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I

Abstract

The aim of this thesis is to evaluate the influence anisotropy has on a fatigue life
of a anti-roll bar clamp made out of S420MC sheet metal. First, a brief overview
theory of linear elasticity, anisotropic and isotropic models and commonly used
parameters used to determine anisotropy influence are presented. After that, a
material model using Hill’s 1948 yield criterion is created and it’s validity verified
by simulating the uniaxial tensile and stack tests. The last part concerns with
forming simulation in multiple directions, creating and verifying a hyperelastic
material model for an elastomer rubber bearing through which the clamp is
loaded and a press-fit simulation of this bearing into the clamp as well as its
subsequent loading. Lastly a fatigue life calculation is done using the now known
plastic strains from forming simulations and stress distributions from one load
cycle.
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Abstrakt

Ćılem této diplomové práce je zhodnotit vliv anisotropie na životnostńı vlast-
nosti svorky zkrutného stabilizátoru vyrobené z plechu S420MC. Nejprve je
představena teorie lineárńı elasticity, anisotropńı a isotropńı modely a parame-
try použ́ıvané k popisu anisotropńıho chováńı plechu. Dále je z experimentálně
naměřených dat vytvořen materiálový model pomoćı Hillovy teorie plasticity a
ověřena správnost tohoto modelu pomoćı simulace tahových a tlakových zkoušek.
V posledńı části je provedena simulace operace lisováńı svorky v r̊uzných směrech,
dále vytvořeńı hyperelastického materiálového modelu elastomeru silentbloku,
přes který je svorka zatěžovaná a provedena simulace nalisováńı silentbloku do
svorky a jej́ı následné zat́ıžeńı. Nakonec je proveden výpočet životnosti pomoćı
znalosti plastického přetvořeńı z lisováńı a napět́ı z jednoho zátěžného cyklu.

Kĺıčová Slova

Anisotropie, Plech, Tvářeńı, Plasticita, Cyklická únava, Metoda konečných prvk̊u
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Chapter 1

Introduction

1.1 Motivation

Modern continuous rolling mills produce large quantities of thin sheet metal at
low cost. A substantial fraction of all metals are produced as thin hot-rolled
strip or cold rolled sheet; those are then formed in secondary processes into
automobiles, domestic appliances, building products, aircraft, food and drink
cans and a host of other familiar products. Sheet metals have the advantage of
having a high elastic modulus and high yield strength, so the resulting parts can
be stiff and have good strength-to-weight ratio.[1]

Due to their crystallographic structure and the charasteristics of the rolling
processes, sheet metals generally exhibit a significant anisotropy of mechanical
properties.

One of the most widely used techniques to manufacture components from
sheet metal is forming, which is a process in which a piece of sheet metal is
formed by stretching between a punch and a die. However various defects can
occur; those include wrinkling, thinning, cracking, etc. It is also crucial to ac-
count for springback, since new materials such as high strength steel, aluminum
and magnesium are particularly prone to it. In order to increase industrial per-
formance, the concept of virtual manufacturing has been developed and has been
one of the most efficient ways of reducing the manufacturing times and improv-
ing the quality of the products. Most notably, numerical simulation of forming
processes has a big contribution to the reduction of the lead time and overall
quality of the resultant components.

The Finite Element Analysis (FEA) is currently the most commonly used
numerical method for simulating sheet metal forming processes. The accuracy
of the numerical results varies depending on the constitutive models used. Con-
sequently, in order to get realistic results, sufficient material models have to be
built. [2]

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Objectives

The main purpose of this work is to evaluate the influence anisotropy has on
plastic straining and hardening resulting from forming processes. These are
then used for a fatigue life estimation. The objectives of this thesis are listed
below:

– create a suitalbe material model from available measurement data,

– confirm the validity of the material model by performing a FEA simulation
of an uniaxial tensile test and compare results with the measured data,

– perform a FEA simulation of the forming process assuming both isotropic
and anisotropic behaviour,

– evaluate loads exerted on the clamp in the fatigue life test through a
pressed-in rubber bearing,

– perform a fatigue life calculation using FEMFAT software that accounts
for material nonlinearities.

1.3 Structure of Thesis

In Chapter 2 we introduce the basic overview of sheet metal anisotropy. Yield
criteria for both isotropic and subsequently anisotropic materials are described in
Chapter 3. Chapter 4 is then focused on introducing the material model used,
its properties and verification of proposed parameters. This material model is
then used in Chapter 5, which concerns with the FEA simulation of the forming
process, as well as a simulation of pressing in the rubber bearing. Chapter 6
finally shows the simulation and results of fatigue life evaluation.



Chapter 2

Sheet Metal Anisotropy

2.1 Linear Elasticity and Hooke’s Law

In the Theory of linear elasticity, a relationship between stress and strain is
described by Hooke’s Law. For one-dimensional case, consider a stress-strain
curve σ = f(ϵ) of a linear elastic material subjected to uniaxial loading. For a
given value of the strain, the strain energy density function ψ = ψ(ϵ) is defined
as the area under the curve. In our case that is

ψ(ϵ) =
1

2
Eϵ2 (2.1)

We can then define the stress as

σ =
∂ψ

∂ϵ
= Eϵ (2.2)

It shows that in an elastic material, strain is directly proportional to stress
through the elasticity modulus. This proportionality is generalised for the multi-
dimensional case in the Generalized Hooke’s Law

σ = C : ϵ (2.3)

where C is a 4th-order stiffness tensor of material properties. The strain energy
density function for a general case becomes

ψ(ϵ) =
1

2
Cijklϵijϵkl. (2.4)

This tensor has 34 = 81 components and has following minor symmetries that
result from the symmetry of the stress and strain tensors

σij = σji =⇒ Cjikl = Cijkl. (2.5)

This reduces the number of components from 81 to 54, and in a similar fashion
we can use the symmetry of the strain tensor

ϵij = ϵji =⇒ Cijlk = Cijkl (2.6)

3



4 CHAPTER 2. SHEET METAL ANISOTROPY

and the number of components is further reduced to 36. Equation 2.2 for a
general case becomes

σij =
∂ψ

∂ϵij
= Cijklϵkl. (2.7)

Differentiating this equation gives

∂ψ2

∂ϵmn∂ϵij
=

∂

∂ϵmn

(Cijklϵkl) (2.8)

∂ψ2

∂ϵmn∂ϵij
= Cijklδkmδln (2.9)

Cijmn =
∂ψ2

∂ϵmn∂ϵij
. (2.10)

If ψ is a sufficiently smooth function, we can assume equivalence of the mixed
partials and we get major symmetry of the stiffness tensor

Cijkl =
∂ψ2

∂ϵij∂ϵkl
=

∂ψ2

∂ϵkl∂ϵij
= Cklij. (2.11)

Now the number of components drops to 21. The most general anisotropic linear
elastic material - a material which doesn’t exhibit any symmetry in material
properties - then has 21 material constants [3]. A symmetric tensor can be
represented by reducing its order (the so-called Voigt notation), so the stress-
strain relation can be written as

σ1
σ2
σ2
σ4
σ5
σ6

 =


C11 C12 C13 C16 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

sym C44 C45 C46

C55 C56

C66




ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6

 . (2.12)

2.2 Isotropic Elasticity

An isotropic material must have the same elastic properties in all directions.
All components of C then must be independent of the orientation of the chosen
coordinate system, therefore being mathematically isotropic tensor. A general
form of this tensor is

Cijkl = λδijδkl + µ(δikδjl + δilδjk), i, j, k, l ∈ 1, 2, 3 (2.13)

where λ and µ are two independent material constants called Lamé parameters.
Substituting into equation 2.7 we get

σij = (λδijδkl + µ(δikδjl + δilδjk))ϵkl (2.14)
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The resulting constitutive equation yields the Generalized Hooke’s Law for
isotropic materials

σij = λδijϵkk + 2µϵij (2.15)

where the Lamé parameters in terms of Young’s modulus E and Poisson’s ratio
ν are

λ =
νE

(1 + ν)(1− 2ν)
(2.16)

µ = G =
E

2(1 + ν)
(2.17)

2.3 Anisotropic Elasticity

An anisotropic material has directionally dependant material properties (me-
chanical or otherwise). The different types of material anisotropy are determined
by the existence of symmetries in the internal structure of said material. The
more symmetries occur, the simpler the structure of the stiffness tensor becomes.
Each type of symmetry results in an invariance of the stiffness tensor to a spe-
cific symmetry transformation (rotations about specific axes and reflections with
respect to specific planes).

