
CZECHTECHNICAL

UNIVERSITY

IN PRAGUE

F3 Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Using ROS 2 for High-Speed

Maneuvering in Autonomous

Driving

Martin Endler
Open Informatics – Artificial Intelligence and Computer Science

August 2022

https://github.com/pokusew/fel-bachelors-thesis
Supervisor: Ing. Michal Sojka, Ph.D.

https://github.com/pokusew/fel-bachelors-thesis

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483764Personal ID number:Endler MartinStudent's name:
Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics
Open InformaticsStudy program:
Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Using ROS2 for High-Speed Maneuvering in Autonomous Driving

Bachelor’s thesis title in Czech:

Použití ROS2 pro manévrování ve vysoké rychlosti v autonomním řízení

Guidelines:
The goal of this work is to improve real-time properties of the autonomous driving stack used by the CTU team for the
F1/10 autonomous racing competition. The current stack is based on the Robot Operating System, whose first version
(ROS1) is known for its problematic real-time properties.
1. Make yourself familiar with the ROS2 framework and study its differences to ROS1.
2. Port the CTU F1/10 autonomous driving stack from ROS1 to ROS2.
3. Evaluate the properties of the ported stack on the F1/10 platform (NVIDIA TX2).
Focus on real-time properties, temporal determinism, communication overheads etc.
4. Extend the autonomous driving stack for the ability to perform some high-speed maneuvers such as overtaking. The
focus is on “high-speed”, because such maneuvers are problematic without proper real-time support.
5. Propose and evaluate a method for off-line (or on-board) verification of the selected maneuvers (e.g. overtaking).

Bibliography / sources:
[1] ROS 2 Documentation (https://docs.ros.org/en/foxy/index.html)
[2] D. Casini, T. B. s, I. Lütkebohle, and B. B. Brandenburg, “Response-Time Analysis of ROS 2 Processing Chains Under
Reservation-Based Scheduling,” in 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), Dagstuhl, Germany,
2019, vol. 133, p. 6:1-6:23. doi: 10.4230/LIPIcs.ECRTS.2019.6.
[3] K. Osman, J. Ghommam, and M. Saad, “Guidance Based Lane-Changing Control in High-Speed Vehicle for the
Overtaking Maneuver,” J Intell Robot Syst, vol. 98, no. 3, pp. 643–665, Jun. 2020, doi: 10.1007/s10846-019-01070-6.

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Sojka, Ph.D. Embedded Systems CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 15.08.2022Date of bachelor’s thesis assignment: 21.05.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Michal Sojka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

First of all, I would like to thank
my supervisor Ing. Michal Sojka, Ph.D.
for his guidance, support, and immense
patience.

Second, my thanks go to Ing. Jaroslav
Klapálek for providing valuable infor-
mation and advice regarding the F1/10
project.

Next, I would like to thank Bc. Tomáš
Nagy for his help with all sorts of
mechanical stuff, explaining AV algo-
rithms, building a new CTU’s F1/10
model, and for all his support during
our joint internship at the University of
Pennsylvania.

Last but not least, I would like to
thank Prof. Rahul Mangharam for
providing a stimulating environment
during my internship at his lab at the
University of Pennsylvania.

Finally, I would like to thank my
family and close friends for always
supporting me throughout my studies.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, August 15, 2022

. .

v

Abstract / Abstrakt

Performing high-speed maneuvers
in autonomous driving is problem-
atic without proper real-time support.
At CTU, there is a team that com-
petes in the F1/10 Autonomous Driving
Competition with autonomous model
cars. Their autonomous driving stack is
based on ROS 1, which is not suitable
for real-time applications.

The goal is to migrate this stack to
ROS 2, which has been designed from
the ground up to address many issues in
this area. We propose tracing as an ef-
ficient way to analyze a running ROS 2
system and measure important proper-
ties.

We demonstrate the working of the
migrated stack on the F1/10 model car
and in the Stage simulator. We evalu-
ate the communication latencies in the
new stack using an extended version of
ROS 2 tracing tools. Another result of
our work is a publicly-available collec-
tion of setup guides, scripts, and doc-
umentation that covers various aspects
of working with ROS. These guides have
already helped several people.

We hope that the results of this thesis
build a foundation that opens the way
for the adoption of ROS 2 in the CTU’s
F1/10 stack, further improving its real-
time properties, while making it more
approachable by new students.

Keywords: ROS, ROS 1, ROS 2,
ROS 2 migration, F1/10, Follow the
Gap, autonomous model car, au-
tonomous driving, NVIDIA Jetson
TX2, LTTng, tracing, ros2_tracing

Manévrování ve vysoké rychlosti při
autonomním řízení je problematické
bez řádné podpory real-time na straně
softwaru. Na ČVUT je tým, který se
účastní soutěže F1/10 Autonomous
Driving Competition s autonomními
modely aut. Jejich software pro auto-
nomního řízení je založen na ROS 1,
který není vhodný pro real-time apli-
kace.

Cílem této práce je migrovat tento
software na ROS 2, který byl od základu
navržen s ohledem na real-time apli-
kace. Dále v práci navrhujeme tracing
jako efektivní způsob analýzy běžícího
systému na ROS 2 a měření důležitých
parametrů.

Výsledky naší práci zahrnují software
migrovaný do ROS 2, jehož funkč-
nost demonstrujeme na skutečném
modelu F1/10 a v simulátoru Stage.
Dále analyzujeme komunikační latence
v migrovaném softwaru pomocí námi
rozšířené verze tracing nástrojů pro
ROS 2. Dalším výsledkem naší práce
je veřejně dostupná sbírka návodů,
skriptů a dokumentace, která pokrývá
různé aspekty práce s ROS. Tyto ná-
vody již pomohly několika lidem.

Doufáme, že výsledky této práce
vytvoří základ, který otevře cestu pro
adopci ROS 2 v projektu F1/10 na
ČVUT a zároveň jej zpřístupní novým
studentům.

Klíčová slova: ROS, ROS 1, ROS 2,
ROS 2 migration, F1/10, Follow the
Gap, model autonomního auta, auto-
nomní řízení, NVIDIA Jetson TX2,
LTTng, tracing, ros2_tracing

Překlad titulu: Použití ROS 2
pro manévrování ve vysoké rychlosti
v autonomním řízení

vi

Contents /

1 Introduction 1

1.1 Motivation / Why to mi-
grate to ROS 2? 2

2 Robot Operating System 3

2.1 ROS Computation Graph 3
2.1.1 ROS Communication

Primitives 4
2.2 ROS Common Concepts 4
2.3 ROS 1 5

2.3.1 Architecture 5
2.3.2 Build System 5
2.3.3 CLI 5
2.3.4 Launch System 6

2.4 ROS 2 6
2.4.1 Architecture 6
2.4.2 Build System 7
2.4.3 CLI 7
2.4.4 Launch System 7

2.5 Summary of Differences be-
tween ROS 1 and ROS 2 8

3 Methods for Evaluating

ROS Applications 9

4 CTU’s F1/10 Platform 10

4.1 Hardware Stack 11
4.1.1 Chassis and Powerboard . . 11
4.1.2 NVIDIA Jetson TX2 12
4.1.3 Teensy 3.2 13
4.1.4 VESC 13
4.1.5 LiDAR 14
4.1.6 IMU 14
4.1.7 Additional Components . . 14

