BYTOVÝ DŮM ŠKOLSKÁ

MICHAL TUREK
BP
ATELIÉR Plicka – ŠKRNA
FA ČVUT
ZS 2021/2022
Anotace

Nový bytový komplex na místě současného veřejného parkoviště v křižení ulic Školská a Příkrá, doplňuje chybějící část městského bloku a současně přináší impulz k budoucí revitalizaci ulice Školská. Návrh objektů počítá s navrácením zastavěného parkoviště a nabízí možnost jednak volného, tak i soukromého parkování pro rezidenty domů ve dvoupodlažním podzemním parkování.

Tři samostatně stojící bytové domy nabízejí dohromady 18 bytových jednotek v dostupných dispozičních variantách 3+kk, 2+kk, 2+1 a 1+kk. V návrhu je také zahrnut potenciál lokality a sousedící historické centrum města. Tohoto faktu využívají přízemní patra budov, ve kterých se nachází prostor pro komerční, či nebytové využití.

Každý z objektů také reflektuje a respektuje výškovou členitost okolní zástavby, díky čemuž do prostředí zapadá a nevytváří tak zbytečné zastínění okolních domů. Díky příhodné orientaci světových stran a výhledu do kolínského Zálabí a jeho okolí, jsou dispozice společně s fasádou řešeny, aby nabídly co nejvíce výhledu a prostupu slunečního svitu do bytů.
BAKALÁŘSKÁ PRÁCE
BYTOVÝ DŮM ŠKOLSKÁ

A

SOUHRNNÁ TECHNICKÁ ZPRÁVA

Ústav urbanismu
vedoucí ústavu prof. Ing. arch. Jan Jehlík
vedoucí práce doc. Ing. arch. Ivan Plicka, CSc.
vypracoval Michal Turek
konzultant Ing. arch. Ondřej Vápeník
LS 2021/2022
A Souhrnná technická zpráva ... 4

A.1 Údaje o stavbě .. 4
A.2 Údaje o zpracovateli projektové dokumentace................................. 4
A.3 Členění stavby na stavební objekty .. 4
A.4 Seznam vstupních podkladů .. 5
A.5 Popis území stavby ... 5
 A.5.1 Charakteristika území a stavebního pozemku 5
 A.5.2 Údaje o souladu s územně plánovací dokumentací 6
 A.5.3 Výčet a závěry provedených průzkumů a rozborů 7
 A.5.4 Informace o vydaných rozhodnutích o povolení vyjimky z obecných požadavků na využívání území .. 8
 A.5.5 Informace o tom, zda a v jakých částech dokumentace jsou zohledněny podmínky závazných stanovísek dotčených orgánů ... 8
 A.5.6 Ochrana území podle jiných právních předpisů 8
 A.5.7 Poloha vzhledem k záplavovému území, poddolovanému území 8
 A.5.8 Vliv stavby na okolní stavby a pozemky, ochrana okolí, vliv stavby na odtokové poměry v území .. 8
 A.5.9 Požadavky na demolice a kácení dřevin 9
 A.5.10 Požadavky na maximální dočasně a trvalé zábory zemědělského půdního fondu nebo pozemků určených k plnění funkce lesa .. 9
 A.5.11 Územně technické podmínky – napojení na stávající dopravní a technickou infrastrukturu ... 9
 A.5.12 Věcné a časové vazby stavby .. 9
 A.5.13 Parcely, na kterých je prováděna stavba 9
 A.5.14 Seznam pozemků, na kterých vznikne ochranné, nebo bezpečnostní pásmo ... 9
A.6 Celkový popis stavby ... 9
 A.6.1 Základní charakteristika stavby a jejího užívání 9
 A.6.2 Účel užívání stavby .. 10
 A.6.3 Trvalá, nebo dočasná stavba .. 10
 A.6.4 Informace o vydaných rozhodnutích o povolení výjimky z technických požadavků na stavby a technických požadavků zabezpečujících bezbariérové užívání stavby 10
 A.6.5 Informace o tom, zda a v jakých částech dokumentace jsou zohledněny podmínky závazných stanovísek dotčených orgánů .. 10
 A.6.6 Ochrana stavby podle jiných právních předpisů 10
 A.6.7 Základní předpoklady výstavby .. 10
 A.6.8 Orientační náklady .. 10

2
A.7 Celkové urbanistické a architektonické řešení ... 10
 A.7.1 Celkové urbanistické řešení .. 10
 A.7.2 Celkové architektonické řešení ... 11
 A.7.3 Celkové provozní řešení ... 11
 A.7.4 Bezbariérové užívání stavby .. 11
 A.7.5 Bezpečnost při užívání stavby ... 11
 A.7.6 Zásady požárně bezpečnostního řešení ... 11
 A.7.7 Úspora energie a tepelná ochrana ... 12
 A.7.8 Hygienické požadavky na stavby .. 12
 A.7.9 Vliv stavby na okolí ... 13
 A.7.10 Ochrana před negativními účinky vnějšího prostředí ... 13

A.8 Připojení na technickou infrastrukturu ... 13

A.9 Dopravní řešení .. 13

A.10 Vegetace a terénní úpravy ... 13

A.11 Ekologie ... 14
 A.11.1 Popis vlivů stavby na životní prostředí ... 14
 A.11.2 Vliv na přírodu a krajinu .. 14

A.12 Zásady organizace výstavby ... 14

A.13 Výpis použitých norem a předpisů ... 14
A Souhrnná technická zpráva

A.1 Údaje o stavbě
Název stavby Bytový dům Školská
Místo stavby ul. Školská, 280 02 Kolín IV, Česká republika
Katastrální území Kolín, (668150)
Parcelní čísla pozemků st. 432, st. 734, st. 433/2, st. 433/1
Charakter stavby Novostavba, trvalá stavba, občanská stavba, bytový dům

A.2 Údaje o zpracovateli projektové dokumentace
Autor Michal Turek
Vedoucí bakalářské práce doc. Ing. arch. Ivan Plicka, CSc.
Odborný asistent Ing. arch. Michal Škrna

Seznam konzultantů
Architektonicky stavební část Ing. arch. Ondřej Vápeník
Stavebně konstrukční řešení Ing. Miroslav Vokáč, Ph.D.
Požárně bezpečnostní řešení doc. Ing. Daniela Bošová, Ph.D.
Technické zařízení stavby doc. Ing. Antonín Pokorný, CSc.
Realizace stavby Ing. Milada Votrubová, CSc.
Interiér do. Ing. arch. Ivan Plicka, CSc.

A.3 Členění stavby na stavební objekty
Nové stavební objekty

SO.01 Hrubé terénní úpravy
SO.02 Bytový dům Školská
SO.03 Nová přípojka vodovodu
SO.04 Nová přípojka elektrické sítě
SO.05 Nová přípojka splaškové kanalizace
SO.06 Nová přípojka plynovodu
SO.07 Nový chodník
SO.08 Nový obrubník chodníku
SO.09 Nová vozovka
SO.10 Nové zpevněné plochy
SO.11 Nové venkovní schodiště
SO.12 Nové oplocení parcely
SO.13 Napojení na veřejnou komunikaci v prostoru vjezdu a výjezdu garáži
SO.14 Čisté terénní úpravy
Bourané stavební objekty

BO.01 Bouraný objekt rodinného domu
BO.02 Bourané veřejné parkoviště
BO.03 Kácení keřovitého a nalétaného porostu
BO.04 Demolice současného chodníku
BO.05 Odstranění současné vozovky
BO.06 Bouraná přípojka vodovodu
BO.07 Bouraná přípojka plynovodu
BO.08 Bouraní přípojka elektrické sítě

A.4 Seznam vstupních podkladů

Studie k bakalářské práci vypracovaná v ateliéru Plicka v ZS 2021/22
Studijní materiály vydané fakultou architektury ČVUT v Praze
Platné normy, předpisy, vyhlášky, eurokódy a zákony
Mapové podklady Geoportál
Technické listy výrobce a dodavatelů
Geologický vrt číslo V045439 z roku 1960

A.5 Popis území stavby

A.5.1 Charakteristika území a stavebního pozemku
Stavební parcela o rozloze 2250 m² se nachází v ulici Školská v městě Kolín, konkrétně Kolín IV.
Řešené území je svažité na podélné straně. Výškový rozdíl na stranách parcely pak činí 4 metry výšky.
Na kratší straně parcely v prostoru ulice Příkrá je část velmi svažitá a to o 6 m. Aktuálně se na řešeném území nachází veřejně využívané parkoviště a starý rodinný dům určený k demolici. Nová stavba slibuje doplnění městského bloku, který v této části díky parkovišti chybí, dále také dává podnět k nové výstavbě v městských částech Kolína.
A.5.2 Údaje o souladu s územně plánovací dokumentací

Hlavní využití

Jedná se o kombinaci smíšeného centrálního území a a plochy objektu dopravní vybavenosti. Dle dohody s městským úradem města Kolín a městským architektem panem Ing. arch. Davidem Mateáskem je řešené území bráno jako smíšená zóna centrálního území a plocha objektu dopravní vybavenosti bude splněna stavbou podzemních parkovacích ploch.

Přípustné využití

I. bydlení v bytových domech s vyhrazenými pozemky pro potřeby spojené s bydlením uživatelů bytů. Účelem je poskytnout úplný standard kvalitního a úplného bydlení přímo v místě, bez podmínky rekreačního zázemí mimo místy bydliště. Vyhrazený, srozumitelně vymezený pozemek domu umožňuje nerušený pasivní odpočinek, provádění úklidu a údržby a další činnosti, které není možné provádět ve vnitřních prostorech domů a které nelze provádět ve veřejném prostoru

II. bydlení v bytových domech bez vyhrazených pozemků

III. podnikatelská činnost a občanská vybavenost, s určením druhu a umístění jednotlivých zařízení Regulačním plánem

IV. bydlení v rodinných domech s možností zahrady

V. odstavování vozidel na konkrétním vyhrazeném pozemku mimo veřejné prostory v kapacitě
určené normou pro odstavování vozidel občanského vybavení, v dostupné vzdálenosti 200 m

VI. hromadné garáže patrové nebo podzemní v samostatných účelových objektech

VII. podnikatelská činnost (negativní vliv nad přípustnou mez nezasahuje sousední pozemky)
z vlastních účelových staveb nebo ploch

VIII. podnikatelská činnost (negativní vliv nad přípustnou mez nepřesahuje vlastní prostory) určená
pro bydlení, služby veřejnosti, občanské vybavení, vybranou výrobní činnost, plochy a zařízení
pro sport a rekreaci

IX. plochy veřejně zelené, sportovní zařízení

X. místní komunikace, účelové komunikace

XI. sociální služby

XII. přechodné ubytování turistů v hotelích a penzínech

Nepřípustné využití

I. samozásobitelská chovatelská činnost

II. zemědělská a lesní výrobní činnost

III. velkovýrobní, průmyslová a skladovací činnost

IV. rekreace v objektech pro rodinnou rekreaci

V. maloobchodní zařízení nad 500m² prodejní plochy

VI. podnikatelská činnost s vlastními účelovými stavbami se zvýšenými nároky na přepravu zboží,
návštěvníků nebo aut (např. čerpací stanice pohonných hmot a mycí linky, maloobchodní
zařízení, sklady,…)

VII. dočasné ubytování

A.5.3 Výčet a závěry provedených průzkumů a rozborů

V blízkosti parcely byl proveden geologický vrt číslo V045439 v roce 1960, bez konkrétní
identifikace osoby pověřené realizací, v nadmořské výšce 198,80 m do hloubky 18 m.
A.5.4 Informace o vydaných rozhodnutích o povolení vyjímky z obecných požadavků na využívání území
Po domluvě s úřadem města Kolín je možnost prověřit realizaci stavby s větším využitím parcelní plochy než 60 %. Toho využívá stavba podzemních garáží, která využívá většinu řešeného území.

A.5.5 Informace o tom, zda a v jakých částech dokumentace jsou zohledněny podmínky závazných stanovisek dotčených orgánů
Případné podmínky budou zpracovány po získání stanovisek DOSS a správců sítí.

A.5.6 Ochrana území podle jiných právních předpisů
Zájmové území stavby nepodléhá regulativům ochrany území podle jiných právních předpisů.

A.5.7 Poloha vzhledem k záplavovému území, poddolovanému území
Zájmové území stavby není záplavovým ani poddolovaným územím

A.5.8 Vliv stavby na okolní stavby a pozemky, ochrana okolí, vliv stavby na odtokové poměry v území
Stavba nebude mít vliv na okolní stavby a pozemky, ani vliv na odtokové poměry v území.
A.5.9 Požadavky na demolice a kácení dřevin
Ve stavební etapě projektu jde pouze o hrubé terénní úpravy – odstranění aktuálně se vyskytujících keřů a nízkých dřevin v prostoru parkoviště.

A.5.10 Požadavky na maximální dočasné a trvale zábory zemědělského půdního fondu nebo pozemků určených k plnění funkce lesa
Stavba nevyvozuje nároky na dočasné a trvale zábory ZPF, nebo pozemků určených k plnění funkce lesa.

A.5.11 Územně technické podmínky – napojení na stávající dopravní a technickou infrastrukturu
Součástí výstavby je vybudování nových přípojek inženýrských sítí objektu. Výjezd z podzemních garáží bude napojen na křížení ulic Příkrá a Na Pobřeží.

A.5.12 Věcné a časové vazby stavby
Projekt je rozdělen do dvou etap výstavby.
I. etapa SO.02 – Bytový dům Školská a všech navazujících BO i SO
II. etapa SO.07 – úprava uličního okolí v přímé návaznosti na první etapu

A.5.13 Parcely, na kterých je prováděna stavba
st. 432, st. 734, st. 433/2, st. 433/1

A.5.14 Seznam pozemků, na kterých vznikne ochranné, nebo bezpečnostní pásmo
Stavba nevyvozuje nároky na zřízeních ochranných a bezpečnostních pásem.

A.6 Celkový popis stavby
A.6.1 Základní charakteristika stavby a jejího užívání
Navrhovaný objekt je trvalé užitné občanská stavby. Stavba mimo bytové jednotky v nadzemních podlažích nabízí také komerční nebytové prostory v 1NP.

<table>
<thead>
<tr>
<th>Plocha parcely</th>
<th>2475,77 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zastavěná plocha PP</td>
<td>2033,45 m²</td>
</tr>
<tr>
<td>Zastavená plocha NP</td>
<td>312,32 m²</td>
</tr>
<tr>
<td>HPP</td>
<td>5187,2 m²</td>
</tr>
<tr>
<td>KPP</td>
<td>není stanoveno</td>
</tr>
<tr>
<td>KZP</td>
<td>není stanoveno</td>
</tr>
<tr>
<td>Počet bytových jednotek</td>
<td>8</td>
</tr>
<tr>
<td>Počet komerčních prostor</td>
<td>2</td>
</tr>
<tr>
<td>Počet vnitřních parkovacích stání</td>
<td>94</td>
</tr>
</tbody>
</table>
A.6.2 Účel užívání stavby
Stavba bude sloužit jako bytový dům pro soukromé účely s prostorem veřejné komerce v INP

A.6.3 Trvalá, nebo dočasná stavba
Jedná o trvalou stavbu

A.6.4 Informace o vydaných rozhodnutích o povolení výjimky z technických požadavků na stavby a technických požadavků zabezpečujících bezbariérové užívání stavby
Stavba nevyvozuje nároky na povolení výjimek z technických požadavků na stavby zabezpečující bezbariérové užívání stavby

A.6.5 Informace o tom, zda a v jakých částech dokumentace jsou zohledněny podmínky závazných stanovisek dotčených orgánů
Předkládaná dokumentace nebyla s ohledem pro svůj účel projednávána s DOSS

A.6.6 Ochrana stavby podle jiných právních předpisů
Stavba nevyvozuje nároky na ochranu podle jiných právních předpisů

A.6.7 Základní předpoklady výstavby
Dokumentace nevyvozuje s ohledem pro svůj účel nároky na průběh stavby

A.6.8 Orientační náklady
250 mil. Kč

A.7 Celkové urbanistické a architektonické řešení
A.7.1 Celkové urbanistické řešení
Návrh objektu navazuje na stojící městský blok zástavby a doplňuje tak jeho formu. Dále respektuje výškově členěné přílehlé prostor, kdy jsou v prostoru doplněného bloku stávající budovy s výškou přibližně 14-16 m a v protější části ulice již blok vilové zástavby města. Z tohoto důvodu je původní návrh stavby členěn na tři samostatně stojící bytové domy (studie k bakalářské práci), které jsou v podélném směru k vilové zástavbě postupně snížené a nepřevyšují tak nízkopodlažní objekty v blízkém okolí.

Stavba také respektuje stav terénu, kdy je pozemek v podélném směru svažitý směrem k ulici Příkrá a ponechává ho v aktuálním svažitém stavu s mírnými nutnými úpravami pro zajištění občanské pohody.

