
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Side-channel Attacks on Supersingular Isogeny Diffie–Hellman

Key Exchange

Bc. František Kovář

Ing. Jiří Buček, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2022/2023

Instructions

Supersingular isogeny Diffie–Hellman key exchange (SIDH) is a post-quantum

asymmetric scheme for symmetric key establishment.

* Study the algorithm SIDH for establishing a shared key.

* Research existing implementations and attacks, focus on side-channel attacks.

* Find a suitable implementation and demonstrate its function on a 32-bit

microcontroller such as ARM Cortex M4 or similar.

* Design a side channel attack that will allow you to obtain secret information about the

private key.

* Implement the proposed attack and experimentally evaluate the results.

* Analyze possible countermeasures.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 24 February 2022 in Prague.

Master’s thesis

Side-channel Attacks on Supersingular
Isogeny Diffie–Hellman Key Exchange

František Kovář

Department of Information Security
Supervisor: Ing. Jiří Buček, Ph.D.

June 23, 2022

Acknowledgements

I would like to thank everyone who supported me during my work on this
thesis. First of all, I would like to thank my supervisor Ing. Jiří Buček, PhD.
for his incredible patience and every valuable advice, that helped me to finish
my thesis. An exclusive thanks belong to my sister, Ing. Michaela Kovářová,
for her endless support and unbelievable motivation during all my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on June 23, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 František Kovář. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kovář, František. Side-channel Attacks on Supersingular Isogeny Diffie–Hellman
Key Exchange. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2022.

Abstrakt

V této diplomové práci jsme se zaměřili na aktuálně alternativního kandidáta
pro proces postkvantové standardizace NIST. Supersingular Ksogeny Key En-
capsulation (SIKE) je jediným kryptosystémem založeným na izogeniích v pro-
cesu standardizace. Hlavní důraz byl kladen na analýzu postranních kanálů
(SCA) SIKE a experimentální testování možných útočných vektorů pomocí
CPA vůči oficiálně předložené referenční implementaci. K tomu jsme použili
ChipWhisperer-Lite, který obsahuje STM32F303. Kromě toho jsme se zaměřili
i na možná protiopatření proti SCA. Přestože byl útok neúspěšný, shromáždili
jsme mnoho zajímavých informací o SCA proti SIKE.

Klíčová slova SIKE, SIDH, Analýza postranními kanály, Post-kvantové zří-
zení klíče, Korelační odběrová analýza, Eliptické křivky, Kryptografie založena
na isogeniích, ARM Cortex-M4

Abstract

In this master’s thesis, we aimed at the currently alternative candidate for the
NIST post-quantum standardization process. Supersingular Ksogeny Key En-
capsulation (SIKE) is the only isogeny-based cryptosystem in the standardiza-
tion process. The main focus was on the side-channel analysis (SCA) of SIKE

vii

and experimentally testing the possible attack vectors, using CPA, in the offi-
cially submitted reference implementation. For that, we used ChipWhisperer-
Lite, which features an STM32F303. Apart from that, we also focused on the
possible countermeasures against SCA. Although the attack was unsuccessful,
we have gathered a lot of interesting information regarding SCA against SIKE.

Keywords SIKE, SIDH, Side-channel analysis, Post-quantum key exchange,
Correlation power analysis, Elliptic curve, Isogeny-based cryptography, ARM
Cortex-M4

viii

Contents

Introduction 1

1 Mathematical background 3
1.1 Groups and fields . 3

1.1.1 Definition of a group . 3
1.1.2 Forming a group . 3
1.1.3 Properties of a group . 4
1.1.4 Definition of a field . 5
1.1.5 Extension fields . 5
1.1.6 Finite field Fp and Fp2 5
1.1.7 Properties of finite fields 6

1.2 Elliptic curves . 6
1.2.1 Elliptic curve on a group 7
1.2.2 Montgomery curves . 9
1.2.3 J-invariant of an elliptic curve 9
1.2.4 Supersingular elliptic curves 9

1.3 Isogenies . 10
1.3.1 Isogeny graph . 10

2 Shared key establishment 13
2.1 Supersingular elliptic curves versus normal elliptic curves . . . 13
2.2 Supersingular Isogeny Diffie-Hellman 14

2.2.1 Parameter generation 16
2.2.2 Isogeny finding . 17

2.3 Supersingular Isogeny Key Encapsulation 17
2.3.1 Security of supersingular isogeny key encapsulation . . . 18
2.3.2 Reference implementation 19
2.3.3 Existing side channel attacks 20

3 Attack design 23

ix

3.1 Hardware and software selection 23
3.1.1 Hardware . 23
3.1.2 Software . 24

3.2 Implementation related issues 25
3.3 Looking for leaking spots . 27

4 Attack implementation and evaluation 31
4.1 Setup and attack implementation 31
4.2 Results . 31

5 Countermeasures against side channel attacks 35
5.1 Attacks on double and add . 36

5.1.1 Simple power analysis 36
5.1.2 Differential power analysis 36

5.1.2.1 Attacking ephemeral key 37
5.2 Attacks on the isogeny computation 37

5.2.1 Fault injection attack 38

Conclusion 41

Bibliography 43

A Acronyms 49

B Contents of enclosed CD 51

x

List of Figures

1.1 Elliptic curves with different equations over R. 8
1.2 Addititon of points on an elliptic curve over R. 8

2.1 SIDH shared key exchange protocol. 15
2.2 Shared elliptic curve computation. 16
2.3 SIKE protocol, encapsulation and decapsulation. [1] 20

3.1 ChipWhisperer Lite. [2] . 24
3.2 Correlation of power consumption using 8-bit words. 26
3.3 Correlation of power consumption using 32-bit words. 26
3.4 Three point ladder.[3] . 27
3.5 Double and add algorithm. [4] . 28
3.6 Change of variables of xDBLADD with swap. 28

4.1 Distribution of Hamming weight in the intermediate values. 32
4.2 Correlation of power consumption with theoretical consumption. . 33
4.3 Distribution of Hamming weight in the intermediate values. 33
4.4 Correlation of power consumption with theoretical consumption. . 34

5.1 Double and add always algorithm [5]. 36

xi

List of Tables

1.1 Finite subgroup F11, generator 3. 6
1.2 Finite field F22 , modulo x2 + x + 1. 6

3.1 Samples count for different operations. 28

xiii

Introduction

One of the essential things these days is cryptography. Most people are not
even aware there exists such a thing. One building block uses symmetric
cryptography to encrypt the transmitted data. But to achieve that, we would
have to apriori share a secret key with everyone else, which is not that much
possible. Luckily we have other options to do so. There are algorithms such
as Diffie-Hellman or Elliptic curve Diffie-Hellman. Both are key agreement
protocols that allow two or more parties to establish a shared secret key over
an insecure channel. With the rise of quantum computers and threats coming
from building one, such as Shor’s algorithm, towards any public key infras-
tructure built over factoring numbers or discrete logarithm problem [6].

That is why NIST announced a standardization process toward post-
quantum cryptography, meaning algorithms that will provide asymmetric en-
cryption, shared key agreement, signatures, and will be able to withstand so
far known quantum algorithms. One alternative candidate is the Supersin-
gular Isogeny Key Encapsulation algorithm based on Supersingular Isogeny
Diffie-Hellman [3].

SIKE, or rather the SIDH, is the only isogeny-based algorithm in the stan-
dardization process. It is based on the hardness of finding large order isogenies
between supersingular elliptic curves. The algorithm seems to be secure, but
there are still possibilities to break an algorithm not only by focusing on its
core problem. So we will look into its reference implementation and elabo-
rate on whether and how this algorithm could be broken using side-channel
analysis. We will analyze a 32-bit ARM Cortex M4 with the reference imple-
mentation or similar microcontroller because of the rise of embedded devices
and the requirement of securing them. The result of this attack should yield
part or the entire secret key. At last, we will research possible countermeasures
toward already made attacks using the side-channels analysis.

1

Chapter 1
Mathematical background

1.1 Groups and fields

Before we jump into the definition of finite fields and their extension fields,
we will introduce the concept of a field itself. We will need to define a group
as a mathematical object and an operation with that group. This operation
must fulfill some properties to form a group and potentially an abelian group.
Suppose we use two operations instead of one, and these two operations also
have the required properties. In that case, we can talk about that mathemat-
ical object as a field, or a commutative field. More detailed information are
available in [7, 8, 9, 10].

1.1.1 Definition of a group

We need two ingredients to define a group or rather a commutative group.
First of them is a non-empty set of objects denoted M furthermore named as
a carrier set or domain, M can be finite or infinite. A binary operation ◦ that
maps every possible pair of elements of M to another element of M. It is a
function such as ◦ : M ×M →M .

1.1.2 Forming a group

To form a group, we need the ordered pair (M, ◦) to have these fundamental
axiom properties satisfied.

1. The operator ◦ has to be associative, such that for any elements a, b, c ∈
M we have (a ◦ b) ◦ c = a ◦ (b ◦ c).

2. There exists an element e ∈ M such that for any element a ∈ M,
a ◦ e = e ◦ a = a.

3

1. Mathematical background

3. For every element a ∈ M, there exists an element b ∈ M such that
a ◦ b = b ◦ a = e. Further more this element will be denoted as a−1, or
−a, or simply an inverse element of a.

