
Instructions

This work aims to design and implement algorithms that will detect anomalies of the flying drone 

based on vibration analysis. This is needed to prevent malfunctions and accidents common in the 

drone world due to the moving parts (e.g. propellers, motors) that may lead to loose screws or the 

gradual wear of components. Vibrations can be measured using the IMU unit, which is already inside 

the drone, or an external device with an accelerometer. The evaluation of the data from the vibration 

sensor will take place in offline mode without any requirements for real-time processing.  

 

- Research existing solutions.

- Build a suitable test and measuring system (drone parts + hardware). 

- Design and implement vibration analysis algorithms to detect flying drone anomalies. 

- Gather sample data from several different scenarios (e.g. damaged propellers or engine) and 

evaluate the implemented algorithms. 

- Evaluate the results achieved and propose future extensions.
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Abstrakt

Cílem této práce je tvorba algoritmu pro detekci vad v bezpilotních letadlech pomocí vibrační
analýzy. Závady na pohonném systému bezpilotních letadel, jako například poškozené vrtule
nebo motory, mohou způsobit ztrátu vztlaku, vyšší spotřebu energie a v nejhorším případě vést
k havárii letadla. Což může způsobit vážné poškození samotného letadla, a zárověň ohrozit
osoby v blízkém dosahu. Vibrace jsou měřeny pomocí 3 osového akcelerometru na vývojové
desce Blip. Pro účely sběru dat je navržena a implementována aplikace založená na Zephyr
RTOS. Jsou pořízeny tři různé datasety, měřením dvou různých zařízení. Dva různé modely na
bázi strojového učení jsou otestovány na naměřených datasetech. Oba modely dosahují více než
95% testovací přesnosti, když jsou trénovány pomocí vzorků ze všech tříd.

Klíčová slova UAV, detekce vad, zpracování signálu, FFT, Zephyr

Abstract

This thesis aims to design an algorithm for the detection of faults on UAVs using vibration
analysis. Defects in the propulsion system of an UAV, such as damaged propellers or motors,
can cause loss of thrust, higher power consumption, and in the worst case, lead to a crash of
the aircraft. Which may cause severe damage to the aircraft itself, and pose a safety hazard to
nearby people. Vibrations are measured using the 3 axis MEMS capacitive onboard accelerom-
eter of a Blip development board. A custom Zephyr RTOS based application is designed and
implemented for the data collection purposes. Three different datasets are collected using mu-
tiple different devices, as vibration sources. Two different machine learning based models are
tested and evaluated on the collected datasets. Both models reach above 95% test accuracy when
trained using samples of all fault classes.

Keywords UAV, fault detection, signal processing, FFT, Zephyr
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Introduction

UAV, commonly known as a drone, is an aircraft without a human pilot, crew, or passengers on
board. UAVs are used in various fields for a wide range of applications. The applications range
from hobby and recreational use cases, through commercial applications, such as in agriculture,
filmmaking and healthcare, to military applications, such as mapping, surveying and load drop-
ping. Over the past few years, the number of UAVs in operation has steeply risen, especially in
the civil segment, and a further increase is expected.

In this work, we are going to focus on multirotor UAVs, a specific subset of UAVs, characterized
by having two or more lift generating rotors.

Motivation

The number of active UAVs keeps rising, whether that is caused by more people purchasing
drones for recreational purposes or companies trying to employ drones for new applications such
as delivery, many of those are UAVs, that operate or will operate in heavily urbanized areas.

These areas are often space-constrained, meaning that the aircraft usually requires the ability
of vertical takeoff and landing, which is most often enabled with the use of propeller based
propulsion systems.

Defects in the propulsion system of an UAV, such as damaged propellers or motors, can cause
loss of thrust, higher power consumption, and in the worst case, lead to a crash of the aircraft.
This may cause severe damage to the aircraft itself, and pose a safety hazard to nearby people.

Since propellers are one of the cheapest parts of a multirotor UAV, an early detection of any
damage to them, and their subsequent replacement, not only improves the safety of operating
such an aircraft, but also prevents, a possibly much more costly, damage to the aircraft.

Objectives

The primary objectives of this thesis are summarized as follows:

Review existing methods for fault/anomaly detection of UAVs.

Design and build a suitable measuring test bench for data acquisition.

1



2 Introduction

Create a dataset representing different scenarios, such as imbalanced propellers, damaged
propellers, or damaged engine of an UAV.

Propose and implement an algorithm using vibration analysis, to detect faults/anomalies in
the UAV’s behaviour.

Evaluate proposed methods and discuss possible future extensions.

Thesis outline

The rest of this thesis is organized as follows. In Chapter 1, we introduce the domain of UAVs, and
we discuss their history, applications and classification. Additionally, we list the main components
of a multirotor UAV and describe their role within the system. Chapter 2 describes the basic
working principle of accelerometers and classifies them based on their underlying technology. In
Chapter 3, we define the problem, provide a brief overview of prior relevant work on the topics
of fault and anomaly detection/identification; and propose and design possible solutions. In
Chapter 4 we discuss and analyse the requirements for creating the necessary datasets. Chapter
5 provides the minimum necessary theoretical background regarding signal theory, digital signal
processing, and machine learning. We describe the data acquisition process and implementation
of algorithms in Chapter 6, followed up by experimental evaluation of implemented algorithms in
Chapter 7. The last part of the thesis summarizes and evaluates achieved results, and discusses
possible future work.



Chapter 1

Unmanned Aerial Vehicles

UAV, commonly known as a drone, is defined as an aircraft without any human pilot, crew, or
passengers on board. An UAV together with all its associated elements, such as ground control
station (GCS), transmission systems, data links, and other support, form an unmanned aircraft
system (UAS). [1]

1.1 History

The history of UAVs dates back to the beginning of the 20th century. One of their first deploy-
ments was during the 2nd World War, when they were used as training targets, or for aerial
photography and reconnaissance purposes. During the Vietnam war, UAVs also began to be
used in a range of new roles, such as acting as decoys in combat, launching missiles against fixed
targets or dropping leaflets. This trend of predominantly military applications continued until
the end of the 20th century. [2, 3]

Various factors, such as general advancements in semiconductor manufacturing allowing for
smaller onboard electronics, new battery technologies offering better power to weight ratios,
or availability of global positioning system (GPS), enabled the manufacturing of smaller and
more affordable UAVs. This led to a gradual adoption of drones for other than military ap-
plications. Nowadays, drones are easily available to the wide public. They can be purchased
as general consumer electronics and are also used for many commercial purposes or by govern-
ment organisations. Some examples of applications include the following:

Mapping, inspecting and surveying dangerous areas such as mining and construction sites

Analysing crop health and conducting topographic surveys to support agriculture

Patrolling of restricted areas

Delivering emergency medical supplies or organs for transplantation

Transferring real-time data from fire and emergency scenes to fire-fighter and police forces

Responding to natural disasters such as an earthquakes, floods, hurricanes or forest fires

By market capital UAVs used for military applications still hold the biggest market share; how-
ever, forecasts predict that should change in the upcoming years, where commercial and consumer
purpose drones should hold the lead. [4, 5]

3



4 Unmanned Aerial Vehicles

1.2 Classification

UAVs, like any other aircraft, may be classified based on various parameters, including but not
limited to:

Size and weight

Range and endurance

Construction and design

Propulsion system

Degree of operational autonomy

Application purpose (military, civil, …)

[6, 7]

1.3 Classification Based on Propulsion System

Drones are often associated with quadcopters, however that is only one of many existing con-
struction designs. Some of the most common designs include fixed-wing, multirotor, and hybrid,
as shown in Figure 1.1.

(a) Multirotor UAV [8] (b) Fixed-wing UAV [9] (c) Hybrid UAV [10]

Figure 1.1 Example UAVs

1.3.1 Fixed-wing

Fixed-wing UAVs are similar to a regular aeroplane, both visually and construction-wise. They
have a central body with two wings attached to it, and although the wings are fixed, they may
contain movable control surfaces, such as flaps, ailerons, and a rudder.

Compared to multirotor UAVs, which use their rotors to generate both lift and thrust forces,
fixed-wing UAVs use their rotors (or another type of engine) only to generate thrust (move
forward), while the lift is generated by the airfoil-shaped wings, when moved relative to the air.
[11, 12]

Unlike multirotor UAVs, which are able to perform vertical take-off and landing, fixed-wing UAVs
usually require a significantly bigger area to perform these procedures. However, once airborne,
thanks to their aerodynamics, they consume less energy and are relatively energy efficient. This
makes them ideal for missions that require the drone to be airborne for longer periods of time or
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when long distances need to be covered, such as surveillance, mapping and climate monitoring.
[11, 13]

1.3.2 Multirotor

Multirotor UAVs consist of a central body and two or more lift generating rotors. Common
(conventional) multirotor configurations consist of an even number of rotors arranged symmet-
rically in one or more parallel planes, with the most common being quadcopter, hexacopter, and
octocopter, as shown in Figure 1.2. [14]

The more rotors a multirotor UAVs has, the more thrust it can generate, and thus, the greater
the payload it can lift. Additionally, UAVs with more than four rotors also can have a degree
of redundancy, allowing them to complete a flight or make a safe descent in the case of one or
more rotor failures. However, the trade-off is that a greater number of rotors requires a higher
current draw, and therefore hexacopters and octocopters will need to carry a greater weight in
batteries to achieve the same flight endurance as a quadcopter of similar size. [15, 16]

By changing the speeds of individual rotors, UAVs are able to achieve 6 degrees of freedom,
i.e., it can translate along or rotate around the x, y, z axes. They can perform vertical take-
offs and landings, hover mid-flight, and easily manoeuvre up and around objects. This makes
them ideal for high-resolution mapping, where a high overlap of captured data is required, or
surveying in constrained spaces. However, the improved manoeuvrability comes at the cost of
flight endurance. Most multirotor UAVs can fly for about 30 minutes before needing a battery
replacement. [15, 17, 18]

Figure 1.2 Common multirotor configurations [14]

1.3.3 Hybrid

Hybrid UAVs are an attempt to combine the advantages of both fixed-wing and multirotor UAVs
into a single aircraft. The designs can vary significantly since it still is an area of development.
However, in general, the UAV has a set of rotors allowing for vertical take-offs and landings,
or mid-flight hovering, then once airborne, the aircraft transitions to forward fixed-wing-style
propulsion. [11, 13]

1.4 Multirotor Construction

The following section will centre around mainly multirotor UAVs, since they are the focus of this
work.
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1.4.1 Frame

The frame is the main body of a quadcopter. It provides a housing facility to all the other
components, such as the flight controller (FC), motors and electronic speed controllers (ESCs) .

It is usually determined by the number of rotors it needs to hold and its weight. The materials
used may vary, but in general, they should be as light, rigid and though as possible in order to
not add too much additional weight, hold all the components and withstand all the stress forces
created during a flight. Carbon fibre composite materials offer an outstanding balance between
structural rigidity and weight; however, they are relatively expensive. Another significantly
cheaper material often used is aluminium or plastic. Plastic frames are especially popular since
they can be easily designed and printed using a 3D printer. [12, 19, 20]

Frames are usually classified by the number of arms and the shape, a set of example frame designs
is shown in Figure 1.3.

