.4.1 Approximate Similarity Search on GPUs

Very popular approach (used in GPU accelerated implementations) to k-ANN is based
on locality sensitive hashing (LSH), which can be created fully in parallel and results in a
bucket or list data structure that can be searched in parallel as well. Furthermore, LSH and
similarity hashing in general allows to partially overcome the high dimensionality problem.
Running times of LSH based algorithms are often competitive with existing brute-force
implementations on problem sizes suitable for brute-force algorithms, and additionally
allow to efficiently process much larger problems.

Initial work on k-ANN has been done using LSH and two level bucket hashing, us-
ing universal and cuckoo hashes to reduce the total number of buckets searched [152].
Subsequent improvement of the work has extended the two level hashing with RP-trees
[153].

Another algorithm adapted to multimedia applications uses hypercurves — a concurrent
index based on space filling curves and has a hybrid CPU-GPU implementation with a
scheduler [203].

Different approach based on product quantization and vector quantization has intro-
duced a two level Product Quantization Tree (PQT) and reranking step to approximate
exact distances between query and database points [218].

FAISS is a library using product quantization capable of multi-GPU sharding of the
dataset [98]. This has been later improved with adaptive termination in [115].

5.2.4.2 Locality Sensitive Hashing

Locality sensitive hashing (LSH) originally introduced in [91]. LSH is family of hashing
functions for dimension reduction with probabilistic mapping of input objects into a much
smaller number of buckets. The property is that similar input objects in the domain of these
functions have a higher probability of colliding in the buckets than non-similar objects. The
hashing algorithms can be used to find the exact nearest neighbor in Euclidean space under
certain conditions [45].

Two popular representatives of LSH are MinHash [30] and SimHash [39]. The theo-
retical and practical differences between these two have been elaborated in [186], where
MinHash has been established to be more suitable for resemblance similarity (which is
defined for binary vectors) as well as cosine similarity (defined for real values).

The original LSH-based k-ANN algorithm [152] first processes all different k-ANN
queries in parallel, but iterates over all L hashing functions. Then for each hashing function
it computes in parallel all the keys into buckets, and unique keys for the cuckoo hashing

95

5. COMPRESSED INVERTED INDEX ON GPU

table (using prefix sum), which are then inserted into multiple hash sub-tables. During
querying, when computing LSH and preforming hashing, the parallelism is limited to the
size of the query, i.e. the number of query points.

Subsequent work [153] introduced several improvements on top of the previous algo-
rithm. RP tree is used to cluster the data points. This is similar to kd-trees with splitting
along random directions, and therefore relies on reasonable spatial properties of the data.
Then LSH table is constructed for all the clusters from previous step, with two extra projec-
tions used to preserve the neighborhood relationships. The parallelism is further improved
by utilizing additional parallel sort of distances to query points.

FALCONN (FAst Lookups of Cosine and Other Nearest Neighbors) [3] is a popular
LSH library for cosine similarity (also called angular distance), including a multiprobe
version (one that examines multiple nearby buckets for a reduction in total hash space).

More recent examples of LSH with small signature space (linear space in size of the
dataset) include LSB-forests (Locality-Sensitive B-tree Forest) [202], C2LSH (Collision
Counting LSH) [63], SRS [199], LazyLSH [232].

QALSH (Query-Aware LSH) uses information from a query (anchor) to derive bucket
distribution in LSH [86] and improve error bounds of the search. The LSH has also been
used with generalized weighted euclidean distance in [108], when weights are supplied with
each query. Another method uses Longest Circular Co-Substrings (LCCS) over hashed
objects as part of the search framework LCCS-LSH [109]

5.2.4.3 Locality Sensitive Hashing on GPU

A GPU implementation [126] further improved the efficiency by utilizing multi-probe LSH
[128]. During querying, for each query point, the algorithm first explores buckets with the
highest probability of containing nearest neighbors. The extraction of query points is done
using deterministic skip-lists on the GPU.

Recent and comprehensive overview of all GPU data-parallel hashing techniques is
available in [114], including open-addressing (probing), perfect hashing (collision-free),
grid-based spatial hashing, locality sensitive hashing, separate chaining. The overview
contains comprehensive introduction the hashing problem on GPU in general and is not
restricted to locality sensitive hashing.

5.2.5 GPGPU and CUDA

A modern GPU has a special purpose architecture designed for high throughput data
parallel computations. Originally used for graphic processing, now often used for general
purpose (GPGPU) computing.

Each GPU consists of streaming processors (SP), which are part of larger streaming
multiprocessors (SM). Each SM operates a Single Instruction Multiple Threads processing
model (SIMT), i.e., streams, providing instruction level parallelism. Different SMs can
execute code independently of each other. A kernel is the largest GPU executable logical
unit, configured and dispatched at runtime by the CPU. Each kernel is divided into thread

96

5.3. GENIE

blocks, which are executed independently of each other, and are scheduled onto SMs. Due
to SMs limited resources, only a limited amount of thread blocks can be active at a time.
Each thread block is further scheduled within the SM in smaller units called warps. Warps,
also known as cooperative thread arrays, are then the smallest units of SIMT execution.
This model can be seen as a two level parallelism (at the thread block in SM level, and
SIMT in warp level) and allows to use scheduling to overcome data access inefficiencies or
lack of compute resources, and improve instruction level parallelism.

The memory model is likewise hierarchical. The main global memory of the GPU is a
fast GDDR with bandwidth in the 100 GB/sec to 1 TB/sec range. The global memory
of size up to 24GB in contemporary GPUs is relatively small compared to the size of
main memory often available in HPC machines. Therefore one of the main bottlenecks
is between the main memory and GPU memory, which is often restricted to relatively
slow one-way transfer speeds of 12-16 GB/sec on PCle 3.0, and 24-32 GB/sec on PCle 4.0.
Additional L2 cache is used for the whole global memory, and L1 cache (also used for shared
memory) that is used per SM. Then each SM has a limited amount of registers which can be
used by individual threads. Memory caching and access patterns in general are extremely
important, since memory stalls result in either a long wait or force re-scheduling of warps.

Additional technologies by NVidia for HPC purposes allow for external memory access,
such as GPUDirect Storage for accessing NVMe drives, GPUDirect RDMA for network
access to GPU memory; or NVlink and NVSwitch for multi-GPU memory interconnect.

When designing algorithms for GPU, several characteristics have to be taken into ac-
count: GPUs in general prefer much higher ratio of arithmetic operations to memory
operations; high data parallelism is required to fully utilize the compute resources; and
high locality is required to minimize the number of memory transactions.

We use the CUDA Toolkit and parallel programming libraries for NVidia GPUs. Fur-
ther details about the GPGPU compute and memory models, design practices, and a good
starting point are available for example in the official CUDA Toolkit documentation [148].

5.3 GENIE

GENIE (Generic Inverted Index on the GPU) [A.2, A.5] is a GPU-based highly parallel
inverted index framework implemented to efficiently support a match count model (see
Section 5.3.1) between objects and queries. In GENIE’s matching layer, we encode dimen-
sions and all possible values for these dimensions into a keyword. From these keywords, we
construct an inverted index, which is dynamically loaded onto the GPU for approximate
nearest neighbor evaluation. Each query is converted to a set of keywords, then the in-
verted lists corresponding to these keywords are scanned, and match counts are evaluated
between each query and all objects from the dataset, with dynamic count pruning in order
to prevent calculation of all distances.

GENIE is designed to support similarity search on various data types. Many problems
can be converted to similarity search using locality sensitive hashing (see Section 5.3.2)
or shotgun and assembly (see Section 5.3.4). The internal representation of GENIE is

o7

5. COMPRESSED INVERTED INDEX ON GPU

agnostic of the data source, however the data properties have to be taken into account in
order to determine the matching configuration and desired precision (see Section 5.3.1).
Figure 5.2 shows a high level relationship between data types and GENIE.

High
dimensional Sequences
points /
Locality
. Shotgun & Text
Sets ——| Sensitive GENIE Assegmbly — Docu;r(lents
Hashing d
Geometries Re};;(;nal

Figure 5.2: Generic nature of GENIE, showing the relationship with different data types.

Note that in all the cases when data is preprocessed (using both LSH and S&A) all
the attributes are already discretized, but in the case of using raw data, continuous valued
attributes must be discretized manually according to a preprocessing policy.

GENIE was originally designed to be used for approximate nearest neighbor search for
lazy machine learning as part of a GENIE & LAMP (LAzy Mining Paradigm) project®,
with applications such as path prediction [234] or time series prediction [233].

5.3.1 Problem Statement

A dataset D is a set of N objects Oq,...,Op, where each object O; = (vq,...,v4) is an
d-dimensional vector from a universe U.

A point query @ € U is a d-dimensional point Q = (vq,...,v4). A point query is often
represented in the dataset domain, as opposed in the hash set.

A range query R is an d-dimensional vector of ranges

R=(r1,re,...,rq) = ([vf,vﬂ , [v%,vﬂ ce [vﬁ,vfd})

where the dimensionality of the range query is the same as dimensionality of the
dataset?. The range query is often used to query a range of inverted lists in locality
preserving inverted index space (such as for LSH). A point query can be seen a degenerate
version of a range query.

Definition 5.3.1 (Match Count) Given a range query R = (ry,rs,...,74) and an object
O = (v1,...,v4), a range match count s a function rme : (r;,0) — [0, 1] indicating whether

8https://www.comp.nus.edu.sg/~atung/gl/
9The dimensionality of the query can be lower than the dimensionality of the dataset, GENIE supports
this concept, however we do not consider it in this work.

o8

https://www.comp.nus.edu.sg/~atung/gl/

5.3. GENIE

Sample Data

O, 110 6 52 62 0 O 1541 0 16 8
O, |16 50 12 0 1 O12 120 13 53 50 0
O3 |10 11 58 69 4 O13 128 86 16 1 4
O4 125 7519 5 8 O14 (13 102 22 1 O
O5 |10 8 56 64 0 O |18 3 20 40 18
O |13 75 13 0 4 O |97 18 9 9 0
O7 |17 28 64 37 0O O17 135 30 2 3 27
Og |8 78 21 1 2 O 36 27 3 0 1
Oy |3 152 0 11 Op |11 8 2 3 6
Opl|3 141 0 O Oy (42 21 4 5 4

Sample Point Query
Q1]18 28 3 16

Sample Range Query
Ry ‘16—20 26-30 1-5 0-3 4-8

Table 5.1: Sample dataset and queries represented by 5 dimensional objects.

the dimension value v; of object O is contained in the range r; of query R — in dimension
j. The range query match count MC: (R,0) — N is then the sum of range match counts
rmc over all the dimensions / ranges from the query:

MC: (R,0) =Y rmc(r;,0)

r,€R

Note that the maximum match count MC therefore cannot exceed d — the dimensionality
of the dataset and the query space. Furthermore for queries identical to an object, the
match count will always be equal to d between such query and object.

The objective of the k-ANN search is to return at least k objects O; from the dataset D
with the highest match count. In a case where multiple objects score the same, resulting in
more than k£ objects as candidates for the result set, the objects with the lower qualifying
match count may be pruned at random.

Table 5.2 shows an example of a inverted index and a range query execution on that
index. The index is generated from the sample data presented in Table 5.1. Dimensional
Metadata store the lowest and highest values in all the dimensions. The lowest value is
then used as offset into the Inverted Lists Metadata, where all the values start from 0 for
all dimensions. The Inverted Lists Data is a concatenation of all inverted lists into one
array.

29

5.

COMPRESSED INVERTED INDEX ON GPU

60

Dimensional Metadata

Dimension 0 1 2 3 4

Lower value bounds 3 1 0 0 0

Upper value bounds 97 102 64 69 27

Inverted Lists Metadata
29 55 £S5 5525 F 298 E 258
= 3 g = 8 o = 3 g = 3 g = 3 g
R >8 0R 8 O0R> 8 ORE>EOREFZEO
0 0 2 01 0O 1 200 2 O 1 400 3 0 5 60 4 0 7 80
0 5 1 2|1 2 1 21 2 1 1 41 3 1 3 65| 4 1 2 87
0o 7 3 3|1 5 1 22 2 2 3 42 3 3 2 68 4 2 1 &89
0 8 1 6|1 7T 2 231 2 3 1 45, 3 5 2 710 4 4 4 90
010 2 71 10 1 25| 2 4 1 46| 3 9 1 721 4 6 1 94
0 13 1 9/ 1 12 1 26| 2 9 1 47| 3 16 1 73] 4 8 2 95
0 14 1 10, 1 13 1 27| 2 12 1 48| 3 37 1 74| 4 11 1 97
0 15 1 11, 1 14 1 28] 2 13 1 49| 3 40 1 75| 4 18 1 98
0 17 1 12| 1 17 1 29| 2 16 1 50| 3 50 1 76| 4 27 1 99
0 22 1 13| 1 20 1 30| 2 19 1 51| 3 62 1 77
0 25 1 141 26 1 31| 2 20 1 52 3 64 1 78
0 32 1 151 27 1 32| 2 21 1 53] 3 69 1 79
0 33 1161 29 1 33| 2 22 1 54
0 39 1 171 49 1 34| 2 52 1 55
0 51 1 18| 1 74 2 35| 2 53 1 56
0 94 1 191 77 1 37| 2 56 1 57

1 8 1 38| 2 58 1 58
1 101 1 39| 2 64 1 59

Inverted Lists Data

0x00 8 9 7 0 2 4 18 5 131 6 14 11 3 12 16
0x10 17 19 10 15 10 14 0 4 18 2 11 9 8 15 19 17
0x20 6 16 1 3 5 712 13 10 9 8 16 18 17 19 15
0x30 1 5 12 3 14 7 13 01 4 2 6.1 5 8 9
0x40 17 7 12 13 16 18 3 19 15 10 6 14 11 0 4 2
0x50 0 4 6 9 11 13 15 117 7 2 5 12 19 18 3
0x60 10 8 14 16

Match Counts

Object |16 17 18 1 5 6 8 9 12 19 10 11 13 14 2 3 7

Count | 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1

Table 5.2: Example of inverted index stored in GENIE.

5.3. GENIE

The highlighted cells in Figure 5.2 show a lookup process for the following query:
Ry = ([16,20],[26,30],[1,5],0,3],[4,8]) , which in this case is a modification of point
query)1 with a range of 2 in all dimensions. For example in the range query R; has a
value range of [16,20] in dimension 0, so when querying the Inverted List Metadata, we
use a modified range of [13,17] instead, because the lowest indexed value in dimension 0
for the whole dataset is 3. The resulting counts are shown at the bottom of the table,
with top-3 results highlighted. Note that for example in dimension 3, the queried range is
[0, 3], which maps to three lists. These 3 list all belong to the same query, therefore can be
greedily merged by the query compiler for execution into one virtual inverted list of length
10.

5.3.2 Using LSH For Approximate Nearest Neighbors

High dimensional data is often transformed using LSH (see Section 5.2.4.2). This prepro-
cessing step is optional in GENIE, as the data locality can be partially exploited using
ranged queries in GENIE (if dimensionality is low enough and the dataset space is dis-
cretized). After preprocessing data using LSH, we can build an inverted index such that
each bucket from LSH corresponds to an attribute in GENIE.

The dataset D is transformed into a hash space using a set of locality sensitive hashing
functions, and the result hashes correspond to the preprocessed data points that are loaded
into GENIE for ANN search. The hash space preserves similarity properties to original
real world data, with the intention of reducing a potentially high dimensionality and high
range of values of the original dataset.

