
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Hydraulic Erosion

Victor Kataev

Ing. Radek Richtr, Ph.D.

Informatics

Web and Software Engineering, specialization Computer

Graphics

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Hydraulic erosion is a frequently occurring, natural phenomenon. Erosion simulation is

essential for realistic terrain modification in computer graphics. The aim of this paper is

to create a simulation and visualization of hydraulic erosion based on the presented

articles.

1) Perform a search of articles on the topic of hydraulic erosion.

2) Focus on the representation of material using a voxel grid and fluid as Smoothed

particle hydrodynamics, analyze the possibilities of this combination for your

visualization.

3) Design and implement a prototype simulation and visualization of hydraulic erosion.

4) Use the C++ language and parallelism.

5) Test the prototype appropriately.

Electronically approved by Ing. Radek Richtr, Ph.D. on 23 June 2022 in Prague.

Bachelor’s thesis

Hydraulic erosion

Victor Kataev

Department of Software Engineering
Supervisor: Ing. Radek Richtr, Ph.D.

June 23, 2022

Acknowledgements

I’d like to thank Dr. Ing. Bedřich Beneš, Ph.D. as well as Ing. Petr Felkel,
Ph.D. and Ing. Jaroslav Sloup for navigating me in such a complex domain
like computer graphics. I’ve learned a lot doing this work. I wouldn’t have
made it without your help.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 23, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Victor Kataev. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kataev, Victor. Hydraulic erosion. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2022.

Abstrakt

Tato práce se zaměřuje na studium a implementaci simulace hydraulické eroze
v počítačové grafice. Výsledkem této práce je plně 3D aplikace, která simuluje
a vizualizuje dopady způsobené kapalinou na terén. Pro simulaci tekutiny je
použit Lagrangeův přístup nazvaný Smoothed Particle Hydrodynamics(SPH).
Implementace využívá vícevláknové možnosti procesoru, aby se zvýšil výkon
při výpočtech simulace tekutin.

Klíčová slova eroze, simulace tekutin, SPH, částice, řídký objem, Navier-
Stokesovy rovnice, grafická aplikace, procedurální generování

Abstract

The current thesis focuses on the study and implementation of simulation of
hydraulic erosion in computer graphics. The result of this work is a fully 3D
application that simulates and visualizes the impact caused by fluid over ter-
rain. For fluid simulation a Lagrangian approach named Smoothed Particle
Hydrodynamics(SPH) is used. The implementation leverages the CPU’s mul-
tithreading capabilities in order to boost the performance in fluid simulation
calculations.

vii

Keywords erosion, fluid simulation, SPH, particles, sparse volume, Navier-
Stokes equations, graphical application, procedural generation

viii

Contents

Introduction 1

Goals 3

1 Theory and Background 5
1.1 Navier-Stokes Equations . 5
1.2 Smoothed Particle Hydrodynamics 6
1.3 Smoothing Kernels . 7
1.4 Lagrangian Fluid Dynamics . 14

1.4.1 Internal Forces . 15
1.4.2 External Forces . 17
1.4.3 Collision . 18
1.4.4 Time Integration . 20

1.5 Hydraulic Erosion Model . 22
1.5.1 Boundary Particles and External Forces 22
1.5.2 Erosion . 23
1.5.3 Sediment Transportation 24
1.5.4 Advection (donor-acceptor scheme) 25
1.5.5 Diffusion . 26
1.5.6 Deposition . 27
1.5.7 Terrain Modification . 28

2 Method Anylysis 31
2.1 Algorithms . 31
2.2 Terrain Representation . 32
2.3 Analysis Summary . 32

3 Software Design 35
3.1 Functional and Non-functional Requirements 35

ix

3.2 Use Cases . 38
3.3 Application Design . 41

3.3.1 Control Flow and Processes 41
3.3.2 Structure and Architecture 41

3.4 User Interface . 43

4 Implementation 47
4.1 Fast Nearest Neighbor Search 48

4.1.1 Spatial Hashing . 48
4.1.2 Spatial Queries . 49

4.2 Terrain . 49
4.3 Collision . 51
4.4 Hydraulic Erosion Model . 56

4.4.1 Boundary Forces . 56
4.4.2 Sediment Transfer . 57
4.4.3 Deposition . 57
4.4.4 Erosion . 58
4.4.5 Terrain Modification . 58

4.5 Fluid Particles . 58
4.6 Boundary particles . 59

4.6.1 Definition . 59
4.6.2 Kd-tree . 60
4.6.3 Seeding . 60

4.7 Physical Parameters . 61
4.7.1 Fluid . 61
4.7.2 Erosion . 61

4.8 The Simulation Algorithm . 62
4.8.1 Build the Terrain . 62
4.8.2 Initialize SPH system 64
4.8.3 Compute Density and Pressure 64
4.8.4 Compute Internal Forces 65
4.8.5 Compute External Forces 65
4.8.6 Compute Boundary Forces 65
4.8.7 Compute Sediment Transfer 66
4.8.8 Compute Deposition . 66
4.8.9 Compute Erosion . 66
4.8.10 Update Heightfield . 67
4.8.11 Time Integration and Collision Handling 67
4.8.12 Render . 68

5 Results 69
5.1 Fluid . 69

5.1.1 Fluid Parameters . 69
5.2 Erosion . 70

x

5.2.1 Ditch . 70
5.2.2 Meander . 71

6 Tests 75
6.1 User tests . 75
6.2 Performance Test . 78

7 Future Work 81

Conclusion 83

Bibliography 85

A Acronyms 87

B Contents of enclosed CD 89

xi

List of Figures

1.1 the isotropic Gaussian kernel. Taken from [1]. 8
1.2 the standard kernel with gradient and Laplacian. Taken from [1]. . 9
1.3 the pressure kernel with gradient and Laplacian. Taken from [1]. . 11
1.4 the viscosity kernel with gradient and Laplacian. Taken from [1]. . 13
1.5 Lagrangian fluid particles. 2D projection. Taken from [2]. 14
1.6 Collision with heightmap. Taken from [2]. 19
1.7 Leap-Frog scheme. Taken from [1]. 21
1.8 Boundary particles is the means for interacting SPH particles with

the terrain. Taken from [3]. 22
1.9 The donor-acceptor scheme. Donor particles pass the sediment

to acceptor particles, whose relative position is with respect to
direction of the settling velocity. Taken from [3]. 25

1.10 Material advection. The sediment advects with respect to direction
of the settling velocity that corresponds with gravity. Taken from
[3]. 27

1.11 Material diffusion. Blue represents low concentrated areas while
red is highly concentrated. Taken from [3]. 27

1.12 Material deposition. The sediments flows from SPH particle to
boundary particles (left). The terrain height is changed and new
boundary particles generated (right). Taken from [3]. 28

3.1 Action diagram of the application. 42
3.2 The graphical interface wireframe. 44
3.3 A screenshot with implemented graphical user interface. 45

4.1 The simulation algorithm scheme. 47
4.2 Spatial Hashing data structure to accelerate particles’ neighbours

search. The cell size h is the smooth radius of SPH particles. Taken
from [2]. 48

xiii

4.3 Top-view projection on grid accelerated terrain. Red dots represent
geometry points in 3D space. 50

4.4 Particle is projected back onto the triangle it intersects with. . . . 52
4.5 Edge case, when SPH particle is projected by means of interpola-

tion of normal vectors. 53
4.6 Seeding triangles of a cell in 3D space. 61

5.1 1000 SPH particles with the parameters of water. 70
5.2 1000 SPH particles water particles with increased viscosity (visc=17.5). 71
5.3 1000 SPH water particles with increased mass and default viscosity

(mass=0.034) . 72
5.4 A ditch with a ridge. 200 000 SPH particles. 73
5.5 Before/after. The ditch with the ridge. 200 000 SPH particles. . . 74
5.6 A meander. 200 000 SPH particles. 74

xiv

List of Tables

3.1 Functional requirements. 36
3.2 Non-functional requirements. 37
3.3 Use case: simulation run. 38
3.4 Use case: initialization parameters set up. 39
3.5 Use case: runtime parameters editing. 40
3.6 The requirements fulfillment table 40

4.1 Physical parameter for water simulation 62
4.2 Physical parameter for erosion simulation 63

6.1 SPH system performance test. 79
6.2 Results from performance test of SPH system + erosion. 79

xv

Introduction

Simulation of hydraulic erosion along with fluid simulation has been one of the
hottest and actively researched topics in computer graphics over the course of
the past decade. Hydraulic erosion is one of the phenomena that can be seen
very often in nature. This phenomenon produces the most influential results
when it comes to changes and deformations applied over terrain, which makes
it a topic of particular interest in procedural generation.

The demand for such simulation may exist in the domains like engineering,
scientific visualization, video game development, visual effects in film and
television. While the first two i.e. engineering and scientific fields usually
require a considerable degree of fidelity in order to produce practical results
video games and films, on the other hand, are primarily focused on visually
plausible outputs and thus tolerate the simulation to be approximated to look
sufficiently realistic.

My motivation for choosing this topic is to develop and deepen my knowl-
edge in the field of procedural generation as well as particle systems with their
further application and integration in such sophisticated software systems as
game engines and systems alike.

The theoretical part of this work describes the theory behind the La-
grangian approach of fluid simulation named Smoothed Particle Hydrody-
namics(SPH) and the theory behind erosion and deposition of material.

The design part describes functional and non-functional requirements, use
cases, the application structure and demonstrates the application control flow.

The implementation part is dedicated to the description of the imple-
mentation of fluid and erosion models from the theoretical part as well as
generation of the terrain and how this is all visualized in a 3D scene using
OpenGL.

After the implementation we will take a look at the results that the appli-
cation produces.

This work is then concluded with tests and future work chapters.

1

Goals

The primary goal of the current thesis is to study, how hydraulic erosion can
be simulated in computer graphics field, and implement a fully 3D working
prototype that will run this simulation and visualize its results.

In order to simulate the erosion itself, the simulation of fluid must be done
in the first place. The fluid is then poured onto the 3D terrain, where its
particles interact with the boundary particles of the terrain located on its
triangles. Pouring a small number of fluid particles will not give the most
tangible results, therefore the preference is given to big volumes of water. To
increase the efficiency of fluid simulation, its calculation will be parallelized.

It is important to note that the goal of this thesis is not to produce a fideli-
tous simulation suitable for engineering or scientific employment, but rather
to achieve visually satisfactory results by using the given approximated mod-
els.

Overall the goals of this work can be broken down as follows:

1. Study SPH fluid simulation model and erosion simulation model

2. Implement simulation of the fluid in parallel fashion

3. Make collisions between fluid and a terrain generated from a heightmap

4. Implement the erosion model

5. Visualize the results by using OpenGL

3

Chapter 1
Theory and Background

In this chapter, we will study first, how fluids can be simulated using La-
grangian approach and then we will study, how the erosion is simulated lever-
aging this approach. In Section 1.1 we will familiarize with the famous Navier-
Stokes equations. In Section 1.2 we will describe the Smoothed particle hydro-
dynamics solver and in Section 1.4 we will introduce, how these concepts can
be used to simulate sparse volumes. In Section 1.5 we will examine the ero-
sion computational model and how this model is coupled with SPH particles
to achieve the material advection and deposition.

1.1 Navier-Stokes Equations
The state of a fluid in a given time can be determined by its physical quantities.
The Navier-Stokes equations (NSE) are the equations that describe viscous
fluids by taking into account those quantities. Mathematically they express
conservation of momentum and conservation of mass for Newtonian fluids.
The classical formulation for incompressible fluids is as follows:

ρ(∂

∂t
+ u · ∇)u = −∇p + µ∇ · (∇u) + f, (1.1)

∇ · u = 0, (1.2)

where p is the pressure field, µ is the viscosity field, ρ is the density field,
u is the velocity field and f is the sum of external forces acting on the fluid
e.g. gravity.

Basically, this equation is the application of the Newton’s second law for
fluid motion. The right hand side describes all the forces that are applied on
the fluid. The left part represents the product of mass and acceleration.

Equation (1.2) describes the conservation of mass for incompressible fluids.