Figure 1.3 Quadcopter frame designs [21]

1.4.2 Landing Gears

Landing gears serve mainly as protection or to provide additional space to hold cargo; therefore,
smaller drones often do not have any. [19]

1.4.3 Propellers

The purpose of the propellers is to convert the mechanical energy from the motor into thrust.
They are essentially just rotating airfoils, similar in shape to aeroplane wings. [22, 23]

By rotating the propeller, the airfoil shape causes a pressure difference at the top and bottom of
the airfoil resulting in the a lift force, as shown in Figure 1.4a. [24]
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(a) Airfoil principle [24] (b) Propeller [25]

Figure 1.4 Airfoil in UAV propellers

The shape and size of a propeller have a major impact on the speed at which the aircraft can fly,
the load it can carry, and the speed at which it can manoeuvre. Propellers are usually defined
by two numbers: the diameter and the pitch. [20, 26, 27]

The diameter of a propeller refers to the length of the propeller measured from tip to tip. Longer
propellers can achieve stronger lift at lower revolutions per minute (RPM) than shorter propellers
and, in general, are more efficient. However, due to their larger size and mass, they take longer
to speed up and slow down. Shorter propellers, on the other hand, allow the aircraft to change
speed quickly and tend to produce better manoeuvring capabilities; however, to produce the
same amount of lift as a larger propeller, they need to spin at higher RPM, requiring more
energy. This may cause excess strain on the motors and lead to a shorter life span. [20, 26, 27]

Propeller pitch is defined as the distance the propeller would move forward in one rotation if
it were moving through a soft solid, the same way a screw would sink into a surface for every
rotation of the screwdriver. The pitch of a propeller is largely dependent on its pitch angle.
A flat propeller will encounter very little resistance as it slices through the air. However, the lift
it generates will also be minimal. On the other hand, a propeller with a steep pitch angle will
have to overcome a lot of drag as it rotates, but it will convert more of the wind resistance to
generate lift. [20, 26, 27]

Propellers are usually made of either plastic or carbon fibre. Plastic propellers tend to be soft,
flexible, and cheap. Their flexibility makes them less likely to crack on impact but may also lead
to producing vibrations and generating more noise. On the other hand, carbon fibre propellers
are significantly more expensive. Their rigidity makes them less prone to vibrating as they
rotate, which means they cut through the air more efficiently and generate lift more consistently.
Generally, they result in more stable flights and produce less noise. [26]

1.4.4 Motors

Motors convert electrical energy into mechanical energy, in combination with propellers, they
generate lift needed to fly a drone. Since most commercial and hobby UAVs are powered by
batteries, they most often use DC motors. There are two types of DC motors used in drones:
brushed and brushless motors. Generally, brushed motors are used on smaller, cheaper drones,
while brushless motors are used on larger and more expensive aircrafts.

1.4.4.1 Brushed DC Motor

Generally, motors have a stator (stationary part of a motor) and a rotor (rotating part of a motor).
The simplest model of a brushed DC motor is shown in Figure 1.5a. The stator is a pair of fixed
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magnets providing a constant magnetic field. [28–30]

Between these magnets, an armature (simple coil) is placed. The armature is connected to a DC
power source through a pair of commutator ring segments. A commutator is simply a ring
with gaps in between, creating separated ring segments. The commutator ring sits between two
springloaded brushes to ensure contact is always made. [28–30]

The brushes are connected to a DC power supply, hence creating a circuit. The current flows
from the supply, through the brush, the commutator ring segment, the armature loop, back to
the other side, i.e., the other commutator ring segment and the other brush, back to the power
supply. [28–30]

As the current flows through the coil, the armature becomes an electromagnet; thus the armature
will be repulsed by one of the fixed magnets while being attracted to the other one, causing the
armature to spin. [28–30]

As the armature rotates, the commutator rotates with it, sliding between the brushes, until the
brushes switch contacts between the rings, causing the polarity of the electromagnet switches
as well. The switching of polarities keeps the armature spinning. [28–30]

(a) Simplest model of a brushed DC motor [31] (b) Brushed DC motor diagram [32]

Figure 1.5 Brushed DC motors

This simple model has many flaws, the spinning speed will be irregular, and in the worst case,
the armature might get stuck. Adding another pair of commutator ring segments with another
coil loop solves this issue, ensuring the armature does not get stuck and making the rotation
speed more constant. [28, 29, 33]

Typical brushed DC motors have many loops, the fixed magnets are usually attached to an outer
casing, the coils are wrapped around the rotor, and a shaft runs through the middle of the motor,
i.e., through the rotor and commutator as shown in 1.5b.

The biggest downside of brushed DC motors is the brushes. Since the brushes rub against the
commutator plates, they wear out over time because of friction and eventually will have to be
replaced. [34]

1.4.4.2 Brushless DC Motor

In comparison, brushless DC motors do not have any brushes; hence less friction is created,
making them more efficient and longer-lasting. [34]

A brushless DC motor also has an outer casing with permanent magnets attached to it; however,
in this case, the casing rotates, while the coils within the case are stationary. An example of
a brushless DC motor is shown in Figure 1.6. This design is called outrunner since the outer
casing rotates. There are also inrunner designs, where the rotor with permanent magnets rotates
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Figure 1.6 Brushless DC motor [36]

inside. Although inrunner motors tend to rotate faster, outrunner motors have more torque,
which is why they are generally prefered for most applications, including UAVs. [34, 35]

The working principle of a brushless DC motor is similar, to that of a brushed DC motor. It
passes an electrical current through coil windings to create electromagnets, while switching their
polarity in such manner, that the attraction/repulsion forces created between the magnets of the
rotor and stator result in rotation of the rotor. [30, 35]

However, there are a few key differences.

Firstly, the fixed magnets of a brushed DC motor serve as the stator, while the coil windings
serve as the rotor. In a brushless DC motor, whether inrunner or outrunner design, the fixed
magnets serve as the rotor, while the coil windings serve as the stator. [34, 35]

Secondly, brushed DC motors, use a physical commutator, to mechanically switch the polarities
of the coil windings. Thus they require only two wires, and the moment sufficient electrical
current is supplied, the brushes making contact with the commutator complete a circuit, causing
the rotor to rotate immediately. Brushless DC motors do not have any brushes nor a commutator;
instead, the switching has to be handled by an ESC. [34, 35]

To understand why an ESC is required, let us take a look at a simple model of a brushless DC
motor, shown in Figure 1.7. It is an inrunner design consisting of a single permanent magnet
with two poles serving as the rotor and six coil windings, symmetrically spaced around the rotor.

Figure 1.7 Simple model of an outrunner brushless DC motor [37]

Applying an appropriate current to a single-coil winding generates an electromagnetic field that
will attract (or repel) the rotor’s permanent magnet. Sequentially applying current to one coil
after another will cause the rotor to spin. To increase efficiency, two opposite coils can be winded
as a single coil, in such a way that each side will generate an opposite pole, thus generating double
the force in total, as shown in Figure 1.8. [30]
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Figure 1.8 Brushless DC motor principle [30]

Since there are three coil windings, we call this design a three-phase configuration. Although
brushless motors can be constructed with different numbers of phases, three-phase brushless
motors are the most common ones. The three coil windings are connected in either a ”star” or
a ”delta” configuration, as shown in Figure 1.9, allowing us to control all three phases using only
three wires instead of six. [35]

Figure 1.9 Phase configuration [35]

Unlike a brushed motor, whose speed is determined by the supplied voltage, the speed of a brush-
less motor is controlled by appropriately powering individual phases, which is usually done
through the use of an ESC. [35]

1.4.4.3 KV Rating

Brushless DC motors have a ”KV rating”, which refers to the constant velocity of the motor. The
KV simply tells us by how many RPM, the motor’s speed will increase, per each volt applied.
The KV rating is defined for motors with no load (no propellers), and typically this is just a rough
estimation specified by the manufacturer. For example, when powering a 600 KV motor with
a 10V power supply, it will rotate at 6000 RPM. [38]

Higher KV motors generally require more current to generate the same amount of torque com-
pared to a lower KV motor. That is why pairing a high KV motor with a too large propeller,
may cause the motor to overheat or even burn out, since the motor would attempt to rotate at
the same high speeds as it would with a smaller propeller. However, the torque required would
be substantially larger, and too much current might get drawn, causing the motor to overheat.
[38]
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1.4.5 Electronic Speed Controllers

ESCs allow the FC to adjust the speed of individual motors. They come in different shapes
and sizes, based on how much power they need to deliver and how many motors they need to
control. FPV drones often use 4-in-1 ESCs to reduce weight; however, the most common type
are individual ESCs. [39, 40]

To control the speed of a motor, the FC sends a PWM signal, which is essentially just a digital
square wave signal. The speed is then determined by the duty cycle (the ratio of time when the
amplitude of the signal is high, compared to the time the amplitude is low), of the incoming signal.
The frequency of the incoming signal is usually fixed at 50Hz (the period is 20 milliseconds);
however, the duty cycles may vary, and usually will have to be calibrated. The calibration’s
purpose is to match the minimum and maximum duty cycle, of an incoming signal (usually sent
by the FC), to the minimum and maximum motor speed.

1.4.6 Power source

The most common power source of UAVs, especially commercial and hobby ones, are LiPo
batteries. The main reason being their good power-to-weight ratio and large discharge rate
compared to other types of batteries, such as nickel metal hydride (NiMH) or lithium-ion (Li-
ion) batteries. [12, 20, 41]

When choosing a LiPo battery, several parameters need to be considered, mainly: voltage, cell
configuration, capacity, and discharge rate. All of these parameters are usually included on the
battery itself, as shown in Figure 1.10a.

(a) LiPo battery parameters [41] (b) LiPo battery cells[42]

Figure 1.10 LiPo batteries

1.4.6.1 Cell Configuration

LiPo batteries are made out of cells, which are connected and wrapped together in a semi-rigid
plastic film, forming a single battery. Each cell has a nominal voltage of 3.7V, i.e., the average
voltage a cell outputs when charged. Depending on how the individual cells are connected, the
battery capacity or voltage can be increased. By connecting the cells in parallel, the capacity
increases; on the other hand, by connecting them in series, the battery voltage increases. [20,
41, 43]

Cell configuration is usually denoted in the format ”xSyP”, where the ”S” and ”P” stand for
series and parallel, respectively. For example, 2S means that there are 2 cells in series within the
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LiPo battery pack, while a 3S2P would mean 4 cells connected in series and 2 cell sets connected
in parallel. [20, 41, 43]

Since the cells of a LiPo battery use a dry solid polymer electrolyte, compared to Li-ion battery
cells that use an organic liquid electrolyte, they can be produced in a wider variety of shapes
and sizes, and generally tend to be lighter and smaller. [44]

Note, you can also tell the number of cells in a LiPo battery by taking the number of wires in
the balance connector, minus one. If the balance connector has 3 wires, it is a 2S battery, if it
has 7 wires, it is a 6S battery, etc. [41]

1.4.6.2 Voltage

Voltage has a direct influence on how much power a battery can provide to a motor, Having
a higher voltage means the battery can provide more power and thus be able to drive a bigger
motor. The power can be calculated as P = V · I, with V being the voltage and I being the
current. When people talk about battery packs, usually they do not refer to the voltage, but
most often just to the ”S rating”, i.e., how many cells it has connected in series since that directly
determines the voltage. [20, 41, 43]

The voltage of a battery is not constant, it changes depending on its charge. A fully charged
LiPo cell will have a peak voltage of around 4.2V. When being discharged, the voltage slowly
decreases. The discharge curve of a LiPo battery is relatively flat until a certain threshold when
a drop occurs. In comparison to a NiMH battery, which has a linear discharge curve. [45]

1.4.6.3 Capacity

The capacity of a battery is defined as the amount of electric charge that it can deliver at the
rated voltage. Simply, it tells us how much power a battery can hold. The unit of LiPo battery
capacity is most often milliamp-hours (mAh). Capacity can be interpreted as how much current
can be drawn from the battery for one hour until it is empty. [20, 41, 43]

Larger capacity packs may power an aircraft for longer periods of time but will also get heavier
and bigger in size, hence consuming more energy to fly. There is a trade-off between capacity
and weight; for optimal performance, there needs to be a balance between size and capacity. [43]

1.4.6.4 Discharge Rate

The discharge rate, often referred to as the ”C rating”, tells us how fast a battery can discharge
safely, i.e., the maximum safe amount of current that can be drawn. The C rating by itself may
be a little misleading since it is relative to the battery’s capacity. The formula for maximum
current draw is as follows: Max Current Draw = Capacity ·C Rating. Some batteries come with
two C ratings, a continuous rating and a burst rating, allowing to draw extra current for a short
period of time. Drawing over the recommended rating can lead to overheating and subsequently
damaging the battery. [20, 41, 43]

1.4.6.5 Main Connector

With the exception of 1S batteries, all LiPo batteries come with two sets of connectors: a balance
connector and a main connector, as shown in Figure 1.10a. There are quite a few different main
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connectors used in LiPo batteries, with their main difference being their shape, weight, and
current rating. [20, 43]

1.4.6.6 Balance Connector

Since most battery packs comprise of more than one cell, and although the cells might appear
to be identical, each cell will be slightly different, i.e., have different peak voltage or capacity or
be in different states of charge.