For LSH processing, the requirement is that each object from the dataset is processed
with a family H of (dy, da, p1, p2)-sensitive similarity hash functions [91], where similarity
of two objects p and ¢ results in high probability of their hash function A(-) yielding the
same hash.

Definition 5.3.2 ((di, da, p1, p2)-sensitive similarity hash functions) Let d; < dy be
two distances. A function family H is (dy,ds, p1, p2)-sensitive if for all functions h € H.:
o Ifdist(p,q) < di, then Pr[h(p) = h(q)] > pl
o Ifdist(p,q) > da, then Pr[h(p) = h(q)] < p2

The locality sensitive hash function is then defined by having a collision probability
equal to the similarity measure between the two data points p and ¢:

Pr[h(p) = h(q)] = sim(p,q)

The similarity function sim(p, q) € [0, 1], where 1 means the objects p and ¢ are iden-
tical.

Note that each similarity measure may require a differed LSH function family in order
to comply with the locality sensitivity property.

The universe of all the object hashes would be /-dimensional integer space, with each
dimension corresponding to a single hash function, and the range of values corresponding

61

5. COMPRESSED INVERTED INDEX ON GPU

D1
Probability q
Prih(p) =nh(q)] p,
of hash collision q |
a0,
Distance measure dz’sZ(p, q) .

Figure 5.3: Example of (dy, dy, p1, p2)-sensitive hash function.

to the range of values of that hash function. This space is often very large and the resulting
index may therefore be larger than the dataset itself, hence several reduction techniques
can be used. See Section 5.3.2.1 for details.

A common definition of ANN search relies on an approximation ratio ¢, resulting it
what is known and the c-ANN search problem.

Definition 5.3.3 (c-Approximate Nearest Neighbor) Let dist(-,-) be a distance func-
tion between two points from the universe (e.g. Fuclidean distance). When searching a
dataset of points O1,0Os,...,Opn for a query QQ under, given an approximation ratio ¢ > 1,
the c-Approximate Nearest Neighbor c¢-ANN returns an object Og, which is with high
probability similar to the true nearest neighbor Orp:

dist(Og, Q) < c- dist(Or, Q)

In many sources, the c-ANN is instead referred to as e-ANN, which simply uses an
additive approximation ratio such that ¢ =1 + e.

This definition of c-ANN can be altered to work with a similarity measure sim(-,-) as
opposed to distance function. For this reason, we need an approximation ratio ¢ < 1, so
that the similarity constraint is sim(Og, Q) > ¢ - dist(Or, Q).

A match count model introduced in GENIE behaves differently from inverted list in-

tersection used in other ANN search systems. However, the match count model can still
be effectively used for ANN search.

Definition 5.3.4 (7-Approximate Nearest Neighbor) When searching a dataset of
points O1,04, ..., 0Oy for a query Q under a similarity measure sim(-,-), the Tolerance
Approximate Nearest Neighbor 7-ANN returns an object Og, which is with high probability
similar to the true nearest neighbor Or:

|sim(Og, Q) — sim(Or, Q)| < 7

62

5.3. GENIE

Both definitions are also extended for k-c-ANN and k-7-ANN search, where the con-
ditions are applied to all the returned vs true nearest neighbors.

5.3.2.1 Re-Hashing

The range of values of LSH hashes can be further reduced in GENIE by using a second
layer of hashing functions, called re-hashing in GENIE. Re-hashing is done using a random
projection function, specifically in GENIE the hash function used is Murmurhash3 [9]. See
the technical report [A.5] for more details on LSH and re-hashing in GENIE, theoretical
analysis and case studies.

The hashed objects O; € D will then be represented in the dataset as OXH =
[11(h1(0;)), r2(ha(Oy)), . . ., me(he(O;))]. The queries need to go through the same process,
using the same hash functions (and additional random projection functions), therefore

ESH — [ry (1 (Q)), ra(ha(Q)); - me(he(Q))]

5.3.3 Examples of LSH Function Families

The original idea of LSH function families [91] applies almost exclusively on points the
Hamming space. It is possible to efficiently hash points in Euclidean space directly, without
the need to embedding them into lower spaces first, which results in increased query time
and error [45].

Probably the best known LSH function family is MinHash [30], which approximates
the Jaccard similarity J(P, Q) = Iigg} of two sets P and). MinHash works by computing
k independent random hash functions hq, hs, ..., hy and keeping track of minimum values
of these hashes over all points from the dataset. For LSH purposes, the hash values are
split into b bands, and estimation of similar candidates is selected as across all bands of
the hashes.

A common LSH method called SimHash [38] is used for cosine similarity cos(p,) =

% of two vectors p'and ¢. SimHash works by choosing a set of hash functions, where
each hash function was a random hyperplane 7; and h;(#) = sign(7- p). These hashes are
then combined into a bitwise-average.

Commonly used LSH function families used in machines learning tasks, for example
for Support Vector Machines, include the Random Binning Features (RBF) [164], which
partitions the space into a grid on random cell size g, with a random shift vector & =
[u1, us, ..., uq]. The hash function of object O = [01, 09, ...,04] is then defined as:

o [52) [252] 2]

The expected collision probability of RBF is then Pr[h(p) = h(q)] = k(p,q), where
k(p,q) = exp(@) is the Laplacian kernel.

Another very popular LSH function family used is based on p-stable distribution [45],
which work for any ¢, norms space. For a vector @ = [ay,as, ..., as) whose each entry is

63

5. COMPRESSED INVERTED INDEX ON GPU

chosen independently from a p-stable distribution, and b is a real number chosen uniformly
from a range [0, 7].

We can see the hash function has that we split a real line into segments of size r and
assign hash values to vectors based on which segment they project onto. The hash function
of object O = & (objects are d-dimensional vectors) is formally defined as:

r

h(3) = {

Examples of p-stable distributions include the Cauchy distribution for /; space and the
Gaussian (normal) distribution for the /5 space.

d’T-6+bJ

ai

TR S .

1 ! Q2

as

ha:mbﬂ" (6‘)

Figure 5.4: Example of locality sensitive hashes based on p-stable distribution in 2 dimen-
sional space. Using 3 hash functions with vectors aq, as, and a3 chosen randomly from a
p-stable distribution.

Other approaches to similarity hashing are: Sdhash, that (as opposed to previously
described techniques) selects statistically improbable features, that are unique for each
object [167]. Sketching is another method based on hashing object n-grams multiple times
to make a sketch of the object. Sketching is described in [132, Chapter 19].

5.3.4 Preprocessing Data Using Other Sources

It is also possible to use GENIE for similarity search without LSH. This can be achieved
by splitting each object into smaller units, then constructing the inverted index based on
containment of that unit in the objects (or documents). The match count of GENIE is
then used as an estimate of the similarity measure.

For searching strings (i.e. sequences), we split the string into a set of ordered n-grams
(pairs of n-gram and the number of occurrences of that n-gram). The set of ordered n-
grams then serves as the key domain of the inverted list. The match count of GENIE then
returns the sum of minimum number of occurrences of each n-gram in the dataset and in
the query.

64

5.4. Compressed Match Counting in GENIE

For searching documents and object documents, the keyword domain of the inverted
index is based on the words from the documents. The match count then represented the
number of common words between the two documents.

When searching relational data, GENIE can be simply used as is, with the attributes
(columns) representing dimensions, attribute values representing the indexed values (with
potential discretization of real valued attributes), and the inverted index contains primary
key as the docIDs. Note that the match count model is not weighted in the current design.

5.4 Compressed Match Counting in GENIE

In this section we present GENIE’s query processor with modification to data preprocess-
ing, and an extension to matching GPU kernels capable of match counting on compressed
inverted index. Our objective is to extend GENIE with efficient inverted index compression
schemes, inverted list balancing and partitioning. We also elaborate on ideal mapping of
query execution to the parallel model of GPUs in order to maximize query throughput,
response times and to minimize the total size of GPU-resident inverted lists cache.

By reducing the space on GPU memory required for query execution, we are able to
speed up the execution time by reducing the cost of data transfer, run more queries at the
same time by having more data present at a time, and decrease the threshold when large
datasets have to be incrementally loaded.

We first start by analyzing the properties of raw inverted lists and tables created by
applying LSH on real world and synthetic datasets. Based on these observations, we
find strategies for reducing the overall size of indices, while identifying ways to improve
parallelism when executing queries on the GPU.

The compressed inverted index supports sharding, which is useful for the purposes
of multi-loading large datasets and for purposes of distributed GENIE execution, where
queries to one dataset are distributed as well.

5.4.1 CUDA Kernel Models For Decompression

In this section, we describe decoding kernels, which are integrated together with the match-
ing kernel in GENIE. The codec selection for inverted index is user configurable.

5.4.1.1 Delta Encoding

Generally docIDs in inverted lists are sorted, and therefore can be represented as deltas
(sometimes also called gaps, or differences) between two consecutive docIDs. Delta encod-
ing is used to generate smaller number for subsequent encoding steps.

We assume that all docIDs are integers smaller than 232. This is the same assumption
that is taken across all of the related work, as it is very unlikely that an indexing system
will ever hold more than this amount of documents in a single shard.

65

5. COMPRESSED INVERTED INDEX ON GPU

Delta encoding is parallel scan type of operation, so the time complexity is O (log(n)).
A single step (constant time) delta encoding can be implemented by only encoding the
delta from the first element of the parallel block. Full sequential delta encoding requires
a logarithmic amount of steps. Therefore a compromise can be made between these two
extremes, which is referred to as vectorized delta, or vectorized differential encoding. This
encoding can achieve significant performance gain in CPU SIMD implementations [110].
However, in our experiments on the GPU, full sequential encoding has always shown better
compression with minimal computational overhead.

5.4.1.2 Varint Encoding

Varint is a popular encoding scheme used for integer lists, and has been partially vectorized
using SIMD instruction sets. The premise of the algorithm is relatively simple. Each byte
is split into 1 and 7 bits, the highest one bit serves as metadata indicating whether a new
integer starts at the byte location. The following bytes with a zero leading bit are then
joined into the decoded integer.

Our representation of encoded data requires each thread to access two adjacent 32-bit
words from the encoded array. The key logic is that each thread extracts only integers
that begin in its primary word. For this purpose, each thread requires to have access to
the next word in order to decode the last integer if there is any overflow.

The first improvement of the decoding process is to externalize the control bits from
the data bits into a separate array. This idea has been first used for SIMD processing in
[113]. For a list of N encoded 32-bit words, there will be at most & control bits, so for
maximum length of 1024 encoded integers'®, there are at most 128 32-bit words in the
control array (in a case where all integers are of length 4 bytes).

One inefficiency in the current algorithm still remains. Because the representation of
control bits spans variable amount of bits, each thread needs to do excessive binary opera-
tions, after which it ends up with anywhere between 0 to 4 integers to decode. We use an
idea originally proposed in Varint-GB [46], where exactly 2 control bits are used per inte-
ger. These two bits are serialized in external array, just like in the previous case. Decoding
starts by loading the whole control array, followed by scatter operation to distribute the 2
control bits to each thread. Now each thread knows how many integers to decode, ranging
from 1 to 4 integers. Note that in this change the size of the control array depends only
on the number of integers to be encoded, unlike in the original variant where the control
size depends on the values as well. This also enables the algorithm to use 8-bit codewords
and therefore simplify the decoding steps. The decoder continues by loading the encoded
array, followed by a shuffle operation to fetch the next word with overflow encoded data.

10T heoretically, when using Varint, it is possible to achieve an encoding of larger size than the original
data. If that is the case, the inverted index encoding component of GENIE will discard the encoded list
and use raw index format instead. Note that for long lists, such as 1024 integers, it is not possible to reach
this edge scenario in practice, because the delta encoding will result in deltas of expected size smaller than
the necessary 29 bits to cause negative compression.

66

5.4. Compressed Match Counting in GENIE

Then the decodes performs only one parallel scan to decode deltas. Each thread ends up
with 1 to 4 integers.

The parallel model we use has one thread block decode and match count a single
inverted list, i.e. a query component. For a maximum list size of 1024, the decoder uses
up to 1024 threads, depending on the encoded array size. The access to global memory
for both encoded data and control array is fully coalesced. We use warp level shuffle
instructions and small amount of shared memory to scatter the data across the warp as
necessary for each thread.

The decoding process of Varint is visualized in Figure 5.5 and the detailed algorithm
is described in Algorithm 5.1.

5.4.1.3 Bitpacking Encoding

The premise of Bitpacking[6] is to take a fixed number of integers and encode them all
using the same amount of bits b. The amount of bits b is determined by the largest integer.
We use the standard block size of 32 integers, this is also known as Bitpacking32. For each
block, one additional byte is used to encode b.

Similarly to Varint, we also separate the control bytes into a different array. For a list
of N encoded 32-bit words, there will be exactly one control byte, so for maximum length
of 1024 encoded words, there will be exactly 32 bytes of the control array.

The decoding process of Bitpacking starts with the decoder reading the control array for
4 bitpacking blocks per warp, that is 128 integers per warp. We try to maintain the same
parallelism for match counting, i.e. for one thread to do counting of at most 4 integers.
Because we only use Bitpacking for full blocks of 32 integers in GENIE, each thread will
decode ezactly 4 integers.

Note that we are not using variable block length bitpacking such as in VSEncoding [187]
or QMX [205] since this would complicate the fully data parallel model for decoding and
impair its efficiency. Variable sized blocks often break coalesced access to global memory,
and require additional data shuffle.

The parallel model we use has one thread block decode and match count single inverted
list, i.e. a query component. Fach thread then decodes exactly one integer. First, 32
threads are used to compute the offsets for the 32 bitpacking blocks, then these offsets are
used by all 1024 threads to find a location of the encoded bits. Each warp then decodes
exactly 4 bitpacking blocks.

In order to prevent random access to the encoded data array in global memory, the
whole encoded array is first loaded, then shuffie instructions and shared memory are used to
distribute the encoded array to the appropriate threads It is often that case that one thread
has to fetch two words from this encoded data array. Similarly to our implementation of
Varint, this is done via shuffle operations. The two encoded words are then used by each
thread to decode exactly 4 integers. Delta decoding is the same using parallel prefix sum
across the thread block.

The decoding process of Bitpacking32 is visualized in Figure 5.6 and the detailed algo-
rithm is described in Algorithm 5.2.