4.2 Software Stack 14
4.2.1 Drive-API 15
4.2.2 Simulation 15
4.2.3 Teensy 15
4.2.4 NVIDIA Jetson TX2 16
5 Migration 17

5.1 Note about Different ROS
2 Releases 17

5.2 Scope of the Migration 17
5.3 Follow the Gap Overview . . . 18
5.4 Process of the Migration 18

5.4.1 Parameters 18
5.4.2 Teensy 19
5.4.3 VESC 19

5.4.4 Stage simulator 19
5.4.5 NVIDIA Jetson TX2

Setup 20
5.5 Result 20
6 Evaluation and Experiments 22

7 Conclusion 23

References 24

A Glossary 27

vii

Tables / Figures

2.1 Summary of ROS 2 features
compared with ROS 1.8

4.1 NVIDIA Jetson TX2’s Key
Specs . 12

2.1 A ROS Computation Graph3
2.2 ROS 2 Architecture6
3.1 ROS 2 Message Flow Analy-

sis in Eclipse Trace Compass9
4.1 The CTU’s tx2-auto-usa

F1/10 Model Car. 10
4.2 The CTU’s tx2-auto-3

F1/10 Model Car. 11
4.3 Functional Diagram of the

CTU’s F1/10 Platform. 12
4.4 Teensy 3.2 Development

Board . 13
4.5 Hokuyo UST-10LX LiDAR 14
4.6 SparkFun 9DoF Razor IMU

M0 . 14
4.7 CTU’s F1/10 Platform SW

Architecture . 15
5.1 Follow the Gap in the Stage

simulator on Ubuntu 21
5.2 Follow the Gap in the Stage

simulator on macOS 21

viii

Chapter1
Introduction

Note: I severely underestimated the required time for writing this thesis text. During
my work on this topic, I tried and made work tons of different things, leaving too little
time for the final write-up. This is the reason why chapters 3 and 6 are incomplete.
However, this thesis has a homepage1 on GitHub, where an up-to-date revision of this
text can be found.

Autonomous robots are successfully performing increasingly sophisticated tasks,
often under challenging conditions. They must operate precisely and reliably because
any hesitation or malfunction can cost human lives. At the same time, there is a strong
desire among all robotics companies to shorten the time it takes to transform research
prototypes into market-ready products. This is where the tools like the Robot Operating
System (ROS) come in.

Since ROS was started in 2007 [1], it has gained great popularity and has become
the standard in the robotics community. However, it has turned out that the original
architecture (ROS 1) has some limitations concerning performance, efficiency and real-
time safety, making it unsuitable for production deployments. Thus, a new version of
ROS – ROS 2 – has been designed from the ground up to allow more use-cases and
solve many pain points of ROS 1 [2–3]. Missing features and incompatible packages
have been slowing down the adoption of ROS 2 since its first public release in 2017.
But in recent years, the situation has improved a lot, and the adoption of ROS 2 has
accelerated [4]. Thus, now might be the right time to start migrating applications from
ROS 1 to ROS 2 and benefit from the new possibilities.

Figure 1.1. One of the CTU’s F1/10 Autonomous Model Cars.

1 https://github.com/pokusew/fel-bachelors-thesis

1

https://github.com/pokusew/fel-bachelors-thesis

1. Introduction .

At CTU, ROS 1 has been at the heart of the autonomous driving stack used by the
CTU team for the F1/10 Autonomous Racing Competition for many years. High-speed
maneuvers and racing in general are areas where many usually neglected details such as
communication latency, jitter, and temporal determinism, suddenly play a significant
role.

The goal of this thesis is to migrate a selected part of the CTU’s F1/10 project from
ROS 1 to ROS 2, taking advantage of its new features. The result should be a working
port running on ROS 2 in a simulator and on a physical model car with an NVIDIA
Jetson computing module. Also, an approach for analyzing the real-time properties of
the running AV stack should be presented.

This thesis has two main parts. While the first three chapters cover the necessary
background information and theory, the last three chapters present the contributions.

First, in Chapter 2, both versions of ROS are briefly described while highlighting the
main differences between ROS 1 and ROS 2.

Second, Chapter 3 explores tools and approaches that can be used to measure exe-
cution times, latencies, jitter, communication delays, and other parameters throughout
the ROS system. Tracing using LTTng is presented as an efficient way of analyzing all
of the important runtime parameters.

The third and last missing piece of the background information, namely the up-to-
date description of the CTU’s F1/10 platform, is then presented in Chapter 4.

Building on the introduced concepts, Chapter 5 recounts the actual process of the
migration, its results, and some of the encountered challenges along the way.

Chapter 6 focuses on the analysis of the ported stack. First, the ros2_tracing
framework is extended with message flow analysis. Then, this extended tool is used to
perform an analysis of communication latencies between different nodes.

Finally, the achieved results are summarized in the last Chapter 7.

1.1 Motivation /Why tomigrate to ROS 2?

Before we move on to the next chapter, we would like to pause for a moment and explore
some of the reasons for migrating to ROS 2.

As already stated in the Introduction and as we will elaborate in section 2.4, ROS 2
has been designed from the ground up, addressing some of the pain points of ROS 1,
and paving the way for real-time applications. While this on its own might be a valid
reason to pursue a migration to ROS 2, there are a few more reasons that can make
the case for migration even stronger:

. ROS 1 will be deprecated soon (2025)

. There is an increasing number of ROS-2-only packages.

. While the latest ROS 1 release, Noetic Ninjemys, offers a decent set of features, the
CTU’s F1/10 platform is, in fact, based on a now-prehistoric and deprecated (but
wildly popular at the time) ROS 1 Kinetic Kame. Instead of spending time making
the codebase compatible with the latest ROS 1, it is better to migrate to ROS 2
straight away and benefit from its new features.

It is also fair to admit that there might exist valid reasons why not to migrate – they
include increased complexity, greater out-of-the-box overhead, or missing (not ported)
packages. Fortunately, ROS developers have worked hard to make those irrelevant.

2

Chapter2
Robot Operating System

In this chapter, we describe both versions of ROS, ROS 1 and ROS 2, focusing on the
latter in more detail. We also highlight the main differences.

The Robot Operating System (or ROS) is “an open-source, meta-operating sys-
tem” [5] that consists of “tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot applications across a wide variety of robotic
platforms” [6].

A typical ROS application is composed of loosely coupled processes – nodes – (po-
tentially distributed across machines) that communicate with each other and work
together to accomplish a certain goal (for example, autonomous vehicle control). Each
node performs only a limited set of specific functions (e.g., one node can read data from
LiDAR, another node can implement an obstacle detection algorithm from the LiDAR
data, while another node can use the detected obstacles to plan the trajectory, etc.).

Such architecture greatly supports the separations of concerns and allows code reuse.
That further enables efficient code sharing of common functionality among different
projects with various applications. That, in fact, is one of the most significant features
of ROS, as there are thousands of ROS packages provided by the ROS community [7].
Developers can focus on their application-specific problems while reusing code for com-
mon parts.

2.1 ROS Computation Graph

At runtime, ROS nodes and their communication interactions form the so-called “ROS
Computation Graph” [8]. The nodes are represented by the graph’s vertices, while the
edges depict the communication interactions.

Figure 2.1. A simple ROS Computation Graph. Two nodes (represented as ellipses)
(/turtlesim and /teleop_turtle) are running. The rectangles represent topics.

The application is a part of the turtlesim1 package.

