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Abstract

The goal of this thesis is to create a
framework for training eye-tracking mod-
els. Before the creation of the framework,
a comprehensive analysis of methods used
for this task was undergone. The work
solves a part of the problem using neural
networks designed for regression and the
other part of the problem using common
image processing techniques. Several neu-
ral networks were considered, including
networks designed for this task but also
networks designed for a general regres-
sion or classification task. The created
framework integrates novel libraries, neu-
ral network architectures and methods.
The framework is subsequently tested on
the dataset of real subjects. Within the
testing, the work compares several inte-
grated neural network architectures in
terms of their accuracy and speed. Fi-
nally, the chosen models are exported to
a standard format and inserted in a simple
video pipeline that runs in real-time.

Keywords: eye-tracking, pupil detection,
neural networks, image processing

Abstrakt

Cieľom tejto práce je vytvoriť framework
na trénovanie modelov pre sledovanie oč-
ných pohybov. Pred vytvorením samot-
ného frameworku prebehla rozsiahla ana-
lýza metód používaných na túto úlohu.
Práca rieši časť úlohy pomocou neuróno-
vých sietí určených na regresiu a druhú
časť pomocou známych metód na spraco-
vanie obrazu. V rámci regresie, boli vzaté
do úvahy siete, ktoré sú priamo určené
na túto úlohu, ale aj všeobecné siete ur-
čené pre regresiu a klasifikáciu. Vytvorený
framework integruje novodobé knižnice,
architektúry a metódy neurónových sietí.
Framework je následne testovaný na da-
tasete reálnych subjektov. V rámci tes-
tovania práca porovnáva rôzne architek-
túry neurónových sietí, ktoré boli vo fra-
meworku integrované, na základe ich pres-
nosti a rýchlosti. Na záver sú vybrané
modely exportované do štandardného for-
mátu a zasadené do jednoduchého sys-
tému pre spracovanie obrázkov, ktorý beží
v reálnom čase.

Klíčová slova: sledování očních pohybů,
detekce pupily, neuronové sítě,
spracování obrazu

Překlad názvu: Systém sledování očních
pohybů založený na neuronových sítích
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Chapter 1

Introduction

Eye-tracking has found its application in a great variety of fields. In medicine,
it is an essential tool to assist surgeries, such as laser eye surgery [MEK+01]. It
also serves to identify abnormalities in vision and regions of interest of patients
with mental diseases such as schizophrenia, bipolar disorder, Alzheimer’s
disease, and others [HK18]. In psychology, the main fields of application
are unquestionably "visual search, reading, natural tasks, scene viewing and
other information processing" [MF12]. In marketing, it provides valuable
data on eye movements and regions of interest to select and refine products
[WP08]. In the virtual reality and gaming industry, eye tracking helps in
rendering complex scenes at high frame rates by defining the field of view
of a user [CKK19]. It is without a question that one would find many other
applications of eye-tracking, especially in recent years.

The task of eye-tracking is to estimate where one is looking, i.e. the gaze
vector. Advancements in both software and hardware in recent years allow for
non-invasive, real-time and affordable solutions to this task. Thanks to their
accessibility, eye-tracking systems gained a great amount of popularity in
both the academic and commercial sectors in recent times. Many affordable
eye-tracking systems are based on video oculography [KKK+16] [KSM+19a]
[WRvA+19]. The gaze vector can be estimated either directly from video
frames (images) or indirectly by extracting features from the image and
calculating the gaze vector using a geometrical model of the eye. The core
of such an indirect feature-based model is an image processing pipeline that
takes an image as input and outputs the features required for gaze vector
estimation.
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1. Introduction .....................................
This thesis has two main goals: to create a framework for an eye-tracking

image processing pipeline that integrates state of the art libraries and to
test it on a real-world dataset provided by the supervisor of this thesis by
comparing integrated neural network architectures. The final models should
work in real-time in an optimized image processing pipeline. The thesis is
structured as follows. In Chapter 2, video-oculography eye-tracking methods
are introduced. After that, some of the state of the art feature extraction
models are depicted. In Chapter 3, the aim of the thesis is described in
more detail. Chapter 4 describes the framework built for this work, including
integrated libraries, neural network architectures and the process of training
them. Models that were chosen to be employed in the final pipeline are
explained afterwards. The chapter ends with a description of how these
models were evaluated. Consequently, the results are presented in Chapter 5.
The results are discussed afterwards in Chapter 6, and suggestions for future
improvements are provided. Finally, in Chapter 7, the achieved results of the
whole work are summarized.

Figure 1.1: (a) Video oculography eye-tracking system. The user is looking
at the monitor while the camera is sensing his eye movements. Optionally, there’s
an external infrared illumination reflected from the eye.

2



Chapter 2

State of the art

Increased interest and demand for affordable eye-tracking systems induced
a great wave of research into video oculography models. The next section
introduces the video oculography model in great detail. Such models can be
classified into two main types [HJ09] [LCM19], namely appearance-based and
feature-based methods. As this thesis focuses on feature-based methods due
to their better accuracy, appearance-based methods are only outlined. After
introducing both methods the NvGaze [KSM+19a] neural network, which was
implemented in the framework of this work and chosen for the final models,
is described comprehensively.

2.1 Video oculography

Video oculography is a non-invasive method for measuring eye movements.
Fundamental parts of an eye-tracking system based on video oculography
are a screen and a video camera, optionally accompanied by external in-
frared illumination (see Figure 1.1). These methods are classified into two
main categories [HJ09] [LCM19]: appearance-based methods [TKA02] [SK10]
[KKK+16] [KSM+19a] [WRvA+19] and feature-based (also called model-
based) methods [LWP05] [YAR+19] [HEM+20]. In general, both methods
work as follows: an image is fed to the model, processed through some pipeline
that outputs a gaze vector. The following sections cover specifics of the gaze
vector retrieval and its representation.

3



2. State of the art....................................
2.1.1 Appearance-based methods

Appearance-based methods [TKA02] [SK10] [KKK+16] [KSM+19a] [WRvA+19]
only use a camera to capture an image of eyes and rely solely on the ap-
pearance of the eye [HJ09]. The model learns a mapping function from an
image directly to a gaze vector. The gaze vector is usually represented as
a point on the screen or the rotation angles of the eye regarding the head
position [LCM19]. In other words, these models are trained end-to-end and
unlike feature-based methods, they do not need any geometrical eye model
(see Figure 2.1).

These methods work great under bad light conditions and with low-
resolution cameras, where higher robustness is traded for lower accuracy
[LCM19]. That is why they found their application in mobile devices and
other inexpensive setups [KKK+16]. Best results were achieved using con-
volutional neural networks [LB+95]. To achieve reasonable accuracy they
require a large dataset, which can be either real-world [KKK+16] [KSM+19a]
[ZPB+20] or synthetic [KSM+19a]. Convolutional neural network models are
capable of achieving real-time performance [KSM+19a] [WRvA+19].

