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Abstract

This work deals with approximate methods for calculating elastic-plastic stresses and
strains on the surface of notched samples. In order to expand the range of currently
available experimental notch strain response data, specimens manufactured from the 2124-
T851 aluminum alloy were subjected to various multiaxial cyclic loading combinations.
Then a new approximate method based on the Abdel-Karim-Ohno cyclic plasticity model
was proposed. The results of the approximations were veri�ed on own experimental
results, as well as on experimental results available in the literature. A comparison with
estimates by other methods was also made. The new method provides competitive results
and a good correlation with the experimental data.

Keywords: plasticity; multiaxial loading; pseudo stress; stress-strain estimation;
2124-T851.
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Abstrakt

Tato práce se zabývá aproxima£ními metodami pro výpo£et elasto-plastických deformací
a nap¥tí na povrchu ko°ene vrubu. Pro roz²í°ení sou£asn¥ dostupných experimentálních
dat deforma£ní odezvy v ko°eni vrubu vzorky z hliníkové slitiny 2124-T851 byly zkou²eny
r·znými kombinacemi axiální síly a kroutícího momentu. Poté byla navrºena nová aprox-
ima£ní metoda zaloºená na modelu cyklické plasticity Abdel-Karim-Ohno. Výsledky
aproxima£ních výpo£t· byly ov¥°ené na vlastních experimentálních datech a experimen-
tálních datech dostupných v literatu°e. Bylo provedeno porovnání s výsledky výpo£t·
jiných aproxima£ních metod. Nová metoda poskytuje konkurenceschopné výsledky s do-
brou shodou s experimentálními výsledky.

Klí£ová slova: plasticita; víceosé namáhaní; pseudo nap¥tí; aproximace nap¥tí a
deformace; 2124-T851.
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Chapter 1

Introduction

Most initially isotropic engineering materials exhibit elastic-plastic behavior. To evaluate
the damage imposed on components made from such materials, one has to obtain strains
and stresses of the components in question. Achieving this is possible with the help of
experimental measurements, �nite element analyses (FEA), or approximate calculation
methods. Experimental approaches, although being most precise, are usually expensive
and, for some applications, are quite di�cult from realization point of view.

A less expensive way to obtain stresses and strains became available with the progress
of computer performance capabilities and the invention of the �nite element method.
With the �nite element method, limitations related to complexity of component geome-
tries stopped being an issue.

Still, even with FEA, calculations of large assemblies, especially with non-elastic ma-
terial behavior, could take up to several days. If several of such calculations need to be
made, weeks could be consumed before the �nal result is achieved.

In order to speed up the process of obtaining stresses and strains, an approximate
calculation might be carried out. The results would not be as precise as in the case of
experimental measurements or �nite element analyses, but they would be obtained faster.
That is the motivation behind the approximate methods for stress and strain calculations.

This work deals with approximate methods that transform the initial solution of a
problem, obtained from simulation with ideally elastic material behavior, into elastic-
plastic estimates using basic material data.

The transformation might be achieved by di�erent approaches. The �rst one is by
creation of a pseudo material, which relate theoretical purely elastic material and real
elastic-plastic equivalent. The second approach relies on the connection between linear-
elastic and elastic-plastic strain energies.

It is worth noting that in the present time the approximate methods have a limitation
on plane stress state. This is due to the plane stress condition being part of the esti-
mations. Speci�cally, notch tips of specimens are considered whenever such approximate
methods are being investigated.
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CHAPTER 1. INTRODUCTION

The current state of the methods development will be reviewed in Chapter 2. The
aims of thesis will be de�ned in Chapter 3.

Chapter 4 will deal with methods and tools used to achieve the results of the present
work.

In Chapter 5 an experimental program that was carried out to expand the currently
available experimental notch strain data will be described.

Chapter 6 will present the new method for the approximation of notch stresses and
strains, and the evaluation procedures.

The last chapters 7 and 8 will state outcomes and conclusions of the work.
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Chapter 2

State of the art

2.1 Methods for monotonic loading

The �rst group of approximate methods consists of those intended for monotonic loading
and plane stress cases only [1�5]. The limitation of monotonic loading is given by the
constitutive models that the approximate methods use, which do not describe the move-
ment of the yield surface. The limitation of the plane stress cases is given by the fact that
the methods are designed to estimate stresses and strains at the notch tips of specimens.

To obtain unknown stresses and strains, speci�cally σ22, σ23, σ33, ε11, ε22, ε23, and ε33,
a system of 7 equations is assembled. The �rst equation is based on the equality of strain
energy densities at the notch tip of the actual and hypothetically elastic materials. Either
generalized Neuber's rule for multiaxial loading

σe
22dε

e
22 + σe

33dε
e
33 + 2σe

23dε
e
23 + εe22dσ

e
22 + εe33dσ

e
33 + 2εe23dσ

e
23 =

σN
22dε

N
22 + σN

33dε
N
33 + 2σN

23dε
N
23 + εN22dσ

N
22 + εN33dσ

N
33 + 2εN23dσ

N
23

(2.1)

or the equivalent strain energy density (ESED) rule

σe
22dε

e
22 + σe

33dε
e
33 + 2σe

23dε
e
23 = σE

22dε
E
22 + σE

33dε
E
33 + 2σE

23dε
E
23 (2.2)

is used. In Equations 2.1 and 2.2 index e means a solution with purely elastic material,
N stands for Neuber's rule, and E means the ESED rule. Depending on which rule is
used a di�erent estimate is obtained. Rather than choosing one of them, they are usually
considered as a lower and an upper limits of the actual notch tip stresses and strains
[2�4].

Another four equations are obtained, depending on the approximate method, either
by the Hencky relation [2]

εij =
1 + ν

E
σij −

v

E
σkkδij +

3

2

εpeq
σeq

sij (2.3)

18



CHAPTER 2. STATE OF THE ART

or by the Prandtl-Reuss relation [3]

dεij =
1 + ν

E
dσij −

v

E
dσkkδij +

3

2

dεpeq
σeq

sij. (2.4)

In Equations 2.3 and 2.4, sij is a deviatoric stress, σeq =
√

3
2
sijsij is an equivalent

stress, δij is the Kronecker delta, εpeq is an equivalent strain, i = 1, 2, 3 and the Einstein
summation convention applies. The equivalent strain is a function of the equivalent stress,
such as the plastic part of the Ramberg-Osgood relation:

εPeq =
(σeq

K ′

)1/n′

, (2.5)

where K ′ and n′ are Hollomon parameters.
The last two equations are provided by energy ratio assumptions in relation to a notch

tip. For example, in the case of Singh's method [3], the energy equations are the two of

σe
22dε

e
22 + εe22dσ

e
22 = σN

22dε
N
22 + εN22dσ

N
22, (2.6)

σe
33dε

e
33 + εe33dσ

e
33 = σN

33dε
N
33 + εN33dσ

N
33, (2.7)

σe
23dε

e
23 + εe23dσ

e
23 = σN

23dε
N
23 + εN23dσ

N
23. (2.8)

In [2] it was noted that since the set of equations 2.1-2.8 is nonlinear, there is a
possibility of having more than one solution, and if a numerical solver is used, it is
important to select the correct solution. Unfortunately, no more details were discussed
in [2] on the matter of choosing the right solution.

The methods [1�5] are suitable for calculating the notch tip stresses and strains of
components subjected to various types of monotonic loading: uniaxial, multiaxial pro-
portional, and non-proportional loading. To incorporate the ability to calculate the stress-
strain response on cyclic loading, more complicated material constitutive models, than
those represented by Equations 2.3 and 2.4, need to be combined with the notch correction
parts (Equations 2.1, 2.2, and 2.6-2.8).

2.2 Methods for cyclic loading

In order to estimate stresses and strains for cyclic loading, researchers incorporated plas-
ticity models into the approximate methods. This allowed to describe cyclic hardening
and softening. Unlike �nite-element analyses (FEA), the approximate methods do not
deal with elastic�plastic sti�ness matrices, but instead use an elastic solution that they
convert into an elastic�plastic solution by using a relation either between pseudo material
and real material or between linear�elastic and elastic�plastic strain energies.
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2.2. METHODS FOR CYCLIC LOADING

Only a few methods are based on the equality of linear�elastic and elastic�plastic
strain energies, as is in the case of the methods described in the previous section. The
more popular approach is in creating a so-called pseudo material that allows to relate a
theoretical purely elastic solution with the elastic-plastic one.

One of the �rst elastic�plastic stress�strain approximate methods for cyclic loading
used yet another way to get the estimates [6], di�erent from either strain energy density
equality or pseudo material approaches. Barkey pointed out that plastic �ow at the notch
root behaves di�erently alongside di�erent directions, and therefore, a notch element could
be treated as an equivalent element of an anisotropic material. He used Hill's theory of
anisotropic metal plasticity as a yield criterion and combined it with the normality �ow
rule. By this, Barkey expressed plastic notch strains as a function of nominal stresses
and coe�cients of Hill's yield criterion, which in turn are dependent on directional yield
strengths.

To validate his estimates, Barkey carried out an extensive experimental program on
solid round notched bars from 1070 steel and measured axial and shear notch strains.
These data subsequently were used by many other authors to verify their own approximate
methods (Table 2.1).

Table 2.1: Materials used for validations of the approximate methods.

Author Material Used data
Barkey [6] 1070 steel [6]

Koettgen et al. [7] steel only FEA
Langlais [8] 1070 steel [6]
Ye et al. [9] S460N steel [9]
Firat [10] 1070 steel [6]

Ince et al. [11] 1070 steel [6]
Li et al. [12] 1070 steel, S460N steel [6, 9]
Tao et al. [13] TC21 titanium alloy, 1070 steel [6, 13]
Li et al. [14] GH4169 superalloy only FEA

Kraft et al. [15] steel only FEA

Two types of the pseudo material approach were presented in [7], a pseudo notch
stress approach, and a pseudo notch strain approach. The essence of both methods was
in relating entities from a purely elastic solution to the real elastic�plastic ones, e.g., the
equivalent pseudo stress to the real plastic equivalent strain, creating a pseudo material
by it (Figure 2.1). The behavior of the pseudo material was simultaneously characterized
by stresses from the elastic solution and by plastic strains from the real elastic�plastic
material response. By applying the Mróz model of plasticity on the pseudo stress or strain
history, a real strain or stress was obtained, depending on which type of pseudo material
approach was used. The estimates were veri�ed against FEA results.
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Figure 2.1: Illustration of the pseudo stress-real plastic strain principle.

In conjunction with Koettgen's model, Langlais [8] used the in�nite surface hardening
rule, which is a modi�cation of the Mróz's model presented by Chu [16]. Instead of the
�ow rule, Langlais used Drucker's equation, which related the plastic strain rate and the
generalized plastic modulus. Langlais reported that the same level of precision as in [6]
and [7] was achieved.

Ye et al. [9] proposed a new uni�ed expression based on a thermodynamic analysis
of cyclic plastic deformation. The authors used this solution with the material consti-
tutive model proposed by Jiang and Sehitoglu [17] to estimate the notch stresses and
strains. New experimental data on the strain responses at the notch tip of S460N steel
bar were presented. The mean relative errors were reported to be -3.5% for the axial
strain component, and -3.9% for the shear strain component. The authors indicated that
the uni�ed expression developed in the article had the applicability range limited to the
chosen geometries and loading conditions and that further veri�cations of the proposed
approximate method were needed.

Firat [10] used a pseudo stress method similar to the method presented by Koettgen.
The approach was combined with the rate-independent plasticity model by Chaboche
[18]. The estimates were veri�ed on the basis of the experimental results by Barkey and
a high accuracy of the predicted values were reported. Unfortunately, only a general idea
of the method was presented in the publication.

Ince et al. [11] combined the Prandtl�Reuss �ow rule [19, 20], an assumption about the
equivalence of increments of the total distortional strain energy density, and the Garud
multisurface plasticity model [21]. The authors reported non-conservative estimates, as
the strain ranges were predicted to be 4% to 15% smaller than the experimental results
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that had been used for comparison. Regarding energy approaches, an overview of the
development of the equivalent strain energy density (ESED) approach by Glinka et al. is
described in [22].

One of the recent works on the topic of pseudo curve approaches was conducted by Li
et al. [12]. They combined the pseudo strain method with the Jiang�Sehitoglu plasticity
model. Both 1070 steel and S460N steel mentioned above [6, 9] were used for the validation
of the method. The authors reported reasonable results under multiaxial cyclic loading.

The approach in [13] used tangent moduli of pseudo and real curves to calculate the
real stress history. The Garud plasticity model was used to describe the behavior of the
material. New experimental notch strain data were presented for samples manufactured
from the TC21 titanium alloy. To the authors' knowledge, it is the �rst work in which
the estimates of a notch stress�strain approximation method were validated on other
materials than steel. Estimates for 1070 steel were also carried out.

Similarly to [13], Li et al. [14] used tangent moduli for stress estimation, but their
method also took into account the in�uence of temperature. This was achieved by in-
corporating the Ramberg�Osgood equation in high-temperature form [23]. As a study
case material, the authors chose the Ni-based superalloy GH4169, probably due to the
availability of its thermal and mechanical material constants. A uni�ed viscoplastic con-
stitutive model proposed by the authors was applied to account the material behaviour
under high temperature condition [24]. FEA was used to validate the estimates.

Kraft and Vormwald [15] combined the uni�ed expression of Ye et al. [9] with the
Ohno�Wang plasticity model [25]. The integration algorithm used to calculate the elas-
tic�plastic variables was described in depth. A steel material was used for the FEA to
assess the precision of the estimates.

Table 2.2 and Figure 2.2 summarize the loading paths that were used by di�erent
authors for the evaluation of their estimates. Only experimentally obtained paths are
included.

Loading paths that were calculated using FEA only and are not listed in Table 2.2,
include such loading paths as rhombus-shaped, X-shaped, and an ellipse-shaped paths.
Barkey carried out some asymmetric loading paths using FEA calculations. The path in
a shape of the number �7� (Figure 5.4) seems to be a good candidate for the ratcheting
study, as it provides a response with accumulation of plastic deformation.
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Table 2.2: Experimental loading paths used for validations of the approximate methods.

Reference Barkey [6] Ye et al.[9] Tao et al. [13]
in Figure 2.2 1070 steel S460N TC21 titanium

alloy
Butter�y A *
Circle B *
ksi C * *
N D * *
NV E * *

Proportional F * * *
Rotated V G * *

S H * *
Square I * *

V J * *

Figure 2.2: Experimental loading paths from literature: (A) Butter�y, (B) Circle, (C)
ksi, (D) N, (E) NV, (F) Proportional, (G) Rotated V, (H) S, (I) Square, (J) V . F means
force, M means moment.

