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Abstrakt

Nedávne pokroky v oblasti umelej inteligencie umožnili použitie strojového učenia ako nástroja
k nowcastingu – krátkodobej predpovedi zrážok. V posledných rokoch sme mohli vidieť mnoho
publikácií na túto tému, keďže je to stále otvorený problém. Dva najväčšie problémy modelov
v týchto publikáciách je predpoveď zrážok s vysokou intenzitou a predpoveď do dlhšej budúcnosti.

Táto práca sa zaoberá zopakovaním a evaluáciou neurónovej siete na krátkodobú predikciu
zrážok založenej na adversariálnom učení publikovanom DeepMindom. Zdrojový kód tejto siete
nebol publikovaný, a tak musela byť celá implementovaná. Práca popisuje akékoľvek imple-
mentačné zmeny oproti originálnej sieti, tréningový proces a problémy ktoré počas neho nastali.
Taktiež uvádza novú post-processing metódu, ktorá naďalej zlepšuje kvalitu predikcií získaného
modelu.

Finálny model bol evaluovaný a porovnaný s inými populárnymi metódami na krátkodobú
predpoveď počasia a namerané metriky ukázali, že je s nimi zrovnateľný. Je taktiež ukázané,
že predikcie získaného modelu nadobúdajú realistickejšieho vzhľadu. Je to vďaka tomu, že daný
model nerozmazáva svoje predikcie v takom rozmere, ako ich rozmazávajú iné metódy.

Klíčová slova strojové učenie, hlboké učenie, predpoveď počasia, DeepMind, Meteopress,
radarové snímky zrážok, generative adversarial nets

Abstract

Recent advancements in artificial intelligence have allowed the usage of machine learning as a tool
for precipitation nowcasting – a short-term precipitation forecasting. There have been numerous
publications in recent years, as this is still an open problem. Two biggest issues of these models
is the prediction of high precipitation events and accurate prediction for longer lead times.

This thesis focuses on recreating and evaluating a precipitation nowcasting neural network
based on the adversarial approach published by Deepmind. The source code for this network
has not been published, so it had to be implemented from scratch. The thesis describes any
adjustments made to the original network that needed to be done, the training process and any
issues arisen during it. It also introduces a post-processing method used to further improve the
predictions’s quality of the obtained model.

The final model has been evaluated and compared to other popular nowcasting methods and
it was able to produce predictions of comparable quality metric-wise. It is also showcased how the
predictions made by this model are finer and more realistic, as they do not blur their predictions
nearly as much as other methods.

Keywords machine learning, deep learning, weather nowcasting, DeepMind, Meteopress, weather
radar images, generative adversarial nets
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Introduction

Precipitation nowcasting is an open problem that concerns itself with forecasting of precipitation
in the near future. The distinction between nowcasting and forecasting is not set in stone, but
most definitions agree that nowcasting is a prediction of up to 2 hours into the future. The
main difficulty in attempting to do these predictions lies in the unpredictability of immediate
weather development. Because of this, most methods tend to blur their predictions as a result
of attempting to decrease the expected difference between their predictions and reality.

The quality of predictions of these models does not only serve to help people make decisions in
their daily activities, but also to warn them of any extreme weather events that may potentially
have large socio-economic impact on their lives. Thus, any warning systems can make use of
these models to increase their efficacy.

This work will focus on implementation and adjustments of a neural network designed and
published by DeepMind that tackles this problem probabilistically via a generative adversarial
network coined DGMR. Its predictions are expected to be of high quality not only quantitatively,
but also adhere to the structure of precipitation events as they appear on images produced by
weather radars.

The theoretical part of this thesis will focus on describing the precipitation nowcasting prob-
lem in more detail. It will introduce several methods of model quality measurements. Various
techniques used for solving the problem will be introduced, both traditional and machine learn-
ing ones, alongside the explanation of their respective shortcomings. It will acquaint the reader
with the basics of neural networks and then describe the architecture of DGMR in detail.

In the practical part, the thesis will focus on training and adjusting the implemented DGMR
to obtain a model that is able to make predictions of desired qualities. It will describe various
issues that arose during training and the measures taken to solve them. A post-processing method
will be introduced that will prove to increase the quality of the obtained model’s predictions.
The thesis will then evaluate the model’s predictions using various metrics against two other
popular methods used for precipitation nowcasting.

x



Thesis’s objective

The main goal of this thesis is to implement a neural network for precipitation nowcasting
published by DeepMind called Deep Generative Model of Radar (DGMR). Because the source
code of this network had not been published, this thesis will attempt to replicate their work by
implementing, training, adjusting if necessary and evaluating the neural network they proposed
on a precipitation dataset provided by Meteopress.

The very beginning of the thesis will be an introduction about weather nowcasting. It will
also be established what are the current popular methods of model evaluation. After this,
various currently used traditional and machine learning models to make these predictions will
be introduced. Their detailed description will not be included, as that is not the focus of this
thesis. Towards the end of this chapter, a high level overview of DGMR will be explained.

In the next part, all the necessary concepts of neural networks and various layer types will be
established. When this will be done, a detailed description of DGMR will follow. All its various
components and modules will be talked about, how they function, and what is their purpose
in the architecture as a whole. Right after this, a brief introduction of a framework used to
implement this model will follow. Finally, any adjustments to the original model’s architecture
and hyperparameters will be described, alongside the reasoning behind them.

The next chapter will talk about the training process and all the alterations of DGMR that
have been explored. When a model which upholds the most to the expected outcome will be
obtained, a simple post-processing method will be introduced that further increases the quality
of the predictions.

In the final part of the thesis, this obtained model’s predictions are to be compared to
predictions of several different methods, as introduced in the beginning of this thesis. The
model’s various pros and cons will be briefly described and some possible adjustments that the
thesis did not attempt to cover are to be explored.

xi



xii Thesis’s objective



Chapter 1

Nowcasting Introduction

Weather has impacted human lives ever since the beginning of time. Starting from mundane
things like deciding what to wear, to more impactful ones like dictating harvest quality or poten-
tially damaging property or even taking lives. While these still hold true to this day, with the
start of the industrial revolution, it has had major impact on things like traffic, be it road or air,
or energy-generating production (wind, solar, etc.). Being able to predict weather development
in the immediate future, which is called nowcasting, and to be able to warn of any upcoming
dangerous events is therefore becoming more crucial than ever, especially with predictions being
that extreme precipitation events are becoming more frequent with current climate change [1].
While systems that predict weather development worldwide, like Global Ensemble Weather Sys-
tem (GEFS) [2] perform well on a global scale, their resolution and computational cost make it
unfeasible for making local nowcasting predictions. Most organizations have therefore turned to
various different methods of radar-based nowcasting.

1.1 Weather radars

Figure 1.1 Radar view of southern United States [3].

Weather radars are a fundamental part of precipitation nowcasting. They function by emit-
ting an electromagnetic (EM) radiowave in a direction specified by the position of the antenna.
When this wave hits an obstacle, like a plane – or a raindrop – some of the energy is scattered
away from this obstacle. While most of it is lost to the radar, a very small portion is also reflected

1



2 Nowcasting Introduction

Figure 1.2 Dual polarization in radar [6].

directly back into it. The radar antenna receives this energy and processes it [4]. The electromag-
netic radiation that radars emit have historically had unidirectional polarization, either vertical
or horizontal. Modern radars, however, are polarimetric, meaning they can determine the re-
sponse of a collision with an obstacle using two orthogonal polarizations. This allows for better
understanding of what the signal collided with and therefore the shape of the object can be
better understood, be it a rain drop, snowflake or hail particle. This information is crucial for
meteorologists to better understand what is happening in the clouds and helps them give out
warnings if need be [5].