5

1. Theory and Background

1.2 Smoothed Particle Hydrodynamics
Smoothed particle hydrodynamics (SPH) is a computational method that orig-
inates from astrophysics. It is used in multiple research fields for simulating
the mechanics of continuous systems. SPH is widely popular in simulation
of meshfree Lagrangian fluid flows. We will be going through the Lagrangian
approach in greater details in section 1.4. At its core SPH is an interpolation
method to approximate values and derivatives of continuous field quantities
by using discrete sample points. The sample points are identified as smoothed
particles that carry concrete entities, e.g. mass, position, velocity, etc., but
particles can also carry estimated physical field quantities dependent of the
problem, e.g. mass-density, temperature, pressure, etc [1]. The SPH quan-
tities are macroscopic and obtained as weighted averages from the adjacent
particles [3].

Since it is an interpolation method any continuous field that we want to
calculate can be represented as a quantity function A(r) and interpolated using
integral. The integral interpolant is then defined over the space Ω by

AI(r) =
∫

Ω
A(r′)W (r− r′, h) dr′. (1.3)

In the above formula r is a point from Ω for which the quantity function
A is being interpolated, W is smoothing kernel and h is the smoothing length,
which controls the smoothness or roughness of the kernel. The numerical
equivalent of the above integral is done by approximating it with summation:

AS(r) =
∑

j

Aj
mj

ρj
W (r− rj , h), (1.4)

where j iterates over all of the neighbouring particles, mj is mass of par-
ticle j, ρj is its density and Aj is any quantity field of A at rj that is being
approximated. Equation (1.4) is the basis of the SPH method for interpolati��
any continuous quantities.

In NSE some fields contain first and second derivatives. In order to obtain
a differentiable interpolant of (1.4) we only need to differentiate its kernel
function. Thus, the first and second derivatives of (1.4) will be:

Gradient:

∇AS(r) =
∑

j

Aj
mj

ρj
∇W (r− rj , h), (1.5)

Laplacian:

∇2AS(r) =
∑

j

Aj
mj

ρj
∇2W (r− rj , h), (1.6)

6

1.3. Smoothing Kernels

1.3 Smoothing Kernels
The kernels of SPH interpolants have pivotal impact on how different quan-
tities in NSE are calculated, which will influence the overall behavior of the
fluid. Therefore, for each individual quantity field a suitable kernel function
must be chosen. Because the interpolation occurs by iterating over the values
of adjacent particles our kernel functions must meet a bunch of limitations.

As suggested in [4] suitable kernels require to have two properties:
∫

Ω
W (r, h) dr = 1 (1.7)

and

lim
h→0

W (r, h) = δ(r), (1.8)

where δ is Derac’s delta function

δ(r) =
{
∞, ∥r∥ = 0
0, otherwise

(1.9)

The above conditions will not be enough for the SPH method additional
requirements should also be fulfilled to ensure stable behavior:

the kernel must be positive

W (r, h) ≥ 0, (1.10)

the kernel must be symmetric

W (r, h) = W (−r, h), (1.11)

the kernel must ensure that any interactions outside of the smoothing ra-
dius h are omitted and not calculated

W (r, h) = 0, ∥r∥ > h. (1.12)

7

1. Theory and Background

Figure 1.1: the isotropic Gaussian kernel. Taken from [1].

When there’s a new interpolation of an SPH equation to be found then it
is always best to assume the kernel as Gaussian [1]. The isotropic Gaussian
kernel Figure 1.1 in n is given by

Wgaussian(r, h) = 1
(2πh2)

3
2

e
−(∥r∥2/2h2)

, h > 0, (1.13)

Despite the fact that this kernel has good mathematical properties it is
not constrained by (1.13), i.e. it calculates contribution of all particles rather
than only the ones within the smooth radius, which makes it not the best
option in practical implementation, this is why different kernels will be used.
The examples of those kernels are listed below.

Standard Kernel
The standard kernel (Figure 1.2) is used for all the calculations by default
unless specified differently. It has similar bell curve as the Gaussian kernel and
it fulfills the constrain of (1.12). Its computation is faster, because it doesn’t
compute neither exponential function nor square root. The formulation of the
standard kernel is

Wdefault(r, h) = 315
64πh9

{
(h2 − ∥r∥2)3 0 ≤ ∥r∥ ≤ h

0 ∥r∥ > h,
(1.14)

gradient

∇Wdefault(r, h) = − 945
32πh9 r(h2 − ∥r∥2)2, (1.15)

8

1.3. Smoothing Kernels

Figure 1.2: the standard kernel with gradient and Laplacian. Taken from [1].

Laplacian

∇2Wdefault(r, h) = − 945
32πh9 (h2 − ∥r∥2)(3h2 − 7∥r∥2). (1.16)

Figure 1.2 depicts the standard kernel, its gradient and Laplacian for
smoothing radius h = 1.

9

1. Theory and Background

Pressure Kernel
The pressure term in NSE requires the computation of derivation. We can see
in Figure 1.2 that derivation for r → 0 is 0. Due to that fact particles will
build clusters. This makes the standard kernel unsuitable in the evaluation of
the pressure force. According to [5] a good option for the pressure term will
the spiky kernel

Wpressure(r, h) = 15
πh6

{
(h− ∥r∥)3 0 ≤ r ≤ h

0 ∥r∥ > h,
(1.17)

gradient

∇Wpressure(r, h) = − 45
πh6

r
∥r∥(h− ∥r∥)2,

lim
r→0−

∇Wpressure(r, h) = 45
πh6 , lim

r→0+
∇Wpressure(r, h) = − 45

πh6 ,

(1.18)

Laplacian

∇2Wpressure(r, h) = − 90
πh6

1
∥r∥(h− ∥r∥)(h− 2∥r∥),

lim
r→0
∇2Wpressure(r, h) = −∞

(1.19)

Figure 1.3 depicts the pressure kernel for smoothing radius h = 1.

10

1.3. Smoothing Kernels

Figure 1.3: the pressure kernel with gradient and Laplacian. Taken from [1].

11

1. Theory and Background

Viscosity Kernel
To calculate the viscosity term we need to evaluate its Laplacian, which implies
that we will have to evaluate the Laplacian of its kernel. In order to maintain
stability of the system the kernel has to be positive at any given time. As
can be seen from the diagrams of two previous kernels they do not secure
the Laplacian to be positive and thus cannot be used for the viscosity term.
This is why we will need a different kernel. As proposed by [5] the kernel for
viscosity will be

Wviscosity(r, h) = 15
2πh3

−
∥r∥3

2h3 + ∥r∥2

h2 + h
2∥r∥ − 1 0 < ∥r∥ ≤ h

0 ∥r∥ > h,

lim
r→0

Wviscosity(r, h) =∞,

(1.20)

gradient

∇Wviscosity(r, h) = 15
2πh3 r(−3∥r∥

2h3 + 2
h2 −

h

2∥r∥3),

lim
r→0−

∇Wviscosity(r, h) = +∞, lim
r→0+

∇Wviscosity(r, h) = −∞,
(1.21)

Laplacian

∇2Wviscosity(r, h) = 45
πh6 (h− ∥r∥), (1.22)

Figure 1.4 depicts the viscosity kernel for smoothing radius h = 1.

12

1.3. Smoothing Kernels

Figure 1.4: the viscosity kernel with gradient and Laplacian. Taken from [1].

13

1. Theory and Background

Figure 1.5: Lagrangian fluid particles. 2D projection. Taken from [2].

1.4 Lagrangian Fluid Dynamics
Compared to the classical (Eulerian) method of simulating fluids that uses 3D
grid in its simulation the Lagrangian method doesn’t use any grid, but uses
particles instead (Figure 1.5). These particles contain physical values that are
needed to represent the fluid. Each individual particle has velocity, position,
mass and smoothed quantities obtained from the SPH approximation.

The NSE in the Lagrangian specification are significantly simplified. Equa-
tion (1.2) describes the mass preservation. If we assume that the number of
particles is fixed and the mass of each particle is constant we can omit equation
(1.2). In the Lagrangian method all particles freely move around the scene
and thus it implies that any field quantity now depends on time only (t) rather
than time and position (t and r) as it is in the Eulerian specification. The
acceleration of a particle is then obtained by the ordinary time derivative d

dt of
its velocity u(t), which means that the equation (1.1) describing preservation
of momentum will be simplified.

The formulation of the NSE for the Lagrangian specification has then the
following formulation:

ρ
du
dt

= −∇p + µ∇2u + f. (1.23)

The right hand side describes the sum of forces acting on a particle. Where
−∇p term represents pressure, µ∇2u the viscosity and f is the sum of all the

14

1.4. Lagrangian Fluid Dynamics

external forces. The sum of these three fields F = −∇p + µ∇2u + f defines
the acceleration of a Lagrangian particle

ai = dui

dt
= Fi

ρi
, (1.24)

where ai is acceleration, ui is velocity, ρi is density and Fi is the sum all
forces of particle i.

1.4.1 Internal Forces

Density
In order to apply SPH to compute quantity fields of a particle we must know its
mass and density. While mass is a user input constant density is a continuous
field and has to be calculated. To compute its value for particle i we need to
plug it into (1.4).

ρi = ρ(ri)

=
∑

j

ρj
mj

ρj
W (ri − rj , h)

=
∑

j

mjW (ri − rj , h),

(1.25)

where W is Wdefault from (1.14).

Pressure
The first term on the right hand side of (1.23) is the negative gradient of
pressure. It describes the tendency of particles to move to the areas with
minimum pressure

fpress
i = −∇p. (1.26)

By applying SPH approximation (1.5) we get

fpress
i = −

∑
i ̸=j

pj
mj

ρj
∇W (r, h), (1.27)

Equation (1.27) requires that the pressure of each particle participating in
calculation is to be known. We can derive its value from the ideal gas formula

pV = nRT, (1.28)

where p is pressure, V = 1
ρ is volume, n is number of particles per one

mole, R is ideal gas constant, T is temperature. For the constant mass and

15

1. Theory and Background

constant temperature we can substitute the right hand side with gas stiffness
constant k

pV = k (1.29)

p
1
ρ

= k (1.30)

p = kρ (1.31)

The above equation works well for ideal gas, however, for fluid it won’t
work as well. The particles will always have repulsive forces. That’s the
tendency of ideal gas to expand and occupy the space. In contrast, fluid must
exercise cohesion and have constant density at rest. According to [6] we can
use modified version of the ideal gas state equation, the final formula then will
be

p = k(ρ− ρ0), (1.32)

where ρ0 is the rest density constant.
The final thing is that the pressure force (1.27) is not symmetrical. This

means that, when two particles with different pressure interact with each other
the action-reaction law will not be conserved, because the pressure force will
be asymmetric. We can symmetrize the pressure forces by modifying (1.27)
as follows [1]

fpress
i = −ρi

∑
j ̸=i

(pi

ρ2
i

+ pj

ρ2
j

)mj∇W (ri, rj , h). (1.33)

Because we want to avoid clustering of particles we cannot afford using
the gradient of standard kernel here, since its value goes to zero with r → 0.
Therefore in the above equation the special kernel for pressure Wpressure (1.18)
must be used.

Viscosity
When fluid flows its particles undergo friction. When friction happens kinetic
energy transforms into heat. This friction between particles in terminology
of fluid dynamics is called viscosity and is scaled by µ constant. By applying
(1.6) to the second term in (1.23) we get the following SPH formulation

fvisc
i = µ∇2u(ri)

= µ
∑
j ̸=i

uj
mj

ρj
∇2W (ri − rj , h). (1.34)

16

1.4. Lagrangian Fluid Dynamics

As in case with pressure the viscosity force is also asymmetric. As sug-
gested by [5] we can symmetrize it as follows

fvisc
i = µ

∑
j ̸=i

(uj − ui)
mj

ρj
∇2W (ri − rj , h). (1.35)

Here the Laplacian is being calculated. The Laplacian of standard and
pressure kernel produce negative outputs, which is not going to be suitable
for viscosity term, because it will cause instabilities. Considering that fact a
special kernel for viscosity Wvisc(1.22) must be used.

1.4.2 External Forces
The third term on the right hand side of (1.23) represents the sum of all the
external forces acting of a fluid particle

fext =
∑

n

fn,

where n represents each individual force. Some forces may be used directly
on each particle, while others will require application of SPH on adjacent
particles. Below are described two examples: the gravity, that acts directly
on each particle and surface tension, which value is calculated from adjacent
particles.