Figure 2.1: Appearance-based methods general principle (from Krafka
et al. [KKK+16]) Schema of neural network GazeCaputre [KKK+16] demon-
strating end-to-end training of appearance based methods.
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.................................. 2.1. Video oculography

2.1.2 Feature-based methods

Feature-based methods consist of two parts: a feature extraction model and
a geometrical model. A feature extraction model is trained to extract local
features such as contours, eye corners, and eye reflections of the external light
sources (further referred to as glints) [LCM19] (see Figure 2.2). Features are
then passed to a geometrical model that outputs a gaze vector. The gaze
vector is usually represented as a 2D point on the screen (further referred to
as the point of gaze) as in the case of appearance-based methods or a 3D
direction vector from which a point of gaze can be calculated. This depends on
the geometrical model. Here are the main characteristics of both approaches.

Figure 2.2: Feature-based methods general principle. Eye features such as
pupil, cornea and corneal reflections (glints) are extracted from the image. These
features are passed to a geometrical model that estimates the gaze vector.

3D approach

The 3D model-based approach yields more robust results but requires a
more complex setup in terms of knowing eye parameters that cannot be
directly measured and camera parameters [LCM19]. Some of the eye-trackers
that use this approach are DeepVOG [YAR+19], RemoteEye [HEM+20] and
MagicEyes [WRvA+20]. The 3D approach has two parts. First, locate eye
features, i.e. pupil centres and glints. Second, estimate the gaze vector.
The first part of this approach is covered in Section 2.2. As for the second
part, a geometrical 3D model was developed by Guestrin et al. [GE06].
This model requires at least one camera and at least two external light
sources when the head is not stationary and also a subject-specific calibration
procedure. More advanced models by Swirski et al. [SD13] and Dierkes et
al. [DKB18] overcome these requirements. In addition, all of the methods
require that light sources and monitor positions are known when the system
is not head-mounted to estimate camera translation and rotation matrices.

5



2. State of the art....................................
As the method by Geusterin et al. [GE06] introduces parameters of the

eye that are essential for gaze vector reconstruction, it is described in this
section in great detail. After that, the other above mentioned methods are
outlined. The geometrical model developed by Guestrin et al. [GE06] for one
camera and several external light sources can be derived in the following way
(see Eq. 2.1 to 2.14 and Figure 2.3). The derivation is reprinted from [GE06].

Figure 2.3: 3D geometric eye model (from Guestrin et al. [GE06]).

Assuming point light sources and pinhole cameras a ray that comes from
the light source i, li, and reflects at the point qij on the corneal surface,
modeled as a convex spherical mirror of radius R, such that the reflected
ray passes through the camera centre j, oj , and intersects the camera image
plane at the point uij , following equations can be formulated.

qij = oj − kq,ij(oj − uij) for some kq,ij (2.1)
||qij − c|| = R (2.2)

The law of reflection indicates that points li, qij , c and oj are co-planar
and angles ∠liqijc and ∠ojqijc are equal:

(li − oj)× (qij − oj) • (c− oj) = 0 (2.3)
(li − qij) • (qij − c) · ||oj − qij || = (oj − qij) • (qij − c) · ||li − qij || (2.4)

Similarly, considering a ray that comes from pupil centre p, refracts at the
point rj on the corneal surface, passes through the camera centre j, oj , and
intersects the camera image plane at the point vj , following equations can be
obtained.

6



.................................. 2.1. Video oculography

rj = oj − kr,j(oj − vj) for some kr,j (2.5)
||rj − c|| = R (2.6)

The law of refraction indicates that points p, rj , c and oj are co-planar
and from Snell’s law (i.e. n1 sin θ1 = n2 sin θ2) following equations can be
formulated.

(rj − oj)× (c− oj) • (p− oj) = 0 (2.7)

n1 · ||(rj − c)× (p− rj)|| · ||oj − rj || =
n2 · ||(rj − c)× (oj − rj)|| · ||p− rj ||

(2.8)

where n2 is the index of refraction of air (≈1).

Finally, considering the distance K between the pupil centre and the centre
of corneal curvature leads to

||p− c|| = K (2.9)

If eye parameters (R, K and n1) are obtained through calibration, substi-
tuting Eq. 2.1 into Eq. 2.3 yields the following system of equations.

(li − oj)× (uij − oj) • (c− oj) = 0 (2.10)

Assuming single camera is used (i.e. j = 1), the system can be rewritten in
matrix from as


[(l1 − o)× (u1 − o)]T
[(l2 − o)× (u2 − o)]T

...
[(lN − o)× (uN − o)]T


︸ ︷︷ ︸

M

(c− o) = 0 (2.11)

7



2. State of the art....................................
From the co-planar constraint (see Eq. 2.10) it follows that matrix M has

at most rank 2 and the solution has the following form.

c− o = kc,bbnorm (2.12)

When N = 2 the system can be solved in the following manner.

bnorm = b
||b||

(2.13)

b = [(l1 − o)× (u1 − o)]× [(l2 − o)× (u2 − o)] (2.14)

Which is together with calibration parameters sufficient to reconstruct the
optic axis p− c of the eye.

The downside of this model is that eye parameters (R, K and n1) must be
estimated through several points calibration procedure. The model by Swirski
et al. [SD13] solves this problem and requires only a sequence of images from
a single camera to estimate necessary parameters, removing also the necessity
of external illumination. The core operation of this model is "unprojection"
of pupil ellipses from each image into a circle in 3D space, considering full
perspective projection. For the full explanation and optimization of the
method, see [SD13]. This method was further improved by Dierkes et al.
[DKB18] using a more realistic eye model [LG68].

For all of these methods, if the point of gaze is requested, the visual
axis needs to be calculated from the optic axis. For doing this, subject-
specific parameters have to be estimated, typically from the calibration
procedure, in which the subject is required to fixate on a single point [GE06]
or these parameters can be approximated by anthropomorphic averages [SD13].
After that, visual axes of both eyes need to be transformed from the image
coordinate system to the world coordinate system. To do so, intrinsic and
extrinsic camera parameters must be obtained, typically through a camera
calibration procedure. For a detailed description of the point of gaze retrieval,
see [GE06].

8



............................. 2.2. Eye feature extraction models

2D approach

The 2D approach is much simpler in terms of initial setup, as no additional
information about the position of eye-tracking system parts nor camera cali-
bration are required. This approach includes subject-specific eye parameters
and camera parameters directly into a mapping function from 2D feature
space like Pupil-Centre-Corneal-Reflections, contours, etc. to the point of
gaze [LCM19]. A mapping function can be determined generally, so that
no user specific calibration is required, but this approach suffers from lower
accuracy caused by head motions. As a result, recent methods employ per
subject or even per experiment calibration typically with neural network
as a mapping function [WZS16] [HHM+18]. A popular method based on
algorithmic approach is Starburst [LWP05].