The precipitation captured by radars is measured in the strength of the reflectivity of the
collided object, namely decibels of reflectivity (dBZ), which serves as a measure of intensity of
precipitation. It is a logarithmic, dimensionless technical unit. Together with knowledge that
the signal emitted by radar travels at the speed of light and the radars current direction, it can
be calculated what kind of object was hit, how far it is and where it is located spatially. To be
able to sample the entire atmosphere or a specific region, the radar antenna is rotated and signal
is emitted and then received at each configured point [3].

1.2 Model evaluation
Currently, there are various methods used for making nowcasting predictions from weather
radars, but first let’s establish popular methods of their evaluation, since this is shown to be
a difficult task. These are called metrics, and the goal of models should be to either minimize or
maximize their value. Even though both ground-truth y, the real radar image and the respec-
tive prediction ŷ usually form a 3rd order tensor specifying [T ×H ×W ] time step, height, and
width of precipitation field, respectively, for reasons of evaluation they usually will be flattened
to a vector of length [T ·H ·W ].

1.2.1 L1 loss
Also known as mean absolute error (MAE), this simple loss function is a popular choice for mea-
suring image to image similarity, like precipitation nowcasting [7, 8]. The function measures the
average absolute difference between all components of their inputs. It has negative orientation,
meaning the lower the values the better. Consider comparing two vectors of length n. The loss
is calculated as [9]:

L(ŷ, y) =
1

n

n∑
i=1

|ŷi − yi| (1.1)
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1.2.2 MSE loss
Mean squared error is another popular choice for comparing predictions with observations for
regression tasks [10, 11]. Also known as L2 loss. In the context of image2image comparisons,
minimizing this loss can lead to less blurry predictions [12]. Again, consider comparison of two
vectors of length n. The squared loss is calculated as [9]:

L(ŷ, y) =
1

n

n∑
i=1

(ŷi − yi)
2 (1.2)

This loss also has negative orientation.

1.2.3 Critical success index
Also called a threat score or abbreviated to CSI, is a verification method of categorical forecast
with a pre-specified threshold. It is calculated as total number of hits (TP) divided by a sum of
TP, false alarms (FP) and misses (FN). Evidently this is a function mapping into a range of
[0, 1], with positive orientation, meaning the higher the value the better. This metric can be seen
used in may publications to measure a model’s quality [7, 13, 11, 8]. The formula is therefore
given as [14]:

CSI =
TP

TP + FP + FN
(1.3)

1.3 Current methods of nowcasting
It has been shown that weather is a phenomena that is unpredictable by nature [15], and therefore
the best way to account for this unpredictability is with probability. Models that make various
number of predictions that are plausible are called ensemble models. As for actual models used
to make nowcasts, they can be distinguished by two main categories, traditional and machine
learning (ML) ones.

1.3.1 Traditional nowcasting models
Two most prominent types of models used traditionally are optical flow models and numerical
models.

Optical flow models are based on the “apparent motion of brightness pattern” [16]. These
models work by calculating motion vectors of an input sequence of observations and perform
predictions by moving the precipitation field in the direction obtained by these vectors. Various
calculation methods of motion vectors, together with added perturbations to inputs make these
effectively ensemble-type models. It is important to note that these extrapolation methods are
based on the assumption of Lagrangian persistence of precipitation. This form of persistence
states that the intensity and volume of rainfall does not change over time, but simply just moves
in a certain direction. Optical flow methods, therefore, can not account for phenomena such
as precipitation initiation, growth, decay and termination [17]. However, even with such a strong
false assumption, they are still capable of making predictions of good quality and nowadays serve
as a strong benchmark to compare against other methods, such as machine learning ones [7, 13,
18]. The implementation of the optical flow method for precipitation nowcasting that will be
used in this thesis is called PySTEPS [17], a python-based implementation of various optical
flow algorithms.

The other traditional method used to make weather forecasts are numerical weather predic-
tions models, such as Global Ensemble Forecast System [2]. While these numerical models that
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predict weather worldwide work well for what their purpose is, that is prediction for an entire day
(currently making predictions 4 times a day), their computation takes a long time and lacks both
temporal and spatial resolution needed to make short-term nowcasting. Furthermore, they need
a certain spin-up time until their predictions reach the quality they are capable of. It is because
of these qualities that they do not serve well for a task such as nowcasting, where forecasts are
to be done and updated several times per hour.

1.3.2 Machine learning models
Machine learning (ML) models for short-term weather prediction based on radar imagery has
become a popular research field in recent years. The benefits of using ML models for nowcasting
is their ability to – at least theoretically – model events already mentioned, like precipitation
initiation, growth, decay and termination.

One of the first attempts to use machine learning for radar-based precipitation nowcasting
had been attempted by Agrawal et al. [18] in 2019. They leveraged the power of the ubiquitous
UNet [19], a fully convolutional neural network based on an encoder-decoder architecture and
residual connections. They had approached the problem as three-leveled binary classification,
where for each pixel, the network predicted whether precipitation would reach a given threshold.
They predicted a single lead time of 60 minutes into the future. Ayzel et al. [7] proposed another
approach in 2020 based on the UNet architecture called RainNet. Their network was, once again,
designed to make a single prediction. However, they had used it recursively with inputs being
outputs of previous predictions to make a nowcast of up to 60 minutes with temporal resolution
of 5 minutes. Fernandéz and Mehrkanoon proposed another modification to the original UNet
architecture, called Broad-UNet [10]. They tried using asymmetric parallel convolutions and
a module called Astrous Spatial Pyramid Pooling, a special convolutional block that uses dilated
kernels to extract spatial information. They had found that using such architecture improves
upon the traditional UNet. However, their approach was based on satellite imagery, rather than
rader-based observations.

A slightly different approach was taken by Wang et al. [11] in early 2021. They had intro-
duced a novel recurrent neural network framework specifically designed to learn both short- and
long-term dependencies from the input sequence called Predictive Recurrent Neural Network
(PredRNN). They had shown that this approach is able to produce competitive precipitation
nowcasts. Tuyen et al. [8] furthermore expanded on their idea in early 2022 by combining the
power of UNet and PredRNN, achieving similar results with much shorter training time.

All of the ML solutions discussed so far, except [18], have been in essence defined as regression
tasks. Whenever there is uncertainty, these regressive models tend to express it with blurriness.
One possible solution to counter this issue could be producing an ensemble of probable predic-
tions by using a generative adversarial network (GAN), rather than making a single prediction.
This is exactly what Zheng et al. attempted in their work in 2021 [20]. They had argued that
the predictions their model made did have more detail to them than those non-generative ones.
However, they also did note that the model struggled to predict high-accuracy events and also
deviated too much from the actual observations location-wise. Finally, in mid 2021, Ravuri,
Lenc and other researchers working for DeepMind introduced a GAN [13] that aims to produce
both location accurate and realistic looking predictions by having a loss function that is specifi-
cally designed to account for spatial consistency, temporal consistency and pixel-wise accuracy.
Furthermore, they had designed it to focus more on high-precipitation events, rather than on
all events equally. This exact network is the one that this thesis will attempt to replicate by
implementing, adjusting and training it on a dataset provided by Meteopress.



Chapter 2

Neural Networks

In this chapter, all the concepts of neural networks – or NNs in short – necessary for understanding
the thesis’s model architecture, DGMR, will be explained. The reader may feel free to skip this
chapter if they are already acquainted with these concepts.

