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Abstract and contributions

This dissertation deals with trust management in wireless ad hoc networks. These net-
works are vulnerable due to the absence of central management and fixed infrastructure.
Cooperation and communication challenges are frequently addressed by deploying a trust
management scheme.

This dissertation first generalizes the notion of trust and then describes trust manage-
ment schemes. Next, we developed a new method for managing trust in wireless ad hoc
networks.

The method is based on neural networks, and the packet delivery ratio is used to
determine the trust of nodes. We demonstrated that neural networks are capable of trust
estimation and evaluation in ad hoc networks. The second part of the dissertation describes
a method integration into ad hoc routing protocols.

In particular, the thesis has two main contributions:

1. Design of a trust management scheme for wireless ad hoc networks using neural
networks (Chapter 5).

2. Enhancing reactive as hoc routing protocols with trust (Chapter 6).

Keywords:
wireless ad hoc network, packet delivery ratio, trust, neural network, reactive routing,

route discovery.
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Abstrakt a p̌ŕınosy

Tato disertačńı práce se zabývá problematikou d̊uvěryhodnosti v bezdrátových ad hoc
śıt́ıch. Takovéto śıtě jsou zranitelné zejména kv̊uli absenci centrálńı správy identit uzl̊u a
pevné infrastruktury. Důvěra v oblasti bezdrátové komunikace se standardně řeš́ı nasazeńım
mechanismů vhodných pro stanoveńı d̊uvěryhodnosti jednotlivých uzl̊u.

Hlavńımi úkoly disertačńı práce jsou zobecněńı pojmu d̊uvěryhodnosti a popis schémat
týkaj́ıćıch se možnost́ı jej́ı správy. Na základě stanovených požadavk̊u byla navržena nová
metoda pro stanoveńı d̊uvěryhodnosti.

Tato metoda využ́ıvá matematické modely, které jsou založeny na neuronových śıt́ıch.
Stanoveńı d̊uvěryhodnosti uzl̊u vycháźı z měřeńı hodnoty poměru odeslaných a doručených
paket̊u. Bylo prokázáno, že neuronové śıtě jsou pro odhadováńı d̊uvěryhodnosti uzl̊u
v ad hoc śıt́ıch vhodné. Druhá část disertačńı práce je věnována integraci konceptu
d̊uvěryhodnosti do obecných ad hoc směrovaćıch protokol̊u.

Hlavńı př́ınosy disertačńı práce jsou následuj́ıćı:

◦ Návrh schématu správy d̊uvěryhodnosti pomoćı neuronových śıt́ı (Kapitola 5).

◦ Integrace konceptu d̊uvěryhodnosti do reaktivńıch ad hoc směrovaćıch protokol̊u
(Kapitola 6).

Keywords:
bezdrátová ad hoc śıt, poměr doručeńı packet̊u, d̊uvěryhodnost, neuronová śıt, reakt-

ivńı směrovańı, objevováńı cesty.
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Chapter 1

Introduction

Computer networks have become an ubiquitous part of our lives. Wireless ad hoc net-
works (WANETs) are used in cases where it is not feasible or efficient to build a network
infrastructure. The examples are disaster relief operations, surveillance, sensors for en-
vironmental monitoring [37]. While such networks can be deployed fast and are easily
scalable, they pose challenges for creation of network protocol and maintaining security.
Generally, wireless networks are more vulnerable than wired networks due to the shared
nature of the transmission medium. Furthermore, ad hoc communication implies, that
data is routed by nodes in the network, resulting in additional vulnerability. The network
area is often much larger than radio range of a single node, therefore, nodes use other
nodes as relays. This type of communication is called a multi-hop routing [54]. Multi-hop
transmission assumes that devices are fully cooperative and honestly provide routing and
forwarding functions [26]. Although cryptographic methods improve the network’s robust-
ness, they cannot address a variety of vulnerabilities caused by nodes behavior, such as
selfish forwarding or selective dropping of data. Methods to monitor nodes behavior and
penalize deviations from the expected cooperative protocol are requires in this case. In
such methods the behavior of nodes is typically quantified as a trust metric.

In this chapter, we introduce the topic of the thesis, explain the motivation behind it,
mention related work, and formulate the goals of the research.

The field of wireless rapid deployable networks has received a lot of attention in the past
two decades because of the exponential growth and evolution of wireless communication.
With the world becoming more mobile and dynamic each year, the applications of WANETs
are more and more common.

WANETs are a broad category that includes a variety of network types depending on
their intended use. We can have wireless networks of mobile devices, vehicles, sensors, or
IoT devices.

1



1. Introduction

We will define a wireless ad hoc network (WANET) as a set of battery-powered, wireless
nodes connected on-the-fly. Every node plays the roles of both a router and an end station
at the same time. Nodes located inside the radio range can communicate directly; otherwise
they need to use intermediate nodes for data delivery. The lack of infrastructure or central
management is an advantage from the point of view of scalability and resilience, but it poses
security risks and requires cooperation between nodes for the network to function correctly.
Therefore, mechanisms to enforce the collaboration are required. Constraints such as the
deficiency of computational power or poor energy resources prevent the use of classical key-
establishment schemes and central certification authorities. To reduce potential threats,
the concept of trust was introduced.

One of the major causes of WANET performance degradation is the dropping of data
packets. The nodes have to make a trade-off between saving the battery (behaving selfishly)
and forwarding packets of other nodes to maintain the network functionality. A part of
this trade-off may be the decision of a node to drop some of the data packets in transit.
Thus, dropped data packets may be a sign of selfish or even malicious behavior, resulting
in performance degradation of the network. One of the security criteria for a WANET is
availability. Availability is the ability of a node to deliver the entire set of network-specific
services irrespective of its security stature [15]. Let us assume that a packet is dropped.
From the viewpoint of the sender, it is generally hard to find out which node is responsible
and what was the reason (selfishness in saving the battery, interference, malicious behavior,
etc.). Even if we have information from other nodes, it is difficult to decide whether a given
node behaves as expected, i.e., whether it properly functions as a router forwarding the
packets of others and is therefore trusted or not.

Trust in this scope means a measure of confidence that a node will behave according to
expectations. The trust concept in this case provides a simple and feasible way to enhance
the security of the network. The security schemes that govern trust among communicating
entities are collectively known as trust management schemes (TMSs) [45]. TMSs are used
for different purposes, such as authentication, access control, intrusion detection, or secure
routing[16]. Moreover, trustis important in clouds, the edge computing, IoT, automotive
computing, blockchain, and AI [13].

Ad hoc routing protocols by design rely on the fact that nodes cooperate in route
discovery. For example, the AODV RFC says that the protocol is intended for use in
networks where all nodes can trust each other [20]. However, this is not always the case.
The reasons why nodes do not cooperate can vary. However, the result is the same. Due to
unexpected node behavior (i.e., the existence of untrusted nodes), the network performance
degrades or security is compromised.

Our goal is to improve the functionality of ad hoc routing protocols so that they can
work more reliably in WANETs with untrusted nodes.

Incorporating trust in reactive ad hoc routing protocols can be solved by changing the
protocol, i.e by changing the protocol messages and structures.

The problem we are going to tackle is to enable trust-aware ad hoc routing without
changing the routing protocol. In this work, we propose one possible solution to the stated
problem.
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1.1. Structure of the Dissertation Thesis

The constraints of WANETs restrain the deployment of traditional security mechanisms
of wired networks, such as authentication protocols, digital signature, and encryption.
Traditional security mechanisms still play role in achieving security goals in WANETs.
However, these mechanisms are not sufficient by themselves [78]. Routing protocols in
wired networks can be assumed to be executed by trusted entities, namely the routers [5].
WANETs by nature do not have this property. Thus, for ad hoc routing protocols finding
a route with specific trust levels is more relevant than finding the shortest route between
the two end points [45].

Various methods to assess trust in WANETs were proposed. In most of them, cer-
tain information from the network through interaction between nodes or eavesdropping
is collected. Then, the computation of some metrics takes place, and (in most cases)
recommendations from other nodes are collected [44, 66, 11]. Based on these pieces of
information, the value of trust for a particular node is calculated. The main disadvantage
of eavesdropping is the fact that it may exhaust the computational and battery resources
of the nodes. The aim of this research is to avoid such resource intensive approach to trust
management in WANETs.

For more details on related work, see Chapter 3.

1.1 Structure of the Dissertation Thesis

The thesis is organized into 7 chapters as follows:

1. Introduction: Introduces the topic of the dissertation thesis and the motivation be-
hind our work.

2. Trust Management in Ad Hoc Networks, Background : Describes the necessary the-
oretical background. Focuses on the properties of WANETs, notion of trust, outlines
neural networks (NNs), and routing protocol.

3. Previous Results and Related work : Surveys the previous results and related work.

4. Goals of the Dissertation Thesis : Includes a detailed statement of the goals to solve.

5. The 1 st Contribution: the NeNTEA Method : Explains the details of the suggested
solution. The assumptions and ideas behind the approach are specified. Covers
the environment and experiment setup. Defines metrics for measuring quality of the
approach, describes the experiments, and reports the obtained results. Demonstrates
that artificial NNs can be used for evaluation of trust in WANETs, namely, for
detection of untrusted nodes and for estimation of the trust values. States the benefits
of the proposed NN approach – Neural Network Trust Evaluation in Ad hoc networks
(NeNTEA).

6. The 2 nd Contribution: the TARA Method : Further, we describe our proposed
method (Trust-Aware Reactive Ad hoc routing (TARA) of enhancing reactive ad

3



1. Introduction

hoc routing protocols with trust, present the simulator, describe the experiments
and their results, and discuss the considerations regarding the implementation of the
proposed method.

7. Conclusions : Summarizes the results of our research, suggests possible topics for
further research, and concludes the thesis.
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Chapter 2

Trust Management in Ad Hoc
Networks, Background

This chapter is dedicated to the theory related to the dissertation thesis topic. Section
2.1 introduces structure and properties of WANETs. The trust concept and TMSs are
described in Section 2.2. Routing protocols and NNs are described in Sections 2.3 and 2.4,
respectively.

2.1 Ad Hoc Networks

An ad hoc network consists of nodes ; see Figure 2.1. These are small devices, consisting
of an antenna and radio transceiver, processing unit, memory, and battery. From the
point of view of this research, a detailed description of processing unit and memory is not
important. Energy consumption is also a topic of another research. In the further text, we
need just the description of antenna and radio transceiver.
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Figure 2.1: An ad hoc network.

For wireless communication, the antenna is probably the most critical element. An
antenna is usually a metal device that is capable of sending and receiving data. In other
words, the antenna is the transitional structure between free-space and a guiding device.
The guiding device or transmission line may take the form of a coaxial line or a hollow
pipe (waveguide), and it is used to transport electromagnetic energy from the transmitting
source to the antenna, or from the antenna to the receiver [7]. Radio transceivers operate
in half-duplex mode, since transmitting and receiving data at the same time is not possible.

The fundamental parameter of the antenna is the radiation pattern. It is defined as
“a mathematical function or a graphical representation of the radiation properties of the
antenna as a function of space coordinates” [7]. Radiation properties can include power
density, field strength, directivity, polarization, or phase. The most interesting is the space
distribution of related energy, so the range of node can be determined. A graph of the
spatial distribution of the power density is called a power pattern and usually is plotted in
decibels.

The radiation pattern can be isotropic, directional, and omnidirectional. The isotropic
pattern means the equal radiation in all directions. It is not reachable in practice, but
serves as a reference for expressing directional properties for real antennas. A directional
antenna sends/receives more effectively in a particular direction. An antenna whose ra-
diation pattern is nondirectional in one plane and directional in the orthogonal plane, is
called omnidirectional and it is represented in Figure 2.2.

The range of antenna is the distance within which the node can communicate. It
grows with the square root of power: to double the communication distance requires to
increase the power four times. The communication range implies which nodes will be able
to communicate.

Choosing transmission power level has an important impact on energy efficiency and
network lifetime [40]. We assume, that some distributed algorithm for transmission power
control is used.
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2.1. Ad Hoc Networks

Figure 2.2: Omnidirectional antenna pattern. (SOURCE: C. A. Balanis, Antenna Theory:
Analysis and Design, Wiley-Interscience. Copyright © 2005).

An ad hoc network can be viewed as a graph G = (V,E), where V is the set of its
nodes and E is a set of links between nodes. The graph G is also called the topology of the
network. A link between two nodes A and B is formed when A and B are able to radio
communicate and we suppose the link to be symmetrical (if A can successfully transmit
radio signals to B, then B can successfully transmit radio signals back to A). A node B is
a neighbor of node A, if it is in the maximum transmission range. The nodes adjust their
transmission power to be high enough to reach the intended neighboring destination while
causing minimal interference at other nodes.

Communication between nodes that are not neighbors can be performed using inter-
mediate nodes as routers/relays.

Definition 2.1.1. A path between two nodes is an ordered sequence of intermediate nodes
that need to be passed to get the message from the source node to the destination node
(see Figure 2.1).

Definition 2.1.2. Let P = 〈N1, N2, . . . , Nl〉 be a path from source N1 to destination Nl,
then path length of path P, PL(P ), is defined as the number of hops from the source node
to the destination node:

PL(P ) = l − 1, (2.1)

where l = |P | is the number of nodes in the path.

Paths are constructed by routing protocols.

Definition 2.1.3. We say that the source uses intermediate nodes to deliver the data.

7



2. Trust Management in Ad Hoc Networks, Background

Definition 2.1.4. We assume that every node in a WANET can compute routing paths
(sequences of intermediate nodes) to all other nodes. For simplicity and further refer-
ence, the collection of this information about paths from every node is called a network
communication arrangement.

An essential property of each node is its ability to forward packets.

Definition 2.1.5. The packet delivery ratio (PDR) of a node Ni is defined as follows:

PDR(Ni) =
φ(Ni)

σ(Ni)
, (2.2)

where φ(Ni) is the number of data packets correctly forwarded by node Ni and σ(Ni) is
the total number of data packets sent to node Ni that were supposed to be forwarded.

Definition 2.1.6. Let P = 〈N1, N2, . . . , Nl〉 be a path from source N1 to destination Nl.
Then the PDR of path P from the viewpoint of the source node N1 towards a destination
node Nl, is defined as follows:

PDR(P ) =
φ(P )

σ(P )
, (2.3)

where φ(P ) is the number of data packets correctly forwarded to the destination Nl

through the path P and σ(P ) is the total number of data packets sent from N1 to Nl

using P .

Theorem 2.1.7. The PDR of path P is computed as a product of PDRs of intermediate
nodes in P :

PDR(P ) =
l−1∏
i=2

PDR(Ni) (2.4)

Here source node N1 and destination node Nl are not considered since they are not
intermediate nodes.

Proof. Suppose that a WANET is running for a sufficiently long time for the collected
information about PDRs of the paths to be statistically significant. The PDR of a given
path can be viewed as a probability of delivering data packets through that path. The
events of successful forwarding of the data packet by N2, N3, . . . , Nl−1 are independent.
Using the multiplication rule of probability [67] that states that in case of n independent
events A1, A2, . . . , An probability P that all of them occur is:

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An), (2.5)

where P (Ai) is the probability of event Ai.
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2.2. Notion of Trust

2.2 Notion of Trust

The notion of trust originally comes from social disciplines and is defined as a measure of
subjective belief regarding the behavior of a certain entity [19]. Within several last years a
theory of trust in relation to WANETs was gradually developed. The theory discusses the
concept and properties of trust and is generally accepted among researchers. Definition of
trust according to [13]:

Definition 2.2.1. Trust is the assurance that one entity holds that another will perform
particular actions according to a specific expectation.

Fundamental properties of trust are dynamicity, subjectivity, incomplete transitivity,
asymmetry, and context-dependency [16].

Dynamicity means that a WANET infrastructure is not static. Nodes can join and
leave time to time, some nodes can fail, thus network status can change, and trust values
should reflect such changes. Nodes can have incomplete and partially local information
about the situation in the whole network.

Subjectivity comes from social disciplines and indicates biased nature of trust evalu-
ations based on different experience. Trust in psychology makes accent on the cognitive
process, implying that humans acquire trust values from their experiences.

Nontransitivity or incomplete transitivity means that if node A trusts node B and node
B trusts node C, that does not imply that node A trusts node C. Although, using recom-
mendations from other nodes about a particular node trust results in partial transitivity.

Trust has property of asymmetry. The fact that a node believes in another’s node
trustworthiness does not induce its trustworthiness in return.

The last but not least property of trust is context-dependency. Li and Singhal [41]
define trust as the belief that an entity is capable of performing reliably, dependably, and
securely in a particular case; hence, different levels of trust exist in different contexts. For
example, one can trust his doctor’s advice on health issues, but does not trust the doctor
if he makes advice on finance management.

One more important aspect of trust is its diminishing in time. Many studies use an
aging mechanism embedded in trust evolution calculations.