2.2 Eye feature extraction models

As mentioned earlier, feature-based methods are based on finding distinctive
features of the eye to employ them in a geometrical data model. Common
features for eye localization include pupil, cornea and corneal reflections,
also known as glints. Some notable state of the art algorithms are based
on an algorithmic approach [SFK18] [FEH+18] [FGS+18]. The other state
of the art models are based on neural networks. Currently, two types of
neural networks are commonly used for this task, specifically segmentation
networks [YAR+19] [CKA+19] [KCB+21] and regression networks [FSK+17]
[KSM+19a] [ESK+19].

The biggest advantage of models based on an algorithmic approach is that
they run on CPU within a few milliseconds [FGS+18]. The spectrum of
methods employed in these models is very broad. Most commonly used are
Canny edge detector [Can86], e.g. [KPB14] [FKS+15] [FSKK16] [SFK18],
Haar-like features [VJ01], e.g. [ŚBD12], Gabor filters, e.g. [TKC00] [CK07].
These methods usually deal with an ellipse fitting problem that can be solved,
for example, with the RANSAC algorithm [FB81] as in [LWP05] [ŚBD12].
According to NvGaze Paper [KSM+19a], which compares most of the methods
mentioned above on the PupilNet dataset [FSK+17], Circular binary features
algorithm [FGS+18] or CBF was the only method that yielded similar results
as the neural network based NvGaze and outperformed it in terms of precision
when pixel error threshold for detection was lower (see Figure 2.4). Besides
high accuracy, CBF runs at a very short inference time of 0.44 milliseconds to
6.8 milliseconds on a CPU, depending on the resolution and approach, which

9



2. State of the art....................................
is lower or very similar in comparison to other models [FGS+18].

Figure 2.4: Comparison of state of the art feature extractors (from
Kim et al. [KSM+19a]). Original description, where "We, Our and Ours"
refer to NvGaze model [KSM+19a]: "Average pupil estimation error on PupilNet
datasets. Top: We compare the average detection rate of our pupil estimation
network against Starburst [LWP05], Set [JHB+15], Swirski et al. [ŚBD12],
ExCuSe [FKS+15], ElSe [FSKK16], PupilNet [FSK+17], Park et al. [PZBH18]
and CBF [FGS+18]. Bottom: The 5-pixel error is averaged across individual
PupilNet datasets [FSK+17] (bold marker) and bounded by best and worst error
values for all datasets (upper and lower markers). Our approach reaches highest
robustness. Note that for CBF only the average detection rates over all datasets
were published, not the detection rate for individual datasets." The metrics is
described as follows, "Accuracy of pupil estimation is usually given in form of
a probability of estimating the pupil location with a maximum distance of 5
pixels from the ground truth pupil location (”5-pixel error” or "detection rate")"
[FSK+17].

On the other hand, the use of neural networks for this task becomes more
and more popular lately [GSS+19]. In short, neural networks, as the core
of deep learning, process input vector, e.g. an image, through several layers
of pre-trained weights and output a prediction vector. The weights are
trained through learning procedure called backpropagation [RHW86]. As
previously stated, there are two main categories of neural networks. The
first one treats the problem as a segmentation problem. Neural networks
in this category employ Unet-like [RFB15] architecture that consists of an

10



............................. 2.2. Eye feature extraction models

encoder network and a decoder network with skip connections and pixel map
as output [YAR+19] [CKA+19] [KCB+21]. In the output pixel map, each
pixel is assigned to a category, i.e. pupil, glint. For an illustration of such a
network see Figure 2.5 which shows the architecture of the RitNet [CKA+19]
neural network, that won the OpenEDS challenge [GSS+19]. The network
can process 301 frames per second on an NVIDIA 1080Ti, which corresponds
to a processing time of 3.3 milliseconds [CKA+19].

Figure 2.5: Segmentation neural network for eye feature extraction -
RitNet (from Chaudhary et al. [CKA+19]). Original description: "Archi-
tecture details of RITnet. DB refers to Down-Block, UB refers to Up-Block, and
BN stands for batch normalization. Similarly, m refers to the number of input
channels (m = 1 for gray scale image), c refers to number of output labels and p
refers to number of model parameters. Dashed lines denote the skip connections
from the corresponding Down-Blocks. All of the Blocks output tensors of channel
size m=32." [CKA+19]

The second category treats the problem as a regression problem. Networks
in this category usually employ only an encoder convolutional neural network
[LB+95] with the last layer outputting eye features, i.e. position of the
pupil centre, position of glints, etc. [FSK+17] [KSM+19a] [ESK+19]. These
networks are often inspired by networks used for image classification or parts
of them, e.g. PupilNet [FSK+17] is based on Inception [SLJ+15]. A neural
network from this category, that is also used in this work is called NvGaze
[KSM+19a] and is described in the next section 2.3.

11



2. State of the art....................................
2.3 Regression neural network for eye feature
extraction - NvGaze

The NvGaze neural network for pupil localization was designed to be as
simple as possible in order to achieve a short inference time [KSM+19a]. The
backbone of the architecture consists of 7 convolutional layers (see Table 2.1)
using dropout with the probability of 0.1 and ReLU activation. After the
backbone, there is a linear (fully-connected) layer also using dropout (p=0.1)
(see Figure 2.6) [KSM+19b].

Layer index 1 2 3 4 5 6 7
Kernel size 9x9 7x7 5x5 5x5 3x3 3x3 3x3

Output channels 24 36 52 80 124 256 512

Table 2.1: NvGaze backbone from Kim et al. [KSM+19b].

1x293x293

24x143x143

36x69x69


52x33x33


80x15x15
 124x7x7
 256x3x3

512x1x1
 out


Image

conv2D +

dropout +


ReLU

Linear (FC) +
dropout


Legend:

Figure 2.6: NvGaze Architecture. An image is fed to the pipeline of 7
convolutional layers with dropout and ReLU activation followed by a linear
(fully-connected) layer using dropout with the probability of 0.1. Each block
symbolizes the output with the shape below it of a layer represented by a color.

As the architecture is very simple, the core of the network lies in the
data augmentation of a large synthetic and real-world dataset. The data
augmentation is described as follows: "First, we transform the image and label
using a random affine transformation (translation up to 50 pixels, rotation
about origin up to 10°, rescale with a randomized factor within the range
[0.9, 1.5]) while making sure that pupil location is within a reasonable range
of [0.1, 0.9] of horizontal and vertical image size. Second, we apply pixel-wise
intensity noise with a maximum offset of ±10 (probability p=0.5). Third, we
apply a global intensity offset of ±40 (p=0.5). Fourth, we apply Gaussian
filtering with σ ∈ [0.6, 1.6] and kernel size of 7 (p=0.5). Fifth, using bicubic

12



............... 2.3. Regression neural network for eye feature extraction - NvGaze

filtering we apply random shrinking with a scale factor s ∈ [0.25, 1.0] followed
by upscaling again to the full input resolution (p=0.5). Sixth, to simulate
environment reflections in the eye we randomly overlay the image with images
out of 326 natural photographs from the dataset published in [7] (p=0.25).
Before blending, the typically larger overlay image B is converted to grayscale
and randomly cropped the eye image resolution. For eye image E and a
randomly chosen opacity value o ∈ [0.1, 0.2] we use a soft blending function
(1− ((1−E) ∗ (1−B))) ∗ o + E ∗ (1− o) and clip the resulting pixel intensities
to a maximum of 255. Seventh, we apply histogram equalization implemented
in OpenCV [Bra00]. As a last step, we rescale the image intensities to a
range of [-1, 1] and randomly shift the mean about ±0.15 and the min and
max intensities about ±0.1. During inference of test images only histogram
equalization and normalization to [-1, 1] are applied." [KSM+19b].