2.1 Training a neural network
Before we dive into various popular layer types used in neural networks, let’s go over the process
of training a neural network. We need two main ingredients, in addition to the neural network
itself, to be able to train it. First is a dataset we will use to train our network. The second thing
is an objective function, which is a function that measures ”how well” our network performs,
and is the function that the network will attempt to minimize. The most popular type of neural
networks are so-called feed-forward neural networks [21], where the nodes do not form a cycle.
To train these networks, data is passed through them in a forward pass, outputs are compared
with a desired outcome using the aforementioned objective function, and the gradient for all
parameters is calculated. Afterwards, a backward-pass is executed, where we update the weights
in opposite direction of the gradient, since the goal is to minimize an objective function. Consider
weights parameter θ and an objective function f . Passing the entire dataset through the network
and calculating the gradient for weights, the following equation describes how it is updated at
iteration i [23]:

θi+1 = θi − λ · ∇θif(θi) (2.1)

where λ is called a learning rate, a hyperparameter that describes how “fast” the network
learns. This algorithm is called vanilla gradient-descent [22]. It is also common to split the
dataset into minibatches, which is often a measure for dataset being too large to fit into memory.
Doing this not only fixes this issue, but also has a regularization effect [23], meaning the network
should theoretically work better even for unseen data after training. This changes gradient
descent into mini-batch gradient descent [22], the most popular method used nowadays to train
neural networks.

2.2 Objective function
Also known as the loss function, this is a function which measures how well the network is doing.
It outputs a single scalar value for its inputs, whatever they may be. The network’s goal is,
therefore, to maximize (or minimize) the output of its function, often called a loss. For regression

5
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tasks it can simply be one of the metrics described in 1.2, or anything else that you want the
network to optimize for.

2.3 Single-layer perceptron
Neural network models are inspired by neurons in the human brain. They activate for some
inputs, and stay dormant on others. The simplest form of a neural network is called single-layer
perceptron [23], which is a neural network consisting of a single artificial neuron ξ. The input
to this neuron is a vector x. All of its components are assigned weight by a weight vector w,
and usually we also include a bias b, a term that dictates the output of the neuron if the input
is a zero vector. The following image illustrates this concept

Figure 2.1 Single-layer perceptron.

where mathematically, the output o is calculated as follows:

o = ξ(x) =

(
N∑
i=1

wi · xi

)
+ b = w⊺x+ b. (2.2)

We can see that single-layer perceptron is simply a linear combination of inputs added together
with a bias. This, of course, implies linearity, something that might not always be true for the
data we are working with and therefore something we might want to avoid. This will be solved
with concepts we introduce next, mainly multi-layer perceptron and activation functions. Some
like to include activation functions as a natural part of a single-layer perceptron, however because
of how they are implemented in most popular neural network frameworks nowadays, they have
been omitted from the definition in here.

2.4 Multi-layer perceptron
One way to overcome the linearity problem in single-layer perceptron is a method of stacking
multiple single-layer perceptrons on top of each other, both vertically and horizontally, creating
fully connected layers [23]. By this we create a so called Multi-layer perceptron, or MLP in short.
In this sense, we are incorporating hidden layers into neural networks. They are called hidden
because their outputs are never actually observed. What can only be seen are the inputs and
outputs of the MLP itself. These stacked and connected layers are often called linear, dense,
or fully connected (FC) layers.
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Figure 2.2 Example of multi-layer perceptron.

However, there is one issue with using only perceptron stacking. In reality, the calculation can
be transformed into a single linear combination of inputs with the following equations describing
individual outputs of hidden layers, as well as the final output layer with input being x ∈ R1×3:

H1 = xW1 + b1

H2 = H1W2 + b2

O = H2W3 + b3

(2.3)

Where W1 ∈ R3×4, W2 ∈ R4×4 and W3 ∈ R4×2 are matrices consisting of individual
weight vectors as rows for the transformations occurring within hidden layer and output layer
respectively, and b1 ∈ R1×4, b2 ∈ R1×4, b3 ∈ R1×2 are transposed vectors containing a bias
term for each respective unit within a layer. Therefore, the entire hidden layer can be removed
and the parameters of the output layer can be acquired as W = W1W2W3 ∈ R3×2 and
b = b1W2W3 + b2W3 + b3 ∈ R1×2:

O = ((xW1 + b1)W2 + b2)W3 + b3

= (xW1W2 + b1W2 + b2)W3 + b3

= xW1W2W3 + b1W2W3 + b2W3 + b3

= xW + b

(2.4)

To actually overcome linearity and make use of MLPs, we need to introduce activation func-
tions into neural networks.

2.5 Activation functions
The purpose of an activation function is to non-linearily transform the output of a unit within
a neural network. They are not always needed, for example, it is popular to omit them in the
output layer. Activation functions need to be differentiable for purposes of training a neural
network. However, this isn’t always the case. Some of the most popular activation functions are:

sigmoid(x) = σ(x) = 1
1+e−x . Transforms inputs into a value inside range (0, 1) [24].
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tanh(x) = 1−e−2x

1+e−2x . Transforms inputs into a value inside range (−1, 1) [24].

ReLU(x) = max(0, x). ReLU stands for Rectified Linear Unit [24]. It can be seen that it
is not differentiable at 0. This is solved by taking the left-hand-side derivative instead [23].
By using an activation function f on an output of a neuron, we get a new transformation

ξ(x) = f (w⊺x+ b) (2.5)
which is no longer linear. If we use these functions on outputs of units inside MLP, the

transformation can no longer be collapsed as before in equation 2.4.

2.6 Convolutional neural networks
Using MLPs is very powerful, but they have one notable flaw. Their inputs are just vectors.
Sometimes we are working with data that has some spatial structure as well, e.g. images. One
way we could make MLPs work for spatial data is to flatten it into some long vector and go from
there. However, as already stated, by doing this we lose the information of the structure of the
data. If our goal is to detect some object in an image, it should not matter to the network where
precisely the object is, only that it is or isn’t there. This is where convolutional neural networks
(CNNs) come in [25]. They introduce two qualities into the network, namely:

translation invariance - the network layer should react to the same patch the same exact way,
no matter where it appears in the image

locality principle - the earlier layers should focus on local regions, and deeper ones on more
broader parts of the image
Let us have an input as 3D tensor A ∈ Ri×j×k. Next, let’s assume a convolutional layer with

various filters, those being the learnable parameters of the layer, making them effectively weights
V . The following operation [23] takes place in the layer, giving an output H as:

Hi,j,d =

δ∑
a=−δ

δ∑
b=−δ

∑
c

Va,b,c,d ·Ai+a,j+b,c (2.6)

For some pre-specified vicinity δ. To support multiple output channels, the d dimension had
been added to weights parameter V , making it a fourth-order tensor, and the output H a third-
order tensor. An optional bias term can be added as a learnable parameters as well. It should
be noted that the word convolution is a misnomer in this context. Technically, the operation
described in equation 2.6 is a cross-correlation, not a convolution. The following image illustrates
this operation done on a 2D tensor:

Figure 2.3 Two-dimensional cross correlation operation [23].

It is also common to pad the input tensor around the edges with some value, the most
popular one being zero, to achieve a desired output shape. Furthermore, we might also want to
choose a different stride for the filter. The following two images illustrate padding and different
stride, respectively.
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Figure 2.4 Two-dimensional cross-correlation with padding [23].

Figure 2.5 Cross-correlation with strides of 3 and 2 for height and width, respectively [23].

2.6.1 Downsampling layers
After convolutions – or cross correlations – are performed, we might want to aggregate some
values that are close to each other. This will give us some leeway for any perturbations of the
input. This is where pooling, or pooling layers come in. They can either be pre-defined, with
the most popular ones [26] being average or max pooling, where they output the average or
maximum of a specific region

Figure 2.6 Max pooling operation illustration [23].

or learned, when they are de facto convolutional layers with 0 padding and stride equal to
the kernel (filter) size in all respective dimensions.

2.6.2 Upsampling layers
As opposed to layers described in section 2.6.1, the goal of these layers is to perform the opposite,
that is to scale-up its inputs. This layer has no learnable parameters, and the most popular [27,
28] methods of upsampling include linear, bilinear, bicubic or nearest-neighbour interpolation.