2.3 Plasticity models

In this section, plasticity models mentioned in Section 2.2 are brie�y described. The
overview of which plasticity model was used in each approximate method is presented
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in Table 2.3. Although this work does not deal with thermo-mechanical loading, Li's
plasticity model is described for completion. Before the plasticity models description,
some of the typical phenomena for plastic behavior of materials are explained.

Plastic hardening or softening occurs when a material exceeds its yield surface. As a
result of this phenomenon, the material hardens or softens, its initial yield surface value
changes, and after unloading, a higher stress is needed for the material to start plasticize
again. The hardening is called non-proportional when the material hardens under a non-
proportional loading, which is characterized by changes in the direction of the principal
stresses during the loading.

Based on the way the yield surface changes during the plasticization process, it is
possible to divide plastic hardening into isotropic hardening and kinematic hardening. In
the case of kinematic hardening, the di�erence between the yield surface and the center
of the yield surface, also known as backstress, stays constant. This distance between the
yield surface and the backstress is also called radius of the yield surface, as the yield
surface often has the form of a sphere.

In the case of isotropic hardening, the radius of the yield surface changes. The change
is driven either by a set of yield surfaces values (multi-surface models) or by a continuous
function that is dependent on material parameters.

Ratcheting is an accumulation of plastic strain, while maximal values of cycling load-
ing with a mean stress stay the same. In addition to mean stress, load conditions, stress
amplitude values, stress ratios, and the load history in�uence the magnitude of the ratch-
eting [26, 27].

Table 2.3: Plasticity models used in the approximate methods.

Author Plasticity model
Chaboche Garud Jiang Li Mróz Modi�ed Ohno-Wang

Mróz II
Barkey [6] *

Koettgen et al. [7] *
Langlais [8] *
Ye et al. [9] *
Firat [10] *

Ince et al. [11] *
Li et al. [12] *
Tao et al. [13] *
Li et al. [14] *

Kraft et al. [15] *
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2.3.1 Mróz plasticity type models

The Mróz plasticity model is a multiple yield surface model from 1967 [28]. The number
of surfaces is �nite, and a constant hardening modulus corresponds to each surface. When
a yield surface representing the current state comes into contact with the next surface,
the plastic modulus of a larger yield surface in contact is used. The surfaces are not
supposed to intersect and could only have a tangential contact at the current stress point
[6, 8, 28].

The movement of the active surface is described by

dα
(l)
ij =

dξ

σ
(l)
0

[(σ
(l+1)
0 − σ

(l)
0 )σ

(l)
ij − (α

(l)
ij σ

(l+1)
0 − α

(l+1)
ij σ

(l)
0 )] (2.9)

where index l denotes the currently active surface, l + 1 denotes the next surface. The
parameter ξ is a function of the consistency condition

dξ =
∂f/∂σijdσij

∂f/∂σkl(σ
(l+1)
kl − σ

(l)
kl )

(2.10)

Chu [16] improved the Mróz plasticity model by changing the discrete number of the
yield surfaces to in�nite. He also improved the implementation so the model uses less
parameters, and thus saves storage capacities required.

Garud [21] pointed out that the consistency condition of the Mróz model is not always
satis�ed and that the yield surfaces might intersect for a certain loading. He then proposed
an improvement.

Several researchers pointed out drawbacks of multiple surface models in view of ratch-
eting phenomenon [17, 21, 28]. According to them, multiple surface models cannot pre-
dict ratcheting for proportional loading at all and predict much larger ratcheting for
non-proportional loading compared to experimental results.

2.3.2 Chaboche nonlinear kinematic hardening model

Chaboche [18] had a huge impact on plasticity theory in general with his proposal to
calculate backstress as a sum of additive parts, which many plasticity models adapted
later on:

α =
M∑
i

α(i) (2.11)

where α(i) is the ith part of the total backstress composed of M parts. Each of the
backstress parts follows Armstrong-Frederick hardening rule:

dα(i) =
2

3
Cidεp − γiα

(i)dp (2.12)
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where Ci and γi are material parameters that could be calculated based on the discretiza-
tion of the cyclic stress-strain curve:

Ci =
σa(i) − σa(i−1)

εap(i) − εap(i−1)

−
σa(i+1) − σa(i)

εap(i+1) − εap(i)
for i ̸= M , (2.13)

CM =
σa(M) − σa(i−1)

εap(M) − εap(i−1)

, (2.14)

γi =
1

εap(i)
for all i, (2.15)

where σa(i) is the stress amplitude and εap(i) is the plastic strain amplitude of the i -th
point of the cyclic stress-strain curve.

Jiang and Sehitoglu pointed out [29] that although the transient ratcheting predicted
by the model is consistent with experiments, the duration of the transient response is
short-lived. After the transient part, the model predicts a constant ratcheting rate.

2.3.3 Jiang-Sehitoglu plasticity model

The Jiang-Sehitoglu plasticity model was used in the approximate methods by Ye et al.
[9] and by Li et al. [12]. Since Ye et al. indicated that the material parameters for his
method were taken from [30] the, it seems that the original form from [17] was used. In
this form, the kinematic hardening rule is proposed according to Equation 2.16:

da(i) = ciri

[
n̂−

(
|a(i)|
ri

)χi+1
a(i)

|a(i)|

]
dp (2.16)

where ci, ri and χi are sets of material parameters. ri represents the radii of the limiting
surfaces, and ci is dependent on �ve other material constants, which have to be determined
by a parameter optimization procedure. Parameter χi is calculated based on another set
of material parameters.

Li et al. [12] used a simpli�ed version by replacing the dependence of ci and ri on the
material parameters with the relations represented by Equations 2.17 and 2.18, and the
parameter χi is set to a constant value.

ci =
2
√

2
3

∆εp(i)
(2.17)

ri =
2

3

hi − hi+1

ci
(i = 1, 2, ...,M), (2.18)

where
hi =

∆σ(i) −∆σ(i−1)

∆εp(i) −∆εp(i−1)

. (2.19)
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2.3.4 Ohno-Wang model II

The Ohno-Wang model II [25] was used by Kraft in his approximate method [15]. The
model is an extension of Ohno-Wang model I and covers the solution by Ohno-Wang
model I as its special case.

The evolution of the backstress tensor is described according to Equation 2.20:

da(i) = ζi

[
2

3
ridεp −

(
|a(i)|
ri

)χi

⟨dεp : ki⟩a(i)

]
, (2.20)

here, ri has the same meaning as in the case of the Jinag-Sehitoglu model, and the
exponent χi a�ects the magnitude and trajectory of ratcheting. ki is the backstress a(i)

divided by its size |a(i)|.
The Ohno-Wang model exhibits a ratcheting rate decay for a number of cycles, and

then a constant ratcheting is predicted. The predictions are consistent with experiments
for non-proportional loading, but inconsistent with proportional loading, including the
asymmetric tension-compression case.

2.3.5 Uni�ed viscoplastic constitutive model by Li et al.

Li et al [24] have extend the Chaboche's time-dependent combined hardening plasticity
model [31] in order to address the e�ects of non-proportional hardening and dynamic
strain aging.

The total strain rate ε̇t is divided into elastic ε̇e and inelastic ε̇in parts:

ε̇t = ε̇e + ε̇in, (2.21)

where the inelastic strain tensor is de�ned with the �ow rule as

ε̇in =
3

2
ṗ
s− a

|s− a|
. (2.22)

The total backstress is composed of two sub-parts by the additive rule (Equation 2.11)
and is de�ned as

ȧi = Ci

[
2

3
(1 + ΦF )Yiε̇in − Laiṗ

]
(2.23)

where Yi is an asymptotic value for the backstresses; F , the rotation factor, and Φ, the
non-proportional hardening coe�cient, serve to describe the non-proportional hardening
e�ect, and L is the dynamic strain aging in�uence factor.

The main aim of Li's uni�ed viscoplastic plasticity model is to account for the in�uence
of non-proportional loading and strain aging on some materials under multiaxial thermo-
mechanical loading.
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Aims of the thesis

One of the drawbacks of the current state of the approximate methods, which becomes
obvious when a researcher is trying to recreate the methods, is the lack of detailed descrip-
tions of how the plasticity part and the notch correction part are combined. This was also
noticed by other authors in [12]. That might be the probable reason for why the methods
have not gained wide practical use, despite the fact that some of them were invented
several decades ago. There are many works on plasticity models by themselves, but since
the approximate methods work on di�erent principles, a lot of guesswork remains when
a notch correction and a plasticity model must be combined.

The capability of the previously proposed methods to predict the ratcheting precisely
remains unveri�ed, as experimental loading paths with mean stress have not been mea-
sured and used for the validation of the methods estimates. Such loading paths cause,
depending on the material, a noticeable ratcheting response and provide the possibility
to evaluate the precision of the ratcheting estimates.

Another drawback of the current development of the approximate methods is a very
limited amount of experimental data of the notch strain responses. Beside steels, only
titanium alloy and GH4169 superalloy were used for the validations so far. These types
of experiments might be not so popular due to their speci�c utilization in notch tip strain
testing and a complicated way of measurement.

Based on these observations, the main target of this thesis is set as the de-
velopment of a novel pseudo-curve-based approximate method for calculating
notch tip elastic-plastic stresses and strains under multiaxial cyclic loading
condition.

The task consists of the following sub-tasks:

1. Develop a methodology on how to combine a notch correction and a plasticity model,
which will be the main parts of the novel approximate method for notch tip stresses
and strains estimation. Provide a detailed description and an implementation code.

2. Propose a new and original approximate method for calculating elastic-plastic stresses
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and strains at the notch tip under multiaxial cyclic loading that provides results of
better or of similar precision compared to the other existing methods.

3. Obtain new and original experimental data of notch tip strains to validate the
method predictions on specimens manufactured from a di�erent than steel material.
The experimental program must include a loading path with a mean stress.
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Used methods/ tools

4.1 AKO model

The plasticity model of Abdel-Karim-Ohno (AKO), in addition to requiring only a few
material parameters, also represents other plasticity models as its special cases, depending
on its settings.

The nonlinear kinematic rule for the AKO model has the following form:

da(i)da(i)da(i) =
2

3
Cidεp − µiγia

(i)dp− γiH(fi)⟨dλi⟩a(i), (4.1)

where term

fi =
3

2
a(i) : a(i) −

(
Ci

γi

)2

(4.2)

is responsible for a dynamic recovery of backstress, and dλ is a plastic multiplier, which
is de�ned as

dλi = dεp :
a(i)

Ci/γi
− µidp. (4.3)

In Equations 4.1-4.3, a(i) is the ith part of the total backstress a; Ci and γi are material
parameters calculated according to Equations 2.13-2.15; symbol ⟨x⟩ represents Macaulay
brackets (⟨x⟩ = (x+ |x|)/2) and H(fi) is the Heaviside step function. µi is the ratcheting
parameter. The same value of the ratcheting parameter is usually set for all backstress
parts, and its value varies between 0 and 1. When it is set to 0 for all i, the model
corresponds to the multilinear model of Ohno and Wang type I. When µi is set to 1 for
all i, the model corresponds to Chaboche's kinematic hardening model of plasticity.

The total backstress is then represented by the sum of additive backstress parts ac-
cording to the Chaboche's proposal (Equation 2.11).

Another advantage of the AKO model is an easy way to obtain model parameters Ci

and γi, which is identical to the method used for Chaboche's model (Equations 2.13-2.15).
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For a description of the yield surface movement, the von Mises criterion is used:

f(σ) =

√
3

2
(s− a) : (s− a)− σy = 0, (4.4)

where s represents the stress deviator and σy represents the radius of the yield surface
and the yield strength for this speci�c formulation of the AKO model without isotropic
hardening.

4.2 Iteration algorithm

The important part of an approximate method for cyclic loading is a substitution algo-
rithm that allows to solve the non-linear scalar equation for accumulated plastic strain.
The algorithm used for the combined AF and OW model in [32] is used in this work and
is depicted in Diagram 4.1.

In Diagram 4.1, k denotes the index of iteration, n is the index of solution increment,
at which all stresses, strains, and backstresses are known, and i indicates backstress part.
dεp is the plastic strain increment between states n and n+1. Besides material parameters
Ci, γi and µi, the deviatoric stress sn+1 and the backstress an, consisting of i parts a(i)

n ,
are used as inputs for the iteration algorithm.

The nonlinearity of the expression for the accumulated plastic strain (Equation 4.6)
lies in the parameter θi, which is a function of dp. To solve it, θi is set to 1 for all i for
the �rst iteration. Besides that, a critical state, when fi in Equation 4.2 is equal to 0, is
assumed not to be reached. The critical state will be included later. If fi < 0, the third
term on the right side of Equation 4.1 is zero. The ith part of the backstress a at state
n+ 1 is expressed as

a
(i)
n+1 = a(i)

n +
2

3
Cidεp − µiγia

(i)
n+1dp, (4.5)

a
(i)
n+1 =

a(i)
n + 2

3
Cidεp

1 + µiγidp
= θi

(
a(i)
n +

2

3
Cidεp

)
. (4.6)

By applying Chaboche's additive backstress parts proposal (Equation 2.11) the tensor
sn+1 − an+1 became

sn+1 − an+1 = sn+1 −
∑
i

θi

(
a(i)
n +

2

3
Cidεp

)
. (4.7)

By substituting dεp from the �ow rule relation

dεp =
3

2
dp

sn+1 − an+1

σy

(4.8)
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and rearranging Equation 4.7 so that the tensor sn+1 − an+1 appears only on the left
side of the equation, the relation

sn+1 − an+1 =
σy

(
sn+1 −

∑
i θia

(i)
n

)
σy +

∑
i Ciθidp

(4.9)

is obtained. Equation 4.9 allows to calculate the tensor sn+1−an+1 for state n+1 based
on variables at state n and θi. The accumulated plastic strain is calculated by substituting
Equation 4.9 into the von Mises yield function (Equation 4.4) and rearranging it so that

dp =

√
3
2

(
sn+1 −

∑
i θia

(i)
n

)
:
(
sn+1 −

∑
i θia

(i)
n

)
− σy∑

i Ciθi
. (4.10)

To incorporate the critical state fi = 0, θi de�ned in Equation 4.6 is marked as ωi:

ωi =
1

1 + µiγidp
. (4.11)

By de�ning

a
∗(i)
n+1 = a(i)

n +
2

3
Cidεp, (4.12)

Equation 4.6 takes the following form:

a
#(i)
n+1 = ωi

n+1a
∗(i)
n+1. (4.13)

The equivalent value of a#(i)
n+1 is expressed as

a
#(i)
n+1 =

√
3

2
a
#(i)
n+1 : a

#(i)
n+1 , (4.14)

and it is equal to Ci/γi for the critical state based on Equation 4.2. Expressing the
equivalent value of the right side of Equation 4.13 gives

ωia
∗(i)
n+1 =

√
3

2
ωia

∗(i)
n+1 : ωia

∗(i)
n+1 = ωi

√
3

2
a
∗(i)
n+1 : a

∗(i)
n+1 = ωia

∗(i)
n+1. (4.15)

Transforming Equation 4.13 into equivalent values form by applying Equations 4.14-
4.15 and substituting a

#(i)
n+1 with Ci/γi, a relation for calculating ωi for the critical state

is obtained

ωi =
Ci

γia
∗(i)
n+1

(4.16)
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Expanding the new relation for both critical and non-critical states gives

θi = ωi +H(f#i
n+1)(

Ci

γian+1
∗(i) − ωi) (4.17)

With updated θi the algorithm proceeds to the next iteration according to Diagram
4.1. Aitken's ∆2 process is utilized to speed up the convergence [32].
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Start of the iteration algorithm
(�calc_dp_AKO� function)
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∑
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Output: dp
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no

yes
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Figure 4.1: Iteration algorithm for calculating accumulated plastic strain increment dp.
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4.3 Implementation of the approximate method

The approximate method presented in Chapter 6 was implemented in MATLAB. The
only input for the program was the stress history at the notch tip from the elastic FEA
and the material data presented in Section 5.1. The cyclic stress�strain material curve
was de�ned using Hollomon parameters for �ve sections of plastic strain with a step of
0.02 and the �rst value corresponding to a cyclic yield strength of 330 MPa. The pseudo
curve was established according to the process described in Section 6.1.1.