Gravity
The gravity force is applied for each particle regardless of their location or
surroundings. It does not require SPH approximation to be used. For every
particle gravity force will be

fgrav
i = ρig, (1.36)

where g is the gravitational acceleration constant.

Surface Tension
The surface tension force is not included in the NSE, therefore we need to
consider it as an external force. All the attractive forces inside the fluid
between adjacent particles are in perfect balance with each other, however, on
the surface this balance is not preserved which causes surface tensions. The
traction force of surface particles, oriented inside the fluid, is called the inward
surface normal. For inner particles this normal is zero it only applies for the
particles that are on or near the surface. The surface tension strength depends
on the curvature of the surface, the greater the curvature is the greater the

17

1. Theory and Background

tension will be. As proposed by [5] we will use the following formulation for
surface tension force

fsurf
i = −σ∇2ci

ni

∥ni∥
, (1.37)

where σ is the tension coefficient that depends on the material of the fluid
(e.g. water, air), ci is the smoothed value of color field for particle i, ni is the
inward surface normal of particle i.

The color field term c is used to determine the surface of the fluid. Its
value is c = 1 at particle location and c = 0 everywhere else [5]. In SPH
formulation this term is calculated as follows

ci = c(ri)

=
∑

j

cj
mj

ρj
W (ri − rj , h)

=
∑

j

mj

ρj
W (ri − rj , h).

(1.38)

The gradient of this color field is the inward surface normal

ni = ∇c(ri)

=
∑

j

mj

ρj
∇W (ri − rj , h). (1.39)

This normal is not zero only near the surface. The curvature of the surface
is described by

κ = −∇
2c

∥n∥ . (1.40)

The final formula for surface tension is

fsurf = σκn, (1.41)
which, applied to each particle, will give us (1.37). When ∥n∥ → 0 numer-

ical instabilities may arise, thus we have to compute fsurf
i only when

∥ni∥ ≥ l,

where l > 0 is some threshold relating to the particle concentration.

1.4.3 Collision
Now that we’ve described the physics behind fluid’s behaviour we need to
describe how it is supposed to behave when it interacts with a solid. The
collision algorithm is basically composed from two parts: collision detection
and collision response. Let’s describe them individually.

18

1.4. Lagrangian Fluid Dynamics

Collision Detection

In order for a particle to interact with surrounding objects (in our case that
will be a heightmap) we need to know particle’s position p and its velocity
v. The particle’s position prior to collision can be obtained by subtracting
from the current position its velocity vector multiplied by ∆t time step. The
collision model with a heightmap can be observed on Figure 1.6.

Figure 1.6: Collision with heightmap. Taken from [2].

To calculate collision response we will need to know the following data:

1. cp - contact point

2. d - penetration depth

3. n - normal vector at the contact point

As [1] put it the contact point cp does not necessarily have to be the
intersection point on the line segment between the current position p(t) and
the previous position p(t - ∆t) we can use the closest point in the normal
direction if it doesn’t influence the result of collision too much. Before we talk
about how we can use these data for calculating collision response we need to
mention, how we detect collision with a heightmap fist.

A heightmap is represented as a matrix of heights. For each point its
height z can be obtained from this matrix by providing its [x, y] coordinates.
The implementation of terrain via heightmap will be discussed in more details
in subsection 4.2. For any point r we can thus easily find height z and normal
n of the surface. The penetration depth d and contact point cp are then easy
to calculate

d = z(r)− rz,

cp = r + [0, 0, d].

19

1. Theory and Background

Collision Response
To simulate collision response we need to project a particle onto the surface
i.e. we must assign the contact point cp to particle’s position r

ri = cp,

and adjust particle’s velocity along the normal n direction [1]

ui = ui − 2(ui · n)n (1.42)

Equation (1.42), describes a perfect elastic collision, which means that the
kinetic energy will be conserved. That implies that a fluid particle will bounce
off the surface, which fluids don’t usually do. For that we need to control how
much the kinetic energy will be conserved to achieve more realistic results.
We will do this by introduction of the restitution constant [1]

ui = ui − (1 + cR)(ui · n)n, (1.43)

where 0 ≤ cR ≤ 1 is the coefficient of restitution.
However, this will not be enough, because the magnitude of cR may be

1 and equation (1.43) will increase the kinetic energy of the particle, it will
virtually behave no different from the equation (1.42). For that we need to
constrain the outgoing energy to never exceed the incoming energy. We’ll do
this by introducing the ration of penetration depth to the distance between
the last particle position and the penetrating position [1]

ui = ui −
(

1 + cR
d

∆t∥ui∥

)
(ui · n)n, (1.44)

where we implicitly assume that ∥ui∥ > 0.

1.4.4 Time Integration
In order to actually move a fluid particle we need to advance its position
through the time constant ∆t that is set globally. Equation (1.24) is evaluated
to obtain the particle’s acceleration and then this acceleration is employed to
advance the position.

In this work the Leap-Frog integrator will be used. The major peculiarity
of the Leap-Frog integrator is that the position and velocity of a particle are
not updated in parallel. It uses a half time step to compute the new value of
particle’s velocity and then uses that value to obtain the updated position of
the particle. Figure 1.7 illustrates the concept. The integration scheme yields

ut+1/2∆t = ut−1/2∆t + ∆tat, (1.45)

rt+∆t = rt + ∆tut+1/2∆t. (1.46)

20

1.4. Lagrangian Fluid Dynamics

Figure 1.7: Leap-Frog scheme. Taken from [1].

with the initial velocity offset

u−1/2∆t = u0 −
1
2

∆ta0. (1.47)

The velocity in time t can be obtained by following approximation

vt ≈
vt− 1

2 ∆t + vt+ 1
2 ∆t

2
. (1.48)

21

1. Theory and Background

1.5 Hydraulic Erosion Model
In this section we will describe the hydraulic erosion model proposed by [3]
that couples the SPH fluid simulation model, discussed in section 1.4 and the
Eulerian physically based erosion model.

Simulation of hydraulic erosion has been a tough challenge in Computer
Graphics. Any hydraulic erosion simulation is based on the simulation of
fluid flows. The classical way is to use the Eulerian method, but its major
disadvantage is the usage of 3D grid that is not easy to scale dynamically,
that makes it unsuitable to simulate sparse volume. It will rapidly become
memory costly, when applied for large domains. This is why in their work
[3] proposed to employ SPH fluid model to simulate erosion phenomenon. Its
memory efficiency enables to simulate large scale terrains, since it focuses its
computations only in regions, where fluid particles physically present.

SPH particles will be used to carry material sediment and thus no addi-
tional particles are needed to represent it. The sediment will be contained
directly within a SPH particle and represented as percentage of the volume it
occupies. The movement of sediment is driven by both implicit and explicit
advection. The implicit advection follows the flow of SPH particles, whereas
the explicit is the donor-acceptor advection scheme, where sediment only ad-
vects from donor to acceptor. The donor-acceptor scheme will be discussed
more in details in subsection 1.5.4.

1.5.1 Boundary Particles and External Forces

Figure 1.8: Boundary particles is the means for interacting SPH particles with
the terrain. Taken from [3].

The fluid-terrain interaction will take place via boundary particles that
will be seeded, with the in-between distance ∆s, over the triangles of the

22

1.5. Hydraulic Erosion Model

terrain that is represented as a heightmap Figure 1.8. This interaction will
involve three things: friction, erosion and deposition.

In subsection 1.4.2 we’ve broken down and described the external forces
used in the equation (1.23) that act upon fluid. We concluded that we would
be taking into account only gravity fgrav and surface tension fsurf . Now, when
boundary particles come into play, we will extend the external forces term fext

by appending the force due to solid boundary fbound. The resulting external
force is going to be the sum of the following three components [3]

fext = fgrav + fsurf + fbound. (1.49)

In [3] the boundary force fbound is represented as the sum of no-slip fns and
no-penetration conditions fnp i.e.

fbound = fns + fnp. (1.50)

The no-slip condition states that the fluid cannot penetrate the surface and
the no-slip condition sets the fluid’s relative speed on the boundary to zero,
which represents friction. However, we already described, how fluid particles
will collide with the terrain in subsection 1.4.3. That collision method will
substitute the no-penetration condition. Therefore, we will drop the fnp term
and the equation (1.50) will take the following form

fbound = fns, (1.51)

where we only calculate friction in a fluid-boundary interaction. The no-
slip fns is given as [3]

fns(r) =
∑

b

L2
bτvisc(|r− rb|), (1.52)

where b is the boundary particles, Lb = ∆s is the distance between the
boundary particles and τvisc is traction. The traction is expressed as [3]

τvisc(r) = −µbf v∇2Wvisc(r, h), (1.53)

where µbf is the boundary friction constant and Wvisc is the viscosity
kernel (1.22).

1.5.2 Erosion
One important thing here is that fluid flows produce shear stress on boundary
particles. This is a force caused by parallel fluid forces. To apply it on bound-
ary particles [7] proposed to give them non-Newtonian fluid characteristics via
a power-law model

τ = Kθn, (1.54)

23

1. Theory and Background

where τ is the shear stress, K is the shear stress constant, θ is the shear
rate (a measure of shear deformation). The shear rate can be approximated
as follows [3]

θ = vrel

l
, (1.55)

where vrel is the velocity of the fluid relative to solid surface and l is the
distance over which the shear rate is applied.

Next we need to the erosion rate. The erosion rate is related with shear
stress. It was formulated by [8] as follows

ε = Kε(τ − τc), (1.56)

where Kε is the erosion strength and τc is the critical shear stress (material
erosion resistance). The change of mass of particle b by the SPH particle j
within the distance of smooth radius h is [3]

dMb

dt
= −

∑
j

L2
bε(j). (1.57)

1.5.3 Sediment Transportation
The process of sediment transportation is described by the general equation
[3]

C(x, t) = P (C) + J(C, x, t), (1.58)

where C is percentage of local volume of SPH particle occupied by sediment
particles, P represents the physical redistribution processes and J is the sources
and sinks that reflect erosion and deposition. In order to apply equation (1.58)
in SPH we need to use the diffusion equation for SPH proposed by [4]

dC

dt
= 1

ρ
∇(D∇C) + J, (1.59)

where dC
dt is the total derivative, denoting the time rate of change following

particles at velocity u and D is the molecular diffusivity. In our simulation we
use u to describe the total velocity of a sediment particle, which is composed
from the sum of fluid velocity v and settling velocity vs [3].

u = v + vs. (1.60)

In section 8.3 we addressed that the NSE for the Lagrangian fluid dynamics
are simplified, due to the fact that this approach describes fluid flows as a set
of particles freely moving around in the space and that any quantity field
depends on time only rather than time and position. As a result on the left-
hand side we changed the acceleration term by substituting ∂

∂t +u·∇ with total

24

1.5. Hydraulic Erosion Model

time derivative d
dt . In our simulation we use the implicit sediment particles i.e.

sediment particles follow SPH particles and contained within them. In order
to switch from the framework of explicit particles into implicit we first switch
into a space-fixed Eulerian frame of reference. We do so by substituting the
total derivative in (1.59) with ∂

∂t + u · ∇ and plugin (1.60) into the velocity
term, which yields [3]

∂C

∂t
+ (v + vs) · ∇C = 1

ρ
∇(D∇C) + J. (1.61)

Opening the brackets yields

∂C

∂t
+ v · ∇C + vs · ∇C = 1

ρ
∇(D∇C) + J. (1.62)

By replacing the term ∂C
∂t + v · ∇C back by the total derivative ∂C

∂t we’ll
get the advection-diffusion equation for sediment tranport in SPH

dC

dt
= −vs · ∇C + 1

ρ
∇(D∇C) + J. (1.63)

In the following section we describe the numerical implementation of the
advection term −vs·∇C and the diffusion term 1

ρ∇(D∇C) in the SPH context.

1.5.4 Advection (donor-acceptor scheme)

Figure 1.9: The donor-acceptor scheme. Donor particles pass the sediment to
acceptor particles, whose relative position is with respect to direction of the
settling velocity. Taken from [3].