2.7 Batch normalization
When the networks are trained using minibatch gradient descent described at the beginning of
this chapter, the inputs after minibatch split might have different distributions. This forces the
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network to constantly adapt to different data. Batch normalization layer [29], technically batch
standardization layer, assigns a Z score to its inputs, using either current or running first two
moments (mean and variance). The following equation describes the transformation of an input
x [28]:

BN(x) =
x− E[X]√
V ar[X] + ϵ

· γ + β (2.7)

where γ and β are learnable parameters, often set initially [28] to γ = 1 and β = 0 and ϵ
is there to prevent zero-devision issues in computation. In the original paper [29], it had been
shown that using this method speeds up the training process by allowing for more aggressive
learning rates by reducing the internal covariate shift (ICS) of the data. However, other publi-
cations [30] state that this is not the case, and the reason why batch normalization speeds up
training and improves the performance of the network is mainly by smoothing the optimization
landscape, having the effect of more predictive and stable gradients during training.

2.8 Recurrent neural networks
Consider a case where we might want to predict some time series data. Given past n − 1
observations xt−n, ..., xt−1 of variable x, the conditional probability of observation at time step t
is given by P (xt|xt−n, ..., xt−1). However, instead of calculating this probability, modern neural
networks estimate it via [23]:

P (xt|xt−n, ..., xt−1) ≈ P (xt|ht−1) (2.8)

where h is called a hidden state. The idea behind is that h in some form encapsulates the
past observations into a single variable. These networks are called recurrent neural networks
(RNNs). Consider an input Xt ∈ R1×d and a hidden state Ht−1 ∈ R1×h. The parameters
of a recurrent cell are Wx ∈ Rd×h, Wh ∈ Rh×h and an optional bias term bh ∈ R1×h. The
following operation describes the computation of the next hidden state Ht:

Ht = f(XtWx +HtWh + bh) (2.9)

where f is some activation function applied to each dimension of output individually. The
computation at each time step is done using the same parameters and is therefore recurrent, and
is where the name comes from. It should be emphasized that the output of a recurrent cell is still
computed as a hidden layer of a network, and is therefore usually passed into some additional
layers, and eventually the output layer.

Figure 2.7 Recurrent neural network example [23].
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2.8.1 Gated recurrent units
First proposed in 2014 by Chung et al. [31], this variation of recurrent units adds a gating mech-
anism to the hidden state, dictating when it should be updated or even reset. These operations
are learned, and thus new parameters are introduced. Again, consider [23] an input Xt ∈ R1×d

and a hidden state Ht−1 ∈ R1×h. There are two gates in the gated recurrent unit (GRU). The
reset gate R with parameters Wxr ∈ Rd×h, Whr ∈ Rh×h and a bias term br ∈ R1×h. The
update gate Z analogous parameters Wxz, Whz and bz. The following equation describes their
output [23]:

Rt = σ(XWxr +Ht−1Whr + br)

Zt = σ(XWxz +Ht−1Whz + bz)
(2.10)

To allow the reset gate to dictate how much of the previous hidden state needs to be reset
based on current input, a candidate hidden state H̃t is calculated [23]:

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh) (2.11)
where Wxh, Whh and bh are of same dimensions as they were in 2.9 and ⊙ being element-

wise (Hadamard) product operator. This state is still only a candidate, and we need to use the
update gate now. The following describes the final hidden state output of a GRU [23]:

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t (2.12)
This simply dictates how much of the candidate hidden state is to be used, and how much

of the previous hidden state. A convolutional variant coined ConvGRU was introduced and
published by Ballas et al. in 2015 [32], which simply uses convolution instead of fully-connected
operation within itself.

Figure 2.8 Hidden state calculation in GRU. [23].

2.9 Generative adversarial networks
Sometimes our goal is to estimate the data distribution rather than solving some regression task.
A method first introduced by Goodfellow et al. in 2014 [33] attempts to do exactly this, coined
generative adversarial networks (GANs), where a generator G and a discriminator D are trained
simultaneously in an adversarial manner. The generator can be thought of as a counterfeiter,
attempting to fool the discriminator into thinking its output came from the real data distribution.
The goal of the discriminator, on the other hand, is to be able to distinguish the fake data from
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the real one. In this sense, the discriminator guides the generator in the learning process. In
a case where both the D and G are differentiable functions, e.g. MLP, CNN or RNN, the training
can be done purely by back-propagation and minibatch gradient descent. The process can be
described in the following four steps:

1. get a minibatch of real data Xreal

2. generate a minibatch of fake data Xfake by G from some noise pz

3. pass concatenated Xreal and Xfake through D with labels being ”real” and ”fake” respectively,
compute gradient for D and update the parameters of D

4. pass Xfake through D with labels being ”real”, compute gradient for G and update parameters
of G

A conditional GAN [34] is a variation of generative adversarial networks where in addition
to noise input pz, there is also some condition to which we want to generate data. An example
would be a generator for generating a dog or cat picture, and the condition being a boolean
variable for specifying which one is to be generated.

2.9.1 Spectral normalization
A spectral normalization [35] is a technique that modifies the weights of its input to control the
Lipschitz constant by constraining the spectral norm of the layer. This has proven to increase the
stability of training the discriminator in GANs. Given weight matrix W , spectral normalization
is defined as [35]:

W̃SN (W ) :=
W

σ(W )
(2.13)

where σ(W ) refers to spectral (L2) norm of the matrix W . If the input is a weight tensor of
order higher than 2, it is simply reshaped into a 2D tensor (a matrix). However, if applied to
a first order tensor (a vector), the following operation takes place instead [28]:

x̃SN (x) :=
x

||x||2
(2.14)
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Deep Generative Model of Radar

This chapter will go over the architecture details of DGMR, a deep generative adversarial neural
network model designed by DeepMind [13] to tackle the precipitation nowcasting problem, and
the model that this thesis will try to reproduce.

Their philosophy of going for an adversarial neural network as their architecture of choice is to
model precipitation development probabilistically. Given past radar observations and a random
vector as an input to this network, it attempts to predict further development with accounted
uncertainty not by blurring the predictions, but rather by producing various realistic predictions
that differ thanks to the random vector provided.

Because this chapter’s sole purpose is to acquaint the reader with the architecture of DGMR,
the contents of this chapter will therefore be based on their publication from 2021 [13].

3.1 Overview
DGMR is based on the architecture of a conditional generative adversarial network. Therefore,
its inputs are M past radar observations and a latent vector Z whos elements are drawn from
i.i.d. normal distributions ∼ N(0, 1). Let X be the observations and N be the number of time
steps the model is to predict for. The model’s goal can be thought of as modeling the following
probability for any observation X:

P (XM+1:M+N|{Z;X1:M}) (3.1)

The originally proposed DGMR has four past radar observations with temporal resolution of
5 minutes and each with spatial resolution of [256× 256]. The input themselves are in mm · h−1

units. The network then makes predictions for 18 leading time steps, making it a prediction of
up to 90 minutes into the future.

As with most GANs, the networks consists of two main modules, a generator and a discrim-
inator. Before going into describing these two modules, it will be useful to first describe the
various block types used within them.

3.1.1 D and 3D Block
A downsampling residual block (DBlock) that decreases the resolution and increases the number
of channels, both by a factor of two. A residual connection is used as well, which is a method
of adding the input, in some way, to the output of some convolutional operation. Specifically
in DBlock, before this summation is done, the number of channels of the input is optionally
decreased using (1× 1) convolution.

13
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3.1.2 LBlock
A variation of DBlock, this block is designed to increase the number of channels in its input by
a factor of two. Again, it uses a residual connection.

3.1.3 GBlock
A counterpart to DBlock. This is where the spatial resolution of its input is doubled using
the nearest neighbor interpolation using an upsampling layer. The number of input channels
is halved, on the other hand.