67

5. COMPRESSED INVERTED INDEX ON GPU

Control Array C

Global memory

Load control array

Registers

it split & shuffle control array Registers

——

Data Array D

Global memory

IIIIIIIIIIIIIII Lpac enpoged daya srrdy IIIIIIIIIIII Registers
|
l

Shuffle encoded data array Registers + Shared memory

Decode 1 to 4 integers from D; an <<
: L
— == d = dld o — I FHd T d
d ﬂ] d|46| d déll;j;:lﬁil.@ld 1‘1i,,11 116
15 | |44 50|54 71 03y o7 —HLL2

Decode deltas (parallel prefix sum) Registers 1 Shared Memory

oloJo]olo|o]olololo|ololololo]oo]o|olo]olo|o]o]ojolo[Oo[Oo]Oo|OolOo[O[O]lO]O]O]OlO|O
0]12[6[8|11]12[15[18]19(21|25|27|31[34|37|41[43[47|51]|52[54|56|57[58[62|66|70[71[73)|76[78|80|81|84[85|88|92[94(97|99
0|0[0|0 [oJle] olojo[ololOo]lOo]lO[O]|O o0 0|00 O|0|0[0 [@] ojojololOo|O
113]71]9 13|16 20[22)|26|28[32[35)|38)|42|44(48 53|55 59 (63|67 7274|7779 182 | 86 (89 (939598100
e [@) [oJle] 0] O|0[0[0 O[O0 0|00 [@) [@)] [oJle] O

I 14 | 110 14|17 123 | 29(33|36|39 45149 60 (64|68 175 183] 87[90 196 |
e [0) [@) (@) O[O0 0|00 ! @]

' L5 24] (30 40| [46]50] Match 616569 ! [91)

: counting :

N ,«

Warp (32 threads)

Figure 5.5: Visualization of Parallel Varint decoding, using separate control array with
2-bit representation of lengths. The coding expects 8 bit codewords, hence the range of 1
to 4 decoded integers per thread.

68

5.4. Compressed Match Counting in GENIE

Data: Numbers of 2-bit control blocks N;
Offsets into control array C’;

Offsets into data array D’;

Control array C

Encoded data array D

Result: Decoded objects O; (stored in registers), Match count

1 foreach block b in parallel ; // each thread block processes one inv.
list

2 do

3 n <+ NI[b| ; // load number of control blocks

4 C <« C+C'[b ; // get control array for inv. list

5 D <+ D+ D'} ; // get data array for inv. list

6 foreach thread t € [0,n) in parallel do

7 c« C[t]; // load dense control blocks

8 ¢ < (Shuffle(c, t/16) > 2%t % 32) & 0x03 ; // extract encoded

length from control array

9 (<« DIt] ; // load lower encoded data

10 h < ShuffleBlk(h, t + 1) ; // fetch higher encoded data

11 dy, dy,ds, ds <+ VarintDecode (/, h, ¢) ; // decode 1 to 4 integers

12 01,05, 03,04 < ParallelPrefixSum(dy, d;, ds, d3) ; // decode delta

13 foreach o in [0,¢) do

14 ‘ MatchCount (b, 0;);

15 end

16 end

17 end

Algorithm 5.1: Parallel Varint decoding implementation, using separate control ar-
ray with 2-bit representation of lengths. The algorithm is fully data parallel with the
encoded list length. The Shuffle(x, t) function fetches register x from a thread t
within a warp. Similarly Shuff1eBlk(x, src) does shuffle within the whole block par-
tially using shared memory for shuffles across warps. VarintDecode(/,h,c) decodes ¢
(1 to 4) integers from low and high words. ParallelPrefixSum(dy,d,ds,ds) computes
parallel prefix sum across a thread block, with a variable amount of local values — up
to 4.

69

5. COMPRESSED INVERTED INDEX ON GPU

\ Control Array C

Global memory

Load control array Registors
gisters

Parallel prefix sum of offsets into encoded data .
Registers

Scatter + broadcasts offsets (4 bitpacked blocks per warp)

Data Array D

Global memory

IIIIIIIIII Load encoded data into each warp based on offsets .
Registers

Scatter data array across threads NI
Registers

D
|d d|d|d|d|d|d d|d|
0,h|0,h|€,h|€,h|e,h|e,h|0,h|e,h|e, k|, k|, h|e,h|0, k|0, h|€, h|e, k|, h|€,h|C,h|e,h|e, h|€, k|, k|0, k|0, h|e,h|€, h|€, ke, k€, h|¢,h|e, h|e, h|e, k|, k¢, h|¢,h|e, h|e, hle,h

L e

G T e s S 2 R T S s 1 B T 2 R T s s s s s
dld|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|[d|d|d|d|d|d|d|d|d|d|d|d|[d|d|d]|d|d|[d|d|d|d]|d]|d
3|7 [11[15[19]23]27|31(35(39|43|47|51(55[59(63|67|71|75|79(83[87]|91]|95]|99[103[107]111[115/119123127[131[135/139143]147[151{155/159

|

|

|

!
Decode deltas (parallel prefix sum) Registers + Shared Memory
oloJoololololo|olo[o]o|o|ololoo]ojolo]olOo|Oo|Oo]o]Oo]OlO|O]O]O]O[O|O]O]|O
16|20[24[28[32)36[40[44(48]|52[56[60|64|68[72[76)|80[84|88]|92|96 [100]104{108|112{116/120|124{128]132]136{140[144/148152(156
olojolololo|lolojojo|lo|lo|lo|ojo[o|o|lo|o[o|olO|O|O|O|OJO|O|O]O|O[O[O|O|O|O
33[37|41|45[49(53]|57|61[65(69|73|77[81|85[89[93[97|101{105(109(113]117]121|125[129(133[137|141|145{149[153]157]
ololo|Oo|O|O|O|OlO[O[O|O|OlO|O|O|O|O|OlO[O[O|O|O|O|O|O[O|O|O|O|O[O[O|O]|O
18122(26(30[34|38[42[46(50|54(58[62|66|70[74[78)|82[86|90|94|98[102106{110{114{118)122/126[130[134{138[142({146/150{154{158|
ololo[o|Oo|Oo|lOololojo[Oo|ololOolOo|O|O|lO|lOlO[O[O[O]O|O|O|O[O|O|O|O|O[O[O|O]|O
19123|27[31[35]|39[43[47|51|55[59[63|67|71[75[79]|83[87|91]|95]|99[103107[111{115(119)123[127|131[135[139[143[147|151{155159

Q|5 Qe Qe Q)
QR Q&S
=
R
&
3

wQu Q|- Q=Q
~ Qo Qe Q= O

-
-

Match counting

-—-

Warp (32 threads)

Figure 5.6: Visualization of parallel Bitpacking32 decoding, using separate control array
and block of size 32. The decoding as depicted decoded 4 blocks per warp, therefore uses
a block size of 256 threads with each inverted list of maximum size of 1024.

70

5.4. Compressed Match Counting in GENIE

Data: Lengths array N (numbers of integers in inverted lists);

Control array C' and offsets C” (each control array is of length N/32 bytes);
Encoded data array D;

Encoded data array offsets D’ (start of each inverted list)

Result: Decoded array (stored in registers d), Match count

1 foreach block b in parallel ; // load from global memory
2 do

3 n <+ N[; // load number of bitpacking blocks in this inv. list
4 C <+ C+C'b ; // get control array for this inv. list
5 D <« D+ D' ; // get data array for this inv. list
6 foreach thread t € [0,n) in parallel do

7 c <+ Ct] ; // load block sizes
8 p <—ParallelPrefixSum(c) ; // cumulative block sizes
9 end

10 foreach thread t € [0,n - 32) in parallel do

11 foreach i € [0,4) do

12 pi < ShuffleBlk (p,(t/32) -4 +1i) ; // broadcast block sizes
13 d; < D[4-t+1i]; // load encoded data array
14 di (ShuffleBlk(d;, &) < (tb mod 32)); // extract low bits
15 dip + (ShuffleBlk(d;, =1y > 32 — (tb mod 32)) ; // high bits
16 di < (dig || dip) & (1 >0)—1; // compose decoded integer
17 0; < ParallelPrefixSum(d;) ; // decode delta
18 MatchCount (b, o;)

19 end

20 end
21 end

Algorithm 5.2: Parallel Bitpacking32 decoding implementation, using separate con-
trol array with byte representation of bit widths b used for each block. The algorithm
is fully data parallel with the decoded list length. The ShuffleBlk(x, src) function
fetches register x from a thread src within the whole block, partially using shared
memory for shuffies across warps. ParallelPrefixSum(z) computes parallel prefix
sum across a thread block.

71

5. COMPRESSED INVERTED INDEX ON GPU

An extension of Bitpacking algorithms known as Patched Frame of Reference (PFor)
uses separate exception encoding to store all integers (deltas) with binary representation
longer than b; bits. The threshold b; is often determined by a desired percentage of ex-
ceptions vs total numbers. A parallel GPU implementation ParaPFor [8] is an example
implementation of such algorithm. In our experiments, PFor schemes have shown only a
small increase of compression ratio, but at a cost of significant decoding time overhead.

5.4.1.4 Composite Codec

As we see in the analysis of inverted tables (see Section 5.5.3), the proportions of short lists
(less than 32 docIDs) and long lists (max length of 1024 docIDs) is substantial. For short
lists, a fixed size block encoding Bitpacking32 does not make sense, and likewise, for lists of
maximal length Varint encoding is not as efficient. Similarly, list length is rarely a multiple
of a block length of 32 numbers, therefore a significant loss of compression efficiency is due
to ragged block overflow.

We use a composite encoding, where Bitpacking32 is used for parts of inverted lists
that fit into full size bitpacking blocks, and Varint is used for smaller inverted lists and
bitpacking block overflows. In practice, this is implemented by two different kernels being
executed dynamically for most queries. Dynamic execution allows us to preserve data
in GPU memory through the decoding and counting process. Once deltas are decoded,
a parallel scan computes the raw docIDs, which are then match counted. This scan is
performed as a parallel prefix sum after both codecs finish.

In some rare cases, especially for short inverted list, it is possible for an encoded inverted
list to have a negative compression, i.e. is longer than the original. In this case, we simply
store the inverted list in raw form.

This approach gives us the composite codec, which uses different kernels for different
parts of the inverted index. The query compiler is responsible for composing the query
execution correctly.

5.4.1.5 Parallel Models for Decoding

The parallel model used in GENIE for decoding and query evaluation consists of mapping
one inverted list (i.e. one query component) evaluation to one thread block. The decoding
and matching model remains the same, with each thread block having to decode and match
their respective compressed inverted list.

All the encoding schemes have a locality property, which means that each thread is
able to decode integers from the list given only small portion of the encoded data. The
process of determining the location in the encoded array is codec dependent. The Varint
codec is data parallel in encoded data size, while the Bitpacking32 and Raw codecs are
data parallel in decoded data size.

The query execution starts with the scheduler and query compiler. The scheduler makes
sure the encoded data and control array are loaded in GPU memory. It tries to optimize the

72

5.4. Compressed Match Counting in GENIE

GPU resources usage before initiating the GPU execution!'. The decoding process itself
often involves several scan and shuffle operations, resulting in compute intensive part of
the algorithm. Data transfer phase (encoded data, control array, queries) always precedes
the computation phase, followed by data store phase (saving the top-k match results).
The query scheduler tries to minimize the necessary amount of data transfer between main
and GPU memory, i.e. by executing multiple queries on the same inverted lists'?. This
three-stage model of all kernels allows for efficient scheduling of these kernels such that
data and compute phases overlap.

Figure 5.7 shows a high level parallel execution diagram of one query set. The load,
execute, and store phases are staggered in order to maximize resource usage of the GPU.
Data transfers (mainly Host to Device) constitutes the main bottleneck in parallel execu-
tion. Number of streams is not fixed and is dependent on the overall number of queries
active in the system. Duration of operations in the diagram is not to scale.

CPU — Slj)emrizlsle | | Merge counts
Stream 1 Load Decode: Dec.: Match L,
index Bitpacking32 A count
1 |
Stream 2 Load ~ Decode: Dec.: | Match =
index Varint A count
1

Stream 3 M Load index Match M/\/\/\.)
count

Figure 5.7: High level parallel execution model of a query set.

The query compiler is a component that retrieves the lengths and locations of all
inverted lists (from the inverted lists index, see Section 5.3.1), and initial delta encoding
values.

For scenarios where most of the lists are not of maximal efficient length (1024 in the
current configuration), the parallel model (of processing one query component / inverted
list using one thread block) will become inefficient. This is especially notable in queries
with high ratio of short lists (length < 32), due to lack of warp saturation. For such
cases, we can use a different parallel model called query merging, where multiple queries
are executed by a single thread block (i.e. the thread block is packed with queries), and
all the parallel operations are segmented. Each thread then submits its decoded docIDs to
the counting queue corresponding to the correct query. In order to achieve this, we need

'The match counting part involves a priority queue and a hash table, which consist of a small amount
of atomic instructions, therefore benefiting from staggering the match counting phase in thread blocks
across non-concurrent time spans.

121f the dataset is small enough, such that the whole inverted index first in the GPU memory (with
reserve space for compiled queries and counting data structures), there is no need to transfer anything but
the compiled queries to the GPU memory.

73

5. COMPRESSED INVERTED INDEX ON GPU

to pass extra data to the kernel, namely thresholds into the control array and data array,
plus an array of query identifiers for these thresholds. This feature has not been integrated
into GENIE, therefore we omit detailed description of the algorithm and parallel model.

5.4.2 Further Reducing Time by Suppressing Multi-Load

In a case with a large dataset, we are forced to split the inverted index into parts that fit
into GPU memory at a single time, then repeatedly load only one part of the dataset and
execute all the queries. This process is called multi-load. When splitting a large dataset,
the split is done by the CPU at an inverted lists level (meaning lists themselves are not
split). The CPU maintains and subsequently merges partial top-k results.

Compressing the dataset proportionally reduces the multi-load overhead, and poten-
tially fits the whole matching process into a single iteration. With average compressed size
of 8-10 bits per docID, we can expect 3-4 times the index size threshold before multi-load
is needed.

5.4.3 Efficient Inverted Lists Balancing

There are several factors that affect the performance of the decoding kernels. One of
the factors is maximal occupancy of streaming multiprocessors in CUDA [148]. Higher
occupancy allows the device to better hide the latency of memory accesses. The overall
occupancy depends on number of threads (7') per thread block, register count (R) per
thread, and shared memory (M) size per block. The occupancy can be expressed as a
ratio of warps (W) allocated per streaming multiprocessor (SM) vs maximal number of
warps allocatable. A simplified occupancy formula looks like this:

. W, erSM \‘ R erSM J M, erSM T
Occupancy = min P , P { P J Woer
paney =i | |55 | | [P [|| /o

Higher occupancy allows the device to better hide the latency of memory accesses
and instruction executions, which in turn improves instruction level parallelism. Higher
occupancy with more granular block size also allows more blocks (and therefore more query
components) to be scheduled at the same time. If a thread block has shorter inverted list
to process, it can partially free up compute resources to be used by another scheduled
block. It is always important to profile how long a kernel takes for different block sizes,
because other factors can be present, which affect the overall performance.

A common bottleneck in GPU database and indexing application is the limited integer
operations throughput in the ALU. This is a hardware design decision implied by the
consumer requirements'3.

13Modern GPU applications do not require 64-bit integer operations and always prefer floating point
operations. Current compute heavy applications commonly target HPC, scientific, technical computing,

74

5.4. Compressed Match Counting in GENIE

In our application, efficient implementation of parallel prefix sum is able to process up
to 4 32-bit integers per thread. More than that requires increased usage of shared memory
or increased number of registers, neither of which is desired due to decrease in occupancy.
Efficient implementation of the decoding and matching within a single thread block thus
limits the array size to 4 times the number of threads. Having much larger inverted lists
(than what can be efficiently processed by a single thread block) would require scanning
across thread block boundaries using global memory. This incurs significant overhead and
would fracture the three-stage model of the kernels.

The cost for splitting inverted lists into smaller sub-lists is marginal, as all we have to
save is the inverted list index and initial delta value for each list. This index never leaves
main memory, since it is used only during query compilation. Disregarding the marginal
increase in index space. Compression efficiency of the inverted lists is not affected by
splitting the lists at block boundaries for Bitpacking32 encoding, nor by splitting the lists
anywhere for Varint encoding.