Instead of our general operator ◦, suppose we are using ⊕, an addition
as defined in elementary school 5 ⊕ 3 = 8 and an operator ⊙ the same way
around but multiplication 5 ⊙ 3 = 15. Without thinking, we used this in a
group if we were to define a sufficient carrier set M for it. For the operator
⊕ it is enough to use only M = Z. As for the operator ⊙ we would miss one
part of the group property, which is having an inversion to every element of
the carrier set. For that, we will use a bigger carrier set, which is the set of all
numbers in M = Q \ {0}. For the additive group, the neutral element e = 0,
for the multiplicative group, the natural element e = 1.

To shorten extended expressions where a ∈ M appears in a composition
with itself n-times, where n ∈ Z, we will use a shortened version:

n · a = a⊕ · · · ⊕ a︸ ︷︷ ︸
n summands

for the additive operator and for the multiplicative operator we will use:

an = a⊙ · · · ⊙ a︸ ︷︷ ︸
n factors of a

1.1.3 Properties of a group

A few group properties that we are interested in are the following:

1. commutative group, or also called abelian, the group operation must
support the property of commuting the elements, such that for every
a, b ∈M, a ◦ b = b ◦ a.

2. A subgroup is a non-empty subset N of M, where there is the same
binary operation ◦, and the elements together with the operation behave
as a group. There always exist two trivial subgroups, M itself and a set
containing only the neutral element e.

3. Order of a group is defined as the number of elements in the set the
group is using. This will be denoted as |M | .

4. Suppose we have a multiplicative group. An element a is called a gen-
erator of the group, if any element b ∈ M can be created in a way that
b = an, for some integer n, we write it as ⟨a⟩. Any element can be a
generator of a group or at least a subgroup. If we were to take multiple
subgroup generators b, c ∈ M, that would together generate the whole
group, we could write ⟨b, c⟩.

4

1.1. Groups and fields

1.1.4 Definition of a field

A triplet K = (M,⊕,⊙) , is a nonempty set M with two binary operations
⊕,⊙. The operations must satisfy these following conditions, so the underlying
triplet K is a field.

1. Suppose we take only (M,⊕), as we need that this form an abelian group
as defined above in the section 1.1.2 and in section 1.1.3.

2. The ordered pair (M \ {0},⊙) must form a group.

3. The distribution law must apply, such that for every a, b, c ∈M, (a⊕ b)⊙
c = a⊙ c⊕ b⊙ c, and the other way around c⊙ (a⊕ b) = c⊙ a⊕ c⊙ b.

The results a ⊙ c ⊕ b ⊙ c and c ⊙ a ⊕ c ⊙ b, don’t necessarily have to be
equal as we have just built only a field. If it were true that these two results
were equal for any a, b, c ∈M, we would have a commutative field.

For example let’s use the domain R with the two binary operations ⊕,⊙.
We could easily show the group (R,⊕) and also (R \ {0},⊙) are abelian groups
and so they together form a field. In this case as both are commutative, the
entire field is also commutative.

1.1.5 Extension fields

We we will use the example from the previous section, to understand an ex-
tension field. We now have a field K which is a sub-field, similarly defined
as a subgroup but for fields, of F = (C,⊕,⊙), where C represents complex
numbers. We could show all the required properties to prove that F is a field,
but this part is not interesting. So now F is called an extension field of K, as
both are fields, and K is a subset of F.

1.1.6 Finite field Fp and Fp2

So far we have looked upon groups and fields whose carrier set M were infinite.
Now we will reduce our view only to a finite subset of M. Suppose our set M =
Z / p, which denotes the integers modulo some prime number p. An example
of a multiplicative finite subgroup would be p = 11, M = {1, 3, 4, 5, 9}. Carrier
set M can also be written as ⟨3⟩, since this element could be the generator of
this group.

5

1. Mathematical background

⊙ 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

Table 1.1: Finite subgroup F11, generator 3.

We could also look into an extension field F as mentioned beforehand. In-
stead of using modulo some prime p number, we will use an irreducible poly-
nomial P (x). An irreducible polynomial works somehow similarly to prime
numbers as we know them. No other polynomial except for polynomial P (x)
and 1 divides this polynomial without any remainder.

Suppose we have p = 2, our irreducible polynomial P (x) = x2 + x + 1. So
our carrier set would look like M = {0, 1, x, x + 1}. The operations defined for
both binary operators ⊕,⊙ are as follows:

⊕ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1
x + 1 x + 1 x 1 0

⊙ 0 1 x x + 1
0 0 0 0 0
1 0 1 i x + 1
x 0 x x + 1 1
x + 1 0 x + 1 1 x

Table 1.2: Finite field F22 , modulo x2 + x + 1.

1.1.7 Properties of finite fields

As we discussed some properties with the groups, we are also interested in
some properties of the fields. Such as:

• Characteristics of a field is the smallest possible number n ∈ N, not
including zero, such that if we take the multiplicative identity 1 and use
the additive binary operation in a way n · 1, we get the neutral element
0 of the binary operation. If the field was not finite, the characteristics
would be 0. Furthermore denoted as char(F).

• The order of a field is the number of all elements the field contains. A
field of order pk has characteristics equal to p.

1.2 Elliptic curves
Most of the background material comes from [10, 11]. To define an elliptic
curve, we need an equation. Usually, we will be using the Weierstrass equation

6

1.2. Elliptic curves

over some field K.

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 with a1, a2, a3, a4, a6 ∈ K (1.1)

This equation looks rather ugly so if we choose the field K carefully, that
its characteristics, as defined in section 1.1.7, is char(K) ̸= 2 and at the same
time char(K) ̸= 3, we can use a linear map to transform it to a different form.

With use of substitution (x, y) →
(

x−3b2
36 , y

108

)
, we can rewrite the above

equation to
y2 = x3 − 27c4x− 54c6.[10]

The only reason we could have achieved this is by using a field, where we can
divide by 2 and by 3 at the same time. That is why we required the specific
characteristics. Not only we could have simplified the Weierstrass equation,
but we have to be careful. As for now, there are two classes of elliptic curves.

1. There are singular elliptic curves. A singular elliptic curve is such a
curve that its discriminant is equal to zero.

∆E = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 = 0

This gives us information about its roots. If the discriminant ∆E = 0,
then the curve has a singularity.

2. And there are non-singular elliptic curves, which we will be using from
now on. These curves have its discriminant ∆E ̸= 0.

The discriminant is calculated over the field K, that was used when defining
the curve.

There are many more forms of writing the equation for an elliptic curve,
there are also another types of curves such as Edwards curves[12].

The first part is the equation, but that is not all. The next part is the
interesting part about them. We will be focusing on all solutions of a given
curve E over a field K, or its sub-field and a point at infinity O, such that:

E(K) =
{

(x, y) ∈ K2 is a solution to eq. (1.1)
}
∪ {O}.

The point at infinity plays the role of a neutral element e.
Elliptic curves usually have different shape and they consist of one or two

components, such curves can be seen in fig. 1.1.

1.2.1 Elliptic curve on a group

Since we defined an elliptic curve E, it is time to use it in a group. This group
doesn’t have to be finite. To note, if we were to use graphical representation,
then three points P, Q, and R that are lying on the same line, their sum is equal
to zero. Thus the sum of P + Q = −R, where R = (xR, yR),−R = (xR,−yR),

7

1. Mathematical background

(a) y2 = x3 − 2x + 2 (b) y2 = x3 − 4x + 1

Figure 1.1: Elliptic curves with different equations over R.

when we use the simplified Weierstrass equation. To add the same point P
twice, we will use a tangent line to this point P , this line, thanks to the curve
being non-singular, will always intersect the curve at another one point.

As shown above, we need three points to form a line. Since our equation is
in a cubic form, there will always be three points on a line, including multiplic-
ities of one or the other point. For this, we will use a graphical representation.
The figure fig. 1.2 shows us how the point addition works with two different
points and a point itself.

(a) Two diffferent points. (b) Same point.

Figure 1.2: Addititon of points on an elliptic curve over R.

Not only can we add two different points, P and Q, from the same elliptic
curve, but we can also add one point to itself multiple more times. As we
used with the group definition section 1.1.2 for shortening the addition of the
same element, we will also use the same thing here. Be careful, though, we
are working in a group of points on an elliptic curve, and there is only one

8

1.2. Elliptic curves

operation. With that, there is no definition of multiplying two points like
P ⊙Q; this is not defined.

With that being said, we will use a shortened version of writing an m ∈ N
multiple of point P, such as [m]P = P + P + · · ·+ P, where there are m terms
of point P .

1.2.2 Montgomery curves

A Montgomery curve over a field K is in the form of by2 = x3 + ax2 + x.
Its usage is primarily due to fast differential addition in this representation.
The terms a and b are elements of underlying field K, and they must satisfy
the b(a2 − 4 ̸= 0 in the field K. Often, a point P of a Montgomery curve
are referred to only with their x-coordinate, we will be using the notation xp,
respectively yp for their y-coordinate.

1.2.3 J-invariant of an elliptic curve

Two elliptic curves are isomorphic, if and only if their j-invariants are the
same[11]. But what is the j-invariant? A j-invariant is a function that gives
every elliptic curve a value. These values determine a class of elliptic curves
that are isomorphic. These curves will be necessary in the upcoming algorithm
for section 2.2.