The parameters of the plasticity model Ci and γi were calculated according to Equa-
tions 2.13-2.15.

The code is available in Appendix C.
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Chapter 5

Experiments

5.1 DIC

5.1.1 Material and specimens

To verify the proposed method, fatigue experiments were carried out on two types of
notched samples (Figures 5.1 and 5.2) manufactured from the aluminum alloy 2124-T851.
Young's modulus of the material is 73100 MPa [33], Poisson's number is 0.33, Hollomon
parameters for the Ramberg�Osgood relation (Equation 2.5) are K ′ = 646MPa and
n′ = 0.089. The cyclic yield strength σy of 330 MPa was used for the FEA simulation
(Section 5.2) and for the approximate method (Section 6.1). The source of the material
data was an extensive report on the static and cyclic characteristics of the material [34].
The only exception was Young's modulus, in case of which the value from [33] led to
better results for the initial loading than the values presented in [34] values of 61550 MPa
for monotonic and of 65540 MPa for cyclic loading.

Aluminum 2124-T851 was a part of studies on the mean stress e�ect in stress-life
fatigue predictions and on data sets usable for validating multiaxial fatigue [A1, A2]. In
[A3] fatigue data on 2124-T851 for di�erent types of notches are presented.

To prepare specimens for digital image correlation (DIC) measurements, notch regions
of specimens were �rst covered with a white acryl paint to prevent light re�ections. Next,
the same regions were sprayed with a black acryl paint to create a spotted texture that
would allow the DIC method to correlate images from specimens testing. An example of
sprayed specimens is shown in Figure 5.3.
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Figure 5.1: Specimen with U-notch. A and B in frames indicate surfaces based on which
a datum axis for geometrical run-out tolerance is de�ned.

Figure 5.2: Specimen with �llet. A and B in frames indicate surfaces based on which a
datum axis for geometrical run-out tolerance is de�ned.

Figure 5.3: Specimen with U-notched sprayed with two acryl paints for DIC measurement.
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5.1.2 Tests realisation

The aim of the experiments was to measure the notch tip strains, speci�cally the axial and
shear strain components. These components are commonly used to compare estimates
with experimental results [6�15].

The test machine used for the experiments was INOVA FU 250 (distributed by Inova
Praha s.r.o.), multiaxial tension-compression and torsion load frame with hydraulic actu-
ator for dynamic loading. The maximal value of the axial force channel of the machine
is 250 kN, and the maximum moment is 2000 Nm.

The experiments were carried out under force and moment control. The �rst reason
for the load-controlled experiments was the possibility of recalculating the loading forces
and moments into the local elastic notch stress history using the stress concentration
factors as described in [10]. The second reason for using force control was that the strain
control of notched specimens would require complex real-time notch strain measurement
and processing.

The stress ratio of nominal axial stress to shear stress was 1 for all paths (Figure
5.4) used for the experimental program. Additionally, the stress ratio 1.73 was applied.
The evaluation of measured data on path Square was not successful for the specimen
under the stress ratio 1.73 and therefore was excluded from the results. The unsuccessful
evaluation was due to the presence of light re�ections on the specimen notch surface, which
prevented the algorithm of the software for digital image correlation in the comparison
of the captured images.

For the stress ratio 1, the maximum force was 65.8 kN, and the maximum moment
was 329 Nm. For the 1.73 ratio, the maximum force was 100.5 kN and the maximum
moment was 290 Nm. To samples under uniaxial tension-compression loading, maximal
forces of 86.25 kN (Figure A.6) and 100.472 kN (Table 6.9) were applied. Experiments
were carried out at room temperature.

Path �7� represents the loading by a constant torque in one channel and a sinusoidal
tension-compression waveform in the other. The loading frequency when measuring the
strains was 0.1 Hz. Path �7� was used for validation in [6, 7] but only in the form of FEA
simulations.

Path Circle consists of two sinusoidal waveforms of axial force and torque with a phase
shift of 90°. The loading frequency was 0.1 Hz. The path has so far been only presented
in [9] as an experimental loading path and in [6] and [15] as FEA.

To achieve NV path, both channels had sinusoidal waveforms with the loading fre-
quency of the torsion channel �ve times faster than the loading frequency of the tension-
compression channel. For the digital image correlation (DIC) measurement, the frequen-
cies were 0.004 Hz for the torque channel and 0.02 Hz for the force channel. Other authors
used this path to validate their approximate methods [6�8, 11, 13, 14].

Path Square was achieved by multiaxial loading by trapezoidal waveforms of force and
moment signals with a mutual phase shift of 90°. The common load frequency for the
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Figure 5.4: Loading paths: (top left) �7�; (top middle) Circle; (top right) NV; (middle
left) proportional;(middle) Square; (middle right) uniaxial; (bottom) X.

entire test was 0.0417 Hz. Other authors used the path to validate their estimates [6,
8�15].

Path X represents four linear segments that go from 0 to maximum loading in each
quadrant. The quadrants are switched in a clockwise manner. This path was used as
FEA in [6, 7].

The loading frequencies were set according to the ability of the testing machine to
maintain the loading paths on each channel without distortions. The sampling frequency
of the DIC cameras was also taken into account, as the loading frequencies had to be 20
times smaller than the sampling frequency of the cameras to avoid aliasing.

Each specimen was tested till the complete break, which corresponded to a state,
when a crack propagated through the whole net section. The number of cycles till the
break are presented in Table 5.1. The crack initiation was not measured, but in a few
cases the crack was observed approximately at half of the specimens life. In the case of
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the U-notched specimen under uniaxial tension-compression with a nominal stress 319.8
MPa, the crack was already visible after 500 cycles, while the complete breaking of the
specimen occurred at the 1016 cycle. Another example was in the case of the single �llet
specimen loaded by the path Circle with the ratio of nominal stresses equal to 1, when
an asymmetric decrease in the axial strain measured between cycles 350 to 400 indicated
the presence of crack (Figure A.9).

Table 5.1: Number of cycles till the break of 2124-T851 specimens.

Path σnom[MPa]/ Number of cycles till break
τnom [MPa] U-notched Single �llet

specimens specimens
7 209.5/209.5 = 10165

Circle 209.5/209.5 578 592
Circle 319.8/184.9 247 403
NV 209.5/209.5 120 235
NV 319.8/184.9 94 =

Proportional 209.5/209.5 585 661
Proportional 319.8/184.9 = 365

Square 209.5/209.5 233 =
Uniaxial 274.5/ = 2027 =
Uniaxial 319.8/ = 1016 =

X 209.5/209.5 309 460
X 319.8/184.9 142 171
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Figure 5.5: Testing part of the experimental setup. Zoomed image of the specimen in a
yellow dash frame demonstrates the notch shape, but is taken before the paint application.
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5.1.3 Strain measurement

The Dantec Dynamics 3D Q-450 high-speed image correlation system was used for the
DIC measurement. The system consists of MKII-NanoSense cameras with a CCD sensor
with a resolution of 1024 Ö 1280 pixels and Istra 4-D software (version 4.4.3.414). The
software was used for calibration, measurement, displacement evaluation, and displace-
ment export.

The �rst 100 cycles were the primary target range for the DIC measurements. Addi-
tionally, from 50 to 100 cycles were measured after several hundred cycles. For U-notched
specimens, which were tested before the specimens with single �llets, the second range
for the measurements was after 500 initial cycles. The choice was based on investigations
on the 2124-T751 aluminum alloy in [34] and aimed to measure strains approximately at
the half-life of the specimens. Since many U-notched specimens had broken before the
chosen range of cycles, the second range for measurements on the specimens with single
�llets was set between 350 and 400 cycles.

The results of the experimental measurements are available in Appendix A. They
were also previously published in [A4].

5.1.4 Evaluation in Matlab

To calculate axial and shear strains based on exported displacements from Istra 4D, a
program was written in MATLAB language. The reason for processing the data outside
the DIC system was the possibility of applying a higher level of automation and more
control over displacement smoothing.

The displacement were smoothed according to the next equation:

usmoothed =
usmoothed +

∑
i
dmin

di
ui∑

i
dmin

di
+ 1

, (5.1)

where ui means a displacement vector of a neighbor i, dmin means the minimum dis-
tance from the distances ui between the node, displacements of which are being smoothed,
and its neighbors. usmoothed on the right side of the "=" sign is equal to the initial un-
smoothed displacement in the case of the �rst smoothing iteration, and to the previous
result of smoothing for the next smoothing iterations.

The calculated strains along the notch tip circuit (Figure 5.7) were within a reasonable
deviation interval. In Figure 5.6 a strain distibution histogram along the notch tip circuit
is presented. The presented state corresponds to a uniaxial tension-compression loading
at its pick of the 10th cycle. More than 85% of processed strain values lie within the
0.1% deviation interval from the mean value. The strain distribution also suggests that
no unwanted additional bending was present, as the strain along the notch tip circuit
are evenly distributed. The median value from all values within the notch tip circuit in
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each time step was used as the �nal result and input for validations in Chapter 6 and
Appendix A.

Figure 5.6: Processed experimental axial strain values along the notch tip circuit for a
uniaxial tension-compression test. Red dashed line represents mean value, black dashed
lines represent 0.1% deviation from the mean value.
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Figure 5.7: A segment of a U-notched test specimen from DIC meausrements. Notch tip
circuit (red color) was used for selecting and averaging of notch tip axial strain ε1. Axis
y is parallel to the axis of the specimen.

5.2 FEM

FE analyzes with purely elastic and elastic�plastic materials were performed in Abaqus
v6.14-5. The elastic material model served to obtain stress concentration factors, which
were later used for the notch tip stress histories calculation. Analyses with elastic�plastic
material data were performed to verify the correspondence of the material data and the
experimental results.

Specimens were modeled as axisymmetric. The same mesh was used for both elastic
and elastic-plastic analyzes. The �nal mesh size of the quadratic axisymmetric stress
elements CGAX8R (8-node biquadratic, reduced integration) was 0.1 mm (Figure 5.8).
Attempts to further decrease the element size did not a�ect the results by more than
0.007%. All elements passed the mesh quality check without errors and warnings.

For elastic�plastic analyzes, the combined hardening behavior was chosen with the
stabilized data type. The number of backstresses was set to 5. The cyclic stress�strain
curve used in the model was calculated based on the Hollomon parameters presented in
Section 5.1. Its values are listed in Table 5.2.

The boundary conditions for both elastic and elastic-plastic analyzes were the same.
In Figure 5.8, the blue dashed line indicates the boundary condition applied to the spec-
imens to prevent their axes from moving away from the axis of the axisymmetry. The
gray dashed line simulates the displacement by the bottom grips of the testing machine.
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The torque was applied to a reference point from which it was distributed to the spec-
imens. Tension-compression was applied as a negative pressure to the upper surface of
the specimens.

Figure 5.8: Axisymmetric models of the U-notched specimen (left) and the specimen
with a �llet (right) in Abaqus. ux and uy are translations in the x and y axes directions
respectively; urx, ury, and urz are rotations about the x, y, and z axes respectively.

The coincidence of the responses from the experiments and from the FEA (Figure 5.9)
at the initial loading and at the beginning of cyclic loading suggests that the elastic data
are valid. There are small di�erences in the cyclic regions that could have been caused
by the absence of a ratcheting parameter in the combined hardening model of plasticity
in Abaqus 6.14.
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Table 5.2: Cyclic stress�strain curve used for elastic�plastic simulations.

Stress [MPa] Plastic strain [-]
330 0.000

371.56 0.002
395.19 0.004
409.72 0.006
420.35 0.008
428.78 0.010
435.79 0.012
441.81 0.014
447.09 0.016
451.81 0.018

Figure 5.9: Comparison of experimental data and results of elastic�plastic FEA in Abaqus
for paths �7� (left) and NV (right)
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Chapter 6

A new method

6.1 A new approximate method

Pseudo material approaches are based on material behavior that couples either elastic
stress with elastic-plastic strain or elastic strain with elastic-plastic stress. The behavior
of the material can be represented by a pseudo curve that is analogous to the static/cyclic
stress�strain curve (Figure 6.1). In case of the pseudo stress�real plastic strain curve,
which is used in this work, the pseudo material experiences stresses that correspond
to stresses related to a purely elastic solution, while it plasticizes according to its real
material response at the same time.

Figure 6.1: Pseudo stress�real plastic strain curve and cyclic stress�strain curve; points
represent discrete versions of the curves based on the Hollomon parameters.

There are two types of pseudo stress approaches. In the �rst approach, pseudo stress
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is paired with the total strain [12]; in the second type, pseudo stress is paired with the
plastic strain [7, 10]. The main di�erence between the two approaches is in the strain
component that is obtained when a plasticity model is applied to the pseudo stress history,
that is, if it is a total strain tensor or a plastic strain tensor. In the present paper, the
second type of solution is used.