Jøsang & Pope define a notation for describing and reasoning about trust [35]. They
use the term trust purpose to represent the semantic content of a particular trust instance.
For example, node A can trust node B for the purpose of forwarding packets. There are
five elements to form trust: trustor (trust originator), trustee (trust target), trust purpose,
trust measure, and time. If trust purposes are the same, trust can be transitive.

2.2.1 Metrics for Measuring Trust

Trust management protocols use various metrics to compute trust. Metrics should justly
reflect the situation in a WANET with respect to trust calculations. To determine which
of them to use is not a simple task.

9



2. Trust Management in Ad Hoc Networks, Background

Taking into account the economic basis of trust, the selfishness of nodes should be
considered, as trust in economics is based on the assumption that humans are maximizers
of their own interest [16]. Selfishness can take form of dropping data packets or ignoring
control messages of a routing protocol.

Trust also implies willingness to take a risk of losing data, so trust is often linked to the
level of reliability. Reliability in terms of networking means a guarantee of data delivery.
So, the metric is the packet delivery ratio. Josang et al. [36] and Solhaug et al. [64]
conclude that trust is generally neither proportional nor inversely proportional to risk.
Risk is closely connected to stake, which is value of the outcome of a risky operation, how
bad the loss of particular data is. Even when the trust is strong, if the stake is high, the
risk will be also high.

On account of trust to be context-dependent, trust metrics should return adequate
references for diverse situations, depending on how sensitive the information is.

In our research, trust reflects the confidence that a given node will forward data ac-
curately (correctly). We define trust in this scope as a measure of confidence that a node
will cooperate – by properly delivering data in transit, sourced by, or destined for other
nodes. The previously defined PDR is used as a metric of trust value, therefore we use the
notions “PDR” and “trust value” interchangeably in this dissertation. PDR as a metric
of trust is often used [44, 21, 3, 29, 8], since the most critical feature of networks is their
ability to deliver data. PDR plays a decisive role in determining a node’s behavior as de-
scribed in [15], chapter 5, section The Trust Model, trust calculations depend on the PDR
information.

Definition 2.2.2. The trust of a node Ni is its estimated PDR(Ni) and it is a real number
between 0 and 1: PDR(Ni) ∈ R, 0 ≤ PDR(Ni) ≤ 1.

Authors in [35] model trust of a path as a multiplication of nodes trust, which corres-
ponds to our model of calculation path PDR (Equation 2.4).

Definition 2.2.3. A node Ni is considered trusted if PDR(Ni) > τ , where 0 ≤ τ ≤ 1 is
the given threshold. If PDR(Ni) ≤ τ , then the node is untrusted.

In the context of this dissertation, a node whose trust value is to be estimated is called
an investigated node.

2.2.2 Trust Management Schemes

Some considerations underlying the construction of trust-based methods exist. The main
aspect is the necessity of their distributed deployment based on cooperative evaluation of
trust. As TMSs mostly rely on some routing protocol, they should be flexible and should
not cause disruptions of computations on nodes or resource exhaustion. TMSs must count
with that that nodes by default cannot guarantee cooperation. Also, for a TMS to meet
the dynamic nature of WANETs, it should be capable of self-reconfiguring. Each TMS is
a trade-off between WANET performance and security.
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2.3. Ad Hoc Routing Protocols

Trust basically can be of two types: direct, obtained by individual observations of a
node, and indirect, learned from others.

Trust management consists of three stages: initiation, evaluation, and amendment.
Initiation: when a node connects to a WANET, it is typically assigned a default trust

value. In this case, other nodes have to take a risk when starting a communication with
an unknown node.

Trust evaluation means a method of calculation of trust values. These calculations can
be based on various factors:

◦ previous direct interactions,

◦ observation of the activity of the node,

◦ recommendations received from others.

It is also necessary to carry out periodic updates of trust values. It is done during the
amendment stage.

When the trust value is available, a node will then compare it with the specified
threshold and make a decision if the particular node is trusted. Implementation of trust
calculations and modifications in different TMSs vary.

2.3 Ad Hoc Routing Protocols

Generally, routing protocols for WANETs can be proactive or reactive. The goal of pro-
active protocols is to maintain consistent, up-to-date routing information, which requires
periodic exchange of control messages between the nodes. Hence proactive protocols can
waste resources unnecessarily [14]. In contrast to this, reactive protocols establish a route
between a source and a destination only when the source wants to send something to the
destination. Because of this, reactive protocols are also known as on-demand protocols.

Proactive protocols maintain routing information by distributing routing tables through-
out the network, thus causing higher overhead. Due to this proactive protocols (OLSR,
Destination-Sequenced Distance-Vector Routing (DSDV)) are not commonly used for trust-
based schemes. Instead, reactive protocols are preferable here because only when a route
to some destination is needed, the route discovery process is started. This way, commu-
nication overhead is lower and node batteries are saved compared to proactive routing
protocols [43].

The most prevalent reactive protocols are AODV and DSR. Their disadvantages are
higher latency and flooding the network during route discovery.

The DSR protocol is similar to AODV in terms that it is on-demand routing, but it
does not rely on routing tables at the intermediate nodes, since the source node adds the
whole path to the data packet it sends.

We need to mention that neither AODV nor DSR choose a route based on the state of
links but based on the shortest path to the destination leading through possibly untrusted
nodes.
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2.3.1 The AODV Protocol

The AODV protocol [20] is a reactive routing protocol, which implies that a route discovery
process is initiated when a route to a specific destination is needed. Route discovery is
accomplished by flooding the network with RREQ messages. The routing table on each
node contains information about the next hop to the destination, the number of hops, and
the expiration time of the routing table entry. Each time the route is used for forwarding
data, its expiration time is updated. Thus, in the case of periodic communication, the
routing table entry may never expires.

In the AODV protocol, all nodes work collectively to discover a route path from a source
to a destination. An actual data transfer takes place only after the route is established.
There are three types of control messages: RREP (Route Reply), RREQ (Route Request),
and RERR (Route Error). To find a path, the source broadcasts RREQ message to the
network. On receipt of a RREQ message, a node sends a RREP message, if it is the
destination or if it has a fresh enough route to the destination. Otherwise it just forwards
the RREQ message to its neighbors. On receipt of a RREQ message, the node increases
the hop count field in the message by one, and on receipt of a RREP message, intermediate
nodes update their route entry with the new data (see Figure 2.3). Whenever a node sends
a new RREQ, RREP, or RERR message, it increases its own sequence number. The higher
the sequence number, the more that information is considered. A path with the smallest
hop count is chosen [52].

Simplified algorithm of AODV protocol operation is represented in Figure 2.3.

There are two ways of creating routes in the AODV protocol. Protocol’s behavior
depends on the flag called Destination only. When the flag is set (Destination only Flag
True (DFT)), only the destination node can reply to a RREQ message. This implies that
every time a new route is requested, a new original route from the source to the destination
is created, without any influence of already existing routes. On the other hand, when the
flag is not set (Destination only Flag False (DFF)), any node that has a route to the
destination can reply to the RREQ message. As a result, the routes that already exist
influence the searching process. The existing routes are then used by many nodes and even
though a better route exists, it is not discovered. The difference in the created routes can
be seen in Figure 2.4. Nodes are depicted as circles with their IDs written up left from
them. The node with ID = 0 is the sink. Grey links, although they exist, are not used
in any route. The thicker the link is, the more routes are going through it. Topology in
Figure 2.4a was created with DFF. Compared to 2.4b, routes in 2.4a were attached to the
existing ones, and thus the topology has fewer ”branches”.

AODV scales well to large networks, as shown in [52]. It is a widely accepted choice
for reactive routing [58].

2.3.2 The DSR Protocol

The Dynamic Source Routing protocol (DSR) [34] is also a reactive protocol. Its route
discovery process is similar to AODV [53]. To discover a path the source node broadcasts a
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Figure 2.3: The AODV algorithm.
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(a) Destination only Flag is set to False (DFF) (b) Destination only Flag is set to True (DFT)

Figure 2.4: Topologies created by the AODV protocol.

RREQ message that is forwarded by the intermediate nodes. However, DSR uses so called
source routing. The intermediate nodes append their IDs to the RREQ message. This
sequence of intermediate nodes is returned in the RREP message and saved by the source
node. When a data packet is sent, it contains a list of intermediate nodes it will traverse
on its way to the destination.

Compared to AODV, the DSR protocol keeps the information about multiple routes to
the destination. According to its RFC, DSR is designed for networks of up to 200 nodes
and of small diameter up to 10 hops [34]. Another difference is that there is no expiration
time for routes.

To store routing information, the DSR protocol implements Route Cache data structure,
that contains discovered routes. It can also implement Link Cache data structure, where
each individual link (edge of the topology) learned from the control messages is stored.
Hence, the Link Cache keeps dynamically the current list of edges of the discovered part
of the topology. In case of Link Cache, to search for a route, the source node performs
Dijkstra’s shortest path algorithm to find the best path to the destination [34].

2.4 Neural Networks

2.4.1 Model of Neuron

The biological neuron is the prototype and inspiration for the mathematical model of artifi-
cial NNs (Figure 2.5). It has several dendrites (inputs) and one axon (output). Signals from
dendrites traverse through the neuron body, which in mathematical model is implemented
with an activation function.

The axon connects to other dendrites via synapses, which have different strength
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(a) Biological neuron

(b) Mathematical model

Figure 2.5: Models of a neuron. (SOURCE: Karpathy, Andrej. Neural Networks Part 1:
Setting Up the Architecture. Notes for CS231n Convolutional Neural Networks for Visual
Recognition, Stanford University, 2015 [38]).

(weights: w0, w1, . . . ) and thus can be excitatory or inhibitory. First, the weighted sum of
inputs is calculated and then passed as an argument to the activation function. Usually
bias b is used to shift the activation function to the left or right. Generally, if the value of
activation function is greater than some threshold, a signal is fired to the output.

The most common activation function is sigmoid (Equation 2.6, Figure 2.7), which is
used in multi-layer perceptron networks.

S(t) =
1

1 + e−t
(2.6)

2.4.2 Architecture of Neural Networks

As stated in [71] a Neural Network (hereafter NN) is a system composed of many simple
processing elements operating in parallel whose function is determined by network struc-
ture, connection weights, and the processing performed at computing elements or nodes.

15



2. Trust Management in Ad Hoc Networks, Background

Figure 2.6: Sigmoid activation function. (SOURCE: Karpathy, Andrej. Neural Networks
Part 1: Setting Up the Architecture. Notes for CS231n Convolutional Neural Networks for
Visual Recognition, Stanford University, 2015 [38]).

In essence NN is a structure of connected nodes with some number of inputs and out-
puts, embedded activation function and each connection has a weight assigned to it. A
NN should be considered when input data is high-dimensional or possibly noisy and the
transformation function is unknown.

A lot of different types of NN were created: multi-layer perceptron (MLP), radial basis
function (RBF), Kohonen features maps, Hopfield networks, Boltzmann machine and other.

Each NN is characterized by:

◦ model of neurons (their inherent properties and activation functions),

◦ topology of the NN,

◦ learning method.

Several NN topologies are distinguished according to signal flow:

◦ single-layer feed-forward,

◦ multi-layer feed-forward,

◦ recurrent.

In feed-forward NNs information always flows in one direction. Recurrent topologies
allow cycles. There is at least one feed-back connection.

Single-layer NNs consist of one input layer and one output layer of processing units.
Multi-layer NNs have one or more hidden layers of processing units.

Recurrent NNs may or may not have hidden layers. There are also further variations
of topology, like short-cut connections, partial connectivity or time-delayed connections.

A multi-layer feed-forward NN with perceptron neurons with sigmoid activation func-
tion was used in this work and is schematically represented in Figure 2.7.
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Figure 2.7: A multi-layer feed-forward NN. (SOURCE: Karpathy, Andrej. Neural Networks
Part 1: Setting Up the Architecture. Notes for CS231n Convolutional Neural Networks for
Visual Recognition, Stanford University, 2015 [38]).

2.4.3 Learning Methods

A NN needs to be configured for a particular problem. This is usually achieved by process
called learning. Learning consists in adjusting connection weights to get the desired output.
For learning a set of known input/outputs is needed. After feeding the system with input
and getting the result, the connection weights are modified to obtain a more fitting output.
So node connection weights are used to store the learned knowledge.

Neural
Network

Input

Input
Output

Target
output

Error

Adjust weights

Figure 2.8: Training of NNs.

There are two types of learning: supervised and unsupervised learning. The former
assumes that data for training contains values of inputs and their corresponding outputs.

At the beginning all weights are initialized randomly. In each training cycle the NN
is fed up with inputs and after receiving the response from the network, the response is
compared to the correct output and values of weights are adjusted. The Backpropagation
algorithm calculates gradient of cost function with respect to weights. Gradient shows how
fast the cost changes when the weights change. In order to optimize the cost function, the
gradient is passed to the optimization method, which uses it to update weights [24].

Various methods of adjusting weights exist. One of most common is Backpropagation
algorithm. It calculates a gradient of the cost function with respect to weights. Gradient
is the vector whose components are the partial derivatives of weights. Gradient shows how
fast the cost changes when the weights change. The gradient is input to the optimization
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method which uses it to update the weights, in an attempt to minimize the cost function
[24].

The adaptation-rule works as follows: every time the partial derivative of the corres-
ponding weight changes its sign, which indicates that the last update was too big and the
algorithm has jumped over a local minimum, the update-value is decreased [57] by the
factor η−, where η− < 1. If the derivative retains its sign, the update-value is slightly
increased by a factor of η+, where η+ > 1. The update values are calculated for each
weight in the above manner, and finally each weight is changed by its own update value, in
the opposite direction of that weight’s partial derivative, so as to minimize the total error
function.

Important parameters of this learning method are momentum and learning rate. Mo-
mentum helps avoid local minimum. It simply adds a fraction of the previous weight update
to the current one. The learning rate determines how much of the respective adjustment
is applied to the old weight [49].

It may happen that after being learned NN may tend to overfitting that results in poor
generalization. It means that the NN is overlearned - it predicts perfectly the results of
training instances but cannot deal with new data.

Overlearning may occur due to excessive iterations, namely too big number of learning
epochs. An epoch is a time during which all training instances are used once to update the
weights.

The number of hidden layers is also important. In general, if the problem is simple,
one or two hidden layers will suffice; but, as problems become more complex, more layers
are required [48].

A classification problem requires data to be classified in two or more categories. The
number of training instances for each category in a classification problem should be exactly
the same. Training instance should cover the problem set uniformly.

Results of training depends on random initialization, which is some cases may not lead
to sufficient training results.

2.4.4 Motivation to Use NN for TMS

Core of the TMS is calculation of trust metrics according to some function. The efficient
expression of this function is not an easy task, but NNs are able to learn this dependencies
based on the provided input/output pairs.

Moreover, NNs are able to cope with some degree of uncertainty. This is an advantage
when constructing TMS in a WANET, since not all information can be available and
moreover, some of the data can be wrong (e.g., provided by a malicious node).
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Chapter 3

Previous Results and Related Work

Security problems of WANETs have recently received a lot of attention [43, 18, 15]. Nu-
merous methods for improving security in WANETs using the trust concept were proposed.
The first part of this section describes TMSs, including the ones based on NNs. The second
part is dedicated to applying TMSs for secure routing.

3.1 Trust Management Schemes

A considerable amount of methods to establish and maintain trust relationships in WANETs
were proposed [4, 11, 25, 32, 42, 44, 51, 69, 73, 63, 12, 56, 27, 74, 75, 77]. Let us described
some of them.

Zhang et al. in [77] proposed distributed and adaptive trust metrics. Direct trust is
calculated using the communication trust and energy trust. Communication trust calcu-
lations are using the number of successful and unsuccessful data packets combined with
predicted trust values using regression model. The energy trust calculation uses the resid-
ual energy of nodes. The recommendation trust is calculated using the recommendation
reliability and the recommendation familiarity, that together with propagation distance
gives indirect trust. Recommendation reliability is calculated as the difference from aver-
age recommendation trust. Recommendation familiarity is calculated from the number of
successful data packets and the number of common neighbors.

Alnumay et al. [4] adopted the clustering framework. A node monitors traffic of
its neighbors to calculate direct trust. Nodes that are heads of clusters initiate trust
calculations and are responsible for trust propagation. Direct trust is calculated as a ratio
of the number of good behaviors to the sum of numbers of good and bad behaviors. The
resulting trust is calculated by the cluster head using ARMA/GARCH forecasting model
to predict the behavior of the node based on its past behavior.

Yang et al. [75] proposed a decentralized TMS based on blockchain techniques. Road-
side units collect ratings from vehicles, calculate trust of vehicles and pack them into blocks,
which are added to the trust blockchain.
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Guleng et al. [25] uses a fuzzy logic for direct trust calculations and reinforcement
learning for indirect trust. They use asymmetric cryptography to authenticate the ID of
the node that sent the packet.

The neighbor observing model based on watchdog mechanism is a basis for the trust
management scheme proposed by Yang et al. [74]. Each node watches its neighbor node
and marks its behaviors as α, β, and γ: the number of benevolent, malicious, and sus-
picious behavior, respectively, in a certain time period. The neighbor recommendation
model accompanied with indirect trust value is used. Dempster-Shafer evidence theory is
implemented to combine indirect trust values from different neighbors.