The architecture was chosen for the final models for this thesis. Its modifi-
cations and parameters are described in Section 4.2.
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Chapter 3

Aim of the thesis

As the demand for accurate and fast eye-tracker increased over the past
few years, a very broad research is being led in this field. In Chapter 2,
several methods for eye-tracking were introduced. The more accurate methods
required the extraction of eye features, i.e. a pupil centre or corneal reflections.
Consequently, several eye feature extraction models were introduced in Section
2.2 and 2.3. Many of the novel extractors were based on neural networks for
segmentation or regression. It is noteworthy that not only neural networks
made for eye-tracking but also neural networks for general tasks such as
classification, regression and segmentation can be used for this task with
slight adjustments.

Considering the fast development in eye-tracking, the aim of this thesis is
not simply to implement a solution for eye feature extraction but to create a
framework that provides simple integration of novel neural networks. The
framework is tested on a dataset provided by the supervisor of this thesis by
comparing some integrated neural network architectures and choosing the
final models that can be integrated into an image processing pipeline.

With this abstraction, the parts of the framework like a dataset or a model
can be changed, but the methods that are common for these parts, e.g.
extracting smaller patches of both eyes, measuring errors and plotting results
do not need to be changed. The framework should be based on the state of
the art libraries like PyTorch [PGM+19] to easily integrate new methods for
training neural networks and employ modern pre-trained neural networks.
Trained models should be exported into a standard format such as ONNX
[dev21] to be easily integrated into an inference pipeline.

15
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Chapter 4

Methods

This chapter begins with the description of the framework for training neural
networks used for eye feature extraction, and examples of how the framework
was used for the provided dataset. After that, the parts of the chosen model
are described, including the network for pupil detection and the algorithm
for glint detection. The chapter ends with the description of methods for
measuring detection accuracy and inference time.

4.1 Framework

As the research in machine learning advances very fast, it is important to
implement neural networks using up-to-date libraries. The advantage of
this approach is that these libraries usually integrate advancements in deep
learning research quickly and often more efficiently. Another advantage
is that if a developer wants to try a new feature or a model and doesn’t
know if it brings any improvement, it can be already integrated with one
of the employed libraries. As a base for this thesis, a library called fastai
[HG20] was chosen. Based on PyTorch [PGM+19], NumPy [HMvdW+20],
PIL [CC21] and other libraries, fastai provides several functionalities from
a high-level API such as the one-cycle policy [Smi18] to low-level API to
modify the behaviour of the training pipeline. In addition, one can use the
PyTorch methods directly [HG20]. Besides fastai, the framework integrates
the timm library [Wig19] to easily access common neural networks for image
classification and segmentation that were pre-trained on the Imagenette
dataset [How]. Furthermore, it integrates the vit-pytroch [Wan21] library to
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4. Methods.......................................
simply access the vision transformer [DBK+20] model and its modifications.
Notably, integration of other model libraries is very straightforward as long
as the models are written in PyTorch. The framework also integrates the
albumentations [ABK18] library based on OpenCV [Bra00] for complex data
augmentation. For tracking the learning and results, the wandb library is
used. The library appeared to be very helpful in visualizing the learning
progress and comparing the results of different models. To test the inference
of the model, a simple OpenCV [Bra00] pipeline is used that accepts models
in ONNX format [dev21] and allows the user to add simple python algorithms,
e.g. for glint detection.

Figure 4.1: Training Pipeline. In Dataset Creation, several datasets are
created for various tasks from data files, e.g. finding pupil centres, ellipses fitting
for one or two eyes and possibly others. Several model-specific parameters can
be set, such as the number of image channels, image size or data augmentation.
Finally, a Dataset object containing DataBlock from the fastai library [HG20]
is created and forwarded into the model. Model Creation accepts a neural
network in PyTorch [PGM+19] format and provides methods, some of them
based on fastai library [HG20], to train the model, find the best learning rate, etc.
It outputs the model object, which is used for final interaction in the training,
evaluation and analysis. The training and evaluation of the model are tracked
using wandb [Bie20] cloud service.

In general, the training pipeline can be described as follows (see Figure
4.1). The pipeline starts with a dataset object that is described in Section
4.1.1 in more detail. The core method of this object serves the purpose of
creating a fastai [HG20] DataBlock object. This provides a great level of
abstraction since the fastai DataBlock is in a standard form and fastai takes
care of creating a DataLoader object for training, validation and testing.
Furthermore, common methods such as calculating the mean and variance
of the dataset can be written regardless of the actual file representation
of the dataset. Most importantly, the DataLoader is passed to a neural
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network model. The Model object is described exhaustively in Section 4.1.2.
Shortly, a fastai model, which can be created from PyTorch [PGM+19] model
with a simple wrapper, expects a DataLoader object, which is standardized.
In this manner, the model is developed separately from the dataset. For
this object, the user can use built-in fastai methods, such as schedulers for
model parameters, callbacks to track the progress of learning and weights,
etc. [HG20]. Moreover, custom user functions such as plotting results in a
standard form or tracking custom errors may be used. Details about the
training and hyperparameters are provided in Section 4.1.3. Lastly, the final
ONNX [dev21] model is exported for inference (see Section 4.1.4), along with
results from the test dataset (see 5.1) and benchmark results (see 5.2). These
are described in Section 4.3.

4.1.1 Dataset creation

The dataset provided by the supervisor of this thesis contains 5823 grayscale
images of the head with the resolution of 2048x1088 pixels of 634 subjects of
adults and children from indoor rooms from various places with various light-
ing conditions and external IR illumination (see Figure 4.2). In comparison,
Pupilnet 2.0 dataset [FSK+17] contains 135k images of the eye with resolution
384×288 and the NvGaze dataset [KSM+19a] contains 2M synthetically gen-
erated (3D modelled) images at 1280×960 and 2.5M real images at 640×480.
For simplicity, all pupil borders are annotated with circles. However, for
complexity, future work and coherence with public datasets, they are treated
as ellipses. The dataset contains images of open eyes only, i.e. the pupil
centre is visible.