1 https://index.ros.org/p/turtlesim/

3

https://index.ros.org/p/turtlesim/

2. Robot Operating System .

2.1.1 ROS Communication Primitives

ROS provides several communication primitives that can be used by nodes:

1. messages and topics – publish/subscribe
Nodes (publishers) can publish messages to a named topic. Other nodes (subscribers)
can subscribe to a topic and receive the published messages.

2. services – synchronous RPC (Remote Procedure Call) (server/client)
Nodes (service servers) can provide services. Services have names. Other nodes
(service clients) can invoke/call services and synchronously get results.

3. actions – asynchronous preemptible RPC with continuous feedback (server/client)
Node (action servers) can provide actions. An action is a preemptible task that has
a goal, can provide continuous feedback, and returns a result if it is not canceled.
Other nodes (action clients) can invoke an action (request a goal and subscribe for
its feedback and result).

The communication is strongly typed, and ROS provides an interface description
language (IDL) for describing message types (used for pub/sub), service types, and
action types.

2.2 ROS Common Concepts

In addition to the Computation Graph and communication possibilities, both versions
of ROS share many additional common concepts, some of which are described below:

. Package – Package – a container for code, IDL files (messages, services, actions), con-
figuration files, or anything else. It is “the most atomic build and release item” that
groups together common functionality that can be easily shared and reused [8]. Each
package has a package manifest file package.xml that provides “metadata about
a package, including its name, version, description, license information, dependen-
cies, etc.“. There are currently 3 package manifest formats, which are defined in REP
1272, REP 1403, and REP 1494, respectively.
. Distribution – “a versioned set of ROS packages [9]. ROS 1 distributions are listed

at [9], ROS 2 distributions are listed at [10].
. Workspace – a directory containing packages that are built together using

a ROS build tool (such as catkin_make, catkin_make, catkin_make_isolated,
catkin_tools, colcon) and a build system (such as catkin or ament).
. Graph Resource Names – “a hierarchical naming structure that is used for all re-

sources in a ROS Computation Graph, such as Nodes, Parameters, Topics, and Ser-
vices” [8].
. Package Resource Names – a simplified method of “referring to files and data types

on disk” [8]. It consists of the name of the package that the resource is in plus the
name of the resource. For example, the name std_msgs/String refers to the String
message type in the std_msgs package.
. ROS client library – a collection of code that simplifies the task of implementing

a ROS node in a certain programming language. “It takes many of the ROS concepts
and makes them accessible via code” [11]. It provides an API (functions, methods,
classes) that allows a user program to interact with other nodes (using pub/sub,

2 https://ros.org/reps/rep-0127.html
3 https://ros.org/reps/rep-0140.html
4 https://ros.org/reps/rep-0149.html

4

https://ros.org/reps/rep-0127.html
https://ros.org/reps/rep-0140.html
https://ros.org/reps/rep-0149.html

. 2.3 ROS 1

services, actions, and parameters) and do other common things. The main ROS
client libraries are for C++ and for Python. The internal architecture of client
libraries differs greatly between ROS 1 and ROS 2.

2.3 ROS 1

ROS 1 is the original version of ROS that dates back to 2007 [1]. Version 1.0 was
published in 2010. Since then, 13 ROS 1 distributions have been released [9]. The
latest ROS 1 version, Noetic, was released in 2020. There are no plans to release any
new ROS 1 versions besides Noetic. Its support will end in May 2025. After that date,
ROS 1 will be effectively deprecated.

Full documentation of ROS 1 can be found at [12].

2.3.1 Architecture

In ROS 1’s Computation Graph, there must always be a special node called ROS Master.
It provides name registration and lookup services to the rest of the Computation Graph.
It coordinates the communication among the nodes. That includes graph changes
notifications and establishing connections between nodes. It offers two XML-RPC-
based APIs – Master API and Parameter Server API.

ROS 1 has a concept of central key/value data storage called Parameter Server. It is
a part of ROS Master (Parameter Server API). a key/value pair is called a parameter.
All nodes in the Computation Graph can get and manipulate the key/value data stored
in the Parameter Server. The parameters can be used as configuration storage for
nodes, which allows easy altering of the system (nodes’) behavior at runtime.

ROS 1 offers two underlying data transport protocols – TCPROS and UDPROS. As
the names suggest, they are based on TCP and UDP, respectively.

All concepts are implemented directly (natively) in ROS 1 Client Libraries. The two
main client libraries are roscpp (for C++) and rospy (for Python). Their performance
and features’ availability varies greatly. While the C++ ROS 1 Client Library imple-
ments all ROS 1 features and provides high performance, the Python ROS 1 Client
Library lacks some features and provides worse performance. Even when a feature is
available in both libraries, the actual implementation often comes with minor differences
that might not be expected.

2.3.2 Build System

ROS 1 uses catkin build system5. Catkin supports CMake packages that use
special catkin CMake macros. The actual build is controlled by a build tool.
ROS 1 catkin workspace can be built using different build tools – catkin_make,
catkin_make_isolated, catkin_tools.

2.3.3 CLI

The CLI is composed of several commands that cover all ROS 1 features. These include,
for example rostopic, rosservice, rosparam, rosmsg, rosrun, roslaunch, etc. [13].

5 In older ROS 1 distributions, rosbuild was used. It is also (theoretically) possible to use ROS 2 build
tool colcon to build ROS 1 workspace.

5

2. Robot Operating System .

2.3.4 Launch System

While nodes can be started manually (via running the corresponding executables), it
may be cumbersome in a complex system. For this reason, ROS 1 allows describing the
system using a special XML file. Then the command roslaunch handles the process
of starting up all nodes and supplying correct arguments to them [14].

2.4 ROS 2

“Since ROS was started in 2007, a lot has changed in the robotics and ROS community.
The goal of the ROS 2 project is to adapt to these changes, leveraging what is great
about ROS 1 and improving what is not.” [6]

Full documentation of the latest ROS 2 release can be found at [6].

2.4.1 Architecture

The architecture of ROS 2 was designed from the ground up, addressing issues of
ROS 1 [2]. The newly designed architecture should address new use-cases as well as
many issues from ROS 1:

. Truly distributed system (no master node).

. Support for real-time.

. More nodes in one process (Composable nodes).

. Better support for communication in non-ideal networks.

. Small embedded platforms support.

Figure 2.2. ROS 2 Architecture [15].

6

. 2.4 ROS 2

While ROS 1’s communications stack is built almost entirely from scratch, ROS 2
relies on Data Distribution Service (DDS). DDS is “a middleware protocol and API
standard for data-centric connectivity from the Object Management Group (OMG). It
provides low-latency data connectivity, extreme reliability, and a scalable architecture
for Internet of Things applications need” [16].

ROS 2 Client Libraries have a different architecture compared to the ROS 1 ones.
Instead of reimplementing all the features in all the programming languages separately,
the common functionality is implemented in the rcl library that exposes a C API. Client
Libraries then use the rcl library and implement the rest of the features on top of it (in
particular, language-dependent features, such as threading and execution model).

Because ROS 2 supports different DDS implementations from different vendors [17],
the rcl library cannot directly communicate with the DDS implementation. Instead,
there is an abstraction layer called rmw (ROS middleware) that provides unified access
to DDS. The specific DDS implementation can even be changed dynamically at runtime.

The whole relationship among different parts of ROS 2 Client Libraries is shown in
Figure 2.2. Additional detailed information can be found at [15].