Biswas et al. [11] proposed that each node in a network is assigned three parameters:
rank (measure of reliability of that node), remaining battery power, and stability. Trust
value is calculated as their product. If the destination node has received data packets, it
will send an acknowledgment to the source node, and then the ranks of the intermediate
nodes will be incremented. If no acknowledgment is received within the timer period, the
ranks of the intermediate nodes will be decremented. The stability factor is based on pause
time and velocity: relative velocity with respect to the source node. The rank tables are
periodically exchanged among the participating nodes.

Trust model presented by Xia et al. is based on fuzzy theory [73]. After finishing an
interaction between two neighbour nodes, both sides will make a satisfactory evaluation of
this interaction depending on the packet forwarding ratio. The protocol uses time stamps
for computing the impact of packet forwarding ratio on trust evaluation. Direct trust of the
particular time slot is an average of the satisfactory evaluations. The trust value consists
of a weighted sum of direct trust, recommendation trust, some punishment of malicious
or uncooperative entities and the level of activity of an entity in a network (based on the
cumulative number of entities interacted with the evaluated node).

The method proposed by Jhaveri et al. in [32] is based on the AODV protocol comple-
mented with an attack pattern discovery mechanism and trust model with packet dropping
ratio as a metric. They have analyzed the effect of a threshold, trust weights, and update
interval on PDR and routing overhead.

3.2 TMS with NNs

Most of the TMSs are based on calculations of trust metrics from experience of nodes,
eavesdropping, or collecting information from the WANET. This information can be partial
or it is challenging to determine which part of the calculation should get more weight.
Therefore, some of the researchers adopt NNs for the evaluation of trust.

Several methods for TMS in Vehicular ad hoc networks (VANETs) based on NNs
were proposed. Namely, deep reinforcement learning (Zhang et al. [76]) or Bayesian NNs
(Eziama et al. [23]) were used for the computation of trust. In [76], information about
each vehicle’s location and forwarding ratio is collected by the centralized controller; that
information serves as an input for a deep NN. In [23], authors combined deep learning with
probabilistic modeling of trust computations.
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In Kavitha et al. [39], a NN classifier with sigmoid activation function was used to
identify an intruder node in mobile ad hoc networks (MANETs). Input for the classifier is
provided by features extracted from neighboring nodes and based on the node’s probability
metric, reflecting the node’s forwarding behavior.

Azmi et al. [6] suggested to use RBF-NNs in peer-to-peer (P2P) networks for evaluating
recommendations received from neighbors to determine the trust level of a particular node.
After the communication phase, NN weights are adjusted using the obtained result and
the NN is trained and can be used for making decisions. Unlike in our approach, trust is
not calculated using metrics but it is just a consequence of estimations from other nodes.
Also, the learning is performed in the running network, which means that nodes have to
use battery and computational resources to actually find untrusted nodes. In our method
the learning process for the NN is performed on synthetically generated data while in [6]
it is performed on data from a P2P network.

In Imana et al. [31] RBF-NNs are used to predict the node trust in MANETs, i.e.,
to discover a node that is about to start malicious activity in advance. Authors assume
the existence of nodal attributes (time, battery power, type of encryption, the number
of neighboring nodes, etc.) that define states of node: benign, vulnerable, compromised,
malicious, and forgiveness state. The state defines the reputation score of a node (trust
value). Node behavior is modeled heuristically. The main difference to our approach is
that in [31] the estimation of trust of a node is done without observing the actual activity
of the node.

3.3 Enhancing Routing with Trust

Methods to enhance ad hoc routing protocols with trust can be divided into two groups.
The first one represents approaches that apply trust during the route discovery phase.
Either the control messages are rejected based on the trust or they contain a special field
in the header that collects the trust value of the path during the dissemination of the
RREQ message. Examples of such approaches are Eissa et al.[22], Marchang and Datta
[44], Venkanna et al. [69], Simaremare et al. [63], Hatzivasilis et al. [27]. The second group
represents approaches that select routes according to their trust values stored in routing
tables. Examples are Li et al. [42], Wang et al. [70], Pathan et al.[51]. Our approach falls
into the first group.

The approach presented by Pathan et al. [51] aims to combine trusted routing with
ensuring quality of service. To achieve this goal the proposed scheme selects forwarding
node by considering channel quality, link quality, and residual energy. A node trust is
calculated based on these QoS parameters and node forwarding behavior. During route
discovery RREP messages from untrusted nodes are discarded.

The method of Beheshtiasl and Ghaffari [9] was designed for wireless sensor networks.
The method is based on distances and makes use of geometry, the Dijkstra algorithm is used
for finding shortest distance, and location of nodes are found by executing multidimensional
scaling algorithm. Then fuzzy logic is used to calculate trust.
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Hu et al. proposed a secure routing protocol based on deep learning [29]. Direct trust
is calculated using forwarding behavior and then combined with recommendations. Trust
of a path is calculated as a product of the trust values of the nodes in the path. Packet
flows and their demands are an input of a NN. The output of the NN is the set of links
satisfying the demands.

3.3.1 Trust-Based AODV Protocol Approaches

Aggarwal et al. [2] proposed a modified AODV routing protocol to implement trust model
by introducing node trust table and packet buffer. A table is used to store information for
neighbors and malicious nodes. Each node stores the node ID of its neighbor and calculates
the trust value for that node based on packet observation. Authors have a slightly different
approach to incorporate trust. Each node has its trust table, and when receiving a packet,
it checks the trust value of the source. If it is untrusted, then the packet is dropped. The
trust of a node gets updated on successful and failed transmission and the minimum value
is set as 0 whereas the maximum trust value is set as 1. The threshold value is set to 0.5
and if any node has trust value less than 0.5, then the packet coming from that node is
simply discarded.

For evaluation of trust Bar et al. in [8] count the number of packets received/sent
at each node. Also the number of RREQ messages received and the number of RREP
messages sent by each node is counted. Then the packet forwarding ability (the number
of packets sent/the number of packets received) and weight factor, which is defined as the
ratio of the number of RREP messages sent to the number of RREQ messages received
by the node, are calculated. Trust value is calculated as a product of packet forwarding
ability and weight factor. After this calculation, trust value is inserted into the routing
table. The rest of the scheme is similar to the traditional AODV routing protocol, except
that the most trusted path is selected.

Hazra and Setua proposed an context-aware trusted AODV protocol [28]. Trust eval-
uation is based on context-aware time dependent direct and indirect trusts. The direct
trust is computed directly by a trustor (by sending control messages to a trustee, evaluat-
ing response time and then increasing or decreasing the trust value). Time is measured for
acknowledgment of control packets or timeout is applied. For each acknowledgment the
Trust manager stores direct trust equal to 0.9 and for the absence of acknowledgment it
stores 0.1. On the other hand, indirect trust is the collaborative effect of recommendations
and notifications. Indirect trust is computed as a weighted sum of them. Final trust is
then a weighed sum of direct and indirect trust. Trusted On-demand Routing model is
implemented on each node [28].

Thachil et al. proposed collaborative AODV [66]. When any node wishes to send
messages to a distant node, it sends the RREQ message to all the neighboring nodes. A
RREP message obtained from its neighbor is sorted by trust ratings. Every node monitors
neighboring nodes and calculates trust values on its neighboring nodes dynamically as a
ratio of the number of packets dropped to the number of packets to be forwarded by that
neighboring node. If the trust value of a monitored node goes below a predefined threshold,
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then the monitoring node assumes it is malicious and removes that node from the route
path. At the beginning, all neighboring nodes are given a range value of 0.5 by each
node. The trust value is calculated based on the most recent set of packets transmitted to
neighboring nodes. A node keeps a range value on all of its neighboring nodes. If the trust
value is less than the threshold (0.3 used in this work), the range value is decremented
according to the trust value until it reaches 0.0. If the trust value is above the threshold,
the range value is incremented until it reaches 1.0. When the range value of a node goes
below the threshold, it is considered to be malicious. Even if a node is not malicious, it
may drop packets due to a broken link. In that case the node will send a RERR message
to its previous node and precursors. That RERR message has been modified to include the
unique identifier of the data packet dropped due to the broken link so that by other nodes
this data packet will not be counted as dropped packet. This avoids the false positives.
RERR messages from non-trusted nodes are discarded.

Distributed trust protocol called TERP is used in the work of Ahmed et al. [3] to detect
and isolate misbehaving nodes. Trust, residual-energy, and hop count are used for making
routing decisions. Trust is calculated as a weighted sum of direct and indirect trust. Direct
trust is the ratio of correctly forwarded packets to the total number of received packets.
Indirect trust is derived from the direct trusts of other nodes. The weight of the particular
recommendation is determined by the direct trust of the recommending node. TERP
extends AODV with its trust and energy information. TERP uses a composite routing
function metric that is a weighted sum of trust, energy and hop count.

Li et al. in [42] proposed that routing tables of nodes contain trust value for each path.
So, if there are more entries for some destination with the smallest hop count, the more
trusted path is chosen. The trust of a path is calculated as the product of the node trusts
along the path.

Eissa et al. [22] proposed a trust-based scheme for AODV which uses a friendship
mechanism. Nodes keep lists of friends and their friendship values, calculated over some
features. RREQ and RREP messages are rejected if friendship values of previous and next
hops are below the friendship threshold. Also, a friendship of a route is evaluated, and the
route is registered if it is more friendly than the existing one.

The method proposed in [44] by Marchang et al. changes the original neighbor table
entries and routing table entries. Neighbor trust value is used to handle RREQ and RREP
messages from that neighbor. Route trust is used to select the route. The reliability
(trustworthiness) of a route depends on the reliability of all its nodes. The most trusted
route is chosen. When two or more routes have the same trust value, the shortest path is
chosen. A node uses packet forwarding behavior of a neighbor to evaluate its trust level.
The trust value is calculated using only local information. The scheme uses time windows
to ensure the trust information is up-to-date. While at some time window node may be
untrusted, it may change the behavior and became trusted in the later time window.

Venkanna et al. [69] suggested the path trust value is computed during the spread of
RREQ and RREP messages. Each node adds the trust value of the next hop while the
control message is spread over the network. The destination node computes the average
and that is defined as the trust of the path.
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In Simaremare et al. [63], when a node receives a RREQ message, it checks the trust
of the source. If the source is untrusted, the RREQ message is ignored. Otherwise, the
trust of the neighbors is calculated and RREQ message is forwarded only to trusted ones.
RREP messages are only forwarded.

3.3.2 Trust-Based DSR Protocol Approaches

Hammi et al. [26] assume that shared secrets are exchanged between nodes during an
initialization phase. Trust is calculated as a weighted average of recommendations and
observations. An observation is calculated using the number of successful or failed opera-
tions. Trust of a path is computed as a product of path edges trust. The protocol extends
fields of the DSR RREQ message. Control messages are signed and their integrity is veri-
fied upon receiving. When transmitting a packet, the source node inserts the structure
of trust multigraph into it. Trusted multigraph from source node S to destination node
D is composed of two levels. First level is composed of nodes trusted by S. The second
level is composed of untrusted or unauthenticated nodes. A forwarding node selects the
outgoing edge based on source reliability requirement. When the requirement allows, the
source diminishes some edge’s weight to force forwarding nodes to utilize less forwarding
paths [26]. When multigraph trust is below requirements, the protocol triggers a new route
discovery.

The on-demand secure routing protocol called Ariadne presented in [30] by Hu et al.
relies on symmetric cryptography and is based on DSR. Ariadne relies of the setting up of
n(n + 1)/2 shared secret keys before the protocol can be used in network with n nodes.
Then each node verifies the origin and integrity of routing data.

Buchegger and Le Boudec in [12], a trust scheme is presented to extend the DSR routing
with detection and isolation of misbehaving nodes. When non-cooperative behavior is
detected, the misbehaving node is excluded from routing.

Wang et al. [70] evaluate trust using the similarity of nodes. The similarity is a weighted
sum of different node attributes, such as velocity or moving direction. The decision to
forward the data is based on the similarity degree.

Pirzada et al. [56] suggested the trust mechanism be integrated into the route discovery
process. Trust is a cumulative sum of the normalized values for different categories of
behavior. In the DSR protocol, nodes add their IP addresses in RREQ messages. During
the propagation of a RREP message, each node adds the trust of the preceding node.

SCOTRES system [27] was created by Hatzivasilis et al. for WANETs deployed for
monitoring environmental parameters. The routing protocol uses three metrics to evaluate
the node trust. Based on the information from the routing table, a topological metric of a
node is evaluated, and the rating system will tolerate failures of significant nodes. Energy
and channel-health are the other two metrics. Paths that contain malicious nodes are
excluded. The method was integrated into the DSR protocol.
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3.4 Overview of Existing Simulators

For verification of ideas and validation of proposed algorithms, a testbed is required. Since
a real testbed is expensive and not always real hardware is required to verify ideas, many
researchers use different network simulators. Let us analyze the most common network
simulators.

The NS-2 simulator is an open-source and popular simulator, which brings such a
benefit as a continuous introduction of new extensions. These allow support of additional
functionality. However, this also increases complexity. The simulator is written as a solid-
state application, without possibility to divide it into modules. Thus it supports the whole
batch of functions, introduced in official releases and is backwards compatible. However,
this gives the simulator redundant functionality. The simulator is designed for general
purposes network simulation, it is not optimized for any particular type of network. The
official package does not include statistical collection instruments, which makes it harder
to collect and analyze the data.

The NS-3 simulator is not backwards compatible with NS-2. The existing simulation
scenarios have to be rewritten, which lead many researches to use NS-2.

Other software such as QualNet and OPNET are commercial, which is the main draw-
back. Although QualNet was improved in comparison with its open-source predecessor
(GloMoSim), it still has some drawbacks such as inability for a user to implement new
custom modules. The drawbacks of OPNET are similar to that of the NS family, as it
requires a user to be experienced with finite state automata and the Proto-C language.

The NEtwork Description (NED) is a special high-level programming language designed
specifically for creation of simulation scenarios in the OMNeT++ simulator. It is a discrete
event simulator. Although it takes time and effort to get familiar with the programming
concept, once learned it becomes a powerful tool. We chose it for experiments as we are
familiar with C++ used to write modules of simulation.

WANETs have limited support in the modern network simulators. They are mostly
implemented with the help of additional packages, typically developed by enthusiastic open-
source community members. These external packages are often insufficient, have little or
no documentation, and are sometimes abandoned by the original authors. Also, there are
no network simulators that have sufficient support for the concept of trust.
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Chapter 4

Goals of the Dissertation Thesis

It is a matter of context when it comes to trust. For a WANET it is vital to detect
nodes with low delivery ratio, as they degrade performance of the network. The problems
addressed in this dissertation can be divided into two parts, study of trust concept in
WANETs, and utilization of trust for routing.

Considering the review of the related work, the goal of this dissertation is to create
a novel TMS that does not consume valuable resources of WANET nodes and is able to
manage trust on-the-fly. The second goal is to integrate the proposed TMS into routing in
a WANET without changing the routing protocol.

NNs are mathematical models of biological nervous systems used to estimate or ap-
proximate functions that depend on a large number of inputs that are generally unknown
[61]. As NNs are suitable for solving problems with hidden dependencies based on the
performed learning, we wanted to investigate the suitability of NNs for the detection of
untrusted nodes in WANETs.

Information collected from a WANET can be incomplete or incorrect. In this case,
trained NNs should be still able to estimate/predict trust values till some degree of cor-
rectness.

To start using NN, data instances for training are needed. The goal of this research is
to create a way to minimize time needed to collect data for training and the related delay
to minimum.

4.1 Novel Trust Management Scheme

Develop a NN-based TMS for trust estimation/detection of untrusted nodes in WANETs
under the following assumptions:
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◦ The network is connected.

◦ The physical layer assumptions are that transmission of frames between neighboring
nodes is guaranteed. Links between nodes are bidirectional, which is a necessary
requirement for many wireless Medium Access Control (MAC) protocols as they
need to exchange of link-layer frames for collision avoidance and reliability [1].

◦ WANETs are homogeneous, i.e. all nodes are identical.

◦ WANETs have fixed topology, they are running for sufficiently long time. Therefore,
we can construct the training data for the NNs synthetically.

◦ If a WANET changes its topology, NNs will be retrained. So we can see the “before
change” and “after change” WANET as two different networks.

◦ Size of a WANET is expected to be up to 50 nodes.

The stages of development will be as follows:

1. Design appropriate NN architecture for detection of untrusted nodes/estimation of
the trust value.

2. Generate synthetic training and testing data.

3. Train the NNs and adjust the training options.

4. Propose the performance metrics for the NN-based TMS.

5. Perform the experiments and analyze the NN-based TMS performance.

6. Evaluate the NN-based TMS properties.

In the rest of the dissertation we call our NN-based TMS shortly NeNTEA(Neural
Network Trust Evaluation in Ad hoc networks).