Figure 4.2: Examples of the dataset provided by the supervisor of the
thesis.
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To achieve the best accuracy considering the data, the problem was split

into 3 tasks:..1. Estimate pupil centre position to extract patches around the eyes from
full resolution image [neural network]..2. Given an eye patch, fit an ellipse to the pupil [neural network]..3. Given an eye patch, locate corneal reflections (glints) [algorithmic]

For the first and the second task, several neural networks from Section
4.1.2 were considered. These will be further explained in this section. As
the position of the glints is not annotated in the dataset, common image
processing techniques are used to locate the glints. The pipeline for glint
localization is explained in Section 4.2.3.

For the first task, the original dataset was used. The images were split into
the train folder, which is used for updating the weights during the training
of a neural network, the validation folder, which is used to choose the best
model during the training of the network, and the test folder, which is used
to compare different models. The splitting was done in a way that all images
of a single subject are in only one of the three folders (see Figure 4.3).
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Figure 4.3: Counts of images and subjects in dataset folders.
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As for the second task, patches around the pupil centres were extracted
(see Figure 4.4). These patches can be rectangles or squares. In this work,
square patches were extracted with the size according to the requirements of
neural networks. Considering a temporary patch with the centre in the pupil
centre, a random position within this patch was chosen as the final patch
centre, ensuring that the new patch is not outside the image border and the
pupil and glints are visible. Put differently, the patches around the pupils
were extracted, so the position of the pupil in the patch is random, but the
pupil is still completely visible.

Figure 4.4: Examples of the dataset of randomly extracted pupils. The
dataset was used to train the algorithm for fitting the ellipse around the pupil.

At this point, the files are prepared. The goal is to create a unified dataset
object (see Figure 4.1) from the actual dataset representation for each part of
the model. For the pupil patch extraction part, the label is created only from
the pupil centres - 2 points. As for the ellipse fitting part, there are several
approaches. The image patches of the left and right eye can be concatenated,
resulting in a rectangular image with 2 eyes. Another approach would be to
stack them in a batch of two and detect the ellipse on the each eye separately.
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4. Methods.......................................
Also, instead of fitting ellipses directly, there may be a neural network that
only finds the pupil centres, and another algorithm will be used for ellipse
fitting. For this reason, the user can specify whether he wants to treat the
label of the dataset as one point, 2 points, one ellipse or two ellipses. Methods
for dataset loading, augmentation, plotting, etc., were thus written for all 4
types of dataset representations.

There are also several ways of manipulating the images. They can be
loaded as grayscale images as they are, or the channel can be copied 3 times
to simulate a 3-channel image. This feature is important for neural networks
pre-trained on the Imagenette dataset [How] as they expect the input to have
3 channels. There is also an option to take the mean along the 3 channels
and train the model on grayscale dataset. The user can decide the image
size, which is done by maintaining the aspect ratio. If the network requires
a square patch, as in the case of vision transformers [Wan21], the image is
’squished’ along the bigger dimension. Common interpolation techniques are
available, although only bilinear interpolation is used for the purpose of this
thesis. The user can also provide values for dataset normalisation, i.e. the
mean and variance of the dataset. Lastly, the user can specify which data
augmentations will be employed. The augmentation process is described
in the following Section 4.1.1. As everything is set, the fastai DataBlock
[HG20] is created and passed to the model. Moreover, the DataBlock, as it is
configured for the current scenario, can be used in functions such as plotting
or extracting patches of the eye.

Data augmentation

As it was outlined in Section 2.3, data augmentation plays an important role
in neural network training. It is the technique of extending the dataset by
employing common image processing algorithms to generate new images from
the original image. These techniques can be chained with a probability that
each of them will be applied. The fastai [HG20] and PyTorch [PGM+19]
libraries provide such data augmentations natively, but for the main library,
Albumentations [ABK18] was chosen. The reason for that is that this library
provides support for affine transformations of the image, including keypoints,
and it could be easily modified to transform ellipses. Several augmentation
techniques were considered and tested. Following data augmentations were
chosen for the final model comparison with the following parameters and
probabilities (see List 4.1.1 and Figure 4.5).
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. Shift, Scale, Rotate - (image and label), where the shift limit is 0.2 of
the biggest dimension, scale limit is 0.9x - 1.1x of the original image size,
rotation limit is 10, p=0.75. Gaussian Blur, with kernel size ∈ {5, 6, 7} and variance ∈ [0.6, 1.6], p=0.5.Gaussian Noise, with mean 0 and variance 9, p=0.5. Random Brightness and Contrast, with a brightness and contrast of limit
0.3 (library-specific). Random Shadow (only with 3-channel images)

Figure 4.5: Examples of data augmentation. The four colourful points are
points of the intersection of the major and minor axes with the ellipse surface. a)
Shift, Scale, Rotate b) Gaussian Blur c) Gaussian Noise d) Random Brightness
and Contrast e) Random Shadow x1-x4) images with random augmentations
generated with correct parameters as in List 4.1.1.

Augmentations are used only during the training part (not during the
validation). Shif, Scale, Rotate, as it suggests, shifts, scales, and rotates the
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4. Methods.......................................
image with the label. If the transformation would make the pupil out of the
visible part of the image, the transformation is discarded. Gaussian Blur
convolves the image with a Gaussian kernel of a randomly chosen size from
{5, 6, 7} and randomly chosen variance in interval [0.6, 1.6], which is calculated
as in Eq. 4.1. Gaussian Noise introduces pixel and channel-independent noise.
Random brightness and contrast simulates the varying lighting conditions by
adjusting the image histogram. Finally, Random Shadow simulates shadows
by overlaying an image with a polygon. It was developed in this [Sax18]
library.

G(x, y) = 1√
2πσ2

e− x2+y2

2σ2 (4.1)

where σ is variance of the distribution.

4.1.2 Model creation

As can be seen in Figure 4.1, the training pipeline accepts any PyTorch model
[PGM+19]. Most of the popular neural networks are already implemented
using PyTorch, like vision transformers [DBK+20] [Wan21] and their modi-
fications. Some of them are already pre-trained on the Imagenette dataset
[How], and those are available, for example, in timm library [Wig19]. Train-
ing a model, that was already trained on another dataset is called transfer
learning [TS09]. It is usually done by freezing the first layers of the model
as these learn the more general features and updating weights only of the
final layers of the model for a few epochs. After that, the layers are unfrozen,
and the model trained is trained as a whole. This procedure is also known
as fine-tuning the model. The procedure not only improves the training
time but can potentially lead to better results [PY09]. In addition, this
work implements the NvGaze [KSM+19a] model for pupil centre extraction
in PyTorch [PGM+19] as this simple neural network architecture showed
promising results with fast inference time. Altogether, 87 models were trained
from the above libraries and tracked using the wandb [Bie20] library. From
the first 67 models, the most promising were chosen for the final comparison
together with the chosen data augmentations (see Section 4.1.1). Bearing in
mind how the problem was split (see List 3), here are the networks considered
for each task employing a neural network.

