
Czech Technical University in Prague
Faculty of Mechanical Engineering

Numerical solution of the incompressible flow
using a domain decomposition method

Ph.D. thesis

Ing. Martin Hanek

Program
Mechanical Engineering

Study field
Mathematical and Physical Engineering

Supervisor
Prof. RNDr. Pavel Burda, CSc.

Co-supervisor

Ing. Jakub Š́ıstek, Ph.D.

Prague 2022

Acknowledgements

Here, I would like to thank several people, who influenced my work. First, I would like to
thank my advisor Prof. Pavel Burda. He has advised me since my bachelor thesis, introduced
me to numerical mathematics, and has been helpful during my whole studies.

I greatly thank Dr. Jakub Š́ıstek. He has been very supportive during my research and
taught me parallel computing and domain decomposition methods. He has provided me with
an opportunity to use and modify in-house software which he has been partly developing.
Also, most of my research was joint work with him and he motivated me during my studies.

I also thank Dr. Eduard Stach for providing me the challenging problem of oil flow in
hydrostatic bearings and helping me with the related experimental mesurements.

Finally, I would like to thank my family for their support and patience and for creating
beautiful background which allows me to fully focus on my research and Ph.D. thesis.

My research during the Ph.D. studies was supported by the Student Grants SGS16/206/
OHK2/3T/12 and SGS19/154/OHK2/3T/12, by the Czech Academy of Sciences under grant
18-09628S, and by the IT4Innovations under projects OPEN-4-10, OPEN-6-15, OPEN-10-43,
OPEN-14-36, and OPEN-17-40.

Abstrakt

V této disertačńı práci se zabývám numerickým řešeńım Navierových-Stokesových (N-S)
rovnic pro stacionárńı nestlačitelné prouděńı pomoćı metody Balancing Domain Decompo-
sition by Constraints (BDDC). Pro diskretizaci N-S rovnic je použita metoda konečných
prvk̊u (MKP).

V práci je představena v́ıceúrovňová metoda BDDC, která je vhodná pro řešeńı velkých
soustav lineárńıch algebraických rovnic. Tato metoda a jej́ı teorie je dobře známa pro Pois-
sonovu úlohu, úlohy lineárńı pružnosti a prouděńı popsané Stokesovými rovnicemi. Práce je
věnována rozš́ı̌reńı této v́ıceúrovňové metody na nesymetrickou úlohu vznikaj́ıćı diskretizaćı
N-S rovnic. Pro tuto formu BDDC jsou také diskutovány r̊uzné váž́ıćı operátory, včetně
vlastńıho vychá- zej́ıćıho z ”upwind” schématu, a vhodného pro úlohy prouděńı. Dále je
představen vlastńı geometrický dělič śıtě, který je vhodný pro tento typ úloh, speciálně pro
úlohy s dimenzionálně komplexńı geometríı.

Všechny nové př́ıstupy prezentované v této práci jsou podrobeny numerickým experi-
ment̊um na r̊uzných úlohách. Konkrétně jsou tu prezentovány výsledky slabé škálovatelnosti
v́ıceúrovňové metody BDDC pro prouděńı v 3D kavitě, výsledky pro test vlivu rozhrańı mezi
podoblastmi ve 2D a 3D na úloze zužuj́ıćıho se kanálku a výsledky využ́ıvaj́ıćı źıskané poz-
natky pro simulaci prouděńı oleje uvnitř hydrostatického ložiska.

Abstract

The Ph.D. thesis is devoted to numerical simulations of the Navier-Stokes (N-S) equations
for stationary incompressible flow using Balancing Domain Decomposition by Constraints
(BDDC) method. The Finite Element Method (FEM) is used for the discretization of the
N-S equations.

In the thesis, the multilevel BDDC method is introduced which is suitable for solving the
large system of linear algebraic equations. This method and its theory are well known for
the Poisson problem, for linear elasticity, and flow problems described by Stokes equations.
The thesis is devoted to an extension of the multilevel BDDC method to the nonsymmetric
problem arising from the discretization of the N-S equations. The weights operators for this
form of the BDDC method are discussed including my own based on an upwind scheme
suitable for flow problems. Next, my geometric partitioner is presented which is suitable for
these problems, especially for problems with dimensionally complex geometry.

All new approaches presented in this thesis are tested numerically for different problems.
Namely, weak scalability of multilevel BDDC method is tested on the flow in the 3D cavity,
the test of the influence of the interface between subdomains is tested on the problem of
narrowing channel, and all these pieces of knowledge are employed for simulations of oil
inside the hydrostatic bearing.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 State of the art . 7
1.3 Aims of the work . 9
1.4 Structure of the thesis . 9

2 The Navier-Stokes equations and the finite element method 11
2.1 Weak formulation . 12
2.2 Finite element method . 14

2.2.1 Finite element approximation . 15
2.2.2 Discretization of the weak formulation 18
2.2.3 Linearization of the nonlinear systems 20

3 Domain decomposition methods 22
3.1 Iterative substructuring . 23
3.2 Discrete harmonic functions . 25
3.3 Schur complement condition number . 26
3.4 Balancing Neumann-Neumann method . 27

3.4.1 Condition number of the Balancing Neumann-Neumann 29
3.5 BDDC . 29

3.5.1 Two-level BDDC for symmetric problems 30
3.5.2 Multilevel BDDC for symmetric problems 31
3.5.3 Algebraic view on the BDDC preconditioner 32
3.5.4 Convergence of extended versions of BDDC 36

4 BDDC algorithms for nonsymmetric systems and its building components 38
4.1 Two-level BDDC . 38
4.2 Multilevel BDDC for nonsymmetric systems 41
4.3 Interface scaling . 45
4.4 Mesh partitioning . 47
4.5 Mesh builder . 49

5 Numerical results 51
5.1 Narrowing channel . 51
5.2 Lid-driven cavity . 55

5.2.1 Weak scalability . 55
5.2.1.1 2- and 3-level method . 55
5.2.1.2 3- and 4-level method . 60

5.2.2 Interface scalings . 62

4

CONTENTS 5

5.2.3 Experimental H/h dependence . 63
5.3 Hydrostatic bearings . 64

5.3.1 Test problems . 65
5.3.1.1 Case 1 . 65
5.3.1.2 Case 2 . 66
5.3.1.3 Case 3 . 66

5.3.2 Bearing with realistic geometry . 67
5.3.2.1 Bearing without motion . 68
5.3.2.2 Bearing with sliding . 75

6 Conclusions 82

References 84

Chapter 1

Introduction

1.1 Motivation

The rapid rise of the progress of computers regarding their memory and computational speed
is providing a useful tool in many areas of science and technology. Especially in numerical
mathematics, which is related to computational mechanics, physics, and mathematics. One
of the most common methods in numerical mathematics is the finite element method (FEM),
which has been developed and used since the first computers for simulating many physical
processes described by partial differential equations (PDEs).

The finite element method is used and developed for many problems of mechanical en-
gineering like structural analysis and flow of fluids. The application of FEM for problems
of structural analysis (for example, linear elasticity) was there from the beginning of the
development of the FEM method, and therefore, these applications are very advanced. The
application of FEM for flow problems came slightly later. This was caused by the complexity
of physics and the mathematical models behind these problems. Therefore, another widely
spread method was developed, namely, the finite volume method (FVM).

With the growing performance of computers, the possibility of large-scale simulations
with high resolution are becoming possible. As the size of the problem grows, the compu-
tational time and memory requirements grow as well. Due to the limitation of memory of a
single computer as well as growing demands on the computational time, the idea of divid-
ing the computation into several processors, started a new field of interest. This approach
ignited the development of algorithms in numerical mathematics suitable for parallel com-
puting. In general, these methods suitable for solving PDEs in parallel are called domain
decomposition methods, and their development went hand in hand with the fast development
of supercomputers.

Application of the FEM in computational fluid dynamics (CFD) comes with a lot of
challenges. For incompressible flow, it is not an easy task to simulate flows in detail or cases
with high Reynolds numbers. Computation with fine meshes and therefore with a large
number of unknowns are a new way for CFD. For such problems, domain decomposition and
parallelization of the algorithms are a must.

There are many publications concerning FEM for CFD. One of the first monograph is
from Girault and Raviart [33]. The theory of mixed methods was also presented by Brezzi
and Fortin in [15]. Here, the finite elements satisfying the Babuška-Brezzi stability condition
are presented. FEM for incompressible fluids is discussed by Gresho and Sani in [36]. Elman
et al. present discretization of incompressible flows by FEM together with fast iterative
solvers in [26].

The main interest of this thesis is the development of the Balancing Domain Decomposi-

6

CHAPTER 1. INTRODUCTION 7

tion by Constraints (BDDC) method for incompressible Navier-Stokes equations, therefore,
to nonsymmetric systems arising from the discretization of the equations by the finite el-
ement method. The idea of domain decomposition (DD) methods is the division of the
solution domain into smaller parts called subdomains or substructures and distributing the
whole computation to several problems, defined and solved on these subdomains. In the case
of finite elements, this decomposition of the whole solution domain means the division into
several submeshes. In this way, the methods allow massively parallel implementations.

1.2 State of the art

The topic of domain decomposition for elliptic partial differential equations is investigated
by Smith, Bjorstad, and Gropp in [56]. A publication by Toselli and Widlund [58] is devoted
to algorithms and theory for DD methods. Application of DD to problems of fluid mechanics
is presented by Quarteroni and Valli in [52].

In domain decomposition, there are two basic types of division of the original mesh,
namely, with overlapping and nonoverlapping subdomains. For overlapping subdomains, the
common part of the original mesh that belongs to at least two subdomains is called the
overlap which is formed by elements that belong to several subdomains. For nonoverllaping
subdomains, the common part is called the interface, and it is formed only by the nodes on
the boundaries of subdomains, where two or more subdomains touch each other. Both these
methods allow distributing the computations to more processors and computing some parts
of the simulation independently in parallel.

The idea of nonoverlapping DD methods is to form an interface problem using the elim-
ination of interior unknowns of each subdomain. The Schur complement matrix and the
right-hand side with respect to the interface are created. This matrix and right-hand side
form a global interface problem which are much smaller than the original one. It can be so
small that it can be solved by a direct method. Once the interface problem is solved, the
interior unknowns can be found by solving a Dirichlet problem on each subdomain with a
prescribed boundary value on the interface.

With larger problems, also the size of the interface problem grows and we can reach
a memory limit for direct method, and the iterative methods are necessary. Thus, the
condition number of the system of equations starts to be important. In [14], Brenner and
Scott have shown that while the condition number of the global problem grows as O (h−2)
with the characteristic size of an element h going to zero, the condition number of the
Schur complement matrix for the interface problem grows only as O (H−1h−1), where the
characteristic size of subdomain H is much larger than h (see Brenner [12]). The next
question that arises for Schur complement systems is the choice of a suitable preconditioner.
These methods are referred to as iterative substructuring.

For solving Schur complement problems, a Krylov subspace method like the precondi-
tioned conjugate gradient (PCG) method introduced by Concus, Golub, and O’Leary in
[17] and biconjugate gradient stabilized (BiCGstab) method introduced by van der Vorst in
[62] are suitable, because only the multiplication of a vector by Schur complement matrix
is needed. This product can be computed without an explicit construction of the Schur
complement, and only the Dirichlet problem on each subdomain in each iteration is solved.

There exist several scalable preconditioners for Schur complement problems with the con-
dition number bounded independently of the number of subdomains. Two major methods
introduced at end of the last century are the Finite Element Tearing and Interconnecting
(FETI) method introduced by Farhat and Roux in [29], and the Balancing Domain De-

CHAPTER 1. INTRODUCTION 8

composition (BDD) method published by Mandel in [44]. In BDD, the Schur complement
problem on the interface is preconditioned and the continuity of the interface unknowns is
enforced strongly. Continuity at the interface in FETI method is enforced only weakly using
Lagrange multipliers and the Schur complement system at the interface is converted to a
dual problem of Lagrange multipliers of the same size. Both of these methods have their
limitations due to the singularity of the subdomain systems and therefore new modifications
of these methods have been introduced.

Modifications of these methods were introduced as Dual-Primal Finite Element Tearing
and Interconnecting (FETI-DP) by Farhat et al. in [27] and as Balancing Domain Decom-
position based on Constraints (BDDC) by Dohrmann in [21]. In FETI-DP, the continuity
is enforced in the corners of subdomains by common values and the continuity at the rest
of the interface between subdomains is enforced by Lagrange multipliers. Condition num-
ber of 2D FETI-DP method is bounded as O

(
log2 (1 +H/h)

)
as shown by Mandel and

Tezaur in [49]. This does not hold for the 3D problems and additional continuity constraints
need to be added for fast convergence. Namely, the continuity of averages over edges and
faces of subdomains. This was first shown experimentally by Farhat, Lesoinne, and Pier-
son in [28] and theoretically by Klawonn, Widlund, and Dryja in [39]. The bound here is
O
(
log2 (1 +H/h)

)
.

The BDDC method was introduced by Dohrmann in [21] for the Poisson problem and
linear elasticity. The underlying theory for the bound of O

(
log2 (1 +H/h)

)
was presented by

Mandel and Dohrmann in [46], and Mandel et al. in [47] has shown that the BDDC method
is spectrally equivalent to the FETI-DP method [28]. This preconditioner was then used
without an explicit coarse problem for systems with symmetric positive definite matrices
and the change of basis by Li and Widlund in [43]. The multilevel extension of the BDDC
method was presented first for three levels by Tu in [59], and later for an arbitrary number
of levels by Mandel et al. in [48]. The multilevel BDDC method was combined with the
adaptive selection of coarse unknowns and implemented into an open-source parallel solver
BDDCML by Soused́ık et al. in [57]. A recent overview of adaptive BDDC was provided by
Pechstein and Dohrmann in [50]. The potential of the multilevel method to scale up to 499
thousand cores was demonstrated by Badia et al. in [7]. More on domain decomposition
methods, in general, can be found in the monograph [58].

In [42], the BDDC method was first applied to a saddle-point system with symmetric
indefinite matrices arising from the discretization of the Stokes problem. This approach uses
finite elements with a discontinuous approximation of pressure, which leaves only unknowns
for the velocity components at the interface. An approach for the Stokes problem using
elements with continuous pressure was investigated by Š́ıstek et al. in [55], and a different
approach was later introduced by Li and Tu in [41].

By discretizing and linearizing the Navier-Stokes equations, we get saddle-point systems
with nonsymmetric matrices. An application of the BDDC method to nonsymmetric matri-
ces arising from advection-diffusion problems was presented by Tu and Li in [60] and [61],
where the method was formulated without an explicit coarse problem. An explicit coarse
problem of BDDC was presented by Yano for nonsymmetric problems arising from the Euler
equations in [64].

Earlier domain decomposition methods for problems with nonsymmetric matrices include
the Robin-Robin preconditioner introduced by Achdou et al. in [5, 6] for advection-diffusion
problems.

An important building block of the BDDC method is the choice of weights used for
averaging a discontinuous solution at the interface between subdomains. There are some
standard types of weights like arithmetic average (also known as cardinality scaling), or

CHAPTER 1. INTRODUCTION 9

weighted average based on diagonal entries of subdomain matrices. A recent advanced type
of scaling is the deluxe scaling presented by Dohrmann et al. in [23, 20], and by Beirão da
Veiga et al. in [8].

To this point, I described only the nonoverlapping DD method, as they are the main
interest of this thesis, therefore no other references to the overlapping DD method will be
mentioned. For some details of overlapping DD methods, see, for example, [56] and [58].

1.3 Aims of the work

The aims of my research are two-fold:

• The first aim is to develop a numerical method for computational fluid dynamics
employing the extension of the multilevel BDDC method towards the nonsymmetric
systems arising from the discretization of the Navier-Stokes equations.

• The second aim is to perform missing detailed 3D simulations of the industrial problem
of a flow of oil inside the whole moving hydrostatic bearings.

The problem of the bearing has been provided by Eduard Stach from the Research Center of
Manufacturing Technology at the Faculty of Mechanical Engineering of the Czech Technical
University in Prague.

By combining the approaches from [55] and [64], I apply the 2-level BDDC method to
the Navier-Stokes equations for the lid-driven cavity benchmark problem. Next, I present
an extension of the multilevel BDDC preconditioner to nonsymmetric problems and its
application to linear systems obtained by Picard linearization of the Navier-Stokes equations.
My computations employ the BDDCML solver and a parallel finite element package written
in C++ described in [54], which I have extended towards the flow problems considered in my
thesis. For a benchmark problem of flow in a 3-D lid-driven cavity, I compare the convergence
behavior of the 2-, 3- and 4-level methods and perform weak scaling tests. In addition, I
apply the 2-level variant of the BDDC preconditioner to several industrial problems of oil
flow in hydrostatic bearings.

The main goal of this thesis is to develop and present the algorithm for the multilevel
BDDC method for nonsymmetric systems arising from the discretization of the Navier-Stokes
equations by FEM. This novel algorithm is tested on a 3D lid-driven cavity problem. Next,
I test the 2-level BDDC method for this problem for different types of weight operators
including my own based on the upwind scheme. Also, an experimental test of convergence
for the 2- and 3-level method for cavity problem is presented. Next, I present the strategy
of mesh partitioning, including my partitioner preserving 2D interfaces between each sub-
domain which is shown to be suitable for dimensionally complex geometries, and a mesh
builder for building solution domain by individual subdomains for large meshes. Finally,
I present the chronology of the simulation for the industrial problem of oil flow inside the
hydrostatic bearing. Here, I gradually use all pieces of knowledge from previous numerical
experiments to perform simulation for a realistic geometry of the hydrostatic bearing and
also validate the calculation with an experiment.

1.4 Structure of the thesis

The thesis is organized as follows. In Chapter 2 the incompressible Navier-Stokes equa-
tions for the steady case are described. In addition, a weak formulation of these equations

CHAPTER 1. INTRODUCTION 10

and discretization by the finite element method are presented. Chapter 3 is devoted to
domain decomposition methods. Basic principles and methods for nonoverlapping DD are
introduced. This chapter covers the idea of discrete harmonic functions and Schur comple-
ment systems arising from iterative substructuring. Presented methods are the balancing
Neumann-Neumann, two-level, and multilevel BDDC methods for symmetric positive defi-
nite systems. Condition number bounds for these methods are also presented. In Chapter 4,
I present the novel approach of using the BDDC method and its multilevel variant for
nonsymmetric systems arising from the Navier-Stokes equations. The rest of the chapter
summarizes the used interface scaling including our new weight type, and partitioners used
for mesh division. My partitioner based on geometry together with mesh builder designing
the computational mesh by individual subdomains for large meshes are introduced. Chapter
5 presents all numerical results for the approaches contained in Chapter 4. This includes a
comparison of weak scalability for 2-, 3-, and 4-level BDDC methods for the lid-driven cav-
ity, the influence of the interface between subdomains and the convergence of the two-level
method, and simulations of the industrial problem of oil flow inside the hydrostatic bearings.
In Chapter 6 the results of the presented work and possible topics for further research are
summarized.

Chapter 2

The Navier-Stokes equations and the
finite element method

In this section, we introduce the mathematical model and its numerical approximation. We
consider a stationary incompressible flow in a bounded three-dimensional domain Ω with
Lipschitz boundary governed by the Navier-Stokes equations with zero body forces (see e.g.
[26]),

(u · ∇)u− ν∆u+∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

where

• u = (u1, u2, u3)T [ms−1] denotes the unknown velocity vector as a function of space
variable x

• p [Pa] is an unknown pressure normalized by (constant) density as a function of x

• ν [m2s−1] is a given kinematic viscosity

• f is a given volume force function

• Ω is a solution domain

but for complex unstructured meshes could be a problematic a definition of the overlap. In
addition, we consider the following boundary conditions,

u = g on ΓD, (2.3)

−ν(∇u)n + pn = 0 on ΓN , (2.4)

where ΓD and ΓN are parts of the boundary ∂Ω, ΓD ∪ΓN = ∂Ω, ΓD ∩ΓN = ∅, n is the outer
unit normal vector of the boundary, and g is a given function.

This completed system has for low Reynolds numbers a unique solution (see [26]), except
for case with prescribed velocity on the whole boundary, i.e. ΓD = Γ. Then the solution of
pressure is unique up to a constant.

A solution of equations (2.1)–(2.4) is called a classical solution. This puts certain demands
on the differentiability of the pressure and velocity functions. In particular, a function of a
velocity component has to have continuous second partial derivatives in Ω (i.e. u ∈ [C2(Ω)]3)
and has to be continuous up to the boundary (u ∈ [C0(Ω)]3). Pressure has to have continuous

11

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 12

first partial derivatives in Ω (p ∈ C1(Ω)) and also has to be continuous up to the boundary
(p ∈ C0(Ω)). In the case of non-smooth domain or non-continuity of function (f , g), which
corresonds with most of the technical applications, data f and g do not have to be smooth or
continuous enough to be considered as a classical solution. In these examples, an alternative
description of the boundary value problem with weaker demands on solution is necessary.
This approach is using the so-called weak formulation.

