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Prof. Ing. Jǐŕı Fürst, Ph.D.
Chairman of the Board for the Defence of the Doctoral Thesis in the branch of study

Mathematical and Physical Engineering
Faculty of Mechanical Engineering, CTU in Prague



Abstrakt

V této disertačńı práci se zabývám numerickým řešeńım Navierových-Stokesových (N-S) rovnic
pro stacionárńı nestlačitelné prouděńı pomoćı metody Balancing Domain Decomposition by Con-
straints (BDDC). Pro diskretizaci N-S rovnic je použita metoda konečných prvk̊u (MKP).

V práci je představena v́ıceúrovňová metoda BDDC, která je vhodná pro řešeńı velkých soustav
lineárńıch algebraických rovnic. Tato metoda a jej́ı teorie je dobře známa pro Poissonovu úlohu,
úlohy lineárńı pružnosti a prouděńı popsané Stokesovými rovnicemi. Práce je věnována rozš́ı̌reńı
této v́ıceúrovňové metody na nesymetrickou úlohu vznikaj́ıćı diskretizaćı N-S rovnic. Pro tuto formu
BDDC jsou také diskutovány r̊uzné váž́ıćı operátory, včetně vlastńıho vycházej́ıćıho z ”upwind”
schématu, a vhodného pro úlohy prouděńı. Dále je představen vlastńı geometrický dělič śıtě, který
je vhodný pro tento typ úloh, speciálně pro úlohy s dimenzionálně komplexńı geometríı.

Všechny nové př́ıstupy prezentované v této práci jsou podrobeny numerickým experiment̊um
na r̊uzných úlohách. Konkrétně jsou tu prezentovány výsledky slabé škálovatelnosti v́ıceúrovňové
metody BDDC pro prouděńı v 3D kavitě, výsledky pro test vlivu rozhrańı mezi podoblastmi ve 2D
a 3D na úloze zužuj́ıćıho se kanálku a výsledky využ́ıvaj́ıćı źıskané poznatky pro simulaci prouděńı
oleje uvnitř hydrostatického ložiska.

Abstract

The Ph.D. thesis is devoted to numerical simulations of the Navier-Stokes (N-S) equations for
stationary incompressible flow using Balancing Domain Decomposition by Constraints (BDDC)
method. The Finite Element Method (FEM) is used for the discretization of the N-S equations.

In the thesis, the multilevel BDDC method is introduced which is suitable for solving the large
system of linear algebraic equations. This method and its theory are well known for the Poisson
problem, for linear elasticity, and flow problems described by Stokes equations. The thesis is devoted
to an extension of the multilevel BDDC method to the nonsymmetric problem arising from the
discretization of the N-S equations. The weights operators for this form of the BDDC method are
discussed including my own one based on an upwind scheme suitable for flow problems. Next, my
geometric partitioner is presented which is suitable for these problems, especially for problems with
dimensionally complex geometry.

All new approaches presented in this thesis are tested numerically for different problems.
Namely, weak scalability of multilevel BDDC method is tested on the flow in the 3D cavity, the
test of the influence of the interface between subdomains is tested on the problem of narrowing
channel, and all these pieces of knowledge are employed for simulations of oil inside the hydrostatic
bearing.
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1 Introduction

1.1 Motivation

The rapid rise of the progress of computers regarding their memory and computational speed is
providing a useful tool in many areas of science and technology. Especially in numerical mathe-
matics, which is related to computational mechanics, physics, and mathematics. One of the most
common methods in numerical mathematics is the finite element method (FEM), which has been
developed and used since the first computers for simulating many physical processes described by
partial differential equations (PDEs).

The finite element method is used and developed for many problems of mechanical engineering
like structural analysis and flow of fluids. The application of FEM for problems of structural analysis
(for example, linear elasticity) was there from the beginning of the development of the FEM method,
and therefore, these applications are very advanced. The application of FEM for flow problems
came slightly later. This was caused by the complexity of physics and the mathematical models
behind these problems. Therefore, another widely spread method was developed, namely, the finite
volume method (FVM).

With the growing performance of computers, the possibility of large-scale simulations with high
resolution are becoming possible. As the size of the problem grows, the computational time and
memory requirements grow as well. Due to the limitation of memory of a single computer as well
as growing demands on the computational time, the idea of dividing the computation into several
processors, started a new field of interest. This approach ignited the development of algorithms
in numerical mathematics suitable for parallel computing. In general, these methods suitable for
solving PDEs in parallel are called domain decomposition methods, and their development went
hand in hand with the fast development of supercomputers.

Application of the FEM in computational fluid dynamics (CFD) comes with a lot of challenges.
For incompressible flow, it is not an easy task to simulate flows in detail or cases with high Reynolds
numbers. Computation with fine meshes and therefore with a large number of unknowns are a new
way for CFD. For such problems, domain decomposition and parallelization of the algorithms are
a must.

The main interest of this thesis is the development of the Balancing Domain Decomposition by
Constraints (BDDC) method for incompressible Navier-Stokes equations, therefore, to nonsymmet-
ric systems arising from the discretization of the equations by the finite element method. The idea
of domain decomposition (DD) methods is the division of the solution domain into smaller parts
called subdomains or substructures and distributing the whole computation to several problems,
defined and solved on these subdomains. In the case of finite elements, this decomposition of the
whole solution domain means the division into several submeshes. In this way, the methods allow
massively parallel implementations.

1.2 State of the art

The topic of domain decomposition for elliptic partial differential equations is investigated by Smith,
Bjorstad, and Gropp in [19]. A publication by Toselli and Widlund [21] is devoted to algorithms
and theory for DD methods.