Via theoretical evaluation and profiling, considering all the aforementioned aspects, we
have settled on thread block size of 1024 threads for Varint, where each thread processes 1
to 4 integers, for a maximal inverted list length of 1024 docIDs. In the case of Bitpacking32,
we use thread block size of 256, with each thread processing exactly 4 integers.

Adjacent Lists Merging in Range Queries In some cases, where the range of values
of the indexed dimensions is too large, therefore the inverted lists are short, most of the
operations during data loading and decoding are not utilizing resources efficiently. For
example a short inverted list of length 5 still uses a full thread-block, with one full warp
being active (where a single warp has the capacity to efficiently process 128 docIDs). Since
GENIE supports range queries, which take several consecutive lists, it is be beneficial to
process these lists in a single thread block, to a maximum of 1024. Some logic needs to be
changed when executing merged lists. Specifically, the query compiler has to use a merging
scheme (greedy works fine), and pass multiple initial deltas and offsets to the decoding
function. During delta decoding, a segmented parallel prefix sum is then performed instead
of normal parallel prefix sum. Note that with lists merging, decompression speed within
decoding kernel does not change significantly. On the other hand, potentially lower amount
of required thread blocks improves overall performance. Lists merging does not affect the
inverted index and lists size in any way, it is an optimization of the query execution process.

5.4.4 Integration Into GENIE

We now briefly describe the integration process of query scheduler, query compiler, lists
balancing, and compression aware matching into GENIE.

machine learning, and deep learning all depend on 32-bit floating point operations. It is possible to improve
performance of integer heavy compute in some cases if the whole computation can be moved to the 23-bit
mantissa of floating point types. The throughput of integer units can be as low as 1/6 of the floating point
units. For more details, see the relevant section Maximize Instruction Throughput in CUDA docs: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions

5. COMPRESSED INVERTED INDEX ON GPU

Large majority of GENIE code has been refactored to generalize all the major com-
ponents, and allow for easy extensions by adding more query schedulers, compilers and
encoding and matching kernels. Inverted tables and compressed inverted tables have been
formalized in terms of binary format and interface, including functionality for serialization
onto disk. Compilation of the inverted index compression functionality is available with the
CMake option GENIE_COMPR:BOOL, which exposes configurable query compiler and inverted
index management components.

A configuration interface is provided for the end users and as a part of the library. Based
on the data and query configuration, a query evaluation models is dynamically selected
by the query scheduler. For example, loading dataset encoded with composite codec, then
running a single value query (not range), the query scheduler will select the appropriate
simple point query compiler and composite matching kernels to execute the query.

Multiple matching kernels are available, including composite combinations of Bitpack-
ing32, Varint and Raw encoding. Matching kernels are integrated with list decoding and
delta decoding. This makes the matching process execute only one integrated kernel on
the GPU, which at the end returns the match counts. The main reason for the integrated
kernel is to save storing the decoded integers to global memory.

Large effort has been made on distributed version of GENIE, which allows to run the
system on multiple GPU and multiple machines. A centralized scheduler has to distribute
query sets to the relevant nodes and GPU, while minimizing the total query execution
time. Common techniques for distributing the inverted tables includes dimension slicing
or equi-size sharding. Compilation of distributed functionality is available with the CMake
option GENIE _DISTRIBUTED:BOOL, which exposes additional interface and a runtime built
on top of OpenMPI.

Lastly, an effort has also been made on clustering of the inverted tables, in order to
balance the load in distributed deployment, and to potentially prune the search space
without sacrificing the result accuracy. Any dataset clustering has to be done externally
as part of the preprocessing step.

The GENIE code base has been refactored and upgraded to modern C++ standards and
modern CUDA practices. The functionality has additionally been exposed via templated
static and shared libraries, and robust CLI.

5.5 Experimental Evaluation

We have previously compared GENIE with other available nearest neighbor search tools,
namely GPU-LSH [153], C2LSH [63], GPU k-selection [1]. However, none of the other
tools compare to GENIE in terms of a complete k-ANN functionality. The comparison is
available in the technical report [A.5].

For our experimental evaluation, we focus on the aspects of integer list decoding and
query processing in GENIE. For comparison to the previous state, we use a configuration

76

5.5. Experimental Evaluation

of GENIE that runs a Copy codec, which is a no op version of integrated decoding and
matching kernel 4.

We start by providing an insight into the properties of inverted index for real world
datasets. This is a crucial component of determining the configuration of inverted tables
and query processing.

Our evaluation consists of general analysis of codec performances in terms of compres-
sion ratio and decoding speed, including the complete query evaluation process. Encoding
speed is not measured, since we choose to not focus on encoding on GPU, mainly because
GPU resources are fully utilized in the querying process in GENIE, rather than in data
preparation. The inverted index construction is considered to be offline.

Furthermore, we evaluate GENIE performance with various codecs on real world
datasets, whilst providing a white-box insight into individual components of the query
process.

5.5.1 Description of Datasets

We use the same datasets that were used in the original GENIE work. These are real
words datasets, each with preprocessing for a different similarity measure. For details and
references to the LSH functions used, please see Section 5.3.3.

Adult’® dataset represents relational data, where the dataset has a total of 1 million
rows with 14 attributes. Numerical attributes are discretized into 1024 intervals before
being indexed in GENIE. Total size of the dataset is 5.8 GB. Note that the discretization
of the attributes is independent of GENIE’s range queries.

OCR (Optical character recognition) is a high dimensional dataset with 1156 dimensions
preprocessed using RBS for dimension reduction and Murmurhash3 for re-hashing into
integer interval [0,8192).

SIFT' (Scale-invariant feature transform) dataset contains 4.5 million 128-dimensional
features. The dataset is hashed using EF?LSH implementation'” of p-stable distribution
LSH into 67 buckets.

Tweets is a collection of 6.8 million tweets extracted!® from Twitter over a three month
period containing a set of keywords. The total size is 0.46 GB. The dataset is processed
by removing stop words and indexed in a classical fashion where words are the keys and
documents are docIDs in the inverted lists.

14GQeveral optimizations have been done to GENIE that make the baseline querying process significantly
faster, therefore we choose to compare against no op codec rather than previous version of GENIE.

5http://archive.ics.uci.edu/ml/datasets/Adult

Shttp://corpus-texmex.irisa.fr/

"https://www.mit.edu/~andoni/LSH/manual . pdf

8https://developer.twitter.com/en/docs

7

http://archive.ics.uci.edu/ml/datasets/Adult
http://corpus-texmex.irisa.fr/
https://www.mit.edu/~andoni/LSH/manual.pdf
https://developer.twitter.com/en/docs

5. COMPRESSED INVERTED INDEX ON GPU

Dataset | Dimensions ~ Average list length Inverted lists Index size [MiB] ~Compressed index size [MiB]

Adult 14 1019.00 644190 417.35 73.58
OCR 1156 432.08 11230620 3085.18 810.29
SIFT 128 1001.24 3451704 2197.26 596.94
Tweets 17 19.56 28225278 351.08 155.09

Table 5.3: Summary of inverted index for each dataset. Index was compressed using
gn-bp32-var-d1 composite encoding, and lists were partitioned to max length of 1024.

5.5.2 Environment And Settings

The experiments were conducted on machines with NVIDIA TITAN X' (12 GB GDDRA5,
3072 CUDA cores 1 GHz) via PCI Express 3.0. The CPU used is Intel Core i7-3820 with
64 GB RAM. OS used is CentOS 6.5 server.

GENIE was compiled with CUDA Toolkit 9 for GPU architecture 6.1, Thrust library
was included in the CUDA toolkit, Boost 1.63, and C++11 with all optimization config-
uration as provided by default in the CMake build system. Distributed functionality was
disabled for the purpose of these experiments.

5.5.3 Analysis of Inverted Tables

In order to be able to establish efficient compression and matching models for the GPU,
we first need to analyze the real world and synthetic datasets in order to configure the
preprocessing step. The following is the set of attributes we try to tune when loading for
datasets into GENIE:

o Preprocessed datasets size and dimension — more dimensions require scanning more
inverted lists; larger size may saturate index memory.

o Distribution of lengths of inverted lists — longer lists allow for better partitioning and
more efficient parallel execution.

o Distribution of delta values, i.e differences between subsequent values?® in inverted
lists — smaller deltas (or locally smaller deltas) allow more efficient inverted list
compression.

The statistical data about datasets is then used with the expected compression ratio
of codecs to select the appropriate coding scheme. Note that this preprocessing step is not
automated. We use our extensions of GENIE for performance evaluation, which allows us
to generate the statistical analysis before any data ingestion takes place. A summary of
inverted index properties for all the datasets is listed in Table 5.3.

Figure 5.8 shows the distribution of inverted lists for the datasets used in our experi-
ments (see Section 4.5). We configure GENIE such that majority of the inverted lists has

Yhttps://www.nvidia.com/en-us/geforce/graphics-cards/geforce-gtx-titan-x/
specifications/

20The delta values are not necessarily computed on adjacent list items, as parallel implementations of
codecs often try to avoid fully serial dependencies. This is known as vectorized deltas.

78

https://www.nvidia.com/en-us/geforce/graphics-cards/geforce-gtx-titan-x/specifications/
https://www.nvidia.com/en-us/geforce/graphics-cards/geforce-gtx-titan-x/specifications/

5.5. Experimental Evaluation

been split into smaller lists of (maximal) length 1024. This is also known as partitioning

by cardinality. For some of the datasets, there are many very short lists of length shorter
than 32.

Adult OCR SIFT Tweets
(original) (original) (original) . (original)
106 -
)
S 10% - -
=
=]
=]
o
- | Hm”mmm”””"mm
100 - ! | - | | - | | - ! |
Adult OCR SIFT Tweets
(encoded by Delta-Comp) (encoded by Delta-Comp) (encoded by Delta-Comp) encoded by Delta-Comp)
106 - . - -
>
S 104 - -
=
=]
=]
o
- | m””””h
100 - | ! ! - | | | - | | | - | | |
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Posting list size (Bytes) Posting list size (Bytes) Posting list size (Bytes) Posting list size (Bytes)

Figure 5.8: Distribution of inverted list lengths across the datasets. All datasets were
loaded with a maximum inverted list length of 1024. Top row shows raw inverted list
histogram. Bottom row shows histograms of encoded list length using the Composite
codec.

5.5.4 Analysis of Individual Compression Schemes

To establish a baseline codecs performance, we used the SIMDCompressionAndIntersection
compression library from [111] on our datasets. Table 5.4 shows the compression ratio (in
number of bits per integer), encoding and decoding speeds. The measurements were done
on per-list basis, then the results are summed over the whole dataset. All the reference
algorithms involved are either CPU or SIMD implementations (denoted with s4), some
involving sequential delta (denoted as dI) or vectorized delta (denoted as d2, dm, or d4).

Codecs starting with gn- are our GPU implementations according to the description in
Section 5.4.1. Note that no encoder is available on the GPU, and we instead use relevant
SIMD implementations during the preprocessing step.

79

5. COMPRESSED INVERTED INDEX ON GPU

sift tweets adult ocr
Codec ratio encfs/ decfs] | ratio encfs/ decfs| | ratio encfs] decfs] | ratio encfs/ decs]
copy | 32.00 | 242:88 | 301.81 | 32.00 | 385.57 853.45 | 32.00 | 45.76 47.68 | 32.00 | 387.29 580.84
for 10.62 651.16 574.35 | 22.81 610.87 1059.36 | 5.89 121.98 111.31 | 19.97 1161.20 1084.82
sd-for 10.62 493.04 479.76 | 24.57 555.64 1010.80 | 5.89 106.76 96.30 | 20.09 850.94 914.38
bp32 8.21 57848 466.96 | 16.82 648.76 1167.73 | 5.04 99.02 87.92 | 7.73 965.87 949.49
ibp32 8.21 549.55 417.41 | 16.82 1026.63 1056.61 | 5.04 94.94 7021 | 7.73 962.38 832.09
s4-bp128-d1 8.53 377.33 2066.39 | 17.61 1014.85 1003.26 | 5.21 63.17 46.83 | 819 74235 626.13
s4-bp128-d2 8.96 380.08 268.91 | 17.92 1021.15 1001.59 | 5.69 = 63.78 46.89 | 8.59 = 729.28 621.70
s4-bp128-d4 9.47 | 296.48 271.61 | 18.27 1013.68 991.89 | 6.19 49.21 4753 | 9.07 603.60 611.14
s4-bp128-dm 9.31 | 317.88 268.58 | 18.13 1007.00 990.99 | 6.08 53.83 47.59 | 893 638.76 614.65
fastpfor 773 1982.28 601.25 | 16.45 14242.62 14196.72 | 4.57 361.71 102.93 | 7.29 4834.00 3107.70

s4-fastpfor-d1 7.73 1804.38 436.29 | 16.45 14873.80 14984.82 | 4.57 326.46 75.71 7.29 4720.20 2966.72
s4-fastpfor-d2 8.39 1665.01 405.57 | 17.02 14656.57 14425.05 | 5.19 304.09 = 68.01 | 7.89 4343.72 2833.55
s4-fastpfor-d4 9.09 1541.85 364.40 | 17.58 15516.32 14950.96 | 5.92 282.17 | 60.23 | 8.54 4301.09 2769.21
sd-fastpfor-dm | 8.78 1550.61 386.66 | 17.27 14388.22 14315.94 | 5.67 251.73 = 62.76 | 8.27 4213.22 2807.73

varint 9.87 1254.32 1173.10 | 14.63 823.80 1100.20 | 8.55 104.60 100.90 | 9.53 1462.58 1389.29
varintg8iu 10.32 2787.40 312.19 | 19.82 1295.29 963.36 | 9.39 407.89 | 48.66 | 10.33 3668.48 = 595.43
varintgb 11.04 825.52 461.15 | 17.96 945.76 948.13 | 10.31 = 66.47 52.99 | 11.09 1022.04 707.29
vbyte 9.87 1238.12 1115.18 | 14.63 805.71 1088.90 | 8.55 102.49 103.69 | 9.53 1461.65 1386.09

maskedvbyte 9.87 1202.23 431.31 | 16.96 808.23 1001.43 | 8.55 104.55 @ 58.53 | 9.57 1423.07 759.70
streamvbyte 11.05 1295.09 = 264.36 | 20.29 998.66 951.70 | 10.31 157.98 = 48.44 | 11.13 1628.66 = 591.46

gn-copy 32.00 - 4.22 | 32.00 - 28.91 | 32.00 - 8.34 | 32.00 - 19.54
gn-var-d1 9.90 - 2.85 | 12.00 - 17.01 | 8.58 - 5.97 | 9.55 - 9.79
gn-bp32 21.43 - 11.84 | 58.05 - 58.38 | 22.20 - 1641 | 21.82 - 51.58
gn-bp32-d1 8.66 - 13.79 | 46.66 - 72.22 | 5.61 - 1897 | 8.74 - 64.74
gn-bp32-var-dl | 8.69 - 18.42 | 14.13 - 86.61 | 5.64 - 2230 | 840 - 82.52

Table 5.4: Codec comparison of compression ratio (bits per integer), encoding and de-
coding times (s). The measurements are conducted on per-inverted-list basis, not on any
linearization of the datasets, therefore the time is impacted by the total number of inverted
lists and the average size and compression ratio of individual lists. SIMDCompressionAnd-
Intersection library is used for reference CPU/SIMD codecs. Codecs starting with gn- are
our GPU implementations. Highlighted cells indicate competitive results.