2.4.2 Build System

ROS 2 uses ament as a build system and colcon as a build tool. Ament supports three
types of packages: CMake with ament_cmake, pure Python packages (Python setuptools
based), and pure CMake packages. Colcon always builds all packages in isolation and
in the correct order. For ensuring the correct build order, a dependencies graph is
constructed, which must be a directed acyclic graph in order for the workspace to be
buildable. It also tries to parallelize the build up to the level that mutual dependencies
among packages allow.

2.4.3 CLI

It is very similar to ROS 1 CLI, but instead of having multiple commands, ROS 2 has
one central command, ros2, with several subcommands.

2.4.4 Launch System

The Launch System has been completely redesigned to support the new concepts in
ROS 2. It is implemented in Python, and it provides a way to declaratively describe
the system to launch [18–19]. Launch files can be written in Python, XML, or YAML.
Python-based launch files represent the most powerful and comfortable6 method of
describing a system to launch. In fact, the other supported formats, XML and YAML,
directly map to the Launch System’s Python API.

Because of their declarative nature, Python-based launch files might be quite verbose
and even might seem counter-intuitive and restrictive at first. But the declarative
approach brings many advantages. “By separating the declaration of an action from
the execution of an action, tools may use the launch descriptions to do things like
visualize what a launch description will do without actually doing it.” [19] This is used
for example by ros2 launch command to determine and print launch arguments of
a launch file. It is also the reason why it is possible to map some of the Launch System
declarative APIs to declarative languages such as XML and YAML.

6 Since Python-based launch files are just Python code, one can take advantage of IDEs’ powerful auto-
completion and coding assistance features.

7

2. Robot Operating System .

2.5 Summary of Differences between ROS 1 and ROS 2

ROS 2 has better architecture and offers more features. Thanks to DDS and its fine-
grained QoS, ROS 2 handles communication in non-ideal networks better than ROS 1.
Furthermore, the ROS 2 client libraries offer better control over code execution and
threading as they support writing custom executors. ROS 2 architecture is designed
with real-time support in mind.7

The following table summarizes the most notable differences between ROS 1 and
ROS 2:

Category ROS 1 ROS 2

Supported

Platforms

Only Ubuntu officially
supported.

Ubuntu, Windows, and
macOS officially supported.
Yet, a lot of packages work

only on Ubuntu.
Client Libraries Written independently in

each language.
Sharing a common

underlying C library (rcl).
Transport TCPROS or UDPROS Handled by DDS which

offers fine-grained QoS.
Real-Time

Support

No. Not part of the design. Yes. One of the design
goals.

Runtime Node

Composition

No. But Nodelets can be
used.

Yes. Composable Nodes.

Threading and

Execution

Model

not much customizable granular execution models,
custom executors

Parameters global parameter server parameters per node (no
global parameter server),

out-of-the-box
dynamic_reconfigure-like

features
Communication

Primitives

pub/sub, services, actions
(not natively, but via

actionlib)

pub/sub, services, actions

IDL .msg/.srv .msg/.srv/.action +
extended features such as

constraints
Launch System XML-based launch files extensible, Python-based,

XML and YAML
supported as well

Build catkin + catkin_make or
catkin_make_isolated

ament + colcon

Table 2.1. Summary of ROS 2 features compared with ROS 1. Inspired by [3].

7 Although the actual real-time properties may differ dramatically based on various configuration and
threading/execution model choices.

8

Chapter3
Methods for Evaluating ROS Applications

The current F1/10 algorithms sometimes do not work as well as expected. That may
be caused by variation in latencies (jitter) throughout the software pipeline (and non-
deterministic runtime in general).

There have been many studies that focused on analyzing ROS 2 properties in this
area. However, most of them have been using synthetic or simplified systems, because
it is hard to collect the required data without affecting the running system and without
the need for extensive changes in the evaluated codebase.

This problem prompted the creation of ros2_tracing [20] framework, which brings
an efficient way to collect and analyze runtime metrics of real ROS 2 systems. It relies on
LTTng (Linux Trace Toolkit Next Generation) for efficiently collecting runtime events.
It adds instrumentation to the core ROS 2 libraries (DDS, rmw, rcl, rclcpp). Because
the framework has become a part of ROS 2 core, instrumentation points are now shipped
all of the core ROS 2 libraries (although they are disabled unless tracetools package
is rebuilt on a system where LTTng is present).

Nevertheless, the hard part is getting useful results from the collected tracing events.
With some effort, it is possible reconstruct messages flow across the system, including
casual relationships, opening a way for interesting analyzes [21].

We will use the ros2_tracing in Chapter 6 to evaluate some properties of our mi-
grated ROS 2 stack.

Figure3.1. A message flow reconstruction as implemented in [21]. We were able to recreate
the results following the steps the paper.

9

Chapter4
CTU’s F1/10 Platform

The F1/10 platform is a scaled-down (1:10) model of an autonomous car that originates
from the F1/10 Autonomous Racing Competition1. Thanks to its affordability and
similarity to a real car, the platform can be easily used for developing, testing, and
verifying autonomous driving systems and related algorithms.

At CTU, multiple F1/10 models have been created and used [22–24]. In this thesis,
we focus on the latest iteration of the design represented by the models codenamed
tx2-auto-usa2 and tx2-auto-3, which are depicted in Figure 4.1 and Figure 4.2,
respectively. This chapter aims to provide an up-to-date functional description of their
hardware and software components. Such a description is a prerequisite for a successful
migration to ROS 2.

Figure 4.1. The CTU’s tx2-auto-usa F1/10 Model Car based on NVIDIA Jetson TX2.

1 https://f1tenth.org/
2 This new model was designed by a fellow student, Tomáš Nagy. The main difference compared to the
tx2-auto-3 is its chassis design (components’ placement and mounting). The usa suffix in the model
name refers to the fact that this model was assembled in the USA during our (my and Tomáš’s) internship
at the University of Pennsylvania.

10

https://f1tenth.org/

. 4.1 Hardware Stack

Figure 4.2. The CTU’s tx2-auto-3 F1/10 Model Car based on NVIDIA Jetson TX2.

4.1 Hardware Stack

The platform is based on an off-the-shelf RC car model from Traxxas (i.e., Traxxas
Slash, but different ones can be used as well) with added components that enable
autonomous operation (sensors, computers). The list below provides a quick overview
of those components, which are then described in detail in the following subsections.
The Figure 4.3 shows the functional relationships among them.

. NVIDIA Jetson TX2 – The main computing unit that runs the autonomous driving
stack.
. VESC (Enertion FOCBOX VESC-X)– Electric Speed Controller (ESC) that controls the

BLDC motor.
. Teensy 3.2 – a microcontroller (MCU) for controlling the steering and handling the

communication with an RC Transmitter (Manual Control). It also implements an
independent emergency stop (eStop).
. Hokuyo UST-10LX – LiDAR
. SparkFun 9DoF Razor IMU M0 – IMU

4.1.1 Chassis and Powerboard

While the main chassis, BLDC drive motor, steering servo, and RC receiver from the
Traxxas model are preserved, the ESC is replaced by a VESC.

Further, a structure for mounting the sensors and the main computing unit is added.
While tx2-auto-3 uses a two-layer design – one laser-cut plate which is mounted on
the original chassis using standoffs; tx2-auto-usa features a much more sophisticated
and streamlined design consisting of multiple 3D-printed parts. The tx2-auto-usa’s
design allows much easier battery replacement.