LiPo battery cells should always be in the range of 3V - 4.2V, Any lower than 3V and the battery
may permanently degrade. Any higher than 4.2V creates a significant risk of a battery being
damaged or even bursting into flames. If all battery cells were to be charged at the same rate,
some cells might get overcharged, while others might get undercharged. A balance connector,
alongside a balance charger, is designed to overcome this problem, by monitoring each cell’s
charge state, ensuring that all the cells are charged equally.

1.4.7 Inertial Measurement Unit

The inertial measurement unit (IMU) is basically just a set of sensors, mainly consisting of
accelerometers, gyroscopes and magnetometers. Accelerometers measure linear acceleration, gy-
roscopes angular velocity and magnetometers magnetic field strength, to be specific, earth’s
magnetic field strength, in order to determine a heading relative to the earth’s magnetic north,
unless there is some interference present. An individual inertial sensor can only sense along
a single axis. That is why to provide measurements along all three axes, three individual inertial
sensors must be mounted together into an orthogonal cluster. [46]

Unlike GPS, which is used to determine an absolute position, IMUs are used to determine
a relative position with respect to itself. Since all sensors are prone to errors, these errors
can accumulate over time, resulting in so-called drift. To prevent this, a periodic calibration
is necessary. [47, 48]

The main purpose of a IMU is to help the FC, to estimate the aircraft’s state, mainly the roll,
pitch and yaw of an aircraft, enabling it to perform desired movements. [49]

1.4.8 Flight Controller

A FC is the ”brain” of the aircraft, it basically monitors and controls everything the drone does.
Physically, a FC is just a circuit board with various chips and sensors, and similarly to a PC
motherboard, it enables the connection and communication of various components. All a FC
does can be split into the following three categories:

Sensing The FC is connected to the IMU (often the IMU is part of the FC), and other sensors,
such as a barometer or GPS. It reads values from the various sensors to estimate the aircraft’s
state, i.e., its altitude, position, orientation, and velocity.

Controlling Since all of the multirotor’s movements (translations and rotations), can be achieved
by simply adjusting the speed of individual rotors. The FC uses the data from the IMU to
estimate its state, to accordingly adjust rotor speeds (through the ESCs) to perform the
desired movement.

Communicating Lastly, the FC takes care of transmitting and receiving information to the
operator. The receiver/transmitter can be built-in or externally connected. Transmitted
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information may include information about the state of the aircraft (position, battery levels),
received information might include movement commands. [50]



Chapter 2

Accelerometers

An accelerometer is a device enabling the measurement of acceleration, in the direction of the
sensitivity axis.

One of the simplest models of an accelerometer, as seen in Figure 2.1a, is a mass-spring system.
The mass is known as the proof mass, and the direction in which the mass is allowed to move
is known as the sensitivity axis. When the system is subjected to a linear acceleration along the
sensitivity axis, the acceleration causes the proof mass to shift to one side, with the amount of
displacement being proportional to the acceleration. [51]

(a) Horizontal (b) Vertical

Figure 2.1 Simple Accelerometer Model [51]

If we take the system from Figure 2.1a and rotate it by 90 degrees in such a way that the sensitivity
axis is aligned with the gravity vector as shown in Figure 2.1b, the proof mass will naturally
deflect downwards due to gravity. Hence, the accelerometer measures both the linear acceleration
due to motion, as well as the pseudo-acceleration caused by gravity. The acceleration caused
by gravity is referred to as a pseudo-acceleration since it does not actually result in a change in
velocity or position.

Notice, if the accelerometer is dropped, i.e. submitted to freefall, the springs will not deflect.

15
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Hence the measured acceleration will be zero, although the actual acceleration is non-zero. [51]

2.1 Accelerometer classification

One of the possible ways to classify accelerometers is based on their output:

AC-RESPONSE accelerometers, as their name implies, have an AC coupled output. AC
response accelerometers cannot be used to measure static or sustained acceleration such
as gravity and constant centrifugal acceleration. Thus, they are suitable only for measuring
dynamic events. [52, 53]

DC-RESPONSE accelerometers, on the other hand, are DC coupled and can respond down to
zero Hertz. Therefore, they can be used to measure static, as well as dynamic acceleration.
[52, 53]

2.1.1 AC-Response Accelerometers

2.1.1.1 Piezoelectric Accelerometers

The most common AC-response accelerometers employ the piezoelectric effect of certain mate-
rials, most often, PZT (Lead Zirconate Titanate). A piezoelectric element is placed between
the housing and the proof mass, under the influence of acceleration, the material is deformed,
displacing a charge, i.e. producing an electrical output. The electrical output is proportional to
the force causing the displacement. [52]

Piezoelectric accelerometers are the most popular and widely used for industrial applications.
They have very low noise levels and often offer performance superior to capacitive MEMS or
piezoresistive accelerometers in all vibration and most shock applications due to their wide
frequency response and good sensitivity. [53, 54]

Their most significant downside is that they are AC coupled, so they cannot measure the gravity
vector or sustained accelerations and generally cannot measure vibrations below a few hertz. [53,
54]

Figure 2.2 Piezoelectric accelerometer[55]

2.1.2 DC-Response Accelerometers

DC-response accelerometers usually use either the capacitive or piezoresistive sensing technology.
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2.1.2.1 Piezoresistive Accelerometers

Piezoresistive accelerometers employ the piezoresistive effect, which is the change of electrical
resistivity of a semiconductor when mechanical stress is applied. In contrast to the piezoelec-
tric effect, the piezoresistive effect causes a change only in electrical resistance, not in electric
potential. The output of most piezoresistive designs is generally sensitive to temperature vari-
ation. Therefore, it is necessary to apply temperature compensation to its output internally or
externally. [52–54]

For their wide bandwidth capability (from 0 to several thousand Hertz), piezoresistive type
accelerometers are suitable for impulse/impact measurements where frequency range and g levels
are typically high. They are commonly used for industrial applications like automotive safety
testing or weapons testing. [53, 54]

Compared to MEMS accelerometers, piezoresistive accelerometers are much more expensive,
so they are generally not used for lower frequency and amplitude testing. [53]

Figure 2.3 Piezoresistive accelerometer[55]

2.1.2.2 Capacitive Accelerometers

Capacitive based accelerometers use the changes in capacitance to determine acceleration.

A capacitor is a device that stores electrical charge. One of the simplest examples of a capac-
itor is a pair of parallel metallic plates separated by a dielectric medium (insulating material),
as shown in Figure 2.4. When a voltage is applied to these plates, an electrical current flows,
charging up one plate with a positive charge with respect to the supply voltage and the other
plate with an equal and opposite negative charge. The capacitor’s ability to store this electrical
charge between its plates is proportional to the applied voltage. The more charge a capacitor
is able to store, the greater is its capacitance.

Figure 2.4 Parallel plate capacitor[56]
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Formally, capacitance C of a capacitor is defined as C = Q
V , where Q is the charge stored on

the capacitor, and V being voltage across the capacitor. Capacitance can also be determined
from the geometry of the conductors and the dielectric properties of the insulator between the
conductors. Given:

the area of overlap of the two plates A

the separation between the plates d

and the dielectric material permittivity ε

Capacitance can then be calculated as C = Q
V = εA

d . It is easy to notice that the capacitance
increases as the area gets bigger or the distance gets smaller.

Using this property, we can extend our original model of a spring-suspended mass 2.1, by adding
a pair of fixed plates and attaching a single plate to the proof mass itself, two capacitors are
created, as shown in Figure 2.5a.

When the system is subjected to acceleration, it causes the proof mass to shift to one side. As the
proof mass moves, the distance between the fixed plates and the mass attached plate changes,
as shown in Figure 2.5b. Hence the capacitance between the mass attached plate and one of the
fixed plates increases, while the capacitance of the other capacitor decreases. [56, 57]

(a) Equilibrium state [56] (b) Displaced state [56]

Figure 2.5 Capacitive accelerometer model

Capacitive type is the most common technology used for accelerometers today. The use of
the micro-electro-mechanical systems (MEMS) fabrication technology has allowed capacitive ac-
celerometers to dominate the consumer electronics markets due to their high sensitivity, good
temperature performance, low fabrication costs, small size, and ease of integration into printed
circuit boards. However, this class of low-price capacitive accelerometers typically suffers from
poor signal to noise ratio and limited dynamic range. [52, 53, 58]

Figure 2.6 MEMS accelerometer model[55]



Chapter 3

Related Work

This chapter provides a brief overview of fault detection and diagnostics methods, and presents
relevant work in the area of UAV fault detection and isolation.

3.1 Fault Detection and Identification

Fault detection (FD), sometimes also referred to as Fault detection and isolation (FDI), is a subset
of fault detection and diagnostics (FDD), a subfield of control engineering, that deals with
monitoring systems, identifying when a fault has occurred, and pinpointing the type of fault and
its location.

3.1.1 Fault Diagnosis Methods

There are several ways to categorize FDD methods, one of the simplest and most common ones
is to divide these methods into two main categories, model-based methods and model-free (also
known as process history-based or data-driven) methods. [59–61] A more detailed overview of
FD methods classification is shown in Figure 3.1.

19
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Figure 3.1 Classification of fault diagnosis methods[61]

3.1.2 Model-Based Methods

In model-based methods, some prior knowledge or fundamental understanding of the system
is required. This knowledge or understanding is then used to create a suitable mathematical
model of the system, based on the system’s underlying physics. The constructed model is then
used for identifying and evaluating differences, so-called residuals, between the actual operating
state of the system (measured by monitoring the system), and expected operating state (output
of the model).

