
Instructions

The aim of the work is to design a framework for pipeline video processing in order to identify people

and their facial expressions of emotions. Design a Python configurable and modular framework for

real-time video processing and analysis and storing the results in a database. Using appropriate

image processing packages, implement modules for retrieving video from a camera or file, buffering it,

recognizing faces in the image, identifying them based on the stored photos, estimating the

expression of emotions in faces, exposing the analysis results via HTTP in JSON format, and storing

them in a selected database. Implement a web application for configuration and real-time

visualization of the analysis process. Document the framework.

Electronically approved by Ing. Michal Valenta, Ph.D. on 4 October 2021 in Prague.

Assignment of bachelor’s thesis

Title: Framework for configurable video analysis

Student: Benedek Molnár

Supervisor: Ing. Jan Hejda, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

FRAMEWORK FOR
CONFIGURABLE VIDEO
ANALYSIS

Benedek Molnár

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jan Hejda, Ph.D.
May 8, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Benedek Molnár. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Molnár Benedek. Framework for configurable video analysis. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of Acronyms ix

1 Introduction 1

2 Goals 3

3 Background and requirements 5
3.1 Hydronaut background . 5
3.2 Requirements . 5
3.3 The VizEmo package . 6

4 Requirements analysis 7
4.1 Modifiable and upgradeable structure . 7
4.2 Pipeline and buffering . 8
4.3 Integrating the face and emotion identifying package 8
4.4 Storing the information in a database . 8
4.5 Web application for configuration . 8
4.6 Exposing the analysis results via HTTP . 9
4.7 Documentation . 9

5 Identifying the components 11
5.1 The source . 11
5.2 Buffering . 11
5.3 Buffer manager . 12
5.4 Plugin . 12
5.5 Plugin manager . 12
5.6 Plugin-manager collector . 13
5.7 Output manager . 13

6 Structure 15
6.1 Use case diagram . 15
6.2 Domain model . 16
6.3 Class diagram . 17

7 Core system 19
7.1 Input sources . 19
7.2 Managing multiple input sources . 20
7.3 Buffering the frames . 20
7.4 Reading and writing JSON files . 21

iii

iv Contents

7.5 Managing the buffers . 21
7.6 Processing unit . 22
7.7 Plugin managers as processing presets . 22
7.8 Setting up the pipeline . 23
7.9 Communication between modules . 23

8 Extensions 25
8.1 Plugin template . 25
8.2 Example extensions . 26
8.3 Integration of the face and emotion detection algorithms 26
8.4 Saving the results to the database . 27
8.5 Universal database handler . 28
8.6 Snapshot viewer . 28
8.7 Saving data to CSV . 28

9 Web application 29

10 Testing and documentation 31
10.1 Testing . 31
10.2 Documentation . 31

11 Discussion 33
11.1 Accomplishments . 33
11.2 Observations . 33

12 Conclusion 35

A Application screenshots 37

Contents of the enclosed media 45

List of Figures

6.1 Use case diagram; Created by the author . 15
6.2 Domain model; Created by the author . 16
6.3 Class diagram; Created by the author . 17

7.1 Single stream pipeline example; Created by the author 19

8.1 Class structure of the plugin template; Created by the author 25

A.1 Web application—Active cameras; Created by the author 37
A.2 Web application—Modifying camera settings; Created by the author 38
A.3 Web application—Active buffers; Created by the author 38
A.4 Web application—Modifying buffer settings; Created by the author 39
A.5 Web application—Active plugin managers; Created by the author 39
A.6 Web application—Active plugins inside a manager; Created by the author 40
A.7 Web application—Modifying the data saver plugin; Created by the author 40
A.8 Web application—Active outputs; Created by the author 41

List of code listings

8.1 Source code example of the gray scale modifier plugin 26

v

I would like to express my gratitude to my primary supervisor,
Ing. Jan Hejda, Ph.D., who guided and helped me throughout this
project. I would also like to thank my family who endured this long
process with me, always offering support and love.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modifying the Work, by
combining the Work with another work, by including the Work in a collection of works or by
adapting the Work (including translation), and at the same time make available the source code
of such work at least in a way and scope that are comparable to the way and scope in which the
source code of the Work is made available.

In Prague on May 8, 2022 .

vii

Abstrakt

Předmětem bakalářské práce je návrh a vytvoření konfigurovatelného frameworku (systému)
v programátorském prostředí Python pro analýzu externích dat—videa. Prezentovaný úspěšně
navržený a naprogramovaný systém kontinuálně sbírá, zpracovává a exportuje data ve formě
„pipeline“. Framework systému je otevřený a umožňuje přidávat další funkce pomoci externích
rozšíření—pluginů. Systém má v sobě integrovaný speciální softwarový balíček pro analyzování
lidských tváří a emocí, který byl poskytnutý zadavatelem projektu. Tento analyzátor tváří byl
řešitelem projektu dále rozšířen o funkci pro ukládání výsledků analyzátoru do externí databáze
pro další zpracování. Celkový proces sběru, zpracování, analýzy i exportu surových dat, včetně
připojených a použitých rozšíření lze konfigurovat a sledovat pomocí webové aplikace.

Klíčová slova framework, video analýza, rozpoznávání obličeje a emocí, python, opencv, we-
bová aplikace

Abstract

In this project, we designed and successfully created a customizable Python framework for video
analysis. The system collects, processes and exports data in the form of a pipeline. The system
can be upgraded with plugins—extensions. We integrated a face and emotion analyzer package—
provided by the project assigner—and we extended it further, so we would be able to collect the
data output into a database. By collecting the output, it allows us to further analyze and process
the gathered data. The pipeline and each plugin can be customized through a web application
which also includes paths to reach the raw data.

Keywords framework, video analysis, face and emotion recognition, python, opencv, web
application, ENGLISH

viii

List of Acronyms

API Application Programming Interface
CSV Comma-Separated Values
FPS Frames Per Second

HTTP Hypertext Transfer Protocol
ID Identification
IP Internet Protocol

JSON JavaScript Object Notation
REST Representational state transfer
UML Unified Modeling Language
URL Uniform Resource Locator

ix

x List of Acronyms

Chapter 1

Introduction

The idea of this project came from the Hydronaut research group. The Hydronaut project
specializes in building underwater research stations which can be used for training, medical,
biological and psychological research. Their latest station, the Hydronaut H03 DeepLab, is
designed for long term stays for small groups of scuba divers.[1] These experiments require a
lot of precision and attention to keep everything smooth and safe, especially in these long term
operations. Every experiment requires a whole specialized team to control and keep the life
support systems online and to accomplish the goals of the experiment.

In this modern age, we can use the power of computers to automate the majority of the
processes. This will allow us to keep everything under control, make precise calculations and
predictions and to use our human resources for further development. The goal of this project is
to help to improve the experiments, by making the process easier and automated. This will free
up human resources who can work on more important parts of the project, while this automated
system will still work without intervention in the background.

This framework will allow them to monitor and record human conditions based on their
emotions. It is going to be a standalone system based on their face and emotion recognition
algorithms which are going to be integrated into our system. Every face picked up by the camera
is logged and paired with the corresponding emotion. This data is saved and stored in a database.
This will allow other systems to work and analyze this data. More life supporting systems can
be built based on this stream of information. From the start, it has to be designed to be easily
modifiable and upgradeable. This will happen through an API and a web interface which will
be able to change parameters and configuration in the pipeline.