4.2 Integration of Trust into a Standard Reactive Ad Hoc
Routing Protocol

Standardized routing protocols for WANETs were created with the assumption that net-
work nodes cooperate and can be trusted. There are various mechanism to enforce the
cooperation in WANETs.

The first part of the dissertation is dedicated to the problem of node trust prediction
or estimation in a certain class of WANETs.

The 2nd main contribution of the dissertation is the integration of the NeNTEA into the
WANET routing protocol. The design goal of this integration is that the ad hoc routing
protocol cannot change.
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The method of enhancing reactive ad hoc routing protocol with trust should be suffi-
ciently generic to be applied to a variety of standard reactive ad hoc routing protocols1.

The stages of the integration wil be as follows:

◦ Design the method of NeNTEA integration into the ad hoc routing protocol.

◦ Propose the performance metrics.

◦ Perform experiments and analyze the method performance.

◦ Analyze the method parameters and properties.

In the rest of the dissertation we call the method of NeNTEA integration into a routing
protocol shortly TARA (Trust-Aaware Reactive Ad hoc routing).

4.3 Use Case and Communication Model

The use case of the proposed solutions is a WANET of sensor nodes monitoring, measuring,
and collecting data about environmental parameters. The communication model assumes
that all nodes keep sending data periodically to a single node, called a sink. This is a
typical case for wireless sensor networks that represent a special class of WANETs [18]. The
real-world applications of such networks include monitoring of air pollution, agricultural
monitoring, and more [37]. The common property of all these use cases is that there is
always one dedicated node collecting data from other nodes that act as sensors. These
sensors cannot communicate directly with the sink, they need to use intermediate nodes
to deliver their messages to the sink. Each route from a node to the sink is traversed
periodically so often that it does not expire.

There could be one sink, two sinks or we may generalize the communication pattern so
that each node plays role of the sink. The latter communication pattern was used for the
designing and performing experiments for NeNTEA.

This communication model was used to perform an experimental evaluation of our
solution, but the solution is not limited to this model.

1It is worth noting that the majority of the related work are designed to certain protocols rather than
being generic.
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Chapter 5

The 1st Contribution: the NeNTEA
Method

5.1 Design Considerations

Detection of untrusted nodes in a given WANET is a challenge. Untrusted nodes should
not be used as intermediate nodes, because they are not reliable. Thus information about
untrusted nodes should be incorporated in the routing protocol.

We recall that we defined trust of a node as the confidence that the node will forward
data correctly. Thus its PDR is used as a metric of its trust.

There could be several reasons for a node to make errors and not to deliver data. The
first one is traffic congestion. If a node is a part of many routes and traffic is intensive, it
can be overloaded and not able to forward data. This problem can be solved by a better
topology: create alternative routes to decrease the load from the most frequently used
nodes. Several topology control algorithms exist to accomplish this task.

Another reason can be the node itself. Regardless of the traffic, a node can behave
improperly due to faulty hardware or software, or the node can be malicious. This situation
is hard to solve. This particular node should be detected and excluded from the network
communication.

Each node can attempt to measure and share information about other nodes delivery
ratio. As follows from the Chapter 3, approaches to measure packet delivery ratio include:

◦ eavesdropping,

◦ measurement by communication.

5.1.1 Eavesdropping

Due to the fact that wireless communication uses shared medium, each node can observe
packets in its communication range, even if these packets are not destined to it. Thus,
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when a node sends a packet to its neighbor, it can eavesdrop if the neighbor forwards the
packet further. Figure 5.1 shows that node N1 and node N3 cannot communicate directly,
therefore they forward their data through node N2.

Figure 5.1: Communication range of node N1.

Node N2 is in the communication range of node N1. Node N1, after sending the packet,
turns its network card to promiscuous mode. Promiscuous mode implies receiving all traffic
even if it is not destined to this node, so node N1 eavesdrops if node N2 forwards the data
(Figure 5.2). This implies extra energy and resource consumption.

Figure 5.2: Situation 1: eavesdropping succeeds.

This seems to work, but let us show another example in Figure 5.3. Nodes N1 and N3

are again not in the direct communication range of each other and use node N2 for relaying
their data. But now by eavesdropping node N1 will not obtain relevant information, as
node N2 adjusted its transmission power to be sufficient to send data to N3, so node N1

is not receiving this transmission. From node N1’s point of view, node N2 did not forward
this packet.

Figure 5.3: Situation 2: eavesdropping fails.

This is the first disadvantage of eavesdropping. Another one is the fact that being in
the promiscuous mode, a node is not able to send any data (as radio transceivers operate
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in half-duplex). Thus promiscuous mode collides with methods responsible for regulating
access to the shared medium (for example CSMA/CA), because such a node will not reply
to Request to Send (RTS) messages.

5.1.2 Measurement of Communication

Another way to measure PDR of a node Ni is by measuring its communication (see Fig-
ure 5.4). The assumption is the existence of:

◦ alternative path aroung node Ni,

◦ extra protocol for negotiation of measurements.

In the situation in Figure 5.4, node N1 and node N2 want to perform measurement
of node Ni. They need to agree about the PDR(Ni) measurement and have to use some
alternative route for that (for example through node N3), which may not always exist.
N1 and N2 should be running an extra protocol to negotiate parameters of measurement,
control sending data for measurement and evaluation of results. Even if this is achieved,
there is another difficulty: to ensure an appropriate environment for measuring. In partic-
ular, there should not be any other traffic in this part of the network during measurement
process. This is hard, if not impossible, to guarantee.

Figure 5.4: Measuring communication.

5.1.3 Our Proposal

Due to the fact that WANET nodes are powered by batteries, the TMS should not increase
power consumption on the nodes. We want to achieve energy neutral TMS, thus will not
consider eavesdropping or methods with active measurements of communication.

Proposal We propose to determine PDRs of nodes from the PDRs of paths in which the
node participates.

Hence, the design criterion of our work was to develop a method for evaluation of node
PDRs from the knowledge of paths and their PDRs. PDRs of paths can be obtained
with no extra cost just by gathering the information from the traffic on-the-fly. The trust
estimation of an investigated node from these information (data) is a nontrivial problem
to be solved.
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Definition 5.1.1. Problem T : given network communication arrangement (according to
Definition 2.1.4) and PDRs of the paths, estimate the PDRs of nodes.

The example of the problem is shown in Figure 5.5. To estimate the PDR of the
intermediate node N5, the PDR path values (these values were measured by path source
nodes) are given in Table 5.1.

Figure 5.5: An example of a small WANET topology.

Table 5.1: All paths in the example topology with node N5 as intermediate.

Path Pj Path nodes PDR(Pj)

P1 〈N1, N5, N2〉 0.4

P2 〈N1, N5, N6〉 0.4

P3 〈N1, N5, N6, N3〉 0.36

P4 〈N1, N5, N6, N4〉 0.36

P5 〈N2, N5, N1〉 0.4

P6 〈N2, N5, N6〉 0.4

P7 〈N2, N5, N6, N3〉 0.36

P8 〈N2, N5, N6, N4〉 0.36

P9 〈N3, N6, N5, N1〉 0.36

P10 〈N3, N6, N5, N2〉 0.36

P11 〈N4, N6, N5, N1〉 0.36

P12 〈N4, N6, N5, N2〉 0.36

P13 〈N6, N5, N1〉 0.4

P14 〈N6, N5, N2〉 0.4
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The observations made with the example raise the following questions:

◦ Does each path PDR have exactly the same impact on a node PDR?

◦ If not, what will be the weight of individual path?

The problem T consists of two subproblems:

1. An estimation of a the trust value of a specific node.

2. Detection (making decision) whether a given node is trusted.

If we have method to solve T1 then T2 is solved for free by applying a threshold on the
estimated trust value.

5.1.4 Definition of the Problem T of Trust Estimation

Let us consider a WANET with the following parameters:

1. set of nodes N = {N1, N2, N3, ..., Nn}, where n is a number of nodes in the network:
n = |N |;

2. communication pattern π as a list of ordered pairs (Ns, Nd), where Ns ∈ N is a
source node and Nd ∈ N is a destination node;

3. routing protocol that finds a single path from Ns to Nd.

Routing protocol taking π provides a set of paths P = {P1, P2, P3, . . . , Pp}, where
p = |P| is the number of paths.

Let us describe paths in P as Pk = 〈Nk1Nk2 ...Nklk
〉, where k ∈ {1, 2, . . . , p} and

{Nk1 , Nk2 , ..., Nklk
} ⊂ N . Hence Pk has lk nodes and PL(Pk) = lk − 1 (Definition 2.1.2).

Using (2.4) for path Pk we get the equation:

PDR(Pk) =

lk−1∏
i=2

PDR(Nki) = PDR(Nk2)× PDR(Nk3)× ...× PDR(Nklk−1
) (5.1)

Having information about paths and their PDRs, we get a system of equations:

PDR(P1) = PDR(N12)× PDR(N13)× ...× PDR(N1l1−1
)

PDR(P2) = PDR(N22)× PDR(N23)× ...× PDR(N2l2−1
)

...

PDR(Pp) = PDR(Np2)× PDR(Np3)× ...× PDR(Nplp−1
)

(5.2)

35



5. The 1st Contribution: the NeNTEA Method

Note that a particular node Nki from path Pk can be present in more paths, just at
different positions. However, ∀Ni ∈ N : PDR(Ni) is the same no matter which path node
Ni belongs to.

The problem is to solve this set of equations with n unknowns, PDR(Ni), given
PDR(Pk), k ∈ {1, 2, . . . , p}. A standard algorithmic solution of the set of logarithmized
equations (5.2) is not possible for several reasons. First, PDR is not a static number. It is
changing with time.

Moreover, the data can be incomplete and PDR of some path can be missing, or incor-
rect (some node may report intentionally incorrect PDRs of paths it is the source of). In
such cases, the mathematical equations will not hold, and therefore may have no mathem-
atically exact solution. However, instead of the algebraic solution of (5.2, we may use NNs
since their the essential feature is an ability to generalize.

The main idea of our approach is that a NN can assist in searching for dependencies
between PDR of paths and PDR of nodes, thus, helping in trust estimation of a particular
node.

Backpropagation NNs can naturally solve two types of problems - classification and
regression. The former problem is to determine if a given node is trusted or untrusted.
The later is the estimation of the PDR value of every node in a given network.

5.2 The NeNTEA Method Design

The input data for the NeNTEA method: PDR(Pj), Pj ∈ P , j ∈ {1, 2, . . . , p}.

Goal The goal is to design a TMS that satisfies the assumptions stated in Section 4.1 and
is able to evaluate trust of nodes according to Definition 2.2.2 using the submitted
inputs. Design is based on our proposal stated in Section 5.1.3.

5.2.1 Design

Basic requirement for a supervised NN learning process is a sufficient number of input and
target value pairs.

From the proposal 5.1.3 it follows that the inputs of a NN are the PDRs of paths and
the output, based on two subproblems, is either answer whether the investigated node is
trusted, or an estimated PDR value of the investigated node. In the first case the output
is binary, true or false. In the second case the output is a real number between 0 and 1
representing the predicted trust value.

Definition 5.2.1. Given a node Ni ∈ N . P(Ni) ⊂ P is a subset of paths where Ni is an
intermediate node.

Each nodeNi in a WANET that forwards data of other nodes participates in a particular
set of paths P(Ni), and its PDR(Ni) contributes to the PDRs of the paths from P(Ni).
Another investigated node Nj participates in another set of paths P(Nj), and even if
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|P(Ni)| = |P(Nj)|, each path may have different weight on the output. Thus, for each
investigated intermediate node Ni, i ∈ {1, 2, . . . , n}, a particular NNi is constructed and
trained.

Definition 5.2.2. Let us denote X(NNi) the vector of the input values of NNi. The size
of the input vector is denoted by γi = |X(NNi)|. Let us denote Y (NNi) the vector of the
output values of NNi. The size of Y (NNi) is 1. X(NNi) and the corresponding Y (NNi)
create a training instance. The training matrix X (NNi) is a set of training instances.

To perform the learning process of a NNi X (NNi) is needed. We assume the number
training instances m = |X (NNi)| will be the same for all i. The size of the training matrix
X (NNi) is therefore m× (γi + 1).

Definition 5.2.3. Let S(P(Ni)) denote the set of source nodes Ns of paths in P(Ni). Let
λi = |S(P(Ni))| denote the number of such source nodes.

Definition 5.2.4. A path where Ns is a source and Ni belongs to that path as an interme-
diate node is denoted as Ps(Ni). The set of such paths is denoted as Ps(Ni). For a given
Ns ∈ S(P(Ni)), let µs,i = |Ps(Ni)|.

From the assumptions from in Section 4.1 two approaches for the synthetic construction
of training instances follows.

5.2.1.1 Approach 1

Algorithm 5.1 describes a straightforward approach. Given Ni, each input vector is repres-
ented by the PDR of paths in Pi. At first, PDRs of all intermediate nodes in the network
are randomly generated. Using them and using the knowledge of the network communica-
tion arrangement, we calculate PDRs of the paths according to (2.4). These PDRs produce
one input vector, the output is the generated PDR(Ni). This pair of input and output
vectors crates one training instance.

It follows from [67] that our way of data construction will provide values close to those
collected from real traffic over a sufficiently long running time. Thus, the synthetic datasets
can model real data traffic.

Let us summarize that in this approach the number of inputs of a NNi for detec-
tion/estimation of PDR(Ni) is equal to the total number of paths where Ni is an inter-
mediate node. In general, γi ≤ p and p ≤ n(n − 1). This number of inputs may be very
large in practice, even if 10 ≤ n ≤ 50. Therefore, we have developed another approach,
see Algorithm 5.2.
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Algorithm 5.1 Straightforward generation of training matrix X (NNi) for all NNi in a
particular WANET

Input: P = {P1, P2, P3, ..., Pp}; m
Output: X (NNi), i ∈ {1, 2, . . . , n}

for all Ni do . for each intermediate node
γi = |P(Ni)| . calculate number of NN inputs
x = 1 . initialize index
for all P ∈ P(Ni) do

paths[x] = P ; increment x . create an array of γi paths containing Ni

end for
for all l ∈ {1, 2, . . . ,m} do . for each input vector

for all j ∈ {1, 2, . . . , n} do
randomly initialize PDR(Nj)

end for
for all k ∈ {1, 2, . . . , γi} do . for each input

calculate PDR(paths[k])
X (NNi)[l][k] = PDR(paths[k]) . write element of input vector

end for
X (NNi)[l][γi + 1] = PDR(Ni) . write output vector

end for
return X (NNi) . return training matrix

end for

Algorithm 5.2 Generation of training matrix X (NNi) for all NNi in a particular WANET

Input: P = {P1, P2, P3, ..., Pp}; m
Output: X (NNi), i ∈ {1, 2, . . . , n}

for all Ni do . for each intermediate node
γi = λi = |S(P(Ni))| . calculate number of NN inputs
for all l ∈ {1, 2, . . . ,m} do . for each input vector

for all j ∈ {1, 2, . . . , n} do
randomly initialize PDR(Nj)

end for
for all s ∈ {1, 2, . . . , γi} do . for each source node

for all t ∈ {1, 2, . . . , µs,i} do . there are µs,i such paths Ps(Ni)
calculate PDR(Ps(Ni)[t])

end for

X (NNi)[l][s] =
∑t=µs,i
t=1 (PDR(Ps(Ni)[t]))

µs,i
. write element of input vector

end for
X (NNi)[l][γi + 1] = PDR(Ni) . write output vector

end for
return X (NNi) . return training matrix

end for
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5.2.1.2 Approach 2

The second approach proposes to group the inputs by the source nodes of the paths, see
Algorithm 5.2. In this case the maximum number of inputs max(γi) = λi ≤ n − 1, see
Definition 5.2.3. Each input of a NNi is calculated as an average of PDRs of paths that
start in node Ns and contain node Ni. This approach is based on the assumption of evenly
distributed communication load among paths.

5.2.2 Example of Data Instance Calculations

Assume the example in Figure 5.5.

Table 5.2: All paths in the topology from Figure 5.5 with node N5 as intermediate.

Path Ns Path nodes PDR(Pi) X(NN5)[s]

P1 N1 〈N1, N5, N2〉 0.4

0.38
P2 N1 〈N1, N5, N6〉 0.4

P3 N1 〈N1, N5, N6, N3〉 0.4 * 0.9 = 0.36

P4 N1 〈N1, N5, N6, N4〉 0.4 * 0.9 = 0.36

P5 N2 〈N2, N5, N1〉 0.4

0.38
P6 N2 〈N2, N5, N6〉 0.4

P7 N2 〈N2, N5, N6, N3〉 0.4 * 0.9 = 0.36

P8 N2 〈N2, N5, N6, N4〉 0.4 * 0.9 = 0.36

P9 N3 〈N3, N6, N5, N1〉 0.9 * 0.4 = 0.36
0.36

P10 N3 〈N3, N6, N5, N2〉 0.9 * 0.4 = 0.36

P11 N4 〈N4, N6, N5, N1〉 0.9 * 0.4 = 0.36
0.36

P12 N4 〈N4, N6, N5, N2〉 0.9 * 0.4 = 0.36

P13 N6 〈N6, N5, N1〉 0.4
0.4

P14 N6 〈N6, N5, N2〉 0.4

At first PDR values of nodes N5 and N6 are randomly generated: PDR(N5) = 0.4 and
PDR(N6) = 0.9. Then the PDRs of the paths are calculated using formula (2.4). If we
apply the straightforward approach from Algorithm 5.1, we need a NN5 with 14 inputs to
detect if node N5 is trusted. This would increase the complexity of the learning process.
This number of inputs are reduced by averaging the path PDRs containing the investigated
node N5 for each source node Ns (column X(NN5)[s] in Table 5.2), see Algorithm 5.2. In
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our example, 14 paths are grouped in 5 groups by source nodes. Input vector is calculated
by taking the arithmetic means of the PDRs of constituent paths.