Generally, model-based methods are broadly classified as qualitative or quantitative. [61–63]

3.1.2.1 Quantitative

Quantitative model-based methods utilize a model, where the input-output relationship of the
system is expressed in terms of mathematical functions. Such methods mainly include state
estimation based on filters and observers, and parameter estimation methods. [61, 62]
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3.1.2.2 Qualitative

Qualitative models sometimes called knowledge-based methods, unlike quantitative models, where
the model is expressed in terms of quantitative mathematical relationships, use the qualitative
relationships or knowledge bases to determine the system’s state. An example of such methods
would be rule-based systems, expert systems or systems based on fuzzy inference. [61, 63].

3.1.3 History-Based Methods

On the other hand, we have process history-based methods, often called data-driven, for which
no prior knowledge or understanding of the system is necessary. Instead of creating a model
based on a physical understanding of the system, large amounts of collected historical data are
used to derive a model, which relates measured inputs to measured outputs. The derived model
can then also be used to generate residuals as in model-based methods. [61, 63]

The modelled relationship between measured inputs and outputs can be both statistical or non-
statistical. Statistical methods include regression methods and stochastic process modelling.
Examples of non-statistical methods (pattern recognition) are support vector machines, decision
trees, or neural networks. [62, 63]

Data-driven methods can often be easily implemented if provided with a sufficient amount of
historical data, especially compared to model-based approaches. Additionally, in some use-cases,
data-driven methods are the only option, mainly when mathematical models of a monitored
system are either too imprecise or computationally intensive, or they simply do not exist. [61,
62]

On the other hand, data-driven methods often employing ”black-box” models, such as neural
networks, are unable to provide transparent reasoning ability over their predictions (unlike many
qualitative based methods). Also, depending on the problem, the required amount of data to
derive a model might be too big. The models are often system-specific, i.e., they work only for
a system on which they were trained on, and often cannot be used to extrapolate beyond the
range of the training data. [62, 63]

3.2 UAV Fault Detection and Identification

Fault detection and identification in UAVs is an area of active research. The majority of existing
FDI solutions for multirotor UAVs fall into one or more of the previously mentioned categories,
with data-driven methods dominating in recent years.

Jiang et al. identified the rotor’s fault of a quadrotor by using airframe vibration signals. Their
proposed algorithm uses a three-level wavelet packet decomposition (WPD) to analyze vibration
signals. Then, the standard deviations of wavelet packet coefficients are used as feature vectors.
Finally, a neural network is trained, which acts as a fault diagnostor to detect and identify rotor
faults. A cellphone (iPhone) with an embedded triaxial accelerometer was fixed at the bottom
of the quadrotor to collect acceleration data. A set of healthy, distorted and fractured propellers
were used during testing. [64]

X. Zhang et al. proposed a FDI method using the onboard acceleration sensors. First, the
three-axis accelerometer data of the quadcopter from the flight experiment is regarded as the
airframe vibration signal. Second, the wavelet packet decomposition (WPD) method is employed
to extract the data features and the standard deviations of the wavelet packet coefficients are
employed to compose the feature vector. Finally, an FDI model is established by Long and
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Short-Term Memory (LSTM) network that realizes the detection and identification of the pro-
peller blade faults of a quadcopter. The LSTM network has shown to reach significantly higher
accuracy compared to a standard backpropagation network. Data were acquired using a Parrot
AR Drone for both healthy non-damaged propellers and damaged propellers (of various degrees
of impairment). [65]

Bondyra et al. proposed a three-stage algorithm based on signal processing and machine learn-
ing to detect the occurrence of rotor fault and determine its scale and type. The method used
acceleration data from the onboard IMU. A Falcon V5 quadcopter with different sets of healthy/-
damaged rotors was used for data acquisition in a series of test flights. Three different methods of
feature extraction were considered: fast Fourier transform (FFT), wavelet packet decomposition
(WPD), and measuring the signal power in linearly spaced frequency bands (BP, BandPower).
Then, three support vector machines (SVMs) classifiers were used to determine the occurrence,
scale and type. [66]

Using onboard sensors is convenient, not only due to the limited space of the UAV airframe but
also by not adding any extra weight. However, sensors vary across different UAVs, some might not
have sufficient sampling frequency, and transmitting or processing data might be substantially
more difficult than if an external device were to be used.

Alternatively, G. Iannace et al. used measurements of the noise emitted by an UAV to detect
an unbalanced blade in a UAV propeller. The acoustic measurements were performed in an
anechoic chamber. These data were pre-processed using frequency analysis; specifically, various
bandpass filters were used to construct the feature vectors. Subsequently, a model based on
neural networks was built to detect unbalanced blades in a UAV’s propeller. [67]

This kind of approach has the advantage of not needing the sensor to be directly attached to the
UAV, however, it is limited to being performed indoors.

Above mentioned studies, all proposed methods relying on supervised learning-based models;
and although they generally perform well, they come with several drawbacks, the main one
being the necessity of a finely-labelled training dataset. With respect to the above-mentioned
drawbacks, K. H. Park et al. proposed an unsupervised learning based FD model utilizing
a stacked autoencoder. The autoencoder was trained with data from safe UAV states, and its
reconstruction loss was examined to distinguish the safe states and faulty states [68]

The downside of this approach is the limitation of not being able to distinguish between different
types of faults or their severity.



Chapter 4

Analysis

The main goal of this work is to propose and implement an algorithm using vibration analysis,
for the purpose of detecting faults/anomalies in the UAV ’s behaviour. With this goal in mind,
first we need to acquire a sufficient amount of sample data, only then can we proceed with
proposing and implementing above mentioned algorithms. This chapter discusses the design of
suitable test benches for acquiring data, which includes the selection of hardware, mainly the
monitored systems (motors, drones) and the monitoring device (accelerometer). And the design
and architecture of a data acquisition application required for reading and storing the measured
data from the accelerometer.

4.1 Hardware

Since we have not found any suitable and publicly available dataset, we have decided to create
our own. In order to create our own dataset we first and foremost need a measuring device
capable of capturing vibrations, and secondly, a target device to be monitored, i.e., a device
whose state we will try to predict/assess based on measured vibration.

Every UAV already has an onboard accelerometer in their IMU. However, they are most often
surrounded by damping tapes, in order to reduce noise (the high and medium frequency vibra-
tions, most often produced by motor induced vibrations), and to prevent possible damage caused
by excessive vibrations to the onboard electronic, such as the FC, or IMU. [69–71]

The presence of damping materials, alongside the often low sampling frequency, makes these
onboard accelerometers unsuitable for our purposes. Additionally, the onboard sensors may
differ greatly, depending on the UAV, and depending on the manufacturer, extracting data from
these sensors might be cumbersome or even outright impossible. Mainly for these reasons, we
decided to use an external device for capturing the data. An external device should provide
us with more accurate and undamped data. Additionally, capturing data from different devices
should become easier, since the device needs to be simply detached from one device and attached
to another one.

23
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4.1.1 Blip

Blip is a development board based on the Nordic Semiconductor nRF52840 system on a chip
(SoC), made by Electronut Labs. [72]

It has an embedded accelerometer sensor, specifically, the LIS2DH12 made by STMicroelec-
tronics. Which is an ultra-low-power high-performance three-axis MEMS linear accelerometer,
providing digital inter-integrated circuit (I2C) and serial peripheral interface (SPI) serial inter-
face standard outputs. The LIS2DH12 has user-selectable full scales of ±2g/±4g/±8g/±16g,
and is capable of measuring accelerations with output data rates from 1 Hz to 5.3 kHz. [73] It
also has provisions for a microSD card slot, which makes it a complete and versatile development
board. [72]

This specific device was selected mainly for: its relatively low price (50$), the accelerometer
sensor it contains, and the support of Zephyr OS.

Figure 4.1 Blip development board [72]

4.1.2 Monitored Devices

All the hardware used for the dataset collection is listed below:

Single motor setup composed of the following parts:

Antigravity MN4006 KV380 brushless motor

HobbyKing 20A BlueSeries ESC

Single propeller

OWON ODP3031 programmable DC power supply

Quadcopter setup based on the Holybro X500 kit, with the following list of parts:

4 Holybro 2216 KV880 brushless motors

4 Holybro BLHeli S 20A ESCs

Frame and a set of arms

Other, for our purposes irrelevant parts
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All devices were selected mainly for their availability, but also, as they should reflect common
hardware used in the hobby drone community.

(a) Antigravity MN4006 KV380 [36] (b) HobbyKing 20A BlueSeries [74]

Figure 4.2 Single motor and ESC setup

Figure 4.3 Holybro x500 kit[75]

4.2 Datasets

With the ultimate goal of fault detection of UAVs in operation (in-flight), being rather complex,
we decided to split the dataset acquisition process into three separate phases. With each phase
getting increasingly more complex, and gradually building up to the end goal.

4.2.1 First Phase

In the first phase, we will attempt to detect a damaged propeller, in almost perfect conditions,
completely devoid of any external variables (wind, other rotors, …). Data will be acquired from
a single, statically mounted motor, with an attached propeller.
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This dataset should serve mainly as a proof of concept, to test whether faults are detectable in
the first place. Additionally, various pre-processing and feature-extracting transformations can
be tested here.

4.2.2 Second Phase

In the second phase, we will add another motor to test whether faults are still detectable when
multiple motors are spinning. For this dataset, we will employ a statically mounted quadcopter,
with two motors disabled (powering only 2 out of the 4 total motors).

4.2.3 Third Phase

The third and final phase extends upon the second one. The same statically mounted quadcopter
will be used, this time with all 4 motors powered and rotating, to acquire data. Additionally,
two different sets of propellers will be used in order to test the algorithm’s ability to generalize.

4.3 Embedded systems

Embedded systems are most often defined as a combination of hardware and software, designed
to perform a specific task or set of tasks. In comparison to general-purpose devices such as PCs
or smartphones, that are designed to perform a wide range of non-predefined tasks. Embedded
devices are most often based on some microprocessor (MPU), microcontroller (MCU), SoC, or
field programmable gate array (FPGA), and often take the form of a single board design.

General-purpose devices typically run some sort of general-purpose operating system (OS). On
the other hand, embedded systems are usually designed to perform only some pre-defined set
of functions, they typically do not require a full-fledged OSs, and due to their limited resources
(memory, computing power, …), they often are outright unable to run such OSs.

Embedded systems designed for simple tasks often do not need any OS, and run a simple pro-
gram in an infinite loop. Systems that are designed for more complex tasks, such as smart/fit-
ness devices or automotive subsystems will run some embedded OS, such as Embedded Linux,
QNX, INTEGRITY, or VxWorks. Lastly, embedded systems running critical applications, such
as pacemakers or vehicular control systems, are usually characterized by not only requiring logi-
cal correctness (1 + 1 = 2), but also temporal correctness (getting the results at the right time).
Such requirements are most often satisfied by using a real time operating system (RTOS).

4.3.1 Zephyr

Zephyr is an open-source RTOS. It is relatively new, released in 2017, compared to other RTOSs,
such as FreeRTOS, which was released in 2003. It has a broad SoC and development board
support and is supported by many hardware architectures, including Intel x86, multiple ARM
architectures, RISC-V, and many others.

Although relatively new, Zephyr has gained a lot of traction over the years. It has become
one the most popular and well maintained free open-source RTOSs, Compared to other similar
projects, it has a lead in terms of contributors and upstream commits, with many companies,
such as Intel or Nordic Semiconductor, contributing to the development. [76]
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Some of the features of Zephyr include:

High configurability and modularity (allowing an application to incorporate only the capa-
bilities it needs).