The j-invariant is calculated differently according to the used form of an
elliptic curve. If we were to use the form in eq. (1.1). Note: don’t forget the
elliptic curve is defined over some field K. The j-invariant is calculated from
the parameters of the curve, and the calculation would look like the following:

b2 = a2
1 + 4a4,

b4 = 2a4 + a1a3,

j(E) =
(
b2

2 − 24b4
)3

∆E
[10].

1.2.4 Supersingular elliptic curves

So far we have seen an elliptic curve in section 1.2 already, these elliptic curves
are from now on called ordinary elliptic curves. Another category of elliptic
curves are supersingular elliptic curves. By definition, they are not singular
and the term supersingular will be explained later on in section 2.1.

Let E be an elliptic curve defined over some field K with char(K) = p > 0.
We use a map that multiplies every point in the E n−times, where n ∈ N.
This is written as E[n]. The number n is chosen as some (all) power e > 1, of
the char(K) = p, thus we have a map in the form of n = pe, similarly E[pe].

9

1. Mathematical background

A curve is supersingular iff the result is isomorphic to only the point at
infinity O, otherwise it is an ordinary elliptic curve.

E[pe] ∼= {O}[10]

1.3 Isogenies
In section 1.2.4, we used a map that multiplies all points in a given ellip-
tic curve by a scalar m. What could have been said there is that this map
preserves the binary operator and also the group structure. We will use this
as the beginning of our example for the upcoming definition. Silverman and
Washington [13, 14] are showing more detailed descriptions, but both define
their isogenies a bit differently.

An isogeny is a particular map between two elliptic curves that is also a
group homomorphism. Given two elliptic curves E and E′

ϕ : E → E′,

this also is a surjective map, meaning that given any point P ′ ∈ E′, there
exists at least one element P ∈ E, that ϕ(P) = P ′. For our cases, this map
should not be a non-constant rational map. [15]

We are also interested in the kernel of such an isogeny. This map preserves
the kernel points of the original curve and potentially expands them to more
elements. Furthermore, we define the kernel of the isogeny ϕ as

ker(ϕ) = {P ∈ E : ϕ(P) = O}.

Not only can we have any map, but we will also use mapping in the form
of endomorphism, meaning that we have a map from the elliptic curve E to
itself. The elliptic curve E′ is defined using the map ϕ and the subgroup H of
E(K), where H = ker(ϕ). We create the new elliptic curve E′ = E/H. The
transformation can be made using the Vélu’s formula [16]. Also the formula
can be used to create the map ϕ.

1.3.1 Isogeny graph

An undirected graph G is an ordered pair (V, E), where V is a set of vertices
and E is a set of ordered pairs (v1, v2), where v1, v2 ∈ V. The meaning of the
ordered pair is that there is an edge between vertices v1 and v2, or differently
there is a way how one can get from the vertex v1 to v2. Suppose we have
the shortest path between nodes v1 and v2. Distance between these two nodes
is the shortest number of edges we have to travel through to get from the
beginning to the end. If there is no path from the vertex v1 to v2, then the
distance is usually said to be infinite. Otherwise, it is finite. If there exists at
least one path from every vertex to another, the graph is called a connected

10

1.3. Isogenies

graph. A degree of a vertex is the number of edges going from or to this vertex.
Similarly, we could talk about in-degree, the number of in-going edges, and
out-degree, the number of out-going edges. A graph is called k−regular if all
its vertices have the same degree k.

An isogeny graph is a type of an expander graph [11]. These graphs have
wonderful properties. The graph’s diameter is bounded by O (log(n)) , where
the diameter is the longest path amongst all of the shortest paths, which
means that with a logarithmic number of steps in this graph, we have a high
probability of ending up in any other vertex of this graph.

In our case, we have supersingular elliptic curves, which are identified by
their j-invariant, and we are able to create a map ϕ between them. So the
set of vertices V are the j-invariants of elliptic curves, and the edges between
vertices are the isogenies between them.

11

Chapter 2
Shared key establishment

In this chapter, we will discuss the importance of using supersingular elliptic
curves instead of ordinary ones. This is followed by the definition of the
general core problem used to create the same secret between two parties.
Then describe an encapsulation mechanism that uses this problem and builds
a key encapsulation mechanism (KEM) over it.

2.1 Supersingular elliptic curves versus normal
elliptic curves

First, let’s start with why we use supersingular elliptic curves instead of or-
dinary ones. A similar algorithm was proposed in [17] that uses isogenies to
create a post-quantum algorithm. After that, other refined algorithms used
the same mechanisms [18, 19].

For some time, it was believed that there was no sub-exponential quantum
algorithm for finding the isogeny between two elliptic curves. This algorithm
aimed to be a post-quantum candidate in the standardization process that
would one day be used instead. Until [20] found a sub-exponential algorithm,
that breaks this type of cryptography thanks to its structure. So far, every-
thing looks bad for isogeny-based cryptography. The computation is slow,
unlike other post-quantum schemes like [21], and is also broken with a quan-
tum computer thanks to this abelian group structure.

The supersingular elliptic curves were chosen to replace the ordinary el-
liptic curves, and it was proposed in [22]. The weak spot of having an abelian
group was removed as it is characteristic of the supersingular elliptic curves.
So far, there is no known sub-exponential algorithm for finding the isogenies
between two supersingular elliptic curves.

13

2. Shared key establishment

2.2 Supersingular Isogeny Diffie-Hellman
Diffie-Hellman key exchange is old as it gets, nevertheless, it is still being used
but with a different group structure. More details regarding the scheme and
the algorithm can be found in [22, 3]. This time, we will use it to compute
a shared key between two parties. To define the whole cryptosystem, we
will first define its public parts. One of them is the public prime number
p = lea

a · l
eb
b · f ± 1. Where la, and lb are small prime numbers, ea, and eb are

any natural number, and f is a co-factor such that p is a prime number.
An example of such parameters would be:

• la = 2, lb = 3,

• ea = 5, eb = 3,

• f = 1, and -1.

• This will yield the value p = 22 ·35 ·1−1 = 971, which is a prime number.

From this, there is created a field Fp2 and a supersingular elliptic curve E
of cardinality (p∓ 1)2 = (lea

a · l
eb
b · f ± 1∓ 1)2 = 9722.

Both parties then find any basis points {Pa, Qa}, for Alice, respective
{Pb, Qb}, for Bob, or rather a generating group of their respective sup-groups
E[lea

a] = ⟨Pa, Qa⟩, respectively E[leb
b] = ⟨Pb, Qb⟩. Both Alice’s points must be

independent, and their order matches their torsion group. Both parties will
share their basis points.

Both parties will now randomly choose their secret values ma, na, that
are not divisible by la, respectively mb, nb, that are also not divisible by lb.
With that, they both compute their own isogenies ϕa : E → Ea, with kernel
ker(Ea) = ⟨[ma]Pa +[mb]Qa⟩, respectively ϕb. Alice then computes the images
of Bob’s base points {ϕa(Pb), ϕa(Qb)}. Bob does the same but with the basis
points of Alice and his secret values mb, nb.

When both parties finish computing their isogenies and their newly created
supersingular elliptic curves Ea, respectively Eb, they exchange their supersin-
gular elliptic curves and the images of the opposing basis points. When Alice
receives Bob’s curve Eb and the images of her basis points {ϕb(Pa), ϕb(Qa)},
she then creates a new isogeny

ϕ
′
a : Eb → Eab,

having its kernel ker(ϕ′
a) = ⟨[ma]ϕb(Pa) + [mb]ϕb(Qa)⟩. Bob as usually does

the same on his side. With that, they both should end up with a supersingular
elliptic curve. This curve doesn’t have to be the same curve, but what is more
important is, that they both belong to the same isomorphic class, and thus,
their j-invariant will be the same since

Eab = ϕ
′
a(ϕb(E)) = E/⟨[ma]Pa + [na]Qa, [mb]Pb + [nb]Qb⟩ =

= ϕ
′
b(ϕa(E)) = Eba

14

2.2. Supersingular Isogeny Diffie-Hellman

Alice p = la
ea · lbeb · f ± 1 Bob

E(Fp2)

Chooses base {Pa, Qa} Chooses base {Pb, Qb}

{Pa,Qa}−→

{Pb,Qb}←−

Choose a random Choose a random

ma, na ∈ (0, la
ea) mb, nb ∈ (0, lb

eb)

Ra = [ma]Pa + [na]Qa Rb = [mb]Pb + [nb]Qb

Calculates public values: Calculates public values:

ϕa : E → Ea ϕa : E → Eb

Ea = E/⟨Ra⟩ Eb = E/⟨Rb⟩

ϕa(Pb), ϕa(Qb) ϕb(Pa), ϕb(Qa)

Ea,ϕa(Pb),ϕb(Qb)−→

Eb,ϕb(Pa),ϕb(Qa)←−

Calculates the final Calculates the final

isogeny and curve isogeny and curve

R
′
a = [ma]ϕb(Pa) + [na]ϕb(Qa) R

′
b = [mb]ϕa(Pb) + [nb]ϕa(Qb)

ϕ
′
a : Eb → Eab ϕ

′
b : Ea → Eba

Eab = Eb/R
′
a Eba = Ea/R

′
b

Eab
∼= Eba

j(Eab) = j(Eba)

Figure 2.1: SIDH shared key exchange protocol.