In domain decomposition, there are two basic types of division of the original mesh, namely,
with overlapping and nonoverlapping subdomains. For overlapping subdomains, the common part
of the original mesh that belongs to at least two subdomains is called the overlap which is formed
by elements that belong to several subdomains. For nonoverllaping subdomains, the common part
is called the interface, and it is formed only by the nodes on the boundaries of subdomains, where
two or more subdomains touch each other. Both these methods allow distributing the computations
to more processors and computing some parts of the simulation independently in parallel.

The idea of nonoverlapping DD methods is to form an interface problem using the elimination
of interior unknowns of each subdomain. The Schur complement matrix and the right-hand side
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with respect to the interface are created. This matrix and right-hand side form a global interface
problem which are much smaller than the original one. It can be so small that it can be solved
by a direct method. Once the interface problem is solved, the interior unknowns can be found by
solving a Dirichlet problem on each subdomain with a prescribed boundary value on the interface.

For solving Schur complement problems, a Krylov subspace method like the biconjugate gradient
stabilized (BiCGstab) method introduced by van der Vorst in [25] are suitable, because only the
multiplication of a vector by Schur complement matrix is needed. This product can be computed
without an explicit construction of the Schur complement, and only the Dirichlet problem on each
subdomain in each iteration is solved.

The BDDC method was introduced by Dohrmann in [6] for the Poisson problem and linear
elasticity. The underlying theory for the bound of O

(
log2 (1 +H/h)

)
was presented by Mandel

and Dohrmann in [14], and Mandel et al. in [15] has shown that the BDDC method is spectrally
equivalent to the FETI-DP method [9]. The multilevel extension of the BDDC method was pre-
sented first for three levels by Tu in [22], and later for an arbitrary number of levels by Mandel
et al. in [16]. The multilevel BDDC method was combined with the adaptive selection of coarse
unknowns and implemented into an open-source parallel solver BDDCML by Soused́ık et al. in
[20].

In [13], the BDDC method was first applied to a saddle-point system with symmetric indefinite
matrices arising from the discretization of the Stokes problem. This approach uses finite elements
with a discontinuous approximation of pressure, which leaves only unknowns for the velocity com-
ponents at the interface. An approach for the Stokes problem using elements with continuous
pressure was investigated by Š́ıstek et al. in [18], and a different approach was later introduced by
Li and Tu in [12].

By discretizing and linearizing the Navier-Stokes equations, we get saddle-point systems with
nonsymmetric matrices. An application of the BDDC method to nonsymmetric matrices arising
from advection-diffusion problems was presented by Tu and Li in [23] and [24], where the method
was formulated without an explicit coarse problem. An explicit coarse problem of BDDC was
presented by Yano for nonsymmetric problems arising from the Euler equations in [27].

An important building block of the BDDC method is the choice of weights used for averaging
a discontinuous solution at the interface between subdomains. There are some standard types of
weights like arithmetic average (also known as cardinality scaling), or weighted average based on
diagonal entries of subdomain matrices. A recent advanced type of scaling is the deluxe scaling
presented by Dohrmann et al. in [7, 5].

1.3 Aims of the work

The aims of my research are two-fold:

• The first aim is to develop a numerical method for computational fluid dynamics employing
the extension of the multilevel BDDC method towards the nonsymmetric systems arising
from the discretization of the Navier-Stokes equations.

• The second aim is to perform missing detailed 3D simulations of the industrial problem of a
flow of oil inside the whole moving hydrostatic bearings.

The problem of the bearing has been provided by Eduard Stach from the Research Center of Man-
ufacturing Technology at the Faculty of Mechanical Engineering of the Czech Technical University
in Prague.

The main goal of this thesis is to develop and present the algorithm for the multilevel BDDC
method for nonsymmetric systems arising from the discretization of the Navier-Stokes equations
by FEM. This novel algorithm is tested on a 3D lid-driven cavity problem. Next, I test the 2-level
BDDC method for this problem for different types of weight operators including my own one based
on the upwind scheme. Next, I present the strategy of mesh partitioning, including my partitioner
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preserving 2D interfaces between each subdomain which is shown to be suitable for dimensionally
complex geometries, and a mesh builder for building solution domain by individual subdomains
for large meshes. Finally, I present the chronology of the simulation for the industrial problem of
oil flow inside the hydrostatic bearing. Here, I gradually use all pieces of knowledge from previous
numerical experiments to perform simulation for a realistic geometry of the hydrostatic bearing
and also validate the calculation with an experiment.

2 The Navier-Stokes equations and the finite element method

I consider a stationary incompressible flow in a bounded three-dimensional domain Ω with Lipschitz
boundary governed by the Navier-Stokes equations with zero body forces (see e.g. [8]),

(u · ∇)u− ν∆u +∇p = f in Ω, (1)

∇ · u = 0 in Ω, (2)

where

• u = (u1, u2, u3)T [ms−1] denotes the unknown velocity vector as a function of space variable
x

• p [Pa] is an unknown pressure normalized by (constant) density as a function of x

• ν [m2s−1] is a given kinematic viscosity

• f is a given volume force function

• Ω is a solution domain

In addition, we consider the following boundary conditions,

u = g on ΓD, (3)

−ν(∇u)n + pn = 0 on ΓN , (4)

where ΓD and ΓN are parts of the boundary ∂Ω, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, n is the outer unit
normal vector of the boundary, and g is a given function.

This completed system has for low Reynolds numbers a unique solution (see [8]), except for
case with prescribed velocity on the whole boundary, i.e. ΓD = Γ. Then the solution of pressure is
unique up to a constant.