Dále dává stavba impulz pro revitalizaci prostoru pod hlavní třídou Kutnohorská, která je nejvíce občansky využívaná a směřuje tak rozšíření toho občansky využívaného prostoru i do této ulice, která může také plnit funkci kratší cesty z blízkého nádraží do centra města.
Navíc také stavba nahrazuje bourané veřejné parkování a směřuje ho do podzemních podlaží objektu. Díky tomu může stavba plnit i funkci veřejného, či spádového parkoviště pro centrum města a uvolnit tak parkovací prostory v samotném centru.

A.7.2 Celkové architektonické řešení
Návrh objektu počítá s dvěma podzemními podlažími, kde se nachází nezbytně nutné hromadné garáže pro rezidenty domu a pro veřejnost. Dále se v podzemních podlažích nachází kotelná pro vytápění nadzemních podlaží a sklepní kóje pro rezidenty objektu. První podzemní podlaží je určeno pro nebytové komerční prostory, které se projektují do stavu shell and core, díky tomu nedochází k žádnému omezení případného pronájmu jakýmkoliv typem komerce. Oba tyto prostory jsou osově souměrné a mezi nimi prochází hlavní vstup do bytové části domu. V druhém až čtvrtém nadzemním podlaží se nachází vstupní část objektu s technickým zázemím silnoproudu a po stranách s nebytovými komerčními prostory. V druhém až čtvrtém nadzemním podlaží se pak nachází výhledové jednotky.

A.7.3 Celkové provozní řešení
Stavba je rozdělena na tři části. Podzemní část, ve které se nachází 94 parkovacích stání, kotelná, skladové a sklepní kóje. V prvním nadzemním podlaží se nachází vstupní část objektu s technickým zázemím silnoproudu a po stranách s nebytovými komerčními prostory. V druhém až čtvrtém nadzemním podlaží se pak nachází výhledové jednotky.

A.7.4 Bezbariérové užívání stavby
Podzemní a bytová část domu umožňuje bezbariérové užívání stavby, nicméně při vstupech do komerčních prostor může dojít k menšímu omezení, díky svažitosti pozemku a nutnému vyrovnání výškových rozdílů.

A.7.5 Bezpečnost při užívání stavby
Stavba je navržena tak, aby její užívání bylo bezpečné a nedošlo k žádnému ohrožení na zdraví. Nezbytným požadavkem pro zachování bezpečnosti je pravidelná údržba technické infrastruktury objektu a její revize.

A.7.6 Zásady požárně bezpečnostního řešení
Zásady jsou řešeny a popsány v části projektu C 1.3 Požárně bezpečnostní řešení.
A.7.7 Úspora energie a tepelná ochrana
Obálka budovy je navržena s ohledem na tepelnou pohodu lidí užívajících stavbu a na úsporu energii a výdajů. Konstrukce splňuje normové hodnoty součinitele prostupu tepla \(U \) dle ČSN 73 0540-2. Energetická náročnost budovy je třída B.

A.7.8 Hygienické požadavky na stavby

Větrání
Větrání hromadných garáží je zajištěno pomocí VTZ potrubí, které je napojeno na vzduchotechnickou jednotku. Koupelny, toalety a kuchyňský prostor je odvětrán nuceně podtlakovým systémem. Znečištěný vzduch je poté odváděn na střechu.

Vytápění
Zdrojem tepla je navržený plynový kotel a zásobníky teplé vody, které poté rozvádí otopnou vodu do systému podlahového vytápění v bytových jednotkách.

Osvětlení
Všechny prostory objektu v nadzemních podlažích jsou osvětleny přirozeným a umělým osvětlením. V podzemním podlažích poté umělým osvětlením.
Zásobování vodou
Objekt je napojen na veřejný vodovodní řad. Hlavní uzávěr vody a vodoměrná soustava jsou umístěny v prostoru kotelny v 1PP.

Kanalizace, dešťová voda a odpady
Objekt je napojen na veřejnou jednotnou kanalizační síť. Nakládání s dešťovou vodou je řešeno na pozemku volným vsakováním do terénu a případný přebytek vody odveden drenáží do jednotné kanalizační sítě.
V objektu je v 2PP navržena místnost pro nádoby na odpad, při vjezdu do garáži. Nádoby budou pravidelně vyváženy.

A.7.9 Vliv stavby na okoli
Stavba nemá negativní vliv na své okolí.

A.7.10 Ochrana před negativními účinky vnějšího prostředí
Ochrana před hlukem
V blízkosti stavby se nenachází výraznější zdroje hluku

Radon
Radonový index v oblasti stavby je nízký

Protipovodňová opatření
Stavba se nenachází v záplavovém území.

A.8 Připojení na technickou infrastrukturu
Bytový dům je napojen na veřejné inženýrské síť (vodovod, kanalizace, plynovod, silnoproud, slaboproud).

A.9 Dopravní řešení
Dopravní napojení objektu je z veřejně komunikace Školská a dále z veřejně komunikace křížení ulic Příkrá a Na Pobřeží. Přístup do podzemních pater je zajištěn z ulice Příkrá/Na Pobřeží. Řešený objekt je bezbariérově přístupný.
V objektu je navrženo 94 parkovacích stání, z toho je polovina projektována jako parkovací stání pro rezidenty domu a zbylá místa pro veřejnost.

A.10 Vegetace a terénní úpravy
Mimo vytvoření stavební jámy a odstranění keřovitého porostu v rámci hrubých terénních úprav nedochází k žádným jiným terénním úpravám. V projektu se počítá s vysazením nových stromů v prostoru vnitrobloku objektů.
A.11 Ekologie

A.11.1 Popis vlivů stavby na životní prostředí

Ovzduší

Při provozu budovy nedochází k znečišťování ovzduší v dané lokalitě.

Hluk

Objekt není zdrojem nadměrného hluku.

Voda

Splašková voda se znovu nevyužívá, je odvedena do jednotné kanalizační sítě. Dešťová voda je ponechána na pozemku jako volně vsakující a případný přebytek vody poté odveden drenážním podtrubím do jednotného kanalizačního řadu.

Odpady

V objektu se nachází prostor pro zařízení odpadních nádob tříděného a smíšeného odpadu, který se bude pravidelně vyvážet službami k tomu určenými.

Půda

Při provozu budovy nedochází k znečišťování půdy.

A.11.2 Vliv na přírodu a krajinu

Ochrana dřevin

Na pozemku se žádné chráněné dřeviny nenacházejí.

Ochrana památných stromů

Na pozemku se žádné památné stromy, ani v jeho blízkosti, nenacházejí.

Ochrana rostlin a živočichů

Řešený pozemek není součásti chráněného krajinného území, ani se zde nenacházejí pásma pro ochranu specifických rostlin a živočichů.

A.12 Zásady organizace výstavby

Zásady jsou řešeny a popsány v části projektu D 1 Realizace a provádění stavby.

A.13 Výpis použitých norem a předpisů

ČSN 73 0540-2 tepelná ochrana budov

Vyhláška č. 398/2006 Sb. o obecných technických požadavcích zabezpečujících bezbariérové užívání staveb

Nařízení Evropského parlamentu a Rady č. 305/2011

Vyhláška č. 268/2009 Sb. o technických požadavcích na stavby

Nařízení vlády č. 272/2011 Sb. o ochraně zdraví před nepříznivými účinky hluku a vibrací
C 1.1

ARCHITEKTONICKY STAVEBNÍ ŘEŠENÍ
C Dokumentace stavebního objektu
C 1.1 Architektonicky stavební řešení .. 3

C 1.1.1 Technická zpráva .. 3
 C 1.1.1.1 Popis a umístění stavby .. 3
 C 1.1.1.2 Urbanistické, architektonické a provozní řešení 3
 C 1.3.1.3 Konstrukční a stavebně technické řešení 4
 C 1.1.1.4 Stavební fyzika .. 6
 C 1.1.1.5 Výpis použitých norem ... 6
C 1.1 Architektonicky stavební řešení

C 1.1.1 Technická zpráva
C 1.1.1.1 Popis a umístění stavby

Stavba je umístěna na pozemku současně parkovací plochy v ulici Školská – Kolín. Stavební objekt je rozdělen na dvě podzemní podlaží garáží a na čtyři nadzemní podlaží bytových, či nebytových prostorů. V podzemních podlažích se nachází 94 parkovacích míst, kotelna a sklepni kóje. V prvním nadzemním podlaží se nachází dvě nebytové prostory s vlastním zázemím, vstupní část do obytné části domu a dvě technické místnosti, všechny tyto prostory jsou od sebe nezávisle odděleny. V druhém až třetím nadzemním podlaží se nachází tři bytové jednotky a schodišťový prostor s výtahem uzpůsobeným k přepravě tělesně postižených osob. Ve čtvrtém nadzemním podlaži se nachází dvě osnové symetrické bytové jednotky a taktéž schodišťový prostor s výtahem.

Konstrukce bytového domu je tvořena železobetonovými obvodovými stěnami, které plní funkci nosných stěn. Vnitřní nosné stěny tvoří taktéž železobetonové stěny, dispozice je doplněna nenosnými SDK příčkami. Stropní konstrukce tvoří železobetonová křížem vyztužená deska, která je v případě prvního nadzemního podlaží podepřena průvlakem v místě nosné stěny ve druhém až čtvrtém nadzemním podlaží. Konstrukce podzemních garáží je tvořena systémem sloupů, průvlaků a stropních desek také z železobetonu. Stavba je založena na základové desce do spádu 5% doplněné v místech nosných obvodových stěn a stěn schodišťového jádra o základové pasy.

C 1.1.1.2 Urbanistické, architektonické a provozní řešení

Urbanistické řešení
Návrh objektu navazuje na stojící městský blok zástavby a doplňuje tak jeho formu. Dále respektuje výškové členěné přilehlých prostor, kdy jsou v prostoru doplněného bloku stávající budovy s výškou přibližně 14-16 m a v protější části ulice již blok všech zástavby města. Z tohoto důvodu je původní návrh stavby členěn na tři samostatně stojící bytové domy (studie k bakalářské práci), které jsou v podélném směru k vilové zástavbě postupně snížené a nepřevyšují tak nižkopodlažní objekty v blízkém okolí.

Stavba také respektuje stav terénu, kdy je pozemek v podélném směru svažitý směrem k ulici Příkrá a ponechává ho v aktuálním svažitelném stavu s mírnými nutnými úpravami pro zajištění občanské pohody.

Dále dává stavba impuls pro revitalizaci prostoru pod hlavní třídou Kutnohorská, která je nejvíce občanský využívaná a směřuje tak rozšíření toho občanský využívaného prostoru i do této ulice, která může také plnit funkci kratší cesty z blízkého nádraží do centra města.
Navíc také stavba nahrazuje bourané veřejné parkování a směřuje ho do podzemních podlaží objektu. Díky tomu může stavba plnit i funkci veřejného, či spádového parkoviště pro centrum města a uvolnit tak parkovací prostory v samotném centru.

Architektonické řešení
Návrh objektu počítá s dvěma podzemními podlažími, kde se nachází nezbytně nutné hromadné garáže pro rezidenty domu a pro veřejnost. Dále se v podzemních podlažích nachází kotelná pro vytápění nadzemních podlaží a sklepní kóje pro rezidenty objektu.

První podzemní podlaží je určeno pro nebytové komerční prostory, které se projekují do stavu shell and core, díky tomu nedochází k žádnému omezení případného pronájmu jakýmkoliv typem komerce. Oba tyto prostory jsou osové souměrné a mezi nimi prochází hlavní vstup do bytové části domu.

V druhém až čtvrtém nadzemním podlaží se nachází bytové jednotky, konkrétně pak ve druhém a třetím podlaží tři bytové jednotky a ve čtvrtém podlaží dvě. Všechny bytové jednotky mají ve svých dispozičních balkónové terasy a dostatečné prosvětlení prostoru díky velkoformátovým francouzským dveřím vstupu do balkónové terasy.

Všechna podlaží objektu jsou propojena schodišťovým jádrem s osobním výtahem splňující potřeby pro tělesně postižené osoby.

Provozní řešení
Stavba je rozdělena na tři části. Podzemní část, ve které se nachází 94 parkovacích stání, kotelná, sklady a sklepní kóje. V prvním nadzemním podlaží se nachází vstupní část objektu s technickým zázemím silnoproudu a po stranách s nebytovými komerčními prostory. V druhém až čtvrtém nadzemním podlaží se pak nachází bytové jednotky.

C 1.3.1.3 Konstrukční a stavebně technické řešení

Stavební jáma
Stavba se nachází na svažitém pozemku v podélném směru, převýšení na délce 90 m činí přibližně 4 m. Dále se pozemek strmě svažuje v místě dotyku s ulicí Příkrá, výškový rozdíl je v tomto případě přibližně 6 m. Základová spára objektu je v hloubce 7,65 m doplněna o prohlubně v místech zesílujících základové pasy. Stavební jáma bude vyhloubena o 400 mm pod úroveň základové spáry pro vytvoření podkladní vrstvy. V místě výtahové šachty bude díky spodním dorazům bude jáma vyhloubena do hloubky 9,15 m.

Odvodnění stavební jámy bude řešeno pomocí po obvodu pomocí drenážního odvodního systému. Zajištění samotné jámy bude řešeno pomocí záporového pažení po celém obvodu zamýšlené jámy a v místech navazujících objektů budou tyto objekty zajištěny navíc tryskovou injektáží. Spodní stavba bude tvořena vodostavebním betonem proti tlakové vodě. Tato konstrukce bude od dilatována od ponechaného záporového pažení vrstvou XPS izolací o tloušťce 50 mm.
Základové konstrukce

Základovou konstrukcí tvoří základová deska, která je díky spádu parcely položena také do spádu, konkrétně do 5 %. V místech nosných obvodových stěn a stěn schodišťového jádra bude deska zesílena obvodovými pasy. Základová spára je v hloubce 7,65 m pod zemí a v místě výtahových šachet se spára nachází 9,15 m pod zemí.

Svislé nosné konstrukce

V podzemních patrech hromadných garáží je nosný systém tvořen železobetonovými stěnami tloušťky 200 mm a nosnými sloupy o rozměrech 350 x 550 mm. V nadzemních podlažích tvoří nosné konstrukce železobetonové obvodové stěny, stěny schodišťového jádra o tloušťce 200 mm, s vnitřními nosnými stěnami z železobetonu také o tloušťce 200 mm. Pro konstrukci železobetonu je použit beton pevnostní třídy C30/37 a ocel třídy B 500B.

Vodorovné nosné konstrukce

V podzemních patrech tvoří vodorovné konstrukce monolitické železobetonové desky, které jsou neseny železobetonovými průvlaky. V nadzemních patrech jsou vodorovné konstrukce řešeny systémem křížem vyztužených desek z železobetonu o tloušťce 250 mm. Výztuž desek je prováděna s výztuží železobetonového věnce. V prvním nadzemním podlaží je v místě vnitřní nosné stěny druhého až čtvrtého podlaží dimenzován průvlak pro podporu stropní desky.

Schodišťové konstrukce

Schodišťové jádro je tvořeno železobetonovými stěnami po obvodu o tloušťce 200 mm, do kterých jsou vetknuty hlavní podesty a mezipodesty. Samotné schodiště je poté tvořenou prefablikovanými rameny. Výtahová šachta se nachází uprostřed dispozice mezi schodišťovými rameny a je tvořena systémem ocelových stojin a příček, na které jsou poté přes upevňovací terče kotveny skleněné panely.

Konstrukce střechy

Objekt je zastřešen plochým typem střechy, kterou tvoří železobetonová střešní deska křížem vyztužená. Střešní konstrukce je tepelně izolovaná deskami Isover EPS 150 o tloušťce 180 – 40 mm, které tvoří požadovaný spád k odvodní výstupi, další vrstvou izolace jsou desky Isover XH a tloušťce 180 mm. Konstrukce je také zajištěna dvojitou vrstvou natavených asfaltových pásů zajišťující hydroizolační vlastnosti. Jako pojistná hydroizolační vrstva je použita hydroizolační fólie Mapeplan TM, která je chráněna textilií Filtek 300 a zatížena vrstvou kačírku.

Skladby podlah

Viz. C 1.1. výkres č. 017 Skladby konstrukcí.
C 1.1.1.4 Stavební fyzika

Tepelná technika

Radonová ochrana
Radonový index je v této lokalitě nízký. Nebyla proto navržena žádná opatření.

Osvětlení
Všechny prostory objektu v nadzemních podlažích jsou osvětleny přirozeným a umělým osvětlením. V podzemním podlaží poté umělým osvětlením.

Oslunění
Obytné místnosti splňují požadavek na mírů denního oslunění prostoru.

Akustika
Konstrukce bude splňovat podmínky dle normy ČSN 73 0532 Akustika - Ochrana proti hluku v budovách a související akustické vlastnosti stavebních prvků - Požadavky. Podlahy jsou řešeny jako těžké plovoucí s kročejovou izolací zajišťující požadovaný útlum.