Mostly static allocation of memory and resources

POSIX compliance

Support of both cooperative and preemptive threading

Support of multiple scheduling algorithms

Implementation of configurable architecture-specific stack-overflow protection

Use of devicetree to describe hardware

4.3.1.1 Architecture

A high-level schematic of the Zephyr OS architecture is shown in Figure 4.4. It consists of 3
main layers as follows:

Kernel and Drivers consisting of, but not limited to:

scheduler

kernel synchronization objects and primitives

kernel services

low-level architecture and board support

peripheral and hardware drivers

OS Services and Low-Level APIs consisting of platform-specific drivers, I/O APIs, file sys-
tems, logging and others

Application Services consisting of high-level APIs, enabling the applications to access stan-
dardized data such as JSON or CBOR, and networking protocols, such as HTTP [76]

Figure 4.4 Zephyr System Architecture[77]
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4.3.1.2 Kconfig

Kconfig was inspired by the configuration system used by the Linux kernel. The main purpose
of Kconfig is to enable configuration without having to change any source code. It allows us to
select what features should be included in the build of the OS image.

An example would be whether to add networking support, which drivers are needed by the
application.

4.3.1.3 Devicetree

Devicetree is a hardware description language, but it can also refer to the hierarchical data
structure that describes the hardware, using said language. We describe the hardware in order
to allow the operating system’s kernel to use and manage those components.

In Zephyr, we use the Devicetree to describe the hardware and its boot-time configuration, this
configuration is then used during the build time, generating a macro-based API, through which
we can interact with the hardware from the application’s source code.

An example of what is devicetree used for would be what peripherals to include on a board,
setting boot-time clock frequencies, configuring interrupt lines and so on.

4.4 Data Acquisition Application

The main purpose of this embedded application is to allow us, as easily and as consistently
as possible, to acquire large amounts of data from various devices (motors, drones, …).

4.4.1 Requirements

Reading data from accelerometer
The application has to extract the raw data from the sensors’ registers, and interpret them
correctly.

Writing or transmitting data
The application has to either permanently store the extracted data onto a medium, such
as an SD card, or transmit the extracted data via a suitable interface, such as UART.

Calibrating and programming ESCs
The application has to enable the calibration and programming of multiple ESCs at once.

Communication interface
It also needs to provide a communication interface to allow communication with a client.

Test automization
Last it should allow automatization of the data acquisition process, by being able to sequen-
tially perform multiple tests (measurements).

4.4.2 Architecture

We decided on a modular multi-thread application architecture, with a command-line interface
for numerous reasons, with the main reasons being as follows:
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In order to ensure a consistent and reliable environment for data acquisition, that couldn’t
be achieved by, for example, manually setting up the motor speed using a servo controller.

For the ease of use, to enable data acquisition of a large amount of data without constant
supervision.

To prepare for possible future extensions, such as sending data over Bluetooth.

And lastly, to ensure the safety of the user, a command-line interface allows us to control the
device and hence the UAV, from the safety of another room while measurements take place.

The application consists of multiple components and services. A brief overview of the applica-
tion’s architecture is shown in Figure 4.5.

The client communicates with the application using a command-line interface, and the tester
module encapsulates, most of the functionality, and exposes a command-line API to the client.

Figure 4.5 High level application architecture

4.4.3 Components

The components mainly include various wrappers around system or hardware-specific calls.

4.4.3.1 LIS2DH12 Driver

Since the Zephyr provided driver wasn’t suitable for our purposes, we wrote our own simple
custom implementation, in order to easily interact with the LIS2DH12 onboard accelerometer.

Except for extracting and reading data of the sensor, the custom driver should also enables us to
configure the sensor’s settings, such as the following:

Sampling rate The frequency at which the sensor measures the accelerations.
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Sensitivity Determines the range of values (maximum acceleration value) the sensor is able to
capture; values out of this range will get clipped.

Resolution In other words, bit depth, i.e., how many bits are used to encode measured data.

FIFO mode The sensor exposes measured data through a cyclical hardware FIFO. The FIFO
mode determines whether the sensor should measure the data in the first place (to save
energy), and, if so, in what manner it should do so.

Interrupt The sensor is capable of generating HW interrupts. Different interrupt triggers can
be configured, such as: when acceleration surpasses a threshold, when a certain number of
data samples are ready to be read in the FIFO, when FIFO is full, and data samples get
overwritten.

4.4.3.2 Disk Access Module

Mounts the file system and handles common disk operations such as opening, closing and writing
to files.

4.4.3.3 PWM Module

Provides API for setting motor speed, through an ESC, using values in the range 0-100, instead
of having to specify the pulse-width modulation (PWM) parameters (period and pulse width).

4.4.3.4 Shell

The shell is a built-in feature of Zephyr, and it just needs to be included in the build by specifying
a Kconfig option. Subsequently, new commands can be added by using the provided API.

4.4.3.5 Tester

The tester provides a command-line API for initiating tests (series of measurements), by calling
the services and other components in a specific order. The tester also ensures all the peripherals
and devices are ready, and enables the user to sequentially perform multiple tests in a row.

4.4.4 Services

Since the sensor’s FIFO is of limited size (32 values per axis), writing or transmitting the data
directly from the FIFO is not possible, even if a small sampling rate were to be used. Thus the
data has to be copied to an intermediate data structure for further processing. In other words,
it is a classical producer-consumer problem. The producer, in our case, is the accelerometer
service, while the consumer is the writer service.

Each service runs in its own separate thread. In order to avoid repeated thread creation and
termination, which both can be resource-intensive operations, the application creates each of the
service threads only once. All the threads live for the entirety of the application’s lifetime.

Propper thread suspension and resumption are achieved by using a combination of mutexes
and conditional variables. Both the consumer and producer services employ a similar design,
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allowing the services to be suspended and resumed from the main thread, for example, by the
tester module from within the command line. A brief and simplified design is shown in Figure 1.

Algorithm 1: Producer/Consumer Service
service_mutex ← mutex_init();
service_condvar ← condvar_init();
is_service_enabled ← false;

/* Called from another thread */
Function enable_service():

is_service_enabled ← true;
condvar_signal(service_condvar);

/* Called from another thread */
Function disable_service():

is_service_enabled ← false;

/* Thread entry function */
Function service_loop():

while true do
mutex_lock(service_mutex); /* blocking wait, forever */
if is_service_enabled = false then

condvar_wait(service_condvar); /* blocking wait, forever */
end
service_functionality(); /* perform some action */
/* Give up mutex and allow other threads to run */
mutex_unlock(service_mutex);
yield_thread();

end

4.4.4.1 Accelerometer Service

The accelerometer service’s main job is to read data from the sensor’s FIFO, using the custom
driver, into a ring buffer and subsequently, notify the consumer service.

4.4.4.2 Writer Service

The writer service awaits a notification, upon which it reads data from a ring buffer, and subse-
quently writes them to the disk.

A simplified sequence diagram of a single test is shown in Figure 4.6.
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Figure 4.6 Test sequence diagram

4.4.5 Alternative Architectures

We additionally propose 2 alternative architectures, which both build on the original one. They
both come with their own set of advantages and disadvantages.

4.4.5.1 Alternative Architectures 1

The first alternative modifies the writer service, instead of writing measured data to an SD card,
they write measured data to the command line.

To enable filtering of the measured data from other command-line outputs, a prefix has to be
attached to the data before transmitting. The client will then have to filter out the data.

The main advantage of this solution is the removal of the SD card, thus the files can be managed
through a client-based script, instead of having to do all operations on-device. On the other
hand, a custom client script has to be written to filter the measured data.
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Figure 4.7 Alternative 1

4.4.5.2 Alternative Architectures 2

A second alternative outright removes the writer service. For the duration of a single measure-
ment (ramping up the motor, starting data collection, stoping collection, stoping motor) all data
get buffered. Once the data collection ends, all data get written to a file at once.

The main advantage of this solution is reduced complexity, through the removal of the consumer
thread, leading to less overhead from context switching. The biggest downside is, however, the
limitation on how much data can be buffered before we run out of physical memory.

Figure 4.8 Alternative 2
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4.5 Vibration Analysis

Vibrations are defined as mechanical oscillations around some equilibrium point. Vibration can
be induced by various sources, including rotating machinery, rolling bearing elements, fluid flows,
combustion events, structural resonance and many others. The oscillations may be periodic, such
as the motion of a pendulum, or random, such as the vibrations of a flying aircraft.

Vibration analysis is then usually defined as the process of measuring vibrations, and using the
obtained information to assess the state of the monitored system and its components. The two
most common approaches include time domain vibration analysis, frequency domain vibration
analysis or time-frequency analysis, which incorporates information from both the time and
frequency domain. In the following chapter, we will describe some commonly used techniques
and transformations, that are used for extracting information from vibrations.



Chapter 5

Theory

5.1 Signals and Digital Signal Processing

Signal is generally defined as anything that conveys information about a phenomenon. Most
often signals are used as a description of how one parameter varies with another parameter. We
represent them as functions of one or more independent variables describing the properties of
the source. Most often they are functions of time, i.e., y(t) = f(t); however that is only the most
common type. Another type of signal commonly encountered are images, which are represented
as functions of two spatial variables. [78, 79]

5.1.1 Signal Classification

Signals can be classified with respect to various properties, some …properties are the following:

5.1.1.1 Causality

Signals that have a clear start/origin, i.e., y(t) = 0; t < t0, are called causal, an example of
causal signals are various biological signals, that have a start and an end. On the other hand
with non-causal signals, we are unable to determine the origin.

5.1.1.2 Determinism

Signals can be also classified based on their ”randomnes”.

deterministic signals have deterministic values, i.e., the value of y(t) is determined only by its
input.

stochastic signals, are signals with some degree of uncertainity, they are described using prob-
ability functions

35
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5.1.1.3 Periodicity

Deterministic signals are either periodic, or aperiodic. Periodic signals are defined as:
Definition 5.1.1 (Periodic signal):
A signal for which exists a T , such that for all t:

y(t+ T ) = y(t)

Definition 5.1.2 (Period):
The smallest T satisfying y(t+ T ) = y(t) for all t is called the period of a signal.

Definition 5.1.3 (Frequency):
Frequency is defined as the inverse of the period expressed in seconds,

f =
1

T

The unit of frequency are hertz (Hz), meaning cycles per second.

Periodic signals can be further classified as harmonic, and non-harmonic. An example of
harmonic signals are sine waves, of varying frequencies, while non-harmonic are more complex
functions that can be decomposed into individual harmonics.

5.1.1.4 Continuity

Signals can be classified as either continuous or discrete, in both their amplitude and time (range
and domain of a fucntion), continuous time signals, are expressed as functions with a continuous
domains, while discrete time functions are often expressed as number sequences.

5.1.2 Analog-to-Digital Conversion

In order to digitally procecess signals they first have to be digitized, mathematically this procecess
would be called discretization. The process of analog-to-digital conversion (ADC) ussualy done
by a D/C converter and can be divided into two parts, quantization and sampling.

5.1.2.1 Quantization

Quantization is the process of converting the continuous amplitude of a function into a finite
range of discrete values. The size of this range is refered to as resolution, and since most often
it is determined by the number of bits used to represent the values, it is also often called the
bit-depth.