Table 5.3: All paths in the topology from Figure 5.5 with node N6 as intermediate.

Path Ns Path nodes PDR(Pi) X(NN6)[s]

P1 N1 〈N1, N5, N6, N3〉 0.4 * 0.9 = 0.36
0.36

P2 N1 〈N1, N5, N6, N4〉 0.4 * 0.9 = 0.36

P3 N2 〈N2, N5, N6, N3〉 0.4 * 0.9 = 0.36
0.36

P4 N2 〈N2, N5, N6, N4〉 0.4 * 0.9 = 0.36

P5 N3 〈N3, N6, N5〉 0.9

0.63
P6 N3 〈N3, N6, N4〉 0.9

P7 N3 〈N3, N6, N5, N1〉 0.9 * 0.4 = 0.36

P8 N3 〈N3, N6, N5, N2〉 0.9 * 0.4 = 0.36

P9 N4 〈N4, N6, N5〉 0.9

0.63
P10 N4 〈N4, N6, N3〉 0.9

P11 N4 〈N4, N6, N5, N1〉 0.9 * 0.4 = 0.36

P12 N4 〈N4, N6, N5, N2〉 0.9 * 0.4 = 0.36

P13 N5 〈N5, N6, N3〉 0.9
0.9

P14 N5 〈N5, N6, N4〉 0.9

Table 5.4: Input vectors of NN5 and NN6 with PDR(N5) = 0.4 and PDR(N6) = 0.9.

Investigated node Input vector

N5 X(NN5)[1] X(NN5)[2] X(NN5)[3] X(NN5)[4] X(NN5)[5]

0.38 0.38 0.36 0.36 0.4

N6 X(NN6)[1] X(NN6)[2] X(NN6)[3] X(NN6)[4] X(NN6)[5]

0.36 0.36 0.63 0.63 0.9

The change of the node PDR results in changes in some inputs depending on the
underlying topology. The examples of instances created on the same topology with different
PDRs can be seen in Tables 5.5 and 5.6. An algorithm that covers all potential topology
configurations and PDR values is hard to construct.

40



5.2. The NeNTEA Method Design

Table 5.5: Input vectors of NN5 and NN6 with PDR(N5) = 0.3 and PDR(N6) = 0.8.

Investigated node Input vector

N5 X(NN5)[1] X(NN5)[2] X(NN5)[3] X(NN5)[4] X(NN5)[5]

0.27 0.27 0.24 0.24 0.3

N6 X(NN6)[1] X(NN6)[2] X(NN6)[3] X(NN6)[4] X(NN6)[5]

0.24 0.24 0.52 0.52 0.8

Table 5.6: Input vectors of NN5 and NN6 with PDR(N5) = 0.2 and PDR(N6) = 0.7.

Investigated node Input vector

N5 X(NN5)[1] X(NN5)[2] X(NN5)[3] X(NN5)[4] X(NN5)[5]

0.17 0.17 0.14 0.14 0.2

N6 X(NN6)[1] X(NN6)[2] X(NN6)[3] X(NN6)[4] X(NN6)[5]

0.14 0.14 0.42 0.42 0.7

5.2.3 Architecture of NNi for Detection of Untrusted Nodes/Estimation
of Trust Value

The construction corresponds to Algorithm 5.2.
The schema of NNi is represented in Figures 5.6 and 5.7. X (NNi)[l][1] means the first

element of the lth input vector. The output for the T1 is True or False (Figure 5.6). The
output for the T1 is the PDR value of the investigated node (Figure 5.7).

5.2.4 Training

For a given NNi set of the X(NNi) from X (NNi) is applied to the NNi inputs. For each
X(NNi) the output is received, compared with the target output Y (NNi) and values of
weights are adjusted.

5.2.5 Trust Evaluation using NeNTEA

Sequence of steps to perform trust evaluation in a given WANET Using NeNTEA:

1. Collect the network communication arrangement, according to Definition 2.1.4;

2. Generate the data for training using Algorithm 5.2;

3. Train NNs as described in Section 5.2.4;

4. Collect the information about path PDRs from the WANET: for given i, i ∈ {1, 2, . . . }
the source nodes Ns provide the average of the PDR values of paths in Ps(Ni);
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Figure 5.6: Architecture of NNi for the detection if node Ni is trusted.

Figure 5.7: Architecture of NNi for the estimation of node Ni’s trust value.

5. Apply the trained NNs on the collected information to detect/estimate PDRs of
nodes of the WANET. The collected average PDRs of paths in Ps(Ni) are used as
input vector to the trained NNi and the output of NNi is taken as estimation of
PDR(Ni) data to get the result.
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5.3 NeNTEA Simulation and Experiments

5.3.1 Simulation environment

Our experiments consist of 3 steps. (1) Simulation of WANETs to generate data for training
and testing of NNs. (2) NNs training. (3) An application of the trained NNs on the testing
data and calculation of performance metrics. Figure 5.8 depicts this process.

Simulation of WANETs,
data generation

Data for 
training

Data for 
testing

NNs training

used for tested on

Trained NNs

1

2 3

Figure 5.8: Steps in the NeNTEA experiments.

Simulation of WANETs including generation of WANET topologies and generation of
training matrices for experiments was done using OMNeT++ 4.6 simulator and its INET
framework.

For our purposes the simulation in graphical runtime environment is not needed. The
simulator has command-line user interface for simulation execution. It runs on Windows,
Linux, Mac OS X, and other Unix-like systems. The NeNTEA experiments were performed
in Ubuntu (14.04, 16.04, and 18.04).

After the topologies and paths are generated by OMNeT++, the NNs training follows.
The FANN 2.2.0 (Fast Artificial Neural Network) library is a free open source neural
network library that implements multilayer artificial neural networks in C [48]. Several
different activation functions are implemented in it. The library has bindings for PHP,
Python, and Mathematica and the it also became accepted in the Debian Linux distribution
[47]. We created an application that allowed to set all important parameters by command
line arguments.

5.3.1.1 OMNeT++ simulation

We were considering WANETs of 20 nodes. This size is big enough for creating relev-
ant problems, yet small enough to carry a large number of simulations and to verify the
relevance of experimental results.
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An example of a WANET created for the simulation is presented in Figure 5.9. Position
of nodes were randomly generated within an area of 600m × 600m. Each node has an
omnidirectional antena with range 250m.

Figure 5.9: Structure of WANET in OMNeT++ simulation.

For the NeNTEA method any routing protocol can be used. In our particular imple-
mentation, the AODV algorithm was used for routing, as this is one of the most popular
ad hoc routing protocols [59]. Moreover, its implementation in the OMNeT++ simulator
is based on RFC 3561.

We assume that simulated WANETs are connected. Communication pattern assumes
that each node communicates periodically with all other nodes in the network. The path
from A to B is not equal to the path from B to A. Therefore, p = n(n− 1).

The structure of a node is presented of Figure 5.10. It has an omnidirectional antenna
(see Figure 2.2) and two interfaces: wireless NIC (wlan[0]) and loopback interface(lo0).

The status module keeps information if the node is up. The mobility module takes care
about node’s position. In our simulation nodes are not moving and initial positions are
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Figure 5.10: Structure of node in OMNeT++ simulation.

randomly generated.
The routingTable stores data about routes: destination, next hop, interface, source

(manual, routing protocol), administrative distance, metric and routing protocol specific
data.

The networkLayer performs routing with the help of the AODV module. When it
receives a packet from the higher layer, it makes a request to the routingTable, and if the
route exists, adds control information to the packet and sends it to NIC. If the route to
the destination was not found in the routing table, the networkLayer sends a request to
AODV to find ta route. When AODV finds a route, the packet can finally be forwarded to
the lower layer. The AODV module was adjusted in such a way that after finding a route
to the destination, it inserts an entry to the routing table, sets the route expiration time
to a number large enough for the route to be valid till the end of the simulation run since
fixed WANET topology is assumed.

The main module of a node that implements simulation logic is the trafficGenerator.
First it sends probe packets to all other nodes to discover the topology. As a result of
this, the routing table of each node should contain routes to all other nodes, specifically
addresses of the next hop nodes on the route to the destinations.

At this step there is a check whether the constructed topology is connected, meaning
that each node has routes to all other nodes. If it happens that the topology is disconnected,
it is discarded and next attempt to create topology follows.

The next step is to collect information about paths, i.e. identify all intermediate nodes.
After this step is accomplished, we have collected all information needed to perform data
generation.

5.3.1.2 Experiment setup

Five datasets were created, each containing 100 different WANET topologies. Each inter-
mediate node represents one problem instance with one instance file for which one NN will
be constructed and trained. For every problem instance 1000 training data instances and
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4000 testing data instances were constructed. In 50% of data instances the investigated
node is trusted, and in other 50% of data instances the investigated node is untrusted.

The threshold for trust should be set in the context of the network traffic. In our
experiments we set the trust threshold τ = 0.5. Later we performed experiments for
analyzing the influence of threshold value on the performance metrics of the NeNTEA
method (Section 5.4.1).

As it was mentioned in Section 2.4.3 the set of training instances should uniformly cover
the problem set. Data instances of particular problem are created by calculation of node
PDRs combinations according to the network communication arrangement. In more details
this is described in Section 5.2.1. The sufficient set of training instances can be obtained
by random generation of PDR values. The aim is to cover the whole set of possible values.
For the PDR values generation uniform and normal distributions were chosen.

As experiments with some datasets provided similar results, we will describe only three
datasets here. The rest two datasets and experiments with them are described in Appendix
A. All datasets were constructed for the same 100 WANET topologies with 20 nodes each.
Datasets differ in node PDRs generation:

Dataset 1, Uniform-one: represents WANET with one untrusted node. Node PDRs
are generated using uniform distribution.

Dataset 2, Uniform-all: represents WANET where all nodes can be untrusted. Node
PDRs are generated using uniform distribution.

Dataset 3, Normal-one: represents WANET with one untrusted node (similar to Data-
set 1), but node PDRs are generated using normal distribution.

Instance files for each dataset are generally of four types:

1. used for training NNs to solve the detection problem;

2. used for training NNs to solve the PDR estimation problem;

3. used for testing of the trained NNs to solve the detection problem;

4. used for testing of the trained NNs to solve the PDR estimation problem.

All of them are text files, created by a script that converts data files constructed by
OMNeT++ to the proper format required by training/testing and detection/estimation.

Instance files used for training contain information about the number of data instances,
the number of inputs and outputs of NNs. Outputs for detection problem are binary,
whereas outputs for estimation are PDR values of the investigated nodes.

Instance files for testing have a simpler format. Each row is one data instance, inputs
are followed with the output.
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5.3.2 Results evaluation

This sections defines the metrics for the evaluation of the NeNTEA performance.
Let Y ′(NNi) denote a vector of predicted output values by NNi for a given input

vector. During testing the Y ′(NNi) value can be equal to the target value Y (NNi) or
not. For the detection problem, the number of input vectors from the instance file I where
Y ′(NNi) = Y (NNi) is denoted as C(I).

Definition 5.3.1. The metric RD for measuring the quality of the detection of untrusted
nodes is defined as the ratio of the number C(I) of inputs that were correctly predicted to
the total number m(I) of data instances in the instance file and is measured in %:

RD =
C(I)

m(I)
∗ 100% (5.3)

Definition 5.3.2. Let us define difference J(X(NNi)) of the predicted output value from
the target output value for a particular input vector X(NNi) as:

J(X(NNi)) = |Y (NNi)− Y ′(NNi)| (5.4)

The sum of all this differences for all data instances in the instance file of size m(I) is used
to measure the NNi performance:

Sum(Ji) =
m∑
k=1

J(X(NNi))[k] (5.5)

Definition 5.3.3. The metric RE for measuring the quality of the estimation of a node
trust value should represent how the obtained results differ from the correct values. It is
defined as:

RE = (1− Sum(Ji)

m(I)
) ∗ 100% (5.6)

The values of RD or RE are calculated for every instance file.
We have performed 8 experiments on Datasets 1, 2, and 3. In order to see how successful

a given experiment was, we have calculated two general values:

◦ overall results,

◦ detailed results.

For the overall results we take the values RD or RE of all instance files from one topology
and calculate their average, median, minimum, and maximum. Then these descriptive
statistics are averaged by 100 topologies to minimize the effect of the particular topology
(see Tables 5.7 and 5.9).

The detailed results were calculated to understand how the ability of a NN to detect an
untrusted node or to estimate trust of a given intermediate node depends on the structural
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properties of a given WANET. We have grouped all the problem instances with the same
number of source nodes using an investigated node as intermediate. We have defined this
number as γi (Section 5.2.3). All topologies have 20 nodes and therefore every intermediate
node can be used by γi ∈ {1, .., 19} source nodes (cases of γi = 1 and γi = 2 are ignored) -
see Tables 5.8 and 5.10. The value of γi is equal to the number of inputs of the corresponding
NNi modeled for those problem instances. We calculate the median, quartiles Q1 and Q3,
minimum, and maximum of the quality metrics RD or RE and draw box-and-whisker plots
(Figures 5.11 and 5.12).

5.3.3 Experiments with NN Architecture

First experiments was performed to adjust the following NN parameters:

◦ the type of NN;

◦ momentum and learning rate;

◦ the number of layers;

◦ the number of learning epochs;

◦ the number of neurons in the hidden layer.

These parameters are independent and together they create a lot of possible combin-
ations. It would be very hard to investigate all of them. In the following paragraphs the
reasons for choosing particular values are given.

We are bound to operate with available implementations of NN, namely OpenNN and
FANN. The later was used for the implementation of NNs in our research. As for topology,
both libraries are implementations of multilayer feed-forward NNs. In search of suitable
parameters for solution, several models of a neuron were tested: perceptron with the
sigmoid activation function and RBF neuron with Gaussian activation function. It turned
out that on constructed data perceptrons learn faster and have better performance.

The FaNN library uses Rprop backpropagation algorithm as the default learning method.
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning
in feedforward artificial NNs. Rprop is one of the fastest weight update mechanisms [33].

Parameters of this learning method such as momentum and learning rate were left with
default values, as they showed good performance. The increase factor η+ is empirically set
to 1.2 and the decrease factor η− to 0.5, see Section 2.4.3 [33].

One hidden layer is sufficient for the large majority of problems [50]. We have performed
several experiments that showed that one hidden layer is sufficient for our research.

Several experiments were conducted to figure out the best combination of NN paramet-
ers, such as the number of neurons in the hidden layer or the number of learning epochs.
The learning process does not get the same results for the same inputs because the initial
weights configuration is randomly generated. To minimize the impact of this randomness,
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ten detections and ten estimations for every investigated parameter combination were car-
ried out. This experiment showed that the quality of the detection is influenced more by
the number of learning epochs than by the number of neurons in the hidden layer.

The number of learning epochs changed the result quality significantly between 1000
and 2000. Other changes increased the quality of results very slightly. The number of
learning epochs influences not only the quality of results but also the total time of learning
process. Therefore, we chose 2000 learning epochs.

We wanted to pick up parameters both for detection and estimation. For 2000 epochs
5 neurons in the hidden layer showed the best results.

5.3.4 Experiments with Detection of Untrusted Nodes

During the experiments we tried various combinations of datasets for training and datasets
for testing and obtained the following results.

5.3.4.1 Experiment 1

The NNs trained on Uniform-one dataset were tested again on data from Uniform-one
dataset. The overall results can be seen in Table 5.7.

Table 5.7: Experiments with detection - overall results of RD.

Experiment
Dataset
trained

Dataset
tested

Average Median Minimum Maximum

Experiment 1 Uniform-
one

Uniform-
one

98.78 98.85 96.94 99.75

Experiment 2 Uniform-
one

Normal-
one

97.81 97.91 94.35 99.67

Experiment 3 Normal-
one

Uniform-
one

98.55 98.62 96.70 99.64

Experiment 4 Normal-
one

Normal-
one

98.22 98.35 95.14 99.74

Experiment 5 Uniform-
one

Uniform-
all

96.96 96.99 93.26 99.57

Detailed results of Experiment 1 can be found in Table 5.8.
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Table 5.8: Experiment 1 - detailed results of RD.