The term −vs ·∇C, from equation (1.63), represents advection of sediment
between SPH particles in the direction of the settling velocity. To implement

25

1. Theory and Background

it [3] introduced the donor-acceptor scheme that describes interaction between
particles. A SPH particles i thus is either a donor or an acceptor in every i−j
particle interaction. It is being an acceptor, when its relative position with
respect to the donor particle corresponds the direction of the settling velocity
vector Figure 1.9. For SPH the advection term is expressed as

−vs · ∇C = −
∑

j

mj
Cj

ρj
(vs · r̂ij)F (|rij |, h), vs · rij ≥ 0

mi
Ci
ρi

(vs · r̂ij)F (|rij |, h), vs · rij < 0,
(1.64)

where

∇W (rij , h) = r̂ijF (|rij |, h),

rij = ri − rj ,

r̂ij = rij/|rij |
and F is the derivative of the cubic spline kernel W taken with respect

to |rij |. Particle i acts as the acceptor, when vs · rij ≥ 0 and as a donor
otherwise. The hindered settling velocity vs is formulated as

vs = 2
9

r2
s

ρs − ρf

µ
gf(C), (1.65)

where ρs, ρf are the sediment and fluid densities, g is the gravity accel-
eration constant rs is the radius of a sediment particle, µ is the viscosity of
the fluid and C is the solid volume fraction at the acceptor particle. The
function f(C) is the hindering settling function approximating decreasing ad-
vection rate with higher sediment concentration. It is approximated using the
Richardson-Zaki relation [9]

f(C) = 1− (C/Cmax)e, (1.66)
where Cmax is the maximum solid volume fraction in a fluid particle and e

is an exponent 4 < e < 5.5. For the case of C > Cmax we set f(C) = 0. When
C > Cmax the saturated particle do not receive the sediment. Figure 1.10
depicts the transportation of the material along the settling velocity vector.

1.5.5 Diffusion
Diffusion is the tendency of the material to flow from a high concentration
area to low concentration area Figure 1.11. As suggested by [4] the diffusion
can be expressed as

dC

dt
= 1

ρ
(D∇C), (1.67)

26

1.5. Hydraulic Erosion Model

Figure 1.10: Material advection. The sediment advects with respect to di-
rection of the settling velocity that corresponds with gravity. Taken from
[3].

Figure 1.11: Material diffusion. Blue represents low concentrated areas while
red is highly concentrated. Taken from [3].

where D is the coefficient of diffusion. The diffusion equation for SPH will
be [3]

dCi

dt
=

∑
j

mj

ρiρj
D(Ci − Cj)F (|ri − rj |, h), (1.68)

where F is the gradient function of a cubic spline kernel. This equation
shows a positive rate of change for values of Ci < Cj .

1.5.6 Deposition

Deposition is the process of moving the material contained within a fluid par-
ticle onto a boundary particle once the fluid particle gets close to the ground.
This process is calculated in two steps: the SPH particles communicate with
boundary particles and boundary particles communicate with the terrain. Fig-
ure 1.12 depicts this process. The change of mass of a boundary particle b due

27

1. Theory and Background

Figure 1.12: Material deposition. The sediments flows from SPH particle to
boundary particles (left). The terrain height is changed and new boundary
particles generated (right). Taken from [3].

to exchange of C from fluid particle j is [3]

dMb

dt
=

∑
j

ρs
mj

ρj

dC(j)
dt

(1.69)

where dC(j)/dt is the advection term from (1.64) with fluid particles
strictly set as donors and boundary particles as acceptors. For the case of
(vs · rij) < 0, there is no material deposition.

1.5.7 Terrain Modification
SPH fluid particles interact with the terrain via boundary particles that are
located on the triangles of the terrain. The terrain is represented as a regularly
sampled heightmap. The change of mass of a triangle p is related with the
change of mass of all its boundary particles and is expressed as follows [3]

dMp

dt
=

∑
b

dMb

dt
. (1.70)

Because we use a regular heightmap the deformation of the terrain cor-
responds to changing the height of the triangle’s vertices. The equation for
computing the total height change H of a triangle is [3]

H = 3
6

m

ρs

1
Ab

, (1.71)

where m is the triangle’s mass, the term (1/6) reflects the fact that chang-
ing one vertex results in a change of six attached triangles to an inner vertex
on the heightmap, the term Ab is the area of the vertically projected triangle.
For the deposition case i.e. H > 0 we first distribute H to the lowest triangle
vertices, when their height are even we then distribute H uniformly. The same

28

1.5. Hydraulic Erosion Model

principle applies for the erosion case (H < 0). We subtract the height from
the heightest vertices first and once they’re all even we subtract uniformly.

29

Chapter 2
Method Anylysis

This chapter describes which algorithms and methods will be used and even-
tually implemented in the implementation section 4.

2.1 Algorithms

The fluid will be represented and simulated using the SPH that employs
the Lagrangian fluid dynamics approach. The advantage of this method is
that each individual fluid particle is represented as a 3D object freely moving
around in a 3D space. Besides its physical parameters like pressure, density,
viscosity we will have to keep track of its current position and velocity. The
position and the velocity of the same particle in the next iteration can then be
easily calculated via the Leap-Frog integrator described in the subsection 1.4.4.
This approach enables us to simulate sparse volumes, where particles are able
to get anywhere in the world and are not fixed by a grid, that drastically
reduces memory costs of the entire simulation. The simulation implemented
in such fashion is much easier to scale. On the other hand the trade-off of this
approach is that a fluid volume would need to have more particles to deliver
realistic behaviour.

The erosion model proposed by [3] efficiently couples SPH fluid with physically-
base erosion model. It has a couple of game-changing advantages. First, it
uses a similar interpolation techniques with boundary particles to calculate
erosion of material. Second, it stores sediment inside water particles, so we
don’t have to introduce a new kind of particles to represent it. Third, we can
generate boundary particles only at places where fluid particles are to avoid
memory costs.

31

2. Method Anylysis

2.2 Terrain Representation
The assignment of this work states that the terrain will be represented as a
3D voxel grid, however in the end I decided to give up on this idea.

The voxel grid has several complications. First, the grid is preallocated
and consumes a lot of memory, if we want to expand the terrain it will end up
being memory costly. Second, it is an intrinsically different kind of approach.
The voxel grid is related with the Eulerian approach. We have the fluid
implemented as the SPH i.e. the Lagrangian approach that calculates its
physical forces by interpolating among the adjacent particles. If we couple a
fluid system that employs an interpolation methods with a voxel grid we will
run into the issue of performing excessive calculations. Specifically, when a
SPH particle approaches the surface besides dealing with boundary voxels it
will have to reach the voxels underneath the surface and count them in as well.
This will produce additional calculations. When a surface voxel is washed out
it reveals up to 5 new voxels underneath it that must be processed in the same
iteration. Rather than bothering what should and should not be counted in
underneath the surface it would be much better, if fluid particles only have
to deal with what’s on the surface and based on these interactions adjust the
terrain.

A better option to represent the terrain is by using a heightfield. The
heightfield represents only the surface of the terrain. We can then efficiently
seed boundary particles on its triangles only at places where fluid particles
are. The fluid particles will only interact with the boundary particles on the
surface and the terrain will be adjusted correspondingly.

2.3 Analysis Summary
In this chapter we’ve talked about methods and algorithms that we will stick
with and implemented in the implementation chapter 4. The fluid will be
represented as SPH. We opted to give up on voxel grid and stick with the
heightfield to represent the terrain.

SPH method

⊕ freely moving particles

⊕ memory efficient

⊕ no redundant computations

⊕ fast sparse fluid simulation

⊖ requires big amount of particles to deliver a realistic behavior

⊖ might be imprecise on boundary conditions

32

2.3. Analysis Summary

Erosion model

⊕ sediment is stored within SPH particles

⊕ boundary particles are used communicate with the fluid and the terrain
1.5.1

⊕ simulates erosion 1.5

⊕ simulates deposition 1.5.6

⊕ simulates advection (1.5.4) and diffusion (1.11)

⊕ uses heightfield

⊖ less accurate, heightfield only moves vertically

33

Chapter 3
Software Design

In this chapter we will talk about, how the application will be designed in
terms of software design. We will talk about functional and non-functional
requirements (section 3.1), use cases (section 3.2), take a look at the diagrams
that describe the architecture of the application (section 3.3) and discuss the
user interface of the application in more details (section 3.4).

The current application serves primarily as a visualization of hydraulic
erosion applied on a terrain. A user of the application can upload a terrain
map and watch, how a water volume will approximately change it.

3.1 Functional and Non-functional Requirements
In this section we list specific functional and non-functional requirements of
the application. The functional requirements are listed in table 3.1. The
non-functional requirements are listed in table 3.2.

35

3. Software Design

Id Requirement Description

F1 Simulation of water vol-
ume

The application must simulate a wa-
ter volume with given number of
particles

F2 Simulation of erosion The water must erode the terrain

F3 Water-terrain collision The water must collide with the ter-
rain and not go through it

F4 Boundary particles on
the surface

The surface of the terrain must be
seeded with boundary particles

F5 Terrain as a heightfield The map is generated based on the
bitmap image

F6 Illumination The simulation must use basic light-
ing model (like Phong) to make the
objects visible in the scene

F7 Mouse and keyboards
control

User must control the camera in the
scene with mouse and keyboard

F8 Adjusting the simula-
tion parameters

User must be able to change the
simulation parameters (e.g. set the
number of particles, change fluid
forces, change map, etc.)

F9 Fluid particles repre-
sented as 3D spheres

Each individual particle must be
rendered as a 3D sphere

F10 Graphical interface to
interact with the simu-
lation

The application must provide a
graphical user interface to give a
user an opportunity to change the
set the parameters

Table 3.1: Functional requirements.

36

3.1. Functional and Non-functional Requirements

Id Requirement Description

N1 Boundary particles gen-
erated dynamically

The boundary particles must be
generated only in places where fluid
particles reach

N2 Terrain is grid-
accelerated

The terrain represents the grid
of cells from top-view perspective,
each grid is composed out of two tri-
angles

N3 Parallelization of the
water simulation

The water simulation must leverage
the CPU multithreading to perform
calculations

N4 Usage of C++ program-
ming language

The implementation of the applica-
tion must be written in C++

N5 Usage of OpenGL To render all graphics OpenGL
graphical API must be used

N6 Application is designed
for Windows platform

The application must be defined to
run on Windows 10 platform

Table 3.2: Non-functional requirements.

37

3. Software Design

3.2 Use Cases
This section elaborates on different use cases. The individual use cases are
described in Table 3.3, Table 3.4, Table 3.5.

Use Case 1 Run the simulation without changing any-
thing

Actor User

Use case overview User runs the application. The scene is
loaded and the simulation is paused by de-
fault. User sees the Help Window with the
information about how to use the applica-
tion. User proceeds to close the Help Win-
dow and unpauses the simulation. The
water volume begins to pour onto the ter-
rain.

Success scenario The particles of the water volume disap-
pear after their lifetime is expired. User
observes the deformed terrain.

Table 3.3: Use case: simulation run.

38

3.2. Use Cases

Use Case 2 Initialization parameters set up

Actor User

Precondition 1 User ran the application

Precondition 2 Simulation is paused by default

Precondition 3 User closed the Help Window

Use case overview User opens up the graphical interface win-
dow and edits the initialization parame-
ters (e.g. number of particles, particle life-
time, terrain map) in the section labeled
as Initialization. User then closes the in-
terface window and unpauses the simula-
tion. The water volume begins to pour
onto the terrain.

Success scenario The particles of the water volume disap-
pear after their lifetime is expired. The
user observes the deformed terrain.

Table 3.4: Use case: initialization parameters set up.

39

3. Software Design

Use Case 3 Runtime parameters editing

Actor User

Precondition 1 User ran the application

Precondition 2 User closed the Help Window

Precondition 3 User unpaused the simulation

Use case overview User opens up the graphical interface win-
dow and edits the runtime parameters of
the simulation (e.g. light direction, ter-
rain color, water density, gravity, etc.)

Success scenario The the simulation and the scene compo-
nents are influenced by the edited param-
eters

Table 3.5: Use case: runtime parameters editing.