6.1.1 Establishing pseudo stress material curve

A pseudo curve is established by combining elastic stress with plastic strain. The plastic
strain values are the same as the plastic strain values of the real cyclic stress�strain
(CSS) curve. The CSS curve could be obtained by the Ramberg�Osgood expression
using Hollomon parameters (values are presented in Section 5.1). Since the number of
selected plastic strain values is �nite, both curves are discrete. Elastic stress is calculated
on the basis of the modi�cation of the Neuber rule:

σe =

√
σ(εp +

σ

E
)E, (6.1)

where σ and εp are real stress and plastic strain described by the cyclic stress�strain curve,
respectively, and E is Young's modulus. When the curve is established, the parameters
of the plasticity model Ci and γi are calculated (Equations 2.13-2.15). The number of
intervals between discrete points i of pseudo or real curves a�ects the number of back-
stresses used in the approximations, because pairs of Ci and γi parameters are calculated
for each discrete interval of the pseudo or the real curve, and the number of pairs of Ci

and γi de�ne the number of backstress parts.
During the approximation process, the curves are represented solely by the Ci and γi

parameters. They are not referenced in any other way.

6.1.2 Getting real strain and real stress

When two pairs of parameters Ci and γi representing the pseudo and the real curves are
de�ned, the plasticity model is applied to the elastic stress history. Elastic stress history
can be obtained, e.g., for a chosen loading path from an elastic FEA. Because of the way
the pseudo curve is built, this step provides a real plastic stress tensor and accumulated
plastic strain as its outputs. Detailed analysis of this property of pseudo material is
presented in Section 6.1.3.

Once the plastic strain tensor is obtained, the plasticity model is applied again and
the real stress and the real total strain are estimated. However, this time, the iteration
algorithm (Section 4.2) to acquire the accumulated plastic strain is not involved, since
the accumulated plastic strain has been calculated already in the previous step.
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6.1.3 Equivalence of pseudo and real plastic strain tensors

The key part in calculating the real response from the pseudo variables is the equivalence
of the accumulated plastic strain dp of the pseudo curve and of the real stress�strain
curve. This is ensured by the way the pseudo curve is established (Section 6.1.1).

Unlike in the case of accumulated plastic strain, the equivalence of the pseudo plastic
strain tensor and of the real plastic strain tensor is not explicitly stated in [7] or in [10],
where similar approaches are used. However, it is stated in [7] that applying the plasticity
model to the pseudo stress history results in a real plastic strain tensor. This statement
supports the claim of plastic strain tensor equivalence.

Justi�cation can be found by analyzing the widely used relationship between the
accumulated plastic strain increment dp and the plastic strain tensor increment dεp

dp =

√
2

3
dεp : dεp, (6.2)

and the �ow rule:

dεp =
3

2
dp

s− a

σy

, (6.3)

where s is the deviatoric part of the stress tensor, a is the deviatoric part of the backstress,
and σy is the yield strength. Note that dp and σy are identical for the real curve and the
pseudo curve.

Due to the intrinsic di�erence between the elastic and elastic�plastic material behavior
of isotropic materials, the real stress is smaller than the pseudo stress under the same load.
Backstress a follows the stress while maintaining the radius of the yield sphere during
the kinematic hardening. Because of this, it is safe to assume that the tensors s − a for
the real and the pseudo material change similarly; more speci�cally, the corresponding
components of s − a change in a similar manner for both materials. If one component
increases for the pseudo material, the corresponding component of the real material also
increases. The increments should have at least the same sign.

The increment of plastic strain is obtained by a multiplication of s − a. Therefore,
the same assumptions as for the s − a tensor are valid for the increment of plastic strain.
However, then, if all the corresponding components of the real/pseudo plastic strain
change in a similar manner by either increasing or decreasing, they could not provide the
same dp in Equation 6.2 unless they are equal. Hence, the components of pseudo and
real plastic strains had to be the same.

6.1.4 Approximation method step by step

This section summarizes the approximate method described in Sections 6.1.1 and 6.1.2:

1. The pseudo material curve is established.
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2. The pseudo stress history is obtained either by elastic FEA or using stress concen-
tration factors.

3. The plasticity model is applied to the pseudo stress history. In this step, plasticity
parameters Ci and γi obtained for the pseudo material are used. The plastic strain
tensor and the accumulated strain are calculated.

4. The plasticity model is applied to the obtained plastic strain tensor and to the
accumulated strain. In this step, the plasticity parameters Ci and γi for the real
material are used. Real stress and real backstress are calculated.

6.2 Results - own experiments

In this section estimates made for the loading paths used on Al2124-T821 specimens
(Figure 5.4) are presented. Local notch elastic stresses used as input for the method were
obtained using stress concentration factors (Equations 6.4), which in turn were calculated
based on FEA described in Section 5.2.

eσz = Kz · Sz,
eσy = K ′

z · Sz,
eσyz = Kyz · Syz,

(6.4)

In Equation 6.4 Sz and Syz are nominal axial and shear stresses. The values of stress
concentration factors for U-notched and specimens with �llets are presented in Table 6.1.

Table 6.1: Stress concentration factors of the aluminum alloy specimens.

Specimen Kz K ′
z Kyz

U-notched 2.04 0.54 1.39
Single �llet 1.79 0.39 1.29

The estimates for the �rst 100 numbers of cycles were plotted against the corre-
sponding experimental responses (Figure 6.2, Table 6.2, Appendix A). Exceptions were
estimates of loading path NV for U-notched specimens, for which the numbers of cycles
till the specimens break were small (Table 5.1) and the strains increased rapidly after
50 cycles due to the presence of a crack. For these specimens, only the �rst 42 (Figure
A.4) and 50 cycles (Figure A.3) were plotted. In several cases, the experimental response
between cycles 350 and 400, and cycles between 501 and 600 was plotted (Table 6.2,
Figures A.6, A.9, and A.12). Note that the �rst 100 cycles were chosen as the primary
range for the validation of estimates, as experimental measurements at the beginning of
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the tests are less likely to be a�ected by the presence of a crack. The ratcheting rate after
the �rst 100 cycles seems to be quite slow, and the strains in higher cycles do not di�er
greatly from the strains during the �rst 100 cycles (Figures 6.2, A.6, and A.12).

Although for uniaxial and proportional paths the best results were achieved when
parameter µi was set to 1, estimates of other paths with this value were worse (see Table
6.2). The value µi set to 0 showed itself as a better option, as it provided better results
overall, despite being slightly less precise in the case of uniaxial and proportional paths.

Relative errors of strain ranges were calculated according to Equation 6.5:

RE =
Calculated strain range−measured strain range

measured strain range
. (6.5)

Positive values of relative errors mean that the estimated strain range is greater than
the measured strain range. Such a result is considered conservative. The relative error
values for axial and shear strain ranges, as well as combined values, are presented. The
combined values are calculated as the square root of the corresponding axial and shear
components.

In Tables 6.3 and 6.4 values of the relative errors are presented for the �rst 100 number
of cycles (50 and 42 in the case of path NV for U-notched samples). The green �lling of
cells mean that the absolute value of the relative error is within the 0-10% interval. The
yellow �lling corresponds to 10-20% of the relative errors, and the orange color means a
higher relative error.

The precision of the estimates for the axial and shear components is di�erent. In the
case of the axial component, 94% of the studied cases lie within 20% of the relative error
in absolute values. The shear component for the same range shows a slightly lower value
of 87.5%.

If the precision range is lowered to 10% of the relative error, then 67% of the axial
strain estimates fall into this limit, and 44% in the case of the shear component.

The greatest error is 24.7% for the combined strain range.
The in�uence of the ratcheting parameter on the prediction for Path �7� is shown

in Figure 6.2. The value of µi = 1 corresponding to the Chaboche's plasticity model
(Figure 6.2 d) resulted in an excessive accumulation of plastic shear strain from the �rst
cycle. The value of µ = 0.1 (Figure 6.2 c) provided a better prediction of the evolution
of the shear strain in the �rst cycle, but the prediction after saturation of the response
is worse than that of OWI (Figure 6.2 d). Thus, the best prediction of ratcheting is
obtained for the limit value of the ratcheting parameter µ = 0, which corresponds to the
Ohno�Wang I model. However, the ratcheting response remained exaggerated for the
2124-T851 aluminum alloy.

The graphical representation of the estimates, that have not been shown in this section
can be found in Appendix A. A discussion of the results can also be found in [A4].
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(a) (b)

(c) (d)

Figure 6.2: In�uence of the ratcheting parameter µi on the prediction for Path �7�. (a)
just experiment; (b) µi = 0; (c) µi = 0.1; (d) µi = 1
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Table 6.2: In�uence of parameter µi values on estimates for 2124-T851 aluminum.

µi Path Square uniaxial path

0

0.1

0.5
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Table 6.3: Relative errors in percents between measured and calculated strain ranges for
2124-T851 U-notched specimens. µi = 0.

Path σnom[MPa]/ number axial shear total
τnom [MPa] of cycles

Circle 1 100 =6 =12.2 13.6
Circle 1.73 100 =7.6 =4.7 8.9
NV 1 50 =6.8 =13.9 15.5
NV 1.73 42 =1.2 =5.4 5.5

Proportional 1 100 =6.7 =21.9 22.9
Square 1 100 =2.8 =12.6 12.9
Uniaxial 274.5/ = 100 =13.5 = 13.5
Uniaxial 319.8/ = 100 =11.8 = 11.8

X 1 100 =0.2 =4 4
X 1.73 100 3.1 =2.2 3.8

Table 6.4: Relative errors in percents between measured and calculated strain ranges for
2124-T851 single �llet specimens. µi = 0.

Path σnom[MPa]/ number axial shear total
τnom [MPa] of cycles

7 1 100 =2.8 17.7 17.9
Circle 1 100 9 =4.8 10.2
Circle 1.73 100 =10 =11.1 14.9
NV 1 100 5.7 =2.9 6.4

Proportional 1 100 =6.8 =14.3 15.8
Proportional 1.73 100 =12.6 =21.2 24.7

X 1 100 20.3 7.2 21.5
X 1.73 100 =13.9 =11.5 18.0
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6.3 Predictions of other authors

In this chapter, estimates by the proposed method are compared to the estimates by other
methods found in the literature. The comparison is made for 1070 steel, as it is the most
frequently used material for the validations of the approximate methods. Moreover, all
approximations made on this material are based on the same experimental program by
Barkey [6], so predictions of several methods can be also compared.

The specimen used by Barkey for his experimental program was a solid 1070 steel
bar with a circumferential notch, a net diameter of 25.4 mm and a notch radius of 12.7
mm. The values of the stress concentration factors used to identify the elastic local stress
input history are Kz = 1.42, K ′

z = 0.3, and Kyz = 1.15. The values of nominal stresses
are given for each loading path in Tables 6.6-6.8. The material data of 1070 steel are
presented in Table 6.5.

Table 6.5: Material data on 1070 steel used in the present work.

Young's Poisson's Ramberg-Osgood Cyclic yield Ratcheting
modulus ratio parameters strength parameter
[GPa] [-] K [MPa] n [-] [MPa] µi[−]

210 0.3 1736 0.199 286 0.01

The parameters of the plasticity model Ci and γi were obtained based on the material
data with the function calc_C_gamma (Appendix C). The cyclic yield strength for 1070
steel was calculated as

√
3 · cyclic yield strength in shear (165 MPa) presented for the

same material in [29], and resulted in 286 MPa. The calculated value led to better results
than that of the initial yield strength of 242 MPa used for the Garud model of plasticity
in [13]. The original plots from [11�13] were recreated using an online tool [35].

Only estimates validated on experimental data were selected. Completeness of infor-
mation about loading was also a necessary requirement.

The values of the relative errors were already given for the estimates by Ince and Tao.
The relative error values of the predictions by Li et al. were calculated based on the data
from the plots presented in [12]. The signs of the relative error values of Ince's predictions
were altered, so they match the sign convention used in the present work (described in
Section 6.2).

Relative errors for axial and shear strain ranges are presented in Tables 6.6 and 6.7,
and combined values, again calculated as the square root of the corresponding axial and
shear components, are presented in Table 6.8.

In Tables 6.6-6.8, the highlighted cells mark the lowest relative error for each load-
ing case. The proposed method provides the best predictions in the 6 out of 13 cases.
However, since the estimates of other authors are not available for every studied case, the
conclusion should be taken with reservations.
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The geratest relative errors were made for the shear component of path Square . The
lowest errors could be achieved by changing the value of parameter µi, but this would
negatively a�ect the estimates for paths V and rotated V (Table 6.9) .

The graphical representation of the estimates by the proposed method and the esti-
mates from the literature can be found in Appendix B and in [A4].

Table 6.6: Relative errors between measured and calculated axial strain ranges for se-
lected methods for 1070 steel in percents.

Path σnom[MPa]/ Li et al. Ince et al. Tao et al. proposed
τnom [MPa] [12] [11] [13] method

ksi 258/168 = = =1.45 =1.5
ksi 296/193 = =4.5 = =4.5
N 258/168 = = =4.62 1.1
N 296/193 6.5 =6.4 = =4.8
NV 258/168 = = =5.29 3.3
NV 296/193 = =4.2 = =5

Proportional 296/193 = = =1.67 =8.8
Rotated V 296/193 4.9 = = =1.4

S 258/168 = = =1.87 =1.3
S 296/193 =0.7 =6.6 = =8.3

Square 296/193 8.7 =4 =4.98 =8
Square (clockwise) 296/193 10.4 =4.1 = =7.2

V 296/193 11.4 = = 1.4
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Table 6.7: Relative errors between measured and calculated shear strain ranges for se-
lected methods for 1070 steel in percents.

Path σnom[MPa]/ Li et al. Ince et al. Tao et al. proposed
τnom [MPa] [12] [11] [13] method

ksi 258/168 = = =10.33 2.7
ksi 296/193 = =8.8 = =8.9
N 258/168 = = =8.24 1.1
N 296/193 =4.5 =11.4 = =10.7
NV 258/168 = = =2.85 4.1
NV 296/193 = =4.7 = =8.6

Proportional 296/193 = = =7.91 =16
Rotated V 296/193 11.8 = = 1.5

S 258/168 = = =7.06 1.8
S 296/193 =0.8 =12.5 = =10.5

Square 296/193 =0.3 =11.2 =14.71 =18.2
Square (clockwise) 296/193 2.5 =15.3 = =16.4

V 296/193 2.2 = = =4.1

Table 6.8: Relative errors between measured and calculated combined strain ranges for
selected methods for 1070 steel in percents.

Path σnom[MPa]/ Li et al. Ince et al. Tao et al. proposed
τnom [MPa] [12] [11] [13] method

ksi 258/168 = = 10.4 3.1
ksi 296/193 = 9.9 = 10
N 258/168 = = 9.4 1.6
N 296/193 7.9 13.1 = 11.7
NV 258/168 = = 6 5.3
NV 296/193 = 6.3 = 9.9

Proportional 296/193 = = 8.1 18.3
Rotated V 296/193 12.8 = = 2.1

S 258/168 = = 7.3 2.2
S 296/193 1.1 14.1 = 13.4

Square 296/193 8.7 11.9 15.5 19.9
Square (clockwise) 296/193 10.7 15.8 = 17.9

V 296/193 11.6 = = 4.3
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Table 6.9: In�uence of parameter µi values on estimates for 1070 steel.