What parameters are not a good idea to share? The public parameters at
the end are:

• prime number p,

• the supersingular elliptic curves E, Ea, Eb,

15

2. Shared key establishment

• basis points Pa, Qa, Pb, Qb,

• their images in the given isogenies ϕb(Pa), ϕb(Qa), ϕa(Pb), ϕa(Qb).

The secret parameters are:

• secret values ma, na, mb, nb,

• secret isogenies ϕa, ϕ
′
a, ϕb, ϕ

′
b.

Figure 2.2: Shared elliptic curve computation.

From the figure fig. 2.2 above, the public and private parameters, we can
see that if only one, in other case the two secret values ma, na, parameters
would be leaked, an attacker would endanger the whole shared secret key ex-
change. Simply, if the secret isogeny ϕ

′
a were to be revealed, the attacker can

easily calculate the image of Alice’s point in Bob’s isogeny and thus compro-
mising the final elliptic curve Eab.

2.2.1 Parameter generation

Suppose we have fixed parameters la, lb, ea, and eb. In [22], it is shown that
finding the prime number p = lea

a · l
eb
b · f ± 1, is relatively easy as we test

random values of f and check if the given value is a prime or not. The next
step is to find a supersingular curve E over the field Fp2 , from there we can
choose the starting curve E0 as any other random supersingular curve that
can be found as randomly walking in a graph of the isogenies.

When we have the starting curve, Alice and Bob have to find their basis
points of E0[lea

a] for Alice, respectively E0[leb
b] for Bob. As we know from

before, the basis points have to be of the order of these torsion subgroups,
and the points have to be independent. We will use Weil pairing e(Pa, Qa) in
E0[lea

a] to check both conditions. If the result is valid and has order lea
a , we

have found our basis points, otherwise, we choose another point Qa, and repeat
the process. The same applies to Bob, but with the use of his parameters.

16

2.3. Supersingular Isogeny Key Encapsulation

2.2.2 Isogeny finding

To find the final isogeny, our first step is calculating the kernel of the isogeny.
Before we go straightforward to the computation, we are trying to find the
elements described by the generator ⟨R⟩ = ⟨[ma]Pa + [na]Qa⟩ . For this, we
would need to do some computation twice over an elliptic curve. This could
be as twice as slow. To ease the calculation, we will use any other generator
of ⟨R⟩ = ⟨[ma]Pa + [na]Qa⟩ , as is shown in [22]; we can use without loss of
generality that the element ma is invertible modulo the order of the group.
Thus we can use ⟨R′⟩ =

〈
Pa + [m−1

a · na]Qa
〉

When we acquire the kernel of our isogeny, we need to calculate the fi-
nal isogeny. The computation of the isogeny is disassembled into computing
smaller isogenies and then combining them all together to create one isogeny
of the required degree. For that, we use an algorithm as described in [22]:

Algorithm 1 Isogeny computation for Alice.
E0 ← E
R0 ← R′

e← ea

l← la
for 0 ≤ i < e do

Ei+1 = Ei/⟨le−i−1Ri⟩
ϕi : Ei → Ei+1
Ri+1 = ϕi(Ri)

end for
ϕ← ϕe−1 ◦ · · · ◦ ϕ0
return Ee, ϕ

We will use the Velu’s formula [16] to compute the Ei+1 curve and its ϕi.
It is easy to see that the above algorithm has quadratic complexity in the
length of e; this could also be lowered if using a better approach.

To fasten this process, we will usually use different strategies over this
naive approach. These strategies aim to achieve overall faster computation
time for the price of computing not only 2−isogenies and 3−isogenies, but
also 4−isogenies and so on.

2.3 Supersingular Isogeny Key Encapsulation
Supersingular isogeny key encapsulation (SIKE) is an algorithm that is cur-
rently under the National Institute of Standards and Technology (NIST) post-
quantum standardization process available at [23]. This algorithm is the only
one isogeny-based algorithm. As described in section 2.2 and in [3], it uses
pseudo-random walks on supersingular isogeny graphs, which is the heart of
this KEM. This algorithm, versus all the other types of algorithms based on

17

2. Shared key establishment

code-based, lattice-based, and others, uses very small keys and thus is very
likely to be the future standard for shared key exchange. Before this hap-
pens, the algorithm has one disadvantage, and it is its speed because of the
exhaustive isogeny computation.

There is a public-key encryption scheme that is CPA-secure (chosen plain-
text attack) and can be transformed into a CCA-secure (chosen ciphertext
attack) KEM scheme as well.

2.3.1 Security of supersingular isogeny key encapsulation

There are two ways for security measurement. As we are looking towards the
future, not only classical computers are a threat, but also the rising threat
of quantum computers. That is why security has to be measured from both
directions. If the scheme were not secure one or another, we would always
be able, if we had a large enough quantum computer, to break the encryp-
tion of that scheme or with a powerful enough classical computer. Detailed
information is available at [3].

The early release of SIKE algorithm had proposed bigger key sizes than
there are now; as it was shown, the initial analysis was a bit conservative,
but rather than propose smaller keys and have a worse security level, they
proposed bigger keys that guaranteed a certain level of security. [24]

Currently, SIKE is in NIST standardization process with four different
target levels of security [25]. Let’s start with the classical ones. SIKE proposed
implementations aims for levels 1,2,3 and 5.

• Level 1: requires the algorithm to be able to withstand an exhaustive
search for the AES-128 key.

• Level 2: requires the algorithm to be able to withstand a collision search
of SHA256.

• Level 3: requires the algorithm to be able to withstand an exhaustive
search for the AES-192 key.

• Level 4: requires the algorithm to be able to withstand a collision search
of SHA384.

• Level 5: requires the algorithm to be able to withstand an exhaustive
search for the AES-256 key.

The theoretical quantum safety of this algorithm was firstly used with re-
spect to using the claw-finding algorithm [26] to analyze its security. This
algorithm has O

(
p

1
6
)

time complexity. But as was previously mentioned,
this estimate was very conservative, and in [27], it was shown that the attack

18

2.3. Supersingular Isogeny Key Encapsulation

requires O
(
p

1
3
)

(RAM) operations. This means they could change the sys-
tem’s public parameters, even more, lower, and the cryptosystem would still
be sufficiently safe against other attacks.

2.3.2 Reference implementation

When a proposal to the NIST standardization process is submitted, a person
or a group of people have to include a reference implementation of a given
algorithm. The main reason of providing such a reference implementation is
to publish it together with the proposal to the general public. These reference
implementations are then tested in a broad spectrum of analysis. They are
starting with its effectiveness in time and memory complexity, key sizes, etc.
Also, not only to conclude how the implementations will behave but also to
have a closer hands-on experience working with this algorithm to find possible
back-doors, vulnerabilities, and side-channel analysis. This method of sharing
the reference implementation helps detect the mentioned issues and keeps
researchers from including their own weaknesses.

Of course, there is not only one implementation; there are a lot of different
implementations of the SIKE algorithm. One of them is purely written in C,
some are written in VHDL, some are partly written in assembly to use specific
instructions on a given processor, and so on. There are also versions with
compressed keys, but we are not interested in them right now.

There are available implementations distinguishable primarily by the bit
length of their given prime number p. Currently, SIKE supports 434-bit, 503-
bit, 610-bit, and 751-bit long prime numbers as their public parameter.

The following fig. 2.3 shows how the SIKE protocol works. The protocol
works with three hash functions F, G, H at three places [3], all these three
places can have a different hash function but also the same. The figure contains
only two hash functions. A function for encryption is also used, and we could
find this function in [3]. With this being said, the key encapsulation and
decapsulation work in the following way.

Bob can either be a server, or he can be the one initiating the communi-
cation. With that, he computes his public parts of the SIDH protocol. Alice
is then either initiator or Bob wants to communicate with her. Alice then
generates a random binary string m that is combined with Bob’s public key
using a hash function. This way, Alice gets her (almost) secret number na,
and uses it to compute her part of the SIDH protocol and the invariant of the
final curve. She creates two cipher texts, which tie her secret m, with a xor
operation with the secret j-invariant of the final curve. Everything is, in the
end, combined together to be hashed and forms a shared key K.

When Bob receives the public parameters from Alice, he also computes the
secret isogeny, its final elliptic curve, and its j-invariant. If everything went
correctly, Bob will end up with a message m

′
, that should be equal to the

19

2. Shared key establishment

m Alice generated, and thus, he can proceed with the same steps of hashing
information together and create the same shared key K.

Figure 2.3: SIKE protocol, encapsulation and decapsulation. [1]

2.3.3 Existing side channel attacks

Not only is an algorithm vulnerable to some casual attacks, but it can be
vulnerable to a side-channel analysis. The side-channel analysis focuses on
different physical states of a measured device and provides additional infor-
mation, not including the device’s output. Usually, these side-channel are
unintentional, as it weakens the device in the way that some part of a secret
or even the whole secret can be discovered. These side-channels are introduced
with the implementation of a given algorithm. There are different kinds of
side channels:

• power consumption, a device uses more energy to process different data.

• Time spending, such as cache miss or doing some operations, takes longer
than others.

• Speculative execution: the CPU executes some instructions without
knowing if it should or needs to do these instructions.

• And so on...

20

2.3. Supersingular Isogeny Key Encapsulation

For example, the leakage in power consumption consists of two parts and
exists only due to the imperfection of creating transistors.

• Static that is a passive consumption the circuit or device would do any-
way;

• and dynamic, that part is caused by switching or other activity of a
circuit.