Figure 3.1 G, D and L block respectively, where (↑) is for upsampling and (↓) for downsampling.
_/ signifies a ReLU operation [13].

3.2 Generator
The generator uses two modules to make predictions. The first one is conditioning stack that
processes past observations and creates conditioning representations of various resolutions that
will afterwards be fed into the sampler, which is the second module of the generator. The
sampler then generates predictions based on these conditioning representations and on some
random noise.

3.2.1 Conditioning stack
The conditioning stack is a convolutional neural network that creates a conditioning represen-
tation of past four observations, each being a tensor of shape [1 × 256 × 256]. They are first
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transformed into [4 × 128 × 128] shape by stacking (2 × 2) patches into channels, a so-called
space-to-depth (S2D) operation. Afterwards, each time frame is processed separately by the
same layer, since they are all the same radar observation data. Four downsampling residual
blocks (DBlocks) are used to decrease the resolution of the input and increase its number of
channels both by a factor of 2. For each input of DBlock, a (3 × 3) spectrally normalized con-
volution is applied to reduce the number of channels also by a factor of 2. A rectified linear
unit follows this operation. The output of a conditioning stack are conditional representations
of input observations of shapes [48× 64× 64], [96× 32× 32], [192× 16× 16] and [384× 8× 8].

3.2.2 Sampler
The sampler is formed by a stack of four ConvGRU [32] units, each using different output of the
conditioning stack as the initial hidden state if its unit. Inputs to the lowest ConvGRU are copies
of a [768× 8× 8] latent representation of a random vector Z. This representation is created by
latent conditioning stack, a small neural network that transforms the latent vector into desired
output shape.

This latent conditioning stack transforms a [8 × 8 × 8] input drawn from i.i.d. normal dis-
tribution N(0, 1). It is built up of one (3 × 3) convolution, three L blocks, a spatial attention
module and one final L block. The attention module serves as a self-regularization layer and has
shown to increase the performance of GANs [36].

The output of each ConvGRU is upsampled by a spectrally normalized (1× 1) convolution,
followed by two GBlocks. The output of the last ConvGRU is a vector of shape [48× 128× 128].
It is then transformed by a batch normalization layer, a ReLU and another (1 × 1) spectrally
normalized convolution, yielding a [4 × 128 × 128] representation. This representation is then
transformed into the final [1 × 256 × 256] representation by a depth-to-space operation (D2S),
an inverse operation of S2D.

3.3 Discriminator
The discriminator itself consists of two neural networks. The first one is there to ensure spatial
consistency of predictions, punishing blurry or inconsistent predictions. It is therefore coined
spatial discriminator. The second, named temporal discriminator, punishes jumpy predictions
and thus ensures temporal consistency between subsequent time frames. They both share similar
structure, but temporal discriminator uses a 3D convolution in its beginning to account for the
temporal dimension of its inputs.

3.3.1 Spatial discriminator
This discriminator picks randomly, uniformly 8 out of 18 lead time frames of the predictions and
then processes them. It had been designed this way to fit the model within memory. They are
subsequently downsampled to [1× 128× 128] representations using mean (average) pooling layer
and this is followed by a S2D operation that transforms them into [4× 64× 64] representations
again by stacking (2×2) patches into the channel layer, similar to 3.2.1. Next come five DBlocks,
each halving the resolution and increasing the number of channels by a factor of two. The first
DBlock does not apply its first ReLU operation, as its input is still merely the radar observation
itself. The output shape of each DBlock is [48×32×32], [96×16×16], [192×8×8], [384×4×4]
and [768 × 2 × 2], respectively. After being processed by the last DBlock that preserves both
the resolution and the number of channels, the representations are sum-pooled across the width
and height dimensions. These final 8 representations are then inputs to a spectrally normalized
linear layer, after which they are again summed together before a final ReLU is applied for
classification.
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Figure 3.2 Generator architecture used in DGMR. The conditioning stack (left) and the sampler
(right) are separated by a dashed line. [13].

Figure 3.3 Latent conditioning stack architecture used in the sampler of DGMR [13].

3.3.2 Temporal discriminator
The architecture of the temporal discriminator is very similar to the spatial discriminator. To
fit the model within memory, random crops of shape [128× 128] are extracted from the original
[256 × 256] frames and are furthermore downsampled to [4 × 64 × 64] representations using
S2D operation. These are subsequently processed by two DBlocks using (3 × 3 × 3) spectrally
normalized convolutions, which mimic the first DBlocks used in spatial discriminator. After this,
the architecture follows the same design as 3.3.1.

3.4 Loss function
As with any neural network, DGMR also needs a loss function to optimize for. For DGMR specif-
ically, the generator’s loss function is made up of two terms. The losses of the two discriminators
and a grid cell regularizer denoted LR(θ).
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Figure 3.4 Discriminator architectures used in DGMR. It can be seen that this diagram shows
a batch normalization layer after final fully-connected layer for each discriminator. This was, however,

dropped in the final implementation of DGMR [13].

3.4.1 Generator loss
Let spatial discriminator Dα have parameters α and temporal discriminator Tβ have parameters
β and generator Gγ have parameters γ. The generator’s goal for any input X is to optimize the
loss LG as :

LG(γ) = EX1:M+N
[EZ[D(Gγ(Z;X1:M )) + T ({X1:M ;Gγ(Z;X1:M )})]− λLR(θ)] (3.2)

where {A;B} signifies concatenation of two fields. The LR term is called a grid cell regularizer
and is calculated as:

(HWN)−1 · ||(EZ[Gγ(Z;X1:M )]−XM+1:M+N )⊙ w(XM+1:M+N )||1 (3.3)
where HWN stands for multiplication of height, width, and number of predicted frames

and ⊙ stands for piece-wise multiplication of two matrices. The function w is a function that
weighs the loss towards heavier rainfall, punishing the network more for making errors on higher
precipitations. Its output is calculated as:

w(y) = min(y + 1, 24) (3.4)
where 24 is an empirically chosen term to prevent punishing against spurious radar observa-

tions. The λ value in 3.2 had been set to 20, as it yielded the best results in the publication.
Monte Carlo estimations (random draws from given distributions) are used in both 3.2 and 3.3
to estimate expectations over latent vector Z. In the implementation, 6 draws had been made
each time the loss had been calculated.

3.4.2 Discriminator loss
The training goal spatial discriminator Dα and temporal discriminator Tβ is to minimize their
individual loss functions with respect to their parameters α and β, respectively. The loss function
for the spatial discriminator that is minimized is:

LD(α) = EX1:M+N ,Z[ReLU(1−Dα(XM+1:M+N )) +ReLU(1 +Dα(G(Z,X1:M )))] (3.5)
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and for temporal discriminator:

LT (β) = EX1:M+N ,Z[ReLU(1− Tβ(X1:M+N )) +ReLU(1 + Tβ({X1:M ;G(Z,X1:M )}))] (3.6)
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Implementation

This chapter will go over the implementation of DGMR according to the original publication
[13]. Since the original publication did not contain the code for the network, only pseudocode, it
had to be implemented from scratch. This chapter will first talk about the framework chosen for
implementation. The implementation itself stayed true to the pseudocode description with an
exception of some adjustments. These adjustments with be the next part of this chapter, where
each of them will be described, alongside the idea behind it.

4.1 PyTorch as neural networks framework
Most of the recent models for precipitation nowcasting, be it either using optical flow methods
or neural networks, had been done using the python programming language [17, 37, 23, 33].
Therefore, this is the natural candidate to be used as well for the implementation of DGMR.

As for the framework used, the three most popular ones nowadays are TensorFlow [38],
MXNet [39] and PyTorch [28]. As interesting as it might be to explore all of those frameworks,
this thesis will be using PyTorch for one simple reason. The final model is being developed
for Meteopress company and therefore has to fit within their respective ecosystem. As they had
already been using PyTorch for all the neural network models they had developed and imple-
mented, it is only reasonable to follow their standard. Furthermore, a wrapper for PyTorch
modules and training, called PyTorch Lightning [40] will be used. It encapsulated all the boiler-
plate code that is common for most – if not all– neural network implementations, and therefore
allows developers to focus on what actually matters to them when developing complex models.