The various classes of material symmetry include a triclinic material, which
has no symmetry planes so therefore is fully anisotropic and has 21 material
parameters, monoclinic material which has one symmetry plane and therefore
has 13 material parameters and so on [3]. For our case, the important anisotropy
class would be ortothropic materials. That is the behaviour that sheet metals
exhibit and it has the following properties:

• three mutually orthogonal planes of reflection symmetry,

• 9 independent material parameters.

Based on those symmetries we get
σ1
σ2
σ2
σ4
σ5
σ6

 =


C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6

 (2.18)

2.4 Sheet Metal Anisotropy

As it was said before, due to their crystallographic structure and the character-
istics of the rolling process, sheet metals generally tend to exhibit a significant
anisotrpic mechanical behaviour. This particular behaviour, as mentioned pre-
viously, is called orthotropic. For rolled sheet metals, the orientation of the axes
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of orthotropy is as follows: rolling direction (RD), transversal direction (TD)
and normal direction (ND). Visualisation of these axes can be seen in Fig. 2.1.

Figure 2.1: Orthotropy axes of rolled sheet metals.[2]

The difference in directional behaviour is often described by a measure called
Lankford parameters, also often referred to as the r-values. These coefficients
are determined experimentally by performing an uniaxial tensile test. These
anisotropy coefficients are defined as

r =
ϵ22
ϵ33
, (2.19)

where ϵ22 and ϵ33 are the strains in the transversal and normal directions ,re-
spectively. Note that for isotropic materials, this coefficient is r = 1 - transversal
and normal strains are equal. If the coefficient is r > 1, the strain in transversal
direction will be dominant, and vice versa. Using the notation from Fig. 2.2,
relation 2.19 can be written as

r =
ln
w

w0

ln
l

l0

. (2.20)

Because the thickness of the specimen is in most cases at least one order lower
than the width, the relative error in measurement of the normal strain is quite
significant. Therefore it is often better to use the other two dimensions of the
specimen; its length and width.[2] Assuming the condition of volume consistency

ϵ11 + ϵ22 + ϵ33 = 0 (2.21)

or
wtl = w0t0l0 (2.22)

and plugging in 2.19 we get

r = − ϵ22
ϵ11 + ϵ22

. (2.23)



7 CHAPTER 2. SHEET METAL ANISOTROPY

Figure 2.2: Notation for specimen deformations: (a) before deformation (b) after
deformation.[2]

Once again, using the notation from Fig. 2.2, relation 2.21 becomes

r = −
ln
w

w0

ln
l

l0
+ ln

w

w0

. (2.24)

Using the properties of logarithms, we can rearrange the relation

r =
ln
w

w0

ln
l0w0

lw

. (2.25)

Since the transversal strain is often measured continuously during the uniaxial
tensile test, the Lankford parameters can be calculated continuously also. How-
ever, some variation in those parameters can be seen for different values of strain.
Therefore, measurements are usually taken at a particular value of strain, e.g.
at eeng = 15% [1].

Experiments show that Lankford parameters depend on the in-plane direc-
tion. If the tensile specimen is cut having its longitudal axis inclined with the
angle θ to the rolling direction, the coefficient rθ is obtained (see Fig. 2.3), where
the subscript specifies the angle between the angle the axis of the specimen and
the rolling direction [2].

The most commonly used values are r0, r45 and r90, e.g. the Lankford pa-
rameters in the rolling, diagonal and transversal directions, respectively. In the
general case, sheet metal display planar anisotropy, i.e. r0 ̸= r45 ̸= r90 and its
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Figure 2.3: Tensile specimen prelevated at the angle θ (with respect to rolling
direction).[2]

most common description is:

∆r =
r0 + r90 − 2r45

2
(2.26)

which may be positive or negative, but in steel it generally is positive. If the
measured Lankford parameter differs from one, this shows a difference between
average in-plane and through-thickness properties which is usually characterized
by the normal plastic anisotropy ratio, defined as:

rn =
r0 + 2r45 + r90

4
. (2.27)

The term ’normal’ here is used in the sense of properties ’perpendicular’ to the
plane of the sheet.[1]



Chapter 3

Yield criteria

It is generally supposed that if an element of the ideal solid is plastically de-
formed, and then unloaded, it will recover elastically and in such a way that
the change of strain depends linearly on the change of stress. During unloading,
elastic recovery is limited by the plastic yielding of favourably oriented grains,
but there is evidence to show that the elastic modulus, calculated from the ini-
tial slope of the unloading curve, remains invariant. The elastic constants of
the ideal solid are therefore assumed to retain the same values provided they
are defined with respect to the current shape of the element. Moreover, it is
supposed that an element recovers its original shape when reloaded along the
same path to the initial state of stress, and that there is no hysteresis loop. A
law defining the limit of elasticity under any possible combination of stresses is
known as a yield criterion.[4]

3.1 Yield Criteria for Isotropic Materials

In [2] Banabic says: In order to describe the plastic behaviour of a material in
general stress state, three elements are needed:

• A yield criterion expressing a relationship between the stress components
at the moment when plastic yielding occurs

• An associated flow rule expressing the relationship between the components
of the strain-rate and stress

• A hardening rule describing the evolution of the initial yield stress during
the forming process

For isotropic materials, we can always find the three principal stresses σ1, σ2 and
σ3 for a given stress tensor σ. Since the material is considered isotropic, plastic
yielding can then depend only on the magnitudes of these principal stresses, and
not on their direction. Any yield function f can be expressed in the form

f(σ) = f(σ1, σ2, σ3) = 0. (3.1)

9
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Since the first three invariants of the stress tensor σ can be expressed in terms
of the principal stresses, the yield criterion 3.1 can also be written as

f(σ) = f(I1, I2, I3) = 0. (3.2)

The three fundamental invariants for any tensor σ are

I1 =tr(σ) = σkk, (3.3)

I2 =
1

2
((tr(σ))2 − tr(σ2)) =

1

2
(σiiσjj − σijσij), (3.4)

I3 =det(σ) (3.5)

and written in terms of principal stresses, these invariants become

I1 =σ1 + σ2 + σ3, (3.6)

I2 =σ1σ2 + σ2σ3 + σ3σ1, (3.7)

I3 =σ1σ2σ3. (3.8)

Here the invariants are the coefficients of the characteristic equation

−λ3 + I1λ
2 − I2λ+ I3 = 0 (3.9)

and the principal stresses σ1, σ2 and σ3 are the roots [4][5].
We can immediately simplify Eq. 3.2 based on the fact that we can decom-

pose a general triaxial stress state into stresses that cause a change in volume -
so called hydrostatic stresses σHδij - and stresses that cause a distortion of shape
- so called deviatoric stresses sij as

σij = σHδij + sij. (3.10)

For the hydrostatic component σH , the principal stresses are always equal and
there are no shear stresses. For the triaxial stress state we can simply obtain the
hydrostatic component as an average of the three principal stresses