2.1 Weak formulation

Find u ∈ Vg and p ∈ L2(Ω) satisfying∫
Ω

(u · ∇)u · v dΩ + ν

∫
Ω
∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ = 0 ∀v ∈ V, (5)∫

Ω
q∇ · u dΩ = 0 ∀q ∈ L2(Ω), (6)

where the function spaces Vg and V are defined as

Vg :=
{
u ∈ [H1(Ω)]3 |u = g on ΓD

}
, (7)

V :=
{
v ∈ [H1(Ω)]3 |v = 0 on ΓD

}
. (8)
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2.2 Discretization of the weak formulation using FEM

On each element we approximate solutions of the velocity and the pressure and the corresponding
test functions by polynomials of a certain degree. For solving the Navier-Stokes equations, it is
suitable to choose polynomials of different degree for velocity and pressure. For my computations,
I choose the hexahedral Taylor-Hood Q2 −Q1 finite elements (see e.g. [8]). These elements locally
approximate pressure functions by polynomials of the first degree and velocity components by
polynomials of the second degree, while both fields are continuous on the inter-element boundaries.

The result of the mixed approximation method in the matrix form is[
νA + N(uk) BT

B 0

] [
uk+1

pk+1

]
=

[
f
g

]
, (9)

where u is the vector of unknown coefficients of velocity, p is the vector of unknown coefficients
of pressure, A is the matrix of diffusion, N(u) is the matrix of advection which depends on the
solution, B is the matrix from the continuity equation, and f and g are discrete right-hand side
vectors arising from the Dirichlet boundary conditions. Each part of system (9) is assembled as (see
[8]). The term N(u) is linearized using Picard’s iteration. This simple method use for linearization
of matrix N solution of the velocity from previous step uk. This—already linear—nonsymmetric
system is solved by means of iterative substructuring using the BDDC method as a preconditioner.

3 Domain decomposition methods

Domain decomposition methods are mathematical algorithms for solving linear and nonlinear sys-
tems of algebraic equations which arise from discretization of partial differential equations (PDEs).
These methods are suitable for parallel computations and their main idea is to decompose the
solved problem into several smaller problems which are easier to solve and subsequently join each
of these problems into the global one. This allows us to find the parts of the solution independently
on each subdomain, therefore in parallel. It is obvious that the decomposition of the solution do-
main into completely independent problems is not possible and some communication and exchange
of information between subdomains is necessary. The main motivation for usage of these methods
is their potential for effective parallelization due to the local utilization of data and the ability to
solve PDEs which shows different behaviour on different parts of the solution domain.

In general, we can divide domain decomposition methods into two basic types:

• Overlapping methods – also known as Schwarz methods, where individual subdomains overlap
with at least one other subdomain and therefore share some part of the original solution
domain (see Figure 1 (left))

• Nonoverlapping methods – also known as substructuring or Schur complement methods where
there is no overlap between subdomains and subdomains share only the interface between
them (see Figure 1 (right))

For both types of domain decomposition methods, there exist several kinds of algorithms with
different behaviour and suitability for usage (see [19] and [21] for more details). In my calculations,
I use the Balancing Domain Decomposition by Constraints (BDDC), which is a method with
nonoverlapping domain decomposition of the solution domain used as a preconditioner for solving
linear system of algebraic equations.

3.1 Iterative substructuring

The main idea of iterative substructuring is to reduce the original system arising from the finite
element method to the Schur complement system as in [21]. In general, several levels of nested
subdivision can be used in these algorithms. We can see iterative substructuring as a method, in
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Figure 1: Types of domain decomposition methods: overlapping (left) and nonoverlapping (right)

which we stop this subdividing process at some point and solve the remaining linear system by a
preconditioned Krylov subspace method. In parallel computing, one or several of these substruc-
tures are assigned to one processor and the interior problems can be solved independently, hence
in parallel.

In order to reduce the system to the interface (or Schur complement system) we decompose our
solution domain Ω into N nonoverlapping subdomains. This decomposition means that the degrees
of freedom (dofs) shared by several subdomains are only at the interface of each subdomain while
the remaining unknowns are in the interior of the subdomains. For the Taylor-Hood finite elements
used in our work, both velocity and pressure unknowns are shared among subdomains and hence
become part of the interface Γ.

We reduce the original system (9) to interface in the form

S

[
u2

p2

]
= g, (10)

where

g =

[
f2
g2

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
f1
g1

]
is the so-called reduced right-hand side and

S =

[
νA22 + N22 BT

22

B22 0

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
νA12 + N12 BT

21

B12 0

]
is the Schur complement with respect to the interface. Here subscript 1 denotes the part with the
interior unknowns and subscript 2 denotes the part with the interface unknowns. In practice, the
Schur complement matrix S is obtained by subassembling local Schur complements and often, it
is not built explicitly. This operation could be very expensive and therefore only an action of the
Schur complement on a vector is computed.

4 BDDC algorithms for nonsymmetric systems and its building
components

In this chapter, I present the novel approach of using BDDC method for nonsymmetric systems
arising from discretization of the Navier-Stokes equations and its implementation details, like inter-
face scaling and solution domain partitioners. First, I describe multilevel extension of the BDDC
method for Navier-Stokes equations (see [2]) presented in [4]. I also desribe interface weights for
the BDDC preconditioner asociated with matrix of weights Wi in my calculations including our
own new type of weights presented in [4]. I also introduced two types of partitioners for solution
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domain, especially our own one, which was first presented in [1]. Finally, I introduce my own mesh
builder used for building solution domain by individual subdomains.

In my computations, problem (10) is solved by the BiCGstab method [25] with one step of
two-, three-, and four-level BDDC used as the preconditioner. Domain decomposition allows us to
perform the action of the BDDC preconditioner and of the matrix S in parallel in each iteration.
The solution is realised by the multilevel BDDC implementation in the BDDCML library1 [20].