11

4. CTU’s F1/10 Platform .

Manual switch

USB
NVIDIA

Jetson TX2

USB

Throttle PWM

Steering PWM

Teensy

VESC

USB

IMU

EthernetLiDAR

RC receiver

Manual switch

Throttle
BLDC
motor

Steering
servo

Throttle PWM

Steering PWM

Mode indicator

Figure 4.3. Overview of main components with depicted methods of communication. The
yellow blocks are part of the low-level system, which always works independently of the

main high-level system (NVIDIA Jetson TX2).

Finally, a powerboard is needed to power the AV components. For that purpose,
a custom powerboard has been designed. One of the latest iterations was created as
a part of [23].

4.1.2 NVIDIA JetsonTX2

The NVIDIA Jetson TX2 forms the brain of the car. It processes data from all sensors
and decides what to do. In other words, it runs the autonomous driving pipeline,
which usually includes perception, localization (state estimation), planning, and control.
Such a task requires a powerful device. Additional requirements include power-efficient
operation (because of the limited capacity of batteries) and small form factor (because
of limited space in the chassis). Fortunately, NVIDIA Jetson TX2 fulfills all of these
requirements.

NVIDIA Jetson TX2 is a very powerful but power-efficient embedded system (SoC)
designed for autonomous machines. It is distributed as a very compact module with
a standardized board-to-board connector. This way, it can be used in applications that
might require different physical IO interfaces. On our car, we use the Orbitty Carrier
board from Connect Tech, which provides a suitable form factor for our use case. The
Table 4.1 lists some of Jetson TX2’s key specs.

GPU 256-core NVIDIA Pascal™ GPU architecture
with 256 NVIDIA CUDA cores

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM® Cortex®-A57 MPCore

Memory 8 GB 128-bit LPDDR4 Memory
1866 MHz - 59.7 GB/s

Storage 32 GB eMMC 5.1
Power 7.5 W / 15 W

Table 4.1. NVIDIA Jetson TX2’s Key Specs [25]

12

. 4.1 Hardware Stack

Jetson modules run Linux as an OS. NVIDIA provides JetPack SDK, which is a col-
lection of software for Jetson modules. The main part is L4T (Linux For Tegra) which
consists of flashing utilities, bootloader, Linux Kernel, NVIDIA drivers, and a sample
filesystem based on Ubuntu.

4.1.3 Teensy 3.2

Teensy 3.23 is a development board with a single-core NXP Kinetis K20 MCU
(MK20DX256VLH7), which is based on ARM Cortex-M4. It comes with a software
library called Tennsyduino, which is an Arduino-compatible library. The following list
summarizes some of the MCU’s key parameters:

. ARM Cortex-M4 at 72 MHz

. 256K Flash, 64K RAM, 2K EEPROM

. USB device 12 Mbit/sec

. 34 digital input/output pins, 12 PWM output pins

. 21 analog input pins, 1 analog output pin, 12 capacitive sense pins

. 3 serial, 1 SPI, 2 I2C ports

. 1 I2S/TDM digital audio port

. 1 CAN bus

. 16 general purpose DMA channels

Figure 4.4. Teensy 3.2 Development Board [26]

4.1.4 VESC

VESC4 is an open-source (both hardware and software) ESC created by Benjamin
Vedder. It is based on a single-core ARM Cortex-M4 MCU which runs the open-source
bldc firmware. There is also a sophisticated GUI tool called VESC Tool (formerly
BLDC Tool) that allows configuration, firmware upgrades, and tuning of connected
VESCs.

Throughout time, there have been many iterations of VESC’s design, and different
manufacturers have produced and sold VESC hardware. The VESC that is currently
3 https://www.pjrc.com/store/teensy32.html
4 https://vesc-project.com/

13

https://www.pjrc.com/store/teensy32.html
https://vesc-project.com/

4. CTU’s F1/10 Platform .

used on the CTU’s F1/10 cars is Enertion FOCBOX VESC-X (with bldc firmware
v2.18) which is very old and no longer manufactured as the company Enertion went of
business. However, it still works. Compared to the latest VESC 6 MK5, it has fewer
IO interfaces and fewer features in general.

4.1.5 LiDAR

Figure 4.5. Hokuyo UST-10LX LiDAR

4.1.6 IMU

Figure 4.6. SparkFun 9DoF Razor IMU M0

4.1.7 Additional Components

The design requires a few additional components that were not mentioned in the pre-
vious sections. Most notably:

. a USB hub – Because NVIDIA Jetson TX2 features only one USB 3.0 port.

. An Ethernet USB adapter – In case we connect the LiDAR to the only Ethernet port
on the Jetson, and we still want to use a wired network connection (might be useful
during development).

4.2 Software Stack

The CTU F1/10 autonomous driving stack is based on ROS 1 Kinetic Kame. It consists
of multiple components that can be used in various combinations to support different
applications. a detailed overview of the CTU F1/10 platform architecture can be found

14

. 4.2 Software Stack

Perception

Sensors

Recognition

Preprocessing

Decision and Control

Planner

Vehicle Platform

Drive-API
drive_api

VESC
vesc_driver

Teensy
rosserial_python

Figure 4.7. a high-level overview of a typical data flow is depicted in the the CTU F1/10
platform.

in Section 4.3.2 of [24]. a high-level overview of a typical data flow is depicted in
Figure 4.7.

In the next subsections, we briefly describe some of the components that will be
relevant for the migration.

4.2.1 Drive-API

Drive-API is a ROS node that provides a hardware-independent way of controlling the
car. In fact, it provides several different methods for controlling the car (using different
units). It loads the car-specific parameters from the ROS Parameter Server. Then
it uses them to convert the car-agnostic control commands to car-specific Teensy and
VESC control commands.

4.2.2 Simulation

In [24], the Stage simulator is introduced as an efficient and simple way to simulate
F1/10 cars. ROS package stage_ros5 provides the necessary bindings between Stage
and ROS.

4.2.3 Teensy

In the CTU’s F1/10 platform, the Teensy board has several responsibilities.
It decodes throttle and steering PWM signals from the RC receiver. It continuously

sends the decoded duty cycles over USB to the Jetson so that it can be used by any
high-level algorithms.

At the same time, it receives control commands (throttle and steering duty cycle)
from the Jetson. Depending on the state of emergency stop (eStop), it generates and
outputs new PWM signals to control the servo and the VESC.

When eStop is active (manual override, signalized by a blinking orange LED), any
control commands from the Jetson are ignored, and the data from the RC receiver are
used instead.

When eStop is not active, then commands from the Jetson are used to control the
servo and the VESC. Optionally the VESC can be controlled directly from Jetson using
USB, which has the advantage of using eRPMs instead of just duty cycle. But when
eStop is active, the VESC cannot be controlled using USB as the PWM throttle signal
will simply overwrite the USB control commands.

Finally, using two manual switches, it is possible to bypass the Teensy board and use
the RC receiver’s PWM signals to control the servo and the VESC directly.

The communication between the Teensy and the ROS system running in the Jetson
is implemented using rosserial6. This allows the firmware running in the Teensy to
5 https://wiki.ros.org/stage_ros
6 https://wiki.ros.org/rosserial

15

https://wiki.ros.org/stage_ros
https://wiki.ros.org/rosserial

4. CTU’s F1/10 Platform .

subscribe and publish to ROS topics as long as there is a special node (rosserial
agent) running in the Jetson that handles the necessary translation between the ROS
network and the USB.