σH =
1

3
σkk. (3.11)

Since plasticity is only a change in shape and not in volume, we know that only
the deviatoric stress components are responsible for yielding. Finally we can say
that Eq. 3.2 can be written in the form

f(σ) = f(I2, I3) = 0. (3.12)

We can also get the invariants of the deviatoric stress tensor sij

sij = σij −
1

3
σkkδij (3.13)
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as

J1 =skk = 0, (3.14)

J2 =
1

2
(siisjj − sijsij) = −1

2
(sijsij), (3.15)

J3 =det(s) =
1

3
sijsjkski. (3.16)

Then, the yield function can be written in terms of J2 and J3 as [5]

f(σ) = f(J2, J3) = 0. (3.17)

3.1.1 Tresca Yield Criterion

The simplest yield condition was proposed by Tresca in 1864 [6]. In his ex-
periments, he observed that yielding occurred when the maximum shear stress
reached a certain critical value. In other words, yielding occurs when the max-
imum shear stress is equal to the shear stress at yielding in an uniaxial tensile
test. In general case the maximum shear stress τmax can be conveniently ob-
tained in terms of the maximum difference of the three principal stresses σ1, σ2
and σ3 (see Fig. 3.1) as

τmax =
1

2
max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|). (3.18)

σ

τ

−τy

τy

YIELD

YIELD

σ3 σ2 σ1

τmax

Figure 3.1: Mohr circles for a general triaxial stress.

When the maximum shear stress τmax reaches the shear yield stress τ0, the Tresca
yield condition is satisfied. Therefore, the Tresca yield condition is written as

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) = 2τy (3.19)
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Uniaxial tensile tests are usually performed in order to get the stress-strain curve
of the material so the relation between the tensile yield stress σy and shear yield
stress τy is needed (see Fig. 3.2):

σ1 − σ3
2

= τy =
σy
2

=⇒ σy = 2τy. (3.20)

σ

τ

−τy

τy

YIELD

YIELD

σ2 = σ3 σ1

τmax

Figure 3.2: Mohr circle for the uniaxial tensile test.

3.1.2 von Mises Yield Criterion

This criterion, sometimes called Maxwell-Huber-Hencky-von Mises theory, also
arises from the observation that plastic yielding is only caused by deviatoric
stresses. It states that yielding will occur for a general 3D stress state when the
combination of stresses reaches the maximum distortional strain energy density.
The strain energy density U (strain energy per unit volume) can be decomposed
as

U = Uv + Ud (3.21)

where Uv is the volumetric (hydrostatic) strain energy density and Ud is the
distortional strain energy density. Since only the distortion component causes
yielding, we rearrange Eq. 3.21

Ud = U − Uv. (3.22)

The total strain energy density takes the form

U =
1

2E

[
σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ3σ1)

]
. (3.23)
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This for the volumetric component becomes

Uv =
3σ2

H

2E
(1− 2ν) (3.24)

and if we plug in the expression for hydrostatic pressure, we get

Uv =
1− 2ν

6E

[
σ2
1 + σ2

2 + σ2
3 + σ1σ2 + σ2σ3 + σ3σ1

]
. (3.25)

Now, substituting back into 3.22 finally gives the distortional strain energy den-
sity

Ud =
1 + ν

6E

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
. (3.26)

Once again, yielding during uniaxial tensile test occurs when σ2 = σ3 = 0 and
σ1 = σy. Plugging into Eq. 3.26, Ud takes the form

Ud =
1 + ν

3E
σ2
y (3.27)

and now comparing the right hand sides of the two previous equations, we can
write the von Mises yield criterion in terms of principal stresses as

f(σ) =
1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
− σ2

y = 0 (3.28)

or for a general stress state as [2][3][7]

f(σ) =
1

2

[
(σ11−σ22)2+(σ22−σ33)2+(σ33−σ11)2+6(σ2

23+σ
2
31+σ

2
12)

]
= 0 (3.29)

3.1.3 Plane Stress Yield Criteria for Isotropic Materials

Due to the geometry of sheet metals, i.e. the thickness being much smaller than
the width and length, plane stress is often assumed. This is shown in Fig. 3.3.
Under plane stress conditions, we only consider the in-plane stresses σ11, σ22 and
the in-plane shear stress σ12. The out-of-plane normal stress σ33 and the out-
of-plane shear stresses σ13 and σ23 are assumed to be zero. The von Mises yield
condition 3.28 reduces to

f(σ) = σ2
11 + σ2

22 − σ11σ22 + 3σ2
12 = σ2

y. (3.30)

We can write Eq. 3.30 in terms of the in-plane principal stresses σ1 and σ2 as

f(σ) = σ2
1 + σ2

2 − σ1σ2 = σ2
y (3.31)

Similarly, the Tresca yield criterion 3.19 in terms of the in-plane principal stresses

max(|σ1 − σ2|, |σ1|, |σ2|) = σy (3.32)
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x1

x2

x3

σ21
σ12

σ22

σ11

Figure 3.3: Element of sheet metal under plane stress conditions.

We can plot both yield criteria in a 2D principal stress space. It can be seen
that the von Mises condition is an ellipse resulting from the intersection of a
cylindrical yield surface with the plane for σ3 = 0. For the Tresca criterion, if
we consider all possible combinations of the in-plane stresses σ1 and σ2, we get
a set of equations

|σ1 − σ2| = σy (3.33)

|σ1| = σy (3.34)

|σ2| = σy. (3.35)

Plotted in the σ1−σ2 plane, we get a hexagon as seen in Fig 3.4. The von Mises

Figure 3.4: The von Mises and Tresca yield conditions.[5]

criterion is used more often as it better agrees with experimental data. However,
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the Tresca criterion can still find its uses due to it being easier to implement and
being more conservative [5].

For a general stress state σ3 ̸= 0, we can once again use the knowledge that
the Tresca and von Mises yield surfaces aren’t affected by hydrostatic stress
components. To obtain the yield surfaces in 3D stress space, we only need to
extend plane stress surfaces along the hydrostatic axis as seen in Fig. 3.5.

Figure 3.5: The von Mises and Tresca yield surfaces in 3D [23]

3.1.4 Modeling of Uniaxial Plasticity

Different Models for Uniaxial Stress-Strain Curves

The stress-strain curves are quite different for different metals. Since it is often
difficult to determine the yield point due to the behaviour of certain materials
when yielding occurs, the 0.2% strain offset is usually used to determine the yield
stress σy as seen in Fig. 3.6. It can also be seen that as the strain continues to
increase, the stress increases non-linearly. When the strain decreases, so does
the stress and the stress-strain curve usually follows the curve with the slope of
the Young’s elastic modulus E. This means when the stress drops to zero, the
strain only reduces by the elastic amount ϵe and there is some non-recoverable
plastic strain ϵp. Within the context of small strain approach, the total strain ϵ
can be decomposed as

ϵ = ϵe + ϵp (3.36)
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ϵ

σ

σy

ϵ

ϵeϵp
ϵ0.2%

Figure 3.6: Elastic, plastic, total and the 0.2% offset strains.