4.1 Multilevel BDDC for nonsymmetric systems

The main focus of this section is a formulation of the multilevel BDDC preconditioner for non-
symmetric problems and its application to linear systems obtained by Picard linearization of the
Navier-Stokes equations. The content of this section is based on [4], we described the multilevel
BDDC preconditioner for the nonsymmetric problems arising from the discretization of the Navier-
Stokes equations above. In the k -th iteration, the preconditioner is applied to the residual obtained
from the BiCGstab method generating an approximate solution to problem (10).

Before applying the preconditioner, we have to set it up. First, we find the coarse basis functions
independently for each subdomain on each level. For finding the subdomains on the next level, we
look at the subdomains on the previous level as elements for the next level, and the coarse dofs
will be considered as unknowns. Subdomains on the next level are formed by connecting several
subdomains from the previous level. From the subdomain matrix on each level, we build and solve
the saddle-point system [

S`
i C`T

i

C`
i 0

] [
Ψ`

i

Λ`
i

]
=

[
0
I

]
, (11)

where ` is the level of the BDDC method, S`
i is the Schur complement with respect to the interface

of the i-th subdomain (built as in 10), and C`
i is the matrix defining the coarse dofs, which has

as many rows as is the number of coarse dofs defined at the subdomain. The solution Ψ`
i is the

matrix of coarse basis functions with every column corresponding to one coarse unknown on the
subdomain. These functions are equal to one in one coarse dof and they are equal to zero in the
remaining local coarse unknowns.

As introduced in [27], a set of adjoint coarse basis functions Ψ∗`
i is also needed for nonsymmetric

problems. These are obtained as the solution to problem (11) with a transposed matrix,[
S`T
i C`T

i

C`
i 0

] [
Ψ∗`

i

Λ`T
i

]
=

[
0
I

]
. (12)

After solving (11) and (12), we can get, on each level, the local coarse matrix on each subdomain
as

A`
Ci = (Ψ∗`

i )TS`
iΨ

`
i = −Λ`

i . (13)

The local matrices A`
Ci resemble the element matrices from the FEM. In the multilevel method,

they are assembled into subdomain matrices on the next level

A`+1
j =

NSj∑
i=1

R`T

CijA
`
CiR

`
Cij , (14)

where R`
Cij = R`+1

j R`T

Ci. Here R`+1
j is the restriction of the global vector of unknowns to those

present on the j-th subdomain on level ` + 1, R`
Ci is the restriction of the global vector of coarse

unknowns to those present at the i-th subdomain on level ` and NSj is the number of subdomains
from level ` which form the j-th subdomain on the (`+ 1)-st level. On the last level, we build the
global coarse problem, therefore AL

j = AL, where L is the number of levels of the BDDC method.
The setup of the multilevel BDDC is described in Algorithm 1.

1http://users.math.cas.cz/~sistek/software/bddcml.html
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Algorithm 1 Setup of the BDDC preconditioner with L levels

1: for level ` = 1, . . . , L− 1 do
2: from subdomain matrix A`

i get S`
i

3: solve problems (11) and (12) to get Ψ`
i and Ψ∗`

i

4: get local coarse matrices A`
Ci from (13)

5: build subdomain matrices on the next level A`+1
j by (14)

6: end for
7: factorize global coarse matrix AL

After this setup, the preconditioner can be applied in each iteration. At the beginning, we take
the residual vector rk and extract its local parts on each subdomain as

ri = WiRir
k, (15)

where Ri is the operator restricting a global interface vector to the i-th subdomain, and matrix Wi

applies weights to satisfy the partition of unity. The types of weights we use are described in detail
in Section 4.2.

Then we get the coarse residual as

rC =

N∑
i=1

RT
CiΨ

∗T
i ri. (16)

Note that here we use the adjoint coarse basis functions Ψ∗T
i .

Now we look at the subdomain problems. On each subdomain, a saddle-point system[
Si CT

i

Ci 0

] [
ui
λ

]
=

[
ri
0

]
(17)

is solved. Here λ are Lagrange multipliers, and Si and Ci are the same matrices as in (11). After
solving this problem on each subdomain, we get the subdomain correction ui.

Then we have the coarse problem
ACuC = rC . (18)

In the 2-level method, we solve (18) by a direct method, whereas in the multilevel method,
we apply a step of the BDDC method to solve the coarse problem (18) only approximately. This
means that we build residuals and matrices (in setup) corresponding to the cluster of subdomains,
which will form one subdomain on the next level. First, we build global coarse residual on the first
level as in the standard 2-level method

rC =

N∑
i=1

RT
CiΨ

∗T
i ri, (19)

and solve subdomain problems on the first level (17).
Now starting on the second level and ending on the (L− 1)-st level we denote

u` = u`−1
C and r` = r`−1

C ,

extract local parts of the residual on each subdomain

r`i = W `
i R

`
ir

`, (20)

and solve the following interior problem on each subdomain

A`
i11u

`
i1 = r`i1 , (21)
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where subscript 1 again corresponds to the the interior unknowns of the subdomain (subscript 2 will
correspond to the interface unknowns of the subdomain). After solving this problem we perform
the interior pre-correction as

r̃`i2 = r`i2 −A
`
i21u

`
i1 . (22)

Next, we solve subdomain problems[
S`
i C`T

i

C`
i 0

] [
u`i2
λ`

]
=

[
r̃`i2
0

]
(23)

and build the coarse residual

r`C =
N`∑
i=1

R`T

CiΨ
∗`T
i r̃`i2 . (24)

Finally, we solve the coarse problem on the last level L to get uL = uL−1
C .