4.2.4 NVIDIA JetsonTX2

ROS 1 Kinetic Kame targets Ubuntu 16. For that reason, the Jetson is flashed with
NVIDIA JetPack 3.x, which is based on Ubuntu 16.

16

Chapter5
Migration

Having introduced ROS 1 and 2 and having described the components of the CTU’s
F1/10 platform, we can move on to the actual migration from ROS 1 to ROS 2.

5.1 Note about Different ROS 2 Releases

Throughout the time we worked with the CTU’s F1/10 platform, multiple ROS 2
versions were released.

. May 2020: 6th release ROS 2 Foxy (Ubuntu 20) (EOL: May 20231)

. May 2021: 7th release ROS 2 Galactic (Ubuntu 20) (EOL: November 2022)

. May 2022: 8th release ROS 2 Humble (Ubuntu 22) (EOL: May 2027)

. rolling release: ROS 2 Rolling

First, we targeted just Foxy and Galactic. Then, in order to get access to the latest
features and performance improvements, we made the necessary changes to support the
latest release, Humble, and the Rolling release as well. In the end, the migrated stack
should be runnable in (at least) all these ROS 2 versions.

5.2 Scope of theMigration

Currently, the CTU’s F1/10 platform is based on ROS 1 Kinetic Kame, which was
released in May 2016 and deprecated in May 2021. That, among other things, means
it runs on Ubuntu 16 and all ROS Python nodes are written in Python 2. The jump
between ROS 1 Kinetic Kame and the current ROS 2 release might be significant. We
might face a lot of silly issues with dependencies.

Because migrating all the code of the CTU’s F1/10 platform at once would not be
wise, we want to start with a self-contained part of it that we will actually try to
migrate. Such part should meet at least the following criteria:

. It is possible to easily demonstrate its working in a simulator and on a physical car.

. It contains a minimal number of dependencies.

. It represents a typical autonomous driving application. That means reading data
from sensor(s) (LiDAR), analyzing the data (perception), planning a trajectory (de-
cision and control), and controlling the vehicle.

All these criteria are met by the Follow the Gap application, which is a part of
the CTU F1/10 platform. It implements a reactive algorithm called Follow the Gap
that was first introduced in [27]. It is a well-known part of the CTU’s stack that was
responsible for several wins of the CTU team in the F1Tenth Autonomous Competition
in the past.
1 Foxy was the first ROS 2 release with 3-year support. That signified the stability of this release. And

Humble even came with a 5-year support plan.

17

5. Migration .

Additionally, the migrated stack should be as compatible as possible (at least in the
beginning) so that we can port more algorithms without rewriting their logic. This
concerns especially the Drive-API.

Another thing to keep in mind is that the migration comprises not only porting the
actual code to ROS 2, but also setting up the NVIDIA Jetson TX2 so that it can run
ROS 2.

5.3 Follow the Gap Overview

We started by analyzing the operation of the Follow the Gap in its original ROS 1
environment. Then we also examined its code. We identified the packages that needed
to be migrated to ROS 2.

There are three main parts that power the application:

. perception/recognition/obstacle_substitution – A package with one node
that converts data from LiDAR to obstacles.
. decision_and_control/follow_the_gap_v0 – A package that consists of two

nodes. The first is the actual algorithm that looks for the biggest gap. Its output is
the heading angle leading to the biggest gap. This heading angle is converted by the
second node to the control commands, which are then sent to the Drive-API.
. Vehicle Platform (Drive-API, VESC, Teensy)

Apart from the nodes, there are messages’ definitions, launch files, and various con-
figuration files that need to be migrated too.

5.4 Process of theMigration

After we got familiar with the structure of the application in the ROS 1 environment,
we actually proceeded with the migration itself. It was not an easy task as there were
lots of tricky details and issues that needed to be solved. It required a lot of searching
in the official documentation as well as examining the ROS 2 source code and examples
as not all concepts were equally well documented.

In the following subsections, we describe some of the interesting challenges we faced
during the process.

5.4.1 Parameters

Unlike ROS 1, ROS 2 has no global Parameter Server. Instead, in ROS 2, parameters
are managed per node. Each node implements a parameter service that allows getting
and setting the parameters during runtime. Initial values of parameters can be supplied
at node startup time via command line arguments (parameters file). One of the most
useful advantages this design brings is that all parameters can be easily changed during
runtime, and nodes can implement custom behavior for handling the changes. In ROS
1, one must use solutions like dynamic_reconfigure2 to get similar results.

One could argue that in some situations, it might be useful to have a “global pa-
rameter storage”. Although that might be true sometimes3, usually, the relationship
between a parameter and a node where it should be defined is quite apparent.

2 https://wiki.ros.org/dynamic_reconfigure
3 Fortunately, ROS 2 provides an easy way of setting one or more the same parameters for multiple nodes

using the asterisk (*) syntax in YAML parameter files.

18

https://wiki.ros.org/dynamic_reconfigure

. 5.4 Process of the Migration

For the CTU’s F1/10 codebase, we were able to move all global parameters to
logically-related nodes. At the same time, we got the ability to dynamically change
the parameters, which proved to be useful, especially for the follow_the_gap_v0_ride
node.

5.4.2 Teensy

As already mentioned in Section 4.2.3, the communication between the Teensy MCU
and the Jetson is implemented using rosserial4. There is no direct port of rosserial
to ROS 2 [28–29]. The official replacement in ROS 2 is micro-ROS [30], which is built
around Micro XRCE-DDS middleware [31]. Given the scope and goal of the project (to
bring as much of ROS 2 to MCUs as possible), the overall complexity and hardware
requirements are rather high.

In order to avoid unnecessary complexity and overhead of micro-ROS, we decided to
implement our own simple communication protocol between the Jetson and the Teensy.
We implemented a C library (usable also from C++) for serializing and deserializing
messages. This library can be used in the Teensy (bare-metal) as well as in the Jetson
(Linux).

Next, we had to rewrite the firmware for the Teensy incorporating the new com-
munication protocol. While doing that, we also tried to document some parts of the
original code. However, there is still a big room for improvement. The new firmware
implementation can be found in pokusew/teensy-drive5 repository.

Finally, we implemented a ROS 2 node called teensy_drive6 that connects to the
Teensy via USB (CDC-ACM) and receives and send appropriate messages between
Teensy and the ROS 2 network.

5.4.3 VESC

The vesc7 package provides ROS 2 interface for VESC. However, we encountered a few
bugs which motivated us to create a fork8 fixing these bugs.

5.4.4 Stage simulator

In order to reuse the simulation from ROS 1, we needed to have working bindings
between ROS 2 and the Stage simulator.

We found stage_ros29 package which is doing exactly that. However, it re-
quired a few changes in order to be usable in the latest ROS 2. We created a fork
pokusew/stage_ros210 and implemented those changes. The author of the original
repository even starred11 our repository. Once there is more time, we will attempt to
get our changes merged upstream.

Finally, we had to build both the Stage simulator (because there is no package
available in recent Ubuntu releases) and our modified stage_ros2 from the source. In
the end, we integrated everything to the main workspace12.