Table 3.6: The requirements fulfillment table

Requirements

Use Cases F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

UC1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
UC2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
UC3 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

40

3.3. Application Design

3.3 Application Design
In this section we will talk about the structure of the application as well as
demonstrate the sequence of internal processes.

3.3.1 Control Flow and Processes
The application begins with the initialization of multiple components that
are required for its running. This happens before the render loop begins.
Here, OpenGL is initialized and a view port window is created, terrain map
is loaded, shaders are loaded, fluid origin and camera placement are set and
finally the fluid system is initialized with given number of particles.

After all the components are set up and ready to be used the application
proceeds to the render loop. Within the render loop use input is read, graph-
ical interface is drawn, the simulation is calculated and the scene is rendered.
The fluid system has to communicate with the terrain, therefore the pointer
to the terrain is passed to it.

The fluid system calculate the fluid forces first. Right after the fluid is
calculated boundary particles are seeded over the surface of the terrain and
required boundary forces are calculated. While seeding the boundary parti-
cles the fluid system communicated with the terrain to give it the information
where fluid particles are and to obtain the generated list of boundary par-
ticles. After that the hydraulic erosion is simulated (i.e. sediment transfer,
deposition, erosion). Next the terrain is updated, again fluid module com-
municates with the terrain module. Finally the fluid particles are advanced
and the collisions with the terrain are resolved. Figure 3.1 demonstrates the
described control flow.

3.3.2 Structure and Architecture
Fluid system The fluid system is implemented in fluid_system.h. Class
FluidSystemSPH contains the parameters necessary to describe fluid state
and the containers that store the particles. Method Initialize() is called at
the beginning of the application. It creates a water volume with given number
of particles and sets each particle with initial values. Method Run() performs
the simulation steps, fluid and erosion are calculated here. Method Draw() is
responsible fore drawing fluid and boundary particles. The class provides the
following containers:

• m_Particles - a vector with that stores fluid particles

• m_ParticlesSpatialHash - the spacial hashing data structure that divides
the space on cells and stores indexes of fluid particles from mP articles
in those cells

41

3. Software Design

• m_ParticleNeighbors - a 2D vector that stores neighbour lists of each
fluid particle

• m_BParticles - a vector that stores all the boundary particles generated
throughout the terrain

• m_NearestBParticles - an unordered set that stores neared boundary
particles that were detected by fluid particles in current iteration

• m_FluidsOfBoundary - an unordered map that assigns to each boundary
particle indices of the water particles that it was detected by

Terrain The terrain is implemented in grid.h. Class Grid is responsible for
representation and management of the terrain. It builds up the heightfield
from the uploaded bitmap, generates and stores boundary particles and re-
solves the collisions. The class is called grid, because the terrain is accelerated
with grid topology (we will discuss it in more details in section 4.2). The map is
uploaded and initialized in the constructor of the class. Method HFUpdate()
is responsible for adjusting the geometry of the terrain. Method collision()
resolves the collision of fluid particles with the heightfiled. Method SeedCell()

Figure 3.1: Action diagram of the application.

42

3.4. User Interface

is called for each fluid particle in the fluid system and seeds boundary parti-
cles over the cell, where current fluid particle is located. The Grid class uses
kd-tree data structure that stores boundary particles of each grid (kd-tree will
be discussed in more details in subsection 1.5.1). The class implemented its
own drawing method Draw() that renders the terrain.

Camera The camera is abstracted away in camera.h. It encapsulates the
logic of camera computations. The class processes input from keyboard and
mouse and produces the viewmatrix.

Shader The shader class is implemented in shader.h. It provides a handy
functionality to read and compile the code of vertex and fragment shader
files. Its interface provides the abilities to pass uniform arguments and bind
the shader program.

3.4 User Interface
A graphical user interface provides a handy way to interact with any software.
This program itself is a graphical application that provides visual outcomes,
however when we want to change some settings we might end up having hard
times doing so. That’s why it is a good idea to have some UI that will enable
us to manipulate the program in run time.

The graphical interface in this work will provide functionalities to adjust
the simulation parameters, as well as set up the scene. It will be organized in
three sections:

• Initialization - set up the initial parameters

• Run time - adjust the parameters during run time(e.g. fluid density,
pressure)

• Info - information about the state of the application (e.g. camera world
position)

It is important to note that interaction with the UI might be very slow while
simulating huge volumes of water. In this work the Dear ImGui library is used
to deliver a graphical interface.

The wireframe of the user interface is pictured on Figure 3.2. The actual
user interface in the final program is pictured on Figure 3.3. In the final version
I added Fluidorigin, Particlelifetime fields in the Initialization section, as
well as Clearcolor in the Runtime section.

43

3. Software Design

Figure 3.2: The graphical interface wireframe.

44

3.4. User Interface

Figure 3.3: A screenshot with implemented graphical user interface.

45

Chapter 4
Implementation

The previous section 1 describes the theoretical part of fluid and erosion model.
In this section we talk about how we can put this theory in a practical use. The
entire simulation is run on CPU using OpenMP API to boost the calculation
by leveraging multithreading. The logic of the simulation is illustrated on
Figure 4.1. We will talk in details about each step down below in this chapter.

Figure 4.1: The simulation algorithm scheme.

Our simulation uses a lot of particles (fluid + boundary). We need to know
the adjacent particles of each SPH particle to calculate its physical quanti-
ties and to pass the carrying sediment between them. And also, we need to
know which boundary particles are in range of each fluid particle in order
to erode/deposit material from/onto them. That implies the involvement of
lots of iterations until we find the particles we need. This part of simula-
tion can very quickly lead to performance issues and significantly increase the
simulation time. Luckily, it can be improved algorithmically.

47

4. Implementation

Figure 4.2: Spatial Hashing data structure to accelerate particles’ neighbours
search. The cell size h is the smooth radius of SPH particles. Taken from [2].

4.1 Fast Nearest Neighbor Search
Iterating over all particles in the scene and checking if a given particle is adja-
cent to the current particle will have O(n2) time complexity. This complexity
can be reduced down to O(mn) by employing the spatial hashing method.

4.1.1 Spatial Hashing
The spatial hashing method is an algorithm that enables us to efficiently find
nearest neighbors Figure 4.2. Basically, it is a way of using a hash table to
subdivide 3D space. Each particle position goes through a hash function,
which maps a 3D position to 1D by generating a hash key for each grid cell.
The hash function proposed by [10] is as follows

hash(r̂) = (r̂xp1 xor r̂yp2 xor r̂zp3) mod nH , (4.1)

where nH is the size of the table and

r̂(r) = (⌊rx/l⌋, ⌊ry/l⌋, ⌊rz/l⌋)T (4.2)

is the position of a point in 3D space, with cell size l. The three unknowns
in (4.1) are

p1 = 73 856 094

p2 = 19 349 663

p3 = 83 492 791

48

4.2. Terrain

According to analyses from [10] the most efficient table size nH is

nH = prime(2n), (4.3)

where prime(x) is the function that returns a prime number which is ≥ x
and n is the amount of particles in the simulation. For the cell size we use

l = h, (4.4)

which is the most optimal, since we want to only include particles that are
within the smoothing radius i.e. ∥r∥ > h.

4.1.2 Spatial Queries
Before being able to quickly access adjacent particles we need to build up the
hash table itself. We can do this by iterating twice through the whole set of
particles.

The first pass creates a hash key for each particle and puts it in appropriate
position in the hash table

hash_table[hash(r̂(ri))] = Particlei, (4.5)

where ri is the position of particle i. Each hash_table value has to be a
dynamic list, where we will store the adjacent particles with particle i.

The second pass performs the actual particle queries. For a given particle
position rQ we calculate the bounding box around it as follows

BBmin = r̂(rQ − (h, h, h)T), BBmax = r̂(rQ + (h, h, h)T). (4.6)

Then we iterate from BBmin to BBmax in each three axis, creating unique
discrete positions posD and retrieve a dynamic list L for each such position

L = hash_table[hash(posD)]. (4.7)

Finally we iterate over L and check for each particle j if it is within the
smoothing radius of the query particle i.e. ∥rQ − rj∥ ≤ h and add it to a
resulting particle container.

4.2 Terrain
We implement the terrain as a heightmap. Because the water will only interact
with the surface there’s no need to import a 3D mesh with a complex geometry
that might cause additional performance issues. It is sufficient to have only
the surface of the terrain. That’s what a heightmap (or heightfield) is designed
for. We import a grayscale bitmap and build the terrain from the values of its

49

4. Implementation

Figure 4.3: Top-view projection on grid accelerated terrain. Red dots repre-
sent geometry points in 3D space.

pixels. Each pixel in the bitmap has a value in range from 0 to 255. This value
will serve as a height for a 3D point of our terrain. The bitmap is essentially a
2D matrix of pixels. Thus, we can easily build the entire terrain geometry by
iterating over the entire bitmap extracting the height on each position. For a
terrain point (x, y, z) we obtain its coordinates as follows

(x, y, z) = (i, j, h(i, j)), (4.8)

where

h(i, j)− height value at i, j position, (4.9)

i is the index that iterates from 0 to Dimx of the bitmap, j is the index
that iterates from 0 to Dimy.

Looking from top-view projection at our terrain we can see that all points
are evenly distanced between one another giving us a uniformly distributed
grid (Figure 4.3). We are going to leverage this property to efficiently access
any triangle. The distance between points in both directions will be repre-
sented by a 2D vector called cell_size and is going to be a user input value.
Each cell is built up from 4 points and 2 triangles. We can map a 3D point
(x, y, z) to a grid cell with index (xi, yi) as follows

(xi, yi) = (⌊ x

cell_size
⌋, ⌊ y

cell_size
⌋). (4.10)

In the equation (4.10) we don’t need the height coordinate z, because we
want to figure out where the point is on XY plane.

We can reverse the equation (4.10) as follows

(xw, yw) = (⌊xi ∗ cell_size⌋, ⌊yi ∗ cell_size⌋). (4.11)

50

4.3. Collision

Equation (4.11) converts a cell index into world space coordinates. The
coordinates of vector (xw, yw) will always correspond to coordinates of ”top-
left” point of the (xi, yi) cell in XY projection. By extracting the height of
this position we obtain the coordinates of the top-left point in 3D space

(xw, yw, h(xw, yw)). (4.12)

By leveraging these properties we can efficiently determine where exactly
a SPH particle is located on the grid and access all the appropriate vertices.
We initialize the terrain by iterating over the bitmap once and for each (i, j)
pair we compose its 3D version by using (4.8) and storing these geometry data
in a dedicated buffer.

4.3 Collision
In section 1.4.3 we talked about how a SPH particle will detect and react on a
collision with a heightfield. Further, in section 1.4.4 we described how we can
employ the Leap-Frog time integration scheme to advance particles based on
delta time step. In this section we are going to use them in collision handling
algorithm.

Our goal is to register an intersection with a triangle or multiple triangles
in 3D space. When a particle intersects the terrain it means that it de facto
goes through the surface and ends up underneath it. Because all the triangles
are located arbitrarily we have to implement a robust algorithm that will
successfully detect any collision with any triangle at any point on the terrain.
We can detect whether a particle i intersected a triangle by computing its
next position in ∆t time step

To detect whether the particle intersected with a given triangle we employ
a ray casting technique. The idea is to cast a ray from the particle position
along the directional vector. We can easily calculate the directional vector of
a particle by subtracting its next position from the current

dir = rt+∆t − rt, (4.13)

where rt+∆t is obtained by (1.46)
In order to detect a ray-triangle intersection we need to know three things:

position, directional vector and the vertices of the triangle. We can efficiently
obtain them by employing equations (4.10) and (4.11) to convert particle’s
position (x, y, z) into a cell index (xi, yi) and then obtain the top-left (in XY
plane) point coordinates (xw, yw). To form a triangle we need to get the
adjacent points within the cell. We get them by adding cell_size to each
coordinate

(xw, yw)

51

4. Implementation

(xw + cell_size, yw)

(xw, yw + cell_size)

(xw + cell_size, yw + cell_size)

By extracting the height value from the heightfield and assigning it to z
coordinate we get 3D positions of these points

A = (xw, yw, h(xw, yw))

B = (xw + cell_size, yw, h(xw, yw))

C = (xw, yw + cell_size, h(xw, yw))

AA = (xw + cell_size, yw + cell_size, h(xw, yw))

We use Moller-Trumbore algorithm to detect a ray-triangle intersection.
As an input we have to provide a position, a direction and three triangle’s
vertices. The output is a boolean value whether the collision has happened
or not and the parameter t. This parameter determines the intersection point
on the ray in the ray equation

Figure 4.4: Particle is projected back onto the triangle it intersects with.