After getting the solution on the highest level, we gradually build the approximate coarse
solution on the first level. Starting on level L − 1 and going down to level 2, we have the coarse
solution distributed to each subdomain, and the subdomain solution prepared in (23)

u`Ci
= Ψ`

iR
`
Ci
u`C and u`i2 . (25)

Then we build the BDDC approximation of the global interface solution

u`2 =

N`
S∑

i=1

R`T

i W
`
i (u`Ci

+ u`i2). (26)

After that, we distribute the interface solution on each subdomain

u`i2 = R`
iu

`
2, (27)

and compute the interior correction ũ`1i on each subdomain

A`
i11ũ

`
i1 = −A`

i12u
`
i2 . (28)

Finally, we bring in the interior correction from (21) and build the approximate coarse solution
as

u`−1
C = u` =

[ ∑N`
S

i=1R
`T
1i (ũ`i1 + u`i1)

u`2

]
, (29)

where R`T
1i is the operator mapping interior unknowns from subdomain to global coarse vector on

the previous level.
After this, we have the approximate coarse solution on the second level on each subdomain as

uCi = ΨiRCiuC . (30)

and get the solution of problem

uk =
N∑
i=1

RT
i Wi(ui + uCi). (31)

The process is summarized in Algorithm 2.
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Algorithm 2 Application of the BDDC preconditioner with L levels

1: distribute residual to each subdomain on the first level ri (15)
2: build the coarse residual on the first level rC (16)
3: solve subdomain problems (17) on the first level
4: for level ` = 2, . . . , L− 1 do
5: r` = r`−1

C and u` = u`−1
C

6: extract local parts of residual r`i (20)
7: solve (21)
8: get pre-corrected residual r̃`i2 (22)
9: solve subdomain problems (23)

10: build the coarse residual r`C (24)
11: end for
12: rL = rL−1

C , uL = uL−1
C and solve ALuL = rL

13: uL−1
C = uL

14: for level ` = L− 1, . . . , 2 do
15: distribute coarse solution u`C to each subdomain u`Ci

(25)

16: build global interface solution u`2 (26)
17: distribute interface solution to each subdomain u`i2 (27)
18: get interior correction on each subdomain by solving (28)
19: build approximate coarse solution u`−1

C (29)
20: end for
21: distribute the coarse solution on the first level to each subdomain uCi (30)
22: get preconditioned residual uk (31)

4.2 Interface scaling

Let us now look at the used weights in my computations. Several types of interface weights
have been developed for the BDDC preconditioner, with each of them having its advantages and
disadvantages for certain kinds of problems.

Before we start with the description of the individual scalings, we recall that the main require-
ment on the matrix of weights Wi is that it forms a partition of unity [21],

N∑
i=1

RT
i WiRi = I, (32)

where I is the identity matrix.
An important class of the interface averaging operators is represented by diagonal matrices

Wi =

w
1
i

w2
i

. . .

 , (33)

where wk
i denotes the weight for the k-th (with respect to the subdomain interface) dof on the

i-th subdomain. In this case, the requirements are fulfilled by the following simple construction:
First, every subdomain generates a nonnegative weight w̃k

i . These values are then shared with
all neighbouring subdomains, and the normalized weight wk

i satisfying the partition of unity is
obtained by dividing the local weight with the sum of contributions from all neighbours,

wk
i =

w̃k
i∑NS

j=1 w̃
k
j

, (34)

where NS is the number of subdomains sharing the dof.
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One of the tested type of weights is a recent idea inspired by numerical schemes for flow prob-
lems. Loosely speaking, for dominant advection, it should be beneficial to consider the subdomain
from which the fluid flows with a higher weight than for the one where the dof is a part of an inflow
boundary. In numerical schemes, this is sometimes referred to as upwinding.

More specifically, these upwind weights are based on the inner product of the vector of velocity
and the unit vector of outer normal to the subdomain boundary (see Fig. 2),

pki =
vk · nk

i

‖vk‖2
.

The values of the pki are from the interval [−1, 1]. To derive a nonnegative weight, we map these

values into the interval [0, 1] by taking w̃k
i =

pki +1
2 , which is used for all velocity unknowns. For

pressure dofs, we again consider w̃k
i = 1. The final partition of unity is achieved again by (34).

Figure 2: Relation of the unit outer normal vectors to the boundary and the velocity vectors in
the construction of the upwind interface scaling (left), and the construction of the approximate
interface normals (right).

Obviously, this kind of weights would introduce a nonlinearity by the dependence of the weight
on the solution itself. We use the velocity field from the previous nonlinear iteration as an approxi-
mation of the actual velocity vector. Note that the weights are then fixed throughout the BiCGstab
iterations.

The final remark is related to constructing the approximation of the unit outer normal vector
at positions of the nodes, i.e. element nodes, and edge and face midsides. As illustrated in Fig. 2,
we take the normals of the element faces as the building block, and define the normals at vertices
and edges simply as an arithmetic average of the normals of the adjacent faces.

4.3 Mesh partitioning

Let us now look at the employed partitioners. I use two approaches to partitioning the computa-
tional domain and mesh into subdomains.

A standard approach is based on converting the computational mesh into a graph. Graph
partitioning provides an automated way for dividing computational mesh into subdomains of well-
balanced sizes even for complex geometries and meshes. However, information about the geometry
of the interface is lost during the conversion into the graph, and the resulting interface can be very
irregular. This is a known issue studied mathematically for elliptic problems e.g. by [11].

Our partitioner works similarly as the RCB partitioner to preserve 2D interfaces between sub-
domains. For a given problem, we first define cuboidal blocks of the solution domain and divide
these blocks by recursive bisection along given axes into balanced subdomains. This comes hand
in hand with creating a suitable structural mesh of the solution domain using GMSH software
[10], and defined cuboidal volumes which also preserve 2D interfaces between each other. It seems
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reasonable to prescribe a suitable number of subdomains for each cuboidal block and obtain the
total number of subdomains simply as a sum over these blocks for preventing load imbalance.