C 1.1.1.5 Výpis použitých norem

ČSN 73 0532 Akustika – Ochrana proti hluku v budovách a souvisící akustické vlastnosti stavebních prvků - požadavky

Vyhláška č. 398/2009 Sb. o všeobecných technických požadavcích zabezpečujících bezbariérové užívání staveb

Vyhláška č. 405/2017 Sb. Vyhláška, kterou se mění vyhláška č. 499/2006 Sb., o dokumentaci staveb, ve znění

vyhlášky č. 62/2013 Sb., a vyhláška č. 169/2016 Sb., o stanovení rozsahu dokumentace veřejně zakázky na stavební práce a soupisu stavebních prací, dodávek a služeb s výkazem výměr

LEGENDA MÍSTNOSTÍ:

<table>
<thead>
<tr>
<th>Značka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZELEZOBETON</td>
<td></td>
</tr>
<tr>
<td>TEPELMÁ UZLACE</td>
<td></td>
</tr>
<tr>
<td>SOK. PŘÍCHOVÁ</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE SKLADBY PODLÁHY</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE SKLADBY STĚNY</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE OKNA</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE DVEŘÍ</td>
<td></td>
</tr>
</tbody>
</table>

LEGENDA

<table>
<thead>
<tr>
<th>Značka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZELEZOBETON</td>
<td></td>
</tr>
<tr>
<td>TEPELMÁ UZLACE</td>
<td></td>
</tr>
<tr>
<td>SOK. PŘÍCHOVÁ</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE SKLADBY PODLÁHY</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE SKLADBY STĚNY</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE OKNA</td>
<td></td>
</tr>
<tr>
<td>SPECIFIKACE DVEŘÍ</td>
<td></td>
</tr>
</tbody>
</table>
LEGENDA MATERIÁLŮ

ZDĚNÉ BETON
SEPARAČNÍ VRSTVA XPS
PŘÍČKY Z BETONOVÝCH TVÁRNIC
VODOSTAVEBNÍ ŽELEZOBETON
PODKLADNÍ BETON
SDK PŘÍČKY
TEPELNÁ IZOLACE
ROSTLÝ TERÉN

BYTOVÝ DŮM ŠKOLSKÁ
+-0,000 = 207 m.n.m - B.p.v
Místo stavby
ul. Školská, Kolín
k. ú. Kolín - 688150
Investor

Generalní projektant
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant část
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Stupeň
BP
DOKUMENTACE BAKALÁŘSKÉ PRÁCE
Část
C 1.1
ARCHITEKTONICKÝ STAVEBNÍ
Razítko, podpis, paré

Měřítko Datum
1:300 05/2022
Název výkresu
PODÉLNÝ ŘEZ

Název stavby
BYTOVÝ DŮM ŠKOLSKÁ
Místo stavby
ul. Školská, Kolín
K. ú. Kolín - 688150
Investor

Generalní projektant
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant část
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Stupeň
BP
DOKUMENTACE BAKALÁŘSKÉ PRÁCE
Část
C 1.1
ARCHITEKTONICKÝ STAVEBNÍ
Razítko, podpis, paré

Měřítko Datum
1:300 05/2022
Název výkresu
PODÉLNÝ ŘEZ
LEGENDA MATERIÁLŮ

ŽELEZOBETON
SEPARAČNÍ VRSTVA XPS
PŘÍČKY Z BETONOVÝCH TVÁRNIC
VODOSTAVEBNÍ ŽELEZOBETON
PODKLADNÍ BETON
SDK PŘÍČKY
TEPELNÁ IZOLACE
ROSTLÝ TERÉN

Měřítko 1:100
Datum 05/2022
Název výkresu PŘÍČNÝ ŘEZ
zkratka BŠ
stupeň BP
část C
č. výkresu 011
rev. 0

Část
Stupeň
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant části
m.turek17@gmail.com, +420 608 223 408
100 00 Strašnice
Vrátkovská 8, Praha 10

Generální projektant

Investor

Místo stavby

Název stavby BYTOVÝ DŮM ŠKOLSKÁ
+-0,000 = 207 m.n.m - B.p.v
ul. Školská, Kolín
kat. úz. Kolín - 668150

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

ARCHITEKTONICKÝ STAVEBNÍ

Kat. úz. Kolín - 668150
ul. Školská, Kolín
+-0,000 = 207 m.n.m - B.p.v
BYTOVÝ DŮM ŠKOLSKÁ

Název výkresu PŘÍČNÝ ŘEZ
zkratka BŠ
stupeň BP
část C
č. výkresu 011
rev. 0

Měřítko 1:100
Datum 05/2022

Razítko, podpis, paré

Generální projektant

Investor

Místo stavby

Název stavby BYTOVÝ DŮM ŠKOLSKÁ
+-0,000 = 207 m.n.m - B.p.v
ul. Školská, Kolín
kat. úz. Kolín - 668150

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

ARCHITEKTONICKÝ STAVEBNÍ

Kat. úz. Kolín - 668150
ul. Školská, Kolín
+-0,000 = 207 m.n.m - B.p.v
BYTOVÝ DŮM ŠKOLSKÁ
Název stavby
BYTOVÝ DŮM ŠKOLSKÁ

Měřítko
1:100
Datum
05/2022

Název výkresu
POHLED SEVERNÍ

zkratka
stupeň
část
č. výkresu
rev.

BŠ
BP
C
012
0

Část
Stupeň
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant části
m.turek17@gmail.com, +420 608 223 408
100 00 Strašnice
Vrátkovská 8, Praha 10

Generální projektant

Investor

Místo stavby

Název stavby

Razítko, podpis, paré

Měřítko
Datum
Název výkresu

Měřítko
Datum
Název výkresu

Místo stavby

Název stavby

Razítko, podpis, paré

Měřítko
Datum
Název výkresu

Měřítko
Datum
Název výkresu

Měřítko
Datum
Název výkresu

Měřítko
Datum
Název výkresu

Můžu vám pomoci s dalšími dotazy?
Měřítko 1:100

Datum 05/2022

Název výkresu POHLED ZÁPADNÍ

Místo stavby ul. Školská, Kolín
kat. úz. Kolín - 668150
Investor

Generalní projektant

Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant části

Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Stupeň BP

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

Část C 1.1

ARCHITEKTONICKÝ STAVEBNÍ

Razítko, podpis, paré

Měřítko 1:100

Datum 05/2022

Název výkresu POHLED ZÁPADNÍ

BS BP C 015 0
Exteriérové balkónové zábradlí, madlo z ocelového profilu 10 x 70 mm se zábolenými hranami.

Výplň z ocelové pásoviny 50 x 25 mm, základna zábradlí - ocelový L profil 100 x 100 mm, příčle navařeny na plech. Kotveno zátěžovým trnem do monolitické balkónové konzoly.

Povrchová úprava práškové lakování RAL 9005.

Ocelové madlo schodiště, madlo z ocelového profilu 30 x 30 mm se zaoblenými hranami.

Kotveno do stěny přes ocelovou úchytku přivařenou k madlu.

Povrchová úprava práškové lakování RAL 9005.

Oplechování atiky krycím plechem. Barevný legovaný hliník tl. 0,7 mm. Povrchová úprava stucco RAL 7016 včetně kotevní prvků, přeponek a zatahovacích pásu.

Délka: 12200 mm
Rozvinutá šířka: 700 mm
Celková plocha: 8,54 m²

TABULKA KLEMPÍŘSKÝCH A ZÁMEČNICKÝCH VÝROBKŮ

<table>
<thead>
<tr>
<th>Označení</th>
<th>Počet</th>
<th>Nákres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z.01</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Z.02</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Z.03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Z.04</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Z.05</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AP.01</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>AP.02</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Měřítko: 1:100
Datum: 05/2022

Název stavby: BYTOVÝ DŮM ŠKOLSKÁ
+4,000 m.n.m. - B.p.v.

Místo stavby: ul. Školská, Kolín
kat. uz. Kolín - 668150

Investor

Generální projektant
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant část
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Stupeň
BP

DOKUMENTACE BAKALÁŘSKÉ PRÁCE
Část
C 1.1

ARCHITEKTONICKO STAVEBNÍ
Razítko, podpis, paré

Množství	Datum
1:100 | 05/2022

Název vykresluje: TABULKA ZÁMEČNICKÝCH A KLEMPÍŘSKÝCH PRVKŮ

záloha | veřejně | číslo
Posuvem otevírací francouzské okno, tepelně izolační dvojsklo, série Reynaers Slim line cubic, celohliníkový profil v barvě antracit RAL 7016.

Rozměry:
- **Šířka:** 1900
- **Výška:** 2250
- **Počet:** 40

Franckouzské okno s pevným zasklením, sestava jednotlivých oken vyplňuje prostor v prvním nadzemním podlaží, utváří výlohu do nebytového prostoru. Celohliníková konstrukce s tepelně izolačním dvojsklem, série Reynaers Slim line cubic, barva antracit RAL 7016.

Rozměry:
- **Šířka:** 1900
- **Výška:** 2950
- **Počet:** 6

Franckouzské okno s pevným zasklením, sestava jednotlivých oken vyplňuje prostor v prvním nadzemním podlaží, utváří výlohu do nebytového prostoru. Celohliníková konstrukce s tepelně izolačním dvojsklem, série Reynaers Slim line cubic, barva antracit RAL 7016.

Rozměry:
- **Šířka:** 1900
- **Výška:** 2250
- **Počet:** 4
<table>
<thead>
<tr>
<th>Označení</th>
<th>Popis</th>
<th>Otevírání</th>
<th>Šířka</th>
<th>Výška</th>
<th>Počet</th>
<th>Rozměry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO.01</td>
<td>Jednokřídlé interiér dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, s prahem, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>L</td>
<td>900</td>
<td>2050</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DO.01</td>
<td>Jednokřídlé interiér dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, s prahem, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>P</td>
<td>900</td>
<td>2050</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DO.02</td>
<td>Jednokřídlé interiér dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>L</td>
<td>800</td>
<td>2050</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DO.03</td>
<td>Jednokřídlé interiér dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>P</td>
<td>700</td>
<td>2050</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DO.04</td>
<td>Dvoukřídlé interiér dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>P, L</td>
<td>1600</td>
<td>2050</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DO.05</td>
<td>Posuvné interiér dveře, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>P, L</td>
<td>1600</td>
<td>2050</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DO.06</td>
<td>Posuvné interiér dveře, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchová úprava - nátěr RAL 9005, matné</td>
<td>P, L</td>
<td>1600</td>
<td>2050</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DO.07a</td>
<td>Vstupní dveře Reynaers Slim line cubic, prosklené, exteriérové, konstrukce celohliníková v černé barvě, zasklení izolačním dvojsklem</td>
<td>P, L</td>
<td>1900</td>
<td>2950</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Označení</td>
<td>Obrázek</td>
<td>Popis</td>
<td>Otevírání</td>
<td>Šířka</td>
<td>Výška</td>
<td>Počet</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DO.07b</td>
<td>P, L</td>
<td>Vstupní dvoukřídlé dveře s otevíráním do pravého a levého křídla, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9005, lesklé</td>
<td>P, L</td>
<td>1900</td>
<td>2250</td>
<td>1</td>
</tr>
<tr>
<td>DO.08</td>
<td>P, L</td>
<td>Jednokřídlé interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9005, lesklé</td>
<td>P, L</td>
<td>1600</td>
<td>2050</td>
<td>1</td>
</tr>
<tr>
<td>DO.09</td>
<td>P</td>
<td>Posuvné interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9010, matné</td>
<td>P</td>
<td>700</td>
<td>2050</td>
<td>1</td>
</tr>
<tr>
<td>D.10</td>
<td>L</td>
<td>Posuvné interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9010, matné</td>
<td>P</td>
<td>700</td>
<td>2050</td>
<td>2</td>
</tr>
<tr>
<td>D.11</td>
<td>L</td>
<td>Jednokřídlé interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9010, matné.</td>
<td>L</td>
<td>900</td>
<td>2050</td>
<td>9</td>
</tr>
<tr>
<td>D.12</td>
<td>P, L</td>
<td>Dvoukřídlé interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9010, matné.</td>
<td>P, L</td>
<td>1600</td>
<td>2050</td>
<td>2</td>
</tr>
<tr>
<td>D.13</td>
<td>L</td>
<td>Jednokřídlé interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9005, lesklé</td>
<td>L</td>
<td>700</td>
<td>2050</td>
<td>7</td>
</tr>
<tr>
<td>D.14</td>
<td>P</td>
<td>Jednokřídlé interiérové dveře, klika, plné, bez profilace, odlehčená DTD deska, obložková zárubeň, bezprahové, bezfalcové povrchové úpravy - nátěr RAL 9005, lesklé</td>
<td>P</td>
<td>700</td>
<td>2050</td>
<td>17</td>
</tr>
</tbody>
</table>
BAKALÁŘSKÁ PRÁCE
BYTOVÝ DŮM ŠKOLSKÁ

C 1.2

STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ

Ústav urbanismu
vedoucí ústavu prof. Ing. arch. Jan Jehlík
vedoucí práce doc. Ing. arch. Ivan Plicka, CSc.
výpracoval Michal Turek
konzultant Ing. Miroslav Vokáč, Ph.D.
LS 2021/2022
C Dokumentace stavebního objektu

C 1.2 Stavebně konstrukční řešení..3
 C 1.2.1 Technická zpráva...3
 C 1.2.1.1 Popis a umístění stavby ..3
 C 1.2.1.2 Základové poměry ...3
 C 1.2.1.3 Zajištění a odvodnění stavební jámy4
 C 1.2.1.4 Základové konstrukce ...4
 C 1.2.1.5 Svislé nosné konstrukce...4
 C 1.2.1.6 Vodorovné nosné konstrukce ...4
 C 1.2.1.7 Schodišťové konstrukce ..4
 C 1.2.1.8 Střešní konstrukce ..5
 C 1.2.1.9 Prostorová tuhost objektu ..5
 C 1.2.1.10 Použité podklady ...5
 C 1.2.2 Výpočtová část ..6
 C 1.2.2.1 Vstupní podmínky a hodnoty uvažovaných výpočtů6
 C 1.2.2.2 Návrh a posouzení železobetonové stropní desky v typickém podlaží ...6
 C 1.2.2.3 Návrh a posouzení průvlaku v přízemí (1NP)11
 C 1.2.2.3 Návrh a posouzení sloupu ve 2PP nad základovou patkou14
 C 1.2.2.4 Návrh a posouzení konzolového balkónu15
C 1.2 Stavebně konstrukční řešení

C 1.2.1 Technická zpráva
C 1.2.1.1 Popis a umístění stavby

Stavba je umístěna na pozemku současně parkovací plochy v ulici Školská – Kolín. Stavební objekt je rozdělen na dvě podzemní podlaží garáží a na čtyři nadzemní podlaží bytových, či nebytových prostorů. V podzemních podlažích se nachází 94 parkovacích míst, kotelnou a sklepní kóje. V prvním nadzemním podlaží se nachází dva nebytové prostory s vlastním zázemím, vstupní část do obytné části domu a dvě technické místnosti, všechny tyto prostory jsou od sebe nezávisle odděleny. V druhém až třetím nadzemním podlaží se nachází tři bytové jednotky a schodišťový prostor s výtahem uzpůsobeným k přepravě tělesně postižených osob. Ve čtvrtém nadzemním podlaží se nachází dvě osově symetrické bytové jednotky a taktéž schodišťový prostor s výtahem.

Konstrukce bytového domu je tvořena železobetonovými obvodovými stěnami, které plní funkci nosných stěn. Vnitřní nosné stěny tvoří taktéž železobetonové stěny, dispozice je doplněna nenosnými SDK příčkami. Stropní konstrukce tvoří železobetonová křížem vyztužená deska, která je v případě prvního nadzemního podlaží podepřena průvlakem v místě nosné stěny ve druhém až čtvrtém nadzemním podlaží. Konstrukce podzemních garáží je tvořena systémem sloupů, průvlaků a stropních desek také z železobetonu. Stavba je založena na základové desce do spádu 5 % doplněné v místech nosných obvodových stěn a stěn schodišťového jádra o základové pasy.

C 1.2.1.2 Základové poměry

Při průzkumu geologického podloží byl použit archivní geologický vrt číslo: V045439 z roku 1960, bez konkrétní identifikace osoby pověřené realizací. Vrt se nachází mezi ulicemi Na pobřeží a Školská v prostorech placeného parkoviště v nadmořské výšce 198,80 m a dosahuje hloubky 18 m.

Průzkumem tohoto vrtu byla zjištěna skladba místního podloží, které se vztahuje i na parcelu stavebního objektu. První vrstvou je obecně jmenovaný kvartér, který se skládá z hlinité navážky do hloubky 6 m, dále pak pískem hlinitým, slidnatým a tmavě žlutohnědým mezi hloubkou 6 – 6,30 m.

Další vrstva tvoří proterozoikum svrchní, která se skládá konkrétně v hloubce 6,30 – 8,90 m rulou hrubě pískitou, slidnatou, hnědou; geneze eluviální. Dále pak v hloubce 8,90 – 12 m rulou silně slidnatou, svorovou, biotitickou, tmavě šedou; s příměsí minerálů železa. Mezi hloubkou 12 – 16,50 m se nachází rula šedá a jako finální podloží zjištěné vrtem je v hloubce 16,50 – 18 m rula křemenná, šedá.