For the extraction of the eye patch, which is based on estimating the pupil
centre on the whole 2048x1088 image of the head downscaled to the input
size of the neural network, the following neural networks were considered (see
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Table 4.1). The same dataset was used and extended through augmentation
(see Section 4.1.1) differing only in dimensions to match the input size of the
model. Hyperparameters were mostly identical (see Section 4.1.3). Results of
the comparison are presented in Figure 5.1.

Base model [created | implemented] Input size [CxWxH px] parameters batch size epochs (full | frozen)
Resnet34 [HZRS16] [HG20] 3x256x136 21,8M 64 300 | 10
Resnet34 [HZRS16] [HG20] (gs) 1x256x136 21,8M 128 300 | 10
NvGaze [KSM+19a] (B) 3x512x512 1,8M 64 600 | x
NvGaze [KSM+19a] (gs, B) 1x512x512 1,8M 64 600 | x
NvGaze [KSM+19a] (gs) 1x293x293 1,8M 128 600 | x
ViT Tiny [DBK+20] [Wan21] 3x224x224 5,5M 128 400 | 10
ViT Small [DBK+20] [Wan21] 3x224x224 22,5M 128 400 | 10
CCT [HWS+21] [Wan21] (gs) 1x256x256 26M 32 600 | x

Table 4.1: Neural networks considered for extracting eye patches. Input
size denotes the number of channels and width and height in pixels. The batch
size and learning rate were adjusted according to the model and according to
the GPU memory limit. Epoch means that the whole training dataset was
processed once. The ’x’ symbol at frozen epochs denotes that the network was
not pre-trained. The number of epochs was set empirically with the goal to keep
reasonable training time, i.e. less than one day, obtain comparable results and
get close to convergence. Symbols in parenthesis after the name denote: B - the
bigger version of the network, from listed; gs - the network accepts grayscale
input. All models are written in PyTorch [PGM+19] library.

The second part is the one where the eye patch is fed to the input of the
neural network and outputs the ellipses fitted to the pupil. One patch contains
a single eye. For this task, the following networks were considered, mainly due
to their inference time discussed in Section 5.2. Again the same dataset was
used and extended through augmentation, (see Section 4.1.1) differing only
in dimensions to match the input size of the model. Hyperparameters were
mostly identical (see Section 4.1.3). Results of the comparison are presented
in Figure 5.2.

Base model [created | implemented] Input size [CxWxH px] #parameters batch size # epochs (full | frozen)
Resnet34 [HZRS16] [HG20] 3x256x256 21,8M 128 1000 | 10
NvGaze [KSM+19a] (gs) 1x293x293 1,8M 64 1500 | x
NvGaze FC [KSM+19a] (gs) 1x293x293 1,9M 64 1500 | x
ViT Tiny [DBK+20] [Wan21] 3x224x224 5,5M 128 2000 | 10

Table 4.2: Neural networks considered for pupil ellipse fitting. Input
size denotes the number of channels and width and height in pixels. The batch
size and learning rate were adjusted according to the model and according to
the GPU memory limit. Epoch means that the whole training dataset was
processed once. The ’x’ symbol at frozen epochs denotes that the network was
not pre-trained. The number of epochs was set empirically with the goal to keep
reasonable training time, i.e. less than one day, obtain comparable results and
get close to convergence. Symbols in parenthesis after the name denote: gs - the
network accepts grayscale input. All models are written in PyTorch [PGM+19]
library. NvGaze FC is described in Section 4.2.2.

When the PyTorch [PGM+19] neural network module is prepared, the
fastai [HG20] is used to prepare the model for a given scenario in the Model
block (see Figure 4.1). The dataset object is retrieved and configured for
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4. Methods.......................................
the given scenario. If the model is not directly suitable for the task, unlike
the NvGaze [KSM+19a] model, the model needs to be modified. The fastai
[HG20] library provides simple methods to do that. At first, the model is
pruned. This means that part of the network, usually, the last layers of it,
also called the head, is removed. If the model is pre-trained, the weights of
the layers that were trained are preserved. After that, the new regression
head is created and initialized using e.g. kaiming initialization [HZRS15]. A
simple regression head consists of several fully connected layers, with the last
layer outputting the target with predicted values. For more details of the
architecture of the final model see 4.2. Next, model parameters are set, e.g.
the complexity of the model, input size, optimizer, loss function, as well as
hyperparameters and their schedulers such as the learning rate, momentum
or weight decay.

When everything is set, the final model object is created. In this way, the
training pipeline exposes only two objects for further interaction (see Figure
4.1). The dataset object contains methods specific only to the dataset, e.g.
extracting a new dataset of random eye patches of a given size, plotting the
dataset and calculating statistics of the dataset. As the model is tied to
the given dataset object (a model that is used for dataset patch extraction
cannot be used with the dataset object used for ellipse fitting), the methods
for model object often require both model and dataset. These are finding
a suitable learning rate, training the model, fine-tuning it, plotting results,
measuring errors, extracting dataset patches around the estimated pupil
location or exporting the model. A huge advantage of integrating the fastai
library [HG20] was that some of these methods are just simple wrappers
around fastai methods and did not need to be rewritten. Contrary, if the
methods are not available, they can be written using PyTorch [PGM+19]
because the fastai library only extends the PyTorch library.

As the whole training pipeline with its options was introduced and the
datasets were explained, the only missing thing is the setting training pa-
rameters. Assuming the models are established with their model-specific
parameters, (see Tables 4.1 and 4.2) hyperparameters must be set. The
procedure in this thesis was to determine some default hyperparameters and
choose a proper neural network architecture for the task. When chosen,
hyperparameters were adjusted to improve the accuracy on the test dataset.
The following section describes functions and hyperparameters used in the
comparison of the models.
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4.1.3 Training

Considering Figure 4.1, previous sections discussed the dataset and the model
creation. The model object with default parameters can be used to plot
schedulers and find a proper learning rate so that the model is adjusted
and a new model object can be created. This section describes the training
procedure, hyperparameters and schedulers.

In essence, a neural network takes an image as an input, processes it through
its architecture containing pre-trained weights and outputs a prediction vector.
Weights are trained through a learning procedure called backpropagation
[RHW86]. Considering one task from the extraction pipeline (see List 3), the
common part of backpropagation is a loss function.

Loss function and batch size

The loss function calculates the error between the predicted value from a
neural network x and the target value y.

For the localization of the pupil centre L2 distance loss function was used
(see Eq. 4.2).

l(x, y) = (x− y)2 (4.2)

where square is taken element-wise (x2 indicates x⊙ x).