The difference of the original signal and the quantized signal is called the quantization noise,
which is used to calculate the signal to quantization ratio (SQNR).
Definition 5.1.4 (SQNR):

SQNR =
E(yin)

E(yerr)
=

E(yin)

E(yin − yout)
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where E stands for the energy of a signal, and is defined as follows:
Definition 5.1.5 (Energy of continuous signal):

E =

∫ t1

t1

|y(t)|2dt

Definition 5.1.6 (Energy of discrete signal):

E =

N∑
n=1

|y[n]|2

5.1.2.2 Sampling

Sampling is process of reducing a a continuous time signal to a discrete time signal.

Most often sampling is done in a uniform/equidistant manner, i.e., given a signal y(t) and
a sampling period Ts, the sampled discrete time signal will be defined as

y[n] = y(nTs)

where n ∈ N is the n-th sample.

The sampling frequency (sampling rate) is defined as fs =
1
Ts

.

An approriate sampling frequency is essential to properly discretize a signal, if the sampling
frequency is too low, a so called aliasing might occur, where high frequency components of
a signal will appear as low frequency ones, thus introducing ”fake” frequencies, that are not
acctually part of the sampled signal. If an undersampled digitzied signal were to be reconstructed
(converetd back to analog), it would not match the original signal. The action of sampling a signal
with a sufficiently high sampling frequency is called proper sampling. [78, 79]

Figure 5.1 Aliasing effect example [80]
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5.1.3 The Sampling Theorem

The sampling theorem, also known as Nyquist-Shannon theorem, states the minimum sampling
frequency required to avoid aliasing, and may be stated as follows:
Theorem 5.1.7 (sampling theorem):
A continuous signal can be properly sampled, if and only if, it does not contain frequency
components above one-half of the sampling rate.

Or in other words, the sampling frequency has to be at least twice the the highest frequency
contained within a signal. This minimum sampling frequency, is often refered to as the nyquist
frequency.

5.1.4 Frequency Analysis

The goal of frequency analysis is to decompose signals into their individual harmonics.

5.1.4.1 Fourier Series

Fourier series allow us to approxiamte an arbitrary periodic function as a trigonometric series,
more formally as follows.
Theorem 5.1.8 (Fourier Series):
Given a periodic function f with a period of 2T , f can be expressed as

f(x) =
a0
2

+

∞∑
k=1

(
ak cos

kπx

T
+ bk sin

kπx

T

)
, x ∈ R,

where the Fourier coefficients a0, ak, bk, fork ∈ N can be calculated using the following formulas

ak =
1

T

∫ T

−T

f(x) cos
kπx

T
dx, k ∈ N,

bk =
1

T

∫ T

−T

f(x) sin
kπx

T
dx, k ∈ N∗.

Additionaly, it can be proven under certaian conditions, that such an approximation converges.

5.1.4.2 Fourier Transform

The term Fourier transform is sometimes used ambiguously; however in general it can be broken
into four categories, resulting from the four basic types of signals that can be encountered.
A signal can be either continuous or discrete, and it can be either periodic or aperiodic.

Aperiodic and continuous signals: functions such as the Gaussian curve. The Fourier Trans-
form for this type of signal is simply called the Fourier Transform.

Periodic and continuous signals: signals such as sine waves, square waves, and any wave-
forms that repeat themselves in a periodic pattern infinetly. This version of the Fourier
transform is called the Fourier Series.
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Aperiodic and discrete signals: signals which are only defined at discrete points between
positive and negative infinity, and do not repeat themselves in a periodic fashion. This type
of Fourier transform is called the Discrete Time Fourier Transform.

Periodic and discrete signals: lastly, signals which are discrete and repeat themselves in a pe-
riodic fashion from negative to positive infinity. This class of Fourier Transform is most often
called the Discrete Fourier Transform. [79]

5.1.4.3 Discrete Fourier Transform

Definition 5.1.9 (Discrete Fourier Transform):
Discrete Fourier transform transforms a sequence of complex numbers {xn} ··= x0, x1, . . . xN−1

into a sequence of complex numbers {Xk} ··= X0, X1, . . . XN−1, where Xk is defined as follows

Xk =

N−1∑
n=0

xn · [cos
2kπn

N
− i · sin 2kπn

N
]

=

N−1∑
k=0

xn · e
−2kπn

N .

Each of the complex number output sequence, corresponds to a frequency, amplitude, and phase
on the resulting frequency spectrum.

5.1.4.4 Fast Fourier Transform

Fast Fourier transform (FFT) is an algorithm for fast calculation of the discrete Fourier trans-
form (DFT). Although, there are multiple possible formulations of the FFT algorithm, the most
commonly used one is the Cooley-Tukey algorithm, which is a divide-and-conquer type of algo-
rithm. It essentially recursively breaks down the DFT calculation into two calculations of half the
size, this allows the complexity of a regular DFT calculation to drop from O(N) to O(N log2 N),
where N is the data size.
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5.2 Machine Learning

Machine learning (ML) is a subset of artificial intelligence. A possible definition of ML, by
Mitchell, is as follows:
Definition 5.2.1 (Machine Learning):
A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T , as measured by P , improves with
experience E. [81]

In other words ML happens when a program, often called a model, learns from an experience of
doing some task, that is measured/evaluated using some metric.

The process of the model learning from experience, is most often done by giving it some training
data, it performing a task and subsequently being evaluated, is referred to as training a model.

The Task T

The tasks T beign solved by ML vary, but generally will fall into of the following categories:

Classification: assigning one of k categories to a given input.

Regression: predicting a number x ∈ R for a given input.

Clustering: dividing given input into clusters of similar examples.

Other: includes problems such as transcription, machine translation, structured prediction,
anomaly detection, denoising, density estimation, and others. [82, 83]

The Experience E

Depending on the nature of gained experience E during the learning process, i.e., the type of
data used by the model to learn, ML can be mostly classified into the following categories:

Supervised-learning: training data have associated labels (desired outcomes/targets), typical
for classification or regression problems.

Unsupervised-learning: training data do not have any annotations/labels, typical for cluster-
ing or density estimation problems.

Reinforcement-learning: the learning is driven mainly using the performance metric instead
of using data to learn.
For example, if a model were learning to play chess, individual moves would not be labelled
as good or bad; instead, the model would be evaluated at the end of the game on how well it
performed. [83]

The Performance Metric P

Performance metrics (Error measures) are used to evaluate the abilities of ML models, and are
usually specific to the task T being solved by the model.
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For classification problems, the simplest and most common performance metric is accuracy,
which is defined as the proportion of examples for which the model has predicted correct output.
We can also calculate the error rate, which is the complement to accuracy, i.e., the proportion
of examples for which the model has predicted incorrect output. [83]

The choice of an appropriate performance metric is a task in and on of itself. Depending on
the problem being solved, the selection might not be straightforward at all. When evaluating,
for example, the performance of transcription or diacrtization, the accuracy can be measured at
different levels of granularity (character-level, word-level, sentence-level). [83]

In other cases, such as in regression problems, accuracy can not be used, instead, the performance
is measured using the error, which is simply the difference between a model’s prediction and
the ground truth. However, once again, depending on the problem being solved, different errors
might be appropriate, commonly used regression metrics are mean squared error or root mean
squared error, mean squared error will penalize bigger mistakes compared to root mean squared
error. [83]

5.2.1 Generalization

ML is often associated with optimization, and although optimization techniques are often em-
ployed in ML, they are not the same. In the context of ML, given a training set (inputs and
associated targets), the goal of optimization is to minimize the training error. That is, given
an input and associated targets, match the output of a model to the provided targets as well
as possible. [83]

However, that is not the main goal of ML. The main goal of ML is generalization, which
is defined as the ability of a model to perform well on previously unseen inputs (data samples
that differ from the ones used during training). [82, 83]

In other words, the aim is to minimize the generalization error, also called the test error.
The generalization error is defined as the expected value of the error on new unseen inputs. It
is typically estimated by measuring a model’s performance on a test set of examples that were
collected separately from the training set. [83]

A logical question that arises is how to affect the performance on the test set, if it can not be
used during the training. The solution to this problem is to make an assumption about the test
and train sets, specifically, we assume that the examples in each dataset are independent of each
other, and that the train set and test set are identically distributed, and are drawn from the
same probability distribution as each other. [83]

By making this assumption, if we were to sample a test and train dataset, for some fixed set of
parameters, the expected test and train error of will equal, since both expectations were formed
based on the same data sampling process. However, when training a model, the parameters are
not fixed ahead of time, instead, the training set is sampled, and subsequently, the parameters
are adjusted to minimize the train error, and only then is the test set sampled. Under this
process, the test error will be greater or equal to the training error. [83]

5.2.2 Capacity, Overfitting and Underfitting

With the now established relationship between train and test error, another way to look at
minimizing the generalization error is to minimize the train error while keeping the gap between
test and train error as small as possible. [83]
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These two goals relate to so-called underfitting and overfitting. Underfitting occurs when the
model is not able to sufficiently minimize to train error, while overfitting occurs when the gap
between train and test error gets too large. [83]

Whether a model overfits or underfits can be controlled by adjusting the model’s capacity,
which is informally defined as a model’s ability to fit a wide variety of functions. [83]

5.2.3 Regularization

Regularization techniques aim to reduce generalization error (often increasing the training error).
There are many regularization techniques, often they involve limiting the model’s capacity, or
somehow penalizing the model during training, to preferer certain models over others, a simple,
commonly used technique is L2 regularization, also known as weight decay, which penalizes
models with large weights. [82, 83]

5.2.4 Hyperparameters

The process of training a model, involves finding the best parameters of a model (for example,
finding the weights in linear regression). However, most ML models also have parameters that
do not change during the training and need to be set before the training itself. These parameters
are called hyperparameters. [82, 83]

Hyperparameters often alter the model’s capacity, that is, they should not be chosen based on
the training error, since the model would always preferer such hyperparameters that increase the
model’s capacity, leading to overfitting. A solution to this problem is to add another set of data,
called the validation set (sometimes called the development set). For the same reasons, the test
set can not be used to train the model (adjust parameters), and samples can not be used to select
hyperparameters. Typically the validation set is created by splitting the train set into two sets,
most often with an 80:20 ratio for the train and validation set, respectively. Since the validation
set is used to select the hyperparameters, the validation set error will also underestimate the
generalization error. [82, 83]
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5.2.5 Parametric and Nonparametric Models

Parametric models are characterized by having a fixed and finite number of parameters (usually
depending on the number of features), before any data is observed, i.e. the parameter count
is fixed with respect to the training set. [82, 83]

On the other hand, there are nonparametric models. Contrary to their name, they do have
parameters; however, the number of parameters is not fixed. Often they are determined by the
size of the training data set, and therefore, the model size (parameter count) usually grows with
the size of the training set. [82, 83]

5.2.6 K-Nearest Neighbors

KNN is one of the simplest nonparametric models, it can be used for regression, as well as classi-
fication problems. The main idea of kNN is simple. The training phase consists of simply storing
the whole training set (the training set is the parameters), while the prediction is then made,
by for a given input, finding the k most similar training examples, and based on those returning
a target class or a number, depending on the type of problem. [82, 83]

Hyperparameters

The main hyperparameters affecting the prediction are:

k: the number of k most simmilar training examples to use for prediction;

metric: the function that determinse how similar/close two samples are;

weights: the impact of an example on the prediction results; most common weighting shcemes
include:

uniform: all k nearest neighbors are considered equally;

inverse the weight of an exmple is inversely proportional to the distance from the input;

softmax the weight is proportional to softmax of the negative distance from the input.