Hladina podzemní vody nebyla vrtem zjištěna, nicméně se můžeme domnívat, že se bude nacházet v přibližně hloubce hladiny řeky Labe vzdálené přibližně 70 m od pozice vrtu.
C 1.2.1.3 Zajištění a odvodnění stavební jámy

Stavba se nachází na svažitém pozemku v podélném směru, převýšení na délce 90 m činí přibližně 4 m. Dále se pozemek strmě svažuje v místě dotyku s ulicí Příkrá, výškový rozdíl je v tomto případě přibližně 6 m. Základová spára objektu je v hloubce 7,65 m doplněna o prohloubení v místech zesílujících základové pasy. Stavební jáma bude vyhloubena o 400 mm pod úroveň základové spáry pro vytvoření podkladní vrstvy. V místě výtahových šachty bude díky spodním dorazům bude jáma vyhloubena do hloubky 9,15 m.

Odvodnění stavební jámy bude řešeno pomocí po obvodu pomocí drenážního odvodního systému. Zajištění samotné jámy bude řešeno pomocí záporového pažení po celém obvodu zamýšlené jámy a v místech navazujících objektů budou tyto objekty zajištěny navíc tryskovou injektáží. Spodní stavba bude tvořena vodostavebním betonem proti tlakové vodě. Tato konstrukce bude od dilatována od ponechaného záporového pažení vrstvou XPS izolací o tloušťce 50 mm.

C 1.2.1.4 Základové konstrukce

Základovou konstrukcí tvoří základová deska, která je díky spádu parcely položena také do spádu, konkrétně do 5 %. V místech nosných obvodových stěn a stěn schodišťového jádra bude deska zesílena obvodovými pasy. Základová spára je v hloubce 7,65 m pod zemí a v místě výtahových šachet se spára nachází 9,15 m pod zemí.

C 1.2.1.5 Svislé nosné konstrukce

V podzemních patrech hromadných garáží je nosný systém tvořen železobetonovými stěnami tloušťky 200 mm a nosnými sloupy o rozměrech 350 x 550 mm. V nadzemních podlažích tvoří nosné konstrukce železobetonové obvodové stěny, stěny schodišťového jádra o tloušťce 200 mm, s vnitřními nosnými stěnami z železobetonu také o tloušťce 200 mm. Pro konstrukci železobetonu je použit beton pevnostní třídy C30/37 a ocel třídy B 500B.

C 1.2.1.6 Vodorovné nosné konstrukce

V podzemních patrech tvoří vodorovné konstrukce monolitické železobetonové desky, které jsou neseny železobetonovými průvlaky. V nadzemních patrech jsou vodorovné konstrukce řešeny systémem křížem vyztužených desek z železobetonu o tloušťce 250 mm. Výztuž desek je provázena s výztuží železobetonového věnce. V prvním nadzemním podlaží je v místě vnitřní nosné stěny druhého až čtvrtého podlaží dimenzován průvlak pro podporu stropní desky.

C 1.2.1.7 Schodišťové konstrukce

Schodišťové jádro je tvořeno železobetonovými stěnami po obvodu o tloušťce 200 mm, do kterých jsou vetknuty hlavní podesty a mezipodesty. Samotné schodiště je poté tvořenou prefabrikovanými
rameny. Výtahová šachta se nachází uprostřed dispozice mezi schodišťovými rameny a je tvořena systémem ocelových stojin a příček, na které jsou poté přes upevňovací terče kotveny skleněné panely.

C 1.2.1.8 Střešní konstrukce

Objekt je zastřešen plochým typem střechy, kterou tvoří železobetonová střešní deska křížem vyztužená. Střešní konstrukce je tepelně izolovaná deskami Isover EPS 150 o tloušťce 180 – 40 mm, které tvoří požadovaný spád k odvodní vpusti, další vrstvou izolace jsou desky Isover XH a tloušťce 180 mm. Konstrukce je také zajištěna dvojitou vrstvou natavených asfaltových pásů zajišťující hydroizolační vlastnosti. Jako pojistná hydroizolační vrstva je použita hydroizolační fólie Mapeplan T M, která je chráněna textilií Filtek 300 a zatížena vrstvou kačírku.

C 1.2.1.9 Prostorová tuhost objektu

Prostorová tuhost objektu je zajištěna obousměrným systémem nosných stěn a monolitickými stropními deskami.

C 1.2.1.10 Použité podklady

Zákon č. 183/2006 Sb. - Zákon o územním plánování a stavebním řádu (stavební zákon).

Zákon č. 309/2006 Sb. o zajištění dalších podmínek bezpečnosti a ochrany zdraví při práci.

Nařízení vlády č. 362/2005 Sb. o bližších požadavcích na BOZP při práci na pracovištích s nebezpečím pádu z výšky nebo do hloubky.

Nařízení vlády č. 591/2006 Sb. o bližších minimálních požadavcích na bezpečnost a ochranu zdraví při práci na staveništích.

ČSN EN 13670 Provádění betonových konstrukcí.

Statické a ocelářské tabulky
C 1.2 Stavebně konstrukční řešení

C 1.2.2 Výpočtová část

C 1.2.2.1 Vstupní podmínky a hodnoty uvažovaných výpočtů

Užitné zatížení bytů

\[q_k = 1,5 \, \text{kN/m}^2 \]

Příčky

\[q_k = 0,5 \, \text{kN/m}^2 \]

Klimatická zatížení pro Kolín

Sněhová oblast 1

\[S_k = 0,7 \, \text{kN/m}^2 \]

Větrná oblast 2

\[v_{ho} = 25 \, \text{kN/m}^2 \]

C 1.2.2.2 Návrh a posouzení železobetonové stropní desky v typickém podlaží

a) Předběžný návrh desky

Křížem vyztužená stropní deska - vetknutá

Rozměry desky: 9880 x 7650 mm

Beton C30/37

Ocel B 500B

Návrh tloušťky desky

\[h = 1,2 \times (9880 + 7650)/105 = 200,34 \Rightarrow \text{uvažujeme tloušťku desky 250 mm} \]

b) Zatížení stropní desky

\[\text{Stálé} \]

<table>
<thead>
<tr>
<th></th>
<th>(h) [m]</th>
<th>(\mu) [kN/m³]</th>
<th>char. hod. [kN/m²]</th>
<th>součinitel</th>
<th>návrh. hod. [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vynilová podlaha</td>
<td>0,005</td>
<td>5</td>
<td>0,025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick-Step silent walk</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betonová mazanina</td>
<td>0,06</td>
<td>24</td>
<td>1,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podlahové vytápění</td>
<td>0,016</td>
<td>0,5</td>
<td>0,008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separáční vrstva</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepelná – kročejová izolace</td>
<td>0,075</td>
<td>0,4</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Železobetonová deska</td>
<td>0,25</td>
<td>25</td>
<td>6,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zavěšený podhled</td>
<td></td>
<td></td>
<td>0,078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[g_k = 7,831 \]
\[g_d = 10,5785 \]

Nahodilé

<table>
<thead>
<tr>
<th>Užitné byty</th>
<th>1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příčky</td>
<td>0,5</td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
</tr>
</tbody>
</table>

\[q_k = 2 \]
\[q_d = 3 \]

Celkové zatížení stropní desky
\[g_k + q_k = 9,831 \text{ kN/m} \]
\[g_d + q_d = 13,5785 \text{ kN/m} \]

c) Výpočet ohybových momentů

Hodnoty převzaty ze statických tabulek pro obousměrně pnuté stropní desky

\[n = l_l/l_y = 9,88/7,65 = 1,29 \]
\[a_x = 0,0349 \]
\[a_y = 0,0043 \]
\[a_{xys} = -0,0771 \]
\[a_{yys} = -0,0236 \]
\[\beta = 0,0269 \]

d) Návrh výztuže stropní desky

Pro \[M_x = 46,258 \text{ kNm} \]

<table>
<thead>
<tr>
<th>Tloušťka desky [h = 250 \text{ mm}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krytí výztuže [c = 15 \text{ mm}]</td>
</tr>
<tr>
<td>Průměr výztuže [\varnothing = 10 \text{ mm}]</td>
</tr>
<tr>
<td>[d_1 = c + \varnothing/2 = 20 \text{ mm}]</td>
</tr>
<tr>
<td>[d = h - d_1 = 230 \text{ mm}]</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{f}_{cd} &= \frac{f_{ck}}{y_r} = 30/1,5 = 20 \text{ MPa} \\
\text{f}_{yd} &= \frac{f_{yk}}{y_m} = 500/1,15 = 434,78 \text{ MPa} \\
\mu &= M_y/(b*d^2*a*f_{cd}) = 46,258/(1*0,23^2*1*20000) = 0,043 \\
\omega &= 0,042 \text{ (dle tabulek)} \\
A_{a,\text{prov}} &= 524 \text{ mm}^2 \Rightarrow \text{vzdálenost prutů 150 mm} \\
\end{align*}
\]
(dle tabulky – příloha 21b Tabulka ploch výztuže podle vzdálenosti prutů)

Posouzení pro \(\Phi 10\text{mm} \), \(A_{a,\text{prov}} = 524 \text{ mm}^2 \), vzdálenost prutů 150 mm

\[
\begin{align*}
\rho(d) &= A_{a,\text{prov}}/(b*d) = 524/(1000*230) = 0,0027 \geq 0,0015 \Rightarrow \text{Vyhovuje} \\
\rho(h) &= A_{a,\text{prov}}/(b*h) = 524/(1000*250) = 0,0020 \leq 0,04 \Rightarrow \text{Vyhovuje} \\
\end{align*}
\]
Moment mezní únosnosti

\[
\begin{align*}
M_{rd} &= A_{a,\text{prov}}*f_{yd}*z = 524*10^{-6}*434780*0,9*0,23 = 47,1 \text{ kNm} \geq M_x \Rightarrow \text{Vyhovuje}
\end{align*}
\]

Pro \(M_y = 3,4169 \text{ kNm}\)

Tloušťka desky \(h = 250 \text{ mm}\)

Krytí výztuže \(c = 15 \text{ mm}\)

Průměr výztuže \(\Phi = 10 \text{ mm}\)

\[
\begin{align*}
\text{d}_1 &= c + \Phi/2 + \Phi = 30 \text{ mm} \\
\text{d} &= h - \text{d}_1 = 220 \text{ mm} \\
\text{f}_{cd} &= \frac{f_{ck}}{y_r} = 30/1,5 = 20 \text{ MPa} \\
\text{f}_{yd} &= \frac{f_{yk}}{y_m} = 500/1,15 = 434,78 \text{ MPa} \\
\mu &= M_y/(b*d^2*a*f_{cd}) = 3,4169/(1*0,22^2*1*20000) = 0,00352 \\
\omega &= 0,0101 \text{ (dle tabulek)} \\
A_{a,\text{min}} &= \omega*b*d^2*a*(f_{cd}/ f_{yd}) = 0,0101*1*0,22*1*(20/434,78) = 102 \text{ mm}^2
\end{align*}
\]

\[A_{a,prov} = 357 \, \text{mm}^2 \Rightarrow \text{vzdálenost prutů 220 mm} \]

dle tabulky – příloha 21b Tabulka ploch výztuže podle vzdálenosti prutů

Posouzení pro Ø10mm, \(A_{a,prov} = 357 \, \text{mm}^2 \), vzdálenost prutů 220 mm

\[
\rho(d) = \frac{A_{a,prov}}{(b*d)} = 357/(1000*220) = 0,00162 \geq 0,0015 \Rightarrow \text{Vyhovuje} \\
\rho(h) = \frac{A_{a,prov}}{(b*h)} = 357/(1000*250) = 0,0014 \leq 0,04 \Rightarrow \text{Vyhovuje}
\]

Moment mezní únosnosti

\[
M_{rd} = A_{s,prov} * f_{yd} * z = 357*10^{-6}*434780*0,9*0,22 = 30,73 \, \text{kNm} \geq M_x \Rightarrow \text{Vyhovuje}
\]

\[\frac{\mu}{\omega} = \frac{M_{x,vs}}{(b*d^2*a*f_{cd})} = 102,19/(1*0,228^2*1*20000) = 0,098 \\
\omega = 0,1057 \text{ (dle tabulek)} \\
A_{a,\text{min}} = \omega * b * d * a * (f_{cd}/ f_{yd}) = 0,1057*1*0,228*1*(20/434,78) = 1100 \, \text{mm}^2 \\
A_{a,prov} = 1232 \, \text{mm}^2 \Rightarrow \text{vzdálenost prutů 125 mm} \]

dle tabulky – příloha 21b Tabulka ploch výztuže podle vzdálenosti prutů

Posouzení pro Ø14mm, \(A_{a,prov} = 1232 \, \text{mm}^2 \), vzdálenost prutů 125 mm

\[
\rho(d) = \frac{A_{a,prov}}{(b*d)} = 1232/(1000*228) = 0,0054 \geq 0,0015 \Rightarrow \text{Vyhovuje} \\
\rho(h) = \frac{A_{a,prov}}{(b*h)} = 1232/(1000*250) = 0,0049 \leq 0,04 \Rightarrow \text{Vyhovuje}
\]
Moment mezní únosnosti

\[M_{rd} = A_{s,prov} \cdot f_{yd} \cdot z = 1232 \cdot 10^6 \cdot 434780 \cdot 0.9 \cdot 0.228 = 109.91 \text{ kNm} \geq M_s \Rightarrow \text{Vyhovuje} \]

Pro \(M_{ysy} = -18.753 \text{ kNm} \)

Tloušťka desky \(h = 250 \text{ mm} \)

Krytí výztuže \(c = 15 \text{ mm} \)

Průměr výztuže \(\varnothing = 14 \text{ mm} \)

\(d_1 = c + \varnothing/2 + \varnothing = 36 \text{ mm} \)

\(d = h - d_1 = 214 \text{ mm} \)

\(f_{cd} = f_{ck}/\gamma_r = 30/1.5 = 20 \text{ MPa} \)

\(f_{yd} = f_{yk}/\gamma_m = 500/1.15 = 434.78 \text{ MPa} \)

\(\mu = M_{ysy}/(b \cdot d_1^2 \cdot a \cdot f_{cd}) = 18.753/(1 \cdot 0.214^2 \cdot 1 \cdot 20000) = 0.0204 \)

\(\omega = 0.0205 \text{ (dle tabulek)} \)

\(A_{s,\text{min}} = \omega \cdot b \cdot d \cdot a \cdot (f_{cd}/f_{yd}) = 0.0205 \cdot 1 \cdot 0.214 \cdot 1 \cdot (20/434.78) = 201 \text{ mm}^2 \)

\(A_{s,\text{prov}} = 513 \text{ mm}^2 \Rightarrow \text{vzdálenost prutů 300 mm} \)

(dle tabulky – příloha 21b Tabulka ploch výztuže podle vzdálenosti prutů)

Posouzení pro \(\varnothing 14 \text{mm}, A_{s,\text{prov}} = 513 \text{ mm}^2, vzdálenost prutů 300 mm

\(\rho(d) = A_{s,\text{prov}}/(b \cdot d) = 513/(1000 \cdot 214) = 0.0023 \geq 0.0015 \Rightarrow \text{Vyhovuje} \)

\(\rho(h) = A_{s,\text{prov}}/(b \cdot h) = 513/(1000 \cdot 250) = 0.0027 \leq 0.04 \Rightarrow \text{Vyhovuje} \)

Moment mezní únosnosti

\[M_{rd} = A_{s,\text{prov}} \cdot f_{yd} \cdot z = 513 \cdot 10^{-6} \cdot 434780 \cdot 0.9 \cdot 0.214 = 42.95 \text{ kNm} \geq M_s \Rightarrow \text{Vyhovuje} \]
C 1.2.2.3 Návrh a posouzení průvlaku v přízemí (1NP)

a) Předběžný návrh

l = 8025 mm
z.š. = 0,4*8,025 + 0,4*8,025 = 6,42
h = l/12 = 700 mm
b = 0,4*0,5*h = 280 mm
Beton C30/37
Ocel B 500B

b) Zatížení na průvlak

<table>
<thead>
<tr>
<th>Stálé</th>
<th>char. hod. [kN/m²]</th>
<th>součinitel</th>
<th>návr. hod. [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlastní tíha</td>
<td>0,70,2825</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>Tíha od stropu</td>
<td>5,9*6,42</td>
<td>37,878</td>
<td></td>
</tr>
<tr>
<td>Tíha od stěny pod stropem</td>
<td>3(0,23,225)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>gₖ = 90,778</td>
<td>1,35</td>
<td>gₜ = 122,5503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nahodilé</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitné byty</td>
<td>1,5*6,42</td>
<td>9,63</td>
<td></td>
</tr>
<tr>
<td>Příčky</td>
<td>0,5*6,42</td>
<td>3,21</td>
<td></td>
</tr>
<tr>
<td>Zatížení sněhem</td>
<td>0,811*0,7</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>qₖ = 13,4</td>
<td>1,5</td>
<td>qₜ = 20,1</td>
</tr>
</tbody>
</table>