52

4.3. Collision

R = O + t ∗ d, (4.14)

where O is the ray’s origin and d is the direction vector
In our case, we want to determine the collision once the particle is un-

derneath the surface, so we need to provide the next position rt+∆t, reversed
direction -dir and three vertices of a triangle

bool intersection = MollerTrumbore(rt+∆t,−dir, A, B, C, &t) (4.15)

If particle intersects a triangle it means that a collision happened and the
particle must be projected back onto the surface (triangle). We calculate the
contact point cp by applying the Moller-Trumbore one more time, but this
time as a directional vector we specify the triangle’s normal vector

bool intersection = MollerTrumbore(rt+∆t, nABC , A, B, C, &t). (4.16)

The contact point is then obtained as follows

cp = rt+∆t + t ∗ nABC . (4.17)

The penetration depth d can be easily calculated

d = ∥cp− rt+∆t∥ (4.18)

Figure 4.4 depicts how SPH particle is projected back onto triangle.

(a) Particles intersects with a triangle, but
failed to be projected on it along the trian-
gle’s normal N.

(b) Particles is projected on the triangle
by calculating the interpolation of normal
vectors of the triangle it intersects with
and the adjacent triangle.

Figure 4.5: Edge case, when SPH particle is projected by means of interpola-
tion of normal vectors.

53

4. Implementation

The last thing to solve is edge cases. When the particle intersects the
triangle somewhere on the edge we can have hard time projecting it back as
shown on Figure 4.5a). We solve this problem by taking the both triangle’s
normal, calculating their interpolation and then trying to project the particle
on either of those triangles Figure 4.5b).

The second edge case is when the particle intersects the triangle on its
corner. Here we adhere to the same principle only this time we want to
interpolate the normal vectors of six triangles and try to project the particle
on each of them.

Let’s wrap up the section with pseudo code of the entire algorithm
1: function Collision(posCur, posNext, &cp, &norm) -> bool
2: dir ← posNext− posCur
3: cellIdx← toCellIdx(posCur)
4: cellIdxNext← toCellIdx(posNext)
5: if posCur = posNext then ▷ if in the same cell
6: cellT riangles[]← getCellT rinagles(cellIdx)
7: if MollerTrumbore(posNext,−dir, cellT riangles[0], &t) then
8: norm← cellT riangles[0].norm
9: if MollerTrumbore(posNext, norm, cellT riangles[0], &t) then

10: cp← posNext + t ∗ norm
11: return true
12: else if edge case within the same cell then
13: mapBetweenTrianglesOfTheSameCell(&t, &norm)
14: cp← posNext + t ∗ norm
15: return true
16: else if edge case between cells then
17: mapBetweenTrianglesWithAdjacentCell(&t, &norm)
18: cp = posNext + t ∗ norm
19: return true
20: else if corner case then
21: mapBetweenSixTrianglesAtTheCorner(&t, &norm)
22: cp← posNext + t ∗ norm
23: return true
24: end if
25: end if
26: if MollerTrumbore(posNext,−dir, cellT riangles[1], &t) then
27: norm← cellT riangles[1].norm
28: if MollerTrumbore(posNext, norm, cellT riangles[1], &t) then
29: cp← posNext + t ∗ norm
30: return true
31: else if edge case within the same cell then
32: mapBetweenTrianglesOfTheSameCell(&t, &norm)
33: cp← posNext + t ∗ norm

54

4.3. Collision

34: return true
35: else if edge case between cells then
36: mapBetweenTrianglesWithAdjacentCell(&t, &norm)
37: cp = posNext + t ∗ norm
38: return true
39: else if corner case then
40: mapBetweenSixTrianglesAtTheCorner(&t, &norm)
41: cp← posNext + t ∗ norm
42: return true
43: end if
44: end if
45: else ▷ If in different cells
46: if corner case then
47: mapBetweenSixTrianglesAtTheCorner(&t, &norm)
48: cp← posNext + t ∗ norm
49: return true
50: else
51: cellT riangles[]← getCellT riangles(cellIdxNext)
52: if MollerTrumbore(posNext,−dir, cellT rinagles[0], &t) then
53: norm← cellT riangles[0]
54: if MollerTrumbore(posNext, norm, cellT rinagles[0], &t) then
55: cp← posNext + t ∗ norm
56: return true
57: else
58: mapBetweenTrianglesWithAdjacentCell(&t, &norm)
59: cp← posNext + t ∗ norm
60: return true
61: end if
62: end if
63: if MollerTrumbore(posNext,−dir, cellT rinagles[1], &t) then
64: norm← cellT riangles[0]
65: if MollerTrumbore(posNext, norm, cellT rinagles[1], &t) then
66: cp← posNext + t ∗ norm
67: return true
68: else
69: mapBetweenTrianglesWithAdjacentCell(&t, &norm)
70: cp← posNext + t ∗ norm
71: return true
72: end if
73: end if
74: end if
75: return false
76: end if
77: end function

55

4. Implementation

4.4 Hydraulic Erosion Model
In this section we will take a look on a high level, how an individual step of
erosion is implemented. Here we will give definitions of different containers and
functions that will be later used in Subsection 4.8 The algorithm of hydraulic
erosion simulation can be broken down, according to [3] into the following
steps:

1. Calculate fluid and boundary forces.

2. Calculate sediment transfer among SPH particles.

3. Calculate erosion and deposition exchange between SPH and boundary
particles.

4. Update terrain height according to the change of sediment in boundary
particles.

Let’s elaborate on each step individually.

4.4.1 Boundary Forces
In this step the following things must be carried out:

1. Seed the cell in which a SPH particle i is located.

2. Detect the nearest boundary particles to the SPH particle i.

3. Calculate friction for particle i.

4. Add particle i to the neighbour list of all the boundary particles that it
detected.

5. Append the detected boundary particles by SPH particle i to the con-
tainer with all the detected boundary particles in this iteration.

6. Allocate buffer for each sph-boundary advection terms.

As we discussed in section 4.2 the position of a SPH particle can be trans-
lated into cell index to figure out where exactly on the terrain it is located.
Once we figure out which cell it is we want to seed boundary particles over
the cell’s triangles (in subsection 4.6.3 we will talk about how we do this).
The set of seeded particles are stored in a kd-tree (subsection 4.6.2). We use a
hash table named m_SeededCells to store the boundary particles of each cell.
The key of this table is a cell index and the value is kd-tree with boundary
particles.

After we detected nearest boundary particles of a given SPH particle i we
calculate friction(no-slip), as described in subsection 1.5.1.

56

4.4. Hydraulic Erosion Model

Next we want to remember all the nearest boundary particles of the current
particle i. We store all the detected boundary particles in current iteration
in an unordered set m_NearestBoundaryParticles. So, we easily merge the
boundaries of particle i into m_NearestBoundaryParticles.

Also we want to remember, what SPH particle is associated with what
boundary particle, so we create a hash table, where we store a list of fluid
particles for each boundary particles m_FluidsOfBoundary. The key rep-
resents the id (while seeding each boundary particles is assigned one) and the
value is the list of fluid particles.

Knowing how many boundary particles were detected and with what fluid
particles each of them is associated we can allocate a container for each fluid-
boundary interaction pairs dC_BP . This container will store the advection
terms of each such pair from equation (1.69).

4.4.2 Sediment Transfer

SPH particles pass material to each other before it is settled back onto the
surface. This process is described by the advection and diffusion equations
(1.64) and (1.68). Both of them require to know the gradient of cubic spline
F (r, h), which according to [4] is

F (q, h) =
{ 1

4πh3 ∗ (12 ∗ (1− q)2 − 3 ∗ (2− q)2) q < 1,

− 1
4πh3 ∗ 3 ∗ (2− q)2 q ≥ 1,

(4.19)

where

q = ∥rij∥ ∗
2
h

. (4.20)

Similarly as in Subsection 4.4.1 we store the advection term of each i− j
interaction pairs between all fluid particles. We name this collecion dC.

4.4.3 Deposition

Computing the deposition we store the advection term for each fluid-boundary
interaction in dC_BP [ij].

The gradient of the cubic spline is the same as for sediment transfer (4.19).
The part prior to the advection term in the equation (1.69) is responsible for
converting the percentage of occupied volume C into the actual mass. This
enables us to define the C to mass conversion as follows

C_TO_MASS(C) = ρs
mj

ρj
. (4.21)

We’ve already familiarized with these variables in Subsection 1.5.4

57

4. Implementation

4.4.4 Erosion
The equation of erosion requires to know the relative velocity of current fluid
particle to the surface, as it is stated in equation (1.55). We can obtain this
velocity via dot product of the particle’s velocity and the normal vector of the
triangle

vrel = ∥v∥ − abs(v · n), (4.22)

where v is the SPH particles velocity and n is the normal vector of the
surface triangle.

Because the equation (1.57) only describes the change of mass on boundary
particle b we must update the sediment ration of SPH particle j manually. We
do so by converting the eroded mass produced by (1.57) for each SPH particle
j and convert it to C as follows

MASS_TO_C(m) = 1
ρs ∗mj/ρj

∗m, (4.23)

where m is the output of equation (1.57).

4.4.5 Terrain Modification
At this point all the detected boundary particles have their delta mass dM cal-
culated. Each such particle is located on some triangle, this means that we can
calculate the total mass for each triangle. We store the total masses of both
triangles of a cell in a hash table named m_TriangleMass, where key is cell
index and value is pair of two floats representing the masses of each triangle
individually. Also we keep track only of those cells whose boundary parti-
cles were detected and stored in m_NearestBoundaryParticles container.
We store those cells in a vector named cellsToUpdate. After all the bound-
ary particles have been iterated over and masses accumulated we update the
geometry of cells from the cellsToUpdate container.

4.5 Fluid Particles
In this subsection we’ll talk about what fields a fluid particle structure must
have. Unlike a regular SPH particle we need to extend ours due to the fact
that we implicitly represent sediment particles. We append float Sedim that
represents how much volume is occupied by sediment in per cents and float
Sedim_delta that represents the change of occupied volume in the current
iteration. The structure below defines a SPH particle

58

4.6. Boundary particles

s t r u c t F l u i d P a r t i c l e
{

Vec3f Pos i t i on ;
Vec3f Ve loc i ty ;
Vec3f Acce l e r a t i on ;
f l o a t Density ;
f l o a t Pressure ;
Vec3f PressureForce ;
Vec3f V i s coc i tyForce ;
Vec3f GravityForce ;
Vec3f Sur faceForce ;
Vec3f SurfaceNormal ;
Vec3f BoundaryForce ;
f l o a t Sedim ;
f l o a t Sedim_delta ;

}

4.6 Boundary particles
In Subsection 1.5.1 we discussed that our erosion model uses boundary parti-
cles as a mediator between the fluid and the terrain. SPH particles first cause
impact over boundary particles and then this impact is transformed into the
terrain’s changes. With that in mind we need to have them seeded throughout
the whole terrain, because SPH particles must access them a any give position
on the terrain. Having all of them everywhere at once will be inefficient that’s
why we will seed them only at places where SPH particles are.

4.6.1 Definition
Similarly as with fluid particles let’s define the structure for boundary parti-
cles.

s t r u c t BoundaryPart ic le
{

Vec3f Pos i t i on ;
Vec3f TriangleNormal ;
char Tr iang l e ;
f l o a t dM;

}

The char Triangle field denotes on which of the two triangles of a cell a
given boundary particle located. In this implementation we use either ′A′ or
′B′. The float dM denotes the change of mass of the current particle described
by (1.69).