# of NN inputs (γi) Average Median Minimum Maximum # of problem instances

3 96.01 97.03 85.88 100 121

4 96.63 99.65 82.68 99.98 99

5 97.57 99.64 87.98 99.98 78

6 98.62 99.73 90.35 100 61

7 98.58 99.63 89.85 100 77

8 98.81 99.65 89.15 99.98 57

9 99.32 99.61 95.13 99.98 46

10 99.56 99.65 97.43 100 74

11 99.48 99.59 97.43 99.93 68

12 99.46 99.63 90.65 99.93 71

13 99.38 99.65 93.98 99.98 63

14 99.54 99.58 98.35 99.90 65

15 99.38 99.58 93.80 99.88 61

16 99.44 99.55 96.28 99.93 68

17 99.45 99.53 98.13 99.93 94

18 99.48 99.55 98.20 99.98 119

19 99.43 99.48 98.30 99.93 218

Figure 5.11 contains detailed results of Experiment 1 represented by box-and-whisker
plot.

The quality of detection depends on γi. It can be seen that RD increases with γi and
its dispersion decreases.

5.3.4.2 Experiment 2

This experiment uses the learned NNs from Experiment 1 to classify the testing data
from Normal-one dataset. This experiment was an attempt to check the ability of NN
trained on the uniform data to work with different type of data, namely data generated
by normal distribution. The results are in Table 5.7. The quality is slightly worse than in
Experiment 1.
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Figure 5.11: Experiment 1 detection - detailed results of RD.

5.3.4.3 Experiment 3

The NNs trained on Normal-one dataset were tested on the data from Uniform-one dataset.
It provided better quality than Experiment 2. The results can be seen in Table 5.7.

5.3.4.4 Experiment 4

This experiment tests the NNs trained on data with normal distribution on the same data.
It is interesting, because it shows that the quality metric of NNs is slightly better on
uniform data (Experiment 3) than on the normal data on which they were trained (Table
5.7).

5.3.4.5 Experiment 5

Since the results in the first four experiments were surprisingly good, we decided for an-
other, harder, experiment with detection. What if we apply the NNs trained on the dataset
with only one untrusted node to the networks with random number of untrusted nodes?
For this experiment Uniform-all dataset was used as input for NNs trained on Uniform-
one dataset. According to Table 5.7, this experiment provided slightly worse results than
preceding experiments with detection, but the minimum RD is still 93%.

51



5. The 1st Contribution: the NeNTEA Method

5.3.4.6 Other experiments with detection

More experiments were conducted and other datasets were tried (with two untrusted
nodes). However, the results were not so interesting and therefore they are not provided
here, but in Appendix A.

5.3.5 Experiments with Estimation of Trust Values

For the problem of estimation no threshold value is defined.

5.3.5.1 Experiment 6

In this experiment the NNs trained on Uniform-all dataset are used. Testing was held on
the same dataset. The overall results are shown in Table 5.9.

Table 5.9: Experiments with estimation - overall results of RE.

Experiment
Dataset
trained

Dataset
tested

Average Median Minimum Maximum

Experiment 6 Uniform-
all

Uniform-
all

0.9661 0.9676 0.9412 0.9776

Experiment 7 Uniform-
all

Normal-
one

0.9420 0.9449 0.9084 0.9581

Experiment 8 Normal-
one

Uniform-
all

0.9250 0.9263 0.8679 0.9773

It can be seen that the quality is over 96%, which is a very good result for the estimation
of trust value of a node from the averaged values of paths’ trust. If we take a look at the
detailed results sorted by the number of inputs in Table 5.10 and Figure 5.12, we can notice
worse quality for small γi. This behavior is similar to Experiment 1.
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Table 5.10: Experiment 6 - detailed results.

# of NN inputs (γi) Average Median Minimum Maximum # problem instances

3 92.75 96.12 81.23 98.18 121

4 93.75 97.50 80.20 98.22 99

5 94.78 97.52 82.47 98.38 78

6 96.13 97.60 85.26 98.18 61

7 96.32 97.59 85.01 98.23 77

8 96.47 97.60 83.34 98.32 57

9 97.26 97.65 89.34 98.30 46

10 97.52 97.64 93.23 98.13 74

11 97.69 97.71 95.05 98.23 68

12 97.50 97.67 85.02 98.12 71

13 97.46 97.70 89.53 98.28 63

14 97.70 97.71 96.33 98.23 65

15 97.31 97.64 88.32 98.18 61

16 97.66 97.71 93.36 98.22 68

17 97.64 97.67 95.35 98.20 94

18 97.70 97.70 97.10 98.32 119

19 97.57 97.72 64.67 98.28 218
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Figure 5.12: Experiment 6 estimation - detailed results of RE.

5.3.5.2 Experiment 7

The previous experiment achieved good results on the ideal data. In this experiment
the same NNs were tested on Normal-one dataset. This experiment should simulate the
quality of NNs under different conditions. As it was expected, the quality is worse than in
Experiment 6. However, according to Table 5.9, it is still over 94%.

5.3.5.3 Experiment 8

NN is trained on the data from Normal-one dataset, which represent WANETs with at
most one untrusted node and normal distribution of PDR values. This NNs are tested on
Uniform-all dataset, where all nodes in a WANET can be untrusted. Although the task
looks difficult, NNs surprisingly coped well with it (see Table 5.9).
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5.4. Assessment of the NeNTEA

5.4 Assessment of the NeNTEA

5.4.1 Analyzing the Influence of Threshold Value τ and # of NN
Inputs γi on RD

According to our experiments shown in Figure 5.13, NNs can better detect an untrusted
node when the threshold value is set close to 0.6. RD is decreasing while going with τ
towards the values of either 0 or 1.
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Figure 5.13: Dependency of results RD on the threshold.

Analysis of the influence of a particular WANET’s topological properties is done by
grouping all problems by the number of NN inputs γi (see Figure 5.14, horizontal axis). It
could be seen that the more inputs a NN has, the better its performance is.
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Figure 5.14: τ = 0.6 - RD dependency on γi.

5.4.2 Spoofed Input Vectors

The method’s performance was previously evaluated with the assumption that all inform-
ation provided by nodes about paths and their PDRs is correct. It was done for the
proof-of-concept to determine if the method works. The next step is to examine how ro-
bust the method is to the provided incorrect information, thus NNs ability to generalize.
The motivation for these experiments is the fact that nodes can provide intentionally or
unintentionally incorrect data.

NNs are trained on correct data and then tested on some spoofed input, meaning some
values of path PDRs are changed.

First, we describe different scenarios for the calculations of changes in input vectors.
A random path (first and second scenarios) or node, which is a source of one NN input,
(third and fourth scenarios) is selected for each instance to be a source of spoofed input:

1. ScenarioA: PDR of one randomly chosen path is inverted according to Equa-
tion 5.7.

2. ScenarioB: PDR of one randomly chosen path is changed according to Equations
in (5.8).

3. ScenarioC: One randomly chosen element of NN input vector is inverted according
to Equation 5.9.

4. ScenarioD: One randomly chosen element of NN input vector is changed according
to Equations in (5.10).
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5.4. Assessment of the NeNTEA

Since 0 ≤ PDR(P ) ≤ 1, to invert the value, the changed PDR∗(P ) is calculated as:

PDR∗(P ) = 1− PDR(P ), (5.7)

The inversion changes PDR value drastically. Another way that may better reflect
reality is to calculate the spoofed value is with the respect to the threshold τ . Cases that
should be covered are depicted in Figure 5.15.

Figure 5.15: Cases of spoofing input vector.
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5. The 1st Contribution: the NeNTEA Method

This cases are covered by the following equations:

τ < 0.5;PDR(P ) > τ : PDR∗(P ) = max(0; 2τ − PDR(P ))

τ ≤ 0.5;PDR(P ) ≤ τ : PDR∗(P ) = 2τ − PDR(P )

τ ≥ 0.5;PDR(P ) > τ : PDR∗(P ) = 2τ − PDR(P )

τ > 0.5;PDR(P ) ≤ τ : PDR∗(P ) = min(1; 2τ − PDR(P ))

(5.8)

The same calculations are applied for the element X(NNi)[γ] of the input vector of
NNi, see Equations 5.9 and 5.10.

X(NNi)[γ]∗ = 1−X(NNi)[γ], (5.9)

τ < 0.5;X(NNi)[γ] > τ : X(NNi)[γ]∗ = max(0; 2τ −X(NNi)[γ])

τ ≤ 0.5;X(NNi)[γ] ≤ τ : X(NNi)[γ]∗ = 2τ −X(NNi)[γ])

τ ≥ 0.5;X(NNi)[γ] > τ : X(NNi)[γ]∗ = 2τ −X(NNi)[γ])

τ > 0.5;X(NNi)[γ] ≤ τ : X(NNi)[γ]∗ = min(1; 2τ −X(NNi)[γ])

(5.10)

5.4.2.1 Comparison of Performance Metric RD for All Scenarios of Spoofing

The experiments provide metrics RD for the particular scenario, in the following paragraphs
we compare the results of different scenarios.

As the median is not affected by outliers, we compare medians of success detection
for all four scenarios. The comparison is depicted in Figure 5.16. We have the original
implementation compared to our four scenarios. We can see that if the PDR value is
inverted, the NN has a more significant difficulty in detecting it. Moreover, while inverting
one NN input, our method has worse performance compared to just one path inversion.
Nevertheless, the results are still pretty good. In the worst scenario (the third one), the
method shows almost 90% detection success on average.

The comparison shows that NN performs better when spoofed trust values are calcu-
lated with respect to the threshold, according to (5.8) or (5.10). If we invert the input
value, the performance of NN is worse. The explanation is simple: in case we respect
the threshold, value alteration is smaller, thus NNs can generalize better. Even in the
worst-case scenario, our method performance did not drop below 84%.

5.4.3 Discussion

5.4.3.1 Comparison with other methods for detection of untrusted nodes

Table 5.11 shows a comparison of our method with several other methods that deal with
trust in WANETs and use similar performance metrics (detection ratio). The comparison
is based, however, on data obtained with different simulators with different parameters and
simulation scenarios. Unfortunately, no shared benchmarking methodology or environment
exists. Implementation of methods is hard and beyond the scope of this dissertation.
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Table 5.11: Comparison of different methods for detection of untrusted nodes.

Method Description
# malicious

nodes %
Detection
ratio %

Reference

TDSR Time-passed model 5 97 [72]

TSR Fuzzy-logic rules prediction 5 98 [72]

PASID Passive traffic monitoring 5 95 [55]

Fuzzy Trust EigenTrust-based 10 90 [65]

Our NN-based 5 98 -

5.4.4 Summary

First, we reviewed the assumptions for the application of NNs for estimating trust in
WANETs. We stated the problem and suggested its solution using NNs. We developed
a simulator of WANETs, containing a generator of datasets (see Section 5.3.1.2). These
datasets were used to train and validate performance of NNs on various data. Our exper-
iments show clearly that NNs can be effectively used for solving the problem of detection
of untrusted nodes and trust estimation in WANETs.

From the experiment results it can be seen that our NN-based method provides worse
detection of untrustedness for nodes with small γi (see Figure 5.11). Our explanation is
the following: if there are only few paths passing through a node, it is harder to detect
precisely that it is untrusted. NNs for nodes with γi > 5 show very good results. A similar
behavior of NNs was observed in case of the trust estimation (see Figure 5.12).

It was also shown that NNs trained on data with normal distribution cope better with
data with uniform distribution rather than with normal distribution.

Further, we analyzed the threshold value’s influence on the method performance. Ana-
lysis showed that NNs perform best near τ = 0.6 and slightly lose their ability to detect
an untrusted node at τ values close to either 0 or 1. The analysis of the threshold value’s
influence was refined by grouping all problems by the number of NN inputs. This step
allows confirming the assumption that the more inputs NN has, the better it performs.

The last part was dedicated to the generalization ability of the method. Having cre-
ated four scenarios of spoofed input data, we have implemented them and compared the
method performance. The comparison shows that NNs perform better when trust values
are changed with respect to the threshold, as change in the input value in this case is
smaller, thus NNs generalize better. For the worst-case scenario, our method performance
did not drop below 84%.

The NeNTEA method is an input for our novel design in the next Chapter.
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5.4.4.1 Benefits of the proposed approach

The application of our NN-based method to detect untrusted nodes and estimate trust
values in a running WANET with a given topology is the following: we take trained NNs
for the given topology, we collect path PDRs from the running WANET, use them as inputs
to the NNs, and the NNs make decisions whether a given node is trusted or estimate the
node trust values.

The benefit of the proposed approach is that we can simulate all possible node behaviors
with the knowledge of the underlying paths and generate data for training. Therefore,
the training of NN can be performed quickly without active measurement on a WANET.
Comparing to other methods that need active measurements on the network to perform the
learning phase [76], [39], our method does not, and that is its advantage. Passive collection
of statistical data from regular communication lowers the network overhead.

The advantage of the NN-based estimation of node trusts is that some inputs can be
spoofed, and the NN still predicts trust with high success [A.2].
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Figure 5.16: Comparison of the medians of RD for original testing data generation and
ScenarioA, ScenarioB, ScenarioC and ScenarioD.
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Chapter 6

The 2nd Contribution: the TARA
Method

The main idea of the approach is to enforce route discovery through the trusted nodes
from outside of the routing protocol. Our trust mechanism (NeNTEA) [A.1] uses a neural
network to estimate the trust of nodes. These trust estimations are then used to influence
the route discovery phase of a reactive ad hoc routing protocol in such a way that more
trusted routes are preferred. Untrusted nodes are penalized during the route discovery
phase by delaying the RREQ messages of those nodes. Thus the node trust values influence
the routing decisions indirectly to improve the performance of reactive ad hoc routing
protocols. The previous approaches used trust values directly to make routing decisions.

We have built up a simulation proof-of-concept framework and conducted an extensive
experimental evaluation of the proposed solution. As the ad hoc routing protocol, we
chose the AODV protocol. DSR route discovery process is similar to AODV [53]. Thus,
the results from the simulations with the AODV protocol can be applied to the DSR
protocol, too.

Also, we perform a study of the ways the proposed solution influences the metrics of
the routing protocol. Another problem is to find the best combination of parameters and
to create recommendations on how to tune the method settings according to the particular
use cases.

To the best of our knowledge, all previous methods of enhancing ad hoc routing with
trust used the trust values directly in routing decisions. This is different from our approach
in which route discovery messages through the untrusted nodes are penalized by delays,
but the routing algorithm itself remains unchanged. This is one of the main contributions
of this research.
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6.1 Design of the TARA method

6.1.1 The Main Idea

The main idea is that the RREQ message delivery is delayed according to the trust of
the previous hop node. The goal of the trust-aware route discovery is to prefer routes
consisting of more trusted nodes. We will call this method TARA (Trust-Aware Reactive
Ad hoc routing).

In the rest of the work, we will use the AODV protocol as the reactive ad hoc routing
protocol. However, the proposed adaptivity of route discovery on trust values of nodes is
independent of routing protocol implementation. It should work with any reactive ad hoc
routing protocol that accepts the first obtained route.

To make the TARA method independent of the particular ad hoc routing protocol,
the delaying of RREQ messages needs to be implemented as an interlayer of the ISO-OSI
model. Such interlayer needs to be placed between the link and the network layer, and
its job is to filter the RREQ messages coming from the link to the network layer. For
each RREQ message, this interlayer decides how long the message will be delayed before
sending it to the network layer. The delay value is derived from the estimated PDR value
of the neighbor node that sent or resent the RREQ message. In this work, we consider
three functions to calculate these delays, see Section 6.1.5.

6.1.2 Trust Distribution

In order to successfully deploy the suggested solution, each node needs to know the estim-
ated PDRs of its neighbors. Our use case and communication model implies that the sink
node always communicates with all other nodes. Thus, it can collect all necessary statist-
ical data, estimate the trust of the nodes using NeNTEA, and distribute trust estimations
to all nodes in the network. We assume that the topology of the network does not change
or changes slowly in time, and each route found by the AODV protocol is used periodically
or very often, therefore it does not expire.

In this work, we do not consider scenarios in which routes are rediscovered and the
sink node recomputes the impacted trust values as a reaction to network changes. We will
simply assume that all nodes receive the trust estimation, and we will focus on how the
TARA method performs compared to the standard AODV protocol.

6.1.3 Definition of the Time Unit

Our simulation of the TARA method does not model real devices. Instead, it reproduces
the results of their behavior. Thus, the simulation does not include the precise timing of
the communication in a network. We decided to establish a reference operation that takes
for simplicity constant time. This operation is the retransmission of the message to the
next hop under ideal conditions. In reality the retransmission is not an atomic operation
and it is influenced by many factors, such as node performance or the amount of data
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traffic going through that node. We expect that all nodes are identical and the data traffic
is not too dense, therefore we could neglect these factors. We define Time Unit (TU) to
represent the retransmission time. All metrics related to time use TU as a unit.

6.1.4 Performance Metrics

To better understand and evaluate the TARA method performance, we specify the per-
formance metrics. We define four metrics as follows.