While all those frameworks have many things which differ, they also share many similarities.
Arguably, however, the most useful tool all of them provide is automatic differentiation.
Recall that in section 2.1, it had been established that neural networks are trained via gradient
descent. This means that if we are to change the architecture of a network, or alter its objective
function, the respective gradient computation would be different. Doing this manually would
be really inefficient and time consuming. Automatic differentiation, in principle, stores the
computational graph of a variable, most often some function output. Doing this allows for
traversing this graph in a reverse order and therefore allows for computation of the respective
gradient using the chain rule.

4.2 DGMR implementation adjustments
After the architecture with all the modules having default settings and parameters has been
implemented, the number of parameters was 41.9 million for generator and 32.7 million for
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discriminator, making it 74.6 million in total. With the hardware available – that being two
Nvidia GeForce RTX 3090 graphics cards, each having 24GB of memory – it was simply not
enough to train the model the same way as it was done originally in [13]. For comparison, to
fit the model within this memory limit of 48GB, it was first needed to reduce the number of
lead frames from 18 to 4, and also reduce the batch size from 16 to 4. Furthermore, the training
was much slower as well, since the computational power was also much lower. Because of this,
it was agreed to somehow reduce the capacity of the implemented DGMR architecture to allow
for reasonable training times. Therefore, the following adjustments had been made, allowing for
changes of the model capacity just by changing the newly added hyperparameters.

4.2.1 Generator changes
As mentioned in section 3.2, the generator consists of a Sampler and a Conditioning Stack. The
adjusted generator still uses those two modules. However, both of them had been allowed to
specify their capacity as a hyperparameter.

4.2.1.1 Conditioning stack changes
The conditioning stack processes the input sequence of radar images of shape [1×256×256] first
by stacking (2×2) patches into channels, producing a [4×128×128] representation. This would
be very difficult to change, so it was left as is. However, notice how after this operation, the
observations are furthermore processed by a pattern of increasing the number of channels and
reducing the resolution, both by a factor of two, producing a final conditioned representation
of shapes [48 × 64 × 64], [96 × 32 × 32], [192 × 16 × 16] and [384 × 8 × 8]. This had been
changed by adding a hyperparameter base_num_channels (bnc), producing a final shape of
[(bnc ·2)×64×64], [(bnc ·4)×32×32], [(bnc ·8)×16×16] and [(bnc ·16)×8×8]. The idea behind
this change was to both keep the overall structure and philosophy of the stack, while allowing
for modular changes to be done by simply changing this hyperparameter.

4.2.1.2 Sampler changes
Remember how in section 3.2.2, it was mentioned that the sampler has a latent conditioning
stack, mapping an i.i.d random vector of shape [8× 8× 8] with normal distribution N(0, 1) into
a [768 × 8 × 8] shape to be used as an input to the lower-most ConvGRU unit of the sampler.
Two hyperparameters had been added, those being:

random vector num channels - number of channels of the random vector, making it an initial
shape of [num_channels× 8× 8]

random vector std - the standard deviation to be used, instead of the std of 1

Because the original network had more capacity overall, these changes had been made to
account for the decrease. It allows for tuning of those parameters, with the idea being lower
number of channels, as well as lower variance of the vector values could lead to easier and more
stable learning of the network.

Furthermore, notice how in figure 3.3, the number of channels is slowly increased by multiples
of two, namely 24, 48, 192 and 768. A hyperparameter had been added, named base_num_channels
(bnc), making the number of channels bnc, bnc·2, bnc·8 and bnc·32. This also allows for modular
capacity of latent conditioning stack.
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4.2.2 Discriminator changes
Similar changes had been done to the discriminator as they have to the generator. The main
idea behind them was to allow tuning of the capacity.

As both temporal and spatial discriminator gradually decrease the resolution of their inputs
and increase the number of channels, both by a factor of two, it only made sense to set the
base number of channels as a hyperparameter. This again allowed for modular changes to the
architecture during model training and selection.

4.2.3 Loss function changes
As it was described in section 3.4.1, the loss function of the generator is a combination of
discriminator loss and a grid cell regularizer loss multiplied by a grid lambda λ. This grid
lambda had been added as another hyperparameter to allow for tuning. However, a couple more
hyperparameters had been added to the loss function, namely grid weight divisor and a min_clip
value. If set to some values α and β respectively, they transform the function w in equation 3.3
to a new function wnew defined as:

wnew(y) = min
( y
α
+ β, 24

)
(4.1)

The grid weight divisor allows for modular weighing of higher precipitation levels. The higher
the α value, the more equally are various precipitation levels weighed in the loss function. On
the other hand, min_clip allows to modify what weight should be assigned to low precipitation
data.
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Chapter 5

Training process and model
selection

This chapter will go over the training process of DGMR. After the changes to the implementation
had been made, which allowed for reduced capacity of the model, this chapter will refer to
the model as reduced-DGMR (r-DGMR), as referring to it with the original name could be
misleading. The dataset used was provided by Meteopress. It is a dataset of precipitation above
the Czech Republic obtained via OPERA programme of EUMETNET [41] with resolution of
[352× 544] that had been center-cropped to [256× 256]. The data is originally in dBZ, so it was
converted to precipitation in mm · hr−1. The input data had been quantized into multiples of
1/32 values, the same way it had been in the original publication. The respective dataset split
sizes for train, validation, and test subsets had been 83634 (73%), 13899 (12%) and 17016 (15%).

5.1 Version 1
The first version of r-DGMR was trained for 92796 iterations with batch size of 16, which ended
up being a bit over 17 epochs. Table 5.1 shows the configuration of the model. The idea was to
decrease the overall capacity of DGMR by halving the base number of channels in most modules.
The random vector number of dimensions, as well as standard deviation had been reduced to
allow for more stable training. However, this had not been the case. The training was unstable,
which was reflected both on the loss values show in figure 5.2 and in artifacts shown in figure
5.1, which resemble an “eye-like” structure.

Hyperparameter New value Original value
Output sequence length 4 16
Conditioning stack base num channels 12 24
Latent conditioning stack base num channels 12 24
Random vector num channels 6 8
Random vector std 0.7 1
Spatial discriminator base num channels 24 48
Temporal discriminator base num channels 24 48
Generator number of parameters 10.5M 41.9M
Discriminator number of parameters 8.2M 32.7M

Table 5.1 r-DGMR_v1 changes.
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Figure 5.1 r-DGMR_v1 artifact showcase.

Figure 5.2 r-DGMR_v1 loss on validation set. Unstable training can be visible based on the jumpy
values.

5.2 Version 2

After the first attempt of training had been deemed unsuccessful, some changes had been thought
of and tried in the second version.

To tackle unstable training, number of channels in random vector had further been reduced
and also the standard deviation of its components had been reduced. Furthermore, the grid
lambda in loss function was increased, with the idea being the network will focus more on the
grid-wise difference between observations and predictions, rather than the discriminator part
of the loss. Learning rate for both generator and discriminator had also been halved from the
original values to allow for slower but more stable training. Grid weight divisor had also been
increased to more equally punish the network for errors on various precipitation levels. Once
again, you can see all the changes in table 5.2.

In the end, all those changes helped with training stabilization only a little. Training had
still been unstable, but this time the artifacts did not occur as often as they did in version 1.
Because of this, the training had been terminated a little earlier, just after the 7th epoch. The
results that did not produce artifacts had been rather blurry and produce a checkered pattern,
which can be seen in figure 5.3. The loss function will not be showcased here, since it was very
similar to the one in figure 5.2.
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Figure 5.3 r-DGMR_v2 prediction showcase. Checkered pattern can be seen on the predictions.