According to [3], since the cryptosystem is isogeny-based, the SIDH is only
vulnerable to the side-channel channel analysis at two points.

• The first is the discovery of the secret kernel point denoted before as
⟨R⟩, respectively its computation.

• The second is to figure out the secret isogeny walk from the starting
curve to the final curve.

We could attack on the secret kernel point, [28] showed some examples of
how to attack. It attacks the double and add algorithm, an efficient algorithm
for multiplying a point on an elliptic curve. It is a deterministic function and
only behaves differently when the secret scalar is different. The secret scalar
could be found using simple power analysis (SPA) if the algorithm doesn’t use
any countermeasure. There is a simple solution; a Montgomery ladder could
be used as it should eliminate this issue [29].

Since the SIDH uses the Montgomery ladder and also Montgomery curves,
it is required to use some sophisticated strategy. That comes with a correla-
tion power analysis [30] (CPA). CPA uses traces of consumption of an attacked
device. These traces should correlate with the hypothetical consumption of
a processor which executes a deterministic function. This hypothetical con-
sumption resembles the consumption of change of bits in a register and is
estimated using the Hamming weight,

There are more attacks and leakages [31, 32, 33, 34] regarding the SIKE
algorithm. They are based on zero value attacks or targeting a specific imple-
mentation on an arm-based, attacks that overcome specific countermeasures,
and more. Some attacks aim at an ephemeral key. Such an attack can be
found here [35]. It uses a horizontal CPA to discover the secret scalar by
splitting one trace into smaller ones.

21

Chapter 3
Attack design

The attacked implementation is the official SIKE implementation adapted
for the (32-bit) ARM Cortex-M4 microcontroller. We will elaborate on the
hardware and software solution, eventually modified for this thesis.

3.1 Hardware and software selection

There are four versions of SIKE to choose from. Since we are going to use a
32-bit microcontroller from an ARM Cortex family, We chose to attack the
smallest key size of SIKE, which is the one satisfying level 1 NIST security
level. It is due to the expected slow computation process. Even though if
we were to choose the largest and most secure version of SIKE and we would
attack on that implementation, the only difference would be in the time spent
waiting for data. The software we chose is from [36, 4]. From there, we started
adapting this code to our needs, still with keeping the system functional as it
would be without any adaptation.

3.1.1 Hardware

We have to use a 32-bit microcontroller. Lately, one of the popular devices to
use is to use the ChipWhisperer [2]. We used the lite version as it has most of
the needed things included. ChipWhisperer-Lite (CW1173) 32-bit basic board
which features an STM32F303, the target is a Cortex-M4 microcontroller
which we will program, and can be seen in fig. 3.1. There is also a serial
port for communication and programming. The interface and control are
implemented using an Atmel SAM3U microcontroller and Xilinx Spartan6
FPGA.

There are some disadvantages to measuring the traces; the sample count
is at most 24400 and can’t be increased more. There are two options, though.
The first option is to enable the decimate property to some value of x. Chip-
Whisperer will now keep only each x-th sample and discard the samples in

23

3. Attack design

Figure 3.1: ChipWhisperer Lite. [2]

between. This will increase the time span the ChipWhisperer can record over,
but for the price of potentially losing important information. This lack could
have been neglected using an external oscilloscope. Also, there is a built-in
signal amplifier, so we don’t have to worry about noise that much.

To control the ChipWhisperer, we are using python and a Jupyter note-
book. This notebook will handle all communication with the use of Chip-
Whisperer API.

3.1.2 Software

The ChipWhisperer software is as stated above. We also had to make an
interface so the device could communicate with the computer. The interface
contains commands to

• upload the private key,

• compute the public key,

• send the public key to the computer,

• receive the opposite side public key,

• compute the shared key,

• send the shared key back to the computer.

There had to be some modifications done as the length of the public key is
330 bytes, but we were only able to send 255 bytes at the same time, so some
functions contain a slight change in their data processing, such as the first two
bytes represent the length of the data and the other the real start of the data.
All of these were made to test and measure all comfortably.

24

3.2. Implementation related issues

To generate data for the SIDH, we also used some software base points
from a GitHub repository [37]. There are three modifications to the code.

First, we needed to ensure the hardware and software worked properly on
both the microcontroller and the testing computer. To do that, we created
a simple program that randomly generates all required random parameters
of the SIDH protocol, goes through all the steps of the public key exchange,
and generates every step of the SIDH protocol. When all computations were
done, the secret shared key was printed to the terminal, and all the necessary
intermediate steps, such as printing from Alice’s perspective her private key,
her public key, and the shared key she computed. Then from Bob’s perspec-
tive, the other way around. All of these values are then used to test against
the ChipWhisperer and its implementation. The included python file contains
such a test. This functionality is now disabled; the explanation of why is in
the section 3.2.

The second program we used was to generate n random private keys and
their respective public keys. The program takes as an argument a whole
number n ≥ 0. If the given argument is not valid, the program finishes and
does not write anything to the standard output. The program goes through
the steps of Alice. It generates a random na ∈ (0, lea

a) , where la, ea are public
parameters for SIKE-434. Then it computes the kernel point, the final isogeny,
and encodes the j-invariant value of that curve using the official interface of
the SIDH algorithm. In the end, it formats the private and public keys as
hexadecimal values and prints them to the standard output on a new line.
The private keys are discarded every time except for the ChipWhisperer initial
phase when there we need to fill the ChipWhisperer with a new secret key.

The last piece of code for our attack to work is to know some intermediate
values or their internal state. This program, rather oracle, has access only to
public keys, so any mention of a secret key is for a hypothetical key we think
is correct. This program takes three arguments. First is the number of bits
we know about the private key, the hypothetical key, then the bytes of the
private key, and lastly, the public key. Except for the number of known bits,
all values are encoded in hex, and the program processes them as such. If all
parameters are passed and are valid, the program processes all the known bits
first and then prints out the two possible states that could have happened in
the hardware. Either there was a binary zero or a binary one. It saves both
possible results and prints them to the standard output.

3.2 Implementation related issues

Before we try to find any weak spot, we should try to check if there is any
leakage of so far known data. The easiest way of doing so is to measure n traces
where we use n random public keys, and we will try to use 8-bit words, these
words are taken as bytes from the public keys, and correlate their Hamming

25

3. Attack design

weights with the measurement. As the microcontroller has a 32-bit processor,
we can try to go up to 32-bit long words. Surprisingly enough, we found a
correlation between all bytes of the public keys. The next fig. 3.2 shows such
correlations of 8-bit words and fig. 3.3 shows correlation of 32-bit long words.

Figure 3.2: Correlation of power consumption using 8-bit words.

Figure 3.3: Correlation of power consumption using 32-bit words.

While doing these experiments, the execution speed was very slow. For one
trace, or instead, for one computation, it took about 6.97 seconds. Because
of this, we decided to reduce the computation complexity and removed some
parts of the algorithm that would not be so much important to us. This

26

3.3. Looking for leaking spots

reduced the execution speed to about 1.92 seconds, which makes capturing
n = 1000 traces feasible.

As the isogeny computation differs for both Alice and Bob, we decided
that the microcontroller will always be the Bob side, and it will do only Bob’s
part of the SIDH protocol. The attacker will be in the position of Alice and
thus will be using her computations of isogenies.

3.3 Looking for leaking spots

The inspiration for our attack comes from [35] where they successfully at-
tacked on SIKE with an ephemeral key where they split one long trace into
smaller ones, so it is a horizontal attack. Both SIKE and SIDH share the
same background, but as shown in chapter 2., the key encapsulation is very
different.

We are attacking on the SIDH so that we will make a vertical attack against
this protocol. Thus instead of only requiring one trace, we will need hundreds
of them or maybe thousands. We will be using a correlation power analysis
to distinguish between a wrong guess and a correct guess. The attack will be
made on the Montgomery curve’s three-point ladder.

Figure 3.4: Three point ladder.[3]

A conditional xDBLADD is highlighted in the figure fig. 3.4, the refer-
ence implementation contains a simple constant-time swap using xor function
instead of if and else branching. Since we are using the ChipWhisperer, as
described in section 3.1.1, with its oscilloscope, its memory isn’t enough, not
even for the swapping part. As the swap operation affects only the double
and add function, we will focus on this operation. Also this is recommended
in [35]. With this in mind, we will first try to deduce how many cycles some
operations take in that function. Then we will limit ourselves only to col-
lecting as many useful samples as possible that work with one or the other

27

3. Attack design

Figure 3.5: Double and add algorithm. [4]

swapped value. The table table 3.1 shows approximately how many samples
each operation takes.

Operation Samples
fp2add 2200
fp2mul_mont 13400
fp2sqr_mont 8600
fp2sub_mont 1700
fp2correct 8000

Table 3.1: Samples count for different operations.

Suppose T = (X0, Z0), S = (X1, Z1), and U = (X2, Z2), α = (A + 2)/4
as written in fig. 3.4. Let’s illustrate the variable propagation when the
swap does not occur; we would call the double and add the operation as
xDBLADD(S, T, U, α). When the swap occurred, the variable names would
be different, but the illustration here is meant for the content of these vari-
ables, and we would have called it like xDBLADD(S, U, T, α). The following
figure fig. 3.6 show these changes and where our point of attack is.

Unimportant

computation

t2 is our point of attack

Swapped, but

used only part

of the other

Figure 3.6: Change of variables of xDBLADD with swap.