6.1.4.1 Network-wide Average PDR

In order to investigate the overall losses caused by the low PDR of some nodes, we define
the average PDR metric (PDRavg), which is the mean of all path PDRs in the network:

PDRavg =

∑p
i=1 PDR(Pi)

p
, (6.1)

where Pi is the i-th path and p = |P| is the number of paths in the network. For our
use case of sensors sending data to one sink, there are p = n− 1, where n is the number of
nodes in the WANET.

6.1.4.2 Network-wide Average Path Length

When we incorporate trust into the routing protocol, it does not find the shortest paths
anymore. It may pick more trusted but longer alternative routes. The metric called average
path length (PLavg) helps us understand how the average path length was influenced by
incorporating trust into the route discovery mechanism. PLavg is defined as:

PLavg =

∑p
i=1 PL(Pi)

p
, (6.2)

where p is the number of paths Pi in the WANET.

6.1.4.3 Average and Maximum Delivery Delay of RREQ Messages

Since the TARA method delays the RREQ messages to improve the PDR of the paths
in the network, it, on the other hand, prolongs the time of the new route discovery. We
call it route discovery delay (RDD). So metrics PDRavg and RDDavg are counteractive:
improvement of one can deteriorate the other. In order to investigate these dependencies,
we define two metrics:

◦ average route discovery delay (RDDavg),

◦ maximum route discovery delay (RDDmax).
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Both metrics are measured in TU s. The reason why we picked two metrics of RDD
instead of one is that for some topologies the maximum reaches really impractical values,
thus some routes cannot be found. This could be a problem for network applications
when the routes to all nodes need to be found. For these purposes, it is more relevant
to consider RDDmax. On the other hand, some network applications do not require to
communicate with all nodes (for example, it is expected that some sensors are lost or no
longer operational), and then the RDDavg is a more useful metric.

6.1.5 Delay Functions

We consider three functions for delaying RREQ messages depending on a node PDR. Each
delay function input consists of the estimated PDR and some function parameters and the
output is the calculated delay D of the RREQ message in TU . Each function is described
in detail in the following sections. The graphical representation of all functions is in Figure
6.1.
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Figure 6.1: Delay functions.

6.1.5.1 Constant Delay Function

The most straightforward function that we experimented with is the Constant Delay func-
tion. The idea is to set the delay value to the maximal delay (MD) every time the estimated
PDR of the neighbor node drops below the THR. The purpose of the THR value is not to
penalize the nodes with relatively high PDRs. The value of D is calculated as a function
of THR, MD, and estimated PDR (Algorithm 6.1).

We expect this function to have the worst results among all metrics. However, it helps
us see whether delaying the RREQ messages can be successful at all. We also expect that
higher MD values increase the resulting PDRavg and both RDD metrics.

6.1.5.2 Linear Delay Function

The previous function does not take into account the value of the estimated PDR. The
THR value helps solve this insufficiency only partially. The Linear Delay function delays
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Algorithm 6.1 Constant Delay function specification

Input: THR ∈ [0, 1]; MD > 1; PDR ∈ [0, 1]
Output: D ≥ 0

if PDR < THR then
D ← MD

else
D ← 0

end if
return D

RREQ messages linearly according to the PDR of the node that sent or resent the RREQ
message up to the MD value. And we use the threshold, too. The value of D is calculated
as a function of THR, MD, and estimated PDR (Algorithm 6.2).

Algorithm 6.2 Linear Delay function specification

Input: THR ∈ [0, 1]; MD > 1; PDR ∈ [0, 1]
Output: D ≥ 0

if PDR < THR then
D ← MD ∗ (1− PDR)

else
D ← 0

end if
return D

In this case, we expect that the THR value does not have a positive impact on the
results. We also expect that higher MD values increase PDRavg and both RDD metrics.

6.1.5.3 Exponential Delay Function

The last suggested function delays RREQ messages more for the nodes with small estimated
PDR and less for nodes with higher estimated PDR in comparison with the Linear Delay
function. The differences are clear from Figure 6.1. The shape of the curve is determined by
the following function depending on three parameters - BASE, MD, and PDR (Algorithm
6.3).

Algorithm 6.3 Exponential Delay function specification

Input: BASE ≥ 2; MD > 1; PDR ∈ [0, 1]
Output: D ≥ 0
D ← MD ∗ (BASE1−PDR − 1)/(BASE− 1)
return D

As we can see from the function specification, the BASE value influences the bend of
the curve, and the MD value scales the curve in the vertical direction. We expect that
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this function could have better results than the Linear Delay function because it penalizes
more the nodes with worse PDR. We also expect that the RDD metrics values could be
smaller in comparison with the Linear Delay function for the similar PDRavg values.

6.1.6 Assumptions

In this part, we present implementation and results of the TARA, method for the incor-
poration of node trusts into reactive ad hoc routing protocols. The TARA method does
not require changes to the routing protocol itself. Instead, it influences the routing choice
from outside by delaying the route request messages of untrusted nodes. The method was
simulated on the use case of IoT/sensor nodes sending data to a sink node. The results
of experiments showed that the method improves the packet delivery ratio in the network
by about 70%. We report results of the extensive amount of experiments providing an
understanding of criteria for achieving an optimal trade-off between packet delivery ratio
and route discovery delay requirements.

However, for the NN-based trust estimation method to perform reasonably, network
topology should change slowly. Since the method proposed in this work is designed to run
in symbiosis with the NN-based trust estimation method, we assume that the positions
of all network nodes are fixed. Considering the communication model, the environmental
conditions may change (e.g., some obstacles appear), so even with the fixed topology, PDRs
of nodes and thus their trusts may change in time.

6.1.7 Simulator

The simulator is written in Python and has a modular structure. Each logical component
of the simulated problem was implemented as a separate module. Therefore, functionality
can be easily changed by replacing the module. The basic structure is shown in Figure 6.2.
The logical functioning and behavior of individual modules are described in the following
subsections.

6.1.7.1 Layout Module: Modeling the Network

A WANET is modeled as a graph with set of vertices N = {N1, N2, ..., Nn} that represent
network nodes and set of edges L = {L1, L2, ..., Le}. Every edge represents a bidirectional
link between exactly two nodes. The set of nodes and links together create a WANET
topology.

The parameters for generating the set of network nodes are the 2D area size, the default
value is 100x100, and the number of nodes, the default value is 100. We use the uniformly
random distribution to generate the positions of nodes in the selected 2D area.

6.1.7.2 Topology Module: Generating Topologies

One of the main property of each topology is its density that is related to the number of
links between nodes. Density highly influences the number of alternative paths between
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Figure 6.2: Module architecture of the simulator.

any two nodes in the network. Together with the total number of nodes, density is the
most important parameter to observe when observing the behavior of routing mechanisms.
To describe the density, we borrowed the definition from the graph theory. We use the
average vertex degree (AVD), which tells us how many neighbors each node has on average.

When generating a topology for a given 2D random distribution of node positions, we
want to create a connected topology, and at the same time, we want to achieve a specific
density. We decided to use the topology control algorithm called Lune β-skeleton [10]. The
performance of this algorithm is influenced by parameter β that produces the topologies
with various densities. A smaller β value creates a higher density network while a greater
value produces a lower density network. An example of the difference between topologies
created with various β parameters is in Figure 6.3. β = 1 produces a topology with more
links and higher AVD compared to β = 2.

The advantage of this method is that for β ≤ 2, it is ensured that the resulting topology
is always connected if it was connected before the application of the algorithm. In our case,
we started with the complete graph topology and then reduced the number of links with
the help of this algorithm.

The resulting AVD of each topology depends on the β parameter and on the initial
positions of all nodes. Therefore, the same β value produces topologies with slightly
different AVDs. The dependency of the average vertex degree on the β value is shown in
Figure 6.4.
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(a) β = 1 (b) β = 2

Figure 6.3: Two networks with the same distribution of nodes in the area but with
different densities controlled by the β parameter.
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Figure 6.4: Average vertex degree as a function of the β parameter.

6.1.7.3 Routing Module: AODV Implementation

Our simulator does not implement the full specification of the AODV protocol. We imple-
mented only the result of the AODV protocol operation. No node-to-node communication
is simulated. We focused only on the way how the AODV protocol discovers the new paths
and how this process is influenced by our delay mechanism.

Since the AODV route discovery process is based on flooding, it always finds the fastest
discovered path. To simulate this behavior, we use Dijkstra’s algorithm for searching
shortest paths where the distance is the delay in TU s. If the trust penalization of a RREQ
message is not involved, the delay between neighboring nodes is exactly 1 TU . Otherwise,
the delay is 1 TU plus penalization D computed by the given delay function (Constant,
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Linear, or Exponential). If Dijkstra’s algorithm returns more paths with the same delay,
one of them is randomly selected. This simulates the real ad hoc routing where the fastest
discovery depends (randomly) on various physical constraints (e.g., communication load).

We also implemented both AODV modes, namely when the Destination only flag is
turned on (DFT) or off (DFF).

6.1.7.4 Scenario Module: Trust Distribution

This module allows to change the behavior of nodes in terms of trust.

In order to investigate the performance of the TARA method, we prepared several
scenarios that differ by the number of nodes with PDR < 1, i.e., potentially untrusted
nodes (depending on the threshold value). Nodes with PDR < 1 were selected randomly.
The PDR values for these nodes were generated uniformly from the interval [0, 1]. We have
limited the simulation scenarios to cases where the percentage of nodes with PDR < 1 are
10%, 20%, 30%, 40%, and 50%. In the following sections, we denoted these trust scenarios
as SC-10, SC-20, SC-30, SC-40, and SC-50.

6.1.7.5 Instance Module

The Instance module defines the parameters of one specific simulation instance. Specific
values of parameters of one simulation instance are called its configuration. Table 6.1 lists
all parameters of the simulation instance configuration and their default values.

Table 6.1: Parameters of simulation instance.

Parameter Default Value

2D area size 100x100

distribution of node positions uniform

link type bidirectional

number of nodes n 100

β-parameter 1.0

trust distribution scenario SC-50

Delay function none

Destination only flag DFT

Default configuration simulates a general use case of reasonably large networks. Area
and distribution of node positions allow to create variety of topologies in order to test fairly
the TARA performance.
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6.1.7.6 Simulation Module

The purpose of the Simulation module is to run simulation instances and collect, process,
and save the simulation results. The unit of the simulation is 1 experiment which is 100 runs
of one simulation instance configuration, each with different node positions and therefore
with different topologies, generated by the Lune β-skeleton for the given β.

6.2 Experiments and Results

Within each experiment, we calculate PDRavg,PLavg,RDDavg (see Section 6.1.4) as average
over all generated 100 topologies of the experiment. RDDmax is the maximum over all the
100 topologies, representing the worst RDD. This allows to choose the best parameters
of the delay function. More specifically, if some particular combination of parameters
produces a reasonable PDRavg, but at the same time the value of RDDmax is too high, it
just means that the overhead of the route discovery is too high, and such combination of
parameters is not acceptable. The goal of experiments is to find values of configuration
parameters that maximize PDRavg and minimize RDDavg at the same time.

For each combination of parameters, we simulate two versions of the outputs depending
on whether the Destination only flag is enabled (DFT) or not (DFF).

The reference experiment is an experiment with default values (see Table 6.1) of con-
figuration. Especially, no delay function is used and, therefore, the AODV protocol is run
in the standard mode, and untrusted nodes are not penalized.

The performance of each experiment will be compared relative to the performance of
the reference experiment. We will enumerate the relative change for a particular metric
δmetric by formula (6.3).

δmetric =
V aluemetric −ReferenceV aluemetric

ReferenceV aluemetric
∗ 100% (6.3)

δmetric = 0% means that the metric value has not changed compared to the reference
value. Also, δmetric can be more than 100% (see Table 6.5).

6.2.1 Dependence of the TARA Method Performance on the Delay
Function

The configuration of the reference experiment is 2D area 100x100, uniform distribution of
100 nodes, bidirectional links, β = 1.0, and no delay function is applied (trust distribution
scenario is irrelevant). The performance results of the reference experiment are shown in
Table 6.2.
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Table 6.2: Performance metrics for the reference experiment.

Flag PDRavg PLavg RDDavg RDDmax

DFT 0.35 6.13 6.13 16

DFF 0.34 7.28 1.42 15

When no delay function is applied, delay at each hop is 1 TU. Thus, RDDavg = PLavg
if DFT, whereas RDDavg < PLavg if DFF.

6.2.1.1 Constant Delay Function

The Constant Delay function serves as a proof of concept that should show us whether
the TARA method has the potential to improve the performance of a WANET with un-
trusted nodes. For the experiments with the Constant Delay function, we chose the most
pessimistic scenario SC-50. Experiments were conducted with several combinations of MD
and THR parameter values for both DFT and DFF. The performance results for DFT are
plotted in Figure 6.5 and for DFF in Figure 6.6.
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Figure 6.5: Constant Delay function + DFT.

It follows from these figures that PDRavg achieves maximum for THR around 0.7.
The reason is that the Constant Delay function penalizes nodes with PDR < THR. If
THR = 1, then nodes with high PDR values are penalized by the function, making it
impossible to find routes through them. On the other hand, THR = 0.5 is a bad choice,
as nodes with relatively low PDR values are not penalized. Thus THR value of these
boundary values gives worse results.

The maximum value of PDRavg and the minimum value of RDDavg and combinations
of delay function parameters to reach them are presented in Table 6.3.

The Constant Delay function does not reflect differences in trust values at all. Smaller
values of MD are not enough for trusted path selection; on the other hand, too great
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Figure 6.6: Constant Delay function + DFF.

Table 6.3: Constant Delay function parameters that provided the best values of metrics.

Flag
Perfor. Best

δmetric
Parameters Other metric values for context

metrics value THR MD PDRavg PLavg RDDavg RDDmax

DFT
PDRavg 0.53 51% 0.7 16 - 7.60 17.90 102

RDDavg 7.22 18% 0.6 1 0.45 6.37 - 19

DFF
PDRavg 0.52 54% 0.6 16 - 8.57 2.82 63

RDDavg 1.57 11% 0.6 1 0.43 7.70 - 18

MD value does not make a significant improvement of PDRavg but instead worsens route
discovery delay RDDavg.

The best PDRavg value is achieved for MD = 16. Further increasing of MD does not
bring additional improvement, only worsening the RDDavg. Results of the experiments
with the Constant Delay function validated the proof of concept. The TARA method
improved PDRavg by 51% (DFT) and 54% (DFF) compared to the reference experiment.

6.2.1.2 Linear Delay Function

Result plots for the Linear Delay function have similar shapes compared to the Constant
Delay function, compare Figures 6.7 and 6.8 with Figures 6.5 and 6.6. However, with the
same configuration parameters, the TARA method with the Linear Delay function achieves
significantly better PDRavg and RDDavg.

For the Linear Delay function, smaller MD values penalize all nodes almost the same
way, and penalization became fairer with greater values.

THR value does not influence PDRavg significantly. That is because the linearity of the
delay function already plays the same role as the THR in Constant Delay function.
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Figure 6.7: Linear Delay function + DFT.
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Figure 6.8: Linear Delay function + DFF.

Further dependence found in results is that the RDDavg depends on MD of the Linear
Delay function. Increasing MD prolongs the path length and increases the route discovery
time. RDDs for the Linear Delay function are better than for the Constant Delay one. The
explanation is that by penalizing worse nodes more, the Linear Delay function generally
delays RREQ messages less in comparison to the Constant Delay function.

The best metric values and combinations of the Linear Delay function parameters to
reach them are presented in Table 6.4.

Table 6.5 presents the combinations of parameters for the Linear Delay function to find
the best trade-off between contradictory requirements to maximize PDRavg and minimize
RDDavg. Clearly, large MD increases significantly RDDavg while PDRavg improves very
little. This table can be used to find the best configuration parameters once the real-world
application gives us the relative importance of maximizing PDRavg vs minimizing RDDavg.
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Table 6.4: Linear Delay function parameters that provided the best values of metrics.

Flag
Perfor. Best

δmetric
Parameters Other metric values for context

metrics value THR MD PDRavg PLavg RDDavg RDDmax

DFT
PDRavg 0.60 71% 1 512 - 8.64 273.75 1626

RDDavg 6.79 11% 0.5 1 0.40 6.17 - 19

DFF
PDRavg 0.58 72% 1 512 - 9.56 49.05 1129

RDDavg 1.50 6% 0.5 1 0.39 7.81 - 18

Table 6.5: Linear Delay function parameter combinations for the best trade-off.

Flag
Parameters Results

THR MD PDRavg δPDRavg RDDavg δRDDavg

DFT

0.5 4 0.50 42% 7.97 30%

0.6 8 0.54 52% 9.82 60%

0.8 4 0.52 47% 9.09 48%

0.9 8 0.56 59% 11.66 90%

0.9 16 0.58 65% 15.92 160%

1 32 0.59 69% 24.90 306%

DFF

0.6 4 0.51 51% 1.73 22%

0.6 8 0.53 57% 1.95 37%

0.7 4 0.51 51% 1.80 26%

0.7 8 0.55 61% 2.07 46%

0.8 8 0.56 65% 2.17 53%

0.8 16 0.57 68% 2.82 98%

0.9 32 0.58 70% 4.41 210%

6.2.1.3 Exponential Delay Function

Results for the Exponential Delay function are shown in Figures 6.9 and 6.10.