In the rest of the paper, we refer to these two strategies as the graph and the geometric parti-
tioner. An example of the interfaces between two subdomains provided by these partitioners are
in Fig. 3.

Figure 3: Interfaces between subdomains provided by a graph partitioner (left) and by a geometric
partitioner (right).

4.4 Mesh builder

In this section, I introduce my software used for creating subdomains for a large mesh employed in
the computation of the cavity problem described in Section 5.2. In these simulations, I needed to
solve the problem of dividing a large cubic mesh into smaller cubes as subdomains. Due to the size
of these meshes, I was not able to use neither the graph nor the geometric partitioner. Therefore, I
create a program that produces files with individual subdomains and follows the global numbering
of the whole solution domain created by the GMSH software.

This MeshBuilder software produces a set of cubic subdomains corresponding with unit cube
under two parameters. The first is the number of subdomains per cube edge, and the second is the
number of hexahedral Taylor-Hood Q2-Q1 elements per subdomain edge. The main part of this
software is to make a correct mapping between the local and global degrees of freedom. Both, the
global and the local numbering of DOFs are done subsequentially in the x, then in y, and finally
in the z coordinate.

5 Numerical results

In this section, I apply the variants of the BDDC method to steady incompressible flow governed
by the Navier-Stokes equations. I sumarize all my results concerning investigation of possibilities
of the multilevel BDDC method as well as its applicability to the industrial problem of flow inside
the hydrostatic bearings. All the computations are performed by a parallel finite element package
written in C++ and described in [17], and using the BDDCML library [20] for solving the arising
system of linear equations. For linearization, we use Picard’s iteration with the precision measured
as εN =

∥∥uk − uk−1
∥∥

2
. The BiCGstab method preconditioned by the BDDC preconditioner is

used for the linearized system with precision measured as εL =
∥∥rk∥∥

2
/ ‖g‖2. According to our

previous experience from [17], the convergence of the BiCGstab method is comparable to that
of GMRES. Simulations were performed on the Salomon supercomputer at the IT4Innovations
National Supercomputing Center using the cores of Intel Xeon E5-2680v3 12C 2.5GHz processors.

5.1 Narrowing channel

In this computations I aim at the influence of interface irregularities on the BDDC solver for Navier-
Stokes equations. In particular, I investigate the effect of the aspect ratio of the finite elements at
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Figure 4: The narrowing channel 3-D benchmark; original channel (left), narrowing along the y-axis
(centre), and narrowing along both y and z-axes (right).

partitioner graph

A 1 2 4 10 20 40 100

Picard’s its. 4 4 4 5 8 19 28

BiCGstab its.
min 17.5 19.5 27.5 36 51 80 197
max 18.5 20.5 28 41.5 53 92.5 1000
mean 18.3 19.8 27.9 39.5 51.8 87.7 590

Table 1: Numbers of iterations for graph partitioner for the 3-D channel narrowed along both y
and z-coordinates.

the interface on convergence. In order to study this phenomenon, a benchmark problem suitable
for such a study is proposed and the partitioning strategies described in Section 4.4 are compared.
Picard’s iteration is terminated when εL ≤ 10−5 or after performing 100 iterations. The BiCGstab
method is stopped if εN ≤ 10−6, with the limit of 1000 iterations.

As a measure of convergence, I monitor the number of BiCGstab iterations needed in one
Picard’s iteration. Two matrix-vector multiplications are needed in each iteration of BiCGstab,
and after each of them, the terminal condition is evaluated. Correspondingly, inspired by the
Matlab bicgstab function, termination after the first matrix-vector multiplication is reported by a
half iteration in the BiCGstab iteration counts. Numbers of iterations are presented as minimum,
maximum, and mean over all nonlinear iterations for a given case.

The benchmark problem consists of a sequence of simple channels where the dimension of the
channels along one or two coordinates is gradually decreased (Fig. 4). The aspect ratio of elements
A = hmax/hmin is defined as the ratio of the longest edge of the element hmax to its shortest
counterpart hmin.

For the case, where we shrink both y and z dimensions of the cross-section (see Fig. 4). The
graph partitioner produces rough interface, while the geometric partitioner leads strait cuts between
subdomains. Resulting numbers of iterations are presented in Tables 1 and 2. Numbers in italic are
runs that did not converge due to reaching the maximal number of iterations or time restrictions.

From Tables 1 and 2 we can conclude thatA of faces at the interface has a remarkable influence
on the number of BiCGstab iterations in each Picard’s iteration. Using the graph partitioner results
in a rough interface combining long and short edges. This has a large impact on the efficiency of
the BDDC preconditioner and the number of linear iterations increases significantly. Employing
the geometric partitioner leads to good convergence independent of A.

5.2 Lid-driven cavity

In this section we investigate behaviour of the BDDCML solver in application to benchmartk
problem of 3-D lid-driven cavity suggested in [26]. The computational domain is a unit cube
with Dirichlet boundary conditions. A twisted unit tangential velocity vector is considered on the
top wall, utop = (1/

√
3,
√

2/
√

3, 0). Zero velocity is considered on the remaining 5 walls. The
computational mesh is uniform with hexahedral elements, and it is divided into cubic subdomains
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partitioner geometric

A 1 2 4 10 20 40 100

Picard’s its. 4 4 4 5 5 5 4

BiCGstab its.
min 5.5 5.5 6 5 4.5 4.5 4.5
max 5.5 6 6 5.5 5 5 4.5
mean 5.5 5.9 6 5.1 4.9 4.6 4.5

Table 2: Numbers of iterations for geometric partitioner for the 3-D channel narrowed along both
y and z-coordinates.

with a rising number of them per domain edge (see Fig. 5) using my Meshbuilder software described
in Section 4.4. Simulations were performed on the Salomon supercomputer at the IT4Innovations
National Supercomputing Center using the same number of cores of Intel Xeon E5-2680v3 12C
2.5GHz processors as the number of subdomains. We terminate Picard’s iterations after reaching
the precision εN ≤ 10−5 or after 100 iterations, while the inner linear iterations are terminated
when εL ≤ 10−6 or after reaching the maximum number of 1000 iterations.