4 https://github.com/ros-drivers/rosserial
5 https://github.com/pokusew/teensy-drive
6 https://github.com/pokusew/f1tenth-rewrite/tree/main/src/vehicle_platform/teensy_drive
7 https://github.com/f1tenth/vesc/tree/ros2
8 https://github.com/pokusew/vesc/tree/ros2-pokusew
9 https://github.com/ymd-stella/stage_ros2

10 https://github.com/pokusew/stage_ros2
11 https://github.com/pokusew/stage_ros2/stargazers
12 https://github.com/pokusew/f1tenth-rewrite

19

https://github.com/ros-drivers/rosserial
https://github.com/pokusew/teensy-drive
https://github.com/pokusew/f1tenth-rewrite/tree/main/src/vehicle_platform/teensy_drive
https://github.com/f1tenth/vesc/tree/ros2
https://github.com/pokusew/vesc/tree/ros2-pokusew
https://github.com/ymd-stella/stage_ros2
https://github.com/pokusew/stage_ros2
https://github.com/pokusew/stage_ros2/stargazers
https://github.com/pokusew/f1tenth-rewrite

5. Migration .

5.4.5 NVIDIA JetsonTX2 Setup

One of the most significant challenges was running the migrated stack on the Jetson.
It included many different steps such as:
. Flashing an up-to-date OS image – NVIDIA’s modified Linux – Linux for Tegra

(L4T) together with all the drivers and other software components that make up the
JetPack SDK.
. Creating a bootable SD card and making the Jetson boot from it instead of its

internal eMMC. This way, we easily switch between different OS images, and we can
also get bigger storage (the internal eMMC has a capacity of 32 GB).
. Configuring the system (udev rules, Wi-Fi, SSH, etc.) and installing any necessary

software.
We collected a lot of documentation, notes, commands, links, and configuration re-

garding Jetson13 in our pokusew/ros-setup repository.
Nevertheless, the main problem was Jetson’s outdated software and its specifics. At

the time of writing, the latest available NVIDIA JetPack is 4.6.1, which is based on
Ubuntu 18. At the same time, the latest available Ubuntu LTS release is Ubuntu 22.

Officially, no ROS 2 version we target supports Ubuntu 18 (TODO: ref ROS 2 ver-
sions). However, one can attempt to build ROS 2 from sources even on older Ubuntus,
but one must be prepared to face some problems with outdated system dependencies.
We tried to do that for Foxy and Galactic and we were (after some struggles) successful.

Running ROS 2 natively on the Jetson is surely nice. Nevertheless, one has to build
all application dependencies from their source code, as no prebuilt apt ROS packages
are provided by ROS.

Another possibility is to use Docker containers. Containers (OCI containers) provide
means for isolating applications running in the same OS. They are implemented using
native Linux features, most notably namespaces and control groups. Containers are
very efficient; they share the Linux kernel, thus having basically zero overhead. One
could see containers as properly isolated OS processes.

Most importantly for us, we can create containers based on Ubuntu 20 or Ubuntu
22 filesystems and use them to run our ROS 2 stack even on the Jetson with Ubuntu
18. Docker containers can be configured to use the host network adapter, reducing any
network overhead and simplifying the ROS 2 setup (it is exactly the same as if the
application was running outside the container).

To sum up, we tried both options (build from source and Docker containers). While
the Docker containers require more setup, they effectively solve the problem with out-
dated system dependencies in the systems like Ubuntu.

5.5 Result

Once we successfully migrated all the needed parts, we were able to demonstrate the
working of the migrated application:
. on the real F1/10 car

. in the Stage simulator on Ubuntu and macOS14

The code can be found in f1tenth_rewrite15 repository.
13 https://github.com/pokusew/ros-setup/tree/main/nvidia-jetson-tx2
14 Although it is possible to run ROS 2 on macOS, it requires a quite a bit of effort (everything must be
built from source). We spent a lot of time making it work.
15 https://github.com/pokusew/f1tenth-rewrite

20

https://github.com/pokusew/ros-setup/tree/main/nvidia-jetson-tx2
https://github.com/pokusew/f1tenth-rewrite

. 5.5 Result

Figure 5.1. Running the Follow the Gap application in the Stage simulator in ROS 2
on Ubuntu 20.04 (as a VM on macOS)

Figure 5.2. Running the Follow the Gap application in the Stage simulator in ROS 2
on macOS 10.14.6

21

Chapter6
Evaluation and Experiments

After we migrated the stack, we tried to evaluate some of its properties. Especially, com-
munication latencies (and the jitter) and execution times throughout the AV pipeline.

We used ros2_tracing framework. However, we decided to extend its analysis capa-
bilities by integrating the work from ??. This was necessary in order to for us to able to
match the corresponding publication of messages with subscription invocations. After
doing this matching we can compute communication latencies in the system correctly.
Being able to reconstruct complete causal relationships in the system also enables us an-
alyze application-specific end-to-end latency (time from perception to the corresponding
control command).

Please refer to the pokusew/ros2-tracing-experiments1 for the full description of
the experiments we performed.

1 https://github.com/pokusew/ros2-tracing-experiments

22

https://github.com/pokusew/ros2-tracing-experiments

Chapter7
Conclusion

In this thesis we dealt with the migration of the CTU’s F1/10 autonomous driving
stack from ROS 1 to ROS 2. First, we covered the necessary theory by describing
both versions of ROS, ros2_tracing framework, and the components of the CTU’s
F1/10 stack. Then we migrated all the necessary parts so that we could demonstrate
the Follow the Gap application running on ROS 2 on the real car and in the Stage
simulator.

Then we spent a lot of time researching the ways to effectively evaluate runtime
behavior of complex ROS 2 systems. We decided to use ros2_tracing and extend it
with the message flow analysis based on the recent paper. We did not have enough
time to document all our achievements in this thesis, but they are all publicly available
online on GitHub1.

Another result of our work is a publicly-available collection of setup guides, scripts,
and documentation that covers various aspects of working with ROS. These guides have
already helped several people.

We hope that the results of this thesis build a foundation that opens the way for the
adoption of ROS 2 in CTU’s F1/10 project.

1 https://github.com/pokusew/fel-bachelors-thesis

23

https://github.com/pokusew/fel-bachelors-thesis

References

[1] Evan Ackerman, and Erico Guizzo. Wizards of ROS: Willow Garage and the Mak-
ing of the Robot Operating System. IEEE Spectrum, November 7, 2017.
https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-
making-of-the-robot-operating-system.

[2] Why ROS 2? – ROS 2 Design.
https://design.ros2.org/articles/why_ros2.html.

[3] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot Operating System 2: Design, architecture, and uses in the wild.
Science Robotics. 2022, 7 (66), eabm6074. DOI 10.1126/scirobotics.abm6074.

[4] ROS Metrics.
https://metrics.ros.org/.

[5] ROS Introduction – ROS Wiki.
https://wiki.ros.org/ROS/Introduction.

[6] ROS 2 Documentation – ROS 2 Documentation: Rolling documentation.
https://docs.ros.org/en/rolling/.

[7] Stats – ROS Index.
https://index.ros.org/stats/.

[8] ROS Concepts – ROS Wiki.
https://wiki.ros.org/ROS/Concepts.

[9] Distributions – ROS Wiki.
https://wiki.ros.org/Distributions.

[10] Distributions — ROS 2 Documentation: Rolling documentation.
https://docs.ros.org/en/rolling/Releases.html.

[11] ROS Client Libraries – ROS Wiki.
https://wiki.ros.org/Client Libraries.

[12] ROS 1 Documentation – ROS Wiki.
https://wiki.ros.org/.

[13] ROS Command-line tools – ROS Wiki.
https://wiki.ros.org/ROS/CommandLineTools.

[14] roslaunch – ROS Wiki.
https://wiki.ros.org/roslaunch.