For the ellipse fitting part, the loss function is more complex. The loss
function was inspired by the work from Sanchez-Lopez et al. [SLCLV20]. The
ellipse can be represented as x = [x, y, rx, ry, θ]T , where x, y ∈ [0, 1] denotes
the position of the ellipse centre in the image relative to the image size,
rx, ry ∈ [0, 1]; rx ≥ ry denotes the length of the x-major axis and length of the
y-minor axis relative to the image size and θ ∈ [−π/2, π/2] denotes the angle
of rotation of the ellipse in a counter-clockwise direction. The loss function
calculates the L2 distance between the 4 points defined by the intersection of
major and minor axes with the ellipse surface (see Eq. 4.3 and 4.4. See also
Figure 4.6).
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where ⊙ denotes element-wise multiplication and square is taken element-wise
(x2 indicates x⊙ x).
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Figure 4.6: Intuition behind the ellipse loss. The four colourful points are
points of the intersection of major and minor axes with the ellipse surface. The
red line indicates the distance between these two points. Note that in the actual
loss, the distances are squared.

In both cases, items (images with labels) in the dataset are processed in
batches of some batch size, which is a hyperparameter. As the networks
were compared, the biggest possible batch size, considering GPU limit, from
the set {32, 64, 128} was chosen. The advantage of a bigger batch size is
shorter training time. A disadvantage is that bigger batch size tends to yield
worse results regarding the test dataset [KMN+16], but this can be partly
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compensated by adjusting the learning rate [GDG+17]. It is also important
to note that the final batch size is adjusted when the final model architecture
is chosen.

Knowing how to calculate the loss of a single vector, the final loss function
of the batch can be defined by the sum of single items with some reduction.
Mean reduction was used for both experiments (see Eq. 4.5)

L(bx, by) = 1
nm

n∑
i=1

m∑
i=1

l(bx(i), by(i)) (4.5)

where n is the batch size and m is the number of elements in a vector
l(bx(i), by(i)).

Optimizer

For all experiments, AdamW optimizer [LH17] (see Eq. 4.6-4.11) was chosen
as the base optimizer. It is basically an Adam optimizer [KB14] which
addresses the problem of weight decay and L2 regularization implementation
in popular neural network training libraries, so the regularization is performed
correctly.

gt = ∇θft(θt−1) + λθt−1 (4.6)
mt = β1 ·mt−1 + (1− β1) · gt (4.7)
vt = β2 · vt−1 + (1− β2) · g2

t (4.8)

m̂t = mt

(1− βt
1) (4.9)

v̂t = vt

(1− βt
2) (4.10)

θt = θt−1 − α · m̂t√
v̂t + ϵ

− λθt−1 (4.11)

where ft is an objective function with parameters θ, g2
t indicates square

gt ⊙ gt, and all operations on vectors are element-wise. α is the learning rate
hyperparameter, β1, β2 are momentum hyperparameters, and ϵ is another
hyperparameter [KB14]. The hyperparameter λ is weight decay from [LH17].
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Figure 4.7: Learning rate and momentum scheduling. Learning rate and
momentum are scheduled using cosine annealing [LH16] (see Eq. 4.12) according
to the one-cycle policy [Smi18]. The base learning rate is set to α = 0.001 and
the base momentum is set to β1 = 0.95.

Hyperparameters β2 = 0.99, ϵ = 10−5, λ = 0.01 are constant during the
training. β1 and the learning rate α are scheduled during the training
procedure using the one-cycle policy [Smi18] (see Figure 4.7) and cosine
annealing [LH16] (see Eq. 4.12).

ηt = ηi
min + 1

2(ηi
max − ηi

min)(1 + cos(Tcur

Ti
π)) (4.12)

"where ηi
min and ηi

max are ranges for the learning rate, and Tcur accounts for
how many epochs have been performed since the last restart. Since Tcur is
updated at each batch iteration t, it can take discredited values such as 0.1,
0.2, etc. Thus, ηt = ηi

max when t = 0 and Tcur = 0. Once Tcur = Ti, the cos
function will output -1 and thus ηt = ηi

min." [LH16]

The advantage of this approach is that it allows using a higher learning rate
α adjusted by lowering the momentum β1. The base learning rate is found

30



..................................... 4.1. Framework

using the algorithm by Smith [Smi17] that suggests gradually increasing the
learning rate over batches, recording the loss until divergence and choosing
the learning rate according to some policy, e.g. the tenth of the minimum.

The last important thing is that the learning rate and momentum differ
across the layers of the network. The base learning rate in the first layers is
smaller and increases gradually with deeper layers. The base momentum is
adjusted accordingly (decreased with increasing learning rate). Fastai [HG20]
natively supports these feature in all ResNet [HZRS16] models. Additionaly, it
was added to all models, but NvGaze [KSM+19a] where the hyperparameters
were the same across the whole architecture.

The whole procedure was implemented using simple parameters and sched-
ulers with the fastai [HG20] library. The parameters were slightly modified
for the final model, when the architecture was selected.

4.1.4 Inference
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Figure 4.8: Inference pipeline. The input frames (from video or sequence of
images) are downscaled to match the first model. The model estimates the pupil
centres and extracts patches of size to match the second model. The images are
stacked to form a batch, so the inference is slightly faster. The images are also
fed to an image processing algorithm that locates glints.

Although the complete pipeline was tested only on the CPU using the
OpenCV [Bra00] framework, the final model should run on hardware-specific
optimized pipeline (see Section 6). Most of these pipelines, i.e. DeepStream
[NVIa], OpenVINO [Int], accept neural network models in ONNX [dev21] or
other standard format. A simple pipeline [Gil] was modified to accept the
ONNX model, and with its modular design, it offered a great deal of variability
in the pipeline debugging. The final pipeline is summed up in Figure 4.8.
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As the figure suggests, the image is downscaled to the size accepted by the
first ONNX model. The model outputs the predicted coordinates of the pupil
centres. Two images of the size accepted by the second ONNX model are
extracted around the pupil centres. The two images are fed to the second
ONNX model according to its input shape, and an ellipse is fitted in each of
them. In this work, the images are fed as a batch. The two extracted images
are also used in the image processing algorithm that detects glints. These
two models are independent and can be run parallelly.

4.2 Chosen model

Considering the comparison of different architectures (see 5.1) the NvGaze
model [KSM+19a] (see Section 2.3) was chosen for the extraction task, as well
as for the ellipse fitting (see List 3). Both models take augmented (see Section
4.1.1) grayscale images of size 293x293 as input with AdamW optimizer
[LH17] with the same parameters as in Section 4.1.3. Hyperparameters were
the same across the whole model architecture (unlike in ResNet, see Section
4.1.3).

4.2.1 Pupil extraction

The pupil extraction model (see Patch Extraction part in Figure 4.8) was
trained for 1500 epochs with batch size 128 using the L2 loss function (see
Eq. 4.2).

4.2.2 Ellipse fitting

The model for ellipse fitting (see Ellipse Fitting part in Figure 4.8) is extended
with 3 linear (fully connected) layers with 512, 256 and 128 features. In
this work, the model is referred to as NvGaze FC. This addition improved
the accuracy of the model (see Section 5.1) at the expense of slightly higher
inference time (see Section 5.2). The difference between NvGaze FC and
NvGaze F2, which is the final model, is that NvGaze F2 was trained for
2000 (not 1500). Both models were trained with batch size 64. Also, in the
training of NvGaze F2, the limit when the Shift, Scale, Rotate augmentation
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is discarded, considering the position of the pupil centre from the image
border, was lowered. In other words, the pupils could be closer to the border.