5.5.5 Efficiency of Inverted List Encoding

To further gain insight into which part of the query process takes the majority of the time,
we include a form of white-box benchmarking in GENIE, with insight into different phases
and components of the matching process.

In our experiments, we run 20 queries, which are randomly selected and removed from
the dataset, and k£ = 20. All measurements are averaged over 10 runs.

Each dataset is preprocessed to exactly one inverted table. This means that even if the
query would have to read a small fraction of the index arrays, the whole indexed arrays are
loaded to GPU. This is a common practice, since it allows continuous execution of queries
once the dataset is loaded. Furthermore, selectively loading only parts of the dataset would
require advanced logic on the CPU that is out of the scope of GENIE.

Our implementation of the integrated decoding and matching kernels is using pinned
memory to achieve faster and more reliable transfer times of the inverted table to GPU

80

5.5. Experimental Evaluation

Adult
Time (ms) Memory (MiB)
Codec Preproc. Transfer Alloc. Matching Decode Total Table Queries Matching Total
Raw 13.09 43.24 0.87 108.83 21.77 166.03 417.35 3.98 29.15 450.48
BP32 4.23 32.50 1.01 102.64 15.58 140.39 | 289.66 3.98 29.15 322.79
D1-BP32 3.52 8.37 0.86 129.88 42.82 142.63 73.18 3.98 29.15 106.31
D1-Varint 3.80 12.70 0.90 136.55 49.49 153.96 111.99 3.98 29.15 145.13
D1-Composite 3.63 8.49 0.91 145.24 58.18 158.27 73.59 3.98 29.15 106.72
OCR
Time (ms) Memory (MiB)
Codec Preproc. Transfer Alloc. Matching Decode Total ‘ Table Queries Matching Total
Raw 3.38 330.80 1.02 17.74 3.556 353.17 | 3085.18 1.13 16.63 3102.95
BP32 2.30 223.77 1.07 15.97 1.78 243.33 | 2103.94 1.13 16.63 2121.70
D1-BP32 2.31 93.12 0.87 23.56 9.7 120.08 843.36 1.13 16.63 861.12
D1-Varint 2.01 94.18 0.80 25.95 11.76 123.16 921.51 1.13 16.63 939.27
D1-Composite 2.30 91.18 0.85 29.18 14.99 123.75 810.29 1.13 16.63 828.05
SIFT
Time (ms) Memory (MiB)
Codec Preproc. Transfer Alloc. Matching Decode Total ‘ Table Queries Matching Total
Raw 15.96 242.43 1.01 49.23 9.85 308.63 | 2197.27 2.93 24.16 2224.36
BP32 3.51 152.18 0.84 46.03 6.65 202.79 | 1472.09 2.93 22.27 1497.30
D1-BP32 3.38 61.28 0.86 66.96 27.58 132.72 594.89 2.93 22.27 620.09
D1-Varint 4.31 74.00 0.89 71.51 582.13 150.95 680.19 2.93 22.27 705.40
D1-Composite 3.75 63.34 0.85 82.29 42.91 150.48 596.95 2.93 22.27 622.15
Tweets
Time (ms) Memory (MiB)
Codec Preproc. Transfer Alloc. Matching Decode Total ‘ Table Queries Matching Total
Raw 0.66 36.82 1.03 10.45 2.09 49.16 | 351.09 0.51 32.48 384.08
BP32 0.47 65.62 0.88 9.59 1.23 76.77 636.94 0.51 32.48 669.94
D1-BP32 0.47 53.66 1.20 12.58 4.22 68.14 512.02 0.51 32.48 545.02
D1-Varint 0.48 14.10 0.85 13.57 5.22 29.23 131.73 0.51 32.48 164.73
D1-Composite 0.46 16.86 0.82 14.61 6.26 3295 | 155.10 0.51 32.48 188.09

Table 5.5: Query time and memory usage measurements of GENIE with various integrated
(encoding and matching) kernels.

memory. We have not experimented with unified memory?!, which based on the configu-
ration of memory page size could potentially reduce the overall memory transfer to GPU.

Time Efficiency In this section we evaluate the running time of a query set in GENIE
based on the codec and matching kernel used. The time measurement for each query set
is split into phases to demonstrate the trade-off between data transfer time at the cost
of additional compute for decoding the inverted lists. This total running time consists of
several phases:

2lhttp://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
um-unified-memory-programming-hd

81

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

5. COMPRESSED INVERTED INDEX ON GPU

o Preprocessing: Consists mainly of query compilation — a CPU phase that provides
parameters for each query; namely bounds of encoded data arrays and control arrays,
and query identifiers for match counting.

o Transfer: Dataset and query load phase loads all required data from the main mem-
ory to the GPU global memory.

o Allocation: Allocation and initialization of all the matching components, i.e. zipper
/ threshold array, bitmap counter, and hash table for counting.

o Matching: Inverted list decoding and match counting phase consists of the main.

The timing results are listed in Table 5.5 and visualized in Figure 5.9. We can see that
depending on the dataset, the majority of the time is spent on either data transfer to the
GPU or the integrated decoding and matching kernel.

We use an optimized version of the decoding and matching kernel. This version does not
allow for measuring the time phases of decoding and matching, because sending an event
for measurement would require thread block synchronization, however in the optimized
version of the kernel, match counting starts as soon as partial data is available for some
threads. The table lists a decoding time among other measured times. This listed decoding
time estimate is just an approximation to determine how much of the matching time is
spend on decoding, as opposed to match counting.

Overall, the decoding process adds around 25% increase to the computing time, but the
data size is in general 3 to 4 times smaller, resulting in significantly faster overall execution
on most datasets. In case of the Adult dataset, we see that the matching time dominates
the overall time even when no inverted list encoding is used. This fact remains the same
when encoding is used. We can also observe that the Composite codec has the highest
overhead compared to the other simpler codecs.

Adult OCR SIFT 80- Tweets
| 350~ 300- [
160 - . : —H 70
. 300 - . .
140 - | .
250 60 -
120- 250 -]
@ —— 200 - . 50 -
£ 100- 200 -
40-
g 80 - 150 - | !
. - 1
o 150 30-
100 : ’ "] 100-
40- 20-
20 7 E:J 50 7 50 7 D D 10 7 D G
0- " i i i i 0- == =+ T T T 0- " i T i i 0- = e T T
Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta
BP32 VarintComp BP32 VarintComp BP32 VarintComp BP32 VarintComp
[Preprocessing [Transfer [Allocation Matching

Figure 5.9: Query time analysis of GENIE with various integrated (encoding and matching)
kernels.

82

5.6. Conclusion

Memory Usage In this section we examine the memory requirements of GENIE based
on the codec and matching kernel used. Only memory actually allocated on the GPU is
of concern for us, since GPU memory is the limiting factor. We divide the memory usage
into several categories;
o Table size: is the size of the index — inverted table on the GPU; the table size depends
on the dataset size, codec used and load balancing configuration.
o Compiled queries size: query set compiled for the execution on GPU; depends on the
number and type of queries.
o Matching size: this is a total size of all the required matching components, i.e. zipper
/ threshold array, bitmap counter, and hash table for counting.
The memory results are listed in Table 5.5 and visualized in Figure 5.10. We see that
the total memory usage is dominated by the inverted tables in all the cases.

Adult OCR SIFT 700 - Tweets
3000 - =]
400 - 2000 - 600 -
2500 -]
500 -
a 300 - g 2000 - ! 1500 - =
- 400 -
g —
1500 -
& 200- 1000 - 300 -
wn
1000 - 200 -
100 - 500 -
ﬁ ﬁ 500 - 100 -
0- i i i i i 0- i i i i i 0- i i i i i 0- i i i i i
Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta Raw BP32 Delta Delta Delta
BP32 VarintComp BP32 VarintComp BP32 VarintComp BP32 VarintComp

[Table Size [Compiled Queries Size [Matching Size

Figure 5.10: Memory usage analysis of GENIE with various integrated (encoding and
matching) kernels.

Both timing and memory results indicate the efficiency of using the Composite codec for
processing the inverted index. The codec causes a small overhead during data processing
(up to 25% increase in compute time), but provides significantly reduced data transfer to
GPU (up to 3-4 times faster transfer). Additionally, this further decreases the need of
multi-loading large datasets in order to evaluate queries.

5.6 Conclusion
In this work we extended GENIE’s inverted index representation and matching model

with compressed inverted index. The codecs rely on data parallel implementation of delta
decoding, variable byte integer decoding, bitpacking decoding, and a composite decoding,

83

5. COMPRESSED INVERTED INDEX ON GPU

which is a dynamic combination of different codecs. The module adapts to the inverted
lists to achieve good compression ratio without sacrificing GENIE’s compute efficiency.

We have demonstrated that using encoded inverted index accelerates the matching
process 3-4 times for majority of the real world datasets. It does so predominantly by
reducing the transfer times, without significantly increasing the compute load. This further
allows to execute more query sets on different datasets, since the bottleneck in inverted
index matching is IO bound.

The work has been fully integrated into GENIE, with extensive configuration options
for further research purposes. A distributed deployment option is available, which includes
all the encoding support and additional tools for processing workloads in the distributed
environment.

5.6.1 Future Work

This section lists candidates for interesting research topics related the the latest develop-
ment of GENIE. Some of the listed topics have already been partially explored or investi-
gated.

Merging Short and Similar Inverted Lists for Encoding Non-greedy merging of
short lists can be used to efficiently encode a set of inverted lists in order to reduce memory
footprint even further. A possible utilization of dynamic programming approach during the
index construction could be done on the GPU to achieve splitting / merging of inverted lists
by other measures than cardinality. While encoding short lists together, it is possible to
save a set of bitmaps (or a recursive bitmap) to determine which list they come from, then
masking the results during counting process. The use of bitvectors for logical operations
and as parameter to intrinsic functions is very efficient on GPUs.

Similarly to encoding multiple shorts lists together, an idea has been explored to use
wavelet trees for match counting directly on the compressed format, and therefore allowing
for early pruning of the search space.

Clustering of Dataset Clustering of datasets before converting them to inverted index
could improve the processing, such that we don’t have to always load and match all of
the inverted arrays. The query evaluation can instead focus on identifying parts of the
inverted index that has the nearest neighbors with high probability. Additionally, clus-
tering of the inverted tables can further help to load balance the workload in distributed
deployment. This problem is partially related to reordering docIDs for inverted indexing,
where clustering is one of the methods used (see Section 5.2.1).

The clustering should approach the optimal query and dataset partitioning for the
purpose of maximizing the data transfer by efficiently scheduling queries, such that both
PCI bus and GPU compute is saturated. This would require additional dataset and query
partitioning logic as well as result merging logic.

84

5.6. Conclusion

Distributed and Multi-GPU GENIE In the current state of distributed GENIE,
sharding has to be done as a data preprocessing step. Dynamic sharding of large datasets
can be used in distributed GENIE. Static sharding exists in [98], but is very simple. Fur-
thermore, we can use clustering as a basis for sharding well.

Additional work is needed on the distributed version of GENIE, in order to be able to
bring it up to large scale tests, such as those on new Nvidia DGX for example.

Other It may be possible to speed up match counting using bloom filters. This re-
duces the accuracy and recall of the system in general, but that can be compensated with
increasing the amount of LSH functions.

In the current state, each query is evaluated independently. Query compiler could be
improved to be query-set aware, so it can reuse results from multiple queries - each block
would then have to know how many queries it is doing count for.

Experiments with CUDA unified memory can be done to see if gradual transfer of
memory pages from CPU to GPU would improve the overall performance.

A notable progress with GENIE as a database system could be made by generating
the inverted index on GPU as well, including encoding. This would require improvements
to the scheduler in order to accommodate GPU resources for both data preprocessing and

querying.

5.6.2 Acknowledgement

This research work, including GENIE, had been partially carried out at the SeSaMe Centre,
under Interactive Digital Media Institute (IDMI), National University of Singapore (NUS),
Singapore. It was supported by the Singapore NRF under its Indirect Research Cost (IRC)
Funding Initiative and administered by the Interactive Digital Media R&D Programme
Office (IDMPO).

85

CHAPTER 6

Conclusion

In this thesis, we described our progress in several subproblems that were encountered
during our research towards efficient indexing structures for similarity searching in multi-
dimensional arrays and more generic multidimensional data similarity search on the GPU.

First, we proposed, designed and implemented a multidimensional array inverted in-
dex based on grid transformation. The index allows for efficient execution of various
spatiotemporal selection queries. Subsequently, we demonstrated the efficiency of our mul-
tidimensional array index on large-scale satellite data (QuickSCAT). Given a trajectory
query into a satellite sensor dataset, we perform accurate data retrieval of relevant regions.
The work was implemented (including visualizations) and integrated as an extension of an
open-source distributed multidimensional array database SciDB.

Next, we proposed and implemented a hierarchical multidimensional array indexing
scheme ArrayBit that overcomes the high dimensionality-induced inefficiencies of standard
spatial indexing techniques, especially on dense multidimensional arrays. ArrayBit is based
on a novel n-dimensional sparse trees for dimension partitioning, with bound number of
individual adaptively binned indices for attribute partitioning. This indexing performs
well on range queries involving both dimensions and attributes, as it prunes the search
space early, avoids reading entire index data, and does at most a single index traversal.
Moreover, the indexing is easily extensible from range queries to more general membership
queries.

Lastly, we extend a generic high dimensional data similarity search framework GENIE
(Generic inverted index on GPU) by incorporating compressed inverted index, query com-
piler, and data parallel decoding of inverted lists on GPU. Multiple decoding schemes were
implemented, and evaluated for fully data parallel decoding and query evaluation. We use
heuristics for encoding selection based on the properties of the datasets being indexed,
and properties of the inverted index. This data parallel decoding and query evaluation
have sped up total query processing time in GENIE 3-4 times on real world datasets. All
the components were integrated into the publicly available framework GENIE in a robust
and modular architecture, with configurable query compiler and index management com-

87

6. CONCLUSION

ponents. The extensions of GENIE were designed for multi-GPU multi-node distributed
deployment with initial implementation of the distributed functionality publicly available.

6.1 Future Work

Future work related to multidimensional array indexing using ArrayBit should be focused
on adapting the tree structure based on dimensions, such as adaptive mesh refinement
widely used in physical simulations [24].

Another related goal is to add support for further parameters in selection queries. Apart
from dimension and attribute constraints, we would like to incorporate aggregate constraint
and multidimensional template pattern searching capability to our array indexing scheme.

Majority of the future work opportunities arise from our work on generic inverted index
on the GPU using GENIE.

Merging of independent inverted lists can be used to efficiently encode a set of short in-
verted lists in order to reduce memory footprint even further and increase GPU utilization.
While encoding short lists together, it is possible to save a set of bitmaps (or a recursive
bitmap) to determine which list they come from, then masking the results during counting
process. The use of binary vectors for logical operations and as parameter to intrinsic
functions is very efficient on GPUs.

As part of the GENIE project, preliminary work has been done on clustering of datasets
before converting them to inverted index. This would allow us to avoid loading and match-
ing all of the inverted inverted index, but instead focus on parts of the inverted index that
contain the nearest neighbors with high probability. Clustering of the inverted tables can
further help to load balance the workload in distributed deployment.