Generally, different simplifications for tensile stress-strain curves are used. In
some instances, it is permissible and convenient to neglect the effect of work
hardening, two of which will be shown. The simplest one is a rigid perfectly
plastic idealization as seen in Fig. 3.7(a). It can be seen that there is assumed
to be no elastic strain and no strain hardening. The total strain ϵ is then equal
to the plastic strain ϵp

ϵ = ϵp. (3.37)

Another simple model, called elastic perfectly plastic, can be seen in Fig. 3.7(b).
This model is usually used when we need to examine the elastic-plastic response
of a region that exhibits both elastic and plastic deformation. From Hooke’s law
we know that the elastic deformation is

ϵe =
σy
E

(3.38)

and the total strain is therefore

ϵ =
σy
E

+ ϵp (3.39)

ϵ(a)

σ

σy

ϵ(b)

σ

σy

E

Figure 3.7: (a) Rigid perfectly plastic and (b) elastic perfectly plastic models.
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Figure 3.8 depicts two models that assume linear plastic straining, specifically
the rigid linear strain hardening model (Fig. 3.8(a)) and the elastic linear strain
hardening model (Fig. 3.8(b)). For the first case, the elastic strain ϵe is once
again considered zero and the plastic strain ϵp can be written as

ϵ = ϵp =
σ − σy
Et

(3.40)

where Et is the tangent modulus and is defined as the slope of the plastic stress-
strain curve. For the second model, again similarly to the perfectly plastic
idealizations, we don’t neglect the elastic strain ϵe and the total strain ϵ then
becomes

ϵ =
σy
E

+
σ − σy
Et

. (3.41)

Note that linear strain hardening is usually used to save computational time
since the stiffness matrix of the elastic-plastic finite element formulation remains
unchanged during iterations for plastic loading.

ϵ(a)

σ

σy Et

ϵ(b)

σ

E

σy Et

Figure 3.8: (a) Rigid perfectly plastic and (b) elastic perfectly plastic models.

However, we often need to describe the non-linear behaviour in the plastic region,
which is where power-law strain hardening models come in. Fig. 3.9(a) shows
the pure power-law strain hardening model and Fig. 3.9(b) shows the elastic
power-law strain hardening model. Again, no elastic strain ϵe is assumed for the
pure power-law and it can be written in the form

ϵ = ϵp =
( σ
K

) 1
n

(3.42)

or equivalently
σ = Kϵn. (3.43)

Here, n is the hardening exponent and K is a material constant. For the elastic
power-law it can be seen that [5]

σ =Eϵ for σ ≤ σy (3.44)

σ =Kϵn for σ > σy (3.45)
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ϵ(a)

σ

σ = Kϵn

ϵ(b)

σ

σy

ϵ0

σ = Eϵ

σ = Kϵn

Figure 3.9: (a)Pure power-law and (b) elastic power-law models.

Tangent Modulus Et and Plastic Modulus Ep

Because of the nonlinear nature of the elastic-plastic stress-strain response of a
material, an incremental approach is generally used in solution of a deformation
problem. The strain increment dϵ is assumed to consist of two parts: the elastic
strain increment dϵe and the plastic strain increment dϵp, such that

dϵ = dϵe + dϵp (3.46)

where in the case of uniaxial loading, Et is the current slope of the σ− ϵ curve as
seen in Fig. 3.10(a). The stress increment dσ is related to the strain increment
dϵ by

dσ = Etdϵ (3.47)

If we separate the plastic strain ϵp from the total strain ϵ , then the plastic strain
increment dϵp and the stress increment dσ are related by

dσ = Epdϵ
p (3.48)

where Ep is the plastic modulus, which in the case of uniaxial loading is the slope
of the σ − ϵp curve as seen in Fig. 3.10(b). Elastic strain increment dϵe is given
as usual

dσ = Edϵe (3.49)

Plugging these three relations into equation 3.46 yields the relationship between
the three moduli [8] E,Et and Ep

1

Et

=
1

E
+

1

Ep

. (3.50)
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ϵ(a)

σ

A

B

dϵ

dϵp dϵe

Et
dσ

E

ϵ(b)

σ

dϵp
dσ

Ep

Figure 3.10: (a) Tangent modulus Et and (b) plastic modulus Ep.

3.2 Hardening

Once the material passes the yield point, it begins to strain non-linearly as the
stress needs to be continually increased in order to drive the plastic deformation.
If the stress is then reduced, elastic unloading occurs. This process can cause
the yield surface to change in size, shape or position with plastic deformation
and can be described by

f(σij, Ki) = 0 (3.51)

where Ki represents one or more hardening parameters. Equation 3.51 is called
the hardening rule [9].

3.2.1 Hardening rules

Isotropic Hardening

The isotropic hardening rule assumes that the initial yield surface expands uni-
formly and no distortion or translation occurs with plastic flow. This can be
seen in Fig. 3.11. We can express the equation for the subsequent yield surface
in the form

F (σij) = k2(ϵp). (3.52)

For example, we can use the von Mises initial yield function, we get

J2 =
1

2
sijsij = k2(ϵp) (3.53)

and if we use the von Mises effective stress σe, equation 3.52 becomes [8]

f(σij, k) =
3

2
sijsij − σ2

e(ϵ
p) = 0. (3.54)

This formulation of the isotropic hardening rule will later be used in our Finite
Element Analysis.
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Figure 3.11: Isotropic hardening - evoluton of the yield surface.[9]

Kinematic Hardening

The kinematic hardening rule assumes that during plastic deformation, the yield
surface translates in stress space without a change in size, shape and orientation
of the initial yield surface (see Fig. 3.12). In order to determine the new position
of the yield surface, we introduce a tensorial hardening parameter αij, called the
back stress, which represents the shift of the origin of the yield surface. We can
describe the subsequent yield surface by the equation [8]

f(σij, αij, K) = F (σij − αij)−K2 = 0 (3.55)

where K is a constant. If we once agian use the von Mises function, equation
3.55 becomes

f(σij, αij, K) =
1

2
(sij − αij)(sij − αij)−K2 = 0. (3.56)

Note that as a rigid-body translation of the yield surface, the kinemactic hard-
ening rule predicts an ideal Bauschinger effect.
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Figure 3.12: Kinematic hardening - evoluton of the yield surface.[9]

3.3 Flow Rule

3.3.1 Associative and Non-Associative Flow Rules

In elasticity theory, the elastic strain can be directly derived by differentiating
the elastic potential function with respect to stresses σij

ϵij =
∂Ue

∂σij
. (3.57)

In 1928 Von Mises proposed a similar concept [10]; he proposed that there existed
a plastic potential function g(σij), and that the plastic strain increment dϵpij can
be derived as

dϵpij = dλ
∂g

∂σij
(3.58)

where dλ is a positive scalar factor of proportionality. This factor is only non-
zero when plastic deformation occurs. Equation 3.58 is called a flow rule and the
plasticity theory based on it is called the plastic potential theory. [11] If we take
the equation g(σij) = const., we get a surface in stress space. Geometrically,
equation 3.58 implies that the plastic flow vector dϵpij is directed along the normal
to this surface. We are particulary interested in a case where the plastic potential
function g(σij) is equal to a yield function f(σij), so that

dϵpij = dλ
∂f

∂σij
. (3.59)

The plastic flow develops along the normal to the yield surface ∂f/∂σij and the
equation 3.59 is called an associated flow rule, since it is associated to a certain
yield criterion. A general case as seen in equation 3.58 is called a non-associated
flow rule.[8]
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3.3.2 Von Mises Associated Flow Rule

Let us now consider the von Mises condition

f(σij) = J2
2 − k2 = 0. (3.60)

Plugging into the equation 3.59 we get

dϵpij = dλ
∂f

∂σij
= dλsij. (3.61)

The factor of proportionality dλ takes values

dλ

{
= 0 if J2 < k2 or J2 = k2, but dJ2 < 0

> 0 if J2 = k2 and dJ2 = 0.

If we write equation 3.60 in terms of the components, we obtain

dϵpx
sx

=
dϵpy
sy

=
dϵpz
sz

=
dγpyz
2τyz

=
dγpzx
2τzx

=
dγpxy
2τxy

= dλ. (3.62)

Relations 3.62 are know as the Prandtl-Reuss equations. They describe a general
stress-strain relation for an elastic-perfectly plastic material. Note that these
equations are an extension to the so called Levy-Mises equations

dϵx
sx

=
dϵy
sy

=
dϵz
sz

=
dγyz
2τyz

=
dγzx
2τzx

=
dγxy
2τxy

= dλ (3.63)

which neglect elastic strain and are used in problems where large plastic flow
occurs [8].