2.1 Weak formulation

To apply the numerical approximation by the finite element method, we first derive the
mixed weak formulation. We use the mixed method, where we use different function spaces
for test functions of velocity and pressure. We multiply equations (2.1) and (2.2) by these
test functions from suitably chosen function spaces and integrate over the solution domain Ω.
We get

∫
Ω

(u · ∇)u · v dΩ− ν
∫

Ω

∆u · v dΩ +

∫
Ω

∇p · v dΩ =

∫
Ω

f · v dΩ, (2.5)∫
Ω

q∇ · u dΩ = 0, (2.6)

where

• v are velocity test functions

• q are pressure test functions

If v is smooth enough, requirement for smoothness of solution (u, p) in equation (2.5)
can be lowered using the divergence theorem. We get

∫
Ω

(u · ∇)u · v dΩ− ν
∫

Γ

(∇u)n · v dΓ + ν

∫
Ω

∇u : ∇v dΩ +

+

∫
Γ

pv · n dΓ−
∫

Ω

p∇ · v dΩ =

∫
Ω

f · v dΩ.

The term ∇u : ∇ is defined as ∇u : ∇ := ∇ux · ∇vx +∇uy · ∇vy +∇uz · ∇vz.
It can be rewritten as

∫
Ω

(u · ∇)u · v dΩ + ν

∫
Ω

∇u : ∇v dΩ−
∫

Ω

p∇ · vdΩ − (2.7)

−
∫

Γ

(
ν
∂u

∂ n
− pn

)
· v dΓ =

∫
Ω

f · v dΩ.

In this equation, we can see that the integral over the boundary corresponds with the
boundary condition on the part of the boundary with Neumann boundary condition and
therefore is equal to zero.

Equations (2.7) and (2.6) with inserted boundary condition (2.3) and (2.4) and assuming
f = 0 gives

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 13

∫
Ω

(u · ∇)u · v dΩ + ν

∫
Ω

∇u : ∇v dΩ−
∫

Ω

p∇ · v dΩ − (2.8)

−
∫

ΓD

(
ν
∂u

∂n
− pn

)
· v dΓ = 0,∫

Ω

q∇ · u dΩ = 0, (2.9)

for all suitable functions v, q.
Now we look on the suitable function spaces for the solution (u, p) and for the test

functions v, q, therefore for spaces, where integrals in equations (2.8) and (2.15) are finite.
First we look at the solution and test functions for velocity. In particular, at the integral

∫
Ω

∇u : ∇v dΩ. (2.10)

Here we use the function space of Lebesque measurable functions

L2(Ω) :=

{
u : Ω→ R3

∣∣∣∣∫
Ω

u2 <∞
}

with the norm

‖u‖ :=

(∫
Ω

u2

)1/2

.

Integral (2.10) is finite for the first derivatives of all velocity components from L2(Ω). In
particular for a 3-D problem, ∂ux

∂x
, ∂ux
∂y
, ∂ux
∂z
, ∂uy
∂x
, ∂uy
∂y
, ∂uy
∂z
, ∂uz
∂x
, ∂uz
∂y
, ∂uz
∂z
∈ L2(Ω)

and ∂vx
∂x
, ∂vx
∂y
, ∂vx
∂z
, ∂vy
∂x
, ∂vy
∂y
, ∂vy
∂z
, ∂vz
∂x
, ∂vz
∂y
, ∂vz
∂z
∈ L2(Ω). By using the Cauchy-Schwarz inequality,

we get

∫
Ω

∇u : ∇v dΩ =

∫
Ω

(∇ux · ∇vx +∇uy · ∇vy +∇uz · ∇vz) dΩ =

=

∫
Ω

(
∂ux
∂x

∂vx
∂x

+
∂ux
∂y

∂vx
∂y

+
∂ux
∂z

∂vx
∂z

+
∂uy
∂x

∂vy
∂x

+

+
∂uy
∂y

∂vy
∂y

+
∂uy
∂z

∂vy
∂z

+
∂uz
∂x

∂vz
∂x

+
∂uz
∂y

∂vz
∂y

+
∂uz
∂z

∂vz
∂z

)
dΩ ≤

≤
∥∥∥∥∂ux∂x

∥∥∥∥∥∥∥∥∂vx∂x
∥∥∥∥+

∥∥∥∥∂ux∂y
∥∥∥∥∥∥∥∥∂vx∂y

∥∥∥∥+

∥∥∥∥∂ux∂z
∥∥∥∥∥∥∥∥∂vx∂z

∥∥∥∥+

∥∥∥∥∂uy∂x

∥∥∥∥∥∥∥∥∂vy∂x
∥∥∥∥+

+

∥∥∥∥∂uy∂y
∥∥∥∥∥∥∥∥∂vy∂y

∥∥∥∥+

∥∥∥∥∂uy∂z
∥∥∥∥∥∥∥∥∂vy∂z

∥∥∥∥+

∥∥∥∥∂uz∂x

∥∥∥∥∥∥∥∥∂vz∂x
∥∥∥∥+

∥∥∥∥∂uz∂y
∥∥∥∥∥∥∥∥∂vz∂y

∥∥∥∥+

+

∥∥∥∥∂uz∂z
∥∥∥∥∥∥∥∥∂vz∂z

∥∥∥∥ <∞.
Therefore for Ω ⊂ R3, the Sobolev space [H1(Ω)]3, defined as

[H1(Ω)]3 :=

{
u : Ω→ R3

∣∣∣∣ui, ∂ui∂xj
∈ L2(Ω); i, j = 1, 2, 3

}
,

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 14

is a suitable space for u and v.
Analogously, it can be shown that the integral

∫
Ω

(u · ∇)u · v dΩ (2.11)

is finite for u,v ∈ [H1(Ω)]3 (see [26]).
In the case of the integral on the boundary with Dirichlet boundary condition ΓD, we

look at the behaviour of the functions u and v. Meanwhile for function u we have u = g
on ΓD, for the test function we choose v = 0 on ΓD. It result in omiting boundary formula
in equation (2.8) and we get the following function spaces

Vg :=
{
u ∈ [H1(Ω)]3 |u = g on ΓD

}
, (2.12)

V :=
{
v ∈ [H1(Ω)]3 |v = 0 on ΓD

}
. (2.13)

Here, the Dirichlet boundary condition is fulfilled in the sense of traces (more for example
in [13]).

Now we look at the solution and test functions for the pressure. Because on the right-
hand side of equation (2.8) there is no derivative of the pressure, the space L2(Ω) is suitable
for pressure p and choice of test functions q from L2(Ω) secures that the integral on the
left-hand side of equation (2.15) is finite.

If we put all of this together, we get the final formulation:

Find u ∈ Vg and p ∈ L2(Ω) satisfying∫
Ω

(u · ∇)u · v dΩ + ν

∫
Ω

∇u : ∇v dΩ−
∫

Ω

p∇ · v dΩ = 0 ∀v ∈ V, (2.14)∫
Ω

q∇ · u dΩ = 0 ∀q ∈ L2(Ω), (2.15)

where the function spaces Vg and V are spaces from (2.12) and (2.13), respectively.

2.2 Finite element method

The first step for using the finite element method is creating a mesh. We divide the solution
domain Ω ⊂ R3 into N hexahedrons HK , such that

N⋃
K=1

HK = Ω,

µR3(HK ∩HL) = 0, K 6= L,

so the neighboring elements have always a common face, edge or vertex.
Now we assume that on each element we approximate solutions of the velocity and

the pressure and the corresponding test functions by polynomials of a certain degree. For
solving the Navier-Stokes equations, it is suitable to choose polynomials of different degree
for velocity and pressure. For the same order of approximation, pressure shows instability. I.
Babuška and F. Brezzi have shown the condition (more details can be found for example in

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 15

[15]) which limits suitable pairs of polynomial degrees for the approximation of the velocity
and the pressure.

The desired combinations of polynomial degrees are assured by suitable choice of finite
elements. There are several types of finite elements that satisfy the Babuška-Brezzi (also
known as inf-sup) condition. For my computations, I choose the hexahedral Taylor-Hood
Q2−Q1 finite elements (see e.g. [26]). These elements locally approximate pressure functions
by polynomials of the first degree and velocity components by polynomials of the second
degree, while both fields are continuous on the inter-element boundaries.

The convergence theory of the Q2 −Q1 finite elements is well-established for the Stokes
problem, see e.g. [10, 26]. The three-dimensional version of the elements satisfies the
Babuška-Brezzi stability condition, one of the requirements for developing the optimal error
estimate. Given a sufficient regularity of the solution (u, p) and a bounded aspect ratio of
elements, the Q2 −Q1 elements satisfy the apriori error estimate [26, Theorem 5.6]

‖∇(u− uh)‖+ ‖p− ph‖0,Ω ≤ Ch2(‖D3u‖+ ‖D2p‖), (2.16)

where ‖D3u‖ and ‖D2p‖ measure the regularity of the solution, h is the length of the longest
edge in the mesh, ‖ · ‖ is the L2-norm, and ‖ · ‖0,Ω is the quotient space norm which removes
the mean value of the pressure.

2.2.1 Finite element approximation

Due to their use in this thesis, we look closer at the Taylor-Hood finite elements. On each
element we approximate values of velocity in the verticies, in the middles of edges, in the
middles of faces and in middles of each element. Pressure degrees of freedom are only in
vertices (see Figure 2.1). It correspond with the following approximation on each element
HK :

ui ∈ Q2(HK), i = 1, 2, 3, the so called tri-quadratic polynomial,

p ∈ Q1(HK), the so called tri-linear polynomial.

For an approximation by the finite element method, we assign to each node a shape
function of the required degree which is equal to one in that node and equal to zero in
all others. Linear combination of these shape functions approximate the solution on the
element. These shape functions in local coordinates system [ξ; η; ζ] follows these equations:

Shape functions for approximation of each velocity component are

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 16

Figure 2.1: Taylor-Hood reference element

N1 = −1/8 · ξ(1− ξ)η(1− η)ζ(1− ζ)

N2 = 1/8 · ξ(1 + ξ)η(1− η)ζ(1− ζ)

N3 = −1/8 · ξ(1 + ξ)η(1 + η)ζ(1− ζ)

N4 = 1/8 · ξ(1− ξ)η(1 + η)ζ(1− ζ)

N5 = 1/8 · ξ(1− ξ)η(1− η)ζ(1 + ζ)

N6 = −1/8 · ξ(1 + ξ)η(1− η)ζ(1 + ζ)

N7 = 1/8 · ξ(1 + ξ)η(1 + η)ζ(1 + ζ)

N8 = −1/8 · ξ(1− ξ)η(1 + η)ζ(1 + ζ)

N9 = 1/4 · (1− ξ)(1 + ξ)η(1− η)ζ(1− ζ)

N10 = −1/4 · ξ(1 + ξ)(1− η)(1 + η)ζ(1− ζ)

N11 = −1/4 · (1− ξ)(1 + ξ)η(1 + η)ζ(1− ζ)

N12 = 1/4 · ξ(1 + ξ)(1− η)(1 + η)ζ(1− ζ)

N13 = −1/4 · (1− ξ)(1 + ξ)η(1− η)ζ(1 + ζ)

N14 = 1/4 · ξ(1 + ξ)(1− η)(1 + η)ζ(1 + ζ)

N15 = 1/4 · (1− ξ)(1 + ξ)η(1 + η)ζ(1 + ζ)

N16 = −1/4 · ξ(1 + ξ)(1− η)(1 + η)ζ(1 + ζ)

N17 = 1/4 · ξ(1− ξ)η(1− η)(1− ζ)(1 + ζ)

N18 = −1/4 · ξ(1 + ξ)η(1− η)(1− ζ)(1 + ζ)

N19 = 1/4 · ξ(1 + ξ)η(1 + η)(1− ζ)(1 + ζ)

N20 = −1/4 · ξ(1− ξ)η(1 + η)(1− ζ)(1 + ζ)

N21 = −1/2 · (1− ξ)(1 + ξ)(1− η)(1 + η)ζ(1− ζ)

N22 = 1/2 · (1− ξ)(1 + ξ)(1− η)(1 + η)ζ(1 + ζ)

N23 = −1/2 · (1− ξ)(1 + ξ)η(1− η)(1− ζ)(1 + ζ)

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 17

N24 = 1/2 · ξ(1 + ξ)(1− η)(1 + η)(1− ζ)(1 + ζ)

N25 = 1/2 · (1− ξ)(1 + ξ)η(1 + η)(1− ζ)(1 + ζ)

N26 = −1/2 · ξ(1− ξ)(1− η)(1 + η)(1− ζ)(1 + ζ)

N27 = (1− ξ)(1 + ξ)(1− η)(1 + η)(1− ζ)(1 + ζ)

Shape functions for approximation of pressure are

M1 = 1/8 · (1− ξ)(1− η)(1− ζ)

M2 = 1/8 · (1 + ξ)(1− η)(1− ζ)

M3 = 1/8 · (1 + ξ)(1 + η)(1− ζ)

M4 = 1/8 · (1− ξ)(1 + η)(1− ζ)

M5 = 1/8 · (1− ξ)(1− η)(1 + ζ)

M6 = 1/8 · (1 + ξ)(1− η)(1 + ζ)

M7 = 1/8 · (1 + ξ)(1 + η)(1 + ζ)

M8 = 1/8 · (1− ξ)(1 + η)(1 + ζ)

On each element, the values of velocities and pressure are given as

ux =
Nu∑
i=1

uxiNi,

uy =
Nu∑
i=1

uyiNi,

uz =
Nu∑
i=1

uziNi,

p =

Np∑
i=1

piMi,

where

• ux denotes velocity component in x direction

• uy denotes velocity component in y direction

• uz denotes velocity component in z direction

• p denotes pressure

• uxi, uyi, uzi are values of velocity ux, uy, uz in node i

• pi is the value of pressure in node i

• Nu is the number of nodes with velocity value on a given element (for Taylor-Hood
element Nu = 27)

• Np is the number of nodes with pressure value on a given element (for Taylor-Hood
element Np = 8)

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 18

2.2.2 Discretization of the weak formulation

To be able to seek the aproximate solution, we need also to discretize the weak formulation.
During discretization of the weak formulation of the Navier-Stokes equations (2.14)–(2.15)
we assume that we approximate u, p,v, q using the finite dimensional subspaces of solutions
and test function spaces. Especially Vh ⊂ V , Vgh ⊂ Vg and Mh ⊂ L2(Ω). Meanwhile,
dimVh < ∞, Vgh < ∞, and Mh < ∞. First we look at the solution and test functions
of velocity. Assume that Vh ⊂ V a Vgh ⊂ Vg are finite 3n-dimensional spaces of functions
for which {φ1,φ2, . . . ,φ3n} are suitable vector basis functions. Next due to respecting the
Dirichlet boundary condition in the definition of space Vg, we extend this set of basis functions

by defining other functions φ3n+1,φ3n+2, . . . ,φ3(n+∂n) so that the function
∑3n+∂n

j=3n+1 uxjφxj

interpolates gx on ΓD,
∑3n+2∂n

j=3n+∂n+1 uyjφyj interpolates gy on ΓD, and
∑3n+3∂n

j=3n+2∂n+1 uzjφzj
interpolates gz on ΓD. Finite element approximation uh ∈ Vgh is therefore in each component
uniquely connected with vectors of real coefficients, so that

uxh =
n∑
j=1

uxjφxj +
3n+∂n∑
j=3n+1

uxjNxj,

uyh =
2n∑

j=n+1

uyjφyj +
3n+2∂n∑

j=3n+∂n+1

uyjNyj,

uzh =
3n∑

j=2n+1

uzjφzj +
3n+3∂n∑

j=3n+2∂n+1

uzjNzj,

where n is equal to the number of nodes corresponding to velocity and φxj, φyj, φzj are
basis functions for corresponding velocity components which we get by summing the all
shape functions of Taylor-Hood elements for velocity corresponding to a given node in the
mesh. To simplify the notation and unify vectors of velocity components, we put together
all velocity components to one vector consecutively so that

uh = uh1 + uh2 =
3n∑
j=1

ujφj +

3(n+∂n)∑
j=3n+1

ujφj, (2.17)

therefore the first third of the vector corresponds to ux values with vector basis functions φj =
(φj, 0, 0)T , the second corresponds to uy values with vector basis functions φj = (0, φj, 0)T ,
and the third corresponds to uz values with vector basis functions φj = (0, 0, φj)

T . During
the discretization of solution and test functions of pressure, we assume that Mh ⊂ L2(Ω) has
scalar basis functions ψ1, ψ2, . . . , ψm and similarly as in the velocity case is the finite element
approximation of pressure ph ∈ Mh is uniquely connected with vector of real coefficients
p = (p1, p2, . . . , pm)T by

ph =
m∑
k=1

pkψk, (2.18)

where m is equal to the number of nodes corresponding to the pressure, and ψk are basis
functions of pressure which arise similary as basis functions of velocity, therefore by summing

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 19

shape functions of pressure of Taylor-Hood finite elements for a given node in the mesh.
With regard to assuming the different basis functions for velocity and pressure, we call this
approach the mixed approximation [26].

The result of the mixed approximation method is the discretized weak formulation, which
we get by substituting (2.17) and (2.18) into the weak formulation (2.14)–(2.15). Therefore,
we seek uh ∈ Vgh and ph ∈Mh satisfying

∫
Ω

(uh · ∇)uh · vh dΩ + ν

∫
Ω

∇uh : ∇vh dΩ−
∫

Ω

ph∇ · vh dΩ = 0 ∀vh ∈ Vh,(2.19)∫
Ω

qh∇ · uh dΩ = 0 ∀qh ∈Mh.(2.20)

If equation (2.19) should be satisfied for all vh ∈ Vh and equation (2.20) for all qh ∈Mh,
it has to be satisfied even if we choose for test functions of velocity and pressure directly
the basis from the given spaces. From (2.17) and (2.18) then it follows that equations (2.19)
and (2.20) are equivalent to seeking uj, pj such that

∫
Ω

(uh1 · ∇)

 3n∑
j=1

ujφj

 · φi dΩ + ν

∫
Ω

∇

 3n∑
j=1

ujφj

 : ∇φi dΩ−
∫

Ω

(
m∑

k=1

pkψk

)
∇ · φi dΩ

= −
∫

Ω

(uh2 · ∇)

3(n+∂n)∑
j=3n+1

ujφj

 · φi dΩ− ν
∫

Ω

∇

3(n+∂n)∑
j=3n+1

ujφj

 : ∇φi dΩ

∫
Ω

ψl∇ ·

 3n∑
j=1

ujφj

 dΩ = −
∫

Ω

ψl∇ ·

3(n+∂n)∑
j=3n+1

ujφj

 dΩ,

which holds for all φi where i = 1, . . . , 3n and ψl where l = 1, . . . ,m. Since uj and pj are
constant, we can put the sum in front of integral and get

ν
3n∑
j=1

uj

∫
Ω
∇φj : ∇φi dΩ +

3n∑
j=1

uj

∫
Ω

(uh1 · ∇)φj · φi dΩ−
m∑
k=1

pk

∫
Ω
ψk∇ · φi dΩ (2.21)

= −
3(n+∂n)∑
j=3n+1

uj

∫
Ω

(uh2 · ∇)φj · φi dΩ− ν
3(n+∂n)∑
j=3n+1

uj

∫
Ω
∇φj : ∇φi dΩ

3n∑
j=1

uj

∫
Ω
ψl∇ · φj dΩ = −

3(n+∂n)∑
j=3n+1

uj

∫
Ω
ψl∇ · φj dΩ, (2.22)

for i = 1, . . . , 3n and l = 1, . . . ,m. It can be rewritten to the matrix form[
νA + N(u) BT

B 0

] [
u
p

]
=

[
f
g

]
, (2.23)

where u is the vector of unknown coefficients of velocity, p is the vector of unknown coeffi-
cients of pressure, A, which correspons with the first term in 2.21, is the matrix of diffusion,
N(u), which correspons with the second term in 2.21, is the matrix of advection which de-
pends on the solution, B, which correspons with the third term in 2.21 and first term in 2.22,
is the matrix from the continuity equation, and f and g are discrete right-hand side vectors
arising from the Dirichlet boundary conditions. Each part of system (2.23) is assembled as
(see [26])

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 20

A = [aij], aij =

∫
Ω

∇φi : ∇φj dΩ, (2.24)

N(u) = [nij], nij =

∫
Ω

(u · ∇)φj · φi dΩ, (2.25)

B = [blj], blj = −
∫

Ω

ψl∇ · φj dΩ, (2.26)

f = [fi], fi = −
3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω

(u · ∇)φj · φi dΩ− ν
3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω
∇φj : ∇φi dΩ, (2.27)

g = [gl], gl =

3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω
ψl∇ · φj dΩ. (2.28)

System (2.23) is nonlinear due to the matrix N(u), and now we look on the possibilities
of its linearization.