28

3.3. Looking for leaking spots

From the illustration of variable propagation in fig. 3.6, we can see the
first three operations do not matter as they are not operating with the second
and third argument, which are being swapped in the algorithm fig. 3.4. If we
take into consideration how many samples we can record and the length of
each operation, we can roughly record the operations on lines 8-11. Because
of this, we will focus only on the first bit of the secret key, and if we wanted
to discover the whole key, we would have to do some offsetting to record only
those double and add operations that are present during the k − th bit.

Since everything is deterministic except for the unknown secret key sk, we
will use this for our hypothesis. As we can see, there is a good correlation
with the use of 8-bit words from the public key, and we will continue with
them as well. Suppose we know the first l bits of the secret key sk, which has
n bits. Since we don’t know the next bit sk[l + 1], we will try both possible
combinations of the next bit being zero or one. Since we know there should be
a leakage in the result t2, according to their Hamming weight, as part of our
hypothetical consumption, this theoretical consumption should correlate with
the actual measured consumption. Since the data are random, the data will
behave as a random variable. Suppose our hypothesis about the theoretical
power consumption with the use of the Hamming weight of the intermediate
values is correct. In that case, there will be a significant correlation with
one or the other key guess set. As we are measuring multiple operations, our
oracle can choose whichever intermediate state it wants.

29

Chapter 4
Attack implementation and

evaluation

This chapter concludes how the attack was made and what we did. How much
the attack was successful or not.

4.1 Setup and attack implementation

As described in the sections above, we already have two programs prepared for
this attack. One acts as an oracle and the other as a random data generator
that gives us n random public keys. Also, we already have the oracle, which
will provide us with both possible answers. Then we have a Jupyter notebook
which serves as a master controlling unit that calls required subprograms or
communicates with the ChipWhisperer.

Currently, the oracle saves the result of fig. 3.5 line 8 and provides the
result to the standard output for both next bit being equal to zero and one.
Then the master notebook collects all the data, meaning all the random public
keys we used, and tries to separate them into two categories. One category
is where we tried the next bit being equal to one and the other being equal
to zero. We then compute the Hamming Weights of these two categories and
try to correlate them with the measured traces. We expect a high correlation
between the power traces with the correct guess.

4.2 Results

Sometimes it happened that the measured data were not aligned correctly. It
could have been due to some difference in the internal state of the measurement
cycle, resulting in differences in the first trace of the measurement in the
beginning, and all subsequent traces were perfectly aligned. For that, there is

31

4. Attack implementation and evaluation

a prepared command in the Jupyter notebook to remove a single trace from
all the traces and its respective public key.

Sadly, the results were inconclusive. Although we have got pretty lucky
and usually guessed the right bit correctly, it was roughly in 62 % of the time,
and the correlation looked like noise rather than a real correlation between
two dependent groups. The number of traces was usually 1000, but we tried to
take up to 5000 traces with the same results. The expected Hamming weight
distribution is binomial, and this can be seen in the fig. 4.1. These correlation
can be seen in fig. 4.2.

Figure 4.1: Distribution of Hamming weight in the intermediate values.

Even though we started using only 8-bit long words and their hamming
weights to experimentally test the hypothesis, as the processor uses 32-bit
long words, we also tried to use 32-bit long words from the internal state,
but this didn’t help either. The correlation still looked like playing over some
independent groups. The expected Hamming weight distribution is binomial,
and this can be seen in the fig. 4.3. The correlation can be seen here fig. 4.4.

We believe this result is due to a poorly chosen oracle. Although we tried
many of them and even tried to measure different parts of the double and add
algorithm with their intermediate values for the oracle, it had no effect.

The natural question would arise if this attack were to be successful: how
do we attack the other bits? This would be fairly easy to change. Instead
of measuring the first double and adding operation, we would look iteratively
over every bit and measure all traces repeatedly. If we were to find a specific
point in the traces that leaks the information, even the measurement and
following computations would be much easier. Suppose the leakage really

32

4.2. Results

Figure 4.2: Correlation of power consumption with theoretical consumption.

Figure 4.3: Distribution of Hamming weight in the intermediate values.

comes from the result of t2 as shown in the fig. 3.6 and since all the traces are
aligned, we can figure out which sample is the leaking one. ChipWhisperer
comes with a feature called segmented capture. Since when the trigger high
sets, the measurement doesn’t end unless we fill the required buffer size. This

33

4. Attack implementation and evaluation

Figure 4.4: Correlation of power consumption with theoretical consumption.

isn’t necessarily bad. If we were to limit our capture buffer for one trace to
a small number of samples, or even with the offset function, we could trace
every important sample in the computation. Since the domain here is time
and the operations are constant, we could save one trace with all the time
regions where the leakage function works at. Then the ChipWhisperer would
give us back a 2D array of samples for every triggered trigger.

34

Chapter 5
Countermeasures against side

channel attacks

There are many ways of countermeasure side-channel analysis. We will fo-
cus on a few of them and how to achieve better security. Many DPA-based
attacks are expected to have some victim that uses the same set of private
information. Suppose there is only one secret information K. The DPA can
be successful if we measure enough traces of processing random data with the
same secret information K. If the victim were to use ephemeral secret infor-
mation, DPA alone would not be 100 % eliminated, but the attacker would
have to use a more sophisticated attack, such as horizontal DPA. To apply
any countermeasure, we have to have an idea of a potential attack that we are
using such a countermeasure against. There is no specific countermeasure to
counter all possible side-channel attacks.

There are a few types of countermeasures. Typical types are hiding and
masking. As for hiding, there are these types:

• hiding in amplitude that describes a model where all operations require
the same amount of power for any data, or a model where there is gener-
ated random switching noise which will disrupt the valuable information
regarding the power consumption based on data;

• hiding in time that means we could put some random periods of sleep
inside our hardware or program, so it executes its operations randomly
spread in time. Including dummy operations or randomly changing the
order of operations if we prevent functions that depend on some other.
If we apply this strategy, as for DPA, it will be unable to get some useful
secret information without any preprocessing. It could be done that we
realign all the traces using cross-correlation.

As for masking, we also have two types:

35

5. Countermeasures against side channel attacks

• logic masking that means instead of processing raw data and having
deterministic functions, we use a random mask and xor it to the in-
termediate values; we could even xor it on top of the processed data.
These masks are trying to disrupt the dependency between data and its
consumption.

• Arithmetic masking uses multiplication homomorphism; we use a ran-
dom scalar to modify the intermediate values in an unpredictable way.
Usually, the scalar is required to have an inverse so it can be removed
at the end or when the data needs to be processed.

5.1 Attacks on double and add

5.1.1 Simple power analysis

As we discussed a bit in section 2.3.3, a naive implementation of double and
add can be relatively easily exploited. In [5], it is advised that the algorithm
double and add does the addition part every time, not only in the conditional
case of the bit is one. This algorithm is called double and add always. The
algorithm can be seen below:

Figure 5.1: Double and add always algorithm [5].

Also, we could use Montgomery curves and Montgomery ladder instead of
using curves in the Weierstrass model. These methods also prevent SPA.

5.1.2 Differential power analysis

To prevent DPA attacks it is necessary to include some random value within
the secret point multiplication dP. In [38] it is shown to generate a random
scalar k and create a new d

′ = d + k · ord(E), where ord(E) is the order of the
elliptic curve. With that, the resulting point will be d

′
P = dP +k ·ord(E)·P =

dP + k · O = dP. This seemingly small change will lead the attacker to not
being able to correlate the consumption as the k is always different, even
though the result is still correct.

The other way around, we can use randomized projective coordinates [39].
Different coordinate systems can have various benefits or downfalls. Some are

36

5.2. Attacks on the isogeny computation

used for their efficiency as there is no need to calculate inverses directly, but
rather with the use of some additional point addition and subtraction.

In the case of zero value attacks, it is shown in [5] that the zero value
points, such as (0, y) or (x, 0) drastically decrease the power consumption,
and they are able to detect this vulnerability.

On the other hand, it is shown how to attack an uncompressed SIKE
version with a static key. This version can also contain the countermeasure
of randomizing points; still, it is vulnerable to their attack, and they are able
to recover the whole key. They achieve this by manipulating the kernel point
of the secret isogeny, so the casual computations are undefined or random.
Since this attack is based on maliciously tampering with the public key, or
rather the SIKE ciphertexts, a simple countermeasure would be to validate
these parameters, but that task is hard as it should be as hard as breaking
the SIKE. Since their ciphertexts have a recognizable pattern, they made a
countermeasure regarding this. [40]

5.1.2.1 Attacking ephemeral key

In [35] we can see that they were able to obtain an ephemeral key even with
use of DPA. So far we have seen DPA only with multiple traces with a static
key but there is an attack that targets ephemeral key.

They achieved this results by exploiting horizontal CPA. Since the field
elements are long and they do not necessarily fit into a word as they are
hundreds of bits long, they can have from every operation with these values
several traces separated at the point where next word is processed as the entire
word has to be for example multiplied by two, so each part will be and some
corrections will be made. Since all internal functions are still deterministic
they exploit this structure with only one trace.