Formally a metric is defined as follows:
Definition 5.2.2 (metric):
Let d : X ×X → R,
be called a metric, if for all x, y, z ∈ X the following axioms hold:

i) d(x, y) = 0⇔ x = y (identity)

ii) d(x, y) = d(y, x) (symmetry)

iii) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Commonly used metrics are often based on the Lp norm,

∥x∥p ··= p

√√√√ n∑
i=1

|xi|p = p
√
|x1|p + · · ·+ |xn|p (5.1)

Sometimes, based on the nature of data, functions that formally are not metrics are used as well,
such as the cosine similarity or dynamic time warping (DTW).
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Prediction

Regression: given the k nearest neighbors and their respective target values ti and weights wi

the prediction t is calculated as follows t =
∑

i
wi∑
j wj
· ti

Classification: if the weighting scheme is uniform, a simple max-voting approach is used, i.e.,
the most frequent class of the nearest neighbors is used as the prediction. Otherwise, the
prediction is done similarly to regression, i.e., t =

∑
i

wi∑
j wj
·ti; however in this case is a vector

t ∈ Rk representing the distribution of the target classes (ussually simply one-hot encoded
vectors). The predicted class will be the one with the maximum probability of the sum.

5.2.7 Estimators and Bias

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on
observed data. For example, the sample mean is a commonly used estimator of the population
mean.

The bias of an estimator is defined as the difference between the expected value of the estimator
and the true value being estimated, formally:
Definition 5.2.3 (Estimator Bias):

B(θ̂) = E(θ̂)− θ (5.2)

If the bias of an estimator is equal to zero, we call the estimator unbiased; otherwise, we call the
estimator biased.

For example, suppose we want to estimate the mean result of a coin toss. We could estimate the
mean by simply sampling from the distribution (by tossing the coin); although each estimation
might be wrong most of the time (or all the time), since we are using the distribution itself to
make an estimate, the expected value of this estimator will be exactly equal to the expected
value of the distribution. Therefore the bias will be zero, and such an estimator will be unbiased.

5.2.8 Gradient Descent

Gradient Descent is a first-order iterative optimization method for finding the local minimum of
a function. It is used mainly when the explicit solution does not exist, is too difficult to find or
is simply too computationally expensive.
Definition 5.2.4 (Gradient Descent):
Assuming we want to minimzes some error fucntion

argmin
w

(Error(w))

We may use gradient descend, which iteratively adjusts the vector w in the following manner

w ← w − α∇w Error(w)

where α is called the learning rate, and specifies the step size in each itteration.
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Let us define the erorr function as the expected value of some loss function over an entire dataset

∇w Error(w) = ∇wE(L(y(x;w), t))

There are different variants of gradient descent, depending on how we calculate/estimate the
expectation of the loss function.

Gradient Descent: Uses all training data to compute gradient.

Stochastic Gradient Descent Uses a single sample to estimate the gradient
∇w Error(w) ≈ ∇wL(y(x;w), t), for randomly choosen (x, t) from the dataset. As we have
shown on the example of a coin toss such an estimate although noisy will be unbiased.

Minibatch Stochastic Gradient Descent Is the middleground between regular and stochas-
tic gradient descent. The expectation is estimated using B random independently sampled
examples from the dataset.
∇w Error(w) ≈ 1

B

∑B
i=1∇wL(y(xi;w), ti), for randomly choosen (xi, ti) from the dataset.

Theorem 5.2.5 (Gradient Descent Convergence):
Let us perform a stochastic gradient descent, using a sequence of learning rates αi, If a loss
function L is continuous then SGD converges to a local optimum almost surely if:

∀i : αi > 0 (5.3)∑
i

αi =∞ (5.4)∑
i

α2
i <∞ (5.5)

Note, if the function is convex, the reached optimum will be global.

5.2.9 Multilayer Perceptron

Multilayer perceptron (MLP) also known as FNN can be considered an extension of generalized
linear models such as linear regression, binary logistic regression or multiclass logistic regres-
sion. However, instead of a single generalized linear model, there are several in parallel, and
additionally, they can be nested sequentially.

Neural networks are organized in so called layers, where each node in one layer is connected
all the other nodes in the following layer via a directed edge, and every edge has an associated
weight.

The first layer is called an input layer and represents input variables, and the last layer is called
an output layer. The remaining layers in between are called hidden layers. While the size of
the input and output layers are determined by the shape of the input data and output targets
respectively, the number and size of hidden layers can be freely selected.

A simple architecture consist of only a single input layer and a single output layer with activation
function a is shown in Figure 5.2. The value of each output node is computed as follows:

yi = a(
∑
j

xjwj,i + bi)



46 Theory

Figure 5.2 Neural network without hidden layer

When extending the model by adding a hidden layer with an activation function f the compu-
tation is perfomed analogically, i.e.,

yi = a(
∑
j

hjw
(y)
j,i + b

(y)
i )

hi = f(
∑
j

xjw
(h)
j,i + b

(h)
i )

Figure 5.3 Neural network with hidden layer

The addition of additional hidden is then analogous.

5.2.9.1 Activtion Functions

The output layer activation functions are ussually determined by the output distribution we want
to generate. In case of regression we use identity, in case of binary distribution we use a sigmoid,
and lastly in the case of categorical distribution we use a softmax function.

The selection of the activation functions in the hidden layer are slightly less straightforward, but
in general they must be some type of non-linear function. Historically tanh was used, however
nowdays the most commonly used function is the ReLu (rectified linear unit).
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5.2.9.2 Training

To train a FNN a gradient descent can be used

Algorithm 2: MPL SGD
Input: NN computing function f(x, θ)
Output: updated parameter θ
while Stop criterion is not met do

sample training examples (xi, yi) g ← ∇L(xi;θ),yi
θ θ ← θ − αg

end
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Chapter 6

Implementation

This chapter describes the process of dataset acquisition, and implementation of the fault detec-
tion algorithms.

6.1 Data Acquisition Application

The implemented Zephyr RTOS based application was designed with specifically the Blip devel-
opment board; however, it should be relatively simple to make adjustments to the application,
to run it on other similar boards.

6.1.1 Installation

In order to develop, build and flash a Zephyr application, firstly a development environment has
to be created. The process is described in detail by the official Zephyr documentation. It consists
of the following steps:

1. Install host dependencies, such as python or cmake, required for creating a development
environment.

2. Creating a python virtual environment and installing west via pip. West is an all-around tool
used for various tasks, such as for managing the Zephyr workspace, managing the Zephyr
repository and its submodules, or for building and flashing the Zephyr applications onto
a device.

3. Create a new Zephyr workspace using west and clone the Zephyr repository into it.

4. Install Zephyr dependencies and required submodules.

5. Install a Toolchain or a cross compiler depending on the host platform.

Once the development environment is set up, our application should be placed into the same
workspace, next to the Zephyr repository. The resulting file structure should look as shown in
Figure 6.1, where ”zephyrproject” is the name of the west created workspace.

The application can then be built and flashed onto the device using west, assuming the host
system has an appropriate compiler.
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zephyrproject/
.west/
bootloader/
modules/
tools/
zephyr/
our_application/

Figure 6.1 Zephyr workspace folder structure

6.1.2 Application Implementation

In the Analysis Chapter we proposed in total 3 different possible architectures, all of which we
sequentially implemented; however, due to various reasons, only one of them proved to be reliable
enough to be used for the final data acquisition. Additionally, although the LIS2DH12 sensor
supports various sampling rates, we were unable to implement a reliable way of acquiring data
with sampling rates above 400Hz.

6.1.2.1 Architecture 1 Implementation

At first, we implemented our first proposed design, i.e., the producer/consumer design, where
measured data are continuously stored onto an SD card. However, for yet to be explained reasons,
the action of writing data to an SD card proved to be very problematic. Multiple SD cards were
tested from various manufacturers, and with different specifications; however, after many trials
and error, we were unable to identify the cause of the problems. The main problems included
write errors or mounting errors.

Additionally, the overhead from context switching and delays caused by writing data to the SD
card relatively often lead to FIFO overflow of the LIS2DH12 sensor, i.e., the application was
unable to read and write data from the sensor fast enough, leading to loss of data.

6.1.2.2 Architecture 2 Implementation

Therefore we implemented our second proposed design, where the data are transmitted to a client;
however, it also proved to be insufficient. The communication with the client was done over the
universal asynchronous receiver/transmitter (UART) protocol, which is a communication pro-
tocol, for asynchronous serial communication, with configurable transmission speeds. Although
UART has a simple error checking mechanism, it does not provide error correction. We tested
various transmission speeds, but all of them resulted in a significant amount of transmission
errors, i.e., corrupted or lost data.

6.1.2.3 Architecture 3 Implementation

Lastly, we further inspected the SD card errors. A simple stress test consisting of a series of
continuous writes into single and multiple files were implemented, in order to identify and locate
the error causes. While the mounting errors of certain SD cards remain unsolved, we were able to
locate the cause of the write errors. By making a small adjustment in the Zephyr’s ”sdmmc_spi”
driver code, we significantly lowered the frequency of write errors, making the writing to an SD
card a viable solution for storing data.
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We implemented the last proposed design, where the data are buffered for the duration of the
measuring, and then all at once written to an SD card. This solution proved to be the most
reliable one for our purposes; however, it poses severe limitations on the amount of data that
can be measured.

6.2 Test Benches

Two test benches were designed and built, one for each of the devices used for data acquisition.

6.2.0.1 Test Bench 1

The first test bench was designed for the, Antigravity MN4006 KV380 brushless motor. We
used an aluminium profile with C-shape railings attached to a wooden board as the basis for our
test bench. Subsequently, a carbon fibre arm alongside the attached motor was mounted to the
aluminium profile with the help of a 3D printed loop. The Blip development board was then
attached to the carbon fibre arm using electrical tape. The entire test bench is shown in Figure
6.2.

Figure 6.2 Single motor test bench
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6.2.0.2 Test Bench 2

The second test bench was designed to accommodate the Holybro X500 quadcopter, we opted
for a similar design approach as with the previous test bench. A single wooden board with four
threaded inserts was used as the base of the structure. Four 3D printed grips were used to hold
the quadcopter’s landing gears and attach them to the wooden board. The Blip development
board was then once again attached using electrical tape, to the top of the quadcopter’s flight
controller. The entire test bench is shown in Figure 6.3.

Figure 6.3 Quadcopter test bench

6.3 Data Acquisition

In total, three datasets were created. All of which employed the same methodology (sequence
of steps). Firstly the devices needed to be calibrated (and programmed), secondly, the tester
module of the Zephyr application had to be configured, and lastly, the individual datasets were
acquired.

6.3.1 ESC Calibration and Programming

Usually, ESCs are calibrated using a controller, the calibration’s purpose is to mainly match the
minimum and maximum position of a controller throttle stick, to the minimum and maximum
speed of the motor; and secondly, to ensure all ESCs spin the motor at the same speed, upon
receiving the same PWM signal.

In our case, the calibration was done via the Zephyr application, through the command-line
interface, mainly because the ESCs were to be controlled by the application, secondly, because the
calibration and subsequent setting of the motor speed should be more precise, than if calibrated
through an external device.

ESCs can also be programmed, to set the behaviour of an ESC, in our case, we simply resetted
the ESCs into factory settings, not changing any setting.



