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Why Physical Modelling Instead of Data Driven Models?

For spark ignited engines, torque control is realized in the Engine Control Unit (ECU) by managing the
cylinder charge exchange, while keeping the air-fuel ratio stoichiometric in order to minimize exhaust
emissions. For this purpose, the ECU needs a real-time capable model, giving an accurate prediction based
on the current sensor information.
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The main obstacle for using physical models for direct engine control is the low CPU performance of state-
of-art production ECU’s. The level of physical description for the particular application is in conflict with the
runtime performance.

Current State-of-the-Art

The large majority of physical based real-time engine applications is used to calibrate data-oriented control
models (look-up tables, neuronal networks etc.) used then for the purpose of the engine control during
operation. With some exceptions like Ricardo Wave software, which is a commercial black-box model,
there are no available codes with a potential to be real-time capable on an engine production ECU that
has usually a restricted processor performance due to manufacturing costs. Most real-time applications
using thermodynamic engine models require specialized HiL hardware like dSpace with high processor
performance (e.g., CPU > 1GHz). There is also no available work that would transparently show the
structure of computational effort (e.g., CPU load) of individual model components or modules

Objectives

« create a physical model, based on differential equations
« crank angle resolved information on engine in-cylinder gas mixture and charge exchange
« suitable for predictive model-based control of a turbocharged ICE
« real-time capable on a state-of-the-art production ECU

* required model calibration data should be less demanding than standard data-based models
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Accuracy Objective: RMSE<5%

Air-mass-error: RMSE=5.3%err
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Air-mass-error: RMSE=7.4%err
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Numerical Solver

Explicit system of ODE’s

q — fODE(tI q);
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Is solved by 2" order Runge-Kutta integration method
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Engine Process and Gas Exchange Model
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The Engine Development Platform - Experiment

Commercial 4 Cylinder, 1.8 Liter Turbocharged Sl-Engine

Firing order 1-3-4-2
Displacement 1.8 cm3
Compression ratio 9.5

Rated power 125 kW at 5000 rpm
Both DI and MPI

DOHC, double H-VCT, two-stage VVL

Injection

Valve train

Charging system Single stage turbocharger with mono scroll turbine

EU 6

Emission class

The experimental engine was installed on a test bench with an asynchronous machine was tested under
steady-state as well as transient conditions.
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Recorded actuator positions define the later model inputs. The model validation is based on the measured
In-cylinder air mass as well as pressures and temperatures in specified engine operating conditions.

Real-Time Capability: RT<1

o5 ¢ detailed 1D model, A t=30us
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Conclusions

Modular, physical-based model and simulation environment was implemented based on the principles of
causal modelling approach. The model provides crank angle resolved information on engine in-cylinder
gas mixture and charge exchange including performance of a turbocharger.

Models with different level of complexity from 1D to strongly reduced OD models were validated with
measurements. The results show potential of physical based modelling to extend and/or replace data
driven models in future ECUs.