Celkové zatížení průvlaku v 1NP

gₖ + qₖ = 104,178 kN/m
gₜ + qₜ = 142,6503 kN/m

c) Výpočet ohybových momentů
Výpočet proveden v programu structural-analyser.
Max. moment nad krajními podporami $M_1 = 784,76$ kNm
Max. moment mezi podporami $M_2 = 392,38$ kNm

d) Návrh výztuže průvlaku
Pro $M_1 = 784,76$ kNm
Výška průvlaku $h = 700$ mm
krytí výztuže $c = 20$ mm
průměr výztuže $d = 32$ mm

$d_1 = c + \Omega_{hm} + \Omega/2 = 20 + 8 + 16 = 44$ mm
$\omega = 0,0960$ (dle tabulek)

$A_{s, min} = \omega * b * d_1 * a * (f_{cd} / f_{yd}) = 0,0960 * 1 * 0,656 * 1 * (20 000 / 434 780) = 2896$ mm2
$A_{s, prov} = 4021$ mm2 => 5 prutů
(dle tabulky – Příloha 21a Tabulka ploch výztuže podle vzdálenosti prutů)

Posouzení pro Ø32mm, $A_{s, prov} = 4021$ mm2, počet prutů 5
$\rho(d) = A_{s, prov} / (b * d) = 4021 / (1000 * 656) = 0,00612 \geq 0,0015 => Vyhovuje$
$\rho(h) = A_{s, prov} / (b * h) = 4021 / (1000 * 700) = 0,0057 \leq 0,04 => Vyhovuje$

Moment mezní únosnosti
$M_{zd} = A_{s, prov} * f_{yd} * z = 4021 * 10^{-6} * 434780 * 0,9 * 0,656 = 1032,16$ kNm $\geq M_x => Vyhovuje$
Pro \(M_2 = 392,38 \text{ kNm} \)

Výška průvlaku \(h = 700 \text{ mm} \)

krytí výztuže \(c = 20 \text{ mm} \)

průměr výztuže \(= 22 \text{ mm} \)

\[
d_1 = c + \Omega_{th} + \Omega/2 = 20 + 8 + 11 = 39 \text{ mm}
\]

\[
d = h - d_1 = 661 \text{ mm}
\]

\[
f_{cd} = f_{ck}/\gamma_c = 30/1,5 = 20 \text{ MPa}
\]

\[
f_{yd} = f_{yk}/\gamma_m = 500/1,15 = 434,78 \text{ MPa}
\]

\[
\mu = M_2/(b. d_1^2.a.f_{cd}) = 392,86/(1*0,661^2*1*20 000) = 0,0449
\]

\[
\omega = 0,04615 \text{ (dle tabulek)}
\]

\[
A_{smin} = \omega*b*d_1*a*(f_{cd}/f_{yd}) = 0,04615*1*0,661*1*(20 000/434 780) = 1403 \text{ mm}^2
\]

\[
A_{s,prov} = 1901 \text{ mm}^2 => 5 \text{ prutů}
\]

(dle tabulky – Příloha 21a Tabulka ploch výztuže podle vzdálenosti prutů)

\[
\text{Posouzení pro } \Omega 22 \text{ mm}, A_{s,prov} = 1901 \text{ mm}^2, \text{ počet prutů 5}
\]

\[
\rho(d) = A_{s,prov}/(b*d) = 1901/(1000*661) = 0,00287 \geq 0,0015 => \text{Vyhovuje}
\]

\[
\rho(h) = A_{s,prov}/(b*h) = 1901/(1000*700) = 0,0027 \leq 0,04 => \text{Vyhovuje}
\]

Moment mezní únosnosti

\[
M_{cd} = A_{s,prov}*f_{yd}*z = 1901*10^{-6}*434780*0,9*0,661 = 491,69 \text{ kNm} \geq M_x => \text{Vyhovuje}
\]
C 1.2.2.3 Návrh a posouzení sloupu ve 2PP nad základovou patkou

a) Předběžný návrh

rozměry: 350 x 550 mm

\[A_c = 0,35 \times 0,55 = 0,1925 \ m^2 = 192 \ 500 \ mm^2 \]

Beton C30/37

Ocel B 500B

\[f_{cd} = f_{ck}/\gamma_c = 30/1,5 = 20 \text{ MPa} \]

\[f_{yd} = f_{yk}/\gamma_m = 500/1,15 = 434,78 \text{ MPa} \] (omezeno \(\leq 400 \text{ MPa} \))

b) Zatížení na sloup

Stálé

<table>
<thead>
<tr>
<th></th>
<th>char. hod. [kN/m²]</th>
<th>součinitel</th>
<th>návr. hod. [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiha od sloupu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v 1PP</td>
<td>491,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiha od průvlaku</td>
<td>60,9*6,83</td>
<td>415,95</td>
<td></td>
</tr>
<tr>
<td>Vlastní tiha</td>
<td>0,350,552,55*25</td>
<td>12,27</td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>(g_k = 919,7)</td>
<td>1,35</td>
<td>(g_d = 1241,595)</td>
</tr>
</tbody>
</table>

Nahodilé

| | \(q_k = 486,91 \) | 1,5 | \(q_d = 730,365 \) |

Sloup v 1PP

Sloup v 2PP

Celkem
Celkové zatížení sloupu v 2PP
\(g_k + q_k = 1406,61 \text{ kN/m} \)
\(g_d + q_d = 1971,96 \text{ kN/m} \)

c) Návrh výztuže sloupu

\(N_{Ed} = 1971,96 \text{ kN/m} \)
\[A_{s,\text{min}} = \left(N_{Ed} - 0,8*\phi_{cd} \right) / f_{yd} = (1971,96 - 0,8*0,1925*20 000) / 400 000 = 2770 \text{ mm}^2 \]
\[A_{s,\text{prov}} = 3041 \text{ mm}^2 \Rightarrow 8 \text{ průtů, } \phi 22 \text{ mm} \]

\textit{Posouzení pro } \phi 22 mm, \ A_{s,\text{prov}} = 3041 \text{ mm}^2 , \text{ počet průtů 8} \\
0,003*\phi_c \leq A_{s,\text{prov}} \leq 0,08*\phi_c = 577,5 \leq 3041 \leq 15 400 \Rightarrow \text{Vyhovuje} \\
\[N_{Rd} = 0,8*\phi_{cd} + A_{s,\text{prov}}*f_{yd} = 0,8*0,1925*20 000 + 0,003041*400 000 = 4188 \text{ kN/m} \geq N_{Ed} \Rightarrow \text{Vyhovuje} \]

C 1.2.2.4 Návrh a posouzení konzolového balkónu

a) Předběžný návrh

Balkónová konzola – vyztužená pomocí ISO nosníku
Rozměry konzoly: 2700 x 2000 mm
Beton C30/37
Ocel B 500B

Návrh tloušťky desky
\[h = l/10 = 2000/10 = 200 \Rightarrow \text{uvažujeme tloušťku desky 250 mm} \]
b) Zatížení konzoly

Stálé

<table>
<thead>
<tr>
<th>Materiál</th>
<th>h [m]</th>
<th>(\mu) [kN/m³]</th>
<th>char. hod. [kN/m²]</th>
<th>součinitel</th>
<th>návr. hod. [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrazuvzdorná dlažba</td>
<td>-</td>
<td>-</td>
<td>0,828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroizolační fólie</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIR deska Kingspan</td>
<td>0,08</td>
<td>30</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asfaltové pásky</td>
<td>-</td>
<td>-</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balkónová konzola</td>
<td>0,25</td>
<td>25</td>
<td>6,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td>(g_k) = 9,718</td>
<td>1,35</td>
<td>(g_d) = 13,1193</td>
</tr>
</tbody>
</table>

Nahodilé

<table>
<thead>
<tr>
<th>Materiál</th>
<th>(q_k)</th>
<th>(q_d)</th>
<th>1,5</th>
<th>1,5</th>
<th>3,09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Užitné byty</td>
<td></td>
<td></td>
<td>1,5</td>
<td>1,5</td>
<td>3,09</td>
</tr>
<tr>
<td>Klimatické</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td>(q_k) = 2,06</td>
<td>1,5</td>
<td>(q_d) = 3,09</td>
</tr>
</tbody>
</table>

Celkové zatížení stropní desky

\(g_k + q_k = 11,778 \text{ kN/m} \)

\(g_d + q_d = 16,2 \text{ kN/m} \)

c) Výpočet ohybových momentů

Výpočet proveden v programu Structural-analyser.

Max. moment na konzole \(M_1 = 32,4 \text{ kNm} \)

d) Návrh výztuže konzoly

Pro \(M_1 = 32,4 \text{ kNm} \)

Tloušťka desky \(h = 250 \text{ mm} \)

Krytí výztuže \(c = 15 \text{ mm} \)

Průměr výztuže \(\varnothing = 10 \text{ mm} \)

\(d_1 = c + \varnothing/2 + \varnothing = 30 \text{ mm} \)

\(d = h - d_1 = 220 \text{ mm} \)

\(f_{cd} = f_{ck}/y_r = 30/1,5 = 20 \text{ MPa} \)

\(f_{yd} = f_{yk}/y_m = 500/1,15 = 434,78 \text{ MPa} \)
\[\mu = \frac{M_1}{(b\cdot d^2\cdot a\cdot f_{cd})} = \frac{32,4}{(1\cdot 0,22^2\cdot 1\cdot 20000)} = 0,033 \]

\[\omega = 0,034 \text{ (dle tabulek)} \]

\[A_{s,\text{min}} = \omega \cdot b \cdot d \cdot a \cdot (\frac{f_{cd}}{f_{yd}}) = 0,034 \cdot 1 \cdot 0,22 \cdot 1 \cdot (20/434,78) = 344 \text{ mm}^2 \]

\[A_{s,\text{prov}} = 393 \text{ mm}^2 \Rightarrow \text{vzdálenost prutů 200 mm} \]

(dle tabulky – příloha 21b Tabulka ploch výztuže podle vzdáleností prutů)

Posouzení pro Ø10mm, \(A_{s,\text{prov}} = 393 \text{ mm}^2 \), vzdálenost prutů 200 mm

\[\rho(d) = \frac{A_{s,\text{prov}}}{(b \cdot d)} = 393/(1000 \cdot 220) = 0,00178 \geq 0,0015 \Rightarrow \text{Vyhovuje} \]

\[\rho(h) = \frac{A_{s,\text{prov}}}{(b \cdot h)} = 393/(1000 \cdot 250) = 0,00157 \leq 0,04 \Rightarrow \text{Vyhovuje} \]

Moment mezni únosnosti

\[M_{rd} = A_{s,\text{prov}} \cdot f_{yd} \cdot z = 393 \cdot 10^{-6} \cdot 434780 \cdot 0,9 \cdot 0,22 = 33,83 \text{ kNm} \geq M_x \Rightarrow \text{Vyhovuje} \]
LEGENDA

ŽELEZOBETON

ŽELEZOBETONOVÁ DESKA

OCELOVÁ VÝTAHOVÁ KLEC

SPECIFIKACE DLE VÝROBCE

ŽELEZOBETON

ŽELEZOBETON, 200 mm

ŽELEZOBETON, 200 mm

OBVODOVÉ STĚNY

VNÍTRNÍ STĚNY

Měřítko: 1:100
Datum: 05/2022
Název výkresu: VÝKRES TVARU 4NP
C 1.3

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ
C Dokumentace stavebního objektu

C 1.3 Požárně bezpečnostní řešení

C 1.3.1 Technická zpráva

C 1.3.1.1 Popis a umístění stavby
C 1.3.1.2 Rozdělení stavby a jejích objektů do požárních úseků
C 1.3.1.3 Výpočet požárního rizika a stanovení stupně požární bezpečnosti
C 1.3.1.4 Požární bezpečnost garáží
C 1.3.1.5 Stanovení požární odolnosti stavebních konstrukcí
C 1.3.1.6 Evakuace, stanovení druhu a kapacity únikových cest
C 1.3.1.8 Způsob zabezpečení objektu požární vodou
C 1.3.1.9 Stanovení počtu a rozložení hasičích přístrojů
C 1.3.1.10 Posouzení požadavků na zabezpečení stavby požárně bezpečnostními zařízeními
C 1.3.1.11 Zhodnocení technických zařízení stavby
C 1.3.1.12 Stanovení požadavků pro hašení požáru a záchranné práce
C 1.3.1.13 Seznam použitých podkladů
C 1.3 Požárně bezpečnostní řešení

C 1.3.1 Technická zpráva
C 1.3.1.1 Popis a umístění stavby

Stavební objekt je dělen na dvě podzemní podlaží, ve kterých se nacházejí hromadné garáže, sklepní kóje a technická infrastruktura objektu. Nadzemní část domu je dělena na čtyři nadzemní podlaží, ve kterých se nachází bytové a komerční prostory, a to konkrétně v prvním nadzemním podlaží, které je určené pouze pro komerci spolu se vstupním parterem a zbylé tři nadzemní podlaží jsou poté využity pro bytové jednotky. Ve stavebním objektu je navrženo jedno schodišťové jádro s výtahem, které tvoří chráněnou únikovou cestu typu A. Konstrukční systém objektu je v podzemních podlažích monolitický kombinovaný z železobetonu a v nadzemní části monolitický stěnový systém. Celý tento konstrukční systém je nehořlavý. Objekt je napojen na veřejné inženýrské sítě.

C 1.3.1.2 Rozdělení stavby a jejich objektů do požárních úseků

A P 02.01/N 04 CHÚC A
A P 02.02/N 04 CHÚC A
A P 02.03/N 03 CHÚC A
P 02.04 Sklad
P 02.05 Sklad
P 02.06 Sklad odpadu
P 02.07 Hromadné garáže
P 01.04 Kotelna
P 01.05 Sklepní kóje
P 01.06 Hromadné garáže
Š P 01.01 Šachta VZT do 2PP
N 01.02 Nebytový prostor – shell and core
N 01.03 Nebytový prostor – shell and core
N 01.04 Technická místnost
N 01.05 Technická místnost
N 02.02 Bytová jednotka
N 02.03 Bytová jednotka
N 02.04 Bytová jednotka
N 03.02 Bytová jednotka
N 03.03 Bytová jednotka
N 03.04 Bytová jednotka
N 04.02 Bytová jednotka
N 04.03 Bytová jednotka
Š N 01.01/N 04 Instalační šachta
Š N 01.02/N 04 Instalační šachta
Š N 01.03/N 04 Instalační šachta
Š N 01.04/N 04 Instalační šachta
Š N 01.05/N 04 Instalační šachta
Š N 01.06/N 04 Instalační šachta

C 1.3.1.3 Výpočet požárního rizika a stanovení stupně požární bezpečnosti

Hromadné garáže jsou projektovány do dvou pater. Druhé podzemní podlaží tvoří zároveň vjezdové podlaží z ulice Příkrá a ulice Na Pobřeží, výměra požárního úseku tohoto patra garáží včetně pojezdové rampy činí 1807,56 m². První podzemní podlaží tvoří hromadné garáže, kotelně a sklepní kóje. Plocha požárního úseku garáží vyjma pojezdové rampy, která je započítána do spodního podlaží činí 1327,36 m². Největší délka nechráněné únikové cesty do chráněné únikové cesty v druhém podzemním podlaží je 21,3 m, v prvním podzemním podlaží pak 29,8 m. Za vyhovující se považuje délka 45 m. V obou patrech garáže je celkem 94 parkovacích stání, respektive pak v druhém podzemním podlaží 47 parkovacích stání a v prvním podzemním podlaží 47 stání.