3.4 Yield Criteria for Anisotropic Materials

Despite the fact that we can approximate a large range of materials as isotropic,
strictly speaking, all materials behave anisotropic to some extent. Many anisotropic
yield functions have been proposed over the years, some examples being Hill ([12],
[13]), Hershey [14], Logan and Hosford [15] [16], Karafillis and Boyce [17], Barlat
et al. [18][19][20] and others. However, the additional plastic anisotropy devel-
oped due to large plastic strains during forming is typically way too complex to
be included in the practical application of sheet forming simulations [5]. In this
thesis we will focus in one in particular and that being Hill’s 1948 yield criterion.

3.4.1 Hill’s 1948 Yield Criterion

This criterion has been proposed by Hill as a generalization of the von Mises
yield criterion. Let’s consider the same axes of orthotropy as in Chapter 2;
rolling direction (RD), transversal direction (TD) and normal direction (ND)
(see Fig. 3.13)
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Figure 3.13: Axes direction.[5]

The yield function has the form

f(σij) =F (σ22 − σ33)
2 +G(σ33 − σ11)

2 +H(σ11 − σ22)
2

+ 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 − σ̄2 = 0

(3.64)

where σ̄ is the refference yield stress and F,G,H,L,M,N are material param-
eters that can be determined experimentally; in principle by tensile and shear
tests with respect to different orientations. In sheet metals, we usually have
the anisotropic behaviour described using the r-values. Therefore, it is useful to
express the material constants F,G,H,L,M,N in terms of r0, r45 and r90. In
order to do that, let us take Hill’s yield function 3.64 as our plastic potential, so
that the associated flow rule gives

dϵp11 = dλ
∂f

∂σ11
=dλ

[
− 2G(σ33 − σ11) + 2H(σ11 − σ22)

]
(3.65)

dϵp22 = dλ
∂f

∂σ22
=dλ

[
2F (σ22 − σ33)− 2H(σ11 − σ22)

]
(3.66)

dϵp33 = dλ
∂f

∂σ33
=dλ

[
− 2F (σ22 − σ33) + 2G(σ33 − σ11)

]
(3.67)
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2dϵp23 = dλ
∂f

∂σ23
=dλ

[
4Lσ23

]
(3.68)

2dϵp31 = dλ
∂f

∂σ31
=dλ

[
4Mσ31

]
(3.69)

2dϵp12 = dλ
∂f

∂σ12
=dλ

[
4Nσ12

]
(3.70)

First let us consider uniaxial loading in rolling direction, so that σ11 ̸= 0 and
σ22 = σ33 = σ23 = σ31 = σ12 = 0. Based on the definition of r-values (see Eq.
2.19)

r0 =
dϵp22
dϵp33

=
H

G
. (3.71)

Similarly, considering uniaxial loading in transversal direction, so that σ22 ̸= 0
and σ11 = σ33 = σ23 = σ31 = σ12 = 0 we get

r90 =
dϵp11
dϵp33

=
H

F
. (3.72)

To get the r45 value, assume we rotate the orthotropic coordinate system 45°
counterclockwise with respect to the normal axis. Let’s denote the axes of this
rotated system x′1, x

′
2, x

′
3. Now, let’s again assume uniaxial loading in the x′1

direction. The stress transformation gives the stress components with respect to
the original orthotropic axes as σ11 = σ22 = σ12 = σ/2. Using the above derived
relations, we get

dϵp11 =dλGσ (3.73)

dϵp22 =dλFσ (3.74)

dϵp12 =dλNσ. (3.75)

Based on the transformation, the transverse plastic strain rate ϵp′22 with respect
to the rotated coordinate system x′1, x

′
2, x

′
3 is

dϵ′p22 = dλ
1

2

[
Gσ + Fσ − 2Nσ

]
. (3.76)

We know that dϵ′p33 = dϵp33 and we get

dϵ′p33 = dλ
[
− Fσ −Gσ

]
. (3.77)

r45 then can be written as

r45 =
dϵ′p22
dϵ′p33

=
2N − (F +G)

2(F +G)
. (3.78)
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Finally, plugging σx
y = σ̄ in Eq. 3.64 yields

G+H = 1. (3.79)

Solving for F,G,H and N gives [5]

F =
r0

r90(1 + r0)
(3.80)

G =
1

1 + r0
(3.81)

H =
r0

1 + r0
(3.82)

N =
(2r45 + 1)(r0 + r90)

2r90(1 + r0)
. (3.83)

3.4.2 ANSYS Implementation

ANSYS FEA software uses Hill’s 1948 criterion to account for anisotropic yield of
the material. Using a multilinear isotropic hardening option, the yield function
is given by

f{σ} =
√

{σ}T [M ]{σ} − σ0(ϵ̄
p) (3.84)

Here, σ0 is the reference yield stress and ϵ̄p is the equivalent plastic strain. The
matrix M has the form

[
M

]
=


G+H −H −H 0 0 0
−H F +H −F 0 0 0
−G −F F +G 0 0 0
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M

 (3.85)

Since we are working with sheet metal anisotropy, we assume that N = L =M .
The above material constants F,G,H and N can also be defined in terms of
yield stress ratios as

F =
1

2

( 1

R2
yy

+
1

R2
zz

− 1

R2
xx

)
(3.86)

G =
1

2

( 1

R2
zz

+
1

R2
xx

− 1

R2
yy

)
(3.87)

H =
1

2

( 1

R2
xx

+
1

R2
yy

− 1

R2
zz

)
(3.88)

N =
3

2

( 1

R2
xy

)
(3.89)
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where

Rxx =
σy
xx

σ0
(3.90)

Ryy =
σy
yy

σ0
(3.91)

Rzz =
σy
zz

σ0
(3.92)

Rxy =
√
3
σxyy

σ0
(3.93)

These yield stress ratios are then used as the user input for Hill’s criterion in
ANSYS Workbench [21].



Chapter 4

Material Model

4.1 Measured Data

The material in question is a steel S420MC. 12 specimens were subjected to the
uniaxial tensile test; 4 in the rolling direction (0°), 4 in the transversal direction
(90°) and 4 at 45° angle from the rolling direction axis. Another 4 specimens
were subjected to the compression test.

4.1.1 Uniaxial Testing

The uniaxial tensile tests were conducted at room temperature of 23°C with a
constant speed of 4.8 mm/min on a servo-electric machine with a capacity of
100 kN (see Fig. 4.2). Optical measuring system that uses the digital image
correlation (DIC) technique (see Fig. 4.1) was used to get a precise deformation
measurements. The specimen geometry can be seen in Fig. 4.3 (thickness of the
specimen is T = 4 mm).

Figure 4.1: Example of DIC. [Comtes]
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Figure 4.2: Tensile testing rig.[Comtes] Figure 4.3: Geometry of the specimen.
[Comtes]

Table 4.1: Measured data.