2.2.3 Linearization of the nonlinear systems

Now we look at the possibilities of solving nonlinear systems arising from discretization of the
Navier-Stokes equations. This requires nonlinear iterations and solving a linearized system
at every nonlinear step. Let us look on two classical methods. First method is Newton’s
iteration. In this approach we first solve system of linear equations[

νA + N + W BT

B 0

] [
δuk

δpk

]
=

[
f
g

]
, (2.29)

for corrections of velocity δu and pressure δp in current step. Here the matricies A and B
are the same asi in (2.21) and (2.22) respectively. New matricies in (2.29) are the vector-
convection matrix N and the Newton derivative matrix W which depend on the solution of
velocity from previous step uk, and are defined as

N = [nij], nij =

∫
Ω

(uk · ∇φj) · φi dΩ, (2.30)

W = [wij], wij =

∫
Ω

(φj · ∇uk) · φi dΩ, (2.31)

for i and j = 1, . . . , 3n. The right-hand side vectors f and g also depend on solution of
velocity uk and pk from precious step. They are defined as

f = [fi], fi = −
∫

Ω

uk · ∇uk · φi dΩ− ν
∫

Ω

∇uk : ∇φi dΩ +

∫
Ω

pk · (∇φi) dΩ, (2.32)

g = [gl], gl =

∫
Ω

ψl(∇ · uk) dΩ. (2.33)

The system (2.29) is referred to as the discrete Newton problem. After solving the corrections
δu and δp, we get the solution in (k + 1)th step as uk+1 = uk + δuk and pk+1 = pk + δpk,
respectively.

CHAPTER 2. THE NAVIER-STOKES EQUATIONS AND THE FEM 21

Second approach to solving nonlinear system which is used in my computations is Picard’s
iteration. This simple method use for linearization of matrix N solution of the velocity from
previous step uk. This leads to solving a sequence of linear systems of equations in the form[

νA + N(uk) BT

B 0

] [
uk+1

pk+1

]
=

[
f
g

]
, (2.34)

where the matricies are build in the same way as in (2.21) and (2.22) respectively. For the
matrix N(uk) we substitute a solution of velocity from the previous step to the matrix N.
This—already linear—nonsymmetric system is solved by means of iterative substructuring
using the BDDC method as a preconditioner. For more details of both linearizations see
[26].

Chapter 3

Domain decomposition methods

Domain decomposition methods are mathematical algorithms for solving linear and nonlinear
systems of algebraic equations which arise from discretization of partial differential equations
(PDEs). These methods are suitable for parallel computations and their main idea is to
decompose the solved problem into several smaller problems which are easier to solve and
subsequently join each of these problems into the global one. This allows us to find the
parts of the solution independently on each subdomain, therefore in parallel. It is obvious
that the decomposition of the solution domain into completely independent problems is
not possible and some communication and exchange of information between subdomains is
necessary. The main motivation for usage of these methods is their potential for effective
parallelization due to the local utilization of data and the ability to solve PDEs which shows
different behaviour on different parts of the solution domain.

In connection with PDEs, the term domain decomposition has three slightly different
meanings (see [56]):

• In parallel computing, it often means process of data distribution from computational
model among processors. In this case the domain decomposition refers to data structure
and can be independent of the numerical solution methods.

• In asymptotic analysis, it means decomposition of a solution domain into parts which
could be modeled using different equations. On the interface between subdomains,
we have various conditions (e.g. continuity). In this case, domain decomposition
determines which PDEs we solve.

• In solving or preconditioning of large linear systems of equations, domain decomposi-
tion corresponds with partitioning of a large system into smaller problems, solution of
which can be used for preconditioner (or solution) of the system of equations arising
from discretization of PDEs on a solution domain. In this case, domain decomposition
refers only to the solution method for the algebraic system of equations.

All these three approaches could be used in one program.
In my computations, I use domain decomposition method as a preconditioner, therefore

as the third option from those above-mentioned. In the remaining part of this chapter, I will
focus on this meaning of domain decomposition. The main part in domain decomposition
relates with selection of subproblems to ensure a fast rate of convergence of the iterative
method. Therefore domain decomposition methods provide preconditioners which can be
solved within Krylov subspace methods very fast. With the development of high speed com-
puters, there is a need for efficient methods that can solve large systems on many processors.
This makes it possible to handle simulations in three dimensions with high resolution.

22

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 23

In general, we can divide domain decomposition methods into two basic types:

• Overlapping methods – also known as Schwarz methods, where individual subdomains
overlap with at least one other subdomain and therefore share some part of the original
solution domain (see Figure 3.1 (left))

• Nonoverlapping methods – also known as substructuring or Schur complement methods
where there is no overlap between subdomains and subdomains share only the interface
between them (see Figure 3.1 (right))

Ω1 2

δ

Ω Ω1 Ω2

Γ

Figure 3.1: Types of domain decomposition methods: overlapping (left) and nonoverlapping
(right)

For both types of domain decomposition methods, there exist several kinds of algorithms
with different behaviour and suitability for usage (see [56] and [58] for more details). In
my calculations, I use the Balancing Domain Decomposition by Constraints (BDDC), which
is a method with nonoverlapping domain decomposition of the solution domain used as a
preconditioner for solving linear system of algebraic equations. Therefore, in the next part
of this chapter, I will aim at the nonoverlapping domain decomposition methods also known
as iterative substructuring.

3.1 Iterative substructuring

As mentioned before, in my computations, I use a nonoverlapping domain decomposition
method. Algorithms using this approach are referred to as iterative substructuring meth-
ods or Schur complement methods. In comparison with overlapping domain decomposition
methods where the rate of convergence decreases as the overlap is reduced [56], the iterative
substructuring algorithms have an additional problem to solve, namely the interface prob-
lem. There are many nonoverlapping domain decomposition methods, and I will present the
basic idea behind these methods and introduce some of them more closely.

The main idea of iterative substructuring is to reduce the original system arising from
the finite element method to the Schur complement system as in [58]. All these methods are
based on nonoverlapping decomposition of the solution domain into large set of subdomains
also referred to as substructures, as first mentioned in [51]. In general, several levels of
nested subdivision can be used in these algorithms. We can see iterative substructuring as
a method, in which we stop this subdividing process at some point and solve the remaining
linear system by a preconditioned Krylov subspace method. In parallel computing, one or
several of these substructures are assigned to one processor and the interior problems can
be solved independently, hence in parallel.

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 24

In order to reduce the system to the interface (or Schur complement system) we de-
compose our solution domain Ω into N nonoverlapping subdomains (see Figure 3.2). This
decomposition means that the degrees of freedom (dofs) shared by several subdomains are
only at the interface of each subdomain while the remaining unknowns are in the interior of
the subdomains. For the Taylor-Hood finite elements used in our work, both velocity and
pressure unknowns are shared among subdomains and hence become part of the interface Γ.

Figure 3.2: Nonoverlapping domain decomposition with interface among subdomains.

The first step in these methods is to formally reorder system (2.34) so that the interface
unknowns for velocity and pressure are at the end of the corresponding parts of the vector
of unknowns. This leads to the following block system

νA11 + N11 νA12 + N12 BT
11 BT

21

νA21 + N21 νA22 + N22 BT
12 BT

22

B11 B12 0 0
B21 B22 0 0




u1

u2

p1

p2

 =


f1
f2
g1

g2

 , (3.1)

where subscript 1 denotes the part with the interior unknowns and subscript 2 denotes the
part with the interface unknowns. Each matrix on the left-hand side of this system is built
from the blocks corresponding to individual subdomains. The next step is to reduce this
system to the interface as in [55]. We permute the system (3.1) to

νA11 + N11 νA12 + N12 BT
11 BT

21

B11 B12 0 0
νA21 + N21 νA22 + N22 BT

12 BT
22

B21 B22 0 0




u1

p1

u2

p2

 =


f1
g1

f2
g2

 ,
and then divide it into two systems[

νA11 + N11 BT
11

B11 0

] [
u1

p1

]
+

[
νA12 + N12 BT

21

B12 0

] [
u2

p2

]
=

[
f1
g1

]
, (3.2)[

νA21 + N21 BT
12

B21 0

] [
u1

p1

]
+

[
νA22 + N22 BT

22

B22 0

] [
u2

p2

]
=

[
f2
g2

]
. (3.3)

Now we express the interior unknowns from system (3.2)[
u1

p1

]
=

[
νA11 + N11 BT

11

B11 0

]−1 [
f1
g1

]
−
[
νA11 + N11 BT

11

B11 0

]−1 [
νA12 + N12 BT

21

B12 0

] [
u2

p2

]
,

(3.4)

substitute into system (3.3), and we get

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 25

S

[
u2

p2

]
= g, (3.5)

where

g =

[
f2
g2

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
f1
g1

]
is the so-called reduced right-hand side and

S =

[
νA22 + N22 BT

22

B22 0

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
νA12 + N12 BT

21

B12 0

]
is the Schur complement with respect to the interface. In practice, the Schur complement
matrix S is obtained by subassembling local Schur complements and often, it is not built
explicitly. This operation could be very expensive and therefore only an action of the Schur
complement on a vector is computed.

Many iterative substructuring algorithms used as preconditioners can solve problem (3.5).
I use one step of two-level and multilevel BDDC methods and in the following part of this
chapter, I will introduce this algorithm and also some of its predecessors.

All of these methods first solve the interface problem and then use this solution to cal-
culate the interior unknowns. They also work with the space of discrete harmonic functions
which is an important subspace related with Schur complement, and the values at the un-
knowns at the interface.

3.2 Discrete harmonic functions

The space of discrete harmonic functions is a subspace, in which we find parts of the function
of solution on each subdomain. From now on, I denote the matrix of the original linear system
as A. All the following theory works with this assumption:

Assumption 1. Let the matrix A of the original linear problem arising from discretiza-
tion with finite element method be symmetric and positive definite.

In general, a function u ∈ Vi defined on subdomain Ωi is discrete harmonic, if

A11iu1i + A12iu2i = 0. (3.6)

Here the matrix A11i is related to the subdomain part of the global linear system corre-
sponding to interior unknowns (similarly for the matrix A12i), and vector u1i related to the
local part of the global vector of unknowns corresponding to interior unknowns on each
subdomain (similarly for vector u2i). The vector ui := Hi(u2i) is completely defined by its
values on interface Ωi ∩ Γ and it is orthogonal, in the ai(·, ·)-inner product, to the space
Vh ∩H1

0 (Ωi, ∂Ωi ∩ Γ).

Functions from Ṽhi are completely defined by values at the interface Γ and by the condi-

tion (3.6). Subspace Ṽh ⊂ Vh consists of global piecewise discrete harmonic functions which
are discrete harmonic on each subdomain. This subspace is orthogonal to the interior spaces
Vh ∩H1

0 (Ωi, ∂Ωi ∩ Γ), i = 1, . . . , N , where N is the number of subdomains. We denote the
discrete harmonic extension of u2 by H(u2).

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 26

In Schur complement systems, the inner product defined by the Schur complement S
plays an important role. Preconditioners are defined with respect to this inner product

s(u, v) = uT2 Sv2. (3.7)

In order for S to define an inner product, the original matrix A of the global as well as
local problem has to be symmetric positive definite. Then λmin(S) ≥ λmin(A) where λmin

denotes the minimal eigenvalue. For more detail see [58]. I also recall two lemmas from [58]
which justify working with the discrete harmonic extension (Lemma 1) and with norms of
local discrete harmonic extensions and traces on the subdomain boundaries (Lemma 2).

Lemma 1. Let u2i be the restriction of a finite element function to ∂Ωi ∩ Γ. Then the
discrete harmonic extension ui = Hi(u2i) of u2i into Ωi satisfies

ai(ui, ui) = min
vi|∂Ωi∩Γ=u2i

ai(vi, vi)

and

uT2iSiu2i = ai(ui, ui).

Analogously, if u2 is the restriction of a finite element function to Γ, the piecewise discrete
harmonic extension u = H(u2) of u2 into the interior of the subdomains satisfies

a(u, u) = min
v|Γ=u2

a(v, v)

and

s(u, u) = uT2 Su2 = a(u, u).

Lemma 2. Let u be discrete harmonic. Then there exist positive constants c and C,
independent of h and H, such that

c‖u2‖2
H1/2(∂Ωi∩Γ) ≤ ‖u‖

2
H1(Ωi)

≤ C‖u2‖2
H1/2(∂Ωi∩Γ),

c|u2|2H1/2(∂Ωi∩Γ) ≤ |u|
2
H1(Ωi)

≤ C|u2|2H1/2(∂Ωi∩Γ).

Consequently,

cρi|u2|2H1/2(∂Ωi∩Γ) ≤ uT2iSiu2i ≤ Cρi|u2|2H1/2(∂Ωi∩Γ),

with u2i the restriction of u to ∂Ωi ∩ Γ and the constants independent of h, H, and ρi. Here
h is a characteristic element size, H is the characteristic subdomain size, and ρi is a material
constant.

3.3 Schur complement condition number

In this section, I recall an estimate of the condition number of the Schur complement S
shown in [58]. According to [12], we must expect the condition number to grow at least as

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 27

H−2. For the case with homogeneous Dirichlet boundary condition on the whole boundary
∂Ω, we have an equivalent L2-norm on interface Γ:

‖u2‖2
Γ =

N∑
i=1

‖u‖2
L2(∂Ωi)

.

Now we can present a lemma for the estimate of the condition number of the Schur comple-
ment.

Lemma 3. Let u be the trace of a finite element functions in Vh on Γ. Assume that
ρi = 1, i = 1, . . . , N , and that the fine mesh and the coarse partition are quasi uniform.
Then, there exist two positive constants c and C, independent of h and H, such that

cH‖u‖2
Γ ≤ s(u, u) ≤ Ch−1‖u‖2

Γ.

Thus,

κ(S) ≤ C̃

Hh
.

Here C̃ = C/c. For more detail including the proof of this lemma see [58].

3.4 Balancing Neumann-Neumann method

Neumann-Neumann algorithms are among the well-known and most tested domain decom-
position methods for elliptic partial differential equations (see [9, 31, 40]). They use local
solvers for subdomain problems and subspace related to the entire interface. These meth-
ods provide preconditioners for Schur complement systems using flux jumps for Neumann
problems and function jumps for Dirichlet problems on each subdomain and then correcting
the previous iteration (similarly as in [34, 35]). The Neumann-Neumann methods were first
developed without a coarse problem (see [11, 18, 19]), later they were improved by adding a
second (coarse) level as in [44], (see also [25, 40, 45]). Similarly to [25], some other approaches
like [46, 21, 22] concern additive methods.

In the Balancing Neumann-Neumann method, we denote trace spaces by

Wi = W h(∂Ωi ∩ Γ), i = 1, . . . , N,

where N is the number of subdomains, and by W =
∏N

i=1 Wi the associated product. Having
u ∈ W and the i-th component denoted by ui, elements of W are discontinuous across the
interface. The finite element approximation is continuous across the interface Γ. We denote
this subspace Ŵ . We also need to introduce the restriction Ri : Ŵ → Wi and interpolation
operator RT

i : Wi → Ŵ . This global function RT
i ui ∈ Ŵ shares values with ui on ∂Ωi ∩ Γ

and vanishes on the rest of the interface Γ.
As mentioned in [58], in Neumann-Neumann methods, we need to introduce a family

of weighting functions δi ∈ Wi which correspond with the individual subdomains. See
[24, 25, 45, 53] for more details. These functions are defined for γ ∈ [1/2,∞] by a sum of
contributions from Ωi and its neighbors,

δi(x) =

∑
j∈Nx

ργj
ργi

, x ∈ ∂Ωi ∩ Γ.

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 28

Here Nx denotes the set of indices corresponding to individual boundary of subdomain ∂Ωi

such as x ∈ ∂Ωi. Each node at the interface Γ belongs at least to two subdomains. The
pseudoinverse δ×i is defined as

δ×i (x) = (δi(x))−1, x ∈ ∂Ωi ∩ Γ.

and provides a partition of unity

∑
i

RT
i δ
×
i (x) = 1, x ∈ Γ.

Next we introduce the operator ED : W → Ŵ

EDu :=
N∑
i=1

RT
i I

h(δ×i ui), (3.8)

where Ih is identity matrix. Therefore, EDu(x) produces an average of the value ui(x)
weighted with the δ×i values, and it is a continuous function. Some choices of δi are discussed
in Section 4.3.

By means of iterative substructuring, we determine the solution on the interface, and
values of any discrete harmonic function are determined from values on ∂Ωi ∩ Γ. Having
these values, we can compute the interior solution using (3.4).

The Neumann-Neumann method works with a minimal coarse space W0 ⊂ Ŵ defined as

W0 = spanRT
0iδ
×
i , ∂Ωi ∩ ∂ΩD = ∅.

Here RT
0 is a matrix with columns corresponding with basis functions of W0 and operator

P0 : W → W0 is a projection onto a coarse space using the exact solver. Additional functions
which can improve performance of these algorithms related to other subdomains can be
included as in [25].

Local space Wi is the i-th component of the space W , an element of RT
i Wi ⊂ Ŵ is a

continuous piecewise discrete harmonic function defined by values at ∂Ωi ∩ Γ. The symbol
Hi(φui) means that first the product is mapped to the finite element space by interpolation
and then extending the result to a discrete harmonic function.

Recalling the definition of the balancing Neumann-Neumann algorithm from [58] for
Poisson problem, the bilinear form s̃i(u, v) for subspace Wi is defined as

s̃i(u, v) := aΩi
(Hi(δiu),Hi(δiv)) = ρi

∫
Ωi

∇Hi(δiu) · ∇Hi(δiv) dx.

This scaled Neumann problem defines a projection-like operator Pi = RT
i P̃i as

s̃i(P̃iu, vi) = s(u,RT
i vi), vi ∈ Wi. (3.9)

The right-hand side of this equation which satisfies these conditions is said to be balanced.
For floating subdomains, we make the solution of (3.9) unique by adding constraints. For
more details on the construction and matrix form of this algorithm, see [58].

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 29

3.4.1 Condition number of the Balancing Neumann-Neumann

In this section, I briefly recall the estimate for the condition number of the Schur complement
preconditioned by the Balancing Neumann-Neumann method. The local solutions define
elements in Wi, but do not match across the interface Γ. They are averaged using δ×i and
then the interface values are extended to interiors as piecewise harmonic functions. We start
with w ∈ W defined as

wi = D−1
i RiPiu = D−1

i P̃iu = S×i DiRiSu, u ∈ W̃ . (3.10)

For w, it also stands that

EDw =
N∑
i=1

Piu. (3.11)

Now recalling lemmas from [58] we can state the upper and lower bounds for wi.

Lemma 4. Let w ∈ range(S). Then, if Ωi is a floating subdomain,

‖wi‖2
L2(∂Ωi)

≤ CHi|wi|2H1/2(∂Ωi)
,

with a constant that is independent of wi, Hi, and hi.

Lemma 5. Let ED be the operator defined in formula (3.8). Then,

|EDw|2S ≤ C(1 + log(H/h))2|w|2S, w ∈ range(S),

with a constant that is independent of wi, Hi, and hi.

Here the norm

|w|2S = 〈w, Sw〉 =
N∑
i=1

|wi|2Si
, w ∈ W,

where |wi|2Si
provides equivalent seminorms for wi ∈ Wi, according to Lemmas 1 and 2. More

details including proofs of these lemmas can be found in [58].
It is good to note that the theory for the Neumann-Neumann method is built on the

same basics as for the FETI (finite element tearing and interconnecting) methods. These
methods were first introduced by Farhat and Roux in [30]. FETI algorithms are dual it-
erative substructuring methods with discontinuity across the interface, which use Lagrange
multipliers to enforce continuity. For more information about these methods, see [58].

3.5 BDDC

In this section, I introduce the Balancing Domain Decomposition by Constraints (BDDC)
method. First I recall its two-level variant for symmetric problems as first introduced in [21]
for the Poisson problem and linear elasticity. The underlying theory was presented in [46]
and in [47], it was shown that the BDDC method is spectrally equivalent to the FETI-DP
method [28]. In [42], the BDDC method was first applied to a saddle-point system with
symmetric indefinite matrix arising from the discretization of the Stokes problem. This

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 30

approach uses finite elements with discontinuous approximation of pressure which leaves
only unknowns for velocity components at the interface. An approach for the Stokes problem
using elements with continuous pressure was investigated in [55], and a different approach
was later introduced in [41].

3.5.1 Two-level BDDC for symmetric problems

The BDDC method preconditions the residual obtained in the k-th iteration

rk = g − S
[

u2
k
]
, (3.12)

within a Krylov subspace method generating an approximate solution to problem (3.5). This
is implemented by one action of the BDDC method.

A crucial component of the BDDC algorithm is the choice of the primal variables, also
called coarse degrees of freedom. The BDDC preconditioner then solves an approximate
interface problem in the space of functions that are continuous in these primal variables.

In each iteration of the BiCGstab algorithm, two actions of the BDDC preconditioner
are required. This involves solving a coarse problem and independent subdomain problems
on each level. First we look at the considered coarse problem. In [60] and [61], the BDDC
preconditioner was used without forming an explicit coarse problem for solving the advection-
diffusion problem. Here we use an approach with an explicit coarse problem.