Hyperparameter New value Original value
Output sequence length 4 16
Conditioning stack base num channels 12 24
Latent conditioning stack base num channels 12 24
Random vector num channels 5 8
Random vector std 0.5 1
Generator loss function grid lambda 50 20
Generator loss function grid weight divisor 2 1
Spatial discriminator base num channels 24 48
Temporal discriminator base num channels 24 48
Generator learning rate 25e-6 5e-5
Discriminator learning rate 1e-4 2e-4
Generator number of parameters 10.5M 41.9M
Discriminator number of parameters 8.2M 32.7M

Table 5.2 r-DGMR_v2 changes.

5.3 Version 3

For the third attempt to train r-DGMR, the main difference was an increase of output sequence
length from 4 to 6. The generator had been given more capacity to achieve higher flexibility,
grid lambda had been returned to original value, and the random vector had been altered again
by giving it more dimensions and higher variance. These changes did in fact end up helping
with stability of the training, as the artifact seen in earlier versions did not occur in this version.
However, the main issue with version 3 was the inability to properly predict high-precipitation
events. This can be seen in figure 5.4. This was deemed to be undesirable, as the main goal
of weighed loss towards higher precipitation is to be able to predict higher precipitation events
even for longer lead times. The entire configuration of version 3 can be seen in table 5.3.

After first 5 epochs, the min_clip value had been reduced from 2 to 1, and later to 0.5 in
hopes of increasing the ability of the model to predict higher precipitation better, but after 4
more epochs, this had not been the case and the training had been terminated once again.
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Figure 5.4 r-DGMR_v3 prediction showcase. It can be seen at time step T + 30 already that high
precipitation area had almost vanished from the prediction.

Hyperparameter New value Original value
Output sequence length 6 16
Conditioning stack base num channels 16 24
Latent conditioning stack base num channels 16 24
Random vector num channels 7 8
Random vector std 0.7 1
Generator loss function grid weight divisor 2;1;0.5 1
Spatial discriminator base num channels 24 48
Temporal discriminator base num channels 24 48
Generator number of parameters 18.6M 41.9M
Discriminator number of parameters 8.2M 32.7M

Table 5.3 r-DGMR_v3 changes. Various grid weight divisors had been used.

5.4 Version 4

For this version, instead of further increasing the capacity of the generator, the capacity of the
discriminator had been increased to have more parameters than generator itself. To account for
this, batch size had to be reduced from 16 to 8 to fit the model within memory. The idea of
increasing the discriminator capacity was that it would guide the generator better into producing
realistically-looking predictions, which could subsequently also lead to more accurate predictions.
Random vector standard deviation had been returned to the original value. Number of channels
in this vector had been the same as in version 3.

This has proved to be true, since this model has achieved the lowest loss values during training.
Figure 5.5 showcases the predictions made by this version of r-DGMR. It can be seen that even
though the overall structure does indeed look realistic, it is somewhat grainy. For this reason,
a simple post-processing method based on local adjustments by blurring had been developed
that fixes this issue. It will be described in section 5.5.

As with all versions, a table with all the changes made compared to the original DGMR can
be seen in table 5.4.
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Figure 5.5 r-DGMR_v4 prediction showcase.

Hyperparameter New value Original value
Output sequence length 6 16
Batch size 8 16
Conditioning stack base num channels 16 24
Latent conditioning stack base num channels 16 24
Random vector num channels 7 8
Spatial discriminator base num channels 40 48
Temporal discriminator base num channels 40 48
Generator number of parameters 18.6M 41.9M
Discriminator number of parameters 22.7M 32.7M

Table 5.4 r-DGMR_v4 changes.

5.5 Post-processing method
Before selection of final model is described, a simple post-processing method that had been
implemented needs to be introduced. It had proved to increase prediction quality both metric-
wise and empirically, arguably giving the predictions of version 4 of r-DGMR a finer quality.

The method has two parameters, a kernel size (ks) and a ratio (r). Given those two pa-
rameters, the post-processing method does the following operation per pixel p of each prediction
step:

1. find the maximum value m in vicinity of p given by ks

2. find the average value a in vicinity of p given by ks

3. iff p < m · r, then replace p with a

The reason that this post-processing method had been chosen was due to the fact that,
probably as a result of using adversarial approach to making predictions, the predictions looked
as if they had missed a continuous precipitation area on purpose, giving them a grainy look.
Figure 5.6 showcases the effect of this post-processing technique with parameters kernel size set
to 5 and ratio to 3/4.
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Figure 5.6 r-DGMR post-processing with kernel size=5 and ratio=3/4 showcase on various
predictions. It can be seen that it partially fixes the graininess of original prediction.

5.6 Final model selection

As version 4 was able to produce satisfying predictions, the next step was model selection.
Because the training achieved similar loss value in multiple iterations, four of the models saved
had been picked for selection. The selected models relative to the iteration and loss value can be
seen in figure 5.7. Those models had been furthermore optionally altered by a post-processing
method described in section 5.5 with various parameters. Table 5.5 shows all the variations of
post-processing that had been explored per model.

This meant that overall, 40 models had been measured by various metrics, specifically MAE,
MSE and CSI with thresholds of 0.1, 1.0 and 5.0. The models will be referred to as A, B,
C and D according to figure 5.7 from left to right respectively. Since DGMR is probabilistic,
10 samples had always been taken and their average metric score was considered as final metric
value.

The first idea to find the best model was to find one that is superior in one or more metrics
and at least as good as other models in all the other metrics. That means it would make it
a dominant model. However, such a model did not exist. Because of this, a different approach
was undertaken. First, the models were filtered by having at least one metric better than all
other models. Seven models were left after this filtering, with their metrics seen in table 5.6.

Model D had been eliminated by this process altogether. Model C can be seen having the
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Figure 5.7 r-DGMR_v4 validation generator loss. Models A, B, C and D are the models chosen for
model selection and are highlighted by the red dots.

Kernel size Ratio
- -
5 1/2
5 1/4
5 3/4
9 1/2
9 1/4
9 3/4
13 1/2
13 1/4
13 3/4

Table 5.5 Post-processing configurations explored. (-, -) in first row means the original model
without post-processing had been explored as well.

Model name Kernel size Ratio MAE MSE CSI_0.1 CSI_1.0 CSI_5.0
A 5 3/4 0.14 1.234 0.451 0.221 0.067
A 5 1/2 0.142 1.261 0.449 0.222 0.067
A 9 1/2 0.142 1.241 0.458 0.226 0.067
B 9 1/2 0.127 1.153 0.463 0.227 0.065
B 13 3/4 0.121 1.095 0.469 0.213 0.057
B 13 1/4 0.13 1.163 0.46 0.227 0.064
C 13 3/4 0.112 1.086 0.404 0.168 0.046

Table 5.6 Models considered for selection and their metrics on validation set. Kernel size and ratio
refer to post-processing parameters. Model C can be seen having best MSE and MAE, but is the worst

one for all CSI thresholds.

best MAE and MSE, but lacks in all thresholds of CSI . For model A, it is the exact opposite.
Out of all variations of model B, the one with post-processing of kernel size set to 9 and ratio
set to 1/2 has achieved competitive metrics overall compared to all other models and their
variations. It is because of this reason that this model had been chosen as the final one. It
achieves MSE and MAE comparable to model C , and also CSI values comparable to model A.
This is the r-DGMR model variation that had been chosen as a model of choice. Figures 5.8
and 5.9 showcase how this specific post-processing in this model affects all the metrics per time
step relative to the original model without post-processing. It can be seen that MAE is the only
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metric that gets a little worse with increasing lead time, but all the other ones are improved for
all lead times.