Konstrukční systém nehořlavý
Stupeň požární bezpečnosti II.
Ekvivalentní doba trvání požáru e = 15 minut (pro osobní a dodávková auta)

Ekonomické riziko
\[p_1 = 1 \] (pravděpodobnost vzniku a rozšíření požáru pro hromadné garáže)
\[p_2 = 0,09 \] (pravděpodobnost rozsahu škod pro garáže skupiny vozidel 1)
k₅ = 2,29 (součinitel vlivu podlaží objektu)
k₆ = 1 (součinitel vlivu hořlavosti hmot konstrukčního systému)
k₇ = 2 (součinitel vlivu následných škod)

Index pravděpodobnosti vzniku a rozšíření požáru

\[P_1 = p_1 \times c \]
\[P_1 = 1 \]

Index pravděpodobnosti rozsahu škod způsobených požárem

\[P_2 = p_2 \times S \times k_5 \times k_6 \times k_7 \]
\[P_2 = 0,09 \times 1807,56 \times 2,29 \times 1 \times 2 \]
\[P_2 = 745,07 \]

Mezní plocha indexů

\[P_{2, \text{mezní}} = 1455,96 \]

Mezní půdorysná plocha

\[S_{\text{max}} = \frac{P_{2, \text{mezní}}}{(p_2 \times k_5 \times k_6 \times k_7)} \]
\[S_{\text{max}} = 3532,16 \text{ m}^2 \]

Ohrožení osob zplodinami pro 2PP

\[h_s = 3,4 \text{ m (světlá výška)} \]
\[a = 0,9 \]
\[t_e = 1,25 \times \sqrt{\frac{h_s}{p_1}} \]
\[t_e = 2,3 \text{ min} \]

Předpokládaná doba evakuace pro 2PP

\[t_u = \left(\frac{(0,75 \times l_u)}{v_u} \right) + \left(\frac{(E \times s)}{K_u \times u} \right) \]
\[t_u = \left(\frac{(0,75 \times 21,3)}{20} \right) + \left(\frac{25 \times 1}{25 \times 1} \right) \]
\[t_u = 1,79 \text{ min} \]
\[t_e > t_u \text{ vyhovuje} \]

Ohrožení osob zplodinami pro 1PP

\[h_s = 3,4 \text{ m (světlá výška)} \]
\[a = 0,9 \]
\[t_e = 1,25 \times \sqrt{\frac{h_s}{p_1}} \]
\[t_e = 2,3 \text{ min} \]

Předpokládaná doba evakuace pro 1PP

\[t_u = \left(\frac{(0,75 \times l_u)}{v_u} \right) + \left(\frac{(E \times s)}{K_u \times u} \right) \]
\[t_u = \left(\frac{(0,75 \times 29,8)}{20} \right) + \left(\frac{25 \times 1}{25 \times 1} \right) \]
\[t_u = 2,12 \text{ min} \]
\[t_e > t_u \text{ vyhovuje} \]
C 1.3.1.5 Stanovení požární odolnosti stavebních konstrukcí

Požadovaná požární odolnost

<table>
<thead>
<tr>
<th>Požadovaná požární odolnost</th>
<th>SPB I</th>
<th>SPB II</th>
<th>SPB III</th>
<th>SPB IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Požární stěny a požární stropy</td>
<td>REI 50 DP1</td>
<td>REI 45 DP1</td>
<td>REI 60 DP1</td>
<td>REI 90 DP1</td>
</tr>
<tr>
<td>v nadzemním podlaží</td>
<td>REI 50 DP1</td>
<td>REI 45 DP1</td>
<td>REI 60 DP1</td>
<td>REI 90 DP1</td>
</tr>
<tr>
<td>v posledním nadzemním podlaží</td>
<td>REI 50 DP1</td>
<td>REI 45 DP1</td>
<td>REI 60 DP1</td>
<td>REI 90 DP1</td>
</tr>
<tr>
<td>2. Požární uzavírky otvůr v požárních stěnách a stropách</td>
<td>EI 15 DP1</td>
<td>EI 30 DP1</td>
<td>EI 30 DP1</td>
<td>EI 45 DP1</td>
</tr>
<tr>
<td>v nadzemním podlaží</td>
<td>EI 15 DP1</td>
<td>EI 30 DP1</td>
<td>EI 30 DP1</td>
<td>EI 45 DP1</td>
</tr>
<tr>
<td>v posledním nadzemním podlaží</td>
<td>EI 15 DP1</td>
<td>EI 30 DP1</td>
<td>EI 30 DP1</td>
<td>EI 45 DP1</td>
</tr>
<tr>
<td>3. Obvodové stěny</td>
<td>REW 50 DP1</td>
<td>REW 45 DP1</td>
<td>REW 60 DP1</td>
<td>REW 90 DP1</td>
</tr>
<tr>
<td>v nadzemním podlaží</td>
<td>REW 50 DP1</td>
<td>REW 45 DP1</td>
<td>REW 60 DP1</td>
<td>REW 90 DP1</td>
</tr>
<tr>
<td>v posledním nadzemním podlaží</td>
<td>REW 50 DP1</td>
<td>REW 45 DP1</td>
<td>REW 60 DP1</td>
<td>REW 90 DP1</td>
</tr>
<tr>
<td>4. Nosné konstrukce střech</td>
<td>R 15 DP1</td>
<td>R 15 DP1</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
</tr>
<tr>
<td>5. Nosné konstrukce uvnitř požárního úseku zajišťující stabilitu</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
<td>R 45 DP1</td>
<td>R 60 DP1</td>
</tr>
<tr>
<td>v nadzemním podlaží</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
<td>R 45 DP1</td>
<td>R 60 DP1</td>
</tr>
<tr>
<td>v posledním nadzemním podlaží</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
</tr>
<tr>
<td>6. Nosné konstrukce vně objektu zajišťující stabilitu</td>
<td>R 15 DP1</td>
<td>R 15 DP1</td>
<td>R 15 DP1</td>
<td>R 30 DP1</td>
</tr>
<tr>
<td>7. Nosné konstrukce uvnitř objektu nezajišťující stabilitu</td>
<td>R 15 DP1</td>
<td>R 15 DP1</td>
<td>R 30 DP1</td>
<td>R 30 DP1</td>
</tr>
<tr>
<td>8. Nosné konstrukce uvnitř požárního úseku</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>DP3</td>
</tr>
<tr>
<td>9. Konstrukce schodišť uvnitř požárního úseku</td>
<td>-</td>
<td>REI 15 DP3</td>
<td>REI 15 DP3</td>
<td>REI 15 DP1</td>
</tr>
<tr>
<td>10. Výtahové a instalace lichy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Požárně dělitelné konstrukce</td>
<td>REI 30 DP2</td>
<td>REI 30 DP2</td>
<td>REI 30 DP1</td>
<td>REI 30 DP1</td>
</tr>
<tr>
<td>Požární uzavírky otvorů v požárně dělitelných konstrukcích</td>
<td>REI 15 DP2</td>
<td>REI 15 DP2</td>
<td>REI 15 DP1</td>
<td>REI 15 DP1</td>
</tr>
</tbody>
</table>

Skutečná nejvyšší požární odolnost typických konstrukcí objektu

<table>
<thead>
<tr>
<th>Slabivá konstrukce</th>
<th>Materiál</th>
<th>Požární odolnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obvodové stěny</td>
<td>Zelezobeton, tl. 200 mm</td>
<td>REW 60 DP1</td>
</tr>
<tr>
<td>Vnitřní nosné stěny</td>
<td>Zelezobeton, tl. 200 mm</td>
<td>REI 60 DP1</td>
</tr>
<tr>
<td>Vnitřní nosné sloupy</td>
<td>Zelezobeton, 350x550 mm</td>
<td>REI 60 DP1</td>
</tr>
<tr>
<td>Vnitřní nenosné příčky</td>
<td>SDK, tl. 100 - 150 mm</td>
<td>DP3</td>
</tr>
<tr>
<td>Stropní desky</td>
<td>Zelezobeton, tl. 250 mm</td>
<td>REI 60 DP1</td>
</tr>
<tr>
<td>Stropní průvlaky</td>
<td>Zelezobeton, v. 700 mm</td>
<td>REI 45 DP1</td>
</tr>
<tr>
<td>Schodišťové jádro</td>
<td>Zelezobeton</td>
<td>REI 45 DP1</td>
</tr>
</tbody>
</table>

Navržené konstrukce splňují požadavky na požární odolnost materiálů.

C.1.3.1.6 Evakuace, stanovení druhu a kapacity únikových cest

Stanovený počet osob v objektu

<table>
<thead>
<tr>
<th>Číslo PU</th>
<th>Prostor</th>
<th>Plocha (m²)</th>
<th>Počet osob PP</th>
<th>Počet osob (m²/obrana)</th>
<th>Součet (PP)</th>
<th>Součet (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 01.07</td>
<td>Hromadná garáž</td>
<td>1327,36</td>
<td>47 stáně</td>
<td>-</td>
<td>0,5</td>
<td>24</td>
</tr>
<tr>
<td>P 01.01</td>
<td>Hromadná garáž</td>
<td>1327,36</td>
<td>47 stáně</td>
<td>-</td>
<td>0,5</td>
<td>24</td>
</tr>
<tr>
<td>N 01.02</td>
<td>Nebytový prostor - shell and core</td>
<td>101,45</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>N 01.02</td>
<td>Nebytový prostor - shell and core</td>
<td>101,45</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>N 02.02</td>
<td>Bytová jednotka 3+kk</td>
<td>102</td>
<td>5</td>
<td>20</td>
<td>1,5</td>
<td>7</td>
</tr>
<tr>
<td>N 02.03</td>
<td>Bytová jednotka 3+kk</td>
<td>102</td>
<td>5</td>
<td>20</td>
<td>1,5</td>
<td>7</td>
</tr>
<tr>
<td>N 02.04</td>
<td>Bytová jednotka 2+1</td>
<td>45,86</td>
<td>2</td>
<td>20</td>
<td>1,5</td>
<td>3</td>
</tr>
<tr>
<td>N 02.03</td>
<td>Bytová jednotka 3+kk</td>
<td>102</td>
<td>5</td>
<td>20</td>
<td>1,5</td>
<td>7</td>
</tr>
<tr>
<td>N 02.03</td>
<td>Bytová jednotka 3+kk</td>
<td>102</td>
<td>5</td>
<td>20</td>
<td>1,5</td>
<td>7</td>
</tr>
<tr>
<td>N 02.04</td>
<td>Bytová jednotka 2+1</td>
<td>45,86</td>
<td>2</td>
<td>20</td>
<td>1,5</td>
<td>3</td>
</tr>
<tr>
<td>N 04.02</td>
<td>Bytová jednotka 3+kk</td>
<td>125,9</td>
<td>6</td>
<td>20</td>
<td>1,5</td>
<td>9</td>
</tr>
<tr>
<td>N 04.03</td>
<td>Bytová jednotka 3+kk</td>
<td>125,9</td>
<td>6</td>
<td>20</td>
<td>1,5</td>
<td>9</td>
</tr>
<tr>
<td>Přípis</td>
<td>Obsazení bytů celkem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Přípis</td>
<td>Obsazení objektu celkem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>
Mezní šířka únikové cesty

Šířka jednoho únikového pruhu pro jednu osobu 55 cm
Pro CHÚC A, šířka únikového pruhu 82,5 cm
Požadovaný počet únikových pruhů \(u = E^s/K \)
Počet evakuovaných osob \(E = 220 \) osob (v CHÚC A nahoru 48, dolů 52, z komerčních prostorů 34 + 34 přímo ven)
Součinitel vyjadřující podmínky evakuace \(s = 1 \)

\[
U_{1,d} = 52*1/85 = 0,611 \Rightarrow 1 \text{ únikový pruh} - \text{minimálně 1,5 pruhu} \Rightarrow 825 \text{ mm} - \text{navrženo 1200 mm pro schodiště a 1600 mm pro únikový východ} \\
U_{1,n} = 48*1/60 = 0,8 \Rightarrow 1 \text{ únikový pruh} - \text{minimálně 1,5 pruhu} \Rightarrow 825 \text{ mm} - \text{navrženo 1200 mm pro schodiště a 1600 mm pro únikový východ} \\
U_{2,r} = 34*1/100 = 0,34 \Rightarrow 1 \text{ únikový pruh} \Rightarrow 550 \text{ mm} - \text{navržen únikový východ 2000 mm} \\
\]

C 1.3.1.7 Vymezení požárně nebezpečného prostoru

<table>
<thead>
<tr>
<th>specifikace PČ a obvodové cesty</th>
<th>rozsahy POP</th>
<th>Sp(m²)</th>
<th>E</th>
<th>h</th>
<th>l(m)</th>
<th>Sp(m²)</th>
<th>p(%)</th>
<th>p(μg/m³)</th>
<th>d(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 01 02 Západo</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>4</td>
<td>9,2</td>
<td>100</td>
<td>45</td>
<td>3,87</td>
<td></td>
</tr>
<tr>
<td>N 01 02 Jih</td>
<td>(2x2,3)x2</td>
<td>13,8</td>
<td>2,3</td>
<td>6</td>
<td>13,8</td>
<td>100</td>
<td>45</td>
<td>4,61</td>
<td></td>
</tr>
<tr>
<td>N 01 05 Východ</td>
<td>(2x3)</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>100</td>
<td>45</td>
<td>4,37</td>
<td></td>
</tr>
<tr>
<td>N 01 05 Jih</td>
<td>(6x3)</td>
<td>18</td>
<td>3</td>
<td>6</td>
<td>18</td>
<td>100</td>
<td>45</td>
<td>5,12</td>
<td></td>
</tr>
<tr>
<td>N 02 02 Sever</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>6</td>
<td>13,8</td>
<td>66,6666667</td>
<td>45</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>N 02 02 Západo</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>7</td>
<td>16,1</td>
<td>57,1428571</td>
<td>45</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>N 02 02 Jih</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>2</td>
<td>4,6</td>
<td>100</td>
<td>45</td>
<td>2,76</td>
<td></td>
</tr>
<tr>
<td>N 02 05 Sever</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>6</td>
<td>13,8</td>
<td>66,6666667</td>
<td>45</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>N 02 05 Východ</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>7</td>
<td>16,1</td>
<td>57,1428571</td>
<td>45</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>N 02 05 Jih</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>2</td>
<td>4,6</td>
<td>100</td>
<td>45</td>
<td>2,76</td>
<td></td>
</tr>
<tr>
<td>N 04 02 Sever</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>6</td>
<td>13,8</td>
<td>66,6666667</td>
<td>45</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>N 04 02 Jih</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>7</td>
<td>16,1</td>
<td>57,1428571</td>
<td>45</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>N 04 02 Jih</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>6</td>
<td>13,8</td>
<td>66,6666667</td>
<td>45</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>N 04 05 Jih</td>
<td>(2x2,3)x2</td>
<td>9,2</td>
<td>2,3</td>
<td>7</td>
<td>16,1</td>
<td>57,1428571</td>
<td>45</td>
<td>4,2</td>
<td></td>
</tr>
</tbody>
</table>

Stavba se nenachází a nezasahuje do požárně nebezpečného prostoru jiného objektu.

C 1.3.1.8 Způsob zabezpečení objektu požární vodou

Vnější odběrná místa požární vody

Příjezdivá komunikace pro požární techniku je možná z ulice Školská a z ulice Na Pobřeží, kde se nachází vjezdy do podzemních garáží. V obou místech budou zřízeny nástupní požární plochy (NAP). Pro vnější hašení je určen blízký vodní tok Labe, který je také veden jako možný zdroj vody k hašení požárů ve Středočeském kraji.
Vnitřní odběrná místa požární vody

Ve vnitřních prostorech se nenavrhují hadicové systémy. Podzemní podlaží jsou v případě požáru chráněna SHZ v kombinaci s PHP v místech, kde není možné SHZ instalovat.

C 1.3.1.9 Stanovení počtu a rozmístění hasicích přístrojů

<table>
<thead>
<tr>
<th>požární úsek</th>
<th>účel</th>
<th>S (m²)</th>
<th>typ PHP</th>
<th>Počet PHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 02.04/05/06</td>
<td>Sklady</td>
<td>44,4</td>
<td>21A</td>
<td>1</td>
</tr>
<tr>
<td>P 02.07</td>
<td>Hromadné garáže</td>
<td>1807,56</td>
<td>183B</td>
<td>3</td>
</tr>
<tr>
<td>P 01.04</td>
<td>Kotelna</td>
<td>44,01</td>
<td>55B</td>
<td>1</td>
</tr>
<tr>
<td>P 01.05</td>
<td>Sklepní kóje</td>
<td>142,6</td>
<td>21A</td>
<td>3</td>
</tr>
<tr>
<td>P 01.06</td>
<td>Hromadné garáže</td>
<td>1327,36</td>
<td>183B</td>
<td>3</td>
</tr>
<tr>
<td>N 01.02</td>
<td>Nebytový prostor</td>
<td>101,45</td>
<td>27A</td>
<td>2</td>
</tr>
<tr>
<td>N 01.03</td>
<td>Nebytový prostor</td>
<td>101,45</td>
<td>27A</td>
<td>2</td>
</tr>
<tr>
<td>A P 02.01/N 04</td>
<td>CHÚC A</td>
<td>21A</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Rozmístění PHP dle výkresové dokumentace

C 1.3.1.10 Posouzení požadavků na zabezpečení stavby požárně bezpečnostními zařízeními

EPS

V podzemních patrech, zejména pak v hromadných garážích je navržen systém EPS

SOZ

Požární úsek chráněně unikové cesty typu A je vybaven samočinným odvětrávacím zařízením, které v případě detekce požáru otevře ventilační otvor v okně a začne odvětrávat případné zplodiny. Systém je napájen záložním zdrojem energie SOZ, který se nachází v technické místnosti.

SHZ

V podzemních patrech garáži je společně se záložními hasicími přístroji navržen také systém SHZ – sprinklery.

ADaSP

C 1.3.1.11 Zhodnocení technických zařízení stavby

Elektroinstalace

Nouzové osvětlení objektu je vybaveno náhradními zdroji v případě výpadku proudu – baterie. Elektrické rozvody se řídí dle ČSN 33 2000-3 a souvisejících norem.