Nevertheless, we look at the subdomain problem first. It takes the residuum rk and splits
it into individual subdomains as

ri = WiRir
k, (3.13)

where Ri is the operator restricting total residuum on given subdomain and matrix Wi

(defined in Chapter 4) gives it weight. To make connection with the previous sections, we
can look at the ED operator as ED =

∑N
i=1 WiRi. Then we solve a saddle-point problem[

Si CT
i

Ci 0

] [
ui
λ

]
=

[
ri
0

]
(3.14)

on each subdomain, where λ are Lagrange multipliers, Si is a Schur complement due the
interface of i-th subdomain and Ci is a matrix of coarse degrees of freedom, which has as
many rows as is the number of coarse nodes, while it has in every row zeros and ones on
those positions, which in the global numbering correspond to coarse nodes. After solving
this problem on each subdomain, we get the first part of an approximate solution on the
interface. Now we look at the second problem, i.e., the coarse problem.

During the process of solving the coarse problem we have to, at first, calculate the basis
functions of the coarse problem for each subdomain as the solution of[

Si CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
, (3.15)

where Ψi is the matrix of coarse basis functions, in which every column corresponds to one
coarse node on the subdomain. These functions are in a corresponding coarse node equal to
one and in the rest are equal to zero. After solving this problem, we can determine Schur
complements on each subdomain for the coarse problem as

SCi = ΨT
i SiΨi = −Λi,

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 31

and then assemble the global matrix of the Schur complement for coarse problem

SC =
N∑
i=1

RT
CiSCiRCi, (3.16)

where operator RT
Ci is distributing individual Schur complements to the global matrix of the

coarse problem.
In each action of BDDC, we calculate residuum for the coarse problem as

rC =
N∑
i=1

RT
CiΨ

T
i ri,

and then solve the coarse problem

SCuC = rC . (3.17)

After solving this problem, we distribute the solution of the coarse problem on individual
subdomains

uCi = ΨiRCiuC ,

and then we get the final preconditioned residual MBDDC : rkΓ → ukΓ according to

ukΓ =
N∑
i=1

RT
i Wi(ui + uCi). (3.18)

Next we look at the multilevel extension of the BDDC method for symmetric problems.

3.5.2 Multilevel BDDC for symmetric problems

The multilevel extension of the BDDC method was presented first for three dimensions
in [59], and later for an arbitrary number of levels in [48]. The multilevel BDDC method
was combined with the adaptive selection of coarse unknowns and implemented into an
open-source parallel solver BDDCML in [57]. A recent overview of adaptive BDDC was
provided in [50]. The potential of the multilevel method to scale up to 499 thousand cores
was demonstrated in [7]. In this section, I present the main idea of the multilevel BDDC
method. The detailed formulation is in Chapter 4 which aims at the multilevel BDDC for
Navier-Stokes equations, therefore at nonsymmetric problems.

The main idea of multilevel BDDC stands on solving the coarse problem (3.17). Instead
of solving it directly as in the two-level method, we consider subdomains as elements with
coarse degrees of freedom as nodes and apply another instance of the BDDC method to it.
Therefore, we build a new set of subdomains that are formed from the subdomains on a
lower level. For this new set, which we call a level, we select the coarse nodes and compute
the set of coarse basis functions. This could be done for an arbitrary number of levels and
only on the last level, we build the coarse Schur complement and solve the coarse problem.
After getting the coarse solution on the last level, we gradually compute the coarse solutions

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 32

Algorithm 1 Setup of the BDDC preconditioner with L levels

1: for level ` = 1, . . . , L− 1 do
2: from subdomain matrix A`i get S`i
3: solve problems (3.15) to get Ψ`

i

4: get local coarse matrices A`Ci
5: build subdomain matrices on the next level A`+1

j (3.16)
6: end for
7: factorize global coarse matrix AL

on lower levels. At the end, we have a solution on the first coarse level from which we get
the preconditioned residual as in the two-level method. Algorithm 1 briefly describes the
setup of the multilevel BDDC method for symmetric systems.

Here ` stands for the level of the BDDC method. After setting up the BDDC precondi-
tioner, we can perform its multilevel action described in Algorithm 2.

Algorithm 2 Application of the BDDC preconditioner with L levels

1: distribute residual ri to each subdomain and build the coarse residual on the first level
2: solve subdomain problems (3.14) on the first level
3: for level ` = 2, . . . , L− 1 do
4: extract local parts of residual r`i (3.13)
5: get pre-corrected residual and solve subdomain problems on current level
6: build the coarse residual r`C = r`+1

7: end for
8: solve coarse problem on the last level L
9: for level ` = L− 1, . . . , 2 do

10: distribute coarse solution u`C to each subdomain u`Ci
and build global interface solu-

tion u`2
11: distribute interface solution to each subdomain u`i2 , get interior correction on each

subdomain, and build approximate coarse solution u`−1
C

12: end for
13: distribute the coarse solution on the first level to each subdomain uCi and get precondi-

tioned residual uk (3.18)

Once again, the detail of the multilevel method implementation for nonsymmetric systems
arising from discretization of the Navier-Stokes equations will be presented in Chapter 4.

3.5.3 Algebraic view on the BDDC preconditioner

In this section, I breifly recall the algebraic theory for the BDDC method from [47] for the
Poisson problem. I will also preserve the notation of the spaces and operators as in [47], so
some of them might differ from those in the text above, but I will note that and make the
connection between them.

The concerned problem is

min
w∈Ŵ

1

2
wTSw − wTg, (3.19)

where Ŵ = range(R), S is a symmetric positive semidefinite block diagonal Schur comple-
ment matrix, g is the reduced right-hand side, R is a zero-one matrix of full column rank

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 33

such that RiR
T
i = I for I being identity matrix of appropriate dimension, and w is a vector

of degrees of freedom continuous across the subdomain interfaces. We also have Schur com-
plement on i-th subdomain after elimination of interior degrees of freedom Si, subdomain
load vector gi, vector of the subdomain degrees of freedom wi, and restriction operator from
global degrees of freedom to subdomain degrees of freedom Ri.

The matrices are considered to be operators between given spaces such that

Ri : U → Wi, R : U → W = W1 × · · · ×WN , (3.20)

Si : Wi → Wi, S : W → W. (3.21)

Here the space Wi is the space of degrees of freedom (DOFs) on the interfaces of the i-th

subdomain, the space U is space of global degrees of freedom, and the space Ŵ is the space
of DOFs continuous across the subdomain interfaces.

In the BDDC method, the condition w ∈ Ŵ is enforced by making w = Ru, where
u is a vector of global DOFs. Additional constraints are imposed by means of matrix
QP : Rnc → U and for the BDDC method, the coarse degrees of freedom uC are defined
as uC = QT

Pu. Also restriction operator for coarse DOFs Rci : Rnc → Rnci which defines
Ci = RciQ

T
PR

T
i , Rc = [Rc1, . . . , RcN], and C is a diagonal matrix with Ci on diagonal. We

assume that Rc has full column rank. Let Φ be a block matrix with columns forming a basis
for coarse degrees of freedom

Φ = [Φ1, . . . ,ΦN] , CΦ = Rc. (3.22)

By minimizing ΦTSΦ we define coarse basis functions Ψ which we need for the BDDC
method and correspond with those described in the previous section. These coarse basis
functions we get as columns of Ψ by solving

[
S CT

C 0

] [
Ψ
Λ

]
=

[
0
Rc

]
. (3.23)

Now we define space W̃ as the subspace of W continuous across subdomain interfaces at
coarse degrees of freedom as

W̃ = w ∈ W : ∃uc : Cw = Rcuc = w ∈ W : Cw = range(Rc). (3.24)

Space W̃∆ = nullC with coarse DOFs equal to zero is called the dual space, and the primal
space W̃Π = range(Φ). In [47] it is shown that

W̃ = W̃Π

⊕
W̃∆. (3.25)

The next assumption is that S is positive definite on W̃ .
Finally, we need to introduce weight matrices, here denoted as DPi : Wi → Wi, and a

global block diagonal matrix DP with matrices DPi on the diagonal. These matrices form a
partition of unity

RTDPR = I. (3.26)

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 34

Averaging w ∈ W on the interfaces between subdomains gives a global solution u ∈ U ,

u = RTDPw. (3.27)

The BDDC method works with is the assembled Schur complement A = RTSR and the
preconditioner P defined as

Pr = RTDP (Ψuc + z) , (3.28)

where

ΨTSΨuc = ΨTDT
PRr, (3.29)

and

Sz + CTν = DT
PRr, Cz = 0. (3.30)

For theoretical purposes, we need to introduce another form of the preconditioner in
lemma from [47].

Lemma 6. The preconditioned operator PA satisfies, for any u ∈ U ,

PAu = RTDPw, (3.31)

where w is defined by

w ∈ W̃ , 〈Sw, v〉 = 〈Au,RTDPv〉 ∀v ∈ W̃ . (3.32)

For the BDDC preconditioner, the condition number is bounded by

κ =
λmax(PA)

λmin

(PA) ≤ ω.

I also recall the proof of this inequality from [47]. For the lower bound, we set in (3.32)
v = Ru and use the Cauchy inequality to get

〈Au, u〉 = 〈Au,RTDPRu〉 = 〈Sw,Ru〉 ≤ 〈Sw,w〉1/2〈SRu,Ru〉1/2. (3.33)

Setting v = w in (3.32) and using (3.31), we find that

〈Sw,w〉 = 〈Au,RTDPw〉 = 〈Au, PAu〉. (3.34)

From the definition of A,

〈SRu,Ru〉 = 〈RTSRu, u〉 = 〈Au, u〉. (3.35)

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 35

By substituting (3.34) and (3.35) into (3.33) we obtain

〈Au, u〉 ≤ 〈Au, PAu〉1/2〈Au, u〉1/2,

and

〈Au, u〉 ≤ 〈Au, PAu〉,

which gives us lower bound λmin(PA) ≥ 1.
For the upper bound we use (3.31) and (3.34) and get

〈APAu, PAu〉 = 〈RTSRPAu, PAu〉 = 〈SRPAu,RPAu〉
= ‖RRTDPw‖2

S ≤ ‖RRTDP‖2
S‖w‖2

S = ‖RRTDP‖2
S〈Au, PAu〉,

where ‖RRTDP‖S is the norm of RRTDP as an operator on W̃ . We have

‖RRTDP‖S = ‖I −RRTDP‖S = ‖BT
DB‖S,

where B : W → Λ is a matrix such that Bu = 0, and BT
D is the generalized inverse of B

such that BT
DB +RRTDP = I. From assumption

‖BT
DB‖2

S ≤ ω‖u‖2
S ∀u ∈ W̃ , (3.36)

it follows that

〈APAu, PAu〉 ≤ ω〈Au, PAu〉.

Using this and the Cauchy inequality, we get

〈Au, PAu〉 ≤ 〈Au, u〉1/2〈APAu, PAu〉1/2 ≤ 〈Au, u〉1/2ω〈Au, PAu〉1/2,

and,

〈Au, PAu〉 ≤ ω〈Au, u〉,

which gives us an upper bound λmax(PA) ≤ ω.
Finally, we recall an estimate of the constant ω from [49] for a 2D problem. Hence,

κ(PA) ≤ ω, it can be viewed as an operator norm of the weight operator or the S-norm of
the averaging operator,

ω ≤ C

(
1 + log

H

h

)2

,

where H is the characteristic size of subdomains, h is the characteristic element size, and C
is a constant independent of H and h. This estimate was extended to a 3D problem in [39].

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 36

3.5.4 Convergence of extended versions of BDDC

Now we look at the convergence properties of the BDDC method for some other problems. In
Chapter 4, I will discus the BDDC method for Navier-Stokes equations, which falls beyond
the existing theory. Therefore, I recall convergence properties of the two-level BDDC method
for the Stokes problem, the advection-diffusion problem, and for the multilevel BDDC for
symmetric positive definite problems.

Let us first recall the convergence properties of the bound for BDDC method applied
to the Stokes problem without continuous pressure. I recall the main result for condition
number bounds from [42]. The lower bound for the condition number is

〈u,u〉S̃ ≤ 〈u,M
−1S̃u〉S̃,

where S̃ is the operator of the interface problem, 〈a, a〉S̃ denotes aT S̃R̃T
DR̃a (R̃ is the restric-

tion operator), and M−1S̃ is the preconditioned operator. This shows that 1 is the bound
of the minimum eigenvalue of the preconditioned operator.

For the upper bound, we have

〈u,M−1S̃u〉S̃ ≤ C
1

β2

(
1 + log

H

h

)2

〈u,u〉S̃,

where C is a constant which is independent of H and h, and β is the inf-sup stability
constant. For more details, see [42].

I also recall a bound for the Stokes problem with continuous pressure approximation from
[41]. The lower bound is

〈Gx, x〉 ≥ cβ2〈Mx, x〉,

where 〈·, ·〉 is an inner product, G is a Schur complement, M is a preconditioner operator, c
is a constant which is independent of H and h, and β is the inf-sup stability constant.

For upper bound, we have

〈Gx, x〉 ≤ C̃Φ(H/h)〈Mx, x〉,

where C is a constant which is independent of H and h, and Φ(H/h) = (1 + log(H/h))2.
For more detail see [41].

There are also bounds for the advection-diffusion problem, therefore a problem with a
nonsymmetric matrix, in [60]. The lower bound is given by

〈Tu2, Tu2〉BΓ
≤ C1

Φ̃4(H/h)

µ2 max(µ,Cm)
〈u2, u2〉BΓ

,

where 〈a, b〉A is a product aTAb for a given matrix A and vectors a and b, BΓ is the symmetric
part of the original matrix from the finite element discretization restricted to the interface Γ,
C1 is a positive constant independent of H, h and ν, Cm is a minimum of a positive function
defined in [60, Section 3], T is the preconditioned operator, and Φ̃(H/h) = C(1 + log(H/h)),
where C is a positive constant.

CHAPTER 3. DOMAIN DECOMPOSITION METHODS 37

For the upper bound, we have

c0〈u2, u2〉BΓ
≤ C2

max(µ,Cm)
〈u2, Tu2〉BΓ

,

where C2 is a positive constant independent of H, h and ν.
Now I recall the convergence properties of the multilevel BDDC method for symmetric

positive definite problems [59, 48].
The condition number of the Schur complement preconditioned by the multilevel BDDC,

κ, is bounded as

κ ≤
L−1∏
i=1

Ci

(
1 + log

Hi

Hi−1

)2

, (3.37)

where Hi is the characteristic subdomain size on the i-th level, and h = H0, the characteristic
element size.

As suggested in [26, Section 2.1.2], the usual bound on the error reduction of the conjugate
gradient (CG) method suggests that the number of CG iterations is proportional to

√
κ for

large κ and a prescribed tolerance. Although far from describing the complex behaviour
of the CG method, it can still suggest that when combined with (3.37), we can expect the
number of iterations proportional to

k ∼
L−1∏
i=1

(
1 + log

Hi

Hi−1

)
, (3.38)

i.e. removing the power from the terms in the product. Finally, note that in the case of the
two-level method, bound (3.38) simplifies to

k ∼
(

1 + log
H

h

)
. (3.39)

Neither the BDDC theory for the Stokes problem [42, 41], nor the one for the advection-
diffusion problem [60], and the multilevel extension for symmetric positive definite problems
[59, 48] apply to our case of the Navier-Stokes equations. Nevertheless, in Section 5.2.3, we
perform numerical experiments with varying H/h to investigate whether the behaviour of
the method agrees with (3.38).

In the following chapter, I present the BDDC method and its multilevel extension for the
Navier-Stokes equations.

Chapter 4

BDDC algorithms for nonsymmetric
systems and its building components

In this chapter, I present the novel approach of using BDDC method for nonsymmetric
systems arising from discretization of the Navier-Stokes equations and its implementation
details, like interface scaling and solution domain partitioners. First, I present two-level
BDDC method for Navier-Stokes equations described in [2]. Next I describe its multilevel
extension presented in [4]. I also desribe four used interface weights for the BDDC pre-
conditioner asociated with matrix of weights Wi in my calculations and two types of used
partitioners for decomposition of the solution domain Ω. Here one of the used weights is our
own new type of weight presented in [4]. I also introduced two types of used partitioners
for solution domain especially our own, which was first presented in [1]. Finally, I introduce
my own mesh builder used for building solution domain for cavity problem, presented in
Chapter 5, by individual subdomains.

In my computations, problem (3.5) is solved by the BiCGstab method [62] with one step
of two-, three-, and four-level BDDC used as the preconditioner. Domain decomposition
allows us to perform the action of the BDDC preconditioner and of the matrix S in parallel
in each iteration. The solution is realised by the multilevel BDDC implementation in the
BDDCML library1 [57]. First, let us look at the two-level method and its known theory.

4.1 Two-level BDDC

As mentioned in Introduction, the BDDC method was first proposed in [21] for the Poisson
problem and linear elasticity. The underlying theory was presented in [46] and in [47], it
was shown that the BDDC method is spectrally equivalent to the FETI-DP method [28].
In [42], the BDDC method was first applied to a saddle-point system with symmetric indef-
inite matrix arising from the discretization of the Stokes problem. This approach uses finite
elements with discontinuous approximation of pressure which leaves only unknowns for ve-
locity components at the interface. An approach for the Stokes problem using elements with
continuous pressure was investigated in [55], and a different approach was later introduced
in [41].

By discretizing and linearizing an approximation of the Navier-Stokes equations, we get
saddle-point systems with nonsymmetric matrices. An application of the BDDC method to
nonsymmetric matrices arising from the advection-diffusion problems was presented in [60]
and [61], where the method was formulated without an explicit coarse problem. An explicit

1http://users.math.cas.cz/~sistek/software/bddcml.html

38

http://users.math.cas.cz/~sistek/software/bddcml.html

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 39

coarse problem of BDDC was presented for nonsymmetric problems arising from the Euler
equations in [64]. Earlier domain decomposition methods for problems with nonsymmetric
matrices include also the Robin-Robin preconditioner [5, 6] for advection-diffusion problems.

In [2], I combined the approaches from [55] and [64] and applied the 2-level BDDC
method to the Navier-Stokes equations for the lid-driven cavity. I apply the BDDC precon-
ditioner to the nonsymmetric problems arising from the discretization of the Navier-Stokes
equations. It works with the residual in k-th iteration

rk = g − S
[

u2
k

p2
k

]
, (4.1)

obtained from the BiCGstab method generating an approximate solution to problem (3.5).
This is implemented by one action of the BDDC method.

A crucial component of a BDDC algorithm is the choice of the primal variables, also
called coarse degrees of freedom, on each level. The BDDC preconditioner then solves an
approximate interface problem in the space of functions that are continuous in these primal
variables.

First, we classify the interface into vertices, edges, and faces of subdomains. For the
Taylor-Hood elements, degrees of freedom (dofs) are located at nodes. Hence, faces are
defined as subsets of nodes shared by the same two subdomains, edges are subsets of nodes
shared by several subdomains, and vertices are degenerate edges with only one node.

Here, the main primal unknowns are arithmetic averages over edges and faces defined
independently for each component of velocity and for the pressure unknowns. In addition,
pointwise continuity of these components is required at subdomain vertices, also called cor-
ners. This means that for subdomains that have in common at least a face (f), an edge (e),
or a corner (c), the following functionals are equal

Le,f (u) =
∑
j

uij, L
e,f (p) =

∑
j

pj, L
c(u) = ui, L

c(p) = p,

where ui, i = 1, 2, 3, are the components of velocity, and index j corresponds to the number
of unknowns on the shared edge or face.

In each iteration of the BiCGstab algorithm, two actions of the BDDC preconditioner
are required. This involves solving a coarse problem and independent subdomain problems
on each level. First we look at the considered coarse problem. In [60] and [61], the BDDC
preconditioner was used without an explicit coarse problem for solving the advection-diffusion
problem. Here we use an approach with an explicit coarse problem.

First we look at the subdomain problem. It takes total residuum rk and splits it to
individual subdomains as

ri = WiRir
k, (4.2)

where Ri is operator restricting total residuum on a given subdomain and matrix Wi gives
it weight. Then we solve on each subdomain a saddle-point problem[

Si CT
i

Ci 0

] [
ui
λ

]
=

[
ri
0

]
, (4.3)

where λ are Lagrange multipliers, Si is the Schur complement of the interior unknowns, and
Ci is the matrix of coarse degrees of freedom, which has as many rows as is the number of

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 40

coarse nodes, while it has in every row zeros and ones on that positions, which in global
numbering correspond to coarse nodes. After solving this problem on each subdomain, we
first get a part of an approximate solution on the interface. Now we look at the second
problem, i.e., the coarse problem.

During the solution of the coarse problem, we have to, at first, calculate basis functions
of the coarse problem for each subdomain as the solution of[

Si CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
. (4.4)

Here Ψi is the matrix of coarse basis functions, in which every column corresponds to one
coarse node on the subdomain. These functions are in the corresponding coarse node equal
to one and equal to zero in the rest. For nonsymmetric problem, it is needed to compute
also a set of adjoint coarse basis functions (see [64]). These we get by solving[

STi CT
i

Ci 0

] [
Ψ∗i
Λi

]
=

[
0
I

]
, (4.5)

where Ψ∗i is the matrix of adjoint basis functions. By solving this problem, we can determine
the contribution of the i-th subdomain to the coarse problem

SCi = Ψ∗Ti SiΨi = −Λi.