59

4. Implementation

4.6.2 Kd-tree
In section 4.2 we defined our terrain as a heightfield. We made it grid-
accelerated and established that each cell consists of two triangles. When
a SPH particle approaches the surface it detects all the boundary particles
within its smooth radius as depicted on Figure 1.8. In order to efficiently find
the closest boundaries we store them in a kd-tree. For each cell we build a
new kd-tree and store its particles in there. Each kd-tree is then stored in a
hash table, where key is a cell index and value is a pointer to allocated kd-
tree. When a fluid particle enters the cell we apply nearest neighbours search
algorithm and detect, which particles are within the smooth radius.

4.6.3 Seeding
Before we store any particles in a kd-tree we need to seed them. The principle
of this seeding algorithm was derived from famous scan line algorithm. We
seed the particles in scan line fashion for a triangle in 3D space. Consider the
Figure 4.6. We have a cell composed of two triangles ABC and DBC. Let’s
say we want to seed particles over the triangle ABC. We do so by moving
from C to A along the AC vector with ∆s step and at the same time we
move along the hypotenuse BC. Thus, we obtain two points to compose a line
segment that is parallel with the cathetus AB. Finally, we move along this
line segment with the same ∆s step from left to right i.e. from cathetus AC
to hypotenuse BC and place particles. Because all the points of both triangles
are 3D points we virtually fill the triangle in 3D space. The same principle
applies for the second triangle only now we move along the DC vector.

60

4.7. Physical Parameters

Figure 4.6: Seeding triangles of a cell in 3D space.

4.7 Physical Parameters
In this section we describe what actual quantities we use in the simulation.

4.7.1 Fluid
To achieve the most stable and reliable behaviour of fluid its physical pa-
rameters must be carefully chosen. The search of such values that enable to
achieve a high level of realism and at the same time keep the simulation stable
might be a tough challenge. Below is the Table 4.1 for water material taken
from [1] with physical parameters of fluid quantities in the standard System
International (SI) units, that provide good simulation results in terms of both
realism and stability. In this thesis we focus only on water material.

4.7.2 Erosion
Throughout the Section 1.5 a number of constants are used that weren’t de-
fined so far. Most of them were taken from [3], however the boundary friction
constant µbf was determined experimentally. The value that gives the most
realistic behaviour varies between 0.1 and 0.25. In this work 0.11 was chosen.
Table 4.2 presents the constants used in erosion model.

61

4. Implementation

Description Symbol Value Unit

Density (rest) ρ0 998.29 kg
m3

Mass (particle) m 0.02 kg

Viscosity µ 3.5 Pa · s

Surface tension σ 0.0728 N
m

Gas stiffness k 3 J

Restitution cR 0 n/a

Smooth radius h 0.0457 m

Table 4.1: Physical parameter for water simulation

4.8 The Simulation Algorithm
4.8.1 Build the Terrain

1. Read the bitmap with the dimensions Dimx, Dimy and store it in a 1D
array m_Heightfield.

2. For z from 0 to Dimx do:

a) For x from 0 to Dimy do:
i. Get height at (x, z) using (4.9): y = h(x, z).
ii. Add the coordinates of the 3D point into vertexData buffer

considering the cell size:
iii. vertexData.append(x ∗ cell_size).
iv. vertexData.append(y).
v. vertexData.append(z ∗ cell_size).

The vetexData buffer is regenerated each time the terrain gets updated
and is only used for passing the geometry data to OpenGL pipelines to render
the visual output. The origin of the terrain is at (0, 0), which theoretically can
be changed, but is not necessary in this simulation. When a particle interacts

62

4.8. The Simulation Algorithm

Description Symbol Value Unit

Distance be-
tween boundary
particles

∆s 0.02285 m

Boundary friction
constant µbf 0.11 n/a

Erosion strength Kε 0.1 n/a

Critical shear
stress τc 3 Pa

Sediment density ρs 3 kg
m3

Maximum solid
volume fraction Cmax 0.7 n/a

Exponent
(Richardson-
Zaki)

e 4.5 n/a

Coefficient of dif-
fusion D 0.1 n/a

Sediment particle
radius rs 0.00001 m

Table 4.2: Physical parameter for erosion simulation

with the terrain it translates its 3D position into a cell index, in which it
is currently located by using (4.10). Knowing the cell index coordinates we
access the heightfield buffer and extract a corresponding height of each point
of the cell. Thus, we don’t need to access vertexData buffer to obtain point’s
coordinates.

63

4. Implementation

4.8.2 Initialize SPH system

1. Initialize fluid constants from the Table 4.1.

2. Allocate n particles and set them positions, velocities, acceleration = 0,
sediment = 0, sediment_delta = 0.

3. Create the spatial hashing data structure using (4.3) and (4.4).

4. Create an empty unordered_set m_NearestBoundaryParticles, where
we will store all the detected boundary particles in a given iteration that
are within the smooth radius of fluid particles.

5. Create an empty unordered_map m_FluidsOfBoundary that will
store a list of fluid particles that detected a given boundary particle.

6. Create an empty vector dC defined in subsection 4.4.2, where we will
store all the interaction pairs between fluid particles.

7. Create an empty vector dC_BP defined in section 4.4.3, where we will
store all the interaction pairs between a fluid and a boundary particle.

We can omit the initialization of the leap-frog integrator for each particle
here. It will be done automatically while calculating the acceleration term in
further subsection (Subsection 4.8.11) in the very first iteration of simulation.

4.8.3 Compute Density and Pressure

Before we begin iterating through the particles we insert them into the spatial
hashing data structure and build a list of neighbours for each of them using the
spacial query from Subsection 4.1.2. Let’s call this procedure RebuildTable().
It clears the table from the previous iteration and builds it back for the current
one.

RebuildTable()
(The following for-loop is parallelised with OpenMP)
For each particle i do:

1. Iterate through each of its neighbour j from the neighbourhood Ni and
compute its density ρi using (1.25)

2. Compute pressure using (1.32).

64

4.8. The Simulation Algorithm

4.8.4 Compute Internal Forces
(The following for-loop is parallelised with OpenMP)
For each particle i do:

1. Iterate through each of its neighbour j from the neighbourhood Ni.

2. Compute the pressure force using (1.33).

3. Compute the viscosity force using (1.35).

4. Compute the surface normal using (1.39).

5. f internal = fpressure + fviscosity

4.8.5 Compute External Forces
(The following for-loop is parallelised with OpenMP)
For each particle i do:

1. Compute the gravity force using (1.36).

2. Compute the color field using (1.38).

3. Compute the surface curvature using (1.40).

4. Compute the surface tension force using (1.41).

5. fexternal = fgravity + fsurface

4.8.6 Compute Boundary Forces
(The following for-loop is parallelised with OpenMP)
For each particle i do:

1. Seed the cells that are in range of smooth radius of the particle i, which
are not seeded, using the technique described in the Subsection 4.6.3.

2. f boundary = 0.

3. Find nearest boundary particles to the particle i using the nearestneighboursearch
algorithm of kd-tree for each detected cell around particle i and put them
to a temporary collection unordered_set nearest_boudary.

4. If nearest_boundary is not empty:

a) For each boundary particle bp in nearest_boundary:
i. Compute the no-slip using (1.52) and add it to f boundary

5. For each boundary particle bp in nearest_boundary push back the cur-
rent fluid particle i into the m_FluidsOfBoundary[bp].

6. Merge nearest_boundary into m_NearestBoundaryParticles.

65

4. Implementation

4.8.7 Compute Sediment Transfer

For each fluid particle i do:

1. For each neighbour particle j from neighbourhood Ni:

a) Compute the advection term of i − j interaction using (1.64) and
set the result to dC.

b) Compute the diffusion term of i − j interatction using (1.68) and
add the result to dC.

c) If dC of current i − j pair is ≤ 0 then: sedim_deltai += dC[ij]
else: sedim_deltaj -= dC[ij].

The size of dC is the number of interaction pairs between fluid particles
in a given iteration that can be computed from the neighbours list of each
particle from the spatial hashing data structure.

4.8.8 Compute Deposition

For each boundary particle bp in m_NearestBoundaryParticles:

1. For each fluid particle fp in m_FluidsOfBoundary[bp]:

a) If fp.sedim ≤ 0 then continue.

b) Compute the term dC(j)
dt from(1.69) and put the result to dC_BP .

c) If dC_BP < 0 for the current bp− fp pair:

i. Add dC_BP to sediment delta of fp.
ii. Compute the deposition of material using (1.69) and subtract

the result from the mass of the current boundary particle bp.

4.8.9 Compute Erosion

For each boundary particle bp from m_NearestBoundaryParticles:

1. For each fluid particle fp from m_FluidsOfBoundary[bp]:

a) Compute the erosion of material using (1.57) and subtract the re-
sult from mass of current boundary particle bp.

b) Convert the result of erosion from the previous step into the sed-
iment percentage C and add it to sediment delta of current fluid
particle fp.

66

4.8. The Simulation Algorithm

4.8.10 Update Heightfield
For each boundary particle bp in m_NearestBoundaryParticles:

1. Convert bp.Position to cell_index.

2. If cell_index was not discovered before then create triangleMass[cell_index] =
pair(0.0, 0.0) and cellsToUpdate.append(cell_index).

3. Depending to which triangle the boundary particle bp belongs add bp.dM
to either triangleMass[cell_index].first or triangleMass[cell_index].second.

4. For each cell_index in cellsToUpdate:

a) Get geometry of cell triangles getCellT riangles(cell_index).
b) Update vertices of both triangles from the previous step in the

heightfield using (1.70) and (1.71).
c) Erase all boundary particles in the cell cell_index (they will be

seeded again in Step 1 of 4.8.6).

4.8.11 Time Integration and Collision Handling
(The following for-loop is parallelised using OpenMP)
For each fluid particle i:

1. fexternal += f boundary.

2. Fi = f internal + fexternal.

3. Compute particle’s acceleration ai using (1.24).

4. Compute ut+1/2∆t and rt+∆t using (1.45) and (1.46).

5. Compute collision using the algorithm from Subsection 4.3.

6. If a collision occurred

a) Compute penetration depth d using (4.18).
b) Update the velocity using (1.44).

7. If sediment of current particle i is sedimi < 0 then sedimi = 0

8. sedimi += ∆t ∗ sedim_deltai.

9. If sedimi < 0 then sedimi = 0.

10. Zero out delta sediment of the current particle: sedim_deltai = 0.

67

4. Implementation

4.8.12 Render
1. Render the terrain using vertexData buffer.

2. For each fluid particle i do:

a) Render a sphere with its center at ri and radius r = 0.001.

We do not render the boundary particles, because we need them only to
perform the computations.

68

Chapter 5
Results

In this chapter we will examine what outcomes we obtain when we put to
use our implementation from Chapter 4. We will test the fluid individually
in order to demonstrate how it behaves in the first place and then we add a
terrain into the scene and pour some volume on it and simulate erosion.

5.1 Fluid
In this section we will test, how the Lagrangian solver works. First we will
examine how it behaves with different parameter values and then we execute
performance tests.

5.1.1 Fluid Parameters
Below is the illustration of a water volume with 1000 particles dropping in
the invisible box Figure 5.1. The properties of the fluid are the exact much of
those described in Table 4.1.

The water material has very low viscosity as a result its particles are very
mobile and agile. When a water volume hits a solid the particles splash all
over. If we risen viscosity i.e. risen inner friction between particles the volume
will bear a more resemblance with honey. Below is the same volume with
higher viscosity Figure 5.2.

Compared to the previous animation the particles don’t move around so
freely and are less splashy. Their motion is slowed down by friction with each
other.

If we try to increase the particle’s mass the density field will increase,
hence the pressure will increase too. This implies that the particles will repel
more from each other and have more space in between them Figure 5.3. They
are splashy enough, but too heavy to bounce off too high.

The above tests demonstrate that our Lagrangian solver produces the ex-
pected behaviours and has a pretty high degree of realism.

69

5. Results

Figure 5.1: 1000 SPH particles with the parameters of water.

5.2 Erosion
Now that we have our water tested let’s pour it onto an actual terrain and
have the erosion algorithm to do its job.

5.2.1 Ditch
Figure 5.4 features a ditch with a ridge in the middle. The volume of 200 000
SPH particles is poured onto it. The radius of each particle is r = 0.001m.
The cell size is cell_size = 0.1m. Particles life time is 3000 frames.