Large opportunity in GENIE is the potential for multi-GPU multi-node distributed
extension of the framework. Significant amount of work has already been done towards
this goal, and the current architecture fully supports distributed deployment. Additional
work needs to be done to make this extension fully functional, such as dynamic sharding
of large datasets and a workload balancing query compiler and scheduler. With these
components, GENIE should be able to deploy and run tests on HPC machines, such as the
new Nvidia DGX.

For additional elaboration on future work on GENIE, please see Section 5.6.1.

88

[10]

References

T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach. Fast k-selection algorithms
for graphics processing units. J. Ezp. Algorithmics, 17(1):4.1, July 2012.

A. Amir, O. Kapah, and D. Tsur. Faster two-dimensional pattern matching with
rotations. Theoretical Computer Science, 368(3):196-204, 2006.

A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical and
optimal LSH for angular distance. Sept. 2015.

V. N. Anh and A. Moffat. Inverted index compression using Word-Aligned binary
codes. Inf. Retr. Boston., 8(1):151-166, Jan. 2005.

V. N. Anh and A. Moffat. Improved word-aligned binary compression for text in-
dexing. IEEFE Trans. Knowl. Data Eng., 18(6):857-861, June 2006.

V. N. Anh and A. Moffat. Index compression using 64-bit words. Softw. Pract. Ezp.,
2010.

G. Antoshenkov. Byte-aligned bitmap compression. In Data Compression Confer-
ence, 1995. DCC"95. Proceedings, page 476. IEEE, 1995.

N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu, and S. Lin. Efficient
parallel lists intersection and index compression algorithms using graphics processing
units. Proceedings VLDB Endowment, 4(8):470-481, May 2011.

A. Appleby. Murmurhash3. https://github.com/aappleby/smhasher/wiki/
MurmurHash3, 2016.

A. S. Arefin, C. Riveros, R. Berretta, and P. Moscato. GPU-FS-kNN: a software tool
for fast and scalable kNN computation using GPUs. PLoS One, 7(8):e44000, Aug.
2012.

89

https://github.com/aappleby/smhasher/ wiki/MurmurHash3
https://github.com/aappleby/smhasher/ wiki/MurmurHash3

REFERENCES

[11]

[12]

90

D. Arroyuelo, S. Gonzalez, M. Oyarzun, and V. Sepulveda. Document identifier
reassignment and run-length-compressed inverted indexes for improved search per-
formance, 2013.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891-923, 1998.

M. Aumiiller, E. Bernhardsson, and A. Faithfull. ANN-Benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst., 87:101374, Jan. 2020.

A. Babenko and V. Lempitsky. The inverted Multi-Index. IEFEE Trans. Pattern
Anal. Mach. Intell., 37(6):1247-1260, June 2015.

R. Baeza-Yates and G. Navarro. New models and algorithms for multidimensional
approximate pattern matching. J. Discret. Algorithms, 1(1):21-49, 2000.

D. H. Ballard. Strip trees: a hierarchical representation for curves. Communications

of the ACM, 24(5):310-321, 1981.

R. J. Barrientos, F. Millaguir, J. L. Sdnchez, and E. Arias. GPU-based exhaustive
algorithms processing kNN queries. J. Supercomput., 73(10):4611-4634, Oct. 2017.

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimen-
sional database system rasdaman. In Aem Sigmod Record, volume 27, pages 575-577.
ACM, 1998.

P. Baumann, P. Furtado, R. Ritsch, and N. Widmann. Geo/environmental and
medical data management in the RasDaMan system. VLDB, 1997.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient
and robust access method for points and rectangles, volume 19. ACM, 1990.

S. B. Bell, B. Diaz, F. Holroyd, and M. Jackson. Spatially referenced methods of
processing raster and vector data. Image and vision computing, 1(4):211-220, 1983.

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, 1975.

J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range search-
ing. Acta Informatica, 13(2):155-168, 1980.

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynam-
ics. Journal of computational Physics, 82(1):64-84, 1989.

A. Biatecki, R. Muir, G. Ingersoll, and L. Imagination. Apache lucene 4. In SIGIR
2012 workshop on open source information retrieval, page 17, 2012.

References

[26]

[33]

[34]

[35]

[36]

[37]

[38]

R. Blanco and A. Barreiro. Document identifier reassignment through dimensionality

reduction. In Advances in Information Retrieval, pages 375-387. Springer Berlin
Heidelberg, 2005.

D. Blandford and G. Blelloch. Index compression through document reordering. In
Proceedings DCC 2002. Data Compression Conference, pages 342-351, Apr. 2002.

P. Bogdanovich and H. Samet. The atree: a data structure to support very large
scientific databases. In Integrated Spatial Databases, pages 235-248. Springer, 1999.

A. 7Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21-29. IEEE, 1997.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages
21-29, 1997.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query eval-
uation using a two-level retrieval process. In Proceedings of the twelfth international

conference on Information and knowledge management, CIKM 03, pages 426-434,
New York, NY, USA, Nov. 2003. Association for Computing Machinery.

J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and
S. Brandt. Scihadoop: array-based query processing in hadoop. In Proceedings of
2011 ICHPC, page 66. ACM, 2011.

D. Cai, X. Gu, and C. Wang. A revisit on deep hashings for large-scale content based
image retrieval. Nov. 2017.

K. Chakrabarti and S. Mehrotra. The hybrid tree: an index structure for high
dimensional feature spaces. In Proceedings 15th International Conference on Data
Engineering (Cat. No.99CB36337), pages 440-447, Mar. 1999.

S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with
roaring bitmaps, 2016.

C. Chan and Y. Ioannidis. An efficient bitmap encoding scheme for selection queries.
ACM SIGMOD Record, 1999.

C.-Y. Chan and Y. E. loannidis. Bitmap index design and evaluation. In ACM
SIGMOD Record, volume 27, pages 355-366. ACM, 1998.

M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380-388. ACM, 2002.

91

REFERENCES

[39]

[43]

[44]

[45]

[46]

92

M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, STOC
'02, pages 380-388, New York, NY, USA, May 2002. Association for Computing
Machinery.

Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma, M. Hakmaoui, and
G. Peng. A survey of bitmap index compression algorithms for big data. Tsinghua
science and technology, 20(1):100-115, 2015.

C.-S. Cheng, J. J.-J. Shann, and C.-P. Chung. Unique-order interpolative coding
for fast querying and space-efficient indexing in information retrieval systems. Inf.
Process. Manag., 42(2):407-428, Mar. 2006.

J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E. Bethel, A. Shoshani, O. Riibel,
R. D. Ryne, et al. Parallel index and query for large scale data analysis. In Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, page 30. ACM, 2011.

P. Christen and R. Gayler. Towards scalable real-time entity resolution using a
similarity-aware inverted index approach. In Proceedings of the 7th Australasian
Data Mining Conference-Volume 87, pages 51-60, 2008.

D. Cutting and J. Pedersen. Optimization for dynamic inverted index maintenance.
In Proceedings of the 13th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR "90, pages 405—411, New York, NY,
USA, Dec. 1989. Association for Computing Machinery.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual sym-
posium on Computational geometry, SCG '04, pages 253-262, New York, NY, USA,
June 2004. Association for Computing Machinery.

J. Dean. Challenges in building large-scale information retrieval systems: invited
talk. In Proceedings of the Second ACM International Conference on Web Search
and Data Mining, WSDM ’09, page 1, New York, NY, USA, Feb. 2009. Association
for Computing Machinery.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, Jan. 2008.

S. Ding, J. He, H. Yan, and T. Suel. Using graphics processors for high performance
IR query processing. In Proceedings of the 18th international conference on World
wide web, WWW 09, pages 421-430, New York, NY, USA, Apr. 2009. Association
for Computing Machinery.

References

[50]

[51]

[52]

[53]

[54]

[55]

W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th international conference

on World wide web, WWW 11, pages 577-586, New York, NY, USA, Mar. 2011.
Association for Computing Machinery.

B. Donnelly and M. Gowanlock. A coordinate-oblivious index for high-dimensional
distance similarity searches on the GPU. In Proceedings of the 34th ACM Interna-
tional Conference on Supercomputing, number Article 8 in ICS ’20, pages 1-12, New
York, NY, USA, June 2020. Association for Computing Machinery.

J. Duda. Asymmetric numeral systems: entropy coding combining speed of huffman
coding with compression rate of arithmetic coding. Nov. 2013.

K. Echihabi, K. Zoumpatianos, and T. Palpanas. High-Dimensional similarity search
for scalable data science. 2021.

S. Eghbali and L. Tahvildari. Fast cosine similarity search in binary space with
angular Multi-Index hashing, 2019.

A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and S. Ghani. Shahed: A
mapreduce-based system for querying and visualizing spatio-temporal satellite data.
In 2015 IEEE 31st International Conference on Data Engineering, pages 1585—-1596.
IEEE, 2015.

W. Fang, B. He, and Q. Luo. Database compression on graphics processors. Pro-
ceedings VLDB Endowment, 3(1-2):670-680, Sept. 2010.

G. Fekete. Rendering and managing spherical data with sphere quadtrees. In Pro-
ceedings of the 1st conference on Visualization’90, pages 176-186. IEEE Computer
Society Press, 1990.

R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta informatica, 4(1):1-9, 1974.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209-226, Sept. 1977.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing
Surveys (CSUR), 30(2):170-231, 1998.

R. Gaioso, V. Gil-Costa, H. Guardia, and H. Senger. Performance evaluation of
single vs. batch of queries on GPUs, 2020.

R. Gaioso, H. C. Guardia, V. Gil-Costa, and H. Senger. Parallel strategies for the
execution of top-k queries with MaxScore on GPUs. In 2019 31st International

Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pages 104-111. ieeexplore.ieee.org, Oct. 2019.

93

REFERENCES

[63]

[64]

[65]

[66]

[69]

[72]

94

J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on
dynamic collision counting. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD 12, pages 541-552, New York, NY,
USA, May 2012. Association for Computing Machinery.

V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. K-nearest neighbor search: Fast
GPU-based implementations and application to high-dimensional feature matching.
In 2010 IEEE International Conference on Image Processing, pages 3757-3760, Sept.
2010.

T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate
nearest neighbor search, 2013.

F. Gieseke, J. Heinermann, C. Oancea, and C. Igel. Buffer k-d trees: Processing
massive nearest neighbor queries on GPUs. In E. P. Xing and T. Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research, pages 172-180, Bejing, China, 2014.
PMLR.

C. Gormley and Z. Tong. Elasticsearch: the definitive guide: a distributed real-time
search and analytics engine. 7 O’Reilly Media, Inc.”, 2015.

L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel. Hdf5-fastquery: Ac-
celerating complex queries on hdf datasets using fast bitmap indices. In Scientific
and Statistical Database Management, 2006. 18th International Conference on, pages
149-158. IEEE, 2006.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: high perfor-
mance graphics co-processor sorting for large database management. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, SIG-
MOD ’06, pages 325-336, New York, NY, USA, June 2006. Association for Comput-
ing Machinery.

N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computation
of database operations using graphics processors. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH 05, pages 206—es, New York, NY, USA, July 2005. Association for
Computing Machinery.

M. Gowanlock and B. Karsin. GPU-Accelerated similarity Self-Join for Multi-
Dimensional data. In Proceedings of the 15th International Workshop on Data Man-
agement on New Hardware, number Article 6 in DaMoN’19, pages 1-9, New York,
NY, USA, July 2019. Association for Computing Machinery.

Gunther, Gunther, Milne, and Narasimhan. Assessing document relevance with run-
time reconfigurable machines, 1996.

References

[84]

O. Giinther and E. Wong. The arc tree: an approximation scheme to represent arbi-
trary curved shapes. Computer Vision, Graphics, and Image Processing, 51(3):313—
337, 1990.

P. D. Gutiérrez, M. Lastra, J. Bacardit, J. M. Benitez, and F. Herrera. GPU-SME-
kNN: Scalable and memory efficient kNN and lazy learning using GPUs. Inf. Sci.,
373:165-182, Dec. 2016.

H. Giiting and H.-P. Kriegel. Multidimensional b-tree: An efficient dynamic file
structure for exact match queries. In GI-10. Jahrestagung, pages 375-388. Springer,
1980.

R. H. Giiting and M. Schneider. Moving objects databases. Elsevier, 2005.

A. Guttman. R-trees: a dynamic index structure for spatial searching, volume 14.

ACM, 1984.

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational query coprocessing on graphics processors. ACM Trans. Database Syst.,
34(4):1-39, Dec. 2009.

B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Relational
joins on graphics processors. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD 08, pages 511-524, New York, NY,
USA, June 2008. Association for Computing Machinery.

B. He and J. X. Yu. High-Throughput transaction executions on graphics processors.
Mar. 2011.

J. Heo, J. Won, Y. Lee, S. Bharuka, J. Jang, T. J. Ham, and J. W. Lee. IIU:
Specialized architecture for inverted index search. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 20, pages 1233-1245, New York, NY, USA, Mar.
2020. Association for Computing Machinery.

D. Hilbert. Ueber die stetige abbildung einer line auf ein flachenstiick. Mathematische
Annalen, 38(3):459-460, 1891.

S.-S. Ho and A. Talukder. Automated cyclone discovery and tracking using knowledge
sharing in multiple heterogeneous satellite data. In Proceedings of the 1/th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
928-936. ACM, 2008.

S.-S. Ho, W. Tang, W. T. Liu, and M. Schneider. A framework for moving sensor
data query and retrieval of dynamic atmospheric events. In Scientific and Statistical
Database Management, pages 96—-113. Springer, 2010.

95

REFERENCES

[85]

[36]

[87]

[88]

[89]

[90]

[97]

96

R. N. Hoffman and S. M. Leidner. An introduction to the near-real-time quikscat
data. Weather and Forecasting, 20(4):476-493, 2005.

Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-sensitive
hashing for approximate nearest neighbor search. Proceedings VLDB Endowment,
9(1):1-12, Sept. 2015.

P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, and P. Zegers. Computa-
tional intelligence challenges and applications on large-scale astronomical time series
databases. IEEE Computational Intelligence Magazine, 9(3):27-39, 2014.

G. M. Hunter and K. Steiglitz. Operations on images using quad trees. I[EEFE
Transactions on Pattern Analysis and Machine Intelligence, (2):145-153, 1979.

V. Hyvonen, T. Pitkanen, S. Tasoulis, E. Jaasaari, R. Tuomainen, L.. Wang, J. Coran-
der, and T. Roos. Fast nearest neighbor search through sparse random projections
and voting, 2016.

S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten, et al. Monetdb:
Two decades of research in column-oriented database architectures. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 35(1):40-45,
2012.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604-613. ACM, 1998.

M. Iwasaki. Pruned bi-directed k-nearest neighbor graph for proximity search. In
Similarity Search and Applications, pages 20-33. Springer International Publishing,
2016.

M. Iwasaki and D. Miyazaki. Optimization of indexing based on k-nearest neighbor
graph for proximity search in high-dimensional data. Oct. 2018.

H. V. Jagadish. Spatial search with polyhedra. In Data Engineering, 1990. Proceed-
ings. Sixth International Conference on, pages 311-319. IEEE, 1990.