Then, we can assemble the global matrix of the coarse problem

SC =
N∑
i=1

RT
CiSCiRCi,

where N is a number of subdomains, and operator RCi selects local coarse unknowns from
the global coarse vector.

In each action of BDDC, we calculate residuum for the coarse problem as

rC =
N∑
i=1

RT
CiΨ

∗T
i ri,

and then solve the coarse problem

SCuC = rC . (4.6)

After solving of problem we distribute the solution to individual subdomains by

uCi = ΨiRCiuC ,

and then get the final preconditioning MBDDC : rkΓ → ukΓ as

ukΓ =
N∑
i=1

RT
i Wi(ui + uCi). (4.7)

Next we look at the multilevel extension of the BDDC method.

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 41

4.2 Multilevel BDDC for nonsymmetric systems

The main focus of this section is a formulation of the multilevel BDDC preconditioner for
nonsymmetric problems and its application to linear systems obtained by Picard lineariza-
tion of the Navier-Stokes equations. The content of this section is based on [4], we described
the multilevel BDDC preconditioner for the nonsymmetric problems arising from the dis-
cretization of the Navier-Stokes equations above. In the k -th iteration, the preconditioner
is applied to the residual (3.12) obtained from the BiCGstab method generating an approx-
imate solution to problem (3.5).

The multilevel extension of the BDDC method was presented first for three dimensions
in [59], and later for an arbitrary number of levels in [48]. The multilevel BDDC method
was combined with the adaptive selection of coarse unknowns and implemented into an
open-source parallel solver BDDCML in [57]. A recent overview of adaptive BDDC was
provided in [50]. The potential of the multilevel method to scale up to 499 thousand cores
was demonstrated in [7].

Before applying the preconditioner, we have to set it up. First, we find the coarse basis
functions independently for each subdomain on each level. For finding the subdomains on
the next level, we look at the subdomains on the previous level as elements for the next
level, and the coarse dofs will be considered as unknowns. Subdomains on the next level are
formed by connecting several subdomains from the previous level. For example, in Fig. 3.2,
we can join subdomains Ω1 and Ω2 to form the first subdomain and subdomains Ω3 and Ω4

to form the second subdomain on the next level. From the subdomain matrix on each level,
we build and solve the saddle-point system[

S`i C`T

i

C`
i 0

] [
Ψ`
i

Λ`
i

]
=

[
0
I

]
, (4.8)

where ` is the level of the BDDC method, S`i is the Schur complement with respect to the
interface of the i-th subdomain (built as in 3.5), and C`

i is the matrix defining the coarse
dofs, which has as many rows as is the number of coarse dofs defined at the subdomain. The
solution Ψ`

i is the matrix of coarse basis functions with every column corresponding to one
coarse unknown on the subdomain. These functions are equal to one in one coarse dof and
they are equal to zero in the remaining local coarse unknowns.

Note the presence of the explicit Schur complement S`i in (4.8). In BDDC, an analogous
problem can be formed for the original subdomain matrix A`i , as it was used, e.g., in the
original paper [21], considering the discrete harmonic extension of the coarse basis func-
tions to subdomain interiors. To be more specific, dividing the local unknowns into interior
(subscript 1) and interface ones (subscript 2), we introduce a block structure

A`i =

[
A`i11

A`i12

A`i21
A`i22

]
,

from which the local Schur complement can be expressed as

S`i = A`i22
− A`i21

(A`i11
)−1A`i12

.

Although we describe the algorithm using the explicit Schur complements S`i , the compu-
tations are performed without its explicit construction, and only factorizations and back-
substitutions with A`i11

are required.

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 42

As introduced in [64], a set of adjoint coarse basis functions Ψ∗`i is also needed for non-
symmetric problems. These are obtained as the solution to problem (4.8) with a transposed
matrix, [

S`
T

i C`T

i

C`
i 0

] [
Ψ∗`i
Λ`T

i

]
=

[
0
I

]
. (4.9)

After solving (4.8) and (4.9), we can get, on each level, the local coarse matrix on each
subdomain as

A`Ci = (Ψ∗`i)TS`iΨ
`
i = −Λ`

i . (4.10)

The local matrices A`Ci resemble the element matrices from the FEM. In the multilevel
method, they are assembled into subdomain matrices on the next level

A`+1
j =

NSj∑
i=1

R`T

CijA
`
CiR

`
Cij, (4.11)

where R`
Cij = R`+1

j R`T

Ci. Here R`+1
j is the restriction of the global vector of unknowns to

those present on the j-th subdomain on level `+ 1, R`
Ci is the restriction of the global vector

of coarse unknowns to those present at the i-th subdomain on level ` and NSj
is the number

of subdomains from level ` which form the j-th subdomain on the (` + 1)-st level. On the
last level, we build the global coarse problem, therefore ALj = AL, where L is the number of
levels of the BDDC method. The setup of the multilevel BDDC is described in Algorithm 3.

Algorithm 3 Setup of the BDDC preconditioner with L levels

1: for level ` = 1, . . . , L− 1 do
2: from subdomain matrix A`i get S`i
3: solve problems (4.8) and (4.9) to get Ψ`

i and Ψ∗`i
4: get local coarse matrices A`Ci from (4.10)
5: build subdomain matrices on the next level A`+1

j by (4.11)
6: end for
7: factorize global coarse matrix AL

After this setup, the preconditioner can be applied in each iteration. Let us first look
at the 2-level method and describe the modification for the multilevel method later. At the
beginning, we take the residual vector rk and extract its local parts on each subdomain as

ri = WiRir
k, (4.12)

where Ri is the operator restricting a global interface vector to the i-th subdomain, and
matrix Wi applies weights to satisfy the partition of unity. The types of weights we use are
described in detail in Section 4.3.

Then we get the coarse residual as

rC =
N∑
i=1

RT
CiΨ

∗T
i ri. (4.13)

Note that here we use the adjoint coarse basis functions Ψ∗Ti . Then we solve the coarse
problem

ACuC = rC (4.14)

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 43

and distribute the coarse solution to each subdomain, followed by prolonging it on the fine
mesh (using standard coarse basis functions Ψi) as

uCi = ΨiRCiuC . (4.15)

Now we look at the subdomain problems. On each subdomain, a saddle-point system[
Si CT

i

Ci 0

] [
ui
λ

]
=

[
ri
0

]
(4.16)

is solved. Here λ are Lagrange multipliers, and Si and Ci are the same matrices as in (4.8).
After solving this problem on each subdomain, we get the subdomain correction ui.

At the end of the action of the 2-level BDDC preconditioner, we get the preconditioned
residual uk, MBDDC : rk → uk, by combining the subdomain corrections with the subdomain
coarse solution as

uk =
N∑
i=1

RT
i Wi(ui + uCi). (4.17)

If we want to add more levels to the method, we have to look at problem (4.14) first. In
the 2-level method, we solve (4.14) by a direct method, whereas in the multilevel method,
we apply a step of the BDDC method to solve the coarse problem (4.14) only approximately.
This means that we build residuals and matrices (in setup) corresponding to the cluster of
subdomains, which will form one subdomain on the next level. First, we build global coarse
residual on the first level as in the standard 2-level method

rC =
N∑
i=1

RT
CiΨ

∗T
i ri, (4.18)

and solve subdomain problems on the first level (4.16).
Now starting on the second level and ending on the (L− 1)-st level we denote

u` = u`−1
C and r` = r`−1

C ,

extract local parts of the residual on each subdomain

r`i = W `
i R

`
ir
`, (4.19)

and solve the following interior problem on each subdomain

A`i11
u`i1 = r`i1 , (4.20)

where subscript 1 again corresponds to the the interior unknowns of the subdomain (sub-
script 2 will correspond to the interface unknowns of the subdomain). After solving this
problem we perform the interior pre-correction as

r̃`i2 = r`i2 − A
`
i21
u`i1 . (4.21)

Next, we solve subdomain problems[
S`i C`T

i

C`
i 0

] [
u`i2
λ`

]
=

[
r̃`i2
0

]
(4.22)

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 44

and build the coarse residual

r`C =
N`∑
i=1

R`T

CiΨ
∗`T
i r̃`i2 . (4.23)

Finally, we solve the coarse problem on the last level L to get uL = uL−1
C .

After getting the solution on the highest level, we gradually build the approximate coarse
solution on the first level. Starting on level L−1 and going down to level 2, we have the coarse
solution distributed to each subdomain, and the subdomain solution prepared in (4.22)

u`Ci
= Ψ`

iR
`
Ci
u`C and u`i2 . (4.24)

Then we build the BDDC approximation of the global interface solution

u`2 =

N`
S∑

i=1

R`T

i W
`
i (u`Ci

+ u`i2). (4.25)

After that, we distribute the interface solution on each subdomain

u`i2 = R`
iu
`
2, (4.26)

and compute the interior correction ũ`1i on each subdomain

A`i11ũ
`
i1

= −A`i12u
`
i2
. (4.27)

Finally, we bring in the interior correction from (4.20) and build the approximate coarse
solution as

u`−1
C = u` =

[∑N`
S

i=1R
`T

1i (ũ`i1 + u`i1)
u`2

]
, (4.28)

where R`T

1i is the operator mapping interior unknowns from subdomain to global coarse vector
on the previous level.

After this, we have the approximate coarse solution on the second level and get the solu-
tion of problem (4.17) like in the 2-level method. The process is summarized in Algorithm 4.
For the 2-level method, the algorithm follows just steps 1–3, 12, 13, 21, and 22. The rest of
the steps are meaningful just in the multilevel case. Another difference is that in steps 5–10
and 15–19 of the multilevel method, we work with unknowns over the whole domain, while
in the 2-level method, we are restricted to the interface.

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 45

Algorithm 4 Application of the BDDC preconditioner with L levels

1: distribute residual to each subdomain on the first level ri (4.12)
2: build the coarse residual on the first level rC (4.13)
3: solve subdomain problems (4.16) on the first level
4: for level ` = 2, . . . , L− 1 do
5: r` = r`−1

C and u` = u`−1
C

6: extract local parts of residual r`i (4.19)
7: solve (4.20)
8: get pre-corrected residual r̃`i2 (4.21)
9: solve subdomain problems (4.22)

10: build the coarse residual r`C (4.23)
11: end for
12: rL = rL−1

C , uL = uL−1
C and solve ALuL = rL

13: uL−1
C = uL

14: for level ` = L− 1, . . . , 2 do
15: distribute coarse solution u`C to each subdomain u`Ci

(4.24)
16: build global interface solution u`2 (4.25)
17: distribute interface solution to each subdomain u`i2 (4.26)
18: get interior correction on each subdomain by solving (4.27)
19: build approximate coarse solution u`−1

C (4.28)
20: end for
21: distribute the coarse solution on the first level to each subdomain uCi (4.15)
22: get preconditioned residual uk (4.17)

4.3 Interface scaling

Let us now look at the used weights in my computations. Several types of interface weights
have been developed for the BDDC preconditioner, with each of them having its advantages
and disadvantages for certain kinds of problems. In this section, we describe four types of
weights used in our calculations presented in Chapter 5.

Before we start with the description of the individual scalings, we recall that the main
requirement on the matrix of weights Wi is that it forms a partition of unity [58],

N∑
i=1

RT
i WiRi = I, (4.29)

where I is the identity matrix.
An important class of the interface averaging operators is represented by diagonal ma-

trices

Wi =

w
1
i

w2
i

. . .

 , (4.30)

where wki denotes the weight for the k-th (with respect to the subdomain interface) dof
on the i-th subdomain. In this case, the requirements are fulfilled by the following simple
construction: First, every subdomain generates a nonnegative weight w̃ki . These values are
then shared with all neighbouring subdomains, and the normalized weight wki satisfying the

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 46

partition of unity is obtained by dividing the local weight with the sum of contributions from
all neighbours,

wki =
w̃ki∑NS

j=1 w̃
k
j

, (4.31)

where NS is the number of subdomains sharing the dof.
The first type of weights is perhaps the most standard one in literature. It is based on

the cardinality (card) of the set of subdomains sharing the dof. Hence, w̃ki = 1, and

wki =
1

NS

. (4.32)

For example, the weight is simply wki = 1/2 if the dof is shared by two subdomains.
The second type of weights is also well established. It is derived from diagonal entries

(diag) of the subdomain matrices A`i . The weight in this case is defined as w̃ki = ass,i, where
s is the subdomain index corresponding to the k-th interface dof. The construction is then
completed by (4.31). However in our case, a modification of these weights is required for
the block of pressure unknowns, where the diagonal of Ai contains zeros. In these dofs, we
switch to the cardinality scaling above, w̃ki = 1.

An important generalization of diagonal weights is the deluxe scaling [23, 8, 20]. Al-
though relatively costly, deluxe scaling leads to very robust BDDC preconditioners even for
complicated problems. However, an important ingredient of this scaling is the change of
basis converting primal dofs to particular unknowns. Since our implementation of BDDC is
based on the saddle-point systems with constraints (4.16) without changing the basis, this
type of weights is not compatible with our current implementation in BDDCML.

Instead, we test a type of weights inspired by the deluxe scaling and introduced in [16] as
unit load (ul) scaling. Within this averaging, we compose a vector w̃i = (w̃1

i , w̃
2
i , . . .)

T from
local solutions to the i-th subdomain problem (4.16) under a unit load applied to a face,
i.e. with right-hand side vector equal to ones at the unknowns of the face. In the interface
dofs corresponding to corners and edges, we again resort to the cardinality scaling, w̃ki = 1.
The construction is again completed by (4.31). The main difference from deluxe scaling
is that instead of solving the local problems with the current solution in every iteration,
these problems are solved just once for specific right-hand sides, and the solutions are then
converted into the diagonal matrices Wi.

The final tested type of weights is a recent idea inspired by numerical schemes for flow
problems. Loosely speaking, for dominant advection, it should be beneficial to consider the
subdomain from which the fluid flows with a higher weight than for the one where the dof
is a part of an inflow boundary. In numerical schemes, this is sometimes referred to as
upwinding.

More specifically, these upwind weights are based on the inner product of the vector of
velocity and the unit vector of outer normal to the subdomain boundary (see Fig. 4.1),

pki =
vk · nki
‖vk‖2

.

The values of the pki are from the interval [−1, 1]. To derive a nonnegative weight, we

map these values into the interval [0, 1] by taking w̃ki =
pki +1

2
, which is used for all velocity

unknowns. For pressure dofs, we again consider w̃ki = 1. The final partition of unity is
achieved again by (4.31).

Obviously, this kind of weights would introduce a nonlinearity by the dependence of the
weight on the solution itself. We use the velocity field from the previous nonlinear iteration

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 47

Figure 4.1: Relation of the unit outer normal vectors to the boundary and the velocity
vectors in the construction of the upwind interface scaling (left), and the construction of the
approximate interface normals (right).

as an approximation of the actual velocity vector. Note that the weights are then fixed
throughout the BiCGstab iterations.

The final remark is related to constructing the approximation of the unit outer normal
vector at positions of the nodes, i.e. element nodes, and edge and face midsides. As illus-
trated in Fig. 4.1, we take the normals of the element faces as the building block, and define
the normals at vertices and edges simply as an arithmetic average of the normals of the
adjacent faces.

4.4 Mesh partitioning

Let us now look at the employed partitioners. In this section, I compare two approaches to
partitioning the computational domain and mesh into subdomains. A standard approach
is based on converting the computational mesh into a graph. In the so called dual graph,
finite elements represent vertices of the graph and if two elements share an edge (in 2D)
or a face (in 3D), the corresponding graph vertices are connected by a graph edge. The
task of partitioning a mesh is translated into a problem of dividing a graph into subgraphs,
with the goal that the subgraphs contain approximately the same number of vertices and
number of edges connecting the subgraphs is minimized. The first requirement corresponds
to balancing load on individual subdomains, while the second is related to the size of the
interface between subdomains and amount of communication.

The partitioning of a graph into N subdomains is defined in the following way. The graph
G = (Ω, E), where solution domain Ω with size n and E the number of edges, is partitioned
into N subsets Ω1,Ω2, ···,ΩN such that Ωi∩Ωj = ∅ for i 6= j, size of Ωi ≈ n/N , ∪iΩi = Ω, and
the number of edges from E which belong to different subdomain is minimized. There are
established algorithms for partitioning a graph as well as their open-source implementations.
We make use of the METIS library (version 4.0) [37] for this purpose.

Graph partitioning provides an automated way for dividing computational mesh into
subdomains of well-balanced sizes even for complex geometries and meshes. However, infor-
mation about the geometry of the interface is lost during the conversion into the graph, and
the resulting interface can be very irregular. This is a known issue studied mathematically
for elliptic problems e.g. by [38]. The structure of the interface and its impact on some
Navier-Stokes problems is investigated in Chapter 5.

Another strategy to partitioning the mesh is based on the geometry of the domain and

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 48

dividing the subdomains for example by the recursive bisection (RCB) of the longest edge
of the geometry or its bounding box. An element belongs to a subdomain, for example, if
its center of gravity belongs to the given box. Ideally, these cuts are aligned with layers
of elements to prevent irregular interfaces. For simple cuboidal domains and the suitable
number of subdomains, it is straightforward to produce a partition that is both balanced
and avoids irregular interfaces.

Many geometries, including those of the hydrostatic bearings we aim at, are not com-
pletely general and can be decomposed into approximately cuboidal blocks. In order to avoid
partitions with irregular subdomains for this type of problems, we have developed a simple
partitioner which divides the computational mesh into these cuboidal blocks which are then
partitioned into regular subdomains.

Our partitioner works similarly as the RCB partitioner to preserve 2D interfaces between
subdomains. For a given problem, we first define cuboidal blocks of the solution domain
and divide these blocks by recursive bisection along given axes into balanced subdomains.
This comes hand in hand with creating a suitable structural mesh of the solution domain
using GMSH software [32], and defined cuboidal volumes which also preserve 2D interfaces
between each other. In our cases, we only need to create a suitable 2D projection of the
solution domain, which we then extrude along the third axis. It also means that for each
problem, we may alter the axes along which we use recursive bisection.

In my computation, I use this partitioner for two problems. For a narrowing channel
problem described in Section 5.1, I divide the solution domains by straight cuts only along
the x-axis. An example of the interface between two subdomains provided by this geometric
partitioner is in Fig. 4.2.

Figure 4.2: Interfaces between subdomains provided by a graph partitioner (left) and by a
geometric partitioner (right).

In the case of hydrostatic bearing in Section 5.3.1.3, I first define the solution domain in
GMSH software as three hexahedral volumes and then use recursive bisection along x and
y coordinate for the lowest hexahedral, and along all three axes for the remaining two. The
resulting division is in Figure 5.18. In Section 5.3.2, I create a mesh in GMSH so that its
2D projection can be divided into blocks that preserve 2D interfaces between each other, see
Figure 4.3.

Then I decompose blocks of the two lowest layers using recursive bisection along x and
y axes, and the upper layer by z coordinate eventually (in my computation, the upper layer
is formed only by one subdomain), as in Figure 5.20.

In the rest of the paper, we refer to these two strategies as the graph and the geometric
partitioner. It seems reasonable to prescribe a suitable number of subdomains for each
cuboidal block and obtain the total number of subdomains simply as a sum over these
blocks for preventing load imbalance.

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 49

Figure 4.3: 2D projection of the solution domain for hydrostatic bearing in GMSH (left)
and resulting subdomain in the lowest layer (right).

4.5 Mesh builder

In this section, I introduce my software used for creating subdomains for a large mesh
employed in the computation of the cavity problem described in Section 5.2. In these sim-
ulations, I needed to solve the problem of dividing a large cubic mesh into smaller cubes as
subdomains. Due to the size of these meshes, I was not able to use neither the graph nor
the geometric partitioner. Therefore, I create a program that produces files with individual
subdomains and follows the global numbering of the whole solution domain crated by the
GMSH software.

This MeshBuilder software produces a set of cubic subdomains corresponding with unit
cube under two parameters. The first is the number of subdomains per cube edge, and the
second is the number of hexahedral Taylor-Hood Q2-Q1 elements per subdomain edge. The
main part of this software is to make a correct mapping between the local and global degrees
of freedom. Both, the global and the local numbering of DOFs are done subsequentially in
the x, then in y, and finally in the z coordinate. To see how this map between global and
local numbering could look, see Figure 4.4 for a 2D case.

In Figure 4.4, we can see how the numbering of the global DOFs works for 2D case (black
numbers), together with a local numbering on individual subdomains for the case of two (red
and green numbers) and three (red, green, and blue numbers) subdomains. In the 3D case,
the numbering starts at the first layer in the z coordinate like in the 2D case and then moves
to the second layer in the z coordinate and continues analogously.

CHAPTER 4. BDDC FOR NONSYM. SYSTEMS AND ITS BUILD. COMP. 50

Figure 4.4: Map between global (black) and local (colored) numbering for two (top) and
three (bottom) subdomains.