The ridge in the middle seeks to being washed out and leveled off with
the surface. The material from the ridge is taken away by water particles and
deposited towards the area on left from it. The longer the particles exist the
more the ridge gets leveled off with the surface.

The ridge in the middle is the spot that gives the most pronounced visual
results in fact the entire terrain gets eroded and the surface level throughout

70

5.2. Erosion

Figure 5.2: 1000 SPH particles water particles with increased viscosity
(visc=17.5).

the scene lowers a little. The comparison before/after is illustrated on Figure
5.5.

5.2.2 Meander
The next scene is a meander. Similarly as in the previous test a volume of
water with 200 000 particles is poured on. The particles lifetime is 2000 frames
here. As can be seen of Figure 5.6 the material reached by fluid gets eroded
while the part of the meander where fluid didn’t reach remains untouched.

71

5. Results

Figure 5.3: 1000 SPH water particles with increased mass and default viscosity
(mass=0.034)

72

5.2. Erosion

Figure 5.4: A ditch with a ridge. 200 000 SPH particles.

73

5. Results

Figure 5.5: Before/after. The ditch with the ridge. 200 000 SPH particles.

Figure 5.6: A meander. 200 000 SPH particles.

74

Chapter 6
Tests

6.1 User tests

Script

1. Run the simulation

2. Pause the simulation and reset it

3. Set the number of particles to 100000 and run the simulation

4. Set the number of particles to 1000 and particles lifetime to 100

5. Upload a new map and change the fluid volume origin

6. Run the simulation and change the fluid parameters in real time

7. Save simulation frames

Questionnaire

1. When I asked to change something in the program was it clear how to
do it?

2. What are your thoughts about the graphical interface? Was it clear to
use?

3. What would you call the worst experience while using the program?

4. What did you like the most while using the program?

75

6. Tests

Test 1

At the very beginning the user was intuitively clicking on mouse and pressing
arrows. The first question that popped up was ”How to enable the cursor?”.
Next ”How to make the app to be full screen?”.

Turning the simulation on for the first time wasn’t an issue, because the
user had familiarized with the Help Window. Neither was the pause and reset
(item 2 in the script).

When asked to change the number of particles (item 3), after doing so the
user didn’t figure out that he needs to press the Initialize button to apply the
changes. At this point I had to explain that whenever a change is performed in
the Initialization section it has to be applied with the Initialize button. When
asked to change particles lifetime (item 4) the user applied the changes with-
out additional hints. From that point on every time when the user changed
something in the Initialization section he used the Initialize button to confirm
the changes.

Uploading a new map and changing the fluid origin (item 5) wasn’t a big
issue, neither was changing the parameters of the fluid in real time (item 6).

When the user was asked to save the simulation frames he knew how to
do so from the Help Window, however struggled to find the location, where
the results were saved (item 7).

While using the program the user tried to close the UI windows by pressing
ESC button that caused exiting the program.

Test 1 Survey

Q: When I asked to change something in the program was it clear how to
do it?
A: Yes. I couldn’t figure out how to change the map at first, because the
button name was ”Load picture” and the label name was ”Picture path”. It
would’ve been better if at least the button was named ”Load map”.

Q: What are your thoughts about the graphical interface? Was it clear to
use?
A: Yes, overall it’s pretty clear and self-explanatory. The issue was only with
map loading. And the section name labels are unusually at the right, I am
used to see them on the left.

Q: What would you call the worst experience while using the program?
A: The program works slowly with big amounts of particles. The controls
are slightly non-intuitive. The pause button is F and the interface button is
R, I’d rather expect them to be P and I. You have F1 and F2 keys that toggle
the view of the polygons, but you forgot to include them in the Help Window.

76

6.1. User tests

The same story with the Shift and Space buttons that slow down/accelerate
the camera movement.

Q: What did you like the most while using the program?
A: I liked how interactive it was. I liked that I could upload a map in real
time, change the volume placement and adjust number of particles.

Test 2
The user opened up the application and right off the bat figured out, how to
navigate in it without reading anything so far. He then went ahead to read
the Help Window and ran this simulation (item 1).

I instructed him to pause and reset the simulation (item 2), he easily did
so.

Then I told the user to change the number of particles (item 3). Without
no additional hints he immediately went ahead and opened up the UI window
and quickly found the filed which is responsible for the number of particles.
He set the appropriate value and immediately ran the simulation omitting the
Initialize button. After a short time he asked me what was wrong. I told
him the he did not apply the changes. He went back to the UI window and
the very first thing he did was clicking on the Initialize button. I revealed
that he must use this button every time when something is changed in the
Initialization section.

When I asked to change the particles lifetime (item 4) he did so without
any hesitation and this time did not forget to click the Initialize button.

When asked to change the map (item 5) the user hesitated slightly, but
eventually got to the appropriate field. After changing the map with my help
the user asked me how he could move the water volume. I said that it could
be done in the UI window. He found the volume origin field and figured out
that he can assign it the camera coordinates from the Info section without me
explaining anything.

Then I asked him to change the terrain color in the Run time section (item
6). The user didn’t figure out that he could click on the color icon and choose
a new color via the color picker window. Instead, he went ahead to search for
an RGB value on the web.

Finally, I told the user that he could save the frames of simulation (item
7) by checking the appropriate checkbox in the UI window. The user checked
the checkbox and went ahead to run the simulation to see what would happen.
He then asked me, where he could find the saved frames.

Test 2 Survey
Q: When I asked to change something in the program was it clear how to
do it?

77

6. Tests

A: Yes, because there is only one interface window it was clear that I had to
do something in there. Everything is clear except for the map change.

Q: What are your thoughts about the graphical interface? Was it clear to
use?
A: Yes, it is very intuitive. I didn’t like the shortenings of fluid parameters.
For instance I did not understand that ”Visc” means viscosity and ”Dens”
density. Also the section labels are on the left, but I think it would be good
to have them in the middle.

Q: What would you call the worst experience while using the program?
A: I didn’t like the hotkeys. I think that having pause on the Space bar is
better then F key, it would be easier to remember.

Q: What did you like the most while using the program?
A: I liked that the navigation is very intuitive like in computer games. I like
how the UI shows you all the parameters and you reach anything with ease.

6.2 Performance Test
In this section the results of performance tests are presented. The frequen-
cies are measured in frames per second. The simulation was run on Intel(R)
Xeon(R) W-2245 CPU @ 3.90GHz 3.91GHz with 128GB of RAM on Windows
10.

First, the SPH system without erosion is tested. Table 6.1 demonstrates
the results with different amount of particles n.

While simulating erosion SPH particles will get to interact with boundary
particles that they detect. Unlike in the case with calculations of fluid forces
interaction between boundary and fluid particles cannot be parallelized and is
calculated sequentially. Table 6.2 illustrates the results of erosion simulation
with different amount of particles. The choice of map doesn’t influence the
performance very much, since SPH particles detect boundary particles within
their smooth radius. On any map a SPH particle encompasses on average the
same amount of boundary particles.

78

6.2. Performance Test

n fps

8000 45.7

10000 36.2

20000 17.9

50000 6.1

100000 3.5

Table 6.1: SPH system performance test.

n fps

5000 13.6

10000 6.1

25000 2.3

50000 1.3

100000 0.7

200000 0.4

Table 6.2: Results from performance test of SPH system + erosion.

79

Chapter 7
Future Work

This work can be extended to leverage GPU power to parallelize fluid simu-
lation. Although the paralleliztion via CPU was used here it doesn’t compare
with the GPU parallelization. This will enable to create greater scale simu-
lations with more particles. Such boost in performance will allow to achieve
the same results as in this work in much shorter time. A very popular tool
for general-purpose computing on GPU is CUDA platform from NVIDIA.

Next thing that might be done is improving the visual outputs. As of
right now the water is rendered as a set of spheres. This is good, because
we can easily keep track of every particle and immediately spot if somethings
goes wrong. It serves a good purpose in developing the system, however once
we are confident that the system is stable enough and will want to deliver a
graphically pleasant result then improving the visual part sounds like a good
idea. Particularly the technique named Screen Space rendering[11] might be
a good option to render translucent surface.

81

Conclusion

In this work the simulation as well as visualization of hydraulic erosion was
implemented. It first went through the theory behind fluid simulation and
then hydraulic erosion model. The implemented the design in terms of soft-
ware development. The implementation section of this work put in practice
theoretical concepts of both fluid system and erosion model and demonstrated
how these concepts can be incorporated. To improve the performance of the
entire simulation the fluid system was designed to leverage the parallelism of
CPU. In the end the preference to heightmap over voxel grid was given due
to the improvement in efficiency.

83

Bibliography

[1] Kelager, M. Lagrangian fluid dynamics using smoothed particle hydro-
dynamics. University of Copenhagen: Department of Computer Science,
volume 2, 2006.

[2] Novák, O. Simulace viskózních kapalin. Prague, 2007. Master thesis. CTU
in Prague, Faculty of Electrical Engineering, Department of computing.

[3] Krištof, P.; Beneš, B.; et al. Hydraulic erosion using smoothed particle
hydrodynamics. In Computer Graphics Forum, volume 28, Wiley Online
Library, 2009, pp. 219–228.

[4] Monaghan, J. J. Smoothed particle hydrodynamics. Annual review of
astronomy and astrophysics, volume 30, no. 1, 1992: pp. 543–574.

[5] Müller, M.; Charypar, D.; et al. Particle-based fluid simulation for in-
teractive applications. In Symposium on Computer animation, volume 2,
2003.

[6] Desbrun, M.; Gascuel, M.-P. Smoothed particles: A new paradigm for
animating highly deformable bodies. In Computer Animation and Simu-
lation’96, Springer, 1996, pp. 61–76.

[7] Wojtan, C.; Carlson, M.; et al. Animating Corrosion and Erosion. In
NPH, Citeseer, 2007, pp. 15–22.

[8] Partheniades, E. Erosion and deposition of cohesive soils. Journal of the
Hydraulics Division, volume 91, no. 1, 1965: pp. 105–139.

[9] Richardson, J.; Zaki, W. Sedimentation and fluidisation: Part I. Chemical
Engineering Research and Design, volume 75, 1997: pp. S82–S100.

[10] Teschner, M.; Heidelberger, B.; et al. Optimized spatial hashing for colli-
sion detection of deformable objects. In Vmv, volume 3, 2003, pp. 47–54.

85

Bibliography

[11] van der Laan, W. J.; Green, S.; et al. Screen space fluid rendering with
curvature flow. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games, 2009, pp. 91–98.

86

Appendix A
Acronyms

SPH Smoothed Particle Hydrodynamics

NSE Navier-Stokes equations

UI User Interface

87

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
exe....................................... the directory with executables
src...the directory of source codes

wbdcm .. implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

89

	Introduction
	Goals
	Theory and Background
	Navier-Stokes Equations
	Smoothed Particle Hydrodynamics
	Smoothing Kernels
	Lagrangian Fluid Dynamics
	Internal Forces
	External Forces
	Collision
	Time Integration

	Hydraulic Erosion Model
	Boundary Particles and External Forces
	Erosion
	Sediment Transportation
	Advection (donor-acceptor scheme)
	Diffusion
	Deposition
	Terrain Modification

	Method Anylysis
	Algorithms
	Terrain Representation
	Analysis Summary

	Software Design
	Functional and Non-functional Requirements
	Use Cases
	Application Design
	Control Flow and Processes
	Structure and Architecture

	User Interface

	Implementation
	Fast Nearest Neighbor Search
	Spatial Hashing
	Spatial Queries

	Terrain
	Collision
	Hydraulic Erosion Model
	Boundary Forces
	Sediment Transfer
	Deposition
	Erosion
	Terrain Modification

	Fluid Particles
	Boundary particles
	Definition
	Kd-tree
	Seeding

	Physical Parameters
	Fluid
	Erosion

	The Simulation Algorithm
	Build the Terrain
	Initialize SPH system
	Compute Density and Pressure
	Compute Internal Forces
	Compute External Forces
	Compute Boundary Forces
	Compute Sediment Transfer
	Compute Deposition
	Compute Erosion
	Update Heightfield
	Time Integration and Collision Handling
	Render

	Results
	Fluid
	Fluid Parameters

	Erosion
	Ditch
	Meander

	Tests
	User tests
	Performance Test

	Future Work
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