1

2 Introduction

Chapter 2

Goals

The goal of this project is to make a framework for video processing. The two key features of the
framework are extensibility and configurability. The video frames need to be processed through
a pipeline. This means it has to be modular, where each module will be in a different role in
the pipeline. The framework has to work together with the video processing packages provided
by Hydronaut. After the analysis, the data must be uploaded and stored in a database. In the
case of longer frame processing, we have to buffer the frames to prevent dropping them. It must
have an interface which will read data from the database and display it. Besides, it needs to
be prepared to retrieve information in JSON format. The configuration will happen through
the web application or by manually editing the JSON preset files, which the program reads at
initialization.

3

4 Goals

Chapter 3

Background and requirements

3.1 Hydronaut background
This project serves scientific purposes and it is built to serve specific needs for the research group
Hydronaut. The Hydronaut Project is the designer and creator of the DeepLab H03 underwater
research station. In 2020, the H03 station’s crew on their first mission set a new national record
for the Czech Republic, for the longest time spent underwater (over 175 hours). This training and
research center is designed for long term stays underwater. As they mention on their website,
its usability is exceptionally broad.—“It includes research and training programs, hyperbaric
medicinal and psychological research, development and testing of technology, IRS, special army
units or space agencies training.”[1]

During the missions, they use multiple softwares and automated processes to monitor and
keep the crew alive. Besides that, they have to accomplish, log and document the goals set by
the partners and investors. This framework will help to set up an automated process which will
capture, analyze and log the faces and their emotions. It is going to be a superstructure on
their existing and working algorithm. This package, edited by my supervisor, Ing. Jan Hejda,
Ph.D., was given to me to serve as a basis for face and emotion recognition in my work. The
original project was created by Martin Vadlejch, called ”Real-time Facial Expression Recognition
in the Wild”.[2] This upgraded package has to be integrated in to my superstructure to be able
to process video sources in real time. We will analyze this and discuss the details in the following
sections.

3.2 Requirements
As the first step, we had to get acquainted with the assignment. We made notes on the key
functions and elements, which needed to be further clarified. After multiple consultations with
the supervisor, he presented us the vision and clarified the key functions. These functions and
technologies are going to be analyzed in the next chapter. The key features are:

Modifiable and upgradeable structure As we mentioned in the last section, the goal is to
create a framework which is going to be further integrated, used or extended. That means
the structure has to be well designed and has to be flexible.

Pipeline and buffering A basic pipeline processes a sequence of tasks. The tasks and processes
receive their input generally from the previous stage and transfer their output to the next
stage. We need to collect the data into a buffer in case of any of the processes is slower, so
we don’t lose frames from the real time footage.

5

6 Background and requirements

Integrate the face and emotion identifying package The VizEmo package given by the
supervisor needs to be integrated into the framework. This package contains the working
source code, materials, and libraries for face and emotion detection.

Storing information in a database After processing the frames, the information needs to be
uploaded into a database, from where it will be available for further processing.

Web application for configuration The configuration will happen through a web application
so it would be easily accessible from anywhere and would allow multiple connections in
contrast with the offline application.

Exposing the analysis results via HTTP The application needs to have the option to ex-
pose the analysis results in a raw JSON format via HTTP so other processes could be con-
nected on this source of data.

Documentation A key element is a good documentation. As we mentioned, this application
will be upgraded and integrated. A clear documentation will allow other developers to work
quickly and easily with the existing source code.

3.3 The VizEmo package
This package was provided for us by our supervisor and Hydronaut. The package contains a
functional and up to date version of the face and emotion identifying application, originally
created by Martin Vadlejch. The algorithm is written in Python using the OpenCV library to
gather information from the active video source.

The package has two important classes—“FaceIdentifier” and “FERecognizer”. These classes
handle the actual face identification and emotion recognition. The processes are run from a
central launcher, which allows a few initial settings. Based on our choice and initial configuration,
the data is exposed through an HTTP server or can be saved into a CSV file. Due to the
high cohesion and loose coupling rule used in this package, we will be able to re-use the main
components separately in my framework. This way, we will be able to process the data differently
without even touching the original launcher.

Chapter 4

Requirements analysis

In this chapter we are going to discuss, analyze and find possible solutions to the requirements.
But first we need to clarify what a framework is.

Framework is a basic software structure which serves as a foundation for software projects
with the purpose of making the development easier. It’s an abstraction in which it provides
generic functionality which can be re-used, modified, and extended. In other words, a framework
is a scheme, template that simplifies the process/work. Using frameworks gives us a lot of
benefits, like:

pre-built functions and structures can save us time,

pre-built and pre-tested parts, this implies a more reliable application,

easier testing and debugging,

it can help to prevent code duplicates,

code is more secure.[3, 4]

4.1 Modifiable and upgradeable structure
The key to this feature is to identify the components correctly. We will refer to these components
as managers later in this document. These components are going to handle the assigned processes.
The pipeline is going to be the organized line of these managers, where the information will flow
through them. By following the high cohesion and loose coupling rule, every manager will fulfill
one task and will be configurable on his own.

One of the awesome technologies that we probably use and interact with on a daily basis,
but seldom do we realize its existence is the plugin architecture. This architecture consists of
two components: a core system and plug-in modules. The idea behind it is to allow adding
additional features as plugins to the existing core application, providing extensibility, flexibility,
and isolation. The rules and the processes are separate from the core application, allowing us
to add, remove and change the plugins at any given point with no effect on the rest of the
application.[12]

The core system defines how the system operates and the basic business logic. The plug-ins
are independent, stand-alone modules which contain additional features and custom functions
to extend the core system.

7

8 Requirements analysis

4.2 Pipeline and buffering
As we mentioned in the previous subsection, an ordered line of managers is going to be the
foundation for our pipeline. The pipeline will begin with the camera—source whence we get the
information. After getting the information, it has to proceed into the buffer, which will store
the frame until it gets popped and processed. When the processing is done, the data can be
uploaded and logged into the database while the frame can be displayed or saved.

Based on the given information, the face and emotion identifier can be really slow depending
on the used hardware. The buffer is going to help us to store the frames until the previous
frame gets processed. This way, we don’t lose valuable information from the source. The buffer
shouldn’t be infinite as our hardware capacity isn’t infinite either. Our buffer will have a max-
imum capacity which will limit the number of stored frames. If the buffer gets filled up, then
based on its configuration it will start to drop the newest or the oldest frames to free up space
for the new incoming frames.

4.3 Integrating the face and emotion identifying package
Based on the idea of realizing a plug-in architecture mentioned in the section 4.1 the integration
can be solved via a plugin. From section 3.3 we know that the algorithm is started from a main
launcher file, but all of its components can be re-used separately. Following this idea, we can
implement a plugin which is going to replace the role of the launcher. We can initialize the
needed classes when we load and initialize the plugin. This way, we will be able to call the plugin
to process our data any time during the process.

4.4 Storing the information in a database
At first sight, this idea may seem really easy. By following the thought process and projecting
this idea on our plugin architecture, the solution gets more complicated. We have to take into
consideration that every plugin will have a different output. All the output data will have a
different structure. The data may or may not need to be stored in one database or multiple
databases.

Implementing a function right into the face analyzing plugin would allow us to connect and
save to the database would solve this problem. This way, we could easily maintain the structure
between the output and its table structure in the database. However, this would not solve the
problem for any other plugin which would need its own implementation for the same functionality.
This would violate the principles of our framework.