Chapter 5

Numerical results

In this section, we apply the variants of the BDDC method to steady incompressible flow
goverened by the Navier-Stokes equations. I sumarize all my results concerning investigation
of possibilities of the multilevel BDDC method as well as its applicability to the industrial
problem of flow inside the hydrostatic bearings. Namely I investigated the behaviour of the
2-, 3-, and 4-level BDDC method for the benchmark problem of a 3-D lid-driven cavity,
behaviour of this method for 4 different weights type (card, diag, unit jump, and upwind)
for cavity problem, 2 different partitioners (graph and geometric) for 2-level method for
narrowing channel problem, an experimental test of convergence of the BDDC method with
respect to changing the H/h ratio. Finally we eployed this method for solving an industrial
prloblem of flow of oil inside the hydrostatic bearing. All the computations are performed
by a parallel finite element package written in C++ and described in [54], and using the
BDDCML library [57] for solving the arising system of linear equations. For linearization,
we use Picard’s iteration with the precision measured as εN =

∥∥uk − uk−1
∥∥

2
. The BiCGstab

method preconditioned by the BDDC preconditioner is used for the linearized system with
precision measured as εL =

∥∥rk∥∥
2
/ ‖g‖2. According to our previous experience from [54], the

convergence of the BiCGstab method is comparable to that of GMRES. Simulations were
performed on the Salomon supercomputer at the IT4Innovations National Supercomputing
Center using the cores of Intel Xeon E5-2680v3 12C 2.5GHz processors.

5.1 Narrowing channel

First we look at the problem of the narrowing channel. In our computations we aim at
the influence of interface irregularities on the BDDC solver for Navier-Stokes equations. In
particular, we investigate the effect of the aspect ratio of the finite elements at the interface
on convergence. This is motivated by our target application—simulations of oil flow in
hydrostatic bearings with very narrow throttling gaps. In order to study this phenomenon,
a benchmark problem suitable for such a study is proposed and the partitioning strategies
described in Section 4.3 are compared. Picard’s iteration is terminated when εL ≤ 10−5 or
after performing 100 iterations. The BiCGstab method is stopped if εN ≤ 10−6, with the
limit of 1000 iterations.

As a measure of convergence, we monitor the number of BiCGstab iterations needed in
one Picard’s iteration. Two matrix-vector multiplications are needed in each iteration of
BiCGstab, and after each of them, the terminal condition is evaluated. Correspondingly,
inspired by the Matlab bicgstab function, termination after the first matrix-vector mul-
tiplication is reported by a half iteration in the BiCGstab iteration counts. Numbers of

51

CHAPTER 5. NUMERICAL RESULTS 52

Figure 5.1: The narrowing channel 2-D benchmark; original channel (left) and narrowing
along the y-axis (right).

Figure 5.2: The narrowing channel 3-D benchmark; original channel (left), narrowing along
the y-axis (centre), and narrowing along both y and z-axes (right).

iterations are presented as minimum, maximum, and mean over all nonlinear iterations for
a given case.

The benchmark problem consists of a sequence of simple channels in 2D (Fig. 5.1) and
3D (Fig. 5.2). The dimension of the channels along one or two (in 3D) coordinates is
gradually decreased, with the initial dimensions 10×1×1 along the x, y, and z axes. The
computational mesh is based on rectangular (2D) or cuboidal (3D) finite elements uniformly
distributed along each direction. The number of elements is 100×10×10 along the x, y and
z coordinates. In total, the 3-D problem contains 10 000 elements, 88 641 nodes, and 278 144
unknowns.

The aspect ratio of elements A = hmax/hmin is defined as the ratio of the longest edge
of the element hmax to its shortest counterpart hmin. The A = 1 corresponds to square (or
cubic) elements. We test the sequence of narrowing channels forA ∈ {1, 2, 4, 10, 20, 40, 100}.

The velocity at the inlet starts from g = (1, 0, 0)T for x = 0, the velocity at the walls
is fixed to g = 0, and the face of the channel for x = 10 corresponds to ΓN . We have
considered two scenarios for the inflow velocity during the narrowing. The first is simply
keeping the magnitude of the velocity fixed throughout the sequence. In the second scenario,
the magnitude of the velocity is increased proportionally to the decrease of the height, so
that the Reynolds number, defined as Re = |u|D

ν
, is kept constant for the decreasing channel

height D. However, results for both scenarios of the inlet boundary condition have been
almost identical, and we present only the results for fixed Reynolds number for brevity. We
use ν = 1 for our computations. The channel is divided into 4 subdomains by the graph and
the geometric partitioners described in Section 4.3.

First we look at the two-dimensional problem. For the graph partitioner, the interface
contains both long and short edges of elements. On the other hand, the interface is composed
solely from short edges for the geometric partitioner (see Fig. 5.3). Corresponding results
are in Tables 5.1 and 5.2.

For the 3-D case, we consider two kinds of problems. First we decrease only the y-
dimension of the channel, while in the second case, we shrink both y and z dimensions of the
cross-section (see Fig. 5.2). The graph partitioner produces rough interface in both cases,

CHAPTER 5. NUMERICAL RESULTS 53

Figure 5.3: Detail of the interface between two subdomains in 2D for graph (left) and
geometric (right) partitioner.

partitioner graph

A 1 2 4 10 20 40 100

Picard’s its. 4 4 5 5 7 6 40

BiCGstab its.
min 9 10.5 13.5 13.5 15 16.5 17.5
max 9.5 10.5 13.5 15 16 17.5 19.5
mean 9.4 10.5 13.5 14.2 15.2 16.7 18.1

Table 5.1: Numbers of iterations for graph partitioner for the 2-D narrowing channel.

while the geometric partitioner leads to rectangular faces at the interface in the first case (see
Fig. 5.4) and square faces in the second case. Resulting numbers of iterations are presented
in Tables 5.3–5.6. Numbers in italic are runs that did not converge due to reaching the
maximal number of iterations or time restrictions. A solution of the problem for the initial
channel geometry is presented in Fig. 5.5.

Figure 5.4: Detail of the interface between two subdomains for narrowing along the y-
coordinate in 3D for graph (left) and geometric (right) partitioner.

From Tables 5.1–5.6 we can conclude that A of faces at the interface has a remarkable
influence on the number of BiCGstab iterations in each Picard’s iteration. Using the graph
partitioner results in a rough interface combining long and short edges. This has a large
impact on the efficiency of the BDDC preconditioner and the number of linear iterations
increases significantly.

Employing the geometric partitioner leads to straight cuts between subdomains aligned
with layers of elements. In 2D, this is sufficient to achieve convergence of the linear solver
independent ofA. In 3D, the situation is more subtle. For the case of narrowing the channel
only along the y-axis, the aspect ratio of the rectangular element faces at the interface also
worsens during contracting the channel. This is translated into a slight growth of the number
of BiCGstab iterations in Table 5.4 even in this case, although the convergence is much
more favourable than for the graph partitioner. If we narrow the channel along both y and z
coordinates, the shape of the element faces at the interface does not deteriorate from squares,
and we observe good convergence independent of A in Table 5.6.

CHAPTER 5. NUMERICAL RESULTS 54

partitioner geometric

A 1 2 4 10 20 40 100

Picard’s its. 3 4 5 5 6 6 5

BiCGstab its.
min 4.5 4.5 4.5 4 3 3 3
max 4.5 4.5 4.5 4 3 3 3
mean 4.5 4.5 4.5 4 3 3 3

Table 5.2: Numbers of iterations for geometric partitioner for the 2-D narrowing channel.

Figure 5.5: Solution in the initial 3-D channel geometry; magnitude of velocity (left) and
pressure in the plane of symmetry (right).

partitioner graph

A 1 2 4 10 20 40 100

Picard’s its. 4 5 5 42 5 100 100

BiCGstab its.
min 17.5 20 25.5 44.5 84.5 145 400
max 18.5 20.5 25.5 51 113.5 858 1000
mean 18.3 20.4 25.5 46.2 93.9 209 761

Table 5.3: Numbers of iterations for graph partitioner for the 3-D channel narrowed along
the y-coordinate.

partitioner geometric

A 1 2 4 10 20 40 100

Picard’s its. 4 5 5 5 5 5 99

BiCGstab its.
min 5.5 6.5 7.5 11.5 16 19.5 19.5
max 5.5 6.5 7.5 12 17.5 19.5 21
mean 5.5 6.5 7.5 11.9 17.2 19.5 19.5

Table 5.4: Numbers of iterations for geometric partitioner for the 3-D channel narrowed
along the y-coordinate.

CHAPTER 5. NUMERICAL RESULTS 55

partitioner graph

A 1 2 4 10 20 40 100

Picard’s its. 4 4 4 5 8 19 28

BiCGstab its.
min 17.5 19.5 27.5 36 51 80 197
max 18.5 20.5 28 41.5 53 92.5 1000
mean 18.3 19.8 27.9 39.5 51.8 87.7 590

Table 5.5: Numbers of iterations for graph partitioner for the 3-D channel narrowed along
both y and z-coordinates.

partitioner geometric

A 1 2 4 10 20 40 100

Picard’s its. 4 4 4 5 5 5 4

BiCGstab its.
min 5.5 5.5 6 5 4.5 4.5 4.5
max 5.5 6 6 5.5 5 5 4.5
mean 5.5 5.9 6 5.1 4.9 4.6 4.5

Table 5.6: Numbers of iterations for geometric partitioner for the 3-D channel narrowed
along both y and z-coordinates.

5.2 Lid-driven cavity

In this section we investigate behaviour of the BDDCML solver in application to bench-
martk problem of 3-D lid-driven cavity suggested in [63]. The computational domain is a
unit cube with Dirichlet boundary conditions. A twisted unit tangential velocity vector is
considered on the top wall, utop = (1/

√
3,
√

2/
√

3, 0). Zero velocity is considered on the
remaining 5 walls. The computational mesh is uniform with hexahedral elements, and it
is divided into cubic subdomains with a rising number of them per domain edge (see Fig.
5.6) using my Meshbuilder software described in Section 4.5. Simulations were performed on
the Salomon supercomputer at the IT4Innovations National Supercomputing Center using
the same number of cores of Intel Xeon E5-2680v3 12C 2.5GHz processors as the number
of subdomains. We terminate Picard’s iterations after reaching the precision εN ≤ 10−5 or
after 100 iterations, while the inner linear iterations are terminated when εL ≤ 10−6 or after
reaching the maximum number of 1000 iterations.

We present three performed tests of behaviour of BDDCML method. Namely, weak
scalability compared for 2-, 3-, and 4-level method, comparision of four used weights type
described in Section 4.3, including our own new upwind weight type, and experimental test
of convergence of the BDDC method with respect to changing the H/h ratio.

5.2.1 Weak scalability

In this section, we compare the weak scalability of the multilevel BDDC method in applica-
tion to 3D lid-driven cavity. Results for the 2-, 3-, and 4-level BDDC method for Reynolds
numbers 1 and 100 are presented.

5.2.1.1 2- and 3-level method

First, we compare the 2- and the 3- level BDDC method. The number of subdomains grows
from 8 to 4913, and there are 8 elements per subdomain edge. The number of unknowns

CHAPTER 5. NUMERICAL RESULTS 56

Figure 5.6: Boundary conditions (left) and example of mesh division with 13 subdomains
per edge (right) for the lid-driven cavity.

grows from 112 724 to 63 610 604, and the size of the interface problem grows from 10 324 to
10 915 264 unknowns. We consider two values of the Reynolds number, in particular, 1 and
100. We define the Reynolds number as LU/ν, where L is the length of an edge of the solution
domain, U is the velocity of the top wall and ν is the kinematic viscosity. With increasing
Reynolds number, the significance of the symmetric part of (2.34) is decreasing, and the
nonsymmetric part has larger influence (see [62]). For these simulations, we use cubes as
subdomains on the first coarse level (see Fig. 5.6) for both cases. To build subdomains on the
second level for the 3-level method, we use the METIS graph partitioner [37]. An example
of a cluster of subdomains of the first level composing a subdomain on the second level is
shown in Fig. 5.7. We monitor the mean, maximal, and minimal number of linear iterations,
the number of nonlinear iterations, the mean setup time of the BDDC preconditioner, the
mean time for the Krylov subspace method, and the mean time for one iteration for the 2-
and the 3-level method for both cases of the Reynolds number. These values are presented
in Tables 5.7–5.10.

Figure 5.7: Clustering of subdomains on the second level using METIS.

CHAPTER 5. NUMERICAL RESULTS 57

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 4 8.5 9 8.9 2.33 0.58 (0.07) 2.91
27 4 10.5 11.5 11.3 3.16 0.84 (0.07) 4.00
64 4 11.5 11.5 11.5 3.71 1.24 (0.11) 4.95
125 4 12.5 12.5 12.5 3.98 1.50 (0.12) 5.48
216 4 11.5 12 11.9 4.80 1.91 (0.16) 6.71
343 4 12.5 12.5 12.5 5.39 2.46 (0.20) 7.85
512 4 12.5 12.5 12.5 6.31 3.04 (0.24) 9.35
729 4 13 13 13 8.79 5.45 (0.42) 14.2
1000 4 12.5 12.5 12.5 11.3 7.00 (0.56) 18.3
1331 4 13 13 13 15.1 10.3 (0.79) 25.4
1728 4 12.5 12.5 12.5 20.7 14.0 (1.12) 34.7
2197 4 13 13 13 31.0 22.0 (1.69) 53.0
2744 4 12.5 12.5 12.5 42.8 28.3 (2.26) 71.1
3375 4 13 13 13 56.8 40.9 (3.15) 97.7
4096 4 12.5 12.5 12.5 79.6 21.6 (1.73) 101.2
4913 4 13 13 13 111.8 29.4 (2.26) 141.2

Table 5.7: Re = 1, 2-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 4 10 10 10 2.33 0.65 (0.07) 2.98
27 4 12.5 12.5 12.5 3.18 0.93 (0.07) 4.11
64 4 13.5 13.5 13.5 3.71 1.40 (0.10) 5.11
125 4 17.5 17.5 17.5 3.95 1.94 (0.11) 5.89
216 4 15 16 15.3 4.43 2.05 (0.13) 6.48
343 4 19.5 19.5 19.5 4.41 2.74 (0.14) 7.15
512 4 17.5 17.5 17.5 4.72 2.78 (0.16) 7.50
729 4 21.5 22.5 21.8 5.20 4.03 (0.18) 9.23
1000 4 16.5 18 17.6 5.10 3.78 (0.21) 8.88
1331 5 18 18.5 18.4 5.25 7.87 (0.43) 13.1
1728 4 17.5 20.5 19.8 6.45 6.61 (0.33) 13.1
2197 4 17.5 20.5 18.1 6.70 7.14 (0.39) 13.8
2744 4 18.5 18.5 18.5 8.86 9.25 (0.50) 18.1
3375 5 17.5 19.5 18.7 8.40 10.7 (0.57) 19.4
4096 4 19.5 20.5 20.3 10.8 8.55 (0.42) 19.4
4913 4 19.5 19.5 19.5 13.2 9.80 (0.50) 23.0

Table 5.8: Re = 1, 3-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

CHAPTER 5. NUMERICAL RESULTS 58

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 18 9.5 14 13.8 2.22 0.86 (0.06) 2.98
27 19 10.5 17.5 15.1 3.16 1.12 (0.07) 4.28
64 20 11.5 18.5 17.2 3.64 1.84 (0.11) 5.48
125 21 13 19 17.0 3.94 2.04 (0.12) 5.98
216 21 12 16.5 15.4 4.84 2.49 (0.16) 7.33
343 21 11 16 15.3 5.76 3.08 (0.20) 8.84
512 22 12.5 15 14.4 6.30 3.56 (0.25) 9.86
729 22 12.5 14.5 14.0 8.58 5.28 (0.38) 13.9
1000 22 12 14 13.0 11.2 7.26 (0.56) 18.5
1331 22 13 14.5 14.4 15.1 11.7 (0.81) 26.8
1728 23 12.5 13.5 13.0 20.7 14.6 (1.12) 35.3
2197 23 13 13.5 13.4 31.7 22.6 (1.69) 54.3
2744 23 12.5 14 13.8 43.3 31.1 (2.25) 74.4

Table 5.9: Re = 100, 2-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 18 10.5 16 14.7 2.30 0.94 (0.06) 3.24
27 19 12.5 18.5 16.4 3.15 1.21 (0.07) 4.36
64 20 13.5 20.5 18.1 3.68 1.89 (0.10) 5.57
125 100 17.5 27.5 25.4 3.93 2.80 (0.11) 6.73
216 26 17.5 22.5 22.2 4.29 2.99 (0.13) 7.28
343 100 19.5 34.5 30.1 4.41 4.25 (0.14) 8.66
512 24 17.5 21.5 21.3 4.82 3.62 (0.17) 8.44
729 100 22.5 31.5 28.2 5.13 5.48 (0.19) 10.6
1000 100 18.5 16 29.7 4.85 6.52 (0.22) 11.4
1331 30 18.5 30.5 23.1 5.34 6.12 (0.26) 11.5
1728 28 17.5 29.5 25.7 6.34 8.50 (0.33) 14.8
2197 100 17.5 32.5 29.2 6.97 11.6 (0.40) 18.6
2744 100 18.5 32.5 27.7 9.07 13.7 (0.49) 22.8

Table 5.10: Re = 100, 3-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

CHAPTER 5. NUMERICAL RESULTS 59

We can see that for the case with Reynolds number Re = 1, the numbers of nonlinear
iterations stay the same for almost all cases for both 2- and 3-level method. The numbers of
linear iterations appear to have a similar, slightly increasing trend. From the setup times,
we can see that for the 2- level method, the setup time rapidly increases with the number
of processors, whereas for the 3-level method, the increase of the setup time is significantly
slower. From the mean times in Tables 5.7 and 5.8 we can see that the 3-level method is
faster than the 2-level one, especially for a bigger number of processors. Also, there is not
such a rapid increase of computational time for the 3-level method as for the 2-level case.

One can observe that while the 3-level method gets considerably faster than the 2-level
method, the computational times are not perfectly weakly scalable even for the 3-level case.
While this can be clearly attributed to the coarse problem solves for the 2-level method,
it is likely the global communication related to propagating the higher-level solutions and
residuals what worsens the weak scalability also for the 3-level method.

Let us look closer at the case of Re = 100. We can see that for the 2-level method, the
number of nonlinear iterations is slightly increasing with the rising number of processors.
For the 3-level method, the number of nonlinear iterations is similar in some cases, and in
some cases, it reaches the limit of 100 nonlinear iterations. Looking closer at the output
of these simulations, we could see that after the maximum of 20 nonlinear iterations, the
residual εN oscillates between 5 · 10−5 and 10 · 10−5, but never drops below the prescribed
10−5. For the setup time, we can see similar behaviour as in the case with Re = 1, and the
same stands for the time for solving the linear problem and the time for 1 iteration. If we
compare the results for Re = 1 and Re = 100, a significant difference is just in the number
of nonlinear iterations. This can be attributed to the bigger influence of the nonsymmetric
part of (2.34).

Since we are mainly interested in the efficiency of the BDDC method and the linear
solver, we focus on the mean number of linear iterations over all nonlinear iterations, the
mean setup time for preparing the BDDC preconditioner, the mean time for solving the
linear problem, and the mean time for one linear iteration. The comparison of the behaviour
of the 2- and 3-level methods for these parameters with a rising number of processors for
both cases of the Reynolds number is presented in Figs. 5.8 and 5.9.

2 4 6 8 10 12 14 16

number of subdomains per cube edge

100

101

102

ti
m

e
 [
s
]

2-levels setup

2-levels iter

2-levels total

3-levels setup

3-levels iter

3-levels total

2 4 6 8 10 12 14 16

number of subdomains per cube edge

0

0.5

1

1.5

2

2.5

3

3.5

ti
m

e
 [
s
]

2-levels

3-levels

Figure 5.8: Re = 1. Mean time for setup, mean time for the BiCGstab iterations and mean
total time (left), mean time for one iteration (right).

In Fig. 5.8, there is a large drop of time for one iteration for the 2-level method. While
reproducible, we are not able to satisfactorily explain this phenomenon.

CHAPTER 5. NUMERICAL RESULTS 60

2 4 6 8 10 12 14

number of subdomains per cube edge

100

101

102

ti
m

e
 [
s
]

2-levels setup

2-levels iter

2-levels total

3-levels setup

3-levels iter

3-levels total

2 4 6 8 10 12 14

number of subdomains per cube edge

0

0.5

1

1.5

2

2.5

ti
m

e
 [
s
]

2-levels

3-levels

Figure 5.9: Re = 100. Mean time for setup, mean time for the BiCGstab iterations and
mean total time (left), mean time for one iteration (right).