µi Path Square Path Rotated V

0.01

0.1

0.3
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Chapter 7

Outcomes

Experimental data on the notch tip strains are very limited to this day. The presented
experimental data obtained on 2124-T851 aluminum alloy specimens expand the set of
currently available data. Responses to a wide variety of loading paths have been measured
and presented. Path �7� represents an especially valuable addition as a path with a
constant mean stress, since it allows to study the ratcheting e�ect and to tune the models'
ratcheting parameters. The new experimental data are available in Appendix A, Figure
5.9, and [A4], and can be acquired by means of WebPlotDigitizer.

An overview of approximate methods for monotonic loading, as well as recommenda-
tions of which method to use, were published in [A5] and [A6].

As for the methods for cyclic loading, a code of the proposed approximate method
written in the MATLAB programming language is available in Appendix C and in [A4].
Since details on combinations of notch correction methods and plasticity models represent
a key value for researchers starting to deal with the stress-strain approximation methods,
the published code allows researchers to better understand the method principle and
recreate the method by themselves. The new method provides estimates with a relative
error under 25% for many loading cycles without the need to carry out time-consuming
elastic-plastic �nite element analyses. The method was also presented in [A4] .

The code in its entirety can be used to obtain elastic-plastic stress-strain estimates.
A stress history from the elastic solution at a critical location can be used as input for
the code to estimate elastic-plastic stress-strain solution. That could speed up a design
process or other stress assessment tasks.
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Chapter 8

Conclusions and future work

8.1 Conclusions

The target of the thesis was to develop a novel pseudo curve based approximate method
for calculating elastic-plastic stresses and strains at the notch tip under multiaxial cyclic
loading condition. Each de�ned steps to achieve the target, as the target itself, was
ful�lled:

1. A methodology on how to combine a notch correction and a plasticity model was
developed and described in detail in Sections 4.2 and 6.1-6.1.4. The implemen-
tation code, which is available in Appendix C, provides a bene�t to researchers
dealing with the approximate methods for notch tip stress and strain calculation
during the process of recreation of the proposed method. The methodology and the
implementation code were published in [A4].

2. A new and original approximate method for calculating the elastic-plastic stresses
and strains at the notch tip under multiaxial cyclic loading was proposed and pub-
lished in [A4]. Its novelty lies in the ability to incorporate three plasticity mod-
els, Abdel-Karim-Ohno, Ohno-Wang, and Chaboche's model, as its special cases.
The approximate method provides results of competitive precision to other existing
methods and allows fast estimates of stress and strain responses on cyclic multiaxial
loading.

3. New and original experimental data of notch tip strains were measured on aluminum
2124-T851 specimens for a variety of loading paths. A total number of 18 exper-
imental loading cases is presented in this work. Both frequently and infrequently
used loading paths from literature were chosen. A loading path with a mean stress
was included in the experimental program. The path provides a ratcheting response
that is useful for studying its e�ects. In preceding research publications, only FE
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analyses of this speci�c path were used. To author's knowledge, it is the �rst time
an experimental notch strain response has been published for a loading path with
a mean stress. The experimental results were also published in [A4].

8.2 Future work

A future development in a practical way might be the implementation of the approximate
method in an FE solver as a plugin. This would speed up the estimation process, as it
would spare the time otherwise spent exporting stresses from elastic FE analyses. The
accessibility directly from FE software would help the method to gain a wider use. The
implementation would also allow to apply the method on all surface nodes of a model,
which in turn would allow to study the method precision outside of a stress concentration
region.

If higher precision needs to be achieved, a changeable value of the ratcheting parameter
might be implemented. It should help capture ratcheting changes more accurately.

It is possible to expand the method by including the Calloch-Marquis non-proportional
parameter, which would allow a non-proportional hardening to be taken into account,
appearing, for example in the cases of stainless steels and coppers [36, 37].

Another way to improve the precision might be found by in-depth analyzes of dif-
ferences between AKO and Jiang-Sehitoglu plasticity models, which showed itself as the
most precise for the majority of its studied cases.

Finally, since thermo-mechanical loading is a common part of loading states and a
need to calculate stresses and strains in such cases is as great as for mechanical loading
under constant temperatures, the possibility to expand the method for thermo-mechanical
loading might be investigated in the future.
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Appendix A

Estimates for 2124-T851 aluminum
alloy

Parameter µi is set to 0 for all cases.

A.1 U-notched specimen

Figure A.1: Estimate for Path Circle, ratio of nominal axial to shear stresses is 1.
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A.1. U-NOTCHED SPECIMEN

Figure A.2: Estimate for Path Circle, ratio of nominal axial to shear stresses is 1.73.

Figure A.3: Estimate for Path NV, ratio of nominal axial to shear stresses is 1.
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Figure A.4: Estimate for Path NV, ratio of nominal axial to shear stresses is 1.73.

Figure A.5: Estimate for Path Proportional, ratio of nominal axial to shear stresses is 1.
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A.1. U-NOTCHED SPECIMEN

Figure A.6: Estimate for Path Uniaxial, nominal axial stress is 274.5 MPa.

Figure A.7: Estimate for Path X, ratio of nominal axial to shear stresses is 1.
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Figure A.8: Estimate for Path X, ratio of nominal axial to shear stresses is 1.73.

A.2 Specimen with �llet

Figure A.9: Estimate for Path Circle, ratio of nominal axial to shear stresses is 1.
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A.2. SPECIMEN WITH FILLET

Figure A.10: Estimate for Path Circle, ratio of nominal axial to shear stresses is 1.73.

Figure A.11: Estimate for Path NV, ratio of nominal axial to shear stresses is 1.
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Figure A.12: Estimate for Path Proportional, ratio of nominal axial to shear stresses is
1.

Figure A.13: Estimate for Path Proportional, ratio of nominal axial to shear stresses is
1.73
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A.2. SPECIMEN WITH FILLET

Figure A.14: Estimate for Path X, ratio of nominal axial to shear stresses is 1.

Figure A.15: Estimate for Path X, ratio of nominal axial to shear stresses is 1.73.
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Appendix B

Estimates comparison for 1070 steel

Parameter µi is set to 0.01 for all cases.

Figure B.1: Comparison of the proposed method and estimate by Tao et al. [13] for
loading path ksi.
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Figure B.2: Comparison of the proposed method and estimate by Ince et al. [11] for
loading path ksi.

Figure B.3: Comparison of the proposed method and estimate by Tao et al. [13] for
loading path N.
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Figure B.4: Comparison of the proposed method and estimates by Li et al. [12] and Ince
et al. [11] for loading path N.

Figure B.5: Comparison of the proposed method and estimate by Tao et al. [13] for
loading path NV.
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Figure B.6: Comparison of the proposed method and estimate by Ince et al. [11] for
loading path NV.

Figure B.7: Comparison of the proposed method and estimate by Tao et al. [13] for
proportional loading path.
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Figure B.8: Comparison of the proposed method and estimate by Tao et al. [13] for
loading path S.

Figure B.9: Comparison of the proposed method and estimates by Li et al. [12] and Ince
et al. [11] for loading path S.
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Figure B.10: Comparison of the proposed method and estimates by Li et al. [12] and
Ince et al. [11] for loading path Square (clockwise).

Figure B.11: Comparison of the proposed method and estimate by Li et al. [12] for
loading path V.
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Appendix C

MATLAB code of the proposed method

C.1 Main �le

1 clear all; close all; clc;
2 %% %%%%%%%%%%%%%%%%%%%%%%% GLOBAL VARIABLES
3 global yieldStrength
4 %% %%%%%%%%%%%%%%%%%%%% MATERIAL DATA
5 useAluminum = 1;
6 if useAluminum == 1
7 plotExperiments = 1;
8 E = 73100; ny = 0.33; G = E/2/(1+ny);
9 K = 646; % MPa, Hollomon's parameters for RO curve

10 nRO = 0.089;
11 yieldStrength = 330;
12 else
13 %steel 1070
14 plotExperiments = 0;
15 E = 210000; ny = 0.3; G = E/2/(1+ny);
16 K = 1736; % MPa, Hollomon parameters for RO curve
17 nRO = 0.199;
18 yieldStrength = 286;
19 end
20

21 % ratcheting parameter; 0 ... OWI; 0.1 ... AKO; 1 ... CHAB
22 mu1 = 0;
23

24 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEFINE MATERIAL CURVES
25 [ePlRC, sRC, ePlPC, sPC] = material_curves(E, K, nRO);
26 [KPC, nPC] = ramberg_osgood_coefficients(ePlPC, sPC);
27

28 %% %%%%% %%%%%%%%%%%%%%%%%% PLASTICITY MODEL PARAMETERS − C and gamma
29 [gPC, cPC] = calc_C_gamma(ePlPC,sPC,KPC,nPC);
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30 [gRC, cRC] = calc_C_gamma(ePlRC,sRC,K, nRO);
31

32 %% %%%%%%%%%%%%%%%%%%%%% LOADING PATH
33 path_name = '7';
34 %fillet specimen u notched specimen
35 %'7'
36 %'circle_f7', 'circle_1p73_f8' 'circle','circle_1p73',
37 % NV_f11 'NV','NV_1p73'
38 %proportional_f3 proportional_f4 'proportional_u11';
39 %−−−− 'square',
40 %−−−− 'uniaxial_u5'; %'uniaxial_u9';
41 %X_f5 X_1p73_f6 'X', 'X_1p73%'
42

43 define_notch_stress_inputs;
44 increase_number_of_load_cycles;
45 %% %%%%%%%%%%%%%%%%%% READ EXPERIMENTAL DATA FOR COMPARISON
46 if plotExperiments == 1
47 load(strcat(pwd,'/experiments_for_comparison/',test_spcm, ...
48 '_notch_strains_and_info.mat'));
49 end
50 %% %%%%%%%%%%%%%%%%%% PREALOCATING VARIABLES
51 incPerPlR = 5; % increments per plastic range
52 prealocate_variables;
53

54 %% %%%%%%%%%%%%%%%%%%%%%%%%% THE ESTIMATION PROCEDURE
55 ii = 1; % index of estimation step, all matrixes at 1 consist of zeros
56

57 for i = 2:1:(length(sigYyFI))
58 % i ... index through loading steps
59 SPsStart = SPs; % deviatoric pseudo stress at the beginning of ...

the step
60 alfaPsI = alfaPs; % I as initial
61

62 ii = ii+1;
63

64 sigPs = [0 0 0;
65 0 sigYyFI(i) sigYzFI(i);
66 0 sigYzFI(i) sigZzFI(i);];
67 SPs = sigPs − trace(sigPs)/3*eye(3); % deviator
68

69 % find the start of the plasticization
70 tol = 1; %[MPa], tolerance
71 beginAt = 0.01;
72 for i2=beginAt:beginAt/10:1
73 SInt = SPsStart+(SPs−SPsStart) * i2;
74 sEq = calc_equiv_stress(SInt−alfaPsI);
75 if (sEq − yieldStrength) < tol && (sEq − yieldStrength) > 0
76 elastic_part_instep = 1; break;
77
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78 elseif (sEq − yieldStrength) > 0
79 % no purely elastic loading during the step
80 elastic_part_instep = 0; break;
81 end
82 end
83

84 % check if elastic loading/unloading has occurred
85 if i2 ̸= beginAt
86 %% PURELY ELASTIC region solution
87 dSigYPs = (sigYyFI(i)−sigYyFI(i−1))*i2;
88 dSigZPs = (sigZzFI(i)−sigZzFI(i−1))*i2;
89 dSigYzPs = (sigYzFI(i)−sigYzFI(i−1))*i2;
90

91 elastic_region_solution; % >> function
92

93 epsXxPl(ii) = epsXxPl(ii−1);
94 epsYyPl(ii) = epsYyPl(ii−1);
95 epsZzPl(ii) = epsZzPl(ii−1);
96 epsYzPl(ii) = epsYzPl(ii−1);
97

98 else
99 % no purely ela stic loading during the step

100 sigYPs( ii)=sigYyFI(i−1);
101 sigZPs( ii)=sigZzFI(i−1);
102 sigYzPs(ii)=sigYzFI(i−1);
103 ii= ii−1; % in order not to skip index when elastic ...
104 % variables weren't calculated
105 end
106

107 %% plastic region solution (elastic+plastic stresses and strains)
108 if i2 < 1
109 % plasticization has occurred
110

111 % pseudo notch stresses increments till the end of current step
112 dSigYPs = (sigYyFI(i) − sigYPs( ii))/incPerPlR;
113 dSigZPs = (sigZzFI(i) − sigZPs( ii))/incPerPlR;
114 dSigYzPs = (sigYzFI(i) − sigYzPs(ii))/incPerPlR;
115

116 for j = 1:1:incPerPlR
117 %% cycle trough increments of plastic range
118

119 % index of increment in calculated matrixes
120 ii = ii + 1;
121

122 % pseudo stress
123 sigYPs(ii) = sigYPs(ii−1)+dSigYPs;
124 sigZPs(ii) = sigZPs(ii−1)+dSigZPs;
125 sigYzPs(ii) = sigYzPs(ii−1)+dSigYzPs;
126
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127 sigPs = [0 0 0;
128 0 sigYPs(ii) sigYzPs(ii);
129 0 sigYzPs(ii) sigZPs(ii)];
130 % deviator of pseudo stress
131 SPs = sigPs − trace(sigPs)/3*eye(3);
132

133 [dp,theta] = calc_dp_AKO(gPC,cPC,SPs,alfa_partPs,mu1);
134

135 [alfaPs, alfa_partPs, dEpsPlPs] = ...
136 calc_alfa_and_dEpsPl(dp,gPC, cPC, ...

alfa_partPs,SPs, theta);
137

138 dEpsPl = dEpsPlPs;
139

140 [alfa, alfa_part, SReal] = ...
141 calc_alfa_and_Snp1(dp,gRC,cRC,alfa_part, dEpsPl);
142

143 %% update pseudo material variables
144

145 %% non−deviatoric stress components
146 sigRealH = −SReal(1,1);
147 sigReal = SReal + sigRealH*eye(3);
148

149 sigY(ii) = sigReal(2,2);
150 sigZ(ii) = sigReal(3,3);
151 sigYz(ii) = sigReal(2,3);
152

153 dSigY = sigY(ii) − sigY(ii−1);
154 dSigZ = sigZ(ii) − sigZ(ii−1);
155 dSigYz = sigYz(ii) − sigYz(ii−1);
156

157 %% storing calculated strains
158 % plastic components increments
159 x(1) = dEpsPl(1,1);
160 x(2) = dEpsPl(2,2);
161 x(3) = dEpsPl(3,3);
162 x(4) = dEpsPl(2,3) ; % here, the tensorial shear strain ...