The solution to this problem could be a centralized implementation of a database handler in
the core system. By having a centralized solution, any of the plugins can create and maintain a
connection on their own if it is needed. The benefits are that we can save to multiple different
databases, every plugin can define its own data structure and will allow better configuration.

4.5 Web application for configuration
For configuration of the managers, the plan is to make a static web application. By static
application we mean that after the request the server will return an HTML page to the user
agent which will render it.[6]

The main functionalities are to display and be able to change the configuration of the man-
agers. Regarding Python, we have a lot of technological options to choose from. Here we are
going to compare two of them.

Exposing the analysis results via HTTP 9

Django is a full-stack framework. It is a high-level Python web framework that encourages
rapid development and clean, pragmatic design. This framework offers a standard method
for fast and effective website development. The primary goal of Django is to create complex
database-driven websites. [7, 8]

Flask is a micro framework, which offers basic features of a web application. This framework
has no dependencies on other external libraries.[7] It includes a built-in development server,
unit testing support, and with Jinja2 it allows us to use page templates. It provides enough
flexibility to expand the application quickly and easily.

In conclusion, we are going to use Flask as the key to our core system. With this framework
we can create a flexible RESTful API, which can take care of the configuration. In our case, the
representation state is going to be HTML except for the functionality where we expose the data
in JSON.

4.6 Exposing the analysis results via HTTP
As we mentioned in the last section, we are going to use a REST API which will allow us to
communicate with the system via HTTP. This gives us the option to create countless URLs
which fulfill our needs. In 4.4 we presented a problem and a concept for the solution. In this
topic the same problem arises. Every plugin may or may not have a data output. Each of the
outputs could be different.

If we extend the previously mentioned concept, we can use the same logic to also solve the
problem with this functionality. If necessary, the core system can ask if the plugin has a data
output or not. In case if there is a data output, the data can be requested and processed further.

4.7 Documentation
Through the process, we have to make sure that every part is well documented. This way, the
future developers will be aware of all the thoughts and logic behind the modules and elements.
Python offers us multiple choices for documentation. We have two basic built-in options, which
are the comment and the docstring. A comment is a short string to clarify the purpose of the
commented item. It helps the programmers better understand the functionality and intent of
the commented element.[9]

A Python docstring is a short description used to document a Python module, class, func-
tion or method, so programmers can understand what it does without having to read the
documentation.[10] After having our Python code documented with docstring we can use Sphinx
to auto generate our documentation. Sphinx is a powerful documentation generator that has
many great features for writing technical documentation including for example syntax highlighted
code samples and the ability to generate web pages, printable PDFs and more.[11]

10 Requirements analysis

Chapter 5

Identifying the components

In this section, we are going to identify and discuss the main components of our core system and
pipeline.

5.1 The source
Starting with the source and input. We will refer to this element as “camera”, however our input
can be a video file, web camera or IP camera. Our structure should be able to manage multiple
different sources at once, so each of the inputs will be represented as an object of the camera
class. We are going to give an ID for each camera this way we can easily refer to them, and a
name so it could be easily identifiable for humans too. A camera needs to hold the CV2 capture
unit which will provide us the frames from the source, and we will hold the source path too, so
later we could refer to it in the configuration.

Most of the time the sources, for example an IP camera, support different video capturing
setups. This is an important configurable element. We should be able to read and change the
current configuration. So that we don’t always have to reconfigure the cameras, we are going to
make default JSON presets. This way, we can easily set up multiple profiles or edit the existing
ones. The camera will read a default preset when it gets initialized.

The camera does not always need to be active. We may just created it as a preset or for later
sessions. We are going to give it a start and stop function. This will give us the ability to use it
only when we are processing the input. The start will initialize the source and create the CV2
reader, while the stop will release this reader.

5.2 Buffering
The buffer is a really important part of the pipeline. This will keep our frames safe and prevent
flooding our system. This module will be a collection of frames. We are going to use a queue
for this purpose. We will process the oldest frame—first element—while we are filling up the
collection from the rear. To not to mix the frames from different cameras, every buffer will be
connected to one camera. The buffer is going to be filled with a function running on a separate
thread to keep the frame collection outside the main process. This way, we will be able to run
multiple buffers with multiple cameras.

The buffer will have three modes to choose from. Infinity mode will ignore the limit of the
buffer, while modes “throw-new” and “throw-old” will define which frames to drop. The limit
and the mode will be set at initialization from a default configuration file. By using the same

11

12 Identifying the components

method as at the camera, we will have a default preset which can be changed, or the user can
define his own presets.

5.3 Buffer manager
As we discussed in the last section, every buffer is going to have a filler function which will run
on its own thread. So we could keep everything under control we are going to create a buffer
manager. This will maintain a collection of our existing buffer objects, and we will be able to
control them through this manager. The key function of this class is the frame collector function.
This function will be sent to a new thread which will collect the frames from the given camera.
After collecting the frame, it will be added into the connected buffer. We are going to need a
start and a stop function. These functions are going to create, start and join the active streams,
threads.

5.4 Plugin
Plugins are going to be the most modifiable and extendable elements. These are going to be
the movable and changeable modules in the pipeline. We are going to define a plugin abstract
class, which is going to serve as a template for further use. All the active plugins are going to
be managed by a plugin manager. Based on the template, we can implement different plugins
for different purposes. Some plugins may require an initialization before processing, so we are
going to have an initialize function which is going to be called automatically for every plugin
at registration. They will share a process method which will define the main function for each
plugin. This function is going to be called in the pipeline. Function process and init are going
to be defined as abstract functions, so the subclasses must implement them.

As we discussed in the previous section from some plugins, we may want to get information.
The problem is that the all the different plugins may or may not have data output. To solve
this problem, we have to create a universal function which will meet the needs of all the different
plugins. We can create a function in the template, which is going to be predefined as there is
no data output. This return will be handled by the different managers and applications. On the
other hand, if the plugin needs to have a data output, it can overwrite the pre-defined method,
and return the needed information.

Each plugin can define its own variables and conditions in the initialize function. However,
editing these parameters can be really tricky. We have to get the information, edit them, the
plugin has to read them and reinitialize itself. The first thought which comes into our mind is to
make them as JSON configuration files as we did with the cameras and the buffer. In the case of
the buffer and camera, we are trying to create presets from which the module can initialize itself,
but they are mostly constant parameters. However, the configuration for the plugins serves a
different purpose. They are conditional variables which change the state of the plugin based on
the needs and human interaction. We have to reach them quickly and easily. In addition to this,
every plugin would require its own configuration file.

The solution for this feature can be presented with a famous quote from Mahatma Gandhi,
“If you don’t ask, you don’t get it.”. We can ask the plugin, what parameters does it offer for
configuration. We can edit those parameters and send them back to the plugin. The plugin will
read and parse the information and set up the given values.

5.5 Plugin manager
As it’s name says, it will manage the plugins. The purpose of this class is to load and register
new plugins and to keep track of the active ones. This way, we will be able to quickly and easily

Plugin-manager collector 13

identify and reach the given plugin. This will be the active module in the pipeline which gets
the data, gives the task for the plugins the process the input. After the processing is done, it
forwards the data to the next module. A handy feature would be to change the order of the
processing between the plugins. By keeping track of the plugins in a list, we could easily modify
their order. By modifying the processing order, we can achieve more flexibility and completely
different results.