5.2.1.2 3- and 4-level method

Next, we compare the 3- and the 4-level methods. The number of subdomains goes from
8 up to 1728 with 12 elements per subdomain edge. Because the number of elements per
subdomain edge is different, we had to recompute also the results for the 3-level method,
and the results in this section are different from those in Section 5.2.1.1. As a consequence,
we now have larger local problems. The number of unknowns ranges from 368 572 to 75
461 332, and the size of the interface problem grows from 22 972 to 8 600 372 unknowns.
Here we form subdomains on coarse levels for the 3-level method in the same way as in
the previous subsection, i.e. using the METIS graph partitioner. Figure 5.10 shows the
potentially complex subdomains on higher levels resulting from employing METIS. However,
for the 4-level method, we form regular subdomains on all levels. Thus, on the first coarse
level, we have cubes as subdomains, on the second coarse level we join a line of cubes into
a cuboid, and on the third coarse level, we join plate of cuboids to form the subdomains
(see Fig. 5.11). The reason for this explicit creation of the coarse subdomains is that the
simulations using METIS did not converge for the 4-level method. This seems to be related
to our previous findings about a significantly better convergence of the BDDC method with
regular subdomains (see [1] for more details). We set the value of the Reynolds number to 1,
and we compare the same parameters as in the previous case. We again report the number
of linear iterations (maximal, minimal, and mean) over all nonlinear iterations, the mean
setup time of the BDDC preconditioner, the mean time for solving the linear problem, and
the mean time for one linear iteration. All these values are in Tables 5.11 and 5.12.

We can see that the numbers of nonlinear iterations remain similar as in the previous
subsection for almost all cases for the 3- and the 4- level method. However, the numbers of
linear iterations are rapidly increasing for the 4-level method. If we look at the setup times,
we can see that the time for the 3- and the 4-level method seems to be slowly increasing
with the number of subdomains, with a similar rate. A big difference is in the total time
for solving the linear problem. Due to the rapid increase in the mean number of linear
iterations, the total time for solving the linear problem by the 4-level method gets much
larger than for the 3- and even the 2-level method although each iteration is cheaper for larger
numbers of subdomains. Thus further worsening of the approximation of the preconditioner
by introducing the fourth level is not beneficial for the problem of our experiment.

Again, we mainly monitor the mean number of linear iterations over all nonlinear it-

CHAPTER 5. NUMERICAL RESULTS 61

Figure 5.10: Decomposition by METIS for the 4-level BDDC method. First-level subdomains
(left), second-level subdomains (centre), and third-level subdomains (right).

Figure 5.11: Regular decomposition for the 4-level BDDC method. First-level subdomains
(left), second-level subdomains (centre), and third-level subdomains (right).

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 4 14 14 14 13.57 4.06 (0.29) 17.6
27 4 16.5 16.5 16.5 15.92 5.78 (0.35) 21.7
64 4 16 16 16 18.03 8.17 (0.51) 26.2
125 6 28.5 30.5 29.7 18.24 15.06 (0.51) 33.3
216 16 26.5 27.5 27.3 19.77 16.16 (0.59) 35.9
343 8 33.5 36 34 33.46 29.95 (0.88) 63.4
512 5 38.5 41.5 40.3 25.18 41.85 (1.04) 67.0
729 20 32 36 34.1 21.28 28.05 (0.82) 49.3
1000 4 24 24.5 24.4 26.08 26.46 (1.08) 52.5
1331 4 23.5 26 24.1 25.77 27.37 (1.14) 53.1
1728 4 25.5 25.5 25.5 26.36 30.34 (1.19) 56.7

Table 5.11: Re = 1, 3-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

CHAPTER 5. NUMERICAL RESULTS 62

nproc nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

8 5 13.5 13.5 13.5 13.49 3.90 (0.29) 17.4
27 4 16.5 17.5 16.8 15.92 5.86 (0.35) 21.8
64 4 22.5 23.5 23.3 22.80 20.84 (0.89) 43.6
125 4 33 34.5 34.1 18.16 17.28 (0.51) 35.4
216 5 47.5 49.5 48.3 36.14 48.95 (1.01) 85.1
343 22 66.5 73 67.6 22.04 54.61 (0.81) 76.7
512 12 97 100.5 100.2 24.63 102.49 (1.02) 127.1
729 11 122 145 135.2 24.58 140.49 (1.04) 165.1
1000 4 175.5 189 182.4 31.10 127.39 (0.70) 158.5
1331 12 207.5 238 218 25.14 241.14 (1.11) 266.3
1728 4 250.5 282 267.6 57.55 223.12 (0.83) 280.7

Table 5.12: Re = 1, 4-levels. Number of nonlinear iterations, number of linear iterations
(minimal, maximal, and mean), mean setup time, time for the BiCGstab iterations, time for
one linear iteration, and the total time.

erations, the mean setup time for preparing the BDDC preconditioner, the mean time for
solving the linear problem, and the mean time for one linear iteration. The comparison of
the behaviour of the 3- and the 4-level methods for these parameters with a rising number
of processors is presented in Fig. 5.12.

2 3 4 5 6 7 8 9 10 11 12

number of subdomains per cube edge

101

102

103

ti
m

e
 [
s
]

3-levels setup

3-levels iter

3-levels total

4-levels setup

4-levels iter

4-levels total

2 3 4 5 6 7 8 9 10 11 12

number of subdomains per cube edge

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

ti
m

e
 [
s
]

3-levels

4-levels

Figure 5.12: Re = 1. Mean time for setup, mean time for the BiCGstab iterations and mean
total time (left), mean time for one iteration (right).

In Figure 5.12, there are once again some wild drops and ups which we cannot satisfacto-
rily explain, but at least for the 3-level method, it could be caused by certain more suitable
decompositions by the METIS graph partitioner on higher levels. We again see a suboptimal
weak scalability probably caused by the coarse problem global communication.

5.2.2 Interface scalings

In this section, we compare the behaviour of the 2-level BDDC method for different types
of interface weights described in Section 4.3, namely the cardinality scaling (card), scaling
by diagonal stiffness (diag), scaling weights from unit load (ul), and the proposed upwind

CHAPTER 5. NUMERICAL RESULTS 63

weights. For these simulations, the number of subdomains is 125 with 8 elements per subdo-
main edge. We consider Reynolds numbers 100 and 200. Also the division into subdomains
remains. We once again monitor the mean, maximal, and minimal number of linear itera-
tions, the number of nonlinear iterations, the mean setup time of the BDDC preconditioner,
the mean time for the Krylov subspace method, and the mean time for one iteration. These
values are presented in Tables 5.13 and 5.14.

weights type nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

card 23 13 19 17 4.18 1.99 (0.12) 6.17
diag 23 13 18 15.1 3.85 1.78 (0.12) 5.63
ul 23 12.5 14.5 13.5 4.22 1.60 (0.12) 5.82

upwind 23 23 14.5 14.3 4.05 1.69 (0.12) 5.74

Table 5.13: Re = 100. Number of nonlinear iterations, number of linear iterations (minimal,
maximal, and mean), mean setup time, time for the BiCGstab iterations, time for one linear
iteration, and the total time.

weights type nonl
linear solve time [s]

min max mean setup BiCGstab iter (one iter) total

card 100 12 84.5 68.8 3.84 8.03 (0.12) 11.03
diag 33 12 77.5 69.5 3.87 8.09 (0.12) 11.96
ul 100 12 81 54.4 4.19 6.35 (0.12) 10.54

upwind 48 22 80.5 28.2 4.28 3.31 (0.12) 7.59

Table 5.14: Re = 200. Number of nonlinear iterations, number of linear iterations (minimal,
maximal, and mean), mean setup time, time for the BiCGstab iterations, time for one linear
iteration, and the total time.

The maximal number of nonlinear iteration was again set to 100, which was reached for
several cases (Table 5.14). For those cases, the error εN oscillated between 5 · 10−5 and 10−4,
but never dropped below 10−5.

From Tables 5.13 and 5.14, we can see that there is no significant difference in using
different weights for Reynolds number 100. However, for Reynolds number 200, we can
observe a large difference in the mean number of linear iterations. Consequently, the time
for linear iterations is also different, although the time per one iteration stays the same.
Based on these tables, we can conclude that the upwind weights may lead to a significant
reduction of the number of linear iterations as well as of the computational time.

5.2.3 Experimental H/h dependence

Next we perform an experimental test of convergence of the BDDC method with respect
to changing the H/h ratio, i.e. the ratio of the characteristic size of a subdomain to the
characteristic size of an element. For cubic subdomains, H/h represents the number of
elements along a subdomain edge. In these simulations, we have 64 subdomains and vary
the number of elements per subdomain edge from 2 to 24. The Reynolds number was set to
1, and we compare the behaviour of the 2- and the 3-level method. The results are presented
in Fig. 5.13.

CHAPTER 5. NUMERICAL RESULTS 64

0 5 10 15 20 25

H/h

6

7

8

9

10

11

12

13

14

15

16

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

2-levels

3-levels

Figure 5.13: Dependence of the number of iterations on the H/h ratio.

From Fig. 5.13, we can see that with the growing H/h ratio, the number of BiCGstab
iterations approximately follows the logarithmic dependence (3.38), for both the 2- and, with
slight irregularities, the 3-level method. Although a theoretical insight is not available for
this class of problems, the dependence seems to resemble the behaviour for problems with a
symmetric positive definite matrix.

5.3 Hydrostatic bearings

In this section we finally combine the previous experience and present the results for driving
application of our research, namely simulations of oil flow in hydrostatic bearings. These
are parts of production machines that keep moving parts of the machines on a thin layer of
oil to provide low friction. Oil is pressurized to a few MPa, and it flows through the input
of the hydrostatic bearing into a so-called hydrostatic cell. Then it flows out through a very
thin (few tens of micrometers) throttling gap.

Hydrostatic bearings have been studied for a long time at the Research Center of Man-
ufacturing Technology at the Faculty of Mechanical Engineering of the Czech Technical
University in Prague. These parts are typically designed using analytic solution of flow in-
side the throttling gap. However, a detailed picture of the 3D flow in the whole bearing
was missing. Consequently, performing 3D simulations of oil flow inside several designs and
settings of the bearings has been another aim of my reserch and the results are summarized
in this section.

Numerical simulation of this problem comes with several challenges, like a large pressure
gradient realized in the throttling gap, small thickness of the throttling gap, and moving of
the bearing. A major issue is the emergence of finite elements with bad aspect ratio in the
throttling gap, see Figure 5.15. During our research, I have gradually addressed most of these
issues, at the end being able to simulate real-scale geometry problems of sliding bearings.
In the next part of this subsection, I provide an overview of my process of computations.
This consist two subsections, one correspond with test problems of special geometry of the

CHAPTER 5. NUMERICAL RESULTS 65

Case |uinput mean| [m/s] h [µm] µ [Ns/m2] |ubottom wall| [m/s]
1 0.3 1000 0.809 1
2 0.3 200 0.5 0
3 0.3 50 0.01 1

Table 5.15: Parameters of simulations for each case of the hydrostatic bearings.

bearings, second to realistic geometry of this bearing.

Figure 5.14: A scheme of a cross-section of the solution domain for hydrostatic bearings with
boundary conditions.

5.3.1 Test problems

In this section I present simulations of hydrostatic bearings with test geomteries. Input
parameters of each simulation, such as the input mean velocity uinput mean, the velocity of
the bottom wall ubottom wall, the dynamic viscosity µ, and the height of the throttling gap h
are summarized in Table 5.15. In all presented simulations, we use the 2-level method with
cardinality weights.

5.3.1.1 Case 1

At the beginning of our research, we dealt with simulations of hydrostatic bearings with an
artificially magnified throttling gap and geometry axially symmetric along the vertical axis
(see Fig. 5.16). However, by considering a linear sliding of the bearing, the boundary con-
ditions lack axial symmetry, and the problem can no longer be solved as axially symmetric.
From the beginning, we aimed at reaching the real-scale height of the throttling gap. Unfor-
tunately, we were able to reach only a throttling gap of the height 1 mm, which is 10 times
more than the real gap, but it still gave us an initial insight into the flow behaviour during
the movement of the bearing. However, convergence deteriorated quickly with decreasing
the throttling gap height. For these calculations, we have created meshes in the Gmsh soft-
ware [32] and divided them into 32 subdomains using the METIS partitioner. The problem
contains almost 609 thousand unknowns with 93 thousand unknowns at the interface. Our
simulations were performed on the SGI Altix supercomputer at the supercomputing center
of the Czech Technical University in Prague using 32 cores of Intel Xeon 2.66 GHz proces-
sors. Precision for Picard’s iteration was set to εN ≤ 10−5, and the linear iterations were
terminated when εL ≤ 10−6 or after reaching the maximum number of 100 iterations. This
set of prescribed precisions was used for all presented calculations of hydrostatic bearings.

CHAPTER 5. NUMERICAL RESULTS 66

Figure 5.15: Detail of the elements inside the throttling gap.

The solution required 12 nonlinear iterations, each of them performing in average 511 linear
iterations. The solution is presented in Fig. 5.16.

Figure 5.16: Case 1. The solution domain decomposed into 32 subdomains (left) and the
streamtraces coloured by the magnitude of velocity (right).

5.3.1.2 Case 2

In the next phase, we have switched to a rectangular geometry of the hydrostatic bearing and
tried to solve the throttling-gap-height issue by using a very fine mesh and decomposition
into hundreds of subdomains (precisely 1200), still using the METIS partitioner. We were
able to reach the height of 100 µm of the throttling gap, which is the real height for certain
cases, but only without the motion of the bearing. Hence, this solution has given us a better
idea about the pressure values and development inside the hydrostatic bearing. The mesh
was also generated in the Gmsh software. It has about 13 million unknowns with 2.7 million
unknowns at the interface. The simulations were performed on the Salomon supercomputer
using 1200 cores. Precisions of the iterations were set as above. The presented calculation
converged after 3 nonlinear iterations with an average of 754 linear iterations for each of
them. The solution is shown in Fig. 5.17. Recall that there is no sliding considered in this
case.

5.3.1.3 Case 3

Next, we studied the influence of the subdomain interface on the convergence of the BDDC
solver. The results were presented in detail in [1]. Here, we just briefly recall the main
findings for completeness. The study has shown that if we are able to maintain straight
interfaces between subdomains, the solver requires significantly less linear iterations, and we

CHAPTER 5. NUMERICAL RESULTS 67

Figure 5.17: Case 2. The solution domain decomposed into 1200 subdomains (left) and the
streamtraces coloured by the magnitude of velocity (right).

were able to simulate the problem with the real geometry of the hydrostatic bearing. The
stopping criteria were set as in the previous cases. The computational mesh contains about
500 thousand unknowns with 56 thousand unknowns at the interface. The mesh was divided
using an in house partitioner maintaining straight cuts as in Fig. 5.18. These computations
were performed on the Altix supercomputer using 32 cores. The method converged after
5 nonlinear iterations with an average of 271 linear iterations. The solution is shown in
Fig. 5.18.

Figure 5.18: Case 3. The computational mesh decomposed into 32 subdomains (left) and
streamtraces coloured by the magnitude of velocity (right).

5.3.2 Bearing with realistic geometry

Finally, utilizing the findings from the previous experiments, we were able to perform sim-
ulations on a real geometry of the bearing from a production machine. Here I recall our
results from [3]. Our calculations aim at an industrial problem of oil flow inside hydrostatic
bearings. In this section, I present results for two kinds of problems. The first problem is
without considering the motion of the bearing. For this setup, we have performed an exper-
iment to validate the numerical solver. The second problem is a bearing sliding in a straight
direction, and this set-up corresponds to a running production machine. The solution do-
main with its dimensions is depicted in Figure 5.19, and the two studied cases correspond to
prescribing zero and non-zero velocity at the bottom side of the domain (see Figure 5.14).

The computational mesh was created and divided into specified structured volumes using
the GMSH software. These volumes preserve flat interfaces between each other to make it

CHAPTER 5. NUMERICAL RESULTS 68

possible to decompose the solution domain into 21 global subdomains using our ‘geometric’
partitioner prefers straight cuts between subdomains described in [1]. The mesh consists of
124 828 elements which correspond with 3 269 679 unknowns and 186 834 interface unknowns.
The decomposed mesh is presented in Figure 5.20. A detail of the mesh in the throttling
gap, where elements with a high aspect ratio occur, is in Figure 5.15.

Figure 5.19: Dimensions of the hydrostatic cell in millimeters.

Figure 5.20: Computational mesh decomposed into 21 subdomains.

5.3.2.1 Bearing without motion

At first we dealt with the problem without sliding of the bottom wall. We have been able
to validate our calculation for this case. The experiment was performed at the Research
Center of Manufacturing Technology at the Faculty of Mechanical Engineering of the Czech
Technical University in Prague. A scheme of the measurement is shown in Figure 5.21.

CHAPTER 5. NUMERICAL RESULTS 69

Figure 5.21: Scheme of the measurement.

In this experiment, a throttling gap h of the hydrostatic bearing (HSK), the flow rate Q
through the selected branch of the circuit, and the temperature T2 of the oil Fuchs Renolin
B 46 HVI were measured. The mean inflow velocity vmid is then computed from Q. The last
input parameter is the dynamic viscosity µ, which we derive from the measured temperature
T2 using tables provided with the oil. For comparing our simulations with the experiment,
we use the value of pressure at the entrance of the hydrostatic cell p2. The values obtained
by the experiment are summarized in Table 5.16.

vmid [m/s] h [µm] µ [Ns/m2] p2 [MPa]
0.44 61.3 0.0712 2.7124

Table 5.16: Summary of the measured parameters used for the simulation. The measured
value of p2 is compared with the one from the simulation.

I set the parabolic velocity profile with the prescribed mean velocity vmid on the circular
input. The velocity of sliding vbottom wall is set to zero in this case. The oil flows into the
atmospheric pressure at the edge of the throttling gap Γoutput. Hence, after the computation,
we post-process the field of pressure in the whole domain by adding this constant value
100 000 Pa.

For this realistic bearing, I present the detailed results of pressure and velocity fields. In
this case, 3 Picard’s iterations were needed to reach precision εN ≤ 10−4, and on average
798 BiCGstab iterations were needed for the linearised system to achieve the precision of
the relative residual εL ≤ 10−5.

First, we look at the pressure field inside the hydrostatic bearing in Figures 5.22–5.24.
We can see from the results that the pressure inside the hydrostatic cell (and therefore

at the input) is almost constant and the pressure drop is realized in the throttling gap and
the pressure gradient inside the throttling gap is symmetric. The value of pressure at the
entrance of the hydrostatic cell p2 obtained from our calculation is 2.826 MPa, which presents
only 4% difference from the measured value 2.7124 MPa. This is an encouraging agreement
within the accuracy of our experimental set-up.

Now we explore the velocity field inside the hydrostatic cell. In Figures 5.25–5.28 there
are streamtraces in different parts of the bearing coloured by the velocity magnitude.

CHAPTER 5. NUMERICAL RESULTS 70

Figure 5.22: Pressure field in half of the hydrostatic bearing without motion.

Figure 5.23: Pressure field in three quarters of the hydrostatic bearing without motion.

Figure 5.24: The pressure in the hydrostatic bearing without motion. Warped pressure field
(left) and plot (right).

CHAPTER 5. NUMERICAL RESULTS 71

Figure 5.25: Streamtraces coloured by the magnitude of velocity in the hydrostatic bearing
without motion along the short edge in negative x direction.

Figure 5.26: Streamtraces coloured by the magnitude of velocity in the hydrostatic bearing
without motion along the short edge in positive x direction.

CHAPTER 5. NUMERICAL RESULTS 72

Figure 5.27: Streamtraces coloured by the magnitude of velocity in the hydrostatic bearing
without motion along the long edge.

Figure 5.28: Streamtraces coloured by the magnitude of velocity in the hydrostatic bearing
without motion along the long edge with velocity field.

CHAPTER 5. NUMERICAL RESULTS 73

We can see that for the case without the motion of the bearing, the oil flows out equally
along the edges of the throttling gap and the magnitude of the velocity is maximal at the
entrance to the throttling gap and moreover in that part, where is the distance from the
entrance to the output also maximal, therefore in the corners of the hydrostatic cell. Next,
we at look what is happening inside the hydrostatic cell, namely if there is some vortex
generated. In Figures 5.29–5.37, there are slices of the velocity fields inside the bearing with
streamtraces going from the center of the hydrostatic cell towards the long edge, therefore
with increasing y coordinate, together with joint pictures for better understanding of the
positions of individual slices.

Figure 5.29: Slice of the velocity field with streamtraces for y = 0 m for the hydrostatic
bearing without motion.

Figure 5.30: Slice of the velocity field with streamtraces for y = 0.0015 m for the hydrostatic
bearing without motion.

Figure 5.31: Slice of the velocity field with streamtraces for y = 0.0029 m for the hydrostatic
bearing without motion.

From these results, we can see that there are no vortex generated, flow is distributed
equally and symmetrically, and as getting closer to the side-wall of the hydrostatic cell, the
flow is pushed more to the upper wall of the bearing.

CHAPTER 5. NUMERICAL RESULTS 74

Figure 5.32: Slice of the velocity field with streamtraces for y = 0.005 m for the hydrostatic
bearing without motion.