H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel.
Optimal histograms with quality guarantees. In VLDB, volume 98, pages 24-27, 1998.

N. Jahan Lisa, T. D. A. Nguyen, D. Habich, A. Kumar, and W. Lehner. High-
Throughput BitPacking compression. In 2019 22nd Euromicro Conference on Digital
System Design (DSD), pages 643-646, Aug. 2019.

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117-128, Jan. 2011.

References

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108]

[109]

[110]

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs.
IEEFE Transactions on Big Data, pages 1-1, 2019.

D. V. Kalashnikov. Super-EGO: fast multi-dimensional similarity join. VLDB J.,
22(4):561-585, Aug. 2013.

A. Kalinin, U. Cetintemel, and S. Zdonik. Searchlight: enabling integrated search
and exploration over large multidimensional data. Proc. of the VLDB Endowment,
8(10):1094-1105, 2015.

N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional
nearest neighbor queries. In ACM SIGMOD Record, volume 26, pages 369-380. ACM,
1997.

K. Kato and T. Hosino. Multi-GPU algorithm for k-nearest neighbor problem. Con-
curr. Comput., 24(1):45-53, Jan. 2012.

S. Kim, J. Lee, S. R. Satti, and B. Moon. Sbh: Super byte-aligned hybrid bitmap
compression. Information Systems, 2016.

S. Kim, S. G. Sohn, T. Kim, J. Yu, B. Kim, and B. Moon. Selective scan for filter
operator of scidb. In Proceedings of the 28th International Conference on Scientific
and Statistical Database Management, SSDBM 16, pages 28:1-28:4, New York, NY,
USA, 2016. ACM.

I. Komarov, A. Dashti, and R. M. D’Souza. Fast k-NNG construction with GPU-
based quick multi-select. PLoS One, 9(5):€92409, May 2014.

Q. Kuang and L. Zhao. A practical GPU based kNN algorithm. In Proceedings. The
2009 International Symposium on Computer Science and Computational Technology

(ISCSCI 2009), page 151, 20009.

D.-T. Lee. Medial axis transformation of a planar shape. IEEFE Transactions on
pattern analysis and machine intelligence, (4):363-369, 1982.

Y. Lei, Q. Huang, M. Kankanhalli, and A. Tung. Sublinear time nearest neighbor
search over generalized weighted space. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 3773-3781. PMLR, 2019.

Y. Lei, Q. Huang, M. Kankanhalli, and A. K. H. Tung. Locality-Sensitive hashing
scheme based on longest circular Co-Substring. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, pages
2589-2599, New York, NY, USA, June 2020. Association for Computing Machinery.

D. Lemire and L. Boytsov. Decoding billions of integers per second through vector-
ization. Softw. Pract. Exp., 45(1):1-29, Jan. 2015.

97

REFERENCES

111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

122]

[123]

98

D. Lemire, L. Boytsov, and N. Kurz. SIMD compression and the intersection of
sorted integers. Softw. Pract. Exp., 46(6):723-749, June 2016.

D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques, and G. Ssi-
Yan-Kai. Roaring bitmaps: Implementation of an optimized software library. Softw.
Pract. Exp., 48(4):867-895, Apr. 2018.

D. Lemire, N. Kurz, and C. Rupp. Stream VByte: Faster byte-oriented integer
compression. Inf. Process. Lett., 130:1-6, Feb. 2018.

B. Lessley and H. Childs. Data-Parallel hashing techniques for GPU architectures.
IEEE Trans. Parallel Distrib. Syst., 31(1):237-250, Jan. 2020.

C. Li, M. Zhang, D. G. Andersen, and Y. He. Improving approximate nearest neigh-
bor search through learned adaptive early termination, 2020.

S. Li and N. Amenta. Brute-Force k-nearest neighbors search on the GPU. In
Similarity Search and Applications, pages 259-270. Springer International Publishing,
2015.

W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin. Approximate
nearest neighbor search on high dimensional data — experiments, analyses, and
improvement. IEEE Trans. Knowl. Data Eng., 32(8):1475-1488, Aug. 2020.

Y. Li and J. M. Patel. BitWeaving: fast scans for main memory data processing. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’13, pages 289-300, New York, NY, USA, June 2013. Association
for Computing Machinery.

Z. Li, F. Hu, J. L. Schnase, D. Q. Dufty, T. Lee, M. K. Bowen, and C. Yang. A
spatiotemporal indexing approach for efficient processing of big array-based climate

data with mapreduce. International Journal of Geographical Information Science,
pages 1-19, 2016.

S. Liang, C. Wang, Y. Liu, and L. Jian. CUKNN: A parallel implementation of
k-nearest neighbor on CUDA-enabled GPU. In 2009 IEEE Youth Conference on
Information, Computing and Telecommunication, pages 415-418, Sept. 2009.

M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A fast similarity join algo-
rithm using graphics processing units. In 2008 IEEE 24th International Conference
on Data Engineering, pages 1111-1120, Apr. 2008.

X. Liu and G. F. Schrack. A new ordering strategy applied to spatial data processing.
International Journal of Geographical Information Science, 12(1):3-22, 1998.

Y. Liu, J. Wang, and S. Swanson. Griffin: uniting CPU and GPU in information
retrieval systems for intra-query parallelism. SIGPLAN Not., 53(1):327-337, Feb.
2018.

References

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

134]

[135]

T. L. Lopes Siqueira, R. R. Ciferri, V. C. Times, and C. D. de Aguiar Ciferri. A
spatial bitmap-based index for geographical data warehouses. In Proceedings of the
2009 ACM symposium on Applied Computing, pages 1336-1342. ACM, 20009.

W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k nearest neighbor
joins using MapReduce. June 2012.

N. Luka¢ and B. Zalik. Fast approximate k-nearest neighbours search using GPGPU.
In Y. Cai and S. See, editors, GPU Computing and Applications, pages 221-234.
Springer Singapore, Singapore, 2015.

L. Luo, M. D. F. Wong, and L. Leong. Parallel implementation of r-trees on the GPU.
In 17th Asia and South Pacific Design Automation Conference, pages 353-358, Jan.
2012.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: effi-
cient indexing for high-dimensional similarity search. In Proceedings of the 33rd
international conference on Very large data bases, VLDB 07, pages 950-961. VLDB
Endowment, Sept. 2007.

Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest
neighbor algorithm based on navigable small world graphs. Inf. Syst., 45:61-68,
Sept. 2014.

Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs, 2020.

A. Mallia, M. Siedlaczek, T. Suel, and M. Zahran. GPU-Accelerated decoding of
integer lists. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, CIKM 19, pages 21932196, New York, NY, USA, Nov.
2019. Association for Computing Machinery.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

J. Masek, R. Burget, J. Karasek, V. Uher, and M. K. Dutta. Multi-GPU implemen-
tation of k-nearest neighbor algorithm. In 2015 38th International Conference on
Telecommunications and Signal Processing (TSP), pages 764-767, July 2015.

T. Matsumoto and M. L. Yiu. Accelerating exact similarity search on CPU-GPU
systems. In 2015 IEEFE International Conference on Data Mining, pages 320-329,
Nov. 2015.

T. Matsuyama, M. Nagao, et al. A file organization for geographic information sys-
tems based on spatial proximity. Computer Vision, Graphics, and Image Processing,
26(3):303-318, 1984.

99

REFERENCES

[136]

[137]

138

[139)]

[140]

[141]

142]

[143]

[144]

[145]

[146]

[147]

[148]

100

A. Moffat and M. Petri. ANS-Based index compression. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pages 677—686.
Association for Computing Machinery, New York, NY, USA, Nov. 2017.

A. Moffat and M. Petri. Index compression using Byte-Aligned ANS coding and Two-
Dimensional contexts. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM ’18, pages 405-413, New York, NY, USA,
Feb. 2018. Association for Computing Machinery.

A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression.
Inf. Retr. Boston., 3(1):25-47, July 2000.

M. Mohsen, N. May, C. Farber, and D. Broneske. FPGA-Accelerated compression
of integer vectors. In Proceedings of the 16th International Workshop on Data Man-
agement on New Hardware, number Article 9 in DaMoN 20, pages 1-10, New York,
NY, USA, June 2020. Association for Computing Machinery.

M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods.
IEEE Data Eng. Bull., 26(2):40-49, 2003.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In In VISAPP International Conference on Computer Vision
Theory and Applications, pages 331-340, 2009.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1), 2(331-340):2, 20009.

P. Nagarkar, K. Candan, and A. Bhat. Compressed spatial hierarchical bitmap
(cSHB) indexes for efficiently processing spatial range query workloads. Proceedings
of the VLDB Endowment, 2015.

R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data.
In ACM SIGGRAPH Computer Graphics, volume 20, pages 197-206. ACM, 1986.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable,
symmetric multikey file structure. ACM Transactions on Database Systems (TODS),
9(1):38-71, 1984.

M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with multi-
index hashing, 2012.

M. Norouzi, A. Punjani, and D. J. Fleet. Fast exact search in hamming space with
Multi-Index hashing, 2014.

Nvidia. Cuda toolkit documentation v11.4.0. https://docs.nvidia.com/cuda/
archive/11.4.0/, 2021.

https://docs.nvidia.com/cuda/archive/11.4.0/
https://docs.nvidia.com/cuda/archive/11.4.0/

References

[149]

[150]

[151]

[152]

[153]

154]

[155]
[156]

[157]
[158]

[159]

[160]
[161]

[162]

P. O’Neil and D. Quass. Improved query performance with variant indexes. In ACM
Sigmod Record, volume 26, pages 38-49. ACM, 1997.

J. A. Orenstein and T. H. Merrett. A class of data structures for associative search-
ing. In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of
database systems, pages 181-190. ACM, 1984.

G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In Proceedings of the
37th international ACM SIGIR conference on Research & development in information
retrieval, SIGIR 14, pages 273-282, New York, NY, USA, July 2014. Association for
Computing Machinery.

J. Pan, C. Lauterbach, and D. Manocha. FEfficient nearest-neighbor computation
for GPU-based motion planning. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 22432248, Oct. 2010.

J. Pan and D. Manocha. Fast GPU-based locality sensitive hashing for k-nearest
neighbor computation. In Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS "11, pages 211-220,
New York, NY, USA, Nov. 2011. Association for Computing Machinery.

B. Peng, P. Fatourou, and T. Palpanas. MESSI: In-Memory data series indexing.
In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages
337348, Apr. 2020.

B. Peng, P. Fatourou, and T. Palpanas. SING: Sequence indexing using GPUs. 2021.

L. Peng and Y. Diao. Supporting data uncertainty in array databases. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pages
545-560. ACM, 2015.

G. E. Pibiri. On slicing sorted integer sequences. July 2019.

G. E. Pibiri, M. Petri, and A. Moffat. Fast Dictionary-Based compression for in-
verted indexes. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, WSDM ’19, pages 6-14, New York, NY, USA, Jan. 2019.
Association for Computing Machinery.

G. E. Pibiri and R. Venturini. Clustered Elias-Fano indexes. ACM Trans. Inf. Syst.
Secur., 36(1):1-33, Apr. 2017.

G. E. Pibiri and R. Venturini. On optimally partitioning Variable-Byte codes, 2020.

G. E. Pibiri and R. Venturini. Techniques for inverted index compression. ACM
Comput. Surv., 53(6):1-36, Dec. 2020.

J. Plaisance, N. Kurz, and D. Lemire. Vectorized VByte decoding. Feb. 2015.

101

REFERENCES

[163]

[164]

[165]

[166]

[167]

168]
[169]

1170]

171]

172]
173]

[174]

[175]

[176]

177]

102

Z. Qiu, Y. Pan, T. Yao, and T. Mei. Deep semantic hashing with generative adver-
sarial networks. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR '17, pages 225-234, New
York, NY, USA, Aug. 2017. Association for Computing Machinery.

A. Rahimi, B. Recht, and Others. Random features for Large-Scale kernel machines.
In NIPS, volume 3, page 5, 2007.

R. P. Raunikar, W. M. Forney, and S. P. Benjamin. What is the economic value of
satellite imagery. US Geological Survey Fact Sheet, 3003, 2013.

J. T. Robinson. The kdb-tree: a search structure for large multidimensional dynamic
indexes. In Proceedings of the 1981 ACM SIGMOD international conference on
Management of data, pages 10-18. ACM, 1981.

V. Roussev. Data fingerprinting with similarity digests. In IFIP International Con-
ference on Digital Forensics, pages 207-226. Springer, 2010.

H. Sagan. Space-filling curves. Springer Science & Business Media, 2012.

R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J. Approx. Reason.,
50(7):969-978, July 2009.

H. Samet. A quadtree medial axis transform. Communications of the ACM,
26(9):680-693, 1983.

H. Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys (CSUR), 16(2):187-260, 1984.

H. Samet. Applications of spatial data structures. 1990.

H. Samet. The design and analysis of spatial data structures, volume 199. Addison-
Wesley Reading, MA, 1990.

H. Samet. Foundations of multidimensional and metric data structures. Morgan
Kaufmann, 2006.

H. Samet. Algorithms and theory of computation handbook. chapter Multidimen-
sional Data Structures for Spatial Applications, pages 6—6. Chapman & Hall/CRC,
2010.

H. Samet. Sorting in space: multidimensional, spatial, and metric data structures for
computer graphics applications. In ACM SIGGRAPH ASIA 2010 Courses, page 3.
ACM, 2010.

H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 10(4):579-586, 1988.

References

178

[179]

[180]

181]

[182]

[183]

184]

[185]

[186]

[187]

[188]

[189)]

S. Samsi, L. Brattain, V. Gadepally, and J. Kepner. D4m and large array databases
for management and analysis of large biomedical imaging data. New FEngland
Database Summit, 2016.

M. Saouk, C. Doulkeridis, A. Vlachou, and K. Norvag. Efficient processing of top-k
joins in MapReduce, 2016.

P. Scheuermann and M. Ouksel. Multidimensional b-trees for associative searching
in database systems. Information systems, 7(2):123-137, 1982.

M. Schiwietz and H.-P. Kriegel. Query processing of spatial objects: Complexity
versus redundancy. In International Symposium on Spatial Databases, pages 377—
396. Springer, 1993.

B. Schlegel, R. Gemulla, and W. Lehner. Fast integer compression using SIMD
instructions. In Proceedings of the Sixth International Workshop on Data Manage-
ment on New Hardware, DaMoN 10, pages 34—40, New York, NY, USA, June 2010.
Association for Computing Machinery.

D. Shahi. Apache Solr. Springer, 2016.

B.-W. Shen, R. Atlas, O. Reale, S.-J. Lin, J.-D. Chern, J. Chang, C. Henze, and
J.-L. Li. Hurricane forecasts with a global mesoscale-resolving model: Preliminary
results with hurricane katrina (2005). Geophysical Research Letters, 33(13), 2006.

W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P. Chung. Inverted file compression

through document identifier reassignment, 2003.

A. Shrivastava and P. Li. In Defense of Minhash over Simhash. In S. Kaski and
J. Corander, editors, Proceedings of the Seventeenth International Conference on

Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning
Research, pages 886-894, Reykjavik, Iceland, 2014. PMLR.

F. Silvestri and R. Venturini. VSEncoding: efficient coding and fast decoding of
integer lists via dynamic programming. In Proceedings of the 19th ACM international
conference on Information and knowledge management, CIKM 10, pages 12191228,
New York, NY, USA, Oct. 2010. Association for Computing Machinery.