5.6 Plugin-manager collector
By introducing the feature to process multiple inputs, we are forced to have a collector of the
different plugin managers. This way, the plugin managers will serve as virtual presets, where the
plugins are the “filters” in our data line similar to filters on pictures.

5.7 Output manager
The output manager will be our key launcher for the whole process. It sets up the whole pipeline
with the chosen options–camera and plugin manager. This module is the end point of the process.
In keywords, the frame and data travels from the source through the buffer, the plugin system
which is the main process unit of the pipeline, ending in the output manager which will decide
what to do with all the data at the end of the process. We are considering three options, live
view, save to file and processing only.

The live view is an option where the processed frame gets displayed in front of the user. It
creates a window and displays the incoming frames to the output. During continuous processing,
it can serve as a monitoring unit if the source is live, or a playback unit in case of a video source.

The option of saving into a file can be a useful option for later documentation. This option
will take a filename and will save the output of the whole process to the video file.

Only processing mode can be useful for projects where the main work is happening inside
the plugins. In our case, the processing will happen mostly inside these extensions. This means
the face and emotion recognition will save the data into a database. So the source is already
processed and the data is already saved before it gets into the last output module. In case there
is no need to showcase the frames or to save them into a file this mode will run in the background.

14 Identifying the components

Chapter 6

Structure

In this chapter we will introduce you to the design of the software architecture we are planning to
realize. We are already familiar with the requirements and their details, with the key components
of our system, so we can start modelling the architecture of our software. We are using UML
diagrams to visually represent the design. This way, we will be able to easily track our progress
through the implementation, and it will help other developers to see through the structure.

6.1 Use case diagram
We are going to make a use case diagram (6.1) to recapitulate the requirements in keywords.
“Use case diagrams are used to graphically depict a subset of the model to simplify communi-
cations.” [13] The key use cases are when we are manipulating with the components, adding,
removing or modifying the setup. Besides that, we have to have implemented other features
based on the requirements.

Figure 6.1 Use case diagram; Created by the author

15

16 Structure

6.2 Domain model

Domain models are a way to describe and model real world entities and the relationships between
them. It is a great tool for controlling the complexity of the system under development. Domain
models reflect our understanding on the relationships between the entities and responsibilities
that cover the problem domain.[14]

In this project the created domain model (6.2) will really help us to identify the relationship
between the entities. This way, we can see all the overlapping components, from where to where
we need to establish the connections. If we are able to identify the relations correctly, the better
we can enhance the extensibility.

To summarize it in a few words, we can see the outline of our pipeline—the frame is coming
from the camera through the buffer into the processor which ends with an output. The user can
make an implementation on the controller, or he can use our application to modify the given
managers.

Figure 6.2 Domain model; Created by the author

Class diagram 17

6.3 Class diagram
Based on our domain model, we are going to create a static class diagram (6.3). A class diagram
will give us a static view of the application, visualizing and describing different aspects of the
system. The benefits of making a class diagram are that it illustrates the data models, gives a
better overview and it servers as a foundation for the implementation.[15]

On the picture we can see and differentiate the core system from the plugin system. We were
using the elements, attributes and functions discussed in chapter 5.

Figure 6.3 Class diagram; Created by the author

18 Structure

Chapter 7

Core system

In this chapter we are going to discuss the implementation of the core system. The core system
includes modules like the Cameras, CameraManager, Buffer, BufferManager, PluginManager-
Collector and the OutputManager. The goal is to create a configurable pipeline which can be
extended with the extensions. These extensions will be the processing modules. The reason why
we are working with managers instead of single instances is that we want to accomplish a struc-
ture where we are able to handle multiple streams at the same time with different configurations.

We created a simple example to symbolize what a single pipeline would look like for one
stream. The frame is captured in the camera, transferred to the buffer where it is stored until

Figure 7.1 Single stream pipeline example; Created by the author

it is not requested by the processor (PluginManager). There the frame is processed by all the
active plugins, then it is sent to the OutputManager where the process ends. Here the frame
may be displayed or saved into a file.

Our actual pipeline is going to work a little bit differently because of the threading and the
multiple streams. Let’s look at them one by one.

7.1 Input sources
We are going to take a look at the camera element first. This is the first station in the pipeline.
The job of the camera module is to retrieve information from the source. This information is
what we call a frame.

We are using the OpenCV library to work with the image and video related elements.
OpenCV is an open source library for computer vision and image processing. In this library
the frames are represented with three dimensional numpy arrays containing the information
pixel by pixel.
ID and name — For each camera we gave an ID and a name. The ID is for internal use, so

we could parse and reach the camera more quickly. The name is the name of the camera, so

19

20 Core system

the user could differentiate the cameras more easily. This name is going to be displayed on
the web application.

source — As another attribute we are saving the source. This attribute is going to be the
parameter when we are creating the recorder. This can be a built in camera which can be
referenced with an integer, IP or file destination which is represented via string.

recorder — Our recorder is an instance of cv2.VideoCapture which takes our source as a pa-
rameter. This element provides us the functionality, so we would be able to read from the
camera.

isInUse — A boolean value to keep track of the current state of our camera. This attribute is
true if we have the recorder set up and the camera is ready to provide a frame.

configPath — Contains the path for a camera preset. When a camera is started, it will read
this preset and initialize the recorder based on the values read from the preset.

Besides the getters and setters we are implementing a few important functions: start(), stop(),
getFrame(), setConfig().

The reason behind creating the start(), stop() is that if we set up the cv2.VideoCapture it
automatically activates the camera. We don’t want the camera to be active all the time. It
could cause errors if it is already in use or it will take away the option to use it for any other
purpose. With these methods, we only activate the camera when it is needed. This way we
prevent blocking any other activities on the device. At starting up the device, we read the preset
from the configPath and change the settings on the recorder. Function stop() releases our recorder
and the camera is no longer blocking.

Our getFrame() function is called to get a frame from the source. We set up a repeater to
repeat the request until it gets a frame or the repeater reaches the maximum value. This serves
as an internal time out system. If we don’t get a frame in two seconds (at thirty frames per
second) we return a negative answer, which is handled by the caller function where it ends the
process.

7.2 Managing multiple input sources
Based on the fact that we can have multiple cameras, we need a manager that keeps track of
them. This manager does not have any special assigned tasks, only to keep a list of the available
cameras. This module is a middle man between the camera object and the next module in the
pipeline. However, this manager will be useful when we are making the user interface for the
application. With this module, we are able to list our cameras easily, because we are already
tracking them.

source — Our only attribute is a dictionary which is holding the available cameras. In this
dictionary the cameras are differentiated by their ID’s.

We have implemented multiple getters and setters for basic interactions with the manager and
deeper interactions with the cameras. These functions will allow us in the application to interact
with the cameras without getting the camera object.

7.3 Buffering the frames
The buffer is going to be the next milestone in our pipeline after getting the input from the
source. It’s task to keep the frames until processing if our processing unit can’t process the
earlier frames fast enough.