Data Acquisition 53

6.3.2 Tester configuration

The configuration is done by setting designated macros with appropriate values. The most
important parameters affecting the data acquisition are the following:

SET_COUNT: an integer determining how many sets of measurements will be performed;

MOTOR_SPEEDS: a list of numbers in the range from 0 to 100, representing a single set
of measurements, i.e., determining how many measurements should be performed, in what
order, and at what percentage of maximum speed

MEASUREMENT_DURATION_SEC: duration of an individual measurement (for how
long are data sampled) in seconds

MEASUREMENT_PAUSE_DURATION_SEC: duration from beginning to spin the
motor to initiating the measurement in seconds.

The sampling rate was also intended to be configurable; however, at the moment, the application
is unable to reliably and continuously perform measurements using high sampling rates, which
is why the default sampling rate was fixed at 400Hz, the maximum possible, stable value.

Once the configuration is set, the application needs to be built and flashed onto the device. Using
the command-line API, the data acquisition process can be initiated, by the client, without having
to physically interact with the device.

6.3.3 Dataset 1

The first dataset was acquired using the first test bench, alongside the Antigravity MN4006
KV380 motor. The motor was powered by an owon ODP3031 programmable DC power supply,
set to 20V.

Specific parameters are listed in the following Table 6.1.

Acquisition parameters
Sampling rate (Hz) 400
KV 380
Voltage 20
Motor speeds (% of maximum speed) 0, 10, 15, 20, 25, 30, 35, 40, 45, 50
Measurement duration (seconds) 8

Table 6.1 Dataset 1 acquisition parameters

In total, 3000 measurements were taken, with each measurement resulting in a single csv file,
consisting of 3 columns (one for each axis of the accelerometer). The measurements were acquired
using a ”healthy” (reference, non-damaged) propeller and using various sized strips of electri-
cal tape attached to the bottom of the propeller, in order to create a disbalance, simulating
a damaged propeller.
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Composition

Rotor state Measurement per each sampled speed

Healthy 120

Simulated damage
single small tape 60
double small tape 60

single big tape 60
Total 300

Table 6.2 Dataset 1 composition

6.3.4 Dataset 2

The second dataset was acquired using the second test bench, alongside the Holybro X500 quad-
copter, with two out of total 4 motors disabled, specifically, a pair of diagonally placed motors
were not powered. The motors were powered using a 4S 6700mAh LiPo battery. Specific pa-
rameters are listed in the following Table 6.3.

Acquisition parameters
Sampling rate (Hz) 400
KV 880
Voltage 4S (14.8-16.8V)
Motor speeds (% of maximum speed) 0, 10, 15, 20, 25, 30, 35, 40
Measurement duration (seconds) 8

Table 6.3 Dataset 2 acquisition parameters

Similarly to the first dataset, the measurements were taken using a ”healthy” propeller and
simulated damage using electrical tape. In total, 3080 measurements were acquired.

Composition

Rotor state Measurement per each sampled speed

Healthy 110

Simulated damage
single small tape 100
double small tape 78

single big tape 98
Total 385

Table 6.4 Dataset 2 composition

6.3.5 Dataset 3

The last dataset was acquired using the second test bench as well; however, this time all four
motors were powered during the measurements. Specific parameters are listed in the following
Table 6.5.
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Acquisition parameters
Sampling rate (Hz) 1344
KV 880
Voltage 4S (14.8-16.8V)
Motor dpeeds (% of maximum speed) 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
Measurement duration (seconds) 4

Table 6.5 Dataset 3 acquisition parameters

In total, 2475 measurements were acquired. In addition to the healthy and simulated damage
measurements, measurements with actual mechanical damage were acquired as well.

Composition

Rotor state Measurement per each sampled speed

Healthy 45

Simulated damage
single small tape 40
double small tape 40

single big tape 40

Real damage small cuts 40
medium cuts 20

Total 225
Table 6.6 Dataset 3 composition

The strips of tapes alongside the damaged propeller are shown in Figure 6.5.

Figure 6.4 Varying sized electrical tape strips (8x1.5cm and 1x1.5cm)
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(a) Small mechanical damage (b) Medium mechanical damage

Figure 6.5 Damaged propellers

6.3.6 Data Exploration

After analyzing the first two datasets, by performing spectral analysis, we made a few observa-
tions, namely:

When calculating the expected RPM of the motor and dividing it by 60, the principal fre-
quencies of signals matched that number (with a small deviation caused by the propeller).

The frequency of higher motor speeds naturally shifts to the right, and the magnitudes
increase as the RPMs increase.

The main difference in frequency spectrums of healthy and damaged rotors were mainly the
magnitudes.

Damage propellers cause higher signal energy compared to healthy propellers rotating at the
same speed.

Additionally, after the second dataset, we also observed non-negligible amplitudes in the high
frequencies indicating the occurrence of spectral leakage. It is for that reason that we decided to
sample the third dataset using a higher sampling rate, at the cost of acquiring fewer measure-
ments, since the data acquisition application does not work reliably with these high sampling
rates. However, even then, it is likely that spectral leakage is occurring, possibly caused by the
structural resonance of the quadcopter’s frame; however, we did not have the means to verify
that.

6.4 Fault Detection Algorithms

Two types of classifiers were used and tested, namely a kNN classifier and a FNN. KNN was
selected for its simplicity, as it has few hyperparameters and can serve as a good baseline, while
the FNN was selected as it is generally well suited for unstructured data and generally shows
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good generalization capabilities if provided with sufficient data. Since we encountered many
problems during the data acquisition process and did not collect as much data as we expected,
data augmentation techniques were employed to prevent overfitting.

6.4.1 Preprocessing Pipeline

A preprocessing pipeline based on the Scikit-learn API was implemented, consisting of multiple
steps, with the main ones being the following:

Normalization: scaling all signal amplitudes to a fixed range using min-max normalization

Detrending: removing the mean value from each signals axis

Axis Selection: selecting which axes to drop and which to keep

Augmentation: augmenting the input signal by either adding noise or performing a shift in all
axes

Transformation: applying a transformation on each axis of the signal separately

Flattening: reshaping each transformed signal into a one-dimensional vector

Some of the mentioned steps were used as hyperparameters during the training.

6.4.2 Data Splitting

On each dataset 3 train test splits were conducted, specifically:

train-test split all data equally

train-test split excluding samples of certain fault types from the training set, meant to test
the generalization capabilities on unseen faults

train-test split excluding samples of certain motor speeds from the training set, meant to test
the generalization capabilities on unseen devices (such as motors with higher KV rating)

6.4.2.1 Training

All data were labeled as either faulty or healthy, models were trained to perform binary classifi-
cation. On both models, some form of grid search was applied to find the best hyperparameters.
In the case of the kNN classifier, the Scikit-learn implementation was used, while for the Ten-
sorFlow FNN, the grid search was performed manually. Additionally, data augmentation was
performed in between each epoch to prevent overfitting caused by the lack of data. Accuracy
was used as our main metric for model validation. The tuned hyperparameters are listed in the
following Tables 6.7 and 6.8.

Hyperparameters
Normalization none, min-max(-1,1)
Axis Selection [0], [1], [2], [0,1,2]
Transformation none, FFT, root-mean-square energy (RMSE)
Number of Neighbours 3, 7

Table 6.7 kNN pipeline hyperparameters
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Hyperparameters
Optimizer Adam
Learning rate 0.001
Architecture 2 hidden layers of 128 neurons with 25% dropout
Epochs 30
Batch size 32
Normalization none, min-max(-1,1)
Axis selection [0,1,2]
Transformation FFT, RMSE
Gausian noise standard deviation 1, 0.025
Gausian noise probability 0.5, 0.75

Table 6.8 FNN pipeline hyperparameters
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Evaluation

This chapter presents the performed experiments and evaluates our algorithms.

K-Nearest Neighbors pipeline performance

The pipeline based on kNN was able to achieve test accuracy of over 94% on all three datasets,
when trained on samples of all fault and motor speed classes. On the third dataset, when real
damage samples were completely excluded from training, the model still reached about 90%
accuracy. However, when excluding data of different motor speeds, the model rarely reached an
accuracy of over 60%. In almost all the performed tests, the best model was using RMSE as the
transformation. Indicating that prediction based solely on the total energy of a signal can yield
good results if a sufficient amount and variety of data are sampled.

Neural Network pipeline performance

The FNN pipeline performed in general in most cases either the same or worse compared to the
kNN pipeline. This was caused mainly due to the lack of data, which often led to large overfitting
of the model. Using data augmentation, specifically adding random Gaussian noise to each
sample at the start of each epoch, improved the accuracy greatly; other types of augmentation,
such as shifting, did not yield significant changes in performance. In contrast to the kNN pipeline,
best results were achieved using the FFT transformation.
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Conclusion

The main goal of this thesis was to design and implement an algorithm for fault detection of
UAVs using vibration analysis. In the first two chapters, we did a brief overview on UAVs
and accelerometers. In the next chapter, we summarized some of the previous relevant work
on the topic of fault detection of UAVs. Next, we designed an embedded application for the
purposes of data collection, and designed two test benches. In total, three datasets were collected;
however, due to hardware issues, the datasets were all limited in size. Two machine learning
based classifiers were tested on all three datasets, both showing good performance when trained
on samples of all classes. When exposed to previously unseen faults depending on the scale

There are many opportunities for future improvements. Mainly the data acquisition process
is at the moment limited by not only by the maximum sampling rate but also by the maximum
duration of a single measurement. Different development boards supporting Zephyr OS might
yield better results.
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Acronyms

ADC analog-to-digital conversion. 36

DFT discrete Fourier transform. 39

DTW dynamic time warping. 43

ESC electronic speed controller. 6, 9, 10, 11, 13, 24, 30, 52

FC flight controller. 6, 11, 13, 23

FD fault detection. 19, 22

FDD fault detection and diagnostics. 19

FDI fault detection and isolation. 19, 21

FFT fast Fourier transform. 22, 39, 57, 58, 59

FNN feedforward neural network. vii, 45, 47, 56, 57, 58, 59

FPGA field programmable gate array. 26

GCS ground control station. 3

GPS global positioning system. 3, 13

I2C inter-integrated circuit. 24

IMU inertial measurement unit. 13, 22, 23

kNN k-nearest neighbors. vii, 43, 56, 57, 59

Li-ion lithium-ion. 11, 12

LiPo lithium-ion polymer. vi, 11, 12, 13, 54

LSTM Long and Short-Term Memory. 21, 22

MCU microcontroller. 26
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MEMS micro-electro-mechanical systems. 18, 24

ML machine learning. 40, 41, 42

MLP multilayer perceptron. 45

MPU microprocessor. 26

NiMH nickel metal hydride. 11, 12

OS operating system. 26

PWM pulse-width modulation. 11, 30, 52

RMSE root-mean-square energy. 57, 58, 59

RPM revolutions per minute. 7, 10, 56

RTOS real time operating system. 26

SoC system on a chip. 24, 26

SPI serial peripheral interface. 24

SQNR signal to quantization ratio. 36

SVM support vector machine. 22

UART universal asynchronous receiver/transmitter. 50

UAS unmanned aircraft system. 3

UAV unmanned aerial vehicle. vi, 1, 2, 3, 4, 5, 7, 9, 11, 19, 21, 22, 23, 25, 29, 61

WPD wavelet packet decomposition. 21, 22
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REAME.md........................................................................README
thesis.pdf..................................................the thesis text in PDF format
zephyr_app.........................................the zephyr daat acquisition application
algorithms.........................................................notebooks and models
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