is calculated!!!
163

164 % elastic strain
165 dEpsXxE = 1/E * (−ny) * (dSigY + dSigZ);
166 dEpsYyE = 1/E * (dSigY + (−ny) * dSigZ);
167 dEpsZzE = 1/E * (dSigZ + (−ny) * dSigY);
168

169 dGammaYzE = 1/G* dSigYz;
170 dEpsYzE = dGammaYzE/ 2;
171

172 epsXxE(ii) = epsXxE(ii−1) + dEpsXxE;
173 epsYyE(ii) = epsYyE(ii−1) + dEpsYyE;
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174 epsZzE(ii) = epsZzE(ii−1) + dEpsZzE;
175 epsYzE(ii) = epsYzE(ii−1) + dEpsYzE;
176

177 % plastic strain
178 epsXxPl(ii) = epsXxPl(ii−1) + x(1);
179 epsYyPl(ii) = epsYyPl(ii−1) + x(2);
180 epsZzPl(ii) = epsZzPl(ii−1) + x(3);
181 epsYzPl(ii) = epsYzPl(ii−1) + x(4);
182

183 % total strain (elastic total + plastic total)
184 epsXx(ii) = epsXxE(ii) + epsXxPl(ii);
185 epsYy(ii) = epsYyE(ii) + epsYyPl(ii);
186 epsZz(ii) = epsZzE(ii) + epsZzPl(ii);
187 epsYz(ii) = epsYzE(ii) + epsYzPl(ii);
188 end %j = 1:1:(incPerPlR)
189 end
190 end
191

192 graphs; % function for plotting results
193 calc_rel_error;

C.2 Functions

C.2.1 calc_alfa_and_dEpsPl

1 function [alfa, alfa_part, dEpsPl] = ...
2 calc_alfa_and_dEpsPl(dp,gamma,cMatrix,alfa_part,S,theta)
3

4 global yieldStrength
5 m2 = size(gamma,1); % number of backstress parts
6 aMatrix = zeros(3,3);
7 alfa = zeros(3,3);
8

9 aNum = 0;
10 for i = 1:m2
11 aMatrix =aMatrix + theta(i)*alfa_part(:,:,i);
12 aNum = aNum + cMatrix(i)*theta(i);
13 end
14

15 % calculate plastic strain tensor
16 SminusA = yieldStrength/(yieldStrength+aNum*dp)*(S−aMatrix);
17 dEpsPl = 3/2*dp*SminusA/yieldStrength;
18

19 % calculate backstress parts (for the next iteration)
20 for i = 1:m2
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21 alfa_part(:,:,i) = ...
(alfa_part(:,:,i)+2/3*cMatrix(i)*dEpsPl)*theta(i);

22 alfa = alfa + alfa_part(:,:,i);
23 end
24

25

26 end

C.2.2 calc_alfa_and_Snp1

1 function [alfa, alfa_part, Snp1] = ...
2 calc_alfa_and_Snp1(dp,gamma,cMatrix,alfa_part,dEpsPl)
3 global yieldStrength
4

5 m2 = size(gamma,1); % number of backstress parts
6 alfa = zeros(3,3);
7 % calculate backstress parts
8 for i = 1:m2
9 alfa_part(:,:,i) = ...

(alfa_part(:,:,i)+2/3*cMatrix(i)*dEpsPl)/(1+gamma(i)*dp);
10 alfa = alfa + alfa_part(:,:,i);
11

12 end
13

14 % calculate stress
15 Snp1 = dEpsPl*yieldStrength*2/3/dp + alfa;
16

17

18 end

C.2.3 calc_alfa_and_Snp1

1 function [alfa, alfa_part, Snp1] = ...
2 calc_alfa_and_Snp1(dp,gamma,cMatrix,alfa_part,dEpsPl)
3 global yieldStrength
4

5 m2 = size(gamma,1); % number of backstress parts
6 alfa = zeros(3,3);
7 % calculate backstress parts
8 for i = 1:m2
9 alfa_part(:,:,i) = ...

(alfa_part(:,:,i)+2/3*cMatrix(i)*dEpsPl)/(1+gamma(i)*dp);
10 alfa = alfa + alfa_part(:,:,i);
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11

12 end
13

14 % calculate stress
15 Snp1 = dEpsPl*yieldStrength*2/3/dp + alfa;
16

17

18 end

C.2.4 calc_C_gamma

1 function [gamma, cMatrix] = calc_C_gamma(epsPl,stress,K,n)
2 global yieldStrength
3 slope = zeros(size(epsPl,1),1);
4 gamma = zeros(size(epsPl,1)−1,1);
5 cMatrix = zeros(size(epsPl,1)−1,1);
6 epsPlAtYS = (yieldStrength/K)^(1/n);
7 nn = size(epsPl,1);
8 for i=1:nn
9 if i == 1

10 slope(1) = (stress(1)−yieldStrength)/(epsPl(i)−epsPlAtYS);
11 else
12 slope(i) = (stress(i)−stress(i−1))/(epsPl(i)−epsPl(i−1));
13 end
14 end
15 slope(nn+1) = 0;
16 for i=1:nn
17 gamma(i) = 1/epsPl(i);
18 cMatrix(i) = slope(i) − slope(i+1);
19 end
20 end

C.2.5 calc_dp_AKO

1 function [dp,theta] = calc_dp_AKO(gamma,cMatrix,S,alfa_part,mu1)
2 global yieldStrength
3 n = size(gamma,1); % vectors prealocation
4 theta = ones(1,n);
5

6 %% model parameters
7

8 dpkm1 = 0; % variables to check convergence
9 dpkm2 = 0;
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10

11 for k =1:100
12 aMatrix = zeros(3,3); % a supportive variable for the ...

calculation
13 aNum = 0;
14 for i2 = 1:n
15 aMatrix = aMatrix + theta(i2)*alfa_part(:,:,i2);
16 aNum = aNum + cMatrix(i2)*theta(i2);
17 end
18 aNum2 = calc_equiv_stress(S−aMatrix);
19

20 dp = (aNum2 − yieldStrength)/aNum; % dp from the first iteration
21

22 % The Aitken's ∆^2 process to shorten the convergence −−−−−
23 if mod(k,3) == 0
24 con = dp−(dp−dpkm1)^2/(dp−2*dpkm1+dpkm2);
25 if con > 0
26 dp = con;
27 end
28 end % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29

30 SminusA = yieldStrength/(yieldStrength+aNum*dp)*(S−aMatrix);
31 dEpsPl = 3/2*dp*SminusA/yieldStrength;
32

33 if abs(1−dpkm1/dp) < 10^(−4)
34 break; % solution found
35 end
36

37 for i2 = 1:n
38 aMatrix = zeros(3,3);
39 alnp1_st(:,:,i2) = ...

alfa_part(:,:,i2)+2/3*cMatrix(i2)*dEpsPl;
40 alnp1_dash(i2) = calc_equiv_stress(alnp1_st(:,:,i2));
41

42 mu(i2) = mu1;
43

44 c(i2) = 1/(1+mu(i2)*gamma(i2)*dp);
45

46 alnp1_hash(:,:,i2) = c(i2)*(alnp1_st(:,:,i2));
47

48 fnp1_hash = ...
calc_equiv_stress(alnp1_hash(:,:,i2))^2−(cMatrix(i2)/gamma(i2))^2;

49 theta(i2)=c(i2)+heaviside(fnp1_hash)*...
50 (cMatrix(i2)/gamma(i2)/alnp1_dash(i2)−c(i2));
51

52 end
53

54 dpkm2 = dpkm1;
55 dpkm1 = dp;
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56

57 if k == 200
58 error('Error: number of iterations has exceeded the ...

allowed value');
59 k
60 end
61 end
62 end

C.2.6 calc_equiv_stress

1 function equivalent_stress = calc_equiv_stress(A)
2 aMatrix = A.*A;
3 equivalent_stress = sqrt(3/2* sum(aMatrix(:)) );
4 end

C.2.7 material_curves

1 function [ePlRC, sRC, ePlPC, sPC] = material_curves(E, K, nRO)
2 % RC ... real curve (cyclic stress strain curve); Pl ... plastic
3 % PC ... pseudo curve; e ... epsilon, s ... sigma
4 %% REAL CURVE
5 % 4 intervals for gamma and C and 1 corresponding to the yield
6 % strength will be added later −> 5 invtervals == 5 backstress ...

parts
7 ePlRC = [0.002 0.004 0.006 0.008 0.01]';
8 n = size(ePlRC,1); %number of discrete points on the curve
9 for i=1:n

10 sRC(i,1) = K*ePlRC(i)^nRO;
11 end
12

13 %% PSEUDO CURVE
14 ePlPC = ePlRC;
15 for i=1:n
16 %sig_e = sig * eps_tot *E
17 sPC(i,1) = sqrt( sRC(i)* (ePlRC(i)+sRC(i)/E) *E );
18 end
19 end

C.2.8 ramberg_osgood_coe�cients
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1 function [K, n] = ramberg_osgood_coefficients(eps, sig)
2 f = fit(eps,sig,'power1');
3 regCs = coeffvalues(f);
4 K = regCs(1); %RO with Hollomon parameters: eps = sig/E + ...

(sig/K)^(1/n)
5 n = regCs(2);
6 end

C.3 Scripts

C.3.1 calc_rel_error

1 if useAluminum == 1
2 e_exp_range = max(eps1Median_1)−min(eps1Median_1);
3 g_exp_range = max(eps12Median_1)−min(eps12Median_1);
4

5 conv = 1; % conversion
6 const2 = 1;
7 else
8 e_exp_range = max(e_exp)−min(e_exp);
9 e_other_est_range = max(e_est)−min(e_est);

10 e_rel_err_other = (e_other_est_range − e_exp_range)/e_exp_range ...

* 100;
11

12 g_exp_range = max(g_exp)−min(g_exp);
13 g_other_est_range = max(g_est)−min(g_est);
14 g_rel_err_other = (g_other_est_range − g_exp_range)/g_exp_range ...

* 100;
15 conv = 100;
16 const2 = const;
17 end
18

19 e_pm_est_range = max(epsZz)−min(epsZz);
20 e_rel_err_pm = (e_pm_est_range*conv − e_exp_range)/e_exp_range * 100;
21 % pm ... proposed method
22

23 g_pm_est_range = const2*(max(epsYz)−min(epsYz));
24 g_rel_err_pm = (g_pm_est_range*conv − g_exp_range)/g_exp_range * 100;
25

26 fprintf('mu = %.2f\n', mu1);
27 if useAluminum ̸=1
28 fprintf('RE axial other method: %.1f\n', e_rel_err_other);
29 end
30 fprintf('RE axial proposed method: %.1f\n', e_rel_err_pm);
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31 if useAluminum ̸=1
32 fprintf('RE shear other method: %.1f\n', g_rel_err_other);
33 end
34 fprintf('RE shear proposed method: %.1f\n', g_rel_err_pm);
35 fprintf(['cycles: ' int2str(num_cycles) '\n']);

C.3.2 de�ne_notch_stress_inputs

1 if strcmp(path_name,'Ince_ksi')
2 test_spcm = 'Ince_spc';
3 num_cycles_text = '−';
4 sigZzFI = 420 *[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...

0 1 0 −1 0 1 0 −1 0];
5 sigYzFI = 222 *[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...

−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
−0.2 0];

6 sigYyFI = 89 *[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...
0 1 0 −1 0 1 0 −1 0];

7

8 elseif strcmp(path_name,'Ince_N')
9 test_spcm = 'Ince_spc';

10 num_cycles_text = '−';
11 sigZzFI = 420 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
12 sigYzFI = 222 *[0 1 −1 1 −1 1 −1 1];
13 sigYyFI = 89 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
14

15 elseif strcmp(path_name,'Ince_NV')
16 test_spcm = 'Ince_spc';
17 num_cycles_text = '−';
18 sigZzFI = 420*[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...

−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
−0.2 0];

19 sigYzFI = 222*[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...
0 1 0 −1 0 1 0 −1 0];

20 sigYyFI = 89*[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...
−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
−0.2 0];

21

22 elseif strcmp(path_name,'Ince_S')
23 test_spcm = 'Ince_spc';
24 num_cycles_text = '−';
25 sigZzFI = 420 *[0 1 −1 1 −1 1 −1 1];
26 sigYzFI = 222 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];

91



C.3. SCRIPTS

27 sigYyFI = 89 *[0 1 −1 1 −1 1 −1 1];
28

29 elseif strcmp(path_name,'Ince_square')
30 test_spcm = 'Ince_spc';
31 num_cycles_text = '−';
32 sigZzFI = 420 * [0 1 −1 −1 1];
33 sigYzFI = 222 * [0 1 1 −1 −1];
34 sigYyFI = 89 * [0 1 −1 −1 1];
35

36 elseif strcmp(path_name,'Ince_square_clock')
37 test_spcm = 'Ince_spc';
38 num_cycles_text = '−';
39 sigZzFI = 420 *[0 1 1 −1 −1];
40 sigYzFI = 222 *[0 1 −1 −1 1];
41 sigYyFI = 89 *[0 1 1 −1 −1];
42

43 %% LI ZHANG ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 elseif strcmp(path_name,'Li_1070_C')
45 % counter−clockwise
46 test_spcm = '−';
47 num_cycles_text = '−';
48 sigZzFI = 420*[0 1 −1 1 −1 1];
49 sigYzFI = 222*[0 1 0 −1 0 1];
50 sigYyFI = 89*[0 1 −1 1 −1 1];
51

52 elseif strcmp(path_name,'Li_1070_N')
53 test_spcm = 'Li_spc';
54 num_cycles_text = '−';
55 sigZzFI = 420 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
56 sigYzFI = 222 *[0 1 −1 1 −1 1 −1 1];
57 sigYyFI = 89 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
58

59 elseif strcmp(path_name,'Li_1070_S')
60 test_spcm = 'Li_spc';
61 num_cycles_text = '−';
62 sigZzFI = 420 *[0 1 −1 1 −1 1 −1 1];
63 sigYzFI = 222 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
64 sigYyFI = 89 *[0 1 −1 1 −1 1 −1 1];
65

66 elseif strcmp(path_name,'Li_1070_square')
67 test_spcm = 'Li_spc';
68 num_cycles_text = '−';
69 sigZzFI = 420 * [0 1 −1 −1 1];
70 sigYzFI = 222 * [0 1 1 −1 −1];
71 sigYyFI = 89 * [0 1 −1 −1 1];
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72

73 elseif strcmp(path_name,'Li_1070_square_clock')
74 test_spcm = 'Li_spc';
75 num_cycles_text = '−';
76 sigZzFI = 420 *[0 1 1 −1 −1];
77 sigYzFI = 222 *[0 1 −1 −1 1];
78 sigYyFI = 89 *[0 1 1 −1 −1];
79

80 elseif strcmp(path_name,'Li_1070_V')
81 % counter−clockwise
82 test_spcm = '−';
83 num_cycles_text = '−';
84 sigZzFI = 420*[0 1 0 −1 0 1];
85 sigYzFI = 222*[0 1 −1 1 −1 1];
86 sigYyFI = 89*[0 1 0 −1 0 1];
87

88 %% TAO − STEEL ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

89 elseif strcmp(path_name,'Tao_1070_ksi')
90 test_spcm = '−';
91 num_cycles_text = '−';
92 sigZzFI = 366 *[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...