Reading and writing JSON files 21

camera — Each of our buffer object has an assigned camera from whom it gets the frames. This
decision to pair a camera to the buffer was born to avoid the amalgamation of frames from
different cameras. Thereby each buffer will be able to collect frames only from one camera.
That is it can’t happen that we get a foreign frame into this stream.

queue — We are using a queue to buffer the frames in the order they got collected—it’s FIFO
property. The Queue Python library gives us a regular queue option which already implements
all the locking semantics for threading which we need.

limit — Limit is a custom integer limit which sets the maximum size for the queue and it is
tracked by this class. However, we could set the maximum size of the queue in its constructor,
we decided to track it manually, so we would have the option to change the queue size while
we are running the application.

amount — This is a counter which saves the number of frames currently in the buffer. This
variable helps the functions to work correctly in the current mode.

mode — Mode is a string variable which holds the type of the buffer. Our buffer currently
supports three modes. By changing this variable to a different type, we can modify the
behavior of our buffer while our application is online.

The buffer is initialized from a default configuration file, from where it sets the limit and the
mode. If there would be any error at reading the default file, it is initialized with the in-code
setup. We have a function to read a file from the path given in the argument and change the
configuration based on the parameters in the file. We have the option to set the mode and limit
separately, these functions are used in our web application too.

We have a requestFrame() function which requests a frame from the paired camera and handles
the frame based on the current mode. In infinity mode, we allow the buffer to go infinitely, while
in the throw-old mode, if the buffer is full, we pop the oldest frame and place in the new one.
The throw-new mode it skips the frame and leaves the buffer in its current form. On the other
hand the function popFrame() takes the oldest frame from the queue and returns it.

7.4 Reading and writing JSON files
As we mentioned in the previous sections, we are reading the configurations from JSON files.
We created a simple extension which handles our JSON transactions and uses the same return
codes as we are using in the whole project. This makes it quicker and easier to read and write
the files at any part of the project with a simple line.

7.5 Managing the buffers
To keep the video stream live we have to collect the frames among everything else. The buffer
manager is not really a buffer manager, rather it’s a thread manager. We are creating threads
for the functions which fill up the active buffers. We have one attribute:

liveCameraThreads — This variable is a dictionary where we pair the cameras with the active
buffer filling thread and the connected buffer.

We are starting the process with the setCameraLive() which activates the camera with its start
function. After setting it active, it creates a new buffer and pairs it with the camera. For the
new buffer it launches a thread and saves it in to the dictionary. This way we keep all the created
elements for later use.

The opposite of this function is quitLive(). This function stops the frame collection, deacti-
vates the camera and clears the entry in our dictionary.

22 Core system

7.6 Processing unit
In this section, we are going to discuss the processing unit of our pipeline. We are referring to
the plugin manager with this name, because all the image and data processing happens in the
plugins. In any other part of the pipeline, we are not manipulating or processing the frames, we
are just transferring them. The plugin manager is a set of plugins which can be used as a preset
to manipulate with the frames. Its main task is to load and register new plugins, keep track of
them and help to make the modifications within the plugins.

To load and register new plugins we are using a Python library called importlib. This package
provides us the implementation of import, which enables us to load different packages even when
our pipeline is already live. This gives us a wide range of options to configure the process.

We need to be aware that every package can be loaded only once. If we would like to run
multiple streams with the same plugins, it would load them several times, which would cause
an error. To solve this problem, we created a class attribute to save the links referring to the
packages. In Python the class attributes are shared between all the classes while the instance
attributes belong to only the given instance. If we would like to add a plugin to the manager
and it’s not registered yet, we will load and register it. In case it is already registered, we are
using the link to create a new instance in the new manager.

registeredAll — This is our class attribute. It’s a dictionary where we keep all the registered
plugins with their name as the identificator.

name — We are keeping a name for the manager to be easily recognizable for humans. We are
setting its name when we are creating the manager.

orderNumber — It is an integer counter, so we would be able to give unique IDs for the
incoming plugins. We are using this unique ID to order the plugins—which defines the
processing order.

activePlugins — A dictionary to hold all the plugins activated in this instance of plugin man-
ager. The plugin is registered in the dictionary with its given ID.

Besides the setters and getters we have the functions loadPlugin() and registerPlugin() which
take care of loading and registering the plugins. For all functions we are using thread blockers
until we realize the task. The reason for that is that we are working with the processing units.
When the stream and processing are active, any change in the processing order could cause our
application to crash. If we would like to edit the processing unit, we have to wait until the
current iteration finishes, so we could modify the unit and continue the processing. This way,
any modification can be done safely.

We implemented two functions moveUp() and moveDown() so we would be able to change
the order in the dictionary. By changing the order, the processing order changes too. This
provides us the option to set up and easily modify the order in which the frame gets processed.
By changing the processing order, we can achieve different output results.

However the key function of this class is the useAll() function. This is the function which
launches the processing on the input. We take all the currently available plugins and send in
the input arguments. Each plugin takes the needed data from the arguments, processes it and
returns it back. Then the fresh set of arguments is provided for the next plugin. This opens up
the possibility for the plugins to communicate with each other.

7.7 Plugin managers as processing presets
By creating a plugin manager, we create a set of plugins which is connected into the pipeline. We
may want to create, set up and initialize the set before it is connected into the pipeline or as we

Setting up the pipeline 23

discussed, we may want to run multiple streams. Each stream requires its own plugin manager.
To sum up, this gives us two new requirements regarding this part of the project. We need to
be able to set up the manager beforehand, and we need to be able to set up multiple managers.

This is where we introduce the module which will collect all our plugin managers. It’s task is
to keep track of our created plugin managers. It’s a simple class with one class attribute which
registers the new managers. Besides that, we implemented the needed getters and setters. This
manager will hold all of our plugin managers and it takes its position between the buffer and the
output.

7.8 Setting up the pipeline
Our last element in the pipeline is our builder element. The outputManager joins all the com-
ponents together to form a pipeline and to get a video stream up and running. It decides what
mode we are going to use and what is going to happen with the frame at the end. It currently
supports three modes.

The live view is a mode where the frames are displayed in a window on the host computer. It
is a video playback with live data from an active camera. It can be used as a monitoring system
just like at surveillance camera systems.

It supports a save to file mode where the frames are exported to a file. This mode takes two
extra arguments as input parameters. The first one defines the path and name of the file where
it needs to be saved, the second defines the FPS. By modifying the output FPS value, we can
speed up or slow down the video. This mode gives the user the option to document and archive
the footage for later use.

The third mode it supports is the processing mode. This mode only keeps the process running.
It drops the frames at the end of the processing. It is useful when our processing units produce
outputs which are saved, and we don’t have to see or save the actual output footage.

outputs — We initialize this module with all of our managers. Besides that, we have a dictionary
attribute where we are going to save our currently active outputs. An element in this archive
contains the pluginManager we are using, the created thread and the mode it is running in.

We start the whole process with the function start(). It checks if the given components exist or
not, selects and launches the chosen mode in a new thread. By launching it in a new thread, we
give the user the option to run multiple streams with multiple different components. The stream
can be ended with the function stop() which shuts down the components, joins the thread and
deletes the entry in our archive.

When the components are launched, the buffer starts to collect frames from the paired camera.
It requests a frame from the buffer extends the arguments with the new frame and run the useAll()
method from the processing unit with the new set of arguments.

7.9 Communication between modules
As we mentioned in the previous sections, we are communicating with a collection of arguments
between the modules. We are using a dictionary to save multiple elements with specific keywords.
The modules can extend this collection or use parameters from it. Each module can get the data
it needs from the supported keyword.