Figure 5: Boundary conditions (left) and example of mesh division with 13 subdomains per edge
(right) for the lid-driven cavity.

I present three performed tests of behaviour of BDDCML method. Namely, weak scalabil-
ity compared for 2-, 3-, and 4-level method, comparision of four used weights type described in
Section 4.2, including our own new upwind weight type.

5.2.1 Weak scalability

In this section, I compare the weak scalability of the multilevel BDDC method in application to
3D lid-driven cavity. Results for the 2-, 3-, and 4-level BDDC method are presented.

Since we are mainly interested in the efficiency of the BDDC method and the linear solver, we
focus on the mean number of linear iterations over all nonlinear iterations, the mean setup time for
preparing the BDDC preconditioner, the mean time for solving the linear problem, and the mean
time for one linear iteration. The comparison of the behaviour of the 2- and 3-level methods for
these parameters with a rising number of processors is presented in Fig. 6.

One can observe that while the 3-level method gets considerably faster than the 2-level method,
the computational times are not perfectly weakly scalable even for the 3-level case. While this
can be clearly attributed to the coarse problem solves for the 2-level method, it is likely the global
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Figure 6: Re = 100. Mean time for setup, mean time for the BiCGstab iterations and mean total
time (left), mean time for one iteration (right).

communication related to propagating the higher-level solutions and residuals what worsens the
weak scalability also for the 3-level method.

The comparison of the behaviour of the 3- and the 4-level methods for these parameters with
a rising number of processors is presented in Fig. 7.
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Figure 7: Re = 1. Mean time for setup, mean time for the BiCGstab iterations and mean total
time (left), mean time for one iteration (right).

In Figure 7, there are once again some wild drops and ups which we cannot satisfactorily explain,
but at least for the 3-level method, it could be caused by certain more suitable decompositions by
the METIS graph partitioner on higher levels. We again see a suboptimal weak scalability probably
caused by the coarse problem global communication.

5.2.2 Interface scalings

In this section, we compare the behaviour of the 2-level BDDC method for different types of
interface weights, namely the cardinality scaling (card), scaling by diagonal stiffness (diag), scaling
weights from unit load (ul), and the proposed upwind weights. For these simulations, the number
of subdomains is 125 with 8 elements per subdomain edge. We consider Reynolds numbers 100
and 200. Also the division into subdomains remains. We once again monitor the mean, maximal,
and minimal number of linear iterations, the number of nonlinear iterations, the mean setup time
of the BDDC preconditioner, the mean time for the Krylov subspace method, and the mean time
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for one iteration. These values are presented in Tables 3 and 4.

weights type nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total
card 23 13 19 17 4.18 1.99 (0.12) 6.17
diag 23 13 18 15.1 3.85 1.78 (0.12) 5.63
ul 23 12.5 14.5 13.5 4.22 1.60 (0.12) 5.82

upwind 23 23 14.5 14.3 4.05 1.69 (0.12) 5.74

Table 3: Re = 100. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, and
the total time.

weights type nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total
card 100 12 84.5 68.8 3.84 8.03 (0.12) 11.03
diag 33 12 77.5 69.5 3.87 8.09 (0.12) 11.96
ul 100 12 81 54.4 4.19 6.35 (0.12) 10.54

upwind 48 22 80.5 28.2 4.28 3.31 (0.12) 7.59

Table 4: Re = 200. Number of nonlinear iterations, number of linear iterations (minimal, maximal,
and mean), mean setup time, time for the BiCGstab iterations, time for one linear iteration, and
the total time.

The maximal number of nonlinear iteration was again set to 100, which was reached for several
cases (Table 4). For those cases, the error εN oscillated between 5 · 10−5 and 10−4, but never
dropped below 10−5.

From Tables 3 and 4, we can see that there is no significant difference in using different weights
for Reynolds number 100. However, for Reynolds number 200, we can observe a large difference in
the mean number of linear iterations. Consequently, the time for linear iterations is also different,
although the time per one iteration stays the same. Based on these tables, we can conclude that
the upwind weights may lead to a significant reduction of the number of linear iterations as well as
of the computational time.

5.3 Hydrostatic bearings

In this section we finally combine the previous experience and present the results for driving ap-
plication of our research, namely simulations of oil flow in hydrostatic bearings. These are parts of
production machines that keep moving parts of the machines on a thin layer of oil to provide low
friction. Oil is pressurized to a few MPa, and it flows through the input of the hydrostatic bearing
into a so-called hydrostatic cell. Then it flows out through a very thin (few tens of micrometers)
throttling gap.

Hydrostatic bearings have been studied for a long time at the Research Center of Manufacturing
Technology at the Faculty of Mechanical Engineering of the Czech Technical University in Prague.
These parts are typically designed using analytic solution of flow inside the throttling gap. However,
a detailed picture of the 3D flow in the whole bearing was missing.

Numerical simulation of this problem comes with several challenges, like a large pressure gradi-
ent realized in the throttling gap, small thickness of the throttling gap, and moving of the bearing.
During my research, I have gradually addressed most of these issues, at the end being able to
simulate real-scale geometry problems of sliding bearings.