Specimen au bu Rp0.2 Rm r3−5 r3−8 r3−Ag

mm mm MPa MPa

S420MC 0 1 1.43 15.78 464.2 540.7 0.704149 0.702717 0.696871
S420MC 0 2 1.47 15.69 463.5 540.1 0.723209 0.727818 0.720976
S420MC 0 3 1.49 15.56 460.5 536.9 0.708237 0.724129 0.728306
S420MC 0 4 1.41 16.18 470.3 540.3 0.549035 0.551070 0.539978

Average 464.6 539.5 0.671533

S420MC 45 1 1.78 13.75 473.9 528.4 1.153161 1.158858 1.178842
S420MC 45 2 1.64 13.48 472.4 529.4 1.194890 1.184881 1.178398
S420MC 45 3 1.75 13.78 462.7 528.3 3.003120 2.955696 2.904226
S420MC 45 4 1.72 13.62 468.4 527.0 1.149190 1.154486 1.162716

Average 469.3 528.3 1.173319

S420MC 90 1 1.76 14.96 489.0 552.1 0.806419 0.793218 0.784508
S420MC 90 2 1.74 15.36 490.2 554.7 0.730679 0.736498 0.731605
S420MC 90 3 1.78 15.19 496.2 556.7 0.810983 0.781704 0.762040
S420MC 90 4 1.87 15.43 487.1 553.7 0.868120 0.827642 0.797801

Average 490.6 554.3 0.768988

The resultatnt measurements can be seen in Tab. 4.1. Note that the measure-
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ment of specimen S420MC 45 3 is not taken into account for the average value
since there has very likely been some sort of a measurement error. In Fig. 4.4
we can see the engineering stress-strain curves of all the specimens subjected
to the uniaxial tensile test. Note, that because the engineering curves assume
the cross-sectional area to remain unchanged during the test, it is necessary to
convert these stresses and strains to their true values in order to use them in the
following FEA calculation.

Figure 4.4: Engineering Stress-strain curves of uniaxial tensile tests.

Finally, the dependency of r-values on the angle towards rolling direction can be
seen in Fig. 4.5

Figure 4.5: Dependency of r-values on the angle towards rolling direction.



30 CHAPTER 4. MATERIAL MODEL

4.1.2 Compression Testing

The stack tests were conducted also at room temperature of 23°C with a constant
speed of 1 mm/min on a hydraulic press with a capacity of 400 kN (see Fig. 4.7 ).
Once again, an optical measuring system that uses the DIC technique was used
to obtain a precise deformation measurements. A pair of cameras was used;
Camera 1 measured the deformation in the rolling direction (ϵ1) and camera
2 measured the deformation in the transversal direction (ϵ2). Moreover, the
uniaxial deformation (in the direction of loading, ϵ3) is also measured, see Fig.
4.6

Figure 4.6: DIC of the stack test - Camera 1 (RD) on the left, Camera 2 (TD)
on the right. [Comtes]

The specimen geometry can be seen in Fig. 4.7

Figure 4.7: Stack test specimen geometry.[Comtes]

It can be seen that multiple specimens were used in such a way, that the ratio of
the diameter and stack height is as close to 1 as possible. In order to minimize



31 CHAPTER 4. MATERIAL MODEL

a phenomenon called barrelling, special polished jaws with a friction coefficient
< 0.05 were used. The setup is shown in Fig. 4.8.

Figure 4.8: Stack test setup.[Comtes]

Finally, the true stress-strain curve can be seen in Fig. 4.9. Note that true strain
in the normal direction ϵtrue3 is shown in this figure.

Figure 4.9: True stress-strain curves of the stack tests.
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4.2 ANSYS Inputs

To create a material model in Ansys Workbench, we need to specify certain
material properties. Those can be seen in Tab. 4.2

Table 4.2: Elastic material properties.

ρ E ν
kgm−3 MPa -

7850 2 · 105 0.3

As mentioned in the end of Chapter 3, it is necessary to calculate the yield stress
ratios. We can easily get the constants F,G,H and N from the experimentally
determined r-values. Plugging in equations 3.80 through 3.83, we can solve for
the yield stress ratios. Those will be used as a starting point for our material
model. Taking the average values from Tab. 4.1 gives following values

Table 4.3: Experimental constants.

F 0.52244
G 0.59825
H 0.40175
N 1.87527

and solving for the yield stress ratios gives

Table 4.4: Yield stress ratios

Rxx 1
Ryy 1.04021
Rzz 0.94462
Rxy 0.89436

The last necessary input is a hardening plasticity model. In this case we use
the multilinear isotropic hardening model. It uses a piecewise linear function to
capture the nonlinear strain hardening response up until necking begins (note it
does not support a curve with a negative slope, hence it cannot capture necking).
It is defined by plastic strain vs. true stress σtrue given by

σtrue = σeng(1 + ϵeng). (4.1)

In other words, the starting point is defined as (0,σy). This input is based on
the experimental data from the uniaxial tensile test in rolling direction and can
be seen in Fig. 4.10
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Figure 4.10: Multilinear hardening model.

Note that the stack test data were not used to prepare the material model, but
are used later to confirm its validity.

4.3 Uniaxial Tensile Test Simulation

In this section we verify that our material model fits the experimental data by
performing a simulation of both the uniaxial tensile and compression stack tests.
In the first simulation, yield stress ratios from the previous section were used as
a starting point. Those were then adjusted to get as good of a fit as possible.

4.3.1 Mesh

Due to the simple geometry of the test specimen, best convergence is achieved
with a Hex Dominant Method. A mesh with 3418 elements and 16634 nodes
was sufficiently fine to get accurate enough results. It can be seen in Fig. 4.11.

Figure 4.11: Mesh of the specimen.
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4.3.2 Boundary conditions

Since both ends of the specimen are assumed to be rigid, there is no need to
model them and instead a fixed support on one end and an applied force on the
other was used to drive the deformation (see Fig. 4.12).

Figure 4.12: Boundary conditions.

The forces taken for the simulation are similar to the measured forces at breaking
point of the specimen and can be seen in Tab. 4.5.

Table 4.5: Forces used for different directions.

F0 F45 F90

N N N

43000 40000 44000

In order to get enough data points for an accurate evaluation, it is also important
to configure the time steps (note that this simulation is time independent, time
merely serves as a parameter). Those were chosen as follows:

• Initial time step = 1 · 10−2 s

• Minimum time step = 1 · 10−3 s

• Maximum time step = 5 · 10−2 s

and the entire simulation is done in one load step (given as 1s). The first results
can be seen in Fig. 4.13. It is clearly visible that both simulations in rolling
and transversal directions fit nearly perfectly, but the curve for the 45° offset
direction yields much sooner.
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Figure 4.13: Comparison of measured and simulated results.

In order to resolve this issue, we can specify the yield stress ratio directly by
using the average values from Tab. 4.1, rather than using the r-values. Doing
so gives Rxy = 1.01012. After running the simulation again using this value, all
the curves coincide with the measured data almost perfectly (see Fig. 4.14).

Figure 4.14: Comparison of experiment with the FEA calculation using adjusted
values.

4.4 Stack Test Simulation

Now that the yield stress ratios have been adjusted to best fit the experimental
data, we can also perform a stack test simulation. Thanks to the radial symmetry
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of the specimens, we can use a quarter model to save calculation time.

4.4.1 Mesh

A mesh with 25443 nodes and 4882 elements was sufficient for this calculation
(see Fig. 4.15).

Figure 4.15: Mesh of the stack test model.

4.4.2 Boundary conditions

The jaws of the hydraulic cylinder were modeled as rigid bodies. The friction
coefficient µ between the jaws and specimens was set as specified to µjaws = 0.05
and to µcylinders = 0.15 in the contact regions between each specimen. The
deformation is driven by setting the displacement of one jaw to zero and using
a remote displacement boundary condition on the other. It is also necessary to
account for symmetries. This is done by setting displacements to zero normal
to the faces that result from a cut by a plane of symmetry. This can be seen in
Fig. 4.16.
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Figure 4.16: Boundary conditions of the stack test model.

A comparison of results of this simulation can be seen in Fig. 4.17;stress distri-
bution in rolling direction (Fig. 4.17(a)) and transversal direction (Fig. 4.17(b)).
We can also see the barrelling effect that is does coincide with the experiment.