If the dictionary does not have the needed keyword, the module will skip its task and the
process will continue with the next module. A missing keyword can indicate, for example,
that the processing units are in the wrong order and the consumer is trying to reach data that
the producer hasn’t produced yet. To solve this problem we implemented functions to change
the order of the processing units, discussed in section 7.6. This idea gives us the flexibility to
process multiple different elements and provides the option to accept pre-defined arguments.

24 Core system

This technique is used, for example, in the situation where we need to conduct the file name and
FPS count from the user to the file saver if the save to file mode is chosen.

Chapter 8

Extensions

In this chapter we are going to discuss the solution and implementation of some key requirements.
In the last chapter we talked about the core system, the pipeline and their main components,
while in this chapter we are going to look at the plugins which extend the core system. These
plugins contain the algorithms to compute, analyze the frames or to operate with the data. These
plugins are handled by a plugin manager which we discussed in section 7.6 and the communication
happens with the method mentioned in section 7.9.

8.1 Plugin template
This abstract class serves as our base template for further implementation for the plugins. It
defines the base attributes and it defines or implements some crucial functions. All the other
plugins should extend this class. A not negligible thing to mention is that all the future plugin
implementations need to have a class named Extension. This is the name we are looking for at
extension registration.

Figure 8.1 Class structure of the plugin template; Created by the author

The class defines a name variable which helps us in the identification in a more human
form and it defines a Boolean variable called active, so we would be able to turn on or off the
functionality of the extension.

Besides the getters and setters, we have two abstract functions. The first function is the
function init(). It allows the developers to implement a personalized initialization function which
is called in the constructor of the plugin, or we can use this function to manually re-initialize our
plugin. This function should set up the needed environment for the processing function.

The second abstract function is the process() function which takes a collection of arguments
explained further in section 7.9. This function should contain the frame or data processing logic.

25

26 Extensions

To keep the processing going, it has to return the same or modified set of arguments. This
function is called if the plugin is registered in an active pluginManager.

As we mentioned in section 5.4 a huge problem is the personalized configuration of the plugins.
Each plugin will have a different process logic with a different environment with different needs.
We are going to solve this problem with two methods. The first step is that we are going to
request from the plugin what variables does it offer for configuration. This step is realized with
the function edit() which returns a dictionary with the variable name and its value. It is already
implemented to support the variable to change the plugin state. The second step is to send back
the edited dictionary for the function update() which will then parse the data and update the
variables. Both of the functions should be overwritten by the developer of the plugin.

8.2 Example extensions
To show an example, we implemented two simple plugins. They are both OpenCV frame mod-
ifiers, converting the frame to a gray scale or inverting the colors. In these examples, we only
overwritten the init() function to set the correct name and the process() function, so we could
modify the frame. We kept the original edit() and update() functions defined in the template. To
present the simplicity of creating a plugin for our system, please see the example code below (8.1)
(this is the entire file content of the gray scale modifier).

from plugins.pluginTemplate import Plugin
import cv2

class Extension(Plugin):

def process(self, args:dict):
if 'frame' in args and self.active :

grayImage = cv2.cvtColor(args['frame'], cv2.COLOR_BGR2GRAY)
args['frame']=grayImage

return args

def init(self):
self.name = "Translate frame to grayscale"

Code listing 8.1 Source code example of the gray scale modifier plugin

8.3 Integration of the face and emotion detection algo-
rithms

As we analyzed the original sources in section 3.3, we came to the conclusion that we can reuse
most of the parts only by implementing a new launcher. That’s what we realized in the form of
a plugin. However, we had to tweak the paths in the package so it would be compatible with
ours.

We have overwritten the init() function to set up and initialize the emotion recognizer. This
part of the package tracks the faces and analyses their emotions. In initial condition the face
identifier is turned off due to it’s high need of computing power. The face identifiers task is
to recognize the faces—listed in the designated folder in the form of JPG files—on the frames.

Saving the results to the database 27

The analysis returns a data package which is then registered in the arguments collection for
further use. The original frame in the arguments is replaced with the new frame including the
visualization of the analysis.

The edit() and update() functions are set up that way, that they enable the user to turn on
the face identifier. If this happens, it re-initializes the instance with the new setup.

8.4 Saving the results to the database
As one of our requirements says, we have to save the analysis results into a database. This
plugins purpose is to fulfill that requirement. We chose to implement this to support a classic
MySQL database, but using the same principles, we can create duplicates of this plugin which
can be modified to support different types of databases. To moderate the amount of data coming
from the analysis, we are going to make an average on a predetermined number of data. This
can be set by the user.

To start from the beginning, we are going to start with the initialization. In this function we
set up the needed variables and the environment to work with.

name — As defined in the plugin template we set up the name of the plugin.

login — This variable refers to a path where we have a JSON file containing the login details
like host, name, password and the database.

sessionTable — This string variable represents the name of the session table. The session
table contains information about the details of the current session. The session is defined
as one initialization of this plugin. The structure of the table is defined by the function
tableSession().

frameTable — Similar to the sessionTable variable, holds the name of the frameTable. The
frameTables structure is defined by the function tableFrame(). It logs the details of the saved
data connected to the correct session. Every data upload creates a new row in this table.

faceTable — Holds the name of the table handling the faces. As we discussed the frameTable
logs the uploads, this table logs the data belonging to the faces connected to the correct frame
log. The table structure is defined by the tableFace() function.

dataBuffer — As we mentioned, we are going to average some of the data. This list will keep
the frames until they get processed and saved.

bufferSize — This number sets the limit when to process the elements kept in the dataBuffer.
The default value is set to five, however it can be changed through user configuration.

currentStage — Keeps track of the status of the dataBuffer. Used to determine when do we
reach the limit.

mode — The value of this Boolean variable defines in what mode will the averaging work.
We have two modes. The first mode is the library mode where the averaging happens with
identified faces, so we average the data using their identity to differentiate the data packages.
The second mode can be used for single person video input, for example, video calls. We
choose the closest face to the camera and only average its data. It can happen without
identification.

When initializing the plugin, we set up a connection with the database, and we create the tables
if they don’t exist yet. The overwritten process function only checks what mode we are using
and calls the appropriate function. As we mentioned, the modeLibrary() averages by identity
while the modeLargest() only averages the closest face—largest in the frame.

28 Extensions

We created a helper class Person to help us manipulate with the data. It contains getters,
setters and parsing functions. It helps us to quickly manipulate the data or to get them in the
correct form.

We implemented a function called insert(). The purpose of this function is to make the
correct SQL requests to save our data. We are communicating through a universal database
handler which we created to simplify the process and make it available for any plugin. We are
going to present you that in the next section.

This extension will have an important data output, so we overwrote the getData() function
defined in the pluginTemplate. This function will request the last log in the database belonging
to this section, parse the information using the Person class and return the data in JSON format.
This function is used in the application to get the needed information for the visualization and
for the function to provide raw JSON data.

8.5 Universal database handler
We created a manager to provide easy accessibility to databases for any plugin. To initialize it,
we need a JSON file with the login credentials. It reads the file and creates a connection with
the server if the credentials are correct.

To connect to a database we have the function connectDatabase() which takes the name of
the database as parameter. If the database exists, it sets up the connection to it. If the database
does not exist yet it calls the createDatabase() function which creates the database and extends
the login file with the name of the database. This serves the purpose that next time it can
automatically connect to the right database.