Vytápění

Stavba je vytápěna pomocí teplovodního podlahového vytápění. Příprava teplé vody se nachází v kotelně v 1 PP. Tato kotelna je v případě nouze vybavena PHP k tomu určeným.
Větrání

Podzemní prostory hromadných garáží jsou větrány pomocí VZT rozvodů. Znehodnocený vzduch v bytových jednotkách, zejména pak z prostoru toalet, koupelny a kuchyní je odváděn nuceně podtlakovým větráním. Veškeré trubní rozvody jsou vedeny v instalačních šachtech, které tvoří samostatné požární úseky. Chráněné únikové cesty jsou vybaveny systémem SOZ.

Rozvod hořlavých látek

V prostoru 1 PP se nachází rozvod plynovodního potrubí vedoucí do kotelny k plynovému kotli. Toto potrubí bude opatřeno protipožární armaturou, která uzavře přívod plynu, dojde-li v okolním prostředí ke zvýšení teploty na hodnotu 100 °C.

C 1.3.1.12 Stanovení požadavků pro hašení požáru a záchranné práce

Hasičský záchranný sbor města Kolín se nachází přibližně 2,2 km (5–6 min) od stavby. Příjezdová komunikace pro hasičskou a záchrannou techniku je možná z ulice Školská a z ulice Na Pobřeží. Při zásahu dojde k záboru v případě ulice Školská k celému jízdnímu pruhu (15 x 4 m). V případě ulice Na Pobřeží dojde k záboru vjezu do garáží. Nástupní plocha je z ulice Školská vzdálená 9 m od hlavního vchodu do objektu s podélným sklonem 5 %. Z ulice Na Pobřeží je poté nástupní plocha umístěna ve vzdálenosti 15 m od vjezu do hromadných garáží s podélným sklonem 2 %.

Komunikace musí být nejméně jednopruhová silniční komunikace o šířce 3 m. Musí umožnit příjezd požárních vozidel k NAP nebo aspoň 20 m od všech vchodů navazujících na zásahové cesty, nebo alespoň 2 m od všech vchodů do objektu, kterým by se předpokládá vedení požárního zásahu. NAP musí být řešena jako zpevněná plocha o min. šířce 4 m a odvodněna s podélným sklonem max 8 %, příčným sklonem max. 4 %.

C 1.3.1.13 Seznam použitých podkladů

ČSN 73 0802 – PBS - Nevýrobní objekty (2009/05)
ČSN 73 0810 – PBS – Společná ustanovení (2009/04)
ČSN 73 0818 – PBS - Obsazení objektů osobami (1997/07 + Z1 2002/10
ČSN 73 0821 ed.2 - PBS - Požární odolnost stavebních konstrukcí (2007/05)
ČSN 73 0833 - PBS - Budovy pro bydlení a ubytování (2010/09)

BAKALÁŘSKÁ PRÁCE
BYTOVÝ DŮM ŠKOLSKÁ

C 1.4
TECHNICKÉ ZAŘÍZENÍ STAVBY

Ústav urbanismu
vedoucí ústavu prof. Ing. arch. Jan Jehlík
vedoucí práce doc. Ing. arch. Ivan Plicka, CSc.
vypracoval Michal Turek
konzultant doc. Ing. Antonín Pokorný, CSc.
LS 2021/2022
C Dokumentace stavebního objektu
C 1.4 Technické zařízení stavby ...3
 C 1.4.1 Technická zpráva ...3
 C 1.4.1.1 Popis a umístění stavby a jejich objektů3
 C 1.4.1.2 Vodovod ...3
 C 1.4.1.3 Kanalizace ...3
 C 1.4.1.4 Dešťová voda ...4
 C 1.4.1.5 Plynovod ..4
 C 1.4.1.6 Vzduchotechnika ...4
 C 1.4.1.7 Vytápění a chlazení ...4
 C 1.4.1.8 Silnoproudé a slaboproudé instalace5
 C 1.4.2 Výpočtová část ..5
 C 1.4.2.1 Výpočet profilu trubní rozvodů VZT ...5
 C 1.4.2.2 Návrh plynového kotle ..6
C 1.4 Technické zařízení stavby

C 1.4.1 Technická zpráva
C 1.4.1.1 Popis a umístění stavby a jejich objektů

Stavební objekt je umístěn na pozemku aktuálně využívaného veřejného venkovního parkování a zároveň na místě rodinného domu určeného k demolici. Stavba je rozdělena na dvě podzemní podlaží, které jsou vyjma vjezdové části do hromadných garáží plně zapuštěna do terénu. V těchto podzemních patrech se nachází tedy hromadné garáže s celkovým počtem 94 parkovacích stání, sklepní prostory a místnost kotelny. V prvním nadzemním podlaží se vedle vstupního prostoru do objektu nachází dvě technické místnosti a dva nebytové prostory, které jsou ponechány ve stádiu ‘‘shell and core’’ – pouze hrubá stavba s případně vyvedenými rozvody inženýrských sítí di instalačních šachet. V druhém až čtvrtém nadzemním podlaží jsou navrženy bytové jednotky. Pro tento objekt je navrženo jedno schodišťové jádro s výtahem, které prostupuje až do prostoru podzemních garáží a je dimenzováno na bezbariérový přístup. Konstrukční systém podzemní části stavby je monolitický kombinovaný sloupy, průvlaky a nosnými stěnami, v nadzemní části objektu pak monolitický stěnový systém obousměrný. Objekt je napojen na stávající inženýrské sítě v ulici Školská, odkud jsou také vedeny veškeré přípojky.

C 1.4.1.2 Vodovod

Objekt je napojen na veřejný vodovodní řad a je pro něj navržena přípojka DN 80, vedena je v hloubce 1,5 m pod úrovní terénu. Vodoměrná soustava s hlavním uzávěrem vody je umístěna v prostoru kotelny v prvním podzemním podlaží. Vnitřní vodovodní potrubí je navrženo z plastu a je odizolováno. Ležaté trubní rozvody jsou vedeny v garážích pod úrovni stropu a v případě bytových jednotek v instalačních předstěnách. Souběžně s vodovodním potrubím je do nadzemních pater navrženo potrubí cirkulační. Ohřev vody pro potřeby objektu zajišťuje zásobník teplé vody, který je napojen na plynový kotel. Stoupací potrubí je dále vedeno v instalačních šachtách. Nominální šíři trubek projektuji DN40.

C 1.4.1.3 Kanalizace

Objekt je napojen na veřejnou jednotnou kanalizační síť pomocí přípojky DN150. Kanalizační přípojka je navržena z PVC a je vedená v přibližné hloubce 2,5 m pod úrovní terénu ve sklonu 15 stupňů ke kanalizačnímu řadu. Slaškové odpady jsou větrány na střechu pomocí větracích hlavic umístěných 0,5 m nad úroveň poslední vrstvy střešní skladby. Rozvody kanalizace v bytových jednotkách a instalačních šachtách jsou dle výpočtu voleny jako DN125.
C 1.4.1.4 Dešťová voda

Střecha objektu je projektována do spádu pomocí spádových klinů a odvod dešťové vody dále zajišťují střešní vpusti, z kterých je dešťová voda vedena stoupacím potrubím do prvního podzemního podlaží a následně vyvedena pomocí samostatné kanalizační připojky do jednotného kanalizačního řadu.

C 1.4.1.5 Plynovod

Plynovodní připojka je vedena v hloubce minimálně 1 m pod úrovní terénu a je napojena nejprve přes hlavní uzávěr plynu s plynoměrem, který se nachází na volně přístupné místě v ochranné krabici na fasádě domu a dále je pak plynovodní potrubí svedeno do prvního podzemního podlaží, kde je vedeno pod úrovní stropu garáži až do kotelně, kde poté napájí projekovaný plynový kotel. Plynovodní potrubí je zabezpečeno protipožární armaturou, která automaticky uzavře přívod plynu v případě, dojde-li v okolním prostředí ke zvýšení teploty na hodnotu 100 stupňů.

C.1.4.1.6 Vzduchotechnika

Větrání prostor hromadných garáží

Pro prostor hromadných garáží je navržena samostatná VTZ jednotka, která je umístěna na střeše sousedního domu – není tak součástí projektové dokumentace. Vzduchotechnické potrubí je vedeno skrz stropní konstrukci do podzemních podlaží garáží v instalační šachtě a dále vedeno pod úrovní stropu. Velikost potrubních rozvodů viz. C 1.4.2 Výpočtová část.

Větrání bytových jednotek

Odvětrání bytobývých jednotek v nadzemních podlažích je navrženo podtlakové nucené větrání v místech kuchynského sporáku a hygienického zázemí. Pro kuchynský prostor se jedná o digestoř a pro hygienická zařízení se jedná o samostatné stropní, či nástěnné výústky. Jednotlivé větve potrubí jsou poté svedeny do společného rozvodu v instalačních šachtách bytových jednotek a následně odvětráno vyústěním na střeše objektu.

Větrání kotelně

Kotelna, která se nachází v prvním podzemním podlaží je umístěna do prostoru vjezdu o patro niže, tudíž je zde možnost přirozeného odvětrání pomocí větrací mřížky skrze fasádu objektu. Odkouření kotlů je poté řešeno pomocí koaxiálního komínu v rohu dispozice, do kterého jsou svedeny jednotlivé větve kotlů a následně je komín vyveden v ochranné konstrukci nad střechu objektu.

C 1.4.1.7 Vytápění a chlazení

Zdrojem tepla objektu je kombinace zásobníků teplé vody, kde je voda ohřívána pomocí plynových kotlů v kotelně. Vytápěna je nadzemní část bytových jednotek pomocí podlahové vytápění
teplovodního typu. Případně je také možnost využití elektrických otopných žebříků, které mohou být umístěny dle libosti nájemníka bytu.

C 1.4.1.8 Silnoproudé a slaboproudé instalace

Silnoproud

Přípojka NN je vedena v hloubce 1 m pod úrovní terénu. Dále je vedena přes hlavní připojkovou skříň nacházející se na volně přístupném místě v ochranné krabici, která je zapuštěna do čelní fasády objektu. Hlavní rozvaděč je umístěn v prvním nadzemním podlaží v technické místnosti v prostoru vstupní části do objektu, jehož součástí je také elektroměr pro první nadzemní podlaží. Z hlavního rozvaděče poté vedou rozvody do patrových rozvaděčů s elektroměry pro jednotlivé bytové jednotky a dále do bytových rozvaděčů, či rozvaděčů pro jednotlivá místa určení s pojistkami.

Slaboproud

Řešení slaboproudých rozvodů a jeho připojení není součástí projektové dokumentace.

C 1.4.2 Výpočtová část

C 1.4.2.1 Výpočet profilu trubních rozvodů VZT

Hromadné garáže 1PP

\[h = 3,4 \text{ m} \]
\[S = 1327,36 \text{ m}^2 \]
\[n = 3 \cdot h^{-1} \quad \text{(počet výměn vzduchu za hodinu)} \]
\[v = 8 \text{ m} \cdot \text{s}^{-1} \]
\[V_{p,1PP} = h \cdot S \cdot n \]
\[V_{p,1PP} = 3,4 \cdot 1327,36 \cdot 3 = 13539,072 \text{ m}^3\text{h} \]
\[V_{p,2PP} = 3,4 \cdot 1807,56 \cdot 3 = 18437,112 \text{ m}^3\text{h} \]

Dle tabulky volím VTZ jednotku VS 300 pro obě patra najednou

\[a = 7341 \text{ mm} \]
\[b = 2585 \text{ mm} \]
\[h = 3312 \text{ mm} \]

tato VTZ jednotka je umístěna mimo projektovou dokumentaci

\[A_{vp,1PP} = \frac{V_{p,1PP}}{v \cdot 3600} \]
\[A_{vp,1PP} = \frac{13539,072}{(8 \cdot 3600)} = 0,47 \text{ m}^2 \]

Volím profil potrubí 1000 x 470 mm

\[A_{vp,2PP} = \frac{V_{p,2PP}}{v \cdot 3600} \]
\[A_{vp,2PP} = \frac{18437,112}{(8 \cdot 3600)} = 0,64 \text{ m}^2 \]
Volím profil potrubí 1100*580 mm

Kuchyně s digestoří

\[V_p = 300 \text{ m}^3/h \]
\[v = 3 \text{ m}^2/s \]
\[A_{vp,kuch} = \frac{V_p}{v*3600} \]
\[A_{vp,kuch} = \frac{300}{(3*3600)} = 0,027 \text{ m}^2 \]

Volím buď obdélníkový profil 140 x 200 mm, nebo kruhový profil o průměru = 200 mm

Koupelna s toaletou

\[V_p = 140 \]
\[v = 3 \text{ m}^2/s \]
\[n = 2 \text{ místnosti nad sebou} \]
\[A_{vp,koup} = \frac{(V_p*n)}{(v*3600)} \]
\[A_{vp,koup} = \frac{(140*2)}{(3*3600)} = 0,026 \text{ m}^2 \]

Volím opět obdélníkový profil 140 x 200 mm, nebo kruhový profil o průměru 200 mm.

C 1.4.2.2 Návrh plynového kotle

\[Q_{vyt} = 37,192 \text{ kW} \]
\[Q_{tv} = 57,1 \text{ kW} \]
\[Q_{přip} = 0,7*Q_{vyt} + Q_{tv} = 0,7*37,192 + 57,1 = 83,1344 \text{ kW} \]
\[Q_{celk} = Q_{vyt} + Q_{tv} = 37,192 + 57,1 = 94,292 \text{ kW} \]

Roční bilance

\[Q_{vyt,r} = 158,8 \text{ MWh}/r \]
\[Q_{tv,r} = 51,9 \text{ MWh}/r \]
\[Q_{celk,r} = 210,7 \text{ MWh}/r \]

Navrhuji kotel dle jmenovitého potřebného příkonu 57,1 kW – například kondenzační kotel Baxi power + 1.70.

Zásobník teplé vody

Navrhuji 3x R0BC 2500 – objem 2508 l => celkem objem tv 7500 l.

Odkouření plynového kotle

Dle výrobce nutno dodržet stanovený typ komínu – koaxiální 80/125.
Měřítko: 1:5
Datum: 05/2022

Název výkresu: DETAIL ŠACHTY

Část
Stupeň
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Projektant části
Michal Turek
Vrátkovská 8, Praha 10
100 00 Strašnice
m.turek17@gmail.com, +420 608 223 408

Generální projektant

Investor

Místo stavby
Název stavby

Razítko, podpis, paré

BYTOVÝ DŮM ŠKOLSKÁ
+-0,000 = 207 m.n.m - B.p.v

Místo stavby
ul. Školská, Kolín
kat. úz. Kolín - 668150

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

TECHNICKÉ ZAŘÍZENÍ BUDOV

kat. úz. Kolín - 668150
ul. Školská, Kolín
+-0,000 = 207 m.n.m - B.p.v

BYTOVÝ DŮM ŠKOLSKÁ

Místo stavby
ul. Školská, Kolín
kat. úz. Kolín - 668150

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

TECHNICKÉ ZAŘÍZENÍ BUDOV

kat. úz. Kolín - 668150
ul. Školská, Kolín
+-0,000 = 207 m.n.m - B.p.v

Měřítko: 1:5
Datum: 05/2022

Název výkresu: DETAIL ŠACHTY

BŠ BP C 009 0
D 1.1

Realizace a provádění stavby
D Realizace a provádění stavby
D 1.1 Zásady organizace výstavby .. 3

D 1.1.1 Technická zpráva ... 3
 D 1.1.1.1 Popis stavebních objektů ... 3
 D 1.1.1.2 Návrh postupu výstavby ... 3
 D 1.1.1.3 Návrh zdvihacích prostředků, výrobních, montážních a skladovacích ploch pro technologické etapy zemní konstrukce, hrubé spodní a vrchní stavby ... 5
 D 1.1.1.4 Návrh zajištění a odvodnění stavební jámy .. 6
 D 1.1.1.5 Návrh trvalých záborů staveniště s vjezdy a výjezdy na staveniště s vazbou na vnější dopravní systém ... 7
 D 1.1.1.6 Ochrana životního prostředí během výstavby 7
 D 1.1.1.7 Rizika a zásady bezpečnosti a ochrany zdraví při práci na staveništi, posouzení potřeby koordinátora bezpečnosti a ochrany zdraví při práci a posouzení potřeby vypracování plánu bezpečnosti práce. .. 8
D 1.1 Zásady organizace výstavby

D 1.1.1 Technická zpráva
D 1.1.1.1 Popis stavebních objektů

Nové stavební objekty
SO.01 Hrubé terénní úpravy
SO.02 Bytový dům Školská
SO.03 Nová připojka vodovodu
SO.04 Nová připojka elektrické sítě
SO.05 Nová připojka splaškové kanalizace
SO.06 Nová připojka plynovodu
SO.07 Nový chodník
SO.08 Nový obrubník chodníku
SO.09 Nová vozovka
SO.10 Nové zpevněné plochy
SO.11 Nové venkovní schodiště
SO.12 Nové oplocení parcely
SO.13 Napojení na veřejnou komunikaci v prostoru vjezdu a výjezdu garáží
SO.14 Čisté terénní úpravy