Figure 4.17: Total deformation result of the simulation with visible barrelling
effect.

Finally in Fig. 4.18 we can see comparison of the true stress-strain curves.
It is clear that the fit is reasonably good, which firther confirms the validity of
material model chosen.
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Figure 4.18: Comparison of measured and simulated results.



Chapter 5

Simulations

In this chapter, we focus on the setup and results of the simulations. Both
isotropic and anisotropic cases will be assumed and results of both will be com-
pared.

5.1 Anti-roll Bar

The anti-roll bar (or sway bar, see Fig. 5.1) is a device, usually a torsion spring,
that helps to reduce body roll of a vehicle during fast cornering or over road
irregularities.

Figure 5.1: Anti-roll bar schematic.[22]

There are two main functions to the anti-roll bar:

• Reduction of body lean.

• Tuning of vehicle understeer/oversteer by changing the proportion of the
total roll stiffness that comes from the front and rear axles.

39
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It is held in place by two clamps with a rubber bearing as shown in Fig. 5.2. It
is the aim of this thesis to determine whether the anisotropic properties of sheet
metals do have significant influence on fatigue life of these clamps. In order to
do that, it is first necessary to determine the plastic strains resulting from the
forming operations. Secondly, we need to know the stresses that arise from the
pressed-in rubber bearing, as well as the stresses that arise due to the loading of
the anti-roll bar.

Figure 5.2: Clamp with rubber bearing (testing assembly for fatigue life evalu-
ation).

5.2 Forming simulation

Firstly, we will focus on the forming operation. It consists of two steps and the
entire process can be seen in Fig. 5.3

Figure 5.3: CAD model of the forming process.

The geometry of both the clamp and forming tools is quite complex, but due to
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the fact that the clamp is symmetrical with respect to two perpendicular planes,
it is sufficient to only model one quarter of it. The used model of the entire
process and just the metal sheet strip is shown in Fig. 5.4

Figure 5.4: Quarter models - a) Entire quarter model b) Metal sheet strip.

5.2.1 Mesh

All the forming tools were modelled as rigid, which allows us to only mesh the
forming surfaces rather than entire tools. For these surfaces, linear hexahedral
and pentahedral elements of size 1 mm were used. In order to get accurate
results, a fine mesh needed to be used for the metal sheet strip. The resultant
mesh consisted of 40535 nodes and 36143 elements.

Figure 5.5: Mesh of the sheet metal strip.
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5.2.2 Contact Regions

It is necessary to define a type of each contact region. In this case, all of the
contacts are assumed frictional with a friction coefficient µ = 0.05. However,
since both of the forming operations are simulated in one calculation, we need
to specify when certain contact regions are active and inactive. In this case it’s
rather simple. The first operation is simulated in the first time step, so the
contact regions between the first set of tools and the strip are active, the rest is
inactive. When the first operation is complete, these first contact regions become
inactive and the second set of contacts activates. In order to see springback, the
second set becomes inactive in the very last time step.

Figure 5.6: Contact regions - a) First set, b) Second set

5.2.3 Boundary Conditions

Since we used a quarter model due to symmetry, we need to define those symme-
tries in boundary conditions. We can do that simply by putting the displacement
equal to zero in a direction perpendicular to a face that results from a cut by
the plane of symmetry. For example, since we assume the X axis to coincide
with the rolling direction, in the case where the long side of the strip is in the
rolling direction, the longitudinal symmetry is along the X axis, or ux = 0 and
uy, uz are free.
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Figure 5.7: Longitudinal symmetry in the 0°case.

The same is defined for the transversal symmetry along the Y axis. In Fig. 5.4,
we can see a spring element attached to the strip. This element is necessary
to prevent the model from ”flying” away as the first contact between the tool
and the strip happens. Lastly, we need to define the movement of the forming
tools. We keep one of the tools fixed in place and define a displacement in the
normal direction to the strip uz equal to the desired movement of the tool in the
particular operation (see Fig. 5.8). It is also important to to set all the other
displacements ux, uy, ϕx, ϕy, ϕz equal to zero.

Figure 5.8: A model of both forming operations.

5.2.4 Results

Plastic strain

The most important result which serves as an input for the following fatigue
life evaluation is effective plastic strain, since we can then determine hardening
effects. The results for an isotropic material and then anisotropic material in
0°, 45° and 90° with respect to rolling direction, respectively, can be seen in Fig.
5.9.
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Figure 5.9: Equivalent plastic strain for - a) isotropic material b) anisotrpic
material in 0° w.r.t RD, c) 45° w.r.t. RD and d) 90°w.r.t. RD.

Equivalent Stress

In this part we focus on the residual stresses after forming. However, these will
not be used as an input for the fatigue life simulation, as the residual stress
relaxes during cyclic loading and there are no data to capture its effect accu-
rately. The first simulation assumed isotropic behaviour of the sheet metal. The
multilinear hardening model used is the same as for the following anisotropic
simulation and Ansys uses the von Mises theory for plasticty, so a yield criterion
in a form

F =
[3
2
{s}T [M ]{s}

] 1
2 − σk = 0 (5.1)

where σk is the yield stress and is a function of the amount of plastic work
done is used [21]. In Fig. 5.10 we can see a comparison of the equivalent
stress at the end of the second operation (a) and after springback (b) for the
isotropic case. Note that the maximum occurs in an area that is of no particular
interest. We know from the experimental tests that failure almost always occurs
in the area shown in Fig. 5.11. If we increase the number of elements, this
maximum value seems to continue to rise. That might likely be a result of shear
locking, which occurs in first-order fully-integrated elements that are subjected
to bending, or volumetric locking is a result of the underlying assumption that
plastic deformation is isochoric.
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Figure 5.10: Equivalent stress after forming assuming isotropic behaviour - a)
Before springback b) After springback

Figure 5.11: Clamp fracture due to fatigue.

The results accounting for the anisotropic behaviour at 0°, 45°and 90°, respec-
tively, can be seen in figures 5.12, 5.13 and 5.14.

Figure 5.12: Equivalent stress after forming at 0° w.r.t. RD - a) Before spring-
back b) After springback
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It is clear that anisotropy has a significant impact on the residual stresses after
forming. The highest stress values were reached in the case of transversal direc-
tion. However, after springback, this case has the lowest residual stresses in the
problematic area.

Figure 5.13: Equivalent stress after forming at 45° w.r.t. RD - a) Before spring-
back b) After springback

Figure 5.14: Equivalent stress after forming at 90° w.r.t. RD - a) Before spring-
back b) After springback

5.3 Rubber bearing press fit

In the previous section, we have determined the plastic deformation and the
residual stresses after forming in various directions. Now we need to determine
the stresses resulting from one load cycle. To do that, we must first find a suitable
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material model for the elastomer the rubber bearing is made of and then use it to
determine how the loads acting on the anti-roll bar transfer through this bearing
onto the clamp. Since this material is assumed to be hyperelastic, we can choose
from various models. Unfortunately, there are very few measurements to base
our material model on. However, for our purposes it is sufficient to only have a
vague approximation of how this press-fit affects the clamp. The material model
used will be chosen to best fit a hysteresis loop of the entire bar-bearing-clamp
assembly, which has been determined experimentally.

5.3.1 Mooney-Rivlin 3 Parameter Model

The Mooney-Rivlin model is a special case of the generalized Rivlin model (also
called the polynomial hyperelastic model) which has the form

W =
N∑

p,q=0

Cpq(Ī1 − 3)p(Ī2 − 3)q +
M∑

m=1

1

Dm

(J − 1)2m. (5.2)

Here, Cpq are material constants related to the distortional response and Dm are
material constants related to the volumetric response. In our case, we use the
three-parameter Mooney-Rivlin model that can be used in Ansys. Equation 5.2
reduces to

W = C10(Ī1 − 3) + C01(Ī2 − 3) + C11(Ī1 − 3)(Ī2 − 3) +
1

d
(J − 1)2 (5.3)

where d is known as the incompressibility parameter. The parameters chosen
for this model can be seen in Tab. 5.1.