We implemented an execute() function which handles SQL commands with or without pa-
rameters, with or without commit. In case we expect data from the query, the function returns
the used cursor, so we are able to fetch the information.

8.6 Snapshot viewer
As an extra feature we added, is a plugin with a useful data line. The plugin enables the user to
put it anywhere between the plugins and it will return a JPG snapshot of the current state of
the processed frame.

Every time when the processing unit goes through this plugin and calls the process function,
it saves the current frame to an instance variable. When the getData() function is called, it
makes an image response with the stored frame.

It can be useful for further implementation, debugging or quality control between specific
plugins. We are going to use it in our web application.

8.7 Saving data to CSV
This extra plugin gives the user the ability to export a larger amount of data straight from the
pipeline. This module currently supports our face and emotion analyzer.

In initialization, it opens a default file which can be changed by the user. This file will be
the output file containing the data. The processing function gets called in every iteration which
saves all the information regarding the analysis paired with a timestamp into the file.

Chapter 9

Web application

We chose to build a Flask application to extend our core system with a user friendly setup. The
goal of the web application is to simplify for the user the process of setting up a pipeline and to
make the configuration options available. This way, anybody will be able to set up and configure
a basic pipeline through a graphical interface without any programming knowledge.

We are going to create Flask routes to set up the required URLs for our application. Each
URL will trigger a different function or functionality. Currently, this application is going to be
our main launcher, so we set up all the managers here, so we would be able to reach them in the
functions fulfilling the URL requests.

Thanks to Jinja2 template engine we can create HTML template files, which we can render
in our functions via the render_template() function. We created a base template which contains
the styles and the header—menu—for our website with an open body which is going to be filled
with other templates.

Starting with the index—home—page which presents the application and provides basic in-
formation for the user. From here we can use the menu bar to navigate to other parts of the
application. The four key pages include camera, buffer, plugins and output.

On the camera page we are able to add or delete a camera, or we can choose to modify
it. All the added cameras are listed including their name and source (see the attachment A.1).
Thus, we can easily keep track and modify them. If we hit modify at a camera it renders us
a different template, where we are able to change the name and the source of the camera (see
the attachment A.2). If something goes wrong, we are using flash messages to display the error
message for the user. This method is used on all of our pages.

Under the buffers page we have all the active buffers listed (see the attachment A.3). We can
configure our buffers here. We can modify their size limit and their mode (see the attachment
A.4). The specified settings become active immediately. However, if we don’t have any active
streams yet, on this page we will get a reminder message to start a stream.

Under the plugins section we can find our collection of plugin managers. If we don’t have
any, we can add a new any time. This page lists all the added managers with their collection
of plugins for a better overview (see the attachment A.5). By hitting the modify button, we
can edit them one by one. In the editor of the managers we can add new plugins, modify the
existing ones, re-order them or use their special functions like the data line we created (see the
attachment A.6). If the plugin does not support the data function, we are going to get a flash
message informing us about it. If it does support it, it will redirect us to the collected data. By
clicking on the modify button, we get to a customization page similar to the camera one. Here
we have all the options listed that the plugin can offer for customization (see the attachment
A.7). We can edit them and similar to the buffer the settings become active immediately.

29

30 Web application

The output page is where the whole stream gets put together. On this page, similar to the
others, we can see all the active streams. To set up a stream we need to have a camera set up
and a plugin manager created (see the attachment A.8). Here we can choose which one we want
to use of the existing ones, select the proper combination and launch the stream. We are able to
choose from the three modes we discussed before—live, save to file and process. We can see an
extra field where we can specify extra attributes. These attributes are translated and sent into
the stream, however we have to follow the form of a dictionary. We made it pre-filled it with
the base setup for the file saver to display an example. After adding the process, it builds the
stream of the selected components, and we will be able to see it in the actives list. Here we have
the option to stop it or to see live data visualization. However, for data visualization, we have
to have set up a functional database connection and it is recommended to have an active data
stream from any type of analyzer.

Chapter 10

Testing and documentation

10.1 Testing
To test our implementation and our results, we performed unit, component and interactive tests
to test all parts of our application. We can find all of our tests in the project folder under the
folder /test. We were using Pytest to automate all of our tests. It can be launched by entering
the test folder with a terminal and executing the pytest command. We were trying to test most
of the behaviors by writing appropriate tests with correct input, wrong input and edge-cases.
By creating these tests, we managed to correct several bugs or malfunctions, and they pointed
out some parts of the code which needed extra error handling.

However, for testing the interface we used interactive testing for which we wrote several test
cases. These test cases can be found under the folder test/testcases. These test cases were
performed by the author of this work.

10.2 Documentation
Through the process of implementation, we paid attention to writing detailed comments. By ex-
tending them into the form of docstrings we are able to generate a documentation. We discussed
in section 4.7 we can use Sphinx to collect the docstrings and string them together into a doc-
ument format. We used Sphinx to generate an HTML website which ensures better navigation
and transparency when we are trying to understand the structure.

The initial setup with the requirements and the installation guide can be found in the included
README file. It lists all the items we need, contains an installation guide how to get the
application working, how to launch the automated tests or to reach the documentation.

On the index page of the application we made a quick start guide to guide the user through the
key elements and the foundations of the app. On this page you can find all the basic information
about the project and links to other materials.

31

32 Testing and documentation

Chapter 11

Discussion

11.1 Accomplishments
In this chapter we are going to discuss the accomplishments, requirements and their solutions.
Starting with the term framework and the pipeline. We designed and implemented a modular
system with multiple individual components. These modules connected together in a line form
our pipeline. These modules can be used separately or the pipeline can be extended by connecting
more modules in the line. This pipeline is our core system.

One of the modules of the pipeline is a buffering module which stores the frames until they
get processed. This way we prevent dropping valuable frames.

To fulfill the extensibility and the integration of the analyzer package we created a processor
component based on the idea of the plugin architecture. This module loads and works with
all the plugins which are created by inheriting the structure of our base plugin template. To
integrate the analyzer package we created a new launcher for it in a form of a plugin which can
be loaded into our system. We extended this with an other plugin, which takes the output data
from the analyzer and uploads it into a database. Both plugins became optional which allows us
multiple combinations, for example we can have one analyzer while we upload the output data
into multiple databases.

To achieve the needed configurability at every module we implemented functions to reach
most of the key attributes and configurations inside the modules. These are useful at creating
superstructures with the framework. The base configurations are saved into JSON configurable
files, this way the user can create configuration presets which can be later loaded.

We implemented a web application by using our framework. This way we created an interface
which provides an easy setup and configuration platform for everybody, even for the users without
any coding knowledge. For visualization the application has a feature which can display the data
if there is an active database connection for the selected stream.

We implemented open URL links which return data in raw JSON format to meet the require-
ments, furthermore it can be immediately used for integration or to connect other applications.

We documented the code via dosctrings, which we used to generate a HTML based documen-
tation. Here the developers can find all the logic and information while it gives them the ability
to search between the modules, functions.

11.2 Observations
An important factor, that should be mentioned, is the frame capture rate when reading from a
video file source. Our frame getter thread repeatedly requests the frames until the source can

33

34 Discussion

provide information. At a video camera the frame rate is set by the camera itself, however in a
video file we already have all the frames waiting to be read. Since our getter repeatedly asks for
frames, the source can provide them at the same time, until the file ends. If the processing time
is really low, or we have no processing plugins enabled, the frames just flow through the pipeline
which causes an accelerated video playback.