In the paper [35] are also available some relatively cheap countermeasures.
Suppose we have a secret key sk, and the two basis points of respective torsion
group ⟨Q, P ⟩, and a random point P. The countermeasure lies in masking the
point Q

′ = Q+R, then the almost kernel point is calculated using P +[sk]Q′ =
P +[sk](Q+R), final calculation is made by subtracting [sk]R from the result.
This has its downsides, as we will have to leave the Montgomery representation
and calculate a very expensive square root.

5.2 Attacks on the isogeny computation

To recover the secret isogeny, we focus on the secret kernel point that is used
to walk in the graph of isogenies, not to mention that the graph has a small
degree. If the attacker gets at least partial knowledge of the walk, the security
of the cryptosystem is weakened. [3]

37

5. Countermeasures against side channel attacks

5.2.1 Fault injection attack

With the fault attacks, we assume we have physical access to a given cryp-
tosystem, and we are able to emulate or insert a fault into the typical function
of the cryptosystem and the implementation will run under unexpected cir-
cumstances. Thus, if choosing the correct values, revealing part of the secret
information.

In [41], it is shown that we can recover the secret isogeny from receiving
an image of a random point under the secret isogeny. The attack uses a
random point on that particular curve E, which was brute-forced to match
their specific needs, and the probability of laying on the curve is relatively high.
Since the isogeny is a group homomorphism, they find a linear combination
of their points to then help them to construct a dual isogeny and then recover
the original isogeny. It is also said that you should never reveal the image of
a random point under the secret isogeny.

To eliminate this attack, it is advised to implement order checking of the
given public key, respectively, the basis points of the torsion subgroups.

Another type of attack could be implementing loop aborts [42]. These
work in the way that we force a loop to an unexpected end. For example, a
glitch could happen when a condition is being checked if some control variable
is over the required limit. Even though the loop should have continued, it
unexpectedly ended, for example due to skipping a jump instruction.

Attack mentioned in [42] explores the possibility of breaking the compu-
tation of the large degree isogeny. They also let Alice use validation methods
to check the received public key, so they limit themselves with this. These
attacks recover bit by bit from the least significant bit. They use an oracle
that checks the k − th iteration of the isogeny computation, to remind it of
the calculation of Ek and then compare this faulty elliptic curve j-invariant to
their own within the oracle. So they basically test bit by bit, guess and check
if they hit.

To defend against this type of attack, it is not only necessary to validate
the input and check whether the other side is trying to be malicious or not,
but also not to give away any free information about our secret isogeny. It
is proposed to check the counter after the loop if it is really the expected
value or not. That is a case for those attackers who don’t have the capability
to introduce perfect and precise faults into the algorithm. Also, there is a
recommendation to use multiple counters to have more precise control over
the loop’s iterations, and it could also lead to checking against random faults
not only invoked by some attacker.

The last countermeasure from [43] is about possible unknowing exposure of
the kernel point in the middle of computing the large degree isogeny. They sup-
pose they could divide the large degree isogeny computation into two smaller
isogeny computations. The loop break could have induced the exposure. De-
termining the order of the intermediate kernel point, they can then use brute

38

5.2. Attacks on the isogeny computation

force with the use of the generalized elliptic curve logarithm. This will yield
the secret value m, which was the secret scalar. To avoid this attack, they
suggest generating some random walk in the isomorphism class of the starting
curve E0, so the relation between the basis point and the isogeny is obfus-
cated.

39

Conclusion

In this thesis, we designed and experimentally evaluated a side-channel at-
tack. The attack on the key exchange SIDH protocol was designed to use a
correlation power analysis. We used an uncompressed 32-bit reference imple-
mentation from the NIST standardization process. This version was slightly
modified to fit our time constraints. In the thesis, we describe an attack on the
first bit of the secret key due to limited memory on the used ChipWhisperer-
Lite and show instructions on how to reveal the whole secret key if we can
break the first bit.

The measurements were made on an ARM Cortex-M4 microcontroller.
Unfortunately, the designed attack did not work, and we could not reveal the
first bit of the secret key. The steps after not being able to break the first bit
were:

• we conducted a broad trial and error phase of testing whether the in-
termediate values we calculate are the same both on the microcontroller
and the computer, which acted as the oracle. Both intermediate devices
worked perfectly fine, so we believe this was not the case.

• Next, we carefully measured and researched if what we really measured
were the first steps of the SIDH algorithm. This conducted once more
experimentally remeasuring cycle counts of the operation xDBLADD,
so we knew the length of each function and how many operations we
could sample. Experimentally we understood that the measurements
we were doing were correct.

• Next, the hypothesis of being able to correlate the Hamming weight
of data using 8-bit words, respectively 32-bit words, is incorrect. We
conducted a brief correlation testing with the public key components,
and we were able to get the correlation. So this was not probably the
cause.

41

Conclusion

• The last item on our list is the oracle function itself. Even though it
gave us the correct intermediate values, we probably were misusing it,
or we were processing the data in the Jupyter notebook improperly.

The aim was to get to know and understand the underlying SIDH and
SIKE algorithms, have some hands-on experience with a side-channel attack
on the SIDH algorithm, and to research possible counter-measurements to pos-
sible side-channel analysis. We have gathered a lot of interesting information
regarding SCA against SIKE. All the aspects of the thesis were completed,
although we could not show our attack is convincingly working with high
probability.

42

Bibliography

[1] Jalali, A.; Azarderakhsh, R.; et al. NEON SIKE: Supersingular Isogeny
Key Encapsulation on ARMv7. In Security, Privacy, and Applied
Cryptography Engineering, edited by A. Chattopadhyay; C. Rebeiro;
Y. Yarom, Cham: Springer International Publishing, 2018, ISBN 978-
3-030-05072-6, pp. 37–51.

[2] NewAE Technology Inc. ChipWhisperer - the complete open-source
toolchain for side-channel power analysis and glitching attacks. Available
from: https://github.com/newaetech/chipwhisperer

[3] Campagna, M.; Costello, C.; et al. Supersingular isogeny key encapsula-
tion. 2019.

[4] Fabio Campos. Safe Error Attacks on SIKE and CSIDH. Avail-
able from: https://github.com/Safe-Error-Attacks-on-SIKE-and-
CSIDH/SEAoSaC

[5] Akishita, T.; Takagi, T. Zero-Value Point Attacks on Elliptic Curve Cryp-
tosystem. In Information Security, edited by C. Boyd; W. Mao, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, ISBN 978-3-540-39981-0,
pp. 218–233.

[6] Shor, P. W. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, volume 41, no. 2,
1999: pp. 303–332.

[7] Lidl, R.; Niederreiter, H. Finite Fields., Encyclopedia of Mathe-
matics and Its Applications, volume Second edition. Cambridge
University Press, 1997, ISBN 9780521392310. Available from:
https://search.ebscohost.com/login.aspx?direct=true&db=
e000xww&AN=569266&lang=cs&site=ehost-live

43

https://github.com/newaetech/chipwhisperer
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=569266&lang=cs&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=569266&lang=cs&site=ehost-live

Bibliography

[8] Riley, K. F.; Hobson, M. P.; et al. Group theory. Cambridge
University Press, second edition, 2002, p. 883–917, doi:10.1017/
CBO9781139164979.026.

[9] Kibler, M. R. 1 - The Structures of Ring and Field. In Galois Fields
and Galois Rings Made Easy, edited by M. R. Kibler, Elsevier, 2017,
ISBN 978-1-78548-235-9, pp. 1–32, doi:https://doi.org/10.1016/B978-1-
78548-235-9.50001-4. Available from: https://www.sciencedirect.com/
science/article/pii/B9781785482359500014

[10] Mullen, G. L.; Panario, D. Handbook of Finite Fields. Chapman & Hal-
l/CRC, first edition, 2013, ISBN 143987378X.

[11] De Feo, L. Mathematics of Isogeny Based Cryptography. 2017, doi:
10.48550/ARXIV.1711.04062. Available from: https://arxiv.org/abs/
1711.04062

[12] Lange, T. Edwards Curves. Boston, MA: Springer US, 2011, ISBN 978-1-
4419-5906-5, pp. 380–382, doi:10.1007/978-1-4419-5906-5_243. Available
from: https://doi.org/10.1007/978-1-4419-5906-5_243

[13] Silverman, J. H. The arithmetic of elliptic curves, volume 106. Springer,
2009.

[14] Washington, L. C. Elliptic curves: number theory and cryptography.
Chapman and Hall/CRC, 2008.

[15] Shumow, D. Isogenies of Elliptic Curves: A Computational Ap-
proach. 2009, doi:10.48550/ARXIV.0910.5370. Available from: https:
//arxiv.org/abs/0910.5370

[16] Vélu, J. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB,
273:A238–A241, 1971.

[17] Couveignes, J.-M. Hard Homogeneous Spaces. IACR Cryptology ePrint
Archive, volume 2006, 01 2006: p. 291.

[18] Stolbunov, A. Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves. Advances in Math-
ematics of Communications, volume 4, no. 2, 2010: pp. 215–235.

[19] Stolbunov, A. Cryptographic Schemes Based on Isogenies. Dissertation
thesis, 01 2012, doi:10.13140/RG.2.2.20826.44488.