Utilizing the findings from the previous experiments, I was able to perform simulations on a
real geometry of the bearing from a production machine. Here I recall our results from [3]. Our
calculations aim at an industrial problem of oil flow inside hydrostatic bearings. In this section, I
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present results for a bearing sliding in a straight direction, and this set-up corresponds to a running
production machine.

The computational mesh was created and divided into specified structured volumes using the
GMSH software. These volumes preserve flat interfaces between each other to make it possible to
decompose the solution domain into 21 global subdomains using our ‘geometric’ partitioner prefers
straight cuts between subdomains described in [1]. The mesh consists of 124 828 elements which
correspond with 3 269 679 unknowns and 186 834 interface unknowns. The decomposed mesh is
presented in Figure 8. In Figure 9 there are streamtraces in different parts of the bearing coloured
by the velocity magnitude.

Figure 8: Computational mesh decomposed into 21 subdomains.

For presented case, we needed 3 Picard’s iterations to reach precision εN ≤ 10−4, while on
average 748 BiCGstab iterations were needed for the linearised system to achieve the precision of
the relative residual εL ≤ 10−5.

Figure 9: Streamtraces coloured by the magnitude of velocity in the sliding hydrostatic bearing
along the short edge in negative x direction.

We can see that a large vortex rolling inside of the hydrostatic cell is formed, and the oil is
pulled by the motion of the bottom wall towards one side of the throttling gap. This results in the
fact that the maximal magnitude of the velocity of the oil is at the entrance to the throttling gap
in the side which corresponds with the movement of the hydrostatic bearing. The latter effect is
important for setting the operational regime of the machine, especially the maximum velocity of
the sliding such that the oil flow towards the front of the bearing is still maintained.

6 Conclusion

In today’s computation, a high resolution large-scale simulations are necessary for many engineering
applications. This is allowed by a suitable mathematical methods, namely, the domain decompo-
sition methods. Using this approach, it is possible to perform many kinds of parallel simulations.
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Therefore, fast and effective parallel solvers for computational fluid dynamics play an important
role in nowadays research.

In this thesis, the mathematical model of flow of a fluid described by steady incompressible
Navier-Stokes equations is considered. These equations are discretized by the finite element method
and the arising nonlinear systems are linearized by Picard’s iteration. The system of linear equations
is solved using a nonoverlapping domain decomposition method by means of iterative substructur-
ing. The arising nonsymmetric interface problem is solved by the BiCGstab method preconditioned
by one step of BDDC and its multilevel variant. In addition, various weight types and used par-
titioners are discussed in this chapter. Computations are performed for several problems. I have
compared the weak scalability of 2-, 3-, and 4-level BDDC methods for 3D lid-driven cavity, com-
pared two types of partitioners of the solution domain, compared four different weights on the
interface including my own upwind based, and presented the chronology of simulating the flow of
oil inside the hydrostatic bearing ending with real-scale geometry simulations. Now I recall the
main original results and achievements.

By combining the approaches from [18] and [27], I applied the 2-level BDDC method to the
Navier-Stokes equations for the lid-driven cavity benchmark problem in [2]. Next, I have presented a
formulation of the multilevel BDDC preconditioner for nonsymmetric problems and its application
to linear systems obtained by Picard’s linearization of the Navier-Stokes equations in a journal
paper [4]. My computations employed the BDDCML solver and a parallel finite element package
written in C++ described in [17], which I have extended towards the flow problems related to my
thesis.

The tests of the influence of the interface between subdomains were performed for two partitions
in [1]. The first was created by a partitioner based on the graph partitioning implemented in the
METIS library. The second one was my own partitioner based on geometry and division of the
domain with straight cuts promoting just a 2D interface between individual subdomains. From the
comparison of the number of linear iterations with a growing aspect ratio of the finite elements,
one can see that using the new geometric partitioner with straight cuts significantly decreases the
number of linear iterations with increasing the aspect ratio of the elements.

For a benchmark of 3-D lid-driven cavity problem, I have explored the behaviour of the 2-, 3-,
and 4-level BDDC method. I have focused mainly on the number of linear iterations and the mean
times for the setup of the preconditioner and for the iterations of the Krylov subspace method. The
performance was tested on up to 5 thousand CPU cores. The 3-level method has shown remarkable
speedup compared to the 2-level method, especially for large numbers of subdomains where the
coarse problem significantly grows. However, switching to the 4-level method has not brought us an
overall improvement. Although each iteration was cheaper than in the 3-level case, the method has
required a very large number of iterations and thus performed even worse than the 2-level method.
For this problem, I also introduced my software for building the computational mesh by individual
subdomains which was necessary, especially for large meshes.

A new type of weights inspired by numerical schemes for flow problems has been proposed.
This upwind-based scaling has been compared with three other suitable interface scaling types.
My results have suggested that with a growing Reynolds number, the importance of the scaling
type increases, and the upwind weights provide promising results as presented in [4].

In [4], I have performed experiments investigating the behaviour of the 2-level and 3-level BDDC
method with respect to the H/h ratio. Although theoretical estimates are not available for this
class of problems, the numbers of BiCGstab iterations seem to confirm the logarithmic behaviour
has proven for symmetric positive definite problems.

Finally, I have applied the BDDC methodology to an industrial problem in engineering, namely,
the flow of oil in hydrostatic bearings. By solving a number of issues, I have managed to perform
challenging computations on a real geometry of the bearing by means of the 2-level BDDC method
presented in [3].

Several topics are left for future investigation. A better understanding of the effect of forming
subdomains on higher levels is still required, especially for applying the multilevel BDDC method
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to the hydrostatic bearing problem. This could also help to explain the rapidly worsening behaviour
of the 4-level method for the cavity problem. More experiments are also required for confirming
the benefits of the upwind-based interface scaling.
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