0 1 0 −1 0 1 0 −1 0];
93 sigYzFI = 193 *[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...

−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
−0.2 0];

94 sigYyFI = 77 *[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...
0 1 0 −1 0 1 0 −1 0];

95

96 elseif strcmp(path_name,'Tao_1070_N')
97 test_spcm = '−';
98 num_cycles_text = '−';
99 sigZzFI = 366 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
100 sigYzFI = 193 *[0 1 −1 1 −1 1 −1 1];
101 sigYyFI = 77 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
102

103 elseif strcmp(path_name,'Tao_1070_NV')
104 % Path NV;
105 test_spcm = '−';
106 num_cycles_text = '−';
107 sigZzFI = 366*[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...

−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
−0.2 0];

108 sigYzFI = 193*[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...
0 1 0 −1 0 1 0 −1 0];

109 sigYyFI = 77*[0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 ...
−0.2 −0.4 −0.6 −0.8 −1 −0.8 −0.6 −0.4 ...
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−0.2 0];
110

111 elseif strcmp(path_name,'Tao_1070_proportional')
112 test_spcm = '−';
113 num_cycles_text = '−';
114 sigZzFI = 420 * [0 1 −1 1]; % axial direction
115 sigYzFI = 222 * [0 1 −1 1];
116 sigYyFI = 89 * [0 1 −1 1]; % tangential direction
117

118 elseif strcmp(path_name,'Tao_1070_S')
119 test_spcm = '−';
120 num_cycles_text = '−';
121 sigZzFI = 366 *[0 1 −1 1 −1 1 −1 1];
122 sigYzFI = 193 *[0 1 0.333333333 −0.333333333 −1 ...

−0.333333333 0.333333333 1];
123 sigYyFI = 77 *[0 1 −1 1 −1 1 −1 1];
124

125 elseif strcmp(path_name,'Tao_1070_square')
126 % counter−clockwise
127 test_spcm = '1070_steel';
128 num_cycles_text = 'Tao';
129 sigZzFI = 420 * [0 1 −1 −1 1];
130 sigYzFI = 222 * [0 1 1 −1 −1];
131 sigYyFI = 89 * [0 1 −1 −1 1];
132

133 %% ALUMINUM − FILLET NOTCH ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

134 elseif strcmp(path_name,'7')
135 % Path "7"; F = 66kN, M = 329.133 kNmm, D 26mm
136 test_spcm = 'f9';
137 num_cycles_text = '1st 100 cycles';
138 sigYyFI = 82 * [0 1 −1 1]; % tangential direction
139 sigZzFI = 375 * [0 1 −1 1]; % axial direction,
140 sigYzFI = 270 * [0 −1 −1 −1]; % FI as for incrementation
141

142 elseif strcmp(path_name,'circle_f7')
143 % Path Circle; F = 66kN, M = 329.133 kNmm, D 26mm
144 test_spcm = 'f7';
145 num_cycles_text = '1st 100 cycles';
146 sigZzFI = 375 * [0 1 0.95 0.81 0.59 0.31 ...

0.00 −0.31 −0.59 −0.81 −0.95 −1.00 −0.95 ...
−0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 ...
0.95 1.00];

147 sigYyFI = 82 * [0 1 0.95 0.81 0.59 0.31 ...
0.00 −0.31 −0.59 −0.81 −0.95 −1.00 −0.95 ...
−0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 ...
0.95 1.00];

148 sigYzFI = (−270) * [0 0 −0.31 −0.59 −0.81 −0.95 ...
−1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...
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0.59 0.81 0.95 1.00 0.95 0.81 0.59 ...
0.31 0.00];

149

150 elseif strcmp(path_name,'circle_1p73_f8')
151 % F = 101kN, M = 290 kNmm, D 26mm
152 test_spcm = 'f8';
153 num_cycles_text = '1st 100 cycles';
154 sigZzFI = 572 * [0 1 0.95 0.81 0.59 0.31 0.00 ...

−0.31 −0.59 −0.81 −0.95 ...
155 −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...

0.59 0.81 0.95 1.00];
156 sigYyFI = 125 * [0 1 0.95 0.81 0.59 0.31 0.00 ...

−0.31 −0.59 −0.81 −0.95 ...
157 −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...

0.59 0.81 0.95 1.00];
158 sigYzFI = (238)* [0 0 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 ...
159 −0.31 0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 0.31 0.00];
160

161 elseif strcmp(path_name,'NV_f11')
162 % Path NV; F = 66kN, M = 329.133 kNmm, D 26mm
163 test_spcm = 'f11';
164 num_cycles_text = '1st 50 cycles';
165 sigZzFI = 375 * [0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 ...
166 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
167 sigYyFI = 82 * [0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 ...
168 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
169 sigYzFI = (−270)*[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...

0 1 0 −1 0 1 0 −1 0];
170

171 elseif strcmp(path_name,'proportional_f3')
172 % F = 66kN, M = 329.133 kNmm, D 26mm
173 test_spcm = 'f3';
174 num_cycles_text = '1st 99 cycles';
175 %based on Kt
176 sigYyFI = 82 * [0 1 −1 1]; % tangential direction
177 sigZzFI = 375 * [0 1 −1 1]; % axial direction
178 sigYzFI = 270 * [0 −1 1 −1];
179

180 elseif strcmp(path_name,'proportional_f4')
181 test_spcm = 'f4';
182 num_cycles_text = '1st 100 cycles';
183 %based on Kt
184 sigYyFI = 125 * [0 1 −1 1]; % tangential direction
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185 sigZzFI = 572 * [0 1 −1 1]; % axial direction
186 sigYzFI = 238 * [0 −1 1 −1];
187

188 elseif strcmp(path_name,'X_f5')
189 % F = 66kN, M = 329.133 kNmm, D 26mm
190 test_spcm = 'f5';
191 num_cycles_text = '1st 100 cycles';
192 sigYyFI = 82* [0 1 0 1 0 −1 0 −1 0];
193 sigZzFI = 375* [0 1 0 1 0 −1 0 −1 0];
194 sigYzFI = 270* [0 −1 0 1 0 1 0 −1 0];
195

196 elseif strcmp(path_name,'X_1p73_f6')
197 % F = 101kN, M = 290 kNmm, D 26mm
198 test_spcm = 'f6';
199 num_cycles_text = '1st 100 cycles';
200 sigYyFI = 125* [0 1 0 1 0 −1 0 −1 0];
201 sigZzFI = 572* [0 1 0 1 0 −1 0 −1 0];
202 sigYzFI = 238* [0 −1 0 1 0 1 0 −1 0];
203

204 %% ALUMINUM − U NOTCH ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

205 elseif strcmp(path_name,'circle')
206 % Path Circle; F = 66kN, M = 329.133 kNmm, D 26mm
207 test_spcm = 'u73';
208 num_cycles_text = '1st 100 cycles';
209 sigZzFI = 427 * [0 1 0.95 0.81 0.59 0.31 ...

0.00 −0.31 −0.59 −0.81 −0.95 −1.00 −0.95 ...
−0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 ...
0.95 1.00];

210 sigYyFI = 113 * [0 1 0.95 0.81 0.59 0.31 ...
0.00 −0.31 −0.59 −0.81 −0.95 −1.00 −0.95 ...
−0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 ...
0.95 1.00];

211 sigYzFI = (−291)* [0 0 −0.31 −0.59 −0.81 −0.95 ...
−1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...
0.59 0.81 0.95 1.00 0.95 0.81 0.59 ...
0.31 0.00];

212

213 elseif strcmp(path_name,'circle_1p73')
214 % F = 101kN, M = 290 kNmm, D 26mm
215 test_spcm = 'u7';
216 num_cycles_text = '1st 100 cycles';
217

218 sigZzFI = 652 * [0 1 0.95 0.81 0.59 0.31 0.00 ...
−0.31 −0.59 −0.81 −0.95 ...

219 −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...
0.59 0.81 0.95 1.00];

220 sigYyFI = 173 * [0 1 0.95 0.81 0.59 0.31 0.00 ...
−0.31 −0.59 −0.81 −0.95 ...
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221 −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 ...
0.59 0.81 0.95 1.00];

222 sigYzFI = (−257)* [0 0 −0.31 −0.59 −0.81 −0.95 ...
−1.00 −0.95 −0.81 −0.59 ...

223 −0.31 0.00 0.31 0.59 0.81 0.95 1.00 ...
0.95 0.81 0.59 0.31 0.00];

224

225 elseif strcmp(path_name,'NV')
226 % Path NV; F = 66kN, M = 329.133 kNmm, D 26mm
227 test_spcm = 'u4';
228 num_cycles_text = '1st 50 cycles';
229 sigZzFI = 427 * [0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 ...
230 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
231 sigYyFI = 113 * [0.00 0.31 0.59 0.81 0.95 ...

1.00 0.95 0.81 0.59 ...
232 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
233 sigYzFI = (−291)*[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...

0 1 0 −1 0 1 0 −1 0];
234

235 elseif strcmp(path_name,'NV_1p73')
236 % Path NV; F = 101kN, M = 290 kNmm, D 26mm
237 test_spcm = 'u8';
238 num_cycles_text = '1st 42 cycles'; %it broke at 94
239 sigZzFI = 652 * [0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 ...
240 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
241 sigYyFI = 173 * [0.00 0.31 0.59 0.81 0.95 1.00 ...

0.95 0.81 0.59 ...
242 0.31 0.00 −0.31 −0.59 −0.81 −0.95 −1.00 ...

−0.95 −0.81 −0.59 −0.31 0.00];
243 sigYzFI = (−257)*[0 1 0 −1 0 1 0 −1 0 1 0 −1 ...

0 1 0 −1 0 1 0 −1 0];
244

245 elseif strcmp(path_name,'proportional_u11')
246 % F = 66kN, M = 329.133 kNmm, D 26mm
247 test_spcm = 'u11';
248 num_cycles_text = '1st 100 cycles';
249 sigYyFI = 113 * [0 1 −1 1]; % tangential direction
250 sigZzFI = 427 * [0 1 −1 1]; % axial direction
251 sigYzFI = 291 * [0 −1 1 −1];
252

253 elseif strcmp(path_name,'square')
254 % Path Square, F = 66kN, M = 329.133 kNmm, D 26mm
255 test_spcm = 'u3';
256 num_cycles_text = '1st 100 cycles';
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257 sigYyFI = 113* [0 1 1 1 0 −1 −1 −1 0 1];
258 sigZzFI = 427* [0 1 1 1 0 −1 −1 −1 0 1];
259 sigYzFI = 291* [0 −1 0 1 1 1 0 −1 −1 −1];
260

261 elseif strcmp(path_name,'uniaxial_u5')
262 % F = 86.25 kN, M = 0 kNmm, D 26mm
263 test_spcm = 'u5';
264 num_cycles_text = '1st 100 cycles';
265 sigYyFI = 148 * [0 1 −1 1];
266 sigZzFI = 560 * [0 1 −1 1]; % axial direction,
267 sigYzFI = 0 * [0 −1 1 −1];
268

269 elseif strcmp(path_name,'uniaxial_u9')
270 % F = 100.472 kN, M = 0 kNmm, D 26mm
271 test_spcm = 'u9';
272 num_cycles_text = '1st 100 cycles';
273 sigYyFI = 173 * [0 1 −1 1];
274 sigZzFI = 652 * [0 1 −1 1]; % axial direction,
275 sigYzFI = 0 * [0 −1 1 −1];
276

277 elseif strcmp(path_name,'X')
278 % F = 66kN, M = 329.133 kNmm, D 26mm
279 test_spcm = 'u2';
280 num_cycles_text = '1st 100 cycles';
281 sigYyFI = 113* [0 1 0 1 0 −1 0 −1 0];
282 sigZzFI = 427* [0 1 0 1 0 −1 0 −1 0];
283 sigYzFI = 291* [0 −1 0 1 0 1 0 −1 0];
284

285 elseif strcmp(path_name,'X_1p73')
286 % F = 101kN, M = 290 kNmm, D 26mm
287 test_spcm = 'u6';
288 num_cycles_text = '1st 100 cycles';
289 sigYyFI = 173* [0 1 0 1 0 −1 0 −1 0];
290 sigZzFI = 652* [0 1 0 1 0 −1 0 −1 0];
291 sigYzFI = 257* [0 −1 0 1 0 1 0 −1 0];
292

293 end

C.3.3 elastic_region_solution

1 sigYPs(ii) = sigYPs(ii−1) + dSigYPs;
2 sigZPs(ii) = sigZPs(ii−1) + dSigZPs;
3 sigYzPs(ii) = sigYzPs(ii−1) + dSigYzPs;
4 sigY(ii) = sigY(ii−1) + dSigYPs; % in elastic regime increments ...

of real and pseudo stresses are equal
5 sigZ(ii) = sigZ(ii−1) + dSigZPs;
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6 sigYz(ii) = sigYz(ii−1) + dSigYzPs;
7 sigReal = [0 0 0;
8 0 sigY(ii) sigYz(ii);
9 0 sigYz(ii) sigZ(ii)];

10 SReal = sigReal − trace(sigReal)/3*eye(3);
11 dEpsXxE = 1/E * (−ny) * (dSigYPs + dSigZPs);
12 dEpsYyE = 1/E * (dSigYPs + (−ny) * dSigZPs);
13 dEpsZzE = 1/E * (dSigZPs + (−ny) * dSigYPs);
14 dGammaYzE = 1/G * dSigYzPs;
15 dEpsYzE = dGammaYzE/ 2;
16 epsXxE(ii) = epsXxE(ii−1) + dEpsXxE;
17 epsYyE(ii) = epsYyE(ii−1) + dEpsYyE;
18 epsZzE(ii) = epsZzE(ii−1) + dEpsZzE;
19 epsYzE(ii) = epsYzE(ii−1) + dEpsYzE;
20 epsXx(ii) = epsXx(ii−1) + dEpsXxE;
21 epsYy(ii) = epsYy(ii−1) + dEpsYyE;
22 epsZz(ii) = epsZz(ii−1) + dEpsZzE;
23 epsYz(ii) = epsYz(ii−1) + dEpsYzE;