[20] Childs, A. M.; Jao, D.; et al. Constructing elliptic curve isogenies in quan-
tum subexponential time. 2010, doi:10.48550/ARXIV.1012.4019. Avail-
able from: https://arxiv.org/abs/1012.4019

44

https://www.sciencedirect.com/science/article/pii/B9781785482359500014
https://www.sciencedirect.com/science/article/pii/B9781785482359500014
https://arxiv.org/abs/1711.04062
https://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-1-4419-5906-5_243
https://arxiv.org/abs/0910.5370
https://arxiv.org/abs/0910.5370
https://arxiv.org/abs/1012.4019

Bibliography

[21] Hermans, J.; Vercauteren, F.; et al. Speed Records for NTRU. In Topics
in Cryptology - CT-RSA 2010, edited by J. Pieprzyk, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, ISBN 978-3-642-11925-5, pp. 73–88.

[22] Jao, D.; De Feo, L. Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies. In Post-Quantum Cryptography,
edited by B.-Y. Yang, Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, ISBN 978-3-642-25405-5, pp. 19–34.

[23] Moody, D.; Alagic, G.; et al. Status report on the second round of the
NIST post-quantum cryptography standardization process. 2020.

[24] Costello, C. The Case for SIKE: A Decade of the Supersingular Isogeny
Problem. Cryptology ePrint Archive, Paper 2021/543, 2021, https://
eprint.iacr.org/2021/543. Available from: https://eprint.iacr.org/
2021/543

[25] Moody, D. Round 2 of NIST PQC competition. Invited talk at PQCrypto,
2019.

[26] Tani, S. Claw finding algorithms using quantum walk. Theoretical Com-
puter Science, volume 410, no. 50, 2009: pp. 5285–5297, ISSN 0304-
3975, doi:https://doi.org/10.1016/j.tcs.2009.08.030, mathematical Foun-
dations of Computer Science (MFCS 2007). Available from: https:
//www.sciencedirect.com/science/article/pii/S0304397509006136

[27] Jaques, S.; Schanck, J. Quantum Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE. 08 2019, ISBN 978-3-030-26947-0, pp. 32–61,
doi:10.1007/978-3-030-26948-7_2.

[28] Joye, M. Elliptic curves and side-channel analysis. ST Journal of System
Research, volume 4, no. 1, 2003: pp. 17–21.

[29] Wu, K.; Li, H.; et al. Simple Power Analysis on Elliptic Curve Cryptosys-
tems and Countermeasures: Practical Work. In 2009 Second International
Symposium on Electronic Commerce and Security, volume 1, 2009, pp.
21–24, doi:10.1109/ISECS.2009.7.

[30] Brier, E.; Clavier, C.; et al. Correlation Power Analysis with a Leakage
Model. In Cryptographic Hardware and Embedded Systems - CHES 2004,
edited by M. Joye; J.-J. Quisquater, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, ISBN 978-3-540-28632-5, pp. 16–29.

[31] De Feo, L.; El Mrabet, N.; et al. SIKE Channels: Zero-Value Side-
Channel Attacks on SIKE. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, volume 2022, no. 3, Jun. 2022: p.
264–289, doi:10.46586/tches.v2022.i3.264-289. Available from: https:
//tches.iacr.org/index.php/TCHES/article/view/9701

45

https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2021/543
https://www.sciencedirect.com/science/article/pii/S0304397509006136
https://www.sciencedirect.com/science/article/pii/S0304397509006136
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://tches.iacr.org/index.php/TCHES/article/view/9701

Bibliography

[32] Koziel, B.; Azarderakhsh, R.; et al. Side-Channel Attacks on Quantum-
Resistant Supersingular Isogeny Diffie-Hellman. In Selected Areas in
Cryptography – SAC 2017, edited by C. Adams; J. Camenisch, Cham:
Springer International Publishing, 2018, ISBN 978-3-319-72565-9, pp. 64–
81.

[33] Villanueva-Polanco, R.; Angulo-Madrid, E. Cold Boot Attacks on the Su-
persingular Isogeny Key Encapsulation (SIKE) Mechanism. Applied Sci-
ences, volume 11, no. 1, 2021, ISSN 2076-3417, doi:10.3390/app11010193.
Available from: https://www.mdpi.com/2076-3417/11/1/193

[34] Zhang, F.; Yang, B.; et al. Side-Channel Analysis and Countermea-
sure Design on ARM-Based Quantum-Resistant SIKE. IEEE Transac-
tions on Computers, volume 69, no. 11, 2020: pp. 1681–1693, doi:
10.1109/TC.2020.3020407.

[35] Genêt, A.; de Guertechin, N. L.; et al. Full Key Recovery Side-Channel
Attack Against Ephemeral SIKE on the Cortex-M4. In Constructive Side-
Channel Analysis and Secure Design, edited by S. Bhasin; F. De Santis,
Cham: Springer International Publishing, 2021, ISBN 978-3-030-89915-8,
pp. 228–254.

[36] David Jao, et al. Supersingular Isogeny Key Encapsulation. Available
from: https://sike.org/#implementation

[37] FastSIKE2019. FastSIKE2019. Available from: https://github.com/
FastSIKE2019/generic

[38] Coron, J.-S. Resistance Against Differential Power Analysis For Elliptic
Curve Cryptosystems. In Cryptographic Hardware and Embedded Sys-
tems, edited by Ç. K. Koç; C. Paar, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, ISBN 978-3-540-48059-4, pp. 292–302.

[39] Menezes, A. J. Elliptic curve public key cryptosystems, volume 234.
Springer Science & Business Media, 1993.

[40] De Feo, L.; El Mrabet, N.; et al. SIKE Channels: Zero-Value Side-
Channel Attacks on SIKE. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, volume 2022, no. 3, Jun. 2022: p.
264–289, doi:10.46586/tches.v2022.i3.264-289. Available from: https:
//tches.iacr.org/index.php/TCHES/article/view/9701

[41] Ti, Y. B. Fault Attack on Supersingular Isogeny Cryptosystems. In Post-
Quantum Cryptography, edited by T. Lange; T. Takagi, Cham: Springer
International Publishing, 2017, ISBN 978-3-319-59879-6, pp. 107–122.

46

https://www.mdpi.com/2076-3417/11/1/193
https://sike.org/#implementation
https://github.com/FastSIKE2019/generic
https://github.com/FastSIKE2019/generic
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://tches.iacr.org/index.php/TCHES/article/view/9701

Bibliography

[42] Gélin, A.; Wesolowski, B. Loop-Abort Faults on Supersingular Isogeny
Cryptosystems. In Post-Quantum Cryptography, edited by T. Lange;
T. Takagi, Cham: Springer International Publishing, 2017, ISBN 978-
3-319-59879-6, pp. 93–106.

[43] Koziel, B.; Azarderakhsh, R.; et al. An Exposure Model for Supersingular
Isogeny Diffie-Hellman Key Exchange. In Topics in Cryptology – CT-RSA
2018, edited by N. P. Smart, Cham: Springer International Publishing,
2018, ISBN 978-3-319-76953-0, pp. 452–469.

47

Appendix A
Acronyms

KEM Key Encapsulation Mechanism

SIDH Supersingular Isogeny Diffie-Hellman

SIKE Supersingular Isogeny Key Encapsulation

CCA Chosen Ciphertext Attack

CPA Chosen Plaintext Attack

NIST National Institute of Standards and Technology

AES Advanced Encryption Standard

SHA Secure Hash Algorithm

RAM Random Access Memory

VHDL VHSIC Hardware Description Language

SPA Simple Power Analysis

DPA Differential Power Analysis

CPA Correlation Power Analysis

API Application Programming Interface

Z Set of integers

N Set of all neutral numbers

Q Set of all rational numbers

R Set of all real numbers

C Set of all complex numbers

49

A. Acronyms

Z/p Integers modulo prime p

|M| Size, or order of a given set M

⟨a⟩ a is generator of some subgroup or group

P (x) A polynomial with variable x

char(F) Characteristics of a field F

E(K) An elliptic curve E over field K

[m]P Multiple of point P on an elliptic curve

E[m] m torsion subgroup over elliptic curve E

O Point at infinity

ker(ϕ) Kernel of a map ϕ

C Programming language C

CPU Central Processing Unit

ARM Advanced RISC Machines

CW ChipWhisperer

xDBLADD Double and add function

50

Appendix B
Contents of enclosed CD

measurements the directory with measured data
src.......................................the directory of source codes

generate the source code of the codes to generate data
jupyter the jupyter notebook
sike the source code for the chipwhisperer
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
Frantisek_Kovar_DT_2022.pdf the thesis text in PDF format

51

	Introduction
	Mathematical background
	Groups and fields
	Definition of a group
	Forming a group
	Properties of a group
	Definition of a field
	Extension fields
	Finite field Fp and Fp2
	Properties of finite fields

	Elliptic curves
	Elliptic curve on a group
	Montgomery curves
	J-invariant of an elliptic curve
	Supersingular elliptic curves

	Isogenies
	Isogeny graph

	Shared key establishment
	Supersingular elliptic curves versus normal elliptic curves
	Supersingular Isogeny Diffie-Hellman
	Parameter generation
	Isogeny finding

	Supersingular Isogeny Key Encapsulation
	Security of supersingular isogeny key encapsulation
	Reference implementation
	Existing side channel attacks

	Attack design
	Hardware and software selection
	Hardware
	Software

	Implementation related issues
	Looking for leaking spots

	Attack implementation and evaluation
	Setup and attack implementation
	Results

	Countermeasures against side channel attacks
	Attacks on double and add
	Simple power analysis
	Differential power analysis
	Attacking ephemeral key

	Attacks on the isogeny computation
	Fault injection attack

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