C10 C01 C11 d
MPa MPa MPa MPa−1

55 -20 -5 0.1

Table 5.1: Coefficients for the Mooney-Rivlin model.

5.3.2 Model

Since the only measured data related to the rubber bearing are the hysteresis
measurements, they are used as the ground to find a reasonable approximation
of its behaviour for the simulation. The anti-roll bar with the bearing is first
pressed into the clamp and subsequently a plate presses the rubber further in.
Then a force is applied to the anti-roll bar.

5.3.3 Mesh

A mesh with 53466 nodes and 25116 elements was sufficient for this calculation.
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Figure 5.15: Mesh of the assembly.

5.3.4 Boundary Conditions

The clamp is fixed in place by two screws. We can approximate this by using a
fixed support at the area the washer would cover. Zero displacements on the faces
against which the clamp is symmetrical are also applied. The rubber bearing is
pressed in and the bottom plate then moves up. After that a force is applied
to the anti-roll bar ranging from 0 to 5000 N both in the positive and negative
normal direction. It is clear that the hysteresis loop is mostly overlapping with
the experimental results, which confirms that the chosen material model is a
good approximation of reality.

5.3.5 Results

Figure 5.16: Hysteresis loop - experiment and FEA comparison.
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It can be seen in Fig. 5.16 that the material model chosen for the rubber bearing
fits the hysteresis data quite well. The displacement coming from a simulation
behaves more linearly than reality, which is likely caused by a relatively simple
material model used in combination with a fact that the rubber bearing also
has an aluminium ring pressed into it, which would be very difficult to simulate
accurately.
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Fatigue life evaluation

The experiment had a force acting in the vertical direction, as seen in Fig. 6.1.

Figure 6.1: Force acting on the clamp.

Multiple tests were done with increasing forces. These are listed in Tab. 6.1

Table 6.1: Forces and frequencies.

Testing Force Testing Frequency
±kN Hz

6 3
9 3
12 3
15 3
18 3

The clamp is fixed in place by two M10x20 grade 10.9 screws and water was
used as a lubricant. The whole testing setup is shown in Fig. 6.2

50
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Figure 6.2: Testing setup.

6.1 Load cycle simulation

As mentioned before, we need to simulate one load cycle as an input for the
fatigue life evaluation. To do that we use the same model as for the hysteresis
simulation since the loading is in the same direction. Mesh of the clamp has also
been refined and quadratic tetrahedral elements were used. The mesh can be
seen in Fig. 6.3

Figure 6.3: Refined mesh with quadratic tetrahedral elements.

This simulation is performed assuming linear material behaviour, since FEMFAT
software later corrects for material nonlinearities.
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6.2 Result Mapping

This section concerns with a preparation of our final model for the fatigue life
calculation. At this point, we have 2 inputs - plastic deformation as a result
of forming and stress distribution as a result of loading. To use both, we need
to map the results of the forming simulation onto the model that is used for
loading simulation. To do that, we need to export the results of our forming
simulation into a .csv file. We can then import the .csv files straight into ANSYS
via an External Data module. It is also necessary to fit the data points, since
the global coordinates usually differ. When the models sufficiently overlap, the
plastics strain can finally be mapped from the linear hexahedral mesh onto the
elements of the tetrahedral forming mesh, as shown in Fig. 6.4.

Figure 6.4: Example of a mapped result.

Lastly, a .erfh5 file with the mapped results is exported and will serve as one of
the direct inputs into FEMFAT calculation.

6.3 FEMFAT Evaluation

6.3.1 FEMFAT

FEMFAT (Finite Element Method Fatigue) is a software for FEM based fatigue
prediction. It utilizes a concept of transforming the material S-N curve from
specimen tests into a local modified S-N curve for each node based on influence of
different factors (such as stress condition, material properties, surface roughness,
local plasticity, etc...).
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6.3.2 Results

The overview of all simulation results can be seen in Tab. 6.2, where Nf stands
for number of cycles until failure and ESF for endurance safety factor.

Table 6.2: Fatigue life calculation results.

Force Nf ESF
±kN

Isotropic

6 1 · 108 1.3222
9 4.2 · 107 1.2146
12 2.97 · 105 0.9412
15 77754 0.7434
18 36190 0.6134

0° w.r.t RD

6 1 · 108 1.3303
9 4.8 · 107 1.2226
12 3.1 · 105 0.9454
15 79618 0.7465
18 36896 0.6159

45° w.r.t RD

6 1 · 108 1.3312
9 4.5 · 107 1.2264
12 3.1 · 105 0.9437
15 78883 0.7459
18 36601 0.6149

90° w.r.t RD

6 1 · 108 1.3096
9 2.5 · 107 1.2264
12 3.6 · 105 0.9212
15 69281 0.7332
18 32298 0.6033

Averaged experimental results can for comparison be seen in Tab. 6.3
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Table 6.3: Averaged experimental results

Force Nfexp

±kN

6 2 · 106
9 2 · 106
12 1273711
15 199153
18 109872

Finally, visualization of the ESF result is shown in fig 6.5.

Figure 6.5: Visualization of the ESF result - a) 0°, 12kN b) 0°, 18kN.
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Conclusions

The goal of this thesis was to evaluate the influence anisotropic behaviour of
sheet metal has on plastic straining and hardening that arise during forming
processes. This knowledge was later used to estimate fatigue life of a part made
of a given sheet metal.

The first part of this thesis gave a brief overview of the theory of linear
elasticity, anisotropic elasticity and also shown their application to sheet metal
modelling. Basics of the theory of plasticity were introduced next; isotropic yield
criteria, hardening rules, flow rule and finally Hill’s 1948 yield criterion.

In the second part, anisotropic material model for the S420MC steel was pro-
posed based on the experimental measurements. This model was then validated
by performing finite element simulations of uniaxial tensile tests in rolling di-
rection, transversal direction and 45° direction with respect to rolling direction,
which shown a good agreement between the experiment and simulation.

Having the anisotropic material model ready, simulation of a forming process
was performed. This shown that anisotropy indeed has a significant influence
especially on residual stresses, but also on plastic straining.

Function of the anti-roll bar and a way it is held in place was then briefly
explained. Since it was the aim to later determine fatigue life of the clamp, it
was necessary to simulate its loading through the whole assembly. That meant a
need to create a hyperelastic material model to capture the behaviour of a rubber
bearing through which loads are applied on the clamp. This was done using
Mooney-Rivlin 3 parameter model that is available in ANSYS Workbench and
using hysteresis measurements of the assembly to fit onto. This bearing also has
an aluminium ring pressed into it and generally its behaviour is quite complex,
which meant the model used in the simulation was only a vague approximation
of reality.

Plastic strains that resulted from forming were then mapped onto the clamp
model used for loading simulation. This ensured that hardening which occurs
during forming was included. The same model used for hysteresis calculation was
used to perform one load cycle for various forces ranging from 6 to 18 kN. These
results were finally evaluated by FEMFAT software, which gave an estimate of
cycles to failure and the endurance safety factor. It is clear that anisotropy does
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have an impact on fatigue life of this clamp, especially for lower force ranges.
However, there was a disagreement with the experiment. The simulation results
were suggesting that failure occurs much earlier than in reality. This can likely
be a result of an inaccurate material model of the elastomer bearing and it would
be the main goal to create a more suitable one in order to get more precise results
in the future.
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