Bourané stavební objekty
BO.01 Bouraný objekt rodinného domu
BO.02 Bourané veřejné parkoviště
BO.03 Kácení keřovitého a nalétaného porostu
BO.04 Demolice současného chodníku
BO.05 Odstranění současné vozovky
BO.06 Bouraná připojka vodovodu
BO.07 Bouraná připojka plynovodu
BO.08 Bouraná připojka elektrické sítě

D 1.1.1.2 Návrh postupu výstavby

Postup výstavby je rozdělen na dvě etapy. V první etapě proběhne výstavba bytového domu
s hromadnými garážemi, včetně úprav parcely a souvisejících stavebních objektů. V druhé etapě
proběhne úprava uličního okolí v přímé návaznosti na první etapu. Počítá se s dočasným záborem
části ulice Školská v první etapě stavby a části pozemků patřící městu.
<table>
<thead>
<tr>
<th>Číslo SO</th>
<th>Popis SO / Technologická etapa</th>
<th>Konstrukčně výrobní systém</th>
<th>Souběžné SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO.01</td>
<td>Hrubé terénní úpravy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO.02</td>
<td>Bytový dům Školská</td>
<td>Zemní konstrukce</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stavební jáma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trysková injektáž navazujících objektů</td>
<td>SO.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Záporové pažení proti sesuvu půdy</td>
<td>SO.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Štěrkový podsy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Základové konstrukce</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Podkladní beton</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monolitická železobetonová základová deska – vodostavební beton</td>
<td>SO.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Základové pasy pod nosné zdi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrubá spodní stavba</td>
<td>SO.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nosný slouповý systém s průvlaky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické stěny – obvodové a stěny schodišťového jádra – vodostavební beton</td>
<td>SO.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické sloupy obdélníkového tvaru</td>
<td>SO.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické průvlaky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické stropní desky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické schodišťové podesty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prefabrikovaná schodišťová ramena</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydroizolační natavované pásy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrubá vrchní stavba</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stěnový nosný systém</td>
<td>SO.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické nosné stěny</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické stropní desky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické schodišťové podesty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prefabrikovaná schodišťová ramena</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické balkonové konzoly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osazení oken do obvodových stěn – uzavření objektu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Střešní konstrukce</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Železobetonové monolitické stropní desky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plochá nepochozí střecha se spádováním, hydroizolačními pásy a kačírkovým násypem</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montáž klempířských výrobků</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vnější úprava povrchů</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montáž lešení</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montáž zateplení objektu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenkovrstvá fasádní pastovitá omítka vnější části obvodových stěn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montáž hromosvodu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demontáž lešení</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrubé vnitřní konstrukce</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konstrukce SDK příček</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konstrukce zavěření pohledů</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrubé rozvody inženýrských sítí</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vnitřní tenkovrstvě omítky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hrubé podlahy</td>
<td></td>
</tr>
</tbody>
</table>
D 1.1.1.3 Návrh zdvihacích prostředků, výrobních, montážních a skladovacích ploch pro technologické etapy zemní konstrukce, hrubé spodní a vrchní stavby

Pro výstavbu objektu je navržen jeden věžový jeřáb Terex CTT 181-8 s maximálním vyložením břemene 55 m. Maximální nosnost na konci ramene činí 3100 kg. Nejtěžší přenášené břemeno je naplněný betonářský koš o váze 2740 kg a nejdále přenášením břemenem je také naplněná betonářský koš a části bednění konstrukce do vzdálenosti 53 m. Obě tyto hranice podmínky jsou navrženým jeřábem splněny.

Doprava stavebního materiálu na staveniště bude zajištěna pomocí nákladních vozů. Beton bude dopravován autodromickou vozidlem z betonárny CEMEX Czech Republic, s.r.o. – Kolín, Veltrubská 1527. Vzdálenost betonárny je přibližně 1,5 km a na trase se nenachází žádné výškové omezení. Minimální šířka komunikace pro provoz jsou navrženým jeřábem splněny.

Doporučeno stavebního materiálu na staveniště bude zajištěna pomocí nákladních vozů. Beton bude dopravován autodromickou vozidlem z betonárny CEMEX Czech Republic, s.r.o. – Kolín, Veltrubská 1527. Vzdálenost betonárny je přibližně 1,5 km a na trase se nenachází žádné výškové omezení. Minimální šířka komunikace pro provoz jsou navrženým jeřábem splněny.

Staveniště bude přístupné z ulice Školská, po realizaci spodní stavby bude možný přístup skrz garážový vjezd v ulici Příkrá. Beton bude na staveništi přepravován v betonářské haldě navržené na objem 1 m³ betonu. Na pozemku je vyhrazen prostor pro případné skladování materiálu, odpadů, či čištění bednění. Dále je navržen dočasný zábor části ulice Školská, kde se bude nacházet jeřáb a sklady. Dále po domluvě s úřadem města Kolín je navržený zábor části protilehlého pozemku v ulici Školská s následnou údržbou a vrácení v původním stavu.

<table>
<thead>
<tr>
<th>Číslo SO</th>
<th>Popis SO / Technologická etapa</th>
<th>Konstrukčně výrobní systém</th>
<th>Souběžné SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO.02</td>
<td>Bytový dům Školská</td>
<td>Dokončovací konstrukce</td>
<td></td>
</tr>
<tr>
<td>SO.07</td>
<td>Nový obrubník chodníku</td>
<td>Založení uličního obrubníku chodníku</td>
<td></td>
</tr>
<tr>
<td>SO.08</td>
<td>Nový chodník</td>
<td>Konstrukce uličního chodníku – litý asfalt</td>
<td></td>
</tr>
<tr>
<td>SO.09</td>
<td>Nová vozovka</td>
<td>Konstrukce vozovky v ulici Školská – litý asfalt</td>
<td></td>
</tr>
<tr>
<td>SO.10</td>
<td>Nové zpevněné plochy na parcele</td>
<td>Položení zpevněných ploch na parcele – zámková dlažba</td>
<td></td>
</tr>
<tr>
<td>SO.11</td>
<td>Nové venkovní schodiště</td>
<td>Betonáž nového venkovního schodiště v ulici Příkrá</td>
<td></td>
</tr>
<tr>
<td>SO.12</td>
<td>Nové oplocení parcely se sousedními pozemky</td>
<td>Konstrukce z betonového bednění</td>
<td></td>
</tr>
<tr>
<td>SO.13</td>
<td>Napojení na veřejnou komunikaci v prostore vjezdu a výjezdu garáži</td>
<td>Konstrukce vozovky v ulici Příkrá a napojení vozovky v ulici Na pobřeží</td>
<td></td>
</tr>
<tr>
<td>SO.14</td>
<td>Čisté terénní úpravy</td>
<td>Kompletace terénních úprav – výsadba nové zeleně</td>
<td></td>
</tr>
</tbody>
</table>
D 1.1.1.4 Návrh zajištění a odvodnění stavební jámy

Stavba se nachází na svažitém pozemku v podélném směru, převýšení na délce 90 m činí přibližně 4 m. Dále se pozemek strmě svažuje v místě dotyku s ulicí Příkrá, výškový rozdíl je v tomto případě přibližně 6 m. Základová spára objektu je v hloubce 7,65 m vůči nule, doplněna o prohlubně v místech základových pasů. Stavební jáma bude vyhloubena o 400 mm pod úroveň základové spáry pro vytvoření podkladní vrstvy. V místě výtahové šachty bude díky spodním dorazům bude jáma vyhloubena do hloubky 9,15 m.

Odvodnění stavební jámy bude řešeno pomocí obvodu pomocí drenážního odvodního systému. Zajištění samotné jámy bude řešeno pomocí záporového pažení po celém obvodu zamýšlené jámy a v místech navazujících objektů budou tyto objekty zajištěny navic tryskovou injektáží. Spodní stavba bude tvořena vodostavebním betonem proti tlakové vodě. Tato konstrukce bude od dilatována od ponechaného záporového pažení vrstvou XPS izolací o tloušťce 50 mm.
D 1.1.1.5 Návrh trvalých záborů staveniště s vjezdy a výjezdy na staveniště s vazbou na vnější dopravní systém

Vjezd na staveniště se nachází přímo z ulice Školská na místě dočasného záboru sousední parcely, které je ve vlastnictví města Kolín. Staveništní komunikace je nadále řešena prostorem pro otáčení vozidel a následným výjezdem zpět do ulice Školská. Místo vyložení a naložení materiálu bude zajištěno v závislosti na jeho poloze v místech dočasných záborů okolních parcel. Dočasný zábor části silnice v ulici Školská bude řešen kyvadlovými semafory, které budou řídit případný provoz v ulici.

D 1.1.1.6 Ochrana životního prostředí během výstavby

Ochrana půdy

Musí být zabráněno úniku jakýchkoliv pohonných hmot do podkladní půdy. Všechny stroje a vozidla musí procházet pravidelnými kontrolami stavu, aby se zamezilo případným říkům jakýchkoliv chemikálií. Manipulace s chemikáliemi a pohonnými hmotami bude prováděna pouze v místech k tomu určených na nepropustném podkladu. Čištění bednících prvků bude prováděno pouze na místech k tomu určených a na nepropustném podkladu.

Půda vytyčená při výkopu bude odvážena na skládku, při případné potřebě opětovného zasypání určených míst budenažena zpět.

Ochrana podzemních a povrchových vod

Splnění pravidel pro ochranu podzemních a povrchových vod je zásadní vzhledem k poloze staveniště do 200 m od toku řeky Labe.

Pro co největší ochranu podzemních a povrchových vod budou kromě opatření již zmíněných probíhat čištění aut a betonářských vozidel mimo staveniště v co největší možné míře. Při mokrém způsobu čištění na stavbě bude zamezeno průniku škodlivin do půdy a znečištěná voda bude zachycena v jímkách a odvážena k ekologické likvidaci.

Ochrana kanalizace

Do kanalizace nebude vypouštěn chemický odpad. K tomuto účelu budou zřízena zvláštní místa na staveniště sesvodem kontaminované vody do jímek, v nichž bude poté transportována k biologické likvidaci.

Ochrana před hlukem a vibracemi

V této lokalitě převažuje zastavěnost obytnými budovami, a proto bude kolem nich zřízen pomyslný venkovní chráněný prostor ve vzdálenosti 2 m od obálek budov. Dle hygienického limitu hluku pro
podobné oblasti nesmí denní hluk překročit 60 Db a noční 50 Db. Práce budou probíhat podle nařízení vlády č. 148/2006 Sb. o ochraně zdraví před nepříznivými účinky hluku a vibrací. Použité stroje a dopravní prostředky budou odpovídat předepsaným hodnotám. Kompresory budou používány pouze ty, které jsou dodavatelem určené pro používání v městské zástavbě.

Bude dodržován noční klid. Práce budou probíhat pouze v denních pracovních hodinách o všedních dnech. A to nejdříve od 7:00 a budou ukončeny nejpozději do 21:00. O vikendech a svátcích budou práce pozastaveny. Hlučné práce mohou být prováděny (při nasazení těžké mechanizace) pouze od 8:00 do 18:00 zhotovitel předem upozorňuje návštěvníky v zástavbě na nasazení těchto strojů.

Ochrana pozemních komunikací

Přilehlé pozemní komunikace (především ulice Mostní a ulice Na Pobřeží) nebudou znečišťovány pohybem vozidel, strojů, osob, nebo materiálu. Při odjezdu znečišťených vozidel a ostatních zmíněných prvků ze staveniště budou nejdříve řádně očištěny buď mechanicky, nebo tlakovou vodou.

V případě znečištění komunikace i přes dodržení výše zmíněných pravidel bude komunikace dodatečně vyčištěna.

D 1.1.1.7 Rizika a zásady bezpečnosti a ochrany zdraví při práci na staveništi, posouzení potřeby koordinátora bezpečnosti a ochrany zdraví při práci a posouzení potřeby vypracování plánu bezpečnosti práce.

Staveniště bude oplocené neprůhledným provizorním plotem do výšky 2 m. Vjezd na staveniště bude neustále hlídán a vybaven dopravním výstražným značením.

Všichni pracovníci stavby musí být řádně proškoleni ohledně bezpečnosti a ochrany zdraví. Všechni musí dodržovat všechna daná opatření a nesmí se na stavbě vzdáleno jejich pověření. Pro osoby pracující výkopu bude jízda bezpečným vstupem a výstupem pomocí žebříků, které se nacházejí na severní straně výkopu. Prostor stavební jámy bude opatřen zábradlí vysokým 1,1 m ve vzdálenosti 250 mm od hrany jámy.
E Interiér
E 1.1 Interiér ..3

E 1.1.1 Technická zpráva ...3
 E 1.1.1.1 Zadání a vymezení ...3
 E 1.1.1.2 Povrchové úpravy konstrukcí ...3
 E 1.1.1.3 Dveře ...3
 E 1.1.1.4 Okna ..3
 E 1.1.1.5 Výtah ...4
 E 1.1.1.6 Schodiště ...4
 E 1.1.1.7 Zábradlí ..4
 E 1.1.1.8 Osvětlení ..4
E 1.1 Interiér

E 1.1.1 Technická zpráva
E 1.1.1.1 Zadání a vymezení
Předmětem interiérové řešení je hlavní schodišťová hala v navrhovaném bytovém domě. Cílem zpracování je specifikace povrchů, výplní otvorů, schodiště a jeho zábradlí, osvětlení a dalších specifických prvků.

E 1.1.1.2 Povrchové úpravy konstrukcí
Systémová sádrová omítka
Práškově lakované ocelové stojny a příčle výtahové šachty – RAL 9005
Nátěr dveří, RAL 9005
Nárazuvzdorná keramická dlažba

Podlahy
Nášlapná vrstva je tvořena nárazuvzdornou odolnou keramickou dlažbou ACb – imitace kamene.
Dlažba je lepena na vrstvu lepidla.

Stěny
Železobetonové nosné stěny budou omítnuty systémovou sádrovou omítkou pro vytvoření hladkého povrchu.

Stropy
Na stropní konstrukci bude zavěšen stropní SDK podhled, který tak vytvoří možnost zapuštění světel a zároveň dovolí vést případné inženýrské sítě.

E 1.1.1.3 Dveře
Vstupní dveře do objektu budou dodány od firmy Reynaers společně s francouzskými okny, které se v objektu nachází. Tyto dvoukřídlé dveře jsou po stranách doplněny o velkoformátová neotvíravá okna. Samotné dveře jsou v antracitovém provedení s čirým prosklením o rozměrech 2000 x 3000 mm. Postup osazení a montáže dle technického listu výrobce.

E 1.1.1.4 Okna
Veškerá okna jsou dodaná firmou Reynaers, konkrétně série Slim line Cubic. Veškerá okna disponují tepelně izolačním dvojsklem.
E 1.1.1.5 Výtah
Je navržen jeden osobní výtah mezi schodišťová ramena. Výtahová šachta je navržena jako ocelová konstrukce, bez nutnosti výstavby dodatečných opěrných zdí. Dále je konstrukce šachty opláštěna skleněnými panely a vytváří tak menší panoramický výhled.

E 1.1.1.6 Schodiště
Schodiště jsou navržena jako železobetonový prefabrikát, který je uložen na ozub na stropní desku. Schodiště je v prostorech nadzemních podlaží dvojramenné a v podzemních podlažích pak trojramenné.

E 1.1.1.7 Zábradlí
Jednotlivé kusy zábradlí budou vyrobeny v montážní dílně a následně přivezeny na stavbu, kde dojde pouze k jejich ukotvení.

Madla zábradlí jsou z ocelového dutého prvku 30x30 mm se zaoblenými hranami. Madlo je kotveno do stěny přes přivařenou ocelovou úchytku U tvaru. Povrchová úprava je práškové lakování RAL 9005.

E 1.1.1.8 Osvětlení
Je navržen jeden typ svítidel, který bude ovládán pomocí pohybového senzoru.

L.01 Lumenwerx Pop Color square – stropní zavěšené
Kovové svítidlo s LED zdrojem světla. Teplota chromatičnosti 2700 K, Světelný tok 7000 lm, černá varianta.
LEGENDA

KERAČKOVÁ GLAZURA
Betonický dach, světle šedá

SALONĚNÁ ŠKLO NA VÝTAHOVÉ KLETO

LITÁ POLYURETANOVÁ STĚRKA

MÍNĚNÍ NAHÁZENÉ STRONCE SVÍTĚLO

SPECIFIKACE TYPU ZNARODLO

SPECIFIKACE SKLADY PODLAHY

SPECIFIKACE SKLADY STĚNY

SPECIFIKACE OKNA

SPECIFIKACE DVEŘÍ

INTERIÉR

E 1.1

DOKUMENTACE BAKALÁŘSKÉ PRÁCE

Část

BP

Místo stavby

Investor

+0,000 = 207 m.n.m - B.p.v

ul. Školská, Kolín

Kat. úz. Kolín - 668150

Měřítko

Datum

1:100

05/2022

Název výkresu

VÝKRESY PROSTORU SCHODIŠTĚ

Š. BP. E 001.0