Chapter 12

Conclusion

In this project we successfully created a configurable framework for video analysis fulfilling all
the requirements. By implementing a plugin architecture, we divided the system into two parts.
The elements of the core system line up into a pipeline while the manager based on the plugin
architecture provides us the needed extensibility. The core system creates a stream starting from
the source from where we get the frames until the end where the frames are saved or displayed.
Our pipeline contains a module which takes care about buffering the frames. Therefore, the
processing units—plugins—are able to process for a longer time period without losing frames
from the stream.

The integration of the face and emotion identification package happens through the plugin
system. We set up a new launcher which uses the core modules from the given package. The
output data is then shared among the plugins, so we were able to create a separate plugin
supporting our analyzer which only deals with saving the data to a database. Due to the
advantages of the designed structure, we are able to add any extra plugin for processing.

However, the pipeline can be set up by writing a few lines of code, it’s harder to configure,
and we are not able to change the settings dynamically. So we implemented a web application
where the user can set up and modify multiple different streams. It enables the user to change
the settings of the pipeline even when the stream is live. The application makes all parts of
the system transparent and easily accessible. Besides that, we implemented a few gates where
the application returns raw data thereby it is ready to provide data to different applications for
further integration.

We provide a full documentation in an HTML form generated with Sphinx. The documen-
tation describes all the features, the use of the application and all the modules and their logic.
The README file provides all the steps to get started, including all the requirements and initial
setup.

35

36 Conclusion

Appendix A

Application screenshots

Figure A.1 Web application—Active cameras; Created by the author

37

38 Application screenshots

Figure A.2 Web application—Modifying camera settings; Created by the author

Figure A.3 Web application—Active buffers; Created by the author

39

Figure A.4 Web application—Modifying buffer settings; Created by the author

Figure A.5 Web application—Active plugin managers; Created by the author

40 Application screenshots

Figure A.6 Web application—Active plugins inside a manager; Created by the author

Figure A.7 Web application—Modifying the data saver plugin; Created by the author

41

Figure A.8 Web application—Active outputs; Created by the author

42 Application screenshots

Bibliography

[1] Hydronaut Project [online]. [visited 7. 4. 2022]. Available from: https://hydronaut.eu/.

[2] ČVUT DSpace [online]. České vysoké učení technické v Praze, 2016. [visited 9.4.2022]. Avail-
able from: https://dspace.cvut.cz/handle/10467/95110.

[3] SINGH, Vijay. What is a Framework? [Definition] Types of Frameworks. In: hackr.io [on-
line]. Venture Kite, 2022. [visited 12.4.2022]. Available from: https://hackr.io/blog/what-is-
frameworks.

[4] CODEACADEMY, Team. What Is a Framework?. In: codea-
cademy.com [online]. Codecademy, 2021. [visited 12.4.2022]. Available from:
https://www.codecademy.com/resources/blog/what-is-a-framework/.

[5] Ginni. What is Pipelining in Computer Architecture?. In: tutorialspoint.com [on-
line]. Tutorials Point India Private Limited, 2021. [visited 13.4.2022]. Available from:
https://www.tutorialspoint.com/what-is-pipelining-in-computer-architecture.

[6] STATICAPPS, Team. Defining Static Web Apps. In: staticapps.org
[online]. STATICAPPS.ORG, 2014. [visited 14.4.2022]. Available from:
https://www.staticapps.org/articles/defining-static-web-apps/.

[7] CAMPBELL, Steve. Flask vs Django: What’s the Difference Between Flask &
Django?. In: guru99.com [online]. GURU99, 2022. [visited 14.4.2022]. Available from:
https://www.guru99.com/flask-vs-django.html.

[8] INTERVIEWBIT, Team. Flask Vs Django: Which Python Framework to Choose?.
In: interviewbit.com [online]. InterviewBit, 2022. [visited 14.4.2022]. Available from:
https://www.interviewbit.com/blog/flask-vs-django/.

[9] PROGRAMIZ, Team. Python Docstrings. In: programiz.com [online]. Parewa
Labs, 2022. [visited 16.4.2022]. Available from: https://www.programiz.com/python-
programming/docstrings.

[10] PANDAS, Team. pandas docstring guide. In: pandas.pydata.org [online].
The pandas development team, 2022. [visited 16.4.2022]. Available from:
https://pandas.pydata.org/docs/development/contributing_docstring.html.

[11] READ THE DOCS, Team. Getting Started with Sphinx. In: docs.readthedocs.io
[online]. Read the Docs, 2010. [visited 17.4.2022]. Available from:
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html.

43

44 Bibliography

[12] ELGABRY, Omar. Plug-in Architecture. In: medium.com [online]. Medium, 2019. [visited
17.4.2022]. Available from: https://medium.com/omarelgabrys-blog/plug-in-architecture-
dec207291800.

[13] OPENUP, Team. Concept: Use-Case Model. In: utm.mx [online]. OpenUP. [visited
17.4.2022]. Available from: https://www.utm.mx/ caff/doc/OpenUPWeb/openup/guid-
ances/concepts/use_case_model_CD178AF9.html.

[14] SCALED AGILE, Team. Domain Modeling. In: scaledagileframe-
work.com [online]. Scaled Agile, 2021. [visited 18.4.2022]. Available from:
https://www.scaledagileframework.com/domain-modeling/.

[15] LUCIDCHART, Team. What is a class diagram in UML?. In: lucid-
chart.com [online]. Lucid Software Inc., 2022. [visited 18.4.2022]. Available from:
https://www.lucidchart.com/pages/uml-class-diagram.

Contents of the enclosed media

The external package VizEmo is not included in the source files. In case of interest please contact
Ing. Jan Hejda, Ph.D. by email: jan.hejda@cvut.cz.

The most recent source files of this project can be found at: https://gitlab.fit.cvut.cz/
molnaben/video-framework

project...project source files
thesis.zip...source files for this thesis in LATEX
thesis.pdf ... this thesis in a form of PDF

45

https://gitlab.fit.cvut.cz/molnaben/video-framework
https://gitlab.fit.cvut.cz/molnaben/video-framework

	Acknowledgments
	Declaration
	Abstract
	List of Acronyms
	Introduction
	Goals
	Background and requirements
	Hydronaut background
	Requirements
	The VizEmo package

	Requirements analysis
	Modifiable and upgradeable structure
	Pipeline and buffering
	Integrating the face and emotion identifying package
	Storing the information in a database
	Web application for configuration
	Exposing the analysis results via HTTP
	Documentation

	Identifying the components
	The source
	Buffering
	Buffer manager
	Plugin
	Plugin manager
	Plugin-manager collector
	Output manager

	Structure
	Use case diagram
	Domain model
	Class diagram

	Core system
	Input sources
	Managing multiple input sources
	Buffering the frames
	Reading and writing JSON files
	Managing the buffers
	Processing unit
	Plugin managers as processing presets
	Setting up the pipeline
	Communication between modules

	Extensions
	Plugin template
	Example extensions
	Integration of the face and emotion detection algorithms
	Saving the results to the database
	Universal database handler
	Snapshot viewer
	Saving data to CSV

	Web application
	Testing and documentation
	Testing
	Documentation

	Discussion
	Accomplishments
	Observations

	Conclusion
	Application screenshots
	Contents of the enclosed media