C.3.4 graphs

1 %% axial and shear strain graph
2 figure;
3 if plotExperiments == 1
4 p1 = plot(eps1Median_1(1:end)*100,eps12Median_1(1:end)*100,'−',...
5 'color',[.929 .6940 .125],'LineWidth',1); hold on;
6 p1.Color(4) = 0.5;
7 end
8

9 %% LOAD INCE'S DATA
10 if strcmp(path_name,'Ince_ksi')
11 load(strcat(pwd,'/data_for_comparison/','Ince_1070_ksi.mat'));
12 elseif strcmp(path_name,'Ince_N')
13 load(strcat(pwd,'/data_for_comparison/','Ince_1070_N.mat'));
14 elseif strcmp(path_name,'Ince_NV')
15 load(strcat(pwd,'/data_for_comparison/','Ince_1070_NV.mat'));
16 elseif strcmp(path_name,'Ince_S')
17 load(strcat(pwd,'/data_for_comparison/','Ince_1070_S.mat'));
18 elseif strcmp(path_name,'Ince_square')
19 load(strcat(pwd,'/data_for_comparison/','Ince_1070_square.mat'));
20 elseif strcmp(path_name,'Ince_square_clock')
21 load(strcat(pwd,'/data_for_comparison/Ince_1070_square_clock.mat'));
22 %% LOAD LI'S DATA
23 elseif strcmp(path_name, 'Li_1070_C')
24 load(strcat(pwd,'/data_for_comparison/','Li_1070_C.mat'));
25 elseif strcmp(path_name,'Li_1070_N')
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26 load(strcat(pwd,'/data_for_comparison/','Li_1070_N.mat'));
27 elseif strcmp(path_name,'Li_1070_S')
28 load(strcat(pwd,'/data_for_comparison/','Li_1070_S.mat'));
29 elseif strcmp(path_name,'Li_1070_square')
30 load(strcat(pwd,'/data_for_comparison/','Li_1070_square.mat'));
31 elseif strcmp(path_name,'Li_1070_square_clock')
32 load(strcat(pwd,'/data_for_comparison/','Li_1070_square_clock.mat'));
33 elseif strcmp(path_name, 'Li_1070_V')
34 load(strcat(pwd,'/data_for_comparison/','Li_1070_V.mat'));
35 %% LOAD TAO'S STEEL DATA
36 elseif strcmp(path_name,'Tao_1070_ksi')
37 load(strcat(pwd,'/data_for_comparison/','Tao_1070_ksi.mat'));
38 elseif strcmp(path_name,'Tao_1070_N')
39 load(strcat(pwd,'/data_for_comparison/','Tao_1070_N.mat'));
40 elseif strcmp(path_name,'Tao_1070_NV')
41 load(strcat(pwd,'/data_for_comparison/','Tao_1070_NV.mat'));
42 elseif strcmp(path_name, 'Tao_1070_proportional')
43 load(strcat(pwd,'/data_for_comparison/Tao_1070_proportional.mat'));
44 elseif strcmp(path_name,'Tao_1070_S')
45 load(strcat(pwd,'/data_for_comparison/','Tao_1070_S.mat'));
46 elseif strcmp(path_name,'Tao_1070_square')
47 load(strcat(pwd,'/data_for_comparison/','Tao_1070_square.mat'));
48 end
49

50

51 if strcmp(path_name,'circle_1p73')
52 const = 1;
53 elseif strcmp(path_name, 'Ince_ksi') || strcmp(path_name, 'Ince_N') ...
54 || strcmp(path_name, 'Ince_NV') || strcmp(path_name, 'Ince_S') ...
55 || strcmp(path_name, 'Ince_square') || strcmp(path_name, ...

'Ince_square_clock') ...
56 ...
57 || strcmp(path_name, 'Li_1070_C') || strcmp(path_name, ...

'Li_1070_N') ...
58 || strcmp(path_name, 'Li_1070_S') || strcmp(path_name, ...

'Li_1070_square')...
59 || strcmp(path_name, 'Li_1070_square_clock') || ...

strcmp(path_name, 'Li_1070_V') ...
60 ...
61 || strcmp(path_name, 'Tao_1070_ksi') || strcmp(path_name, ...

'Tao_1070_N') ...
62 || strcmp(path_name, 'Tao_1070_NV') ...
63 || strcmp(path_name, 'Tao_1070_proportional') || ...

strcmp(path_name, 'Tao_1070_S') ...
64 || strcmp(path_name, 'Tao_1070_square') ...
65 const = 2;
66 width = 2;
67

68 p1 = plot(e_exp,g_exp,'−k','LineWidth',width); hold on;
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69 p2 = plot(e_est,g_est,'−r','LineWidth',1); hold on;
70 else
71 const = (−1);
72 end
73

74 p4 = plot(epsZz*100,const*epsYz*100,'−−b','LineWidth',1);
75

76 % legend preparation
77 if plotExperiments == 1
78 lgd = legend(['experiment, ' num_cycles_text],['estimate, 1st ' ...

int2str(num_cycles) ' cycles'],'Location','Best');
79 else
80 if strcmp(path_name, 'Ince_ksi') || strcmp(path_name, 'Ince_N') ...
81 || strcmp(path_name, 'Ince_NV') || strcmp(path_name, 'Ince_S') ...
82 || strcmp(path_name, 'Ince_square') || strcmp(path_name, ...

'Ince_square_clock')
83 lgd = legend('experiment (1070 steel)','Ince''s ...

estimate','proposed method','Location','Best');
84

85 elseif strcmp(path_name, 'Li_1070_C') || strcmp(path_name, ...
'Li_1070_N') ...

86 || strcmp(path_name, 'Li_1070_S') || strcmp(path_name, ...
'Li_1070_square') ...

87 || strcmp(path_name, 'Li_1070_square_clock') || ...
strcmp(path_name, 'Li_1070_V')

88 lgd = legend('experiment (1070 steel)','Li''s ...
estimate','proposed method','Location','Best');

89

90 elseif strcmp(path_name, 'Tao_1070_ksi') || strcmp(path_name, ...
'Tao_1070_N') ...

91 || strcmp(path_name, 'Tao_1070_NV') || strcmp(path_name, ...
'Tao_1070_proportional') ...

92 || strcmp(path_name, 'Tao_1070_S') || strcmp(path_name, ...
'Tao_1070_square')

93 lgd = legend('experiment (1070 steel)','Tao''s ...
estimate','proposed method','Location','Best');

94 end
95 end
96

97 grid on;
98 xlabel('axial strain [%]'); ylabel('shear strain [%]');
99

100 set(gca,'fontsize',18);
101 lgd.FontSize = 16;
102

103 %% setting axes
104 if strcmp(path_name,'7')
105 x1 =0; incx =1; x2 =4;
106 y1 =−0.8; incy =0.4; y2 =0.8;
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107 elseif strcmp(path_name,'Ince_ksi') || strcmp(path_name,'Ince_S') ...
108 || strcmp(path_name, 'Tao_1070_proportional')
109 x1 =−0.3; incx =0.1; x2 =0.3;
110 y1 =−0.5; incy =0.25; y2 =0.5;
111 elseif strcmp(path_name,'Ince_N') || strcmp(path_name,'Li_1070_N')
112 x1 =−0.3; incx =0.1; x2 =0.3;
113 y1 =−0.4; incy =0.2; y2 =0.6;
114 elseif strcmp(path_name,'Ince_NV')
115 x1 =−0.3; incx =0.1; x2 =0.3;
116 y1 =−0.4; incy =0.1; y2 =0.5;
117 elseif strcmp(path_name,'Li_1070_C')
118 x1 =−0.3; incx =0.3; x2 =1.2;
119 y1 =−0.6; incy =0.2; y2 =0.4;
120 elseif strcmp(path_name,'Li_1070_V')
121 x1 =−0.4; incx =0.2; x2 =0.4;
122 y1 =−0.4; incy =0.2; y2 =0.6;
123 elseif strcmp(path_name,'NV_1p73') || strcmp(path_name,'X_1p73') ...
124 || strcmp(path_name,'X_1p73_f6')
125 x1 =−1.5; incx =0.5; x2 =1.5;
126 y1 =−1; incy =0.5; y2 =1;
127 elseif strcmp(path_name,'square')
128 x1 =−1.5; incx =0.5; x2 =1.5;
129 y1 =−1.2; incy =0.6; y2 =1.2;
130 elseif strcmp(path_name,'Tao_1070_NV')
131 x1 =−0.3; incx =0.1; x2 =0.3;
132 y1 =−0.54; incy =0.18; y2 =0.36;
133 elseif strcmp(path_name,'Tao_1070_square')
134 x1 =−0.3; incx =0.1; x2 =0.3;
135 y1 =−0.63; incy =0.21; y2 =0.63;
136 else
137 x1 =−1.2; incx =0.6; x2 =1.2;
138 y1 =−1; incy =0.5; y2 =1;
139 end
140

141 axis([x1 x2 y1 y2]);
142 set(gca,'xTick',x1:incx:x2);
143 set(gca,'yTick',y1:incy:y2)

C.3.5 increase_number_of_load_cycles

1 num_cycles = 1;
2 %% paths, end steps of which ARE the same as the first non−zero state
3 if strcmp(path_name, '7') || strcmp(path_name,'circle_f7') ...
4 || strcmp(path_name,'circle_1p73_f8') || ...

strcmp(path_name,'proportional_f3') ...
5 || strcmp(path_name,'proportional_f4') ...
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6 ...
7 || strcmp(path_name,'circle') || strcmp(path_name,'circle_1p73') ...
8 || strcmp(path_name,'proportional_u11') || ...

strcmp(path_name,'square') ...
9 || strcmp(path_name,'uniaxial_u5') || ...

strcmp(path_name,'uniaxial_u9') ...
10 ...
11 || strcmp(path_name, 'Ince_N') || strcmp(path_name, 'Ince_S') ...
12 || strcmp(path_name, 'Li_1070_C')|| strcmp(path_name, 'Li_1070_N') ...
13 || strcmp(path_name, 'Li_1070_S')|| strcmp(path_name, 'Li_1070_V') ...
14 || strcmp(path_name, 'Tao_1070_N') || strcmp(path_name, ...

'Tao_1070_proportional') ...
15 || strcmp(path_name, 'Tao_1070_S')
16

17 yy = sigYyFI(3:end);
18 zz = sigZzFI(3:end);
19 yz = sigYzFI(3:end);
20

21 if strcmp(path_name, 'Ince_S') || strcmp(path_name, 'Ince_N') ...
22 || strcmp(path_name, 'Li_1070_C') || strcmp(path_name, ...

'Li_1070_N')...
23 || strcmp(path_name, 'Li_1070_S') || strcmp(path_name, ...

'Li_1070_V') ...
24 || strcmp(path_name, 'Tao_1070_N') || strcmp(path_name, ...

'Tao_1070_proportional') ...
25 || strcmp(path_name, 'Tao_1070_S')
26 repetitions = 39;
27 elseif strcmp(path_name,'square')
28 repetitions = 106;
29 else
30 repetitions = 98;
31 end
32

33 %% paths, end steps of which are NOT the same as the first non−zero ...
state

34 elseif strcmp(path_name,'NV') || strcmp(path_name,'NV_1p73') ...
35 || strcmp(path_name,'X') || strcmp(path_name,'X_1p73') ...
36 ...
37 || strcmp(path_name,'NV_f11') || strcmp(path_name,'NV_1p73_f12') ...
38 || strcmp(path_name,'X_f5') || strcmp(path_name,'X_1p73_f6') ...
39 ...
40 || strcmp(path_name, 'Ince_ksi') || strcmp(path_name, 'Ince_NV') ...

...
41 || strcmp(path_name, 'Ince_square') || strcmp(path_name, ...

'Ince_square_clock') ...
42 || strcmp(path_name, 'Li_1070_square') || strcmp(path_name, ...

'Li_1070_square_clock') ...
43 || strcmp(path_name, 'Tao_1070_ksi') || strcmp(path_name, ...

'Tao_1070_NV') ...
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44 || strcmp(path_name, 'Tao_1070_square')
45

46 yy = sigYyFI(2:end);
47 zz = sigZzFI(2:end);
48 yz = sigYzFI(2:end);
49

50 if strcmp(path_name,'NV') || strcmp(path_name,'NV_f11')
51 repetitions = 48;
52 elseif strcmp(path_name,'NV_1p73')
53 repetitions = 41;
54 elseif strcmp(path_name,'X')
55 repetitions = 103;
56 elseif strcmp(path_name,'X_1p73') || strcmp(path_name,'X_1p73_f6')
57 repetitions = 99;
58 elseif strcmp(path_name,'X_f5')
59 repetitions = 98;
60 else
61 repetitions = 39;
62 end
63 end
64

65 for i = 1:repetitions
66 sigYyFI = [sigYyFI yy];
67 sigZzFI = [sigZzFI zz];
68 sigYzFI = [sigYzFI yz];
69 num_cycles = num_cycles+1;
70 end

C.3.6 prealocate_variables

1 n = size(gPC,1); % number of backstress parts
2 alfa = zeros(3,3); % total backstress
3 alfa_part = zeros(3,3,n); % backstress parts
4 alfaPs = zeros(3,3); % total pseudo backstress
5 alfa_partPs = zeros(3,3,n); % parts of the pseudo backstress
6 alfa_partPsI = zeros(3,3,n); % parts of the pseudo backstress at the ...

beginning of the step
7 theta = ones(1,n);
8 SPs = zeros(3,3);
9 SPsStart = zeros(3,3);

10 SReal = zeros(3,3);
11 dEpsPl = zeros(3,3);
12 dEpsPlPs = zeros(3,3);
13 dp = 0;
14 if sigYyFI(length(sigYyFI)) == 0
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15 % m = number of points in elastic range + number of points in ...
plastic

16 % range + one initial zero state
17 m = length(sigYyFI)−1 + incPerPlR*(length(sigYyFI)−2) + 1;
18 else
19 m = length(sigYyFI)−1 + incPerPlR*(length(sigYyFI)−1) + 1;
20 end
21 epsXx(1) = 0; epsYy(1) = 0; epsZz(1) = 0; epsYz(1) = 0;
22 epsXxE(1) = 0; epsYyE(1) = 0; epsZzE(1) = 0; epsYzE(1) = 0;
23 epsXxPl(1) = 0; epsYyPl(1) = 0; epsZzPl(1) = 0; epsYzPl(1) = 0;
24 sigY = zeros(m, 1); sigZ = zeros(m, 1); sigYz = zeros(m, 1);
25 sigYPs(1) = 0; sigYPs(2) = 0; sigZPs = zeros(m, 1); sigYzPs = ...

zeros(m, 1);
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