[15] About internal ROS 2 interfaces – ROS 2 Documentation: Rolling documentation.
https://docs.ros.org/en/rolling/Concepts/About-Internal-Interfaces.
html.

[16] What is DDS?.
https://www.dds-foundation.org/what-is-dds-3/.

[17] About different ROS 2 DDS/RTPS vendors – ROS 2 Documentation: Rolling
documentation.

24

https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-making-of-the-robot-operating-system
https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-making-of-the-robot-operating-system
https://design.ros2.org/articles/why_ros2.html
http://dx.doi.org/10.1126/scirobotics.abm6074
https://metrics.ros.org/
https://wiki.ros.org/ROS/Introduction
https://docs.ros.org/en/rolling/
https://index.ros.org/stats/
https://wiki.ros.org/ROS/Concepts
https://wiki.ros.org/Distributions
https://docs.ros.org/en/rolling/Releases.html
https://wiki.ros.org/Client Libraries
https://wiki.ros.org/
https://wiki.ros.org/ROS/CommandLineTools
https://wiki.ros.org/roslaunch
https://docs.ros.org/en/rolling/Concepts/About-Internal-Interfaces.html
https://docs.ros.org/en/rolling/Concepts/About-Internal-Interfaces.html
https://www.dds-foundation.org/what-is-dds-3/

. .

https://docs.ros.org/en/rolling/Concepts/About-Different-Middlewar
e-Vendors.html.

[18] Launching/monitoring multiple nodes with Launch – ROS 2 Documentation:
Rolling documentation.
https://docs.ros.org/en/rolling/Tutorials/Intermediate/Launch/
Launch-system.html.

[19] ROS 2 Launch System.
https://design.ros2.org/articles/roslaunch.html.

[20] Christophe Bédard, Ingo Lütkebohle, and Michel Dagenais. ros2_tracing: Multi-
purpose Low-Overhead Framework for Real-Time Tracing of ROS 2. IEEE Robotics
and Automation Letters. 2022, 7 (3), 6511–6518. DOI 10.1109/LRA.2022.3174346.

[21] Christophe Bédard, Pierre-Yves Lajoie, Giovanni Beltrame, and Michel Dagenais.
Message Flow Analysis with Complex Causal Links for Distributed ROS 2 Systems.
2022,
http://arxiv.org/abs/2204.10208.

[22] Martin Vajnar. Model car for the F1/10 autonomous car racing competition. Mas-
ter’s Thesis, Czech Technical University in Prague, Faculty of Electrical Engineer-
ing. 2017.
https://dspace.cvut.cz/handle/10467/68472.

[23] Jan Dusil. Slip detection for F1/10 model car . Bachelor’s Thesis, Czech Technical
University in Prague, Faculty of Electrical Engineering. 2019.
https://dspace.cvut.cz/handle/10467/82910.

[24] Jaroslav Klapálek. Dynamic obstacle avoidance for autonomous F1/10 car . Mas-
ter’s Thesis, Czech Technical University in Prague, Faculty of Electrical Engineer-
ing. 2019.
https://dspace.cvut.cz/handle/10467/83424.

[25] Jetson TX2 Module – NVIDIA Developer .
https://developer.nvidia.com/embedded/jetson-tx2.

[26] Teensy 3.2 Development Board image – micro-ROS.org.
https://micro.ros.org/docs/overview/hardware/imgs/teensy32.jpg.

[27] Volkan Sezer, and Metin Gokasan. A Novel Obstacle Avoidance Algorithm:
”Follow the Gap Method”. Robot. Auton. Syst.. 2012, 60 (9), 1123–1134.
DOI 10.1016/j.robot.2012.05.021.

[28] Port rosserial to ROS 2 – Issue #365 – ros2/ros2 on GitHub.
https://github.com/ros2/ros2/issues/365.

[29] Notes on ROS2 and rosserial.
https://newscrewdriver.com/2020/08/05/notes-on-ros2-and-rosserial.

[30] micro-ROS – ROS 2 for microcontrollers.
https://micro.ros.org/.

[31] Micro XRCE-DDS compared to rosserial – micro-ROS .
https://micro.ros.org/docs/concepts/middleware/rosserial/.

25

https://docs.ros.org/en/rolling/Concepts/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/rolling/Concepts/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/rolling/Tutorials/Intermediate/Launch/Launch-system.html
https://docs.ros.org/en/rolling/Tutorials/Intermediate/Launch/Launch-system.html
https://design.ros2.org/articles/roslaunch.html
http://dx.doi.org/10.1109/LRA.2022.3174346
http://arxiv.org/abs/2204.10208
https://dspace.cvut.cz/handle/10467/68472
https://dspace.cvut.cz/handle/10467/82910
https://dspace.cvut.cz/handle/10467/83424
https://developer.nvidia.com/embedded/jetson-tx2
https://micro.ros.org/docs/overview/hardware/imgs/teensy32.jpg
http://dx.doi.org/10.1016/j.robot.2012.05.021
https://github.com/ros2/ros2/issues/365
https://newscrewdriver.com/2020/08/05/notes-on-ros2-and-rosserial
https://micro.ros.org/
https://micro.ros.org/docs/concepts/middleware/rosserial/

AppendixA
Glossary

AV . autonomous vehicle(s),
related to autonomous vehicles and autonomous driving

BLDC . brushless DC electric motor
CPU . central processing unit
CTU . Czech Technical University in Prague
DDS . Data Distribution Service
eMMC . embedded MultiMediaCard
ESC . electronic speed controller
GPU . graphics processing unit
HTTP . Hypertext Transfer Protocol
IDE . Integrated Development Environment
IDL . Interface Description Language or Interface Definition Language
IMU . inertial measurement unit
LiDAR . Light Detection And Ranging
MCU . microcontroller unit
OMG . Object Management Group
OS . Operating System
QoS . Quality of Service
RC . radio-controlled / radio control
RCP . Remote Procedure Call
REP . ROS Enhancement Proposal, a document that standardizes certain as-

pect of ROS, a standard
ROS . Robot Operating System
SD card . Secure Digital card
VESC . An opensource electronic speed controller,

https://vesc-project.com/
VM . Virtual Machine
XML . Extensible Markup Language
XML-RPC . an RPC protocol which uses XML to encode its calls and HTTP

as a transport mechanism

27

https://vesc-project.com/

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstract/Abstrakt
	Contents
	Tables/Figures
	Introduction
	Motivation / Why to migrate to ROS 2?

	Robot Operating System
	ROS Computation Graph
	ROS Communication Primitives

	ROS Common Concepts
	ROS 1
	Architecture
	Build System
	CLI
	Launch System

	ROS 2
	Architecture
	Build System
	CLI
	Launch System

	Summary of Differences between ROS 1 and ROS 2

	Methods for Evaluating ROS Applications
	CTU's F1/10 Platform
	Hardware Stack
	Chassis and Powerboard
	NVIDIA Jetson TX2
	Teensy 3.2
	VESC
	LiDAR
	IMU
	Additional Components

	Software Stack
	Drive-API
	Simulation
	Teensy
	NVIDIA Jetson TX2

	Migration
	Note about Different ROS 2 Releases
	Scope of the Migration
	Follow the Gap Overview
	Process of the Migration
	Parameters
	Teensy
	VESC
	Stage simulator
	NVIDIA Jetson TX2 Setup

	Result

	Evaluation and Experiments
	Conclusion
	References
	Glossary