Figure 5.33: Slice of the velocity field with streamtraces for y = 0.007 m for the hydrostatic
bearing without motion.

Figure 5.34: Slice of the velocity field with streamtraces for the y = 0.009 m for the hydro-
static bearing without motion

Figure 5.35: Slice of the velocity field with streamtraces for y = 0.011 m for the hydrostatic
bearing without motion.

Figure 5.36: Joint slices of the velocity field with streamtraces for the hydrostatic bearing
without motion – rear view.

CHAPTER 5. NUMERICAL RESULTS 75

Figure 5.37: Joint slices of the velocity field with streamtraces for the hydrostatic bearing
without motion – front view.

5.3.2.2 Bearing with sliding

After a successful validation of the previous problem, we consider the problem of a sliding
bearing, which corresponds to the operational conditions of the machine. The boundary con-
ditions are the same as in the previous case except for the velocity of the bottom wall, which
is set to vbottom wall = 1 m/s. The input parameters for this computation are summarized in
Table 5.17.

vmid [m/s] h [µm] µ [Ns/m2]
0.3 50 0.1

Table 5.17: Parameters for the simulation of the sliding bearing.

For this case, we needed 3 Picard’s iterations to reach precision εN ≤ 10−4, while on
average 748 BiCGstab iterations were needed for the linearised system to achieve the preci-
sion of the relative residual εL ≤ 10−5. Here I also present detailed results of pressure and
velocity fields, starting with the pressure field inside moving hydrostatic bearing in Figures
5.38–5.40.

Figure 5.38: Pressure field in half of the sliding hydrostatic bearing.

CHAPTER 5. NUMERICAL RESULTS 76

Figure 5.39: Pressure field in three quarters of the sliding hydrostatic bearing.

Figure 5.40: The pressure in the sliding hydrostatic bearing. Warped pressure field (left)
and plot (right).

CHAPTER 5. NUMERICAL RESULTS 77

We can see from the results that the pressure field is almost indistinguishable from the
case without motion, with the pressure drop realized only in the throttling gap, and the
almost constant pressure in the rest of the hydrostatic cell. Also, the pressure gradient
inside the throttling gap is symmetric.

Now we explore the velocity field inside the hydrostatic cell. In Figures 5.41–5.44 there
are streamtraces in different parts of the bearing coloured by the velocity magnitude.

Figure 5.41: Streamtraces coloured by the magnitude of velocity in the sliding hydrostatic
bearing along the short edge in negative x direction.

Figure 5.42: Streamtraces coloured by the magnitude of velocity in the sliding hydrostatic
bearing along the short edge in positive x direction.

We can see that for the case with the motion of the bearing, the velocity field changes
dramatically. We can see that a large vortex rolling inside of the hydrostatic cell is formed,
and the oil is pulled by the motion of the bottom wall towards one side of the throttling

CHAPTER 5. NUMERICAL RESULTS 78

Figure 5.43: Streamtraces coloured by the magnitude of velocity in the sliding hydrostatic
bearing along the long edge.

Figure 5.44: Streamtraces coloured by the magnitude of velocity in the sliding hydrostatic
bearing along the long edge with velocity field.

CHAPTER 5. NUMERICAL RESULTS 79

gap. This results in the fact that the maximal magnitude of the velocity of the oil is at
the entrance to the throttling gap in the side which corresponds with the movement of the
hydrostatic bearing. The latter effect is important for setting the operational regime of the
machine, especially the maximum velocity of the sliding such that the oil flow towards the
front of the bearing is still maintained.

Next, we look, once again, what is happening inside the hydrostatic cell, namely if there
are some vortices generated. In Figures 5.45–5.53, there are slices of the velocity fields inside
the slicing bearing with streamtraces going from the center of the hydrostatic cell towards
the long edge, therefore with increasing y coordinate, together with joint pictures for better
understanding of the positions of individual slices.

Figure 5.45: Slice of the velocity field with streamtraces for y = 0 m for the sliding hydrostatic
bearing.

Figure 5.46: Slice of the velocity field with streamtraces for y = 0.0015 m for the sliding
hydrostatic bearing.

Figure 5.47: Slice of the velocity field with streamtraces for y = 0.0029 m for the sliding
hydrostatic bearing.

CHAPTER 5. NUMERICAL RESULTS 80

Figure 5.48: Slice of the velocity field with streamtraces for y = 0.005 m for the sliding
hydrostatic bearing.

Figure 5.49: Slice of the velocity field with streamtraces for y = 0.007 m for the sliding
hydrostatic bearing.

Figure 5.50: Slice of the velocity field with streamtraces for y = 0.009 m for the sliding
hydrostatic bearing.

Figure 5.51: Slice of the velocity field with streamtraces for y = 0.011 m for the sliding
hydrostatic bearing.

Figure 5.52: Joint slices of the velocity field with streamtraces for the sliding hydrostatic
bearing – rear view.

CHAPTER 5. NUMERICAL RESULTS 81

Figure 5.53: Joint slices of the velocity field with streamtraces for the sliding hydrostatic
bearing – front view.

From these results, we can see that due to the movement of the hydrostatic bearing,
vortices are generated. Moreover, as we move towards the side-wall, the number of vortices
is decreasing and in the end vanish. The centers of the vortices are changing with the
changing y coordinate. This knowledge and a look inside into the hydrostatic cell is valuable
in the design of the hydrostatic bearings.

Chapter 6

Conclusions

In today’s computation, a high resolution large-scale simulations are necessary for many
engineering applications. This is allowed by a suitable mathematical methods, namely, the
domain decomposition methods. Using this approach, it is possible to perform many kinds
of parallel simulations. Therefore, fast and effective parallel solvers for computational fluid
dynamics play an important role in nowadays research.

In this thesis, the mathematical model of flow of a fluid described by steady incompress-
ible Navier-Stokes equations is considered. These equations are discretized by the finite
element method and the arising nonlinear systems are linearized by Picard’s iteration. De-
tails of this approach are described in Chapter 2. The system of linear equations is solved
using a nonoverlapping domain decomposition method by means of iterative substructuring.
An overview of DD methods aimed at nonoverlapping methods, especially at the BDDC
method, is presented in Chapter 3. The arising nonsymmetric interface problem is solved
by the BiCGstab method preconditioned by one step of BDDC and its multilevel variant.
This novel approach of using multilevel BDDC for nonsymmetric systems is described in
Chapter 4. In addition, various weight types and used partitioners are discussed in this
chapter. Computations are performed for several problems, and they are summarized in
Chapter 5. I have compared the weak scalability of 2-, 3-, and 4-level BDDC methods for
3D lid-driven cavity, compared two types of partitioners of the solution domain, compared
four different weights on the interface including my own upwind based, and presented the
chronology of simulating the flow of oil inside the hydrostatic bearing ending with real-scale
geometry simulations. Now I recall the main original results and achievements.

By combining the approaches from [55] and [64], I applied the 2-level BDDC method to
the Navier-Stokes equations for the lid-driven cavity benchmark problem in [2]. Next, I have
presented a formulation of the multilevel BDDC preconditioner for nonsymmetric problems
and its application to linear systems obtained by Picard’s linearization of the Navier-Stokes
equations in a journal paper [4]. My computations employed the BDDCML solver and a
parallel finite element package written in C++ described in [54], which I have extended
towards the flow problems related to my thesis.

The tests of the influence of the interface between subdomains were performed for two
partitions in [1]. The first was created by a partitioner based on the graph partitioning
implemented in the METIS library. The second one was my own partitioner based on ge-
ometry and division of the domain with straight cuts promoting just a 2D interface between
individual subdomains. From the comparison of the number of linear iterations with a grow-
ing aspect ratio of the finite elements, one can see that using the new geometric partitioner
with straight cuts significantly decreases the number of linear iterations with increasing the
aspect ratio of the elements.

82

CHAPTER 6. CONCLUSIONS 83

For a benchmark of 3-D lid-driven cavity problem, I have explored the behaviour of the
2-, 3-, and 4-level BDDC method. I have focused mainly on the number of linear iterations
and the mean times for the setup of the preconditioner and for the iterations of the Krylov
subspace method. The performance was tested on up to 5 thousand CPU cores. The 3-
level method has shown remarkable speedup compared to the 2-level method, especially
for large numbers of subdomains where the coarse problem significantly grows. However,
switching to the 4-level method has not brought us an overall improvement. Although each
iteration was cheaper than in the 3-level case, the method has required a very large number
of iterations and thus performed even worse than the 2-level method. For this problem, I
also introduced my software for building the computational mesh by individual subdomains
which was necessary, especially for large meshes.

A new type of weights inspired by numerical schemes for flow problems has been proposed.
This upwind-based scaling has been compared with three other suitable interface scaling
types. My results have suggested that with a growing Reynolds number, the importance of
the scaling type increases, and the upwind weights provide promising results as presented in
[4].

In [4], I have performed experiments investigating the behaviour of the 2-level and 3-
level BDDC method with respect to the H/h ratio. Although theoretical estimates are not
available for this class of problems, the numbers of BiCGstab iterations seem to confirm the
logarithmic behaviour has proven for symmetric positive definite problems.

Finally, I have applied the BDDC methodology to an industrial problem in engineering,
namely, the flow of oil in hydrostatic bearings. I have presented the gradual development
of my approach to these simulations. By solving a number of issues, I have managed to
perform challenging computations on a real geometry of the bearing by means of the 2-level
BDDC method presented in [3].

Several topics are left for future investigation. A better understanding of the effect of
forming subdomains on higher levels is still required, especially for applying the multilevel
BDDC method to the hydrostatic bearing problem. This could also help to explain the
rapidly worsening behaviour of the 4-level method for the cavity problem. More experiments
are also required for confirming the benefits of the upwind-based interface scaling.

References

Author’s publications

[1] M. Hanek, J. Š́ıstek, and P. Burda. The effect of irregular interfaces on the BDDC
method for the Navier-Stokes equations. In Ch.-O. Lee, X.-Ch. Cai, D. E. Keyes,
H. H. Kim, A. Klawonn, E.-J. Park, and O. B. Widlund, editors, Domain Decomposi-
tion Methods in Science and Engineering XXIII, pages 171–178. Springer International
Publishing AG, 2017.

[2] M. Hanek, J. Š́ıstek, and P. Burda. An application of the BDDC method to the Navier-
Stokes equations in 3-D cavity. In J. Chleboun, P. Přikryl, K. Segeth, J. Š́ıstek, and
T. Vejchodský, editors, Programs and algorithms of numerical mathematics 17, pages
77–85. Institute of Mathematics AS CR, 2015.

[3] M. Hanek, J. Š́ıstek, P. Burda, and E. Stach. Parallel domain decomposition solver for
flows in hydrostatic bearings. In D. Šimurda and T. Bodnár, editors, Topical Problems
of Fluid Mechanics 2018, pages 137–144. Institute of Thermomechanics AS CR, 2018.

[4] M. Hanek, J. Š́ıstek, and P. Burda. Multilevel BDDC for incompressible Navier-Stokes
equations. SIAM J. Sci. Comput., 42(6):C359–C383, 2020.

Bibliography

[5] Y. Achdou, P. Le Tallec, F. Nataf, and M. Vidrascu. A domain decomposition pre-
conditioner for an advection–diffusion problem. Comput. Methods Appl. Mech. Engrg.,
184(2):145 – 170, 2000.

[6] Y. Achdou and F. Nataf. A Robin-Robin preconditioner for an advection-diffusion prob-
lem. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 325(11):1211
– 1216, 1997.

[7] S. Badia, F. Mart́ın, A., and J. Principe. Multilevel balancing domain decomposition
at extreme scales. SIAM J. Sci. Comput., 38(1):C22–C52, 2016.

[8] L. Beirão da Veiga, S. Pavarino, L., S. Scacchi, B. Widlund, O., and S. Zampini. Isogeo-
metric BDDC preconditioners with deluxe scaling. SIAM J. Sci. Comput., 36(3):A1118–
A1139, 2014.

[9] M. Bhardwaj, D. Day, Ch. Farhat, M. Lesoinne, K. Pierson, and D. Rixen. Application
of the feti method to ASCI problems: Scalability results on the one thousand processors
and discussion of higly heterogenous problems. Internat. J. Numer. Methods Engrg.,
47:513–535, 2000.

84

REFERENCES 85

[10] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2013.

[11] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formulation and
algorithm for trace operator in domain decomposition calculations. Domain Decomposi-
tion Methods. Second International Symposium on Domain Decomposition Methods for
Partial Differential Equations, pages 3–16, 1989.

[12] S. C. Brenner. The condition number of the Schur complement in domain decomposition.
Numer. Math., 83:187–203, 1999.

[13] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Method.
Springer-Verlag. Springer-Verlag New York, 1994.

[14] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,
volume vol. 15 of Texts in Applied Mathematics of second ed. Springer-Verlag, New
York, 2002.

[15] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Method. Springer-Verlag.
Springer-Verlag New York, 1991.

[16] M. Čert́ıková, J. Š́ıstek, and P. Burda. Different approaches to interface weights in the
BDDC method in 3D. In J. Chleboun, P. Přikryl, K. Segeth, J. Š́ıstek, and T. Vej-
chodský, editors, Programs and algorithms of numerical mathematics 17, pages 47–57.
Institute of Mathematics AS CR, 2015.

[17] P. Concus, G. H. Golub, and D. P. O’Leary. A generalized conjugate gradient method
for the numerical solution of elliptic PDE. Sparse Matrix Computations, pages 309–332,
1976.

[18] Y.-H. De Roeck. Resolution sur ordinateurs multi-processeurs de probleme d’elasticite
par decomposition de domaines. PhD thesis, 1991.

[19] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decomposition
preconditioner. Four International Symposium on Domain Decomposition Methods for
Partial Differential Equations, pages 112–128, 1991.

[20] C. R. Dohrmann and O. B. Widlund. A BDDC algorithm with deluxe scaling for
three-dimensional H(curl) problems. Comm. Pure Appl. Math., 69(4):745–770, 2016.

[21] C. R. Dohrmann. A preconditioner for substructuring based on constrained energy
minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

[22] C. R. Dohrmann. A study of domain decomposition preconditioners. Technical Report
SAND2003-4391, 2003.

[23] C. R. Dohrmann and O. B. Widlund. Some recent tools and a BDDC algorithm for 3D
problems in H(curl). In Randolph Bank, Michael Holst, Olof Widlund, and Jinchao Xu,
editors, Domain Decomposition Methods in Science and Engineering XX, volume 91 of
Lecture Notes in Computational Science and Engineering, pages 15–25. Springer, 2013.

[24] M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for elliptic
problems with discontinuous coefficients in three dimensions. Numer. Math., 72(3):313–
348, 1996.

REFERENCES 86

[25] M. Dryja and O. B. Widlund. Schwarz methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems. Comm. Pure Appl. Math., 48(2):121–155,
1995.

[26] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Numerical Mathematics
and Scientific Computation. Oxford University Press, New York, 2005.

[27] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal
unified FETI method. I. A faster alternative to the two-level FETI method. Internat.
J. Numer. Methods Engrg., 50(7):1523–1544, 2001.

[28] Ch. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition
method. Numer. Linear Algebra Appl., 7:687–714, 2000.

[29] Ch. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and
its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32(6):1205–1227,
1991.

[30] Ch. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227,
1991.

[31] Ch. Farhat and F.-X. Roux. Implicit parallel processing in structural mechanics. Com-
putational Mechanics Advances, 2(1):1–124, 1994.

[32] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg., 79:1309–1331,
2009.

[33] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations.
Springer-Verlag, Berlin, 1986.

[34] R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element
methods for elliptic problems. Technical Report 87-11, 1987.

[35] R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element
methods for elliptic problems. First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, pages 144–172, 1988.

[36] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method.
Chichester. John Wiley & Sons Ltd, 2000.

[37] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[38] A. Klawonn, O. Rheinbach, and O. B. Widlund. An analysis of a FETI-DP algorithm
on irregular subdomains in the plane. SIAM J. Numer. Anal., 46(5):2484–2504, 2008.

[39] A. Klawonn, O. B. Widlund, and M. Dryja. Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal.,
40(1):159–179, 2002.

REFERENCES 87

[40] P. Le Tallec. Domain decomposition methods in computational mechanics. Computa-
tional Mechanics Advances, 1(2):121–220, 1994.

[41] J. Li and X. Tu. A nonoverlapping domain decomposition method for incompressible
Stokes equations with continuous pressures. SIAM J. Numer. Anal., 51(2):1235–1253,
2013.

[42] J. Li and O. B. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM
J. Numer. Anal., 44(6):2432–2455, 2006.

[43] J. Li and O. B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J.
Numer. Methods Engrg., 66(2):250–271, 2006.

[44] J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3):233–
241, 1993.

[45] J. Mandel and M. Brezina. Balancing domain decomposition for problems with large
jumps in coefficients. Math. Comp., 65:1387–1401, 1996.

[46] J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition
by constraints and energy minimization. Numer. Linear Algebra Appl., 10(7):639–659,
2003.

[47] J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual
substructuring methods by constraints. Appl. Numer. Math., 54(2):167–193, 2005.

[48] J. Mandel, B. Soused́ık, and C. R. Dohrmann. Multispace and multilevel BDDC. Com-
puting, 83(2-3):55–85, 2008.

[49] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method.
Numer. Math., 88:543–558, 2001.

[50] C. Pechstein and C. R. Dohrmann. A unified framework for adaptive BDDC. Electron.
Trans. Numer. Anal., 46:273–336, 2017.

[51] S. Przemieniecki, J. Matrix structural analysis of substructures. Am. Inst. Aero. Astro.
J., 1:138–147, 1963.

[52] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Equations. Numerical Mathematics and Scientific Computation. Oxford University
Press, New York, 1991.

[53] M. V. Sarkis. Schwarz preconditioners for elliptic problems with discontinuous coeffi-
cients using conforming and non-conforming elements. PhD thesis, 1994.

[54] J. Š́ıstek and F. Cirak. Parallel iterative solution of the incompressible Navier-Stokes
equations with application to rotating wings. Computers & Fluids, 122:165–183, 2015.

[55] J. Š́ıstek, B. Soused́ık, P. Burda, J. Mandel, and J. Novotný. Application of the parallel
BDDC preconditioner to the Stokes flow. Computers & Fluids, 46:429–435, 2011.

[56] B. F. Smith. Domain decomposition: Parallel Multilevel Methods for Elliptic Partial
Differential Equations. Numerical Mathematics and Scientific Computation. Cambridge
University Press, Cambridge, 1996.

REFERENCES 88

[57] B. Soused́ık, J. Š́ıstek, and J. Mandel. Adaptive-Multilevel BDDC and its parallel
implementation. Computing, 95(12):1087–1119, 2013.

[58] A. Toselli and O. B. Widlund. Domain Decomposition Methods—Algorithms and The-
ory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 2005.

[59] X. Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput., 29(4):1759–1780,
2007.

[60] X. Tu and J. Li. A balancing domain decomposition method by constraints for
advection-diffusion problems. Commun. Appl. Math. Comput. Sci, 3(1):25–60, 2008.

[61] X. Tu and J. Li. BDDC for nonsymmetric positive definite and symmetric indefinite
problems. In M. Bercovie, M. Gander, R. Kornhuber, and O. Widlund, editors, Do-
main Decomposition Methods in Science and Engineering XVIII, pages 75–86. Springer
International Publishing AG, 2009.

[62] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–
644, 1992.

[63] A. J. Wathen, D. Loghin, D. A. Kay, H. C. Elman, and D. J. Silvester. A new precon-
ditioner for the Oseen equations. In F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, ed-
itors, Numerical mathematics and advanced applications, pages 979–988, Milano, 2003.
Springer-Verlag Italia. Proceedings of ENUMATH 2001, Ischia, Italy.

[64] M. Yano. Massively parallel solver for the high-order Galerkin least-squares method.
Master’s thesis, Massachusests Institute of Technology, 2009.

	Introduction
	Motivation
	State of the art
	Aims of the work
	Structure of the thesis

	The Navier-Stokes equations and the finite element method
	Weak formulation
	Finite element method
	Finite element approximation
	Discretization of the weak formulation
	Linearization of the nonlinear systems

	Domain decomposition methods
	Iterative substructuring
	Discrete harmonic functions
	Schur complement condition number
	Balancing Neumann-Neumann method
	Condition number of the Balancing Neumann-Neumann

	BDDC
	Two-level BDDC for symmetric problems
	Multilevel BDDC for symmetric problems
	Algebraic view on the BDDC preconditioner
	Convergence of extended versions of BDDC

	BDDC algorithms for nonsymmetric systems and its building components
	Two-level BDDC
	Multilevel BDDC for nonsymmetric systems
	Interface scaling
	Mesh partitioning
	Mesh builder

	Numerical results
	Narrowing channel
	Lid-driven cavity
	Weak scalability
	2- and 3-level method
	3- and 4-level method

	Interface scalings
	Experimental H/h dependence

	Hydrostatic bearings
	Test problems
	Case 1
	Case 2
	Case 3

	Bearing with realistic geometry
	Bearing without motion
	Bearing with sliding

	Conclusions
	References