Figure 5.8 r-DGMR-final post-processing comparison for MSE and MAE metrics. Post-processing
improves MSE for all lead times but worsens MAE for lead times greater than 30 minutes.

Figure 5.9 r-DGMR-final post-processing comparison for CSI metric. Post-processing is improving
the original model for all lead times in all thresholds.



Chapter 6

Evaluation

This chapter will evaluate and compare the r-DGMR model obtained in chapter 5 on a test
dataset. This dataset contained a little over 17000 examples, as was described at the beginning
of chapter 5. The first model that r-DGMR will be compared to is UNet [19], which had been
previously internally trained at Meteopress by optimizing a combination of L1 and L2 loss of
its predictions. It is a fully-convolutional neural network that is based on encoder-decoder
architecture and residual connections. The second model that r-DGMR will be compared to
is PySTEPS [17], an optical flow model based on an assumption of Lagrangian persistence of
precipitation. This model computes the “apparent motion of brightness pattern” [16] for past
observations and then proceeds to calculate new position of each pixel in the next step.

6.1 Metrics comparison
Because PySTEPS only moves the observation in a calculated direction, it does not fill the new
space that is created by this movement. Even though this is a downside of this method, it was
still desirable to fairly measure its prediction quality compared to those of r-DGMR and UNet.
Both of those networks work with convolutional layers. This allows the inputs to be of varied
size. Because the dataset contained radar observations of spatial resolution [352 × 544], these
images had been used as input for all models. The measurement of metrics, however, had been
done only on a [256× 256] area in the center of the predictions.

Figure 6.1 Comparison of MSE and MAE for all lead times for obtained r-DGMR model compared
to those of UNet and PySTEPS.
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First two metrics measured had been MSE and MAE. Figure 6.1 shows the loss values for
each lead time step. UNet and PySTEPS achieved very similar values, with UNet overtaking
PySTEPS from lead time of T+40 minutes. r-DGMR performed the worst according to this
metric, but is still competitive enough. For MSE, PySTEPS did the worst. With increasing
lead time, its squared distance from the observations deviated from those of UNet and r-DGMR.
Those tho models had achieved similar results. It should be noted that UNet had been optimized
to perform well on those two metrics.

Figure 6.2 Comparison of CSI for various precipitation thresholds for all lead times for obtained
r-DGMR model compared to those of UNet and PySTEPS.

The second metric that had been measured was CSI for precipitation thresholds of 0.1, 1.0
and 5.0 mm · h−1. PySTEPS had shown to be the best model in this metric for all thresholds.
r-DGMR does not do well for threshold of 0.1. However, with increasing threshold level, it
begins to overtake UNet and for threshold of 5.0 is competitive to PySTEPS. UNet loses very
badly on longer lead times for this threshold, with its values being close to zero. This may be
attributed to the arguably heavy blurring of UNet predictions with increasing lead times, which
subsequently leads to vanishing of higher intensity precipitation. This can be observed in the
examples included in the appendix of this thesis.

6.2 Verdict and outline of future work
The obtained r-DGMR has shown to produce predictions within the range of comparability to
both UNet and PySTEPS according to all measured metrics. However, it can be argued that the
predictions of r-DGMR look more realistic, as can be seen in figure 6.3. This should be regarded
as a success for this thesis, since obtaining a model which is able to product such predictions was
the ultimate goal. This quality could be directly attributed to the adversarial training approach
of the network. More examples of predictions of all compared models side by side are included
in the appendix of this thesis.

The first pro of the network is its ability to make predictions for various resolutions thanks
to convolutional layers. This allowed for a valuable comparison to PySTEPS. Another benefit
would be the ability to change the capacity of the network by simply using different configuration
of its various components.

However, this may also be regarded as the architecture’s downside. Fine tuning such a model
is computationally expensive since it takes a lot of time to train and evaluate. Deciding when
a generative adversarial network is still learning something useful and when is it producing
undesirable outputs proved to be a difficult task during training. Similar loss values of the
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generator does not necessarily mean the predictions are of the same quality, since the loss depends
on the quality of the discriminator as well.

In the future, it could be interesting to include more information as input to the network,
such as satellite imagery or even the predictions made by numerical models. A different kind
of generator network architecture could also be considered. r-DGMR’s predictions had been
described as more realistically looking. However, this had not been necessarily captured by the
metrics measured. More evaluation by different metrics would be worthwhile to try and see if
any of them are able to capture this quality.

Figure 6.3 Comparison of r-DGMR, UNet and PySTEPS predictions side by side.
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Conclusion

The main objective of this thesis was to implement, train and evaluate a precipitation nowcasting
model. Specifically, a neural network model designed and published by DeepMind called DGMR
that tackles this challenge with a conditional generative adversarial network.

In the beginning, the reader had been familiarized with the problem of precipitation nowcast-
ing. Current methods used to tackle this issue had been explored and the reader had also been
familiarized with all the necessary neural network concepts needed to understand the architecture
of DGMR.

Even though the original architecture of the model had not been used since attempting to do
so on the available hardware would be impossible due to limitations such as memory available and
computational power, various alterations of this model with reduced capacity had been explored.

In the end, a model that is capable of making realistically looking predictions had been
obtained. This was also the promised outcome of this thesis, since a generative adversarial
network architecture is specifically designed to produce results with this property. A simple
post-processing method had also been introduced that has shown to increase the quality of the
model’s predictions both metric wise and empirically, making them less grainy.

The model was furthermore evaluated and compared to other methods of precipitation now-
casting using various metrics. It was shown that it is competitive enough to be considered
as a valuable model. Moreover, it could also be argued that the obtained model’s predictions
look more realistic and do not resort to blurriness, which is a common problem with other meth-
ods. This can be observed in the showcase of the appendix of this thesis, where precipitation
events of various intensities and the predictions of the respective models are shown.
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Appendix A

Prediction comparison showcase

This appendix contains examples of various precipitation events and the predictions made by r-
DGMR, UNet and PySTEPS. Because r-DGMR is probabilistic, a representative prediction
had been chosen by sampling 20 predictions, taking their mean value, and picking the one sample
that differs the least from the mean measured by L1 distance.

Figure A.1 Predictions showcase 1.
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Figure A.2 Predictions showcase 2.

Figure A.3 Predictions showcase 3.
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Figure A.4 Predictions showcase 4.

Figure A.5 Predictions showcase 5.
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Figure A.6 Predictions showcase 6.

Figure A.7 Predictions showcase 7.



Appendix B

Contents of enclosed DVD

README.md.............................................a file with a description of the DVD
requirements.txt........................PIP requirements file for a working environment
train_dataset.pt...................dataset of training examples saved as PyTorch tensor
train_dgmr.ipynb................................... jupyter notebook for DGMR training
src.......................................................source code directory for DGMR

blocks................directory with source code for various block types used in DGMR
d_block.py..................................................DBlock implementation
g_block.py ................................................. GBlock implementation
l_block.py..................................................LBlock implementation

discriminators...................directory with source code for DGMR discriminators
spatial_discriminator.py....................source code for spatial discriminator
temporal_discriminator.py.................source code for temporal discriminator
discriminator.py................. source code for the discriminator used in DGMR

generator..............................directory with source code for DGMR generator
attention_module.py............source code for attention module used in generator
conditioning_stack.py........ source code for conditioning stack used in generator
conv_gru.py ................... ConvGRU implementation with DGMR adjustments
generator.py..........................source code for the generator used in DGMR
latent_conditioning_stack.py ........... source code for latent conditioning stack
sampler.py.....................................................sampler source code

dgmr.py..........................................PyTorch Lightning module for DGMR
losses.py................................................ loss functions used in DGMR

tests ............................... directory with pytest tests for DGMR implementation
text ...................................................... directory with text of this thesis

src...........................directory with source code for this thesis written in LATEX
thesis.pdf..............................................this thesis text in PDF format
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