The best metric values and combinations of Exponential Delay function parameters to
reach them are presented in Table 6.6.

Table 6.7 represents the combination of parameters for the Exponential Delay function
for the best trade-off between maximizing PDRavg and minimizing RDDavg for the practical
application of the TARA method.

If the Exponential Delay function is compared with the Linear Delay function, Expo-
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Figure 6.9: Exponential Delay function + DFT.
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Figure 6.10: Exponential Delay function + DFF.

nential Delay penalizes nodes with high PDR less, depending on the BASE value.

As with previous functions, greater MD increases RDDavg but using a greater BASE
with the same MD helps reduce the delay, but at the same time, produces worse PDRavg.

6.2.2 Dependence of the TARA Method Performance on the Network
Density

The importance of the β parameter that determines the density of the network is shown in
Figure 6.11 for the Exponential Delay function. In networks with greater β and, therefore,
smaller density, fewer alternative routes can be found, thus less space is left for improving
PDRavg. Models DFT and DFF differ marginally.
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Table 6.6: Exponential Delay function parameters that provided the best values of
metrics.

Flag
Perfor. Best

δmetric
Parameters Other metric values for context

metrics value BASE MD PDRavg PLavg RDDavg RDDmax

DFT
PDRavg 0.61 72% 8 512 - 8.82 145.93 1105

RDDavg 6.38 4% 1024 1 0.40 6.14 - 17

DFF
PDRavg 0.59 74% 8 512 - 9.81 26.74 892

RDDavg 1.45 2% 1024 1 0.38 8.32 - 16

Table 6.7: Exponential Delay function parameter combinations for the best trade-off.

Flag
Parameters Results

BASE MD PDRavg δPDRavg RDDavg δRDDavg

DFT

4 8 0.55 55% 10.38 69%

4 32 0.59 69% 19.26 214%

8 16 0.57 62% 12.29 100%

16 16 0.56 59% 11.26 84%

16 32 0.59 66% 14.94 144%

32 8 0.52 47% 8.71 42%

DFF

4 32 0.58 71% 3.56 151%

8 16 0.56 66% 2.35 66%

8 64 0.58 73% 4.73 233%

16 16 0.55 63% 2.18 53%

32 8 0.49 46% 1.78 25%

1024 8 0.45 32% 1.58 11%

6.2.3 Dependence of the TARA Method Performance on the Network
Size

From the experiments, it became clear that the size of the network has no effect on the
performance of the TARA method. Figure 6.12 shows the results for the Linear Delay
function.
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Figure 6.11: Dependence of PDRavg on the β parameter compared to the reference
experiment (with no delay).
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Figure 6.12: Dependence of PDRavg on the network size (Linear Delay: THR = 1).

6.2.4 Dependence of the TARA Method Performance on the Destin-
ation only Flag

Figure 6.13 shows how the setting of the Destination only flag influences construction of
paths. Blue nodes have PDR = 1 and red nodes have PDR < 1. The size of the red nodes
grows with decreasing of their PDR value. The value of PDR is written next to the node
ID. Paths in Figure 6.13 were constructed with the default configuration and Exponential
Delay function with BASE = 8 and MD = 512.

Performance metrics for Constant, Linear, and Exponential Delay functions with DFT
vs. DFF are depicted in Figures 6.5 vs. 6.6, 6.7 vs. 6.8 and 6.9 vs. 6.10, respectively.
DFT allows to reach greater values of PDRavg for the price of longer RDDavg. RDDavg

values of DFT are by one order greater than the corresponding results of DFF (see Table
6.8, compare DFT and DFF sections).
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(a) DFF (b) DFT

Figure 6.13: Paths created with different Destination only flag setting.

6.2.5 Dependence of the TARA Method Performance on Trust Dis-
tribution Scenarios

We have conducted several experiments to analyze how scenarios of malicious behavior
influence the performance of the TARA method. The percentage of potentially untrusted
nodes is fixed in each scenario, ranging from 10% to 50%. Experiments with all com-
binations of the BASE and MD parameters were helpful, but for simplicity and clear
comparison, Table 6.8 shows the results only for BASE = 8 and MD = 512.

Table 6.8: Different trust distribution scenarios.

Flag Scen. PDRavg Ref.PDRavg δPDRavg RDDavg Ref.RDDavg δRDDavg

DFT

SC-10 0.99 0.83 19% 10.71 6.13 75%

SC-20 0.95 0.69 39% 23.08 6.13 276%

SC-30 0.89 0.55 63% 39.77 6.13 549%

SC-40 0.75 0.44 71% 84.63 6.13 1281%

SC-50 0.61 0.35 72% 145.93 6.13 2281%

DFF

SC-10 0.99 0.80 24% 2.56 1.42 80%

SC-20 0.95 0.64 49% 4.54 1.42 220%

SC-30 0.89 0.50 76% 8.92 1.42 527%

SC-40 0.74 0.42 78% 16.79 1.42 1081%

SC-50 0.59 0.34 74% 26.74 1.42 1781%
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For scenarios with few untrusted nodes, the TARA method is not as efficient. Its benefit
increases with the percentage of untrusted nodes.

6.3 Assessment of the TARA method

Results of experiments for all delay functions show that increasing maximum delay value
MD improves network-wide average PDR significantly, but the effect weakens with greater
values. Moreover, the initial increase of MD gives a quick boost for the PDR metric, but
a further increase of MD is not effective. Improvement of PDR by the TARA method,
compared to the reference experiment with no delay function applied, is significant for all
delay functions, but Exponential Delay provided the best improvement.

THR values do not influence PDRavg as significantly as the MD values do. For the
Linear Delay function, THR has influence mainly on the RDDavg, see Figure 6.14. The
reason is that nodes with PDR above THR are not penalized, so no delay is added for
them. Thus route discovery, in general, is faster.

If the Exponential Delay function is compared with the Linear Delay function, Expo-
nential Delay penalization reflects better the differences in trust values of nodes. Depending
on the bending of the exponential curve, penalization of nodes with high PDR starts slowly,
which is sufficient, and penalization of nodes with low PDR value grows rapidly.

PLavg, and RDDavg metrics need to be minimized, contrary to the average PDRavg,
which needs to be maximized. Due to the delay function, improving the PDR means
worsening PL and RDD. Greater MD value prolongs the path length and increases the
route discovery time.

In general, applying the TARA method approach in more dense networks gives greater
PDRavg improvement. At the same time, the network size, under the assumption of the
same density, has no influence on the performance of the TARA method.

DFT provides more trusted and shorter paths for the cost of much greater RDDavg.
DFF copes better with discovering paths quickly but produces longer paths and cannot
reach so high PDRavg as DFT.

Experiments with different scenarios showed that networks with a greater amount of
untrusted nodes have a greater potential for improvement.

The aim of the experiments was to find the best combination of TARA method para-
meters to achieve two contradictory goals, which should also be kept in mind when applying
the TARA method:

◦ maximize packet delivery ratio in the network PDRavg

◦ minimize route discovery delay RDDavg)

This trade-off for Linear and Exponential Delay functions, both with DFT, can be
studied from Figures 6.14 and 6.15. Both PDRavg and RDDavg for all experiments of the
particular delay function with DFT are shown. The goal is to find such delay function
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parameters (x-axis) where the PDRavg value (blue) is high, and at the same time, the
RDDavg value is low (red).
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Figure 6.14: Plots from Figure 6.7 (Linear Delay function + DFT) sliced along the THR.

These charts visually show the dependence of performance metrics on the delay function
parameters.

6.3.1 Security Analysis: Prevention Against Attacks

The TARA method can protect against blackhole and greyhole attacks. Routing loops are
generally solved by default by routing protocol, in particular, AODV has mechanism to
calculate TTL value, and DSR is by nature, loop free. Our protocol does not prevent an
attacker from injecting data packets.

The TARA method does not attempt to provide anonymous routing, thus does not
prevent from passive attacks.

6.3.2 Discussion

According to the AODV RFC [20] if a node obtains more replies for its RREQ message,
it also processes them, and if they have a fresher sequence number, or the same sequence
number, but the number of hops is smaller, then the routing table is updated with the new
route. This is something to keep in mind when implementing the TARA method.

If there are alternative paths and the route discovery is delayed according to the trust
of the nodes along those paths, the first RREP message is the fastest, meaning that path is
the most trusted one. RREP for the other alternative paths RREP for the other alternative
paths may take longer to arrive, implying that those paths pass through less trusted nodes.
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Figure 6.15: Plots from Figure 6.9 (Exponential Delay function + DFT) sliced along the
BASE.

The less trusted path could be shorter (have fewer hops), and AODV will accept it. The
goal of our method is not to change the implementation of AODV. Our interlayer that
delays packets should discard the repeated RREP messages to the same RREQ message.

Another aspect to consider is the behavior of the DSR protocol, which stores several
route entries for the same destination. The problem is identical to AODV, and the inter-
layer can address it in the same way.

Unlike AODV and DSR, the Better Approach to Mobile Ad-hoc Networking (BAT-
MAN) routing protocol [46] is a proactive routing protocol. It was developed as an altern-
ative to OLSR [17]. But if we analyze the BATMAN operation mode, the analogy with
AODV route discovery can be seen. Each node periodically broadcast originator messages
(OGMs) to its neighbors. This message is forwarded to the neighbors’ neighbors, flooding
the network similarly to AODV RREQ message. The fastest route is selected. Considering
this properties, we assume, that the TARA method can be integrated into the BATMAN
protocol.

6.3.3 Summary

The TARA method performance does not depend on the number of nodes in the WANET
making it highly scalable.

Results of experiments show that different delay functions improve the average packet
delivery ratio up to 78%. In essence, when using the method, parameters should be selected
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to trade-off between maximizing trust and minimizing route discovery delay at the same
time.

The TARA method fulfilled the goal of enhancement of reactive ad hoc routing protocol
with trust mechanism without the need to change the implementation of the routing itself.
Various parameter combinations were tested and analyzed to provide recommendations for
choosing TARA method parameters, depending on the application in a specific WANET.

The TARA method was discussed in the context of implementation in a WANET, and
future work could address the concerns.

84



Chapter 7

Conclusions

Chapter 1 introduced the topic of the dissertation and stated goals of the research. The
main motivation is that WANETs nature implies specific conditions and requirements for
providing trustable and reliable communication. The main goal is to create a novel method
for managing the trust in WANETs.

A theoretical background, namely definitions related to WANETs, routing protocols,
concept of trust, and neural networks are provided in Chapter 2. Chapter 3 summar-
izes previous results and related work including methods that use neural networks and
approaches of strengthening routing protocols in WANETs with trust.

Chapter 4 defines the research problem this dissertation is to solve. The ways of de-
tecting node trust are discussed, and the problem is formulated mathematically.

Chapters 5 and 6 present the main contributions of the dissertation.
In Chapter 5 a novel TMS called NeNTEA for the estimation and prediction of node

trust is presented. NeNTEA is based on neural networks. A technique for generating data
for NN training is specified. Testing environment, specification of the experiments and
their results interpretation is provided. At first, proof-of-concept experiments proved the
validity of the NeNTEA method, which shows in average 98% accuracy of the classification
and 94% of the regression problem. Further conducted experiments analyzed the method
performance under malicious conditions. In the worst scenario, NeNTEA shows almost
90% detection success on average.

Chapter 6 is dedicated to the TARA method. Its main idea is to delay messages
according to trust while the ad hoc routing algorithm remains unchanged. Three delay
functions are defined and described. Assumptions about their performance are mentioned.
The results of experiments show that different delay functions improve the average packet
delivery ratio up to 78%.

7.1 Summary

The review and analysis of related work and studies demonstrated that secure and trusted
communication in WANETs remains a challenging issue. Cooperation and trust establish-
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ment are significant challenges in WANET security. Moreover, vast diversity of types and
application scenarios for WANETs imply additional difficulties for specifying requirements
on design of secure protocols.

The research presented in this dissertation thesis addresses the problem of untrusted
nodes detection in a WANET and applying that knowledge to enhance routing protocol.
A method to detect untrusted nodes and to estimate the value of trust using NNs was
constructed. The proposed method for evaluation of trust is based on NNs. In the second
step, the research takes the method and applies it to improve the performance of reactive
ad hoc routing protocols. The proposed method was simulated to be applied to the AODV
routing protocol, but can be used with any reactive ad hoc routing protocol.

7.2 Contributions of the Dissertation Thesis

The contributions of this dissertation thesis are:

◦ a formal definition of the problem of trust management;

◦ development of a novel trust management method based on NN - NeNTEA;

◦ analysis of the NeNTEA sensitivity for the incorrect data provided;

◦ development of a method to apply trust on reactive ad hoc routing protocols - TARA.

An important contribution of the research is a verification of the hypothesis that NNs
are applicable on the problem of trust in WANETs. The proof of concept was accomplished
successfully.

It is also confirmed that synthetic generation of WANET traffic in a simulator is suf-
ficient for the training of a NN that is then capable to accurately estimate trust in a
WANET.

The work presents a formal mathematical ground of the method for trust evaluation in
WANETss.

The sensitivity analysis of the method dependency on τ value was performed.
The model designed for the proof of concept has several simplifications. Research

directed to the creation of more realistic model. Furthermore, by providing the solution
with malicious information, we have executed the method’s security analysis.

After we have proposed a method to evaluate the trust of the particular node in a
WANET using NNs, the research is devoted to designing a way to integrate trust in reactive
routing protocols. The challenge was to do it without changing the routing algorithm, i.e.,
to influence the routing decision from the outside. NeNTEA can also be used for other
applications than routing, such as malicious attack detection, data aggregation, QoS.

A method to enhance trust in reactive routing protocols, called TARA, is introduced,
and analysis of the implementation and settings of the TARA method are provided. The
method’s main idea is to delay the route discovery messages of untrusted nodes, forcing
the more trusted paths to be chosen, so the goal of enhancing routing protocol without
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changes to the protocol itself is fulfilled. Moreover, TARA method is independent of the
TMS used in the particular WANET.

7.3 Future Work

Future work will focus on creating the distributed version of the NeNTEA method, which
will overcome the current approach’s limitations.

Also, further research can concentrate on an attempt to investigate trust evaluation
methods for other types of node maliciousness rather than packet dropping, e.g., packet
misforwarding.

As for the TARA method, the author of the dissertation thesis suggests to explore the
following:

◦ It would be interesting to add other delay functions to extend the model.

◦ The implementation of our methodology could be further improved by adding com-
munication delay.

◦ Apply the method to other communication models.

◦ Consider the implementation of the method on some testbed.
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Appendix A

Other experiments

A.1 Datasets

Dataset 4, Uniform-two: represents WANET with two untrusted nodes. Node PDRs
are generated using uniform distribution.

Dataset 5, Normal-two: represents WANET with two untrusted nodes (similar to Data-
set 4), but node PDRs are generated using normal distribution.

A.2 Results of experiments

Tables A.1 and A.2 provide overall results of the various training and testing dataset com-
binations. Generally they cover more possibilities, but correspond to the same conclusions
made from the experiments in the Chapter 5.
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A. Other experiments

Table A.1: Experiments with detection - overall results of RD.

Experiment
Dataset
trained

Dataset
tested

Average Median Minimum Maximum

Experiment 9 Uniform-
all

Uniform-
one

97.15 97.65 90.57 99.69

Experiment 10 Uniform-
all

Uniform-
all

97.77 97.92 93.95 99.76

Experiment 11 Uniform-
all

Normal-
one

96.58 96.89 90.58 99.66

Experiment 12 Normal-
one

Uniform-
all

97.41 97.59 93.75 99.65

Experiment 13 Uniform-
two

Uniform-
two

98.64 98.71 96.54 99.76

Experiment 14 Normal-
two

Normal-
two

98.16 98.31 94.78 99.75
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A.2. Results of experiments

Table A.2: Experiments with estimation - overall results of RE.

Experiment
Dataset
trained

Dataset
tested

Average Median Minimum Maximum

Experiment 15 Uniform-
one

Uniform-
one

97.21 97.28 96.16 97.66

Experiment 16 Uniform-
one

Uniform-
all

94.44 94.59 91.36 96.58

Experiment 17 Uniform-
one

Normal-
one

95.26 95.37 93.44 96.10

Experiment 18 Uniform-
all

Uniform-
one

95.81 96.00 92.78 97.14

Experiment 19 Normal-
one

Uniform-
one

92.51 92.51 86.44 97.20

Experiment 20 Normal-
one

Normal-
one

91.42 91.45 84.98 96.27

Experiment 21 Uniform-
two

Uniform-
two

97.14 97.24 95.91 97.66

Experiment 22 Normal-
two

Normal-
two

91.91 92.02 87.06 96.29
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