A. Singh, K. Deep, and P. Grover. A novel approach to accelerate calibration process
of a k-nearest neighbours classifier using GPU. J. Parallel Distrib. Comput., 104:114—
129, June 2017.

R. R. Sinha, S. Mitra, and M. Winslett. Bitmap indexes for large scientific data
sets: A case study. In Proceedings 20th IEEE International Parallel € Distributed
Processing Symposium, pages 10-pp. IEEE, 2006.

103

REFERENCES

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

193]

[199]

200]

201]

202]

104

R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for scientific data.
ACM Transactions on Database Systems (TODS), 32(3):16, 2007.

T. L. L. Siqueira, C. D. de Aguiar Ciferri, V. C. Times, and R. R. Ciferri. The
sb-index and the hsb-index: efficient indices for spatial data warehouses. Geoinfor-
matica, 16(1):165-205, 2012.

N. Sismanis, N. Pitsianis, and X. Sun. Parallel search of k-nearest neighbors with
synchronous operations. In 2012 IEEE Conference on High Performance FExtreme
Computing, pages 1-6, Sept. 2012.

E. Soroush, M. Balazinska, S. Krughoff, and A. Connolly. Efficient iterative pro-
cessing in the SciDB parallel array engine. In Proceedings of the 27th International
Conference on Scientific and Statistical Database Management, page 39. ACM, 2015.

A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi. SIMD-
based decoding of posting lists. In Proceedings of the 20th ACM international con-

ference on Information and knowledge management, CIKM 11, pages 317-326, New
York, NY, USA, Oct. 2011. Association for Computing Machinery.

K. Stockinger and K. Wu. Bitmap indices for data warehouses. Data Warehouses
and OLAP: Concepts, Architectures and Solutions, page 57, 2006.

M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A database manage-
ment system for applications with complex analytics. Computing in Science and
Engineering, 15(3):54-62, 2013.

M. Stonebraker, J. Duggan, L. Battle, and O. Papaemmanouil. SciDB DBMS Re-
search at MIT. pages 1-10, 2013.

Y. Su, Y. Wang, and G. Agrawal. In-situ bitmaps generation and efficient data
analysis based on bitmaps. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, pages 61-72. ACM, 2015.

Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-approximate nearest
neighbor queries in high dimensional euclidean space with a tiny index. Proceedings
VLDB Endowment, 2014.

A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt, P. Kukol, and A. Thakar. Indexing
the sphere with the hierarchical triangular mesh. arXiv preprint cs/0701164, 2007.

M. Tamminen and R. Sulonen. The excell method for efficient geometric access to
data. In Proceedings of the 19th Design Automation Conference, pages 345-351.
IEEE Press, 1982.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate nearest neighbor and
closest pair search in high-dimensional space. ACM Trans. Database Syst., 35(3):1-
46, July 2010.

References

203]

204]

205]
[206]

207]

208]

209

[210]

211]

212]

213]

214]

G. Teodoro, E. Valle, N. Mariano, R. Torres, W. Meira, and J. H. Saltz. Approximate
similarity search for online multimedia services on distributed CPU-GPU platforms.
VLDB J., 23(3):427-448, June 2014.

Y. Theoderidis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for large
multimedia applications. In Multimedia Computing and Systems, 1996., Proceedings
of the Third IEEE International Conference on, pages 441-448. IEEE, 1996.

A. Trotman. Compression, SIMD, and postings lists, 2014.

J. A. Tyson. Large synoptic survey telescope: overview. In Astronomical Telescopes
and Instrumentation, pages 10-20. International Society for Optics and Photonics,
2002.

M. S. Uysal, C. Beecks, J. Schmiicking, and T. Seidl. Efficient similarity search in
scientific databases with feature signatures. In Proceedings of the 27th International
Conference on Scientific and Statistical Database Management - SSDBM ’15, pages
1-12, New York, New York, USA, jun 2015. ACM Press.

J. Vanderplas, E. Soroush, K. S. Krughoff, M. Balazinska, and A. Connolly. Squeezing
a big orange into little boxes: The ascotdb system for parallel processing of data on
a sphere. IEEE Data Eng. Bull., 36(4):11-20, 2013.

P. Velentzas, M. Vassilakopoulos, and A. Corral. A partitioning GPU-based al-
gorithm for processing the k Nearest-Neighbor query. In Proceedings of the 12th

International Conference on Management of Digital EcoSystems, MEDES 20, pages
2-9, New York, NY, USA, Nov. 2020. Association for Computing Machinery.

S. Vigna. Quasi-succinct indices. In Proceedings of the sixth ACM international
conference on Web search and data mining, WSDM ’13, pages 83-92, New York,
NY, USA, Feb. 2013. Association for Computing Machinery.

D. Wang, W. Yu, R. J. Stones, J. Ren, G. Wang, X. Liu, and M. Ren. Efficient GPU-
Based query processing with pruned list caching in search engines. In 2017 IEEE
23rd International Conference on Parallel and Distributed Systems (ICPADS), pages
215224, Dec. 2017.

J. Wang, C. Lin, R. He, M. Chae, Y. Papakonstantinou, and S. Swanson. MILC:
inverted list compression in memory. Proceedings VLDB Endowment, 10(8):853-864,
Apr. 2017.

Y. Wang. Data Management and Data Processing Support on Array-Based Scientific
Data. PhD thesis, The Ohio State University, 2015.

Y. Wang, Y. Su, and G. Agrawal. A novel approach for approximate aggregations
over arrays. In Proceedings of the 27th International Conference on Scientific and
Statistical Database Management, page 4. ACM, 2015.

105

REFERENCES

[215]

[216]

[217]
218

219]

[220]

221]

222

[223]

224]

[225]

[226]

106

Y. Wang, Y. Su, G. Agrawal, and T. Liu. Scisd: Novel subgroup discovery over
scientific datasets using bitmap indices. Proceedings of Ohio State CSE Technical
Report, 2015.

M. White. N-trees: large ordered indexes for multi-dimensional space. Application
Mathematics Research Sta, Statistical Research Division, US Bureau of the Census,
1981.

T. White. Hadoop: The definitive guide. 7 O’Reilly Media, Inc.”, 2012.

P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. Lensch. Efficient large-scale
approximate nearest neighbor search on the gpu. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2027-2035, 2016.

K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. Geddes,
J. Gu, H. Hagen, B. Hamann, et al. Fastbit: interactively searching massive data.
In Journal of Physics: Conference Series, volume 180, page 012053. IOP Publishing,
2009.

K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems (TODS), 31(1):1-38, 2006.

K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and multi-component
compressed bitmap indexes. ACM Transactions on Database Systems (TODS),
35(1):2, 2010.

K. Wu, K. Stockinger, and A. Shoshani. Breaking the curse of cardinality on bitmap
indexes. In International Conference on Scientific and Statistical Database Manage-
ment, pages 348-365. Springer, 2008.

K.-L. Wu and P. S. Yu. Range-based bitmap indexing for high cardinality attributes
with skew. In COMPSAC’98. Proceedings. The Twenty-Second Annual International,
pages 61-66. IEEE, 1998.

H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with
optimized document ordering. In Proceedings of the 18th international conference

on World wide web, WWW ’09, pages 401-410, New York, NY, USA, Apr. 2009.
Association for Computing Machinery.

J. Yan, N. Xu, Z. Xia, R. Luo, and F.-H. Hsu. A compression method for inverted
index and its FPGA-based decompression solution. In 2010 International Conference
on Field-Programmable Technology, pages 261-264, Dec. 2010.

J. Yan, Z.-X. Zhao, N.-Y. Xu, X. Jin, L.-T. Zhang, and F.-H. Hsu. Efficient query
processing for web search engine with FPGAs. In 2012 IEEE 20th International Sym-

posium on Field-Programmable Custom Computing Machines, pages 97-100, Apr.
2012.

References

227]

[228]

[229]

230]

[231]

[232]

[233]

[234]

[235]

[236]

1237]

P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate similarity retrieval
with m-trees. VLDB J., 7(4):275-293, Dec. 1998.

H. Zhang, L. Liu, Y. Long, and L. Shao. Unsupervised deep hashing with pseudo
labels for scalable image retrieval. IEEE Trans. Image Process., 27(4):1626-1638,
Apr. 2018.

J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in
search engines. In Proceedings of the 17th international conference on World Wide

Web, WWW 08, pages 387-396, New York, NY, USA, Apr. 2008. Association for
Computing Machinery.

K. Zhang, J. Hu, B. He, and B. Hua. DIDO: Dynamic pipelines for In-Memory Key-
Value stores on coupled CPU-GPU architectures. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages 671-682, Apr. 2017.

W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity join over array data. In Proceed-
ings of the 2016 International Conference on Management of Data, SIGMOD ’16,
pages 2007-2022, New York, NY, USA, 2016. ACM.

Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. LazyLSH: Approximate nearest
neighbor search for multiple distance functions with a single index. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD ’16, pages
2023-2037, New York, NY, USA, June 2016. Association for Computing Machinery.

J. Zhou and A. K. H. Tung. SMiLer: A Semi-Lazy time series prediction system
for sensors. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD 15, pages 1871-1886, New York, NY, USA, May
2015. Association for Computing Machinery.

J. Zhou, A. K. H. Tung, W. Wu, and W. S. Ng. R2-D2: a system to support proba-
bilistic path predictionin dynamic environments via “Semi-Lazy” learning. Proceed-
ings VLDB Endowment, 6(12):1366-1369, Aug. 2013.

G. Zhu, Y. Wang, and G. Agrawal. Scicsm: novel contrast set mining over scientific
datasets using bitmap indices. In Proceedings of the 27th International Conference
on Scientific and Statistical Database Management, page 38. ACM, 2015.

K. Zoumpatianos and T. Palpanas. Data series management: Fulfilling the need
for big sequence analytics. In 2018 IEEE 3jth International Conference on Data
Engineering (ICDE), pages 1677-1678, 2018.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU cache
compression, 2006.

107

A1)

A.2]

Publications of the Author

Reviewed Relevant Publications of the Author

Kré¢al, Lubos and Ho, Shen-Shyang A SciDB-based Framework for Efficient Satellite
Data Storage and Query based on Dynamic Atmospheric Event Trajectory. Proceed-
ings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big
Geospatial Data, BigSpatial@SIGSPATIAL 2015, pp. 7-14, Bellevue, WA, USA,
2015.

Zhou, Jingbo and Guo, Qi and Jagadish, H V and Kré¢al, Lubos and Liu, Siyuan
and Luan, Wenhao and Tung, Anthony K H and Yang, Yueji and Zheng, Yuxin A
Generic Inverted Index Framework for Similarity Search on the GPU. 2018 IEEE
34th International Conference on Data Engineering (ICDE), pp. 893-904 Paris,
France, 2018.

Remaining Relevant Publications of the Author

Ho, Shen-Shyang and Krc¢al, Lubos Supporting Research using Satellite Data: A
Framework for Spatiotemporal Queries in SciDB. AGU Fall Meeting Abstracts,
IN51B-1802 2015.

Kré¢al, Lubos and Ho, Shen-Shyang and Holub, Jan Hierarchical Bitmap Indexing for
Range and Membership Queries on Multidimensional Arrays. arXiv, cs.DB, 2021.

Zhou, Jingbo and Guo, Qi and Jagadish, H V and Krc¢al, Lubos and Liu, Siyuan
and Luan, Wenhao and Tung, Anthony K H and Yang, Yueji and Zheng, Yuxin A
Generic Inverted Index Framework for Similarity Search on the GPU — Technical
Report. arXiv, c¢s.DB, 1603.08390, 2018.

109

PUBLICATIONS OF THE AUTHOR

Remaining Publications of the Author

[A.6] Kréal, Lubos and Holub, Jan Incremental Locality and Clustering-Based Compres-
sion. Data Compression Conference, DCC 2015, pp. 203-212, Snowbird, UT, USA,
April 7-9, 2015.

[A.7] Prochazka, Petr and Cvacho, Ondfej and Krcal, Lubo$ and Holub, Jan Backward
Pattern Matching on Elastic Degenerate Strings. 14th International Joint Conference
on Biomedical Engineering Systems and Technologies (BIOSTEC 2021) — Volume 3:
BIOINFORMATICS, pp. 50-59, 2021.

110

	Abstract
	Introduction
	Contributions
	Structure of The Document

	Background and State-of-the-Art
	Mutlidimensional Array Model
	Multidimensional Selection Queries

	Multidimensional Spatial Indexing
	Point Access Methods
	Spatial Access Methods
	Tilings of the Domain Space
	Space-Filling Curves

	Spatial Indexing of Arrays
	Array Indexing of Arrays
	Tree Indexing of Arrays
	Tree Indexing of Array Blocks
	Indexing of Triangular Blocks on a Sphere

	Bitmap Indexing
	Bucket Indexing Methods
	Similarity Hashing
	Spatiotemporal Indexing and Databases
	Approximate Array Pattern Matching

	Inverted Regridding Indexing
	Indexing Spatiotemporal Data
	Regridding Index
	Cartesian Index
	Hierarchical Structure of Indices

	Use Case Scenario: Select QuikSCAT data given tropical cyclone trajectory
	Retrieving Data Regions – Pointers into the original data
	Time Complexity
	Conclusion

	Hierarchical Bitmap Index
	Related Work and Previous Results
	Problem Statement
	Description of Hierarchical Bitmap Array Index
	Partitioning of Arrays
	Structure of the Array Chunk Index
	Structure and Construction of the Hierarchical Bitmap Array Index
	Bin Boundaries Merging in Parent Nodes
	Double Range Encoding of Bitmap Indices in Internal Nodes
	Locality of the Hierarchical Index
	Appending and Modifying Data

	Querying Dimensions And Attributes
	Attribute based Matches
	Dimension based Matches
	Partial and Complete Matches
	Estimating Cardinality of Results; Membership Queries

	Experimental Evaluation
	Fastbit Integration
	Bitmap Indexing Methods
	Range Queries
	Parameterization

	Conclusion

	Compressed Inverted Index on GPU
	Introduction
	Related Work
	Integer Lists Compressions
	Integer Lists Compressions on GPUs
	Integer Lists Compressions on FPGAs

	Database Acceleration using GPUs
	Exact Similarity Search on CPUs and GPUs
	Similarity Search Using Heterogeneous Architectures

	Approximate Similarity Search
	Approximate Similarity Search on GPUs
	Locality Sensitive Hashing
	Locality Sensitive Hashing on GPU

	GPGPU and CUDA

	GENIE
	Problem Statement
	Using LSH For Approximate Nearest Neighbors
	Re-Hashing

	Examples of LSH Function Families
	Preprocessing Data Using Other Sources

	Compressed Match Counting in GENIE
	CUDA Kernel Models For Decompression
	Delta Encoding
	Varint Encoding
	Bitpacking Encoding
	Composite Codec
	Parallel Models for Decoding

	Further Reducing Time by Suppressing Multi-Load
	Efficient Inverted Lists Balancing
	Integration Into GENIE

	Experimental Evaluation
	Description of Datasets
	Environment And Settings
	Analysis of Inverted Tables
	Analysis of Individual Compression Schemes
	Efficiency of Inverted List Encoding

	Conclusion
	Future Work
	Acknowledgement

	Conclusion
	Future Work

	References
	Publications of the Author