4.2.3 Glint detection

The detection algorithm of the reflection of external infrared light sources,
i.e. the glint detection was inspired by the work of Hosp et al. [HEM+20].

At first, the image is pre-processed with common image processing tech-
niques (see List 4.2.3 and Figure 4.9) using OpenCV [Bra00]...1. Denoise image with 3x3 Gaussian filter..2. Normalize image to range (0, 255)..3. Find edges with 3x3 2D-Laplacian filter..4. Normalize image to range (0, 255)..5. Clip values to 0 and 1 using binary threshold 30..6. Morphological close with 2x2 kernel of ones to close holes..7. Invert

Image 7 in Figure 4.9 shows the final pre-processed image. At this point,
the algorithm finds contours and filters the irrelevant ones. The process is
described in Algorithm 1. Note that the algorithm usually finds only one
suitable pair, and the scoring procedure is skipped.

Since the glints are not annotated in the dataset, the method was tested
visually on the video of the frames of the test dataset. The method works well
if the glints are separated from each other as two individual disks without
intersection. Otherwise the glints are not detected.

The method runs at 2.5ms on a CPU for one 293x293 image using OpenCV
[Bra00] python. In the original paper, the method runs at 0.46ms for one
100x100 px image using OpenCV [Bra00] C/C++.
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Figure 4.9: Glint detection image processing. From left to right, up to
down, each image corresponds to a step in List 4.2.3.
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Algorithm 1 Pseudocode of glint detection
Require: Binary Image i, Original denoised image g

1: Find contours using simple chain approximation in i.
2: centres← []
3: for all contours do
4: Calculate bounding box bbox
5: if width or height of bbox is outside the range (5, 15) then
6: discard it
7: else
8: find its centre
9: centres.append(centre)

10: end if
11: end for
12: pairs← []
13: Sort centres by y
14: for all centres but the last one do
15: if the next centre in centres is within 6 pixels then
16: create a pair from these two centres
17: pairs.append(pair)
18: end if
19: end for
20: scores← []
21: for all pairs do
22: if the distance between the two centres in pair is outside the range

(6, 20) then
23: skip it
24: else
25: Calculate brightness scores b1 and b2 from the 3x3 square with

centre in each centre from g as the mean of all values in the square
26: b← b1 + b2
27: Calculate shadow scores s1 and s2 from the 10x10 square with

centre in each centre excluding the 3x3 square from g as the mean of all
values in the square

28: s← s1 + s2
29: scores.append(s)
30: save b and s to pair
31: end if
32: end for
33: Sort pairs according to scores in ascending order
34: backup← the pair with minimum shadow score from pairs
35: for all pairs do
36: if b ≥ 300 and s ≤ 200 then
37: return pair
38: end if
39: end for
40: return backup
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Figure 4.10: Glint detection examples. (left) Examples of correct glint
localization. (right) Examples of incorrect glint localization.

In Figure 4.10, there is an example of correct and incorrect glint localization
on the test dataset.

4.3 Evaluation description

It is essential to evaluate the trained networks in terms of both accuracy and
speed. The following sections explain the motivation behind the two methods
and describe them.

4.3.1 Detection Accuracy

In the task of pupil patch extraction (see List 3), the pupil centre should
be estimated as accurately as possible. However, as the high-resolution image
containing the whole face is downscaled, it becomes a very difficult task to
find the centres correctly. For this reason, a square patch around the first
estimation is extracted for the next stage, i.e. the ellipse fitting. The task is
thus to estimate the pupil centre, such that the whole pupil is in the square
patch. The metric that compares models from this group is the maximum
L2 distance between the estimated and ground-truth pupil centre among all
images in the test dataset (see Eq. 4.13).
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.................................4.3. Evaluation description

E = max(ei) i = 1, ..., n (4.13)

where ei is the L2 distance between the predicted and real pupil centre
location of eye i and n denotes the number of eyes in the dataset.

Considering the task of ellipse fitting (see List 3), most of the above
mentioned papers measured the accuracy by the pupil detection rate (see
Figure 2.4). The x-pixel detection rate is described in the following way:
"Accuracy of pupil estimation is usually given in form of a probability of
estimating the pupil location with a maximum distance of x pixels from the
ground truth pupil location" [FSK+17]. In this work 3-pixel and 5-pixel errors
were measured on the given test dataset for each model.

fx(e) =
{

1 if e ≤ x
0 otherwise (4.14)

Ex = 1
n

n∑
i=1

fx(ei) (4.15)

where ei is the L2 distance between the predicted and real pupil centre
location of eye i and n denotes the number of eyes in the dataset.

In case of the 5-pixel error that would be.

f5(e) =
{

1 if e ≤ 5
0 otherwise (4.16)

E5 = 1
n

n∑
i=1

f5(ei) (4.17)

As this thesis focuses not only on detecting the centre of the pupil but also
on fitting the ellipse around the pupil correctly, the error had to be adjusted
to work with ellipses. Considering how the ellipse loss was defined (see Eq.
4.3 and 4.4. See also Figure 4.6), the ellipse can be considered as correctly
detected if all of the 4 points defining the predicted ellipse are within x-pixels
from their true position. The only difference in Eq. 4.17 is that ei is the
maximum of the 4 errors that occurred from the 4 points defining the ellipse
(see Eq. 4.18). This metric will be further referred to as the ellipse detection
rate.

ei = max(eip) p = {1, 2, 3, 4} (4.18)
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4.3.2 FPS benchmark

As the neural networks are trained and exported to the .onnx format [dev21],
they are ready to be benchmarked. The purpose of the benchmark is to com-
pare neural network architectures in terms of speed without extra operations,
e.g. copying tensors from CPU to GPU. In this way, the networks can be
compared against each other in terms of pure inference time. Contrary, the
inference time in production will differ from the measured inference time.
However, as can be seen from the results (see Figure 5.2), the inference time
can differ by a factor of 3, depending on the GPU. The benchmark runs
on Google Colab [Goo] using jupyter notebooks. In this manner it can be
replicated.

The framework allows to run inference on a few different GPU units that
are assigned to the user. In this work, the networks were benchmarked on 2
NVIDIA GPUs: Tesla T4 [NVIc] and Tesla K80 [NVIb].

The test begins by obtaining a GPU unit. Then random data and a
model are transferred to the GPU for a session of 1000 inference batches.
First 5 batches are treated as warm-up batches and are discarded. From
the remaining 995 batches, the median is taken. Each model then runs for
5 sessions. Medians of the 5 sessions are averaged, and the value p called
processing time is obtained. The value is inverted fps = 1

p to retrieve frames
per second and used for the final comparison.

Figure 4.11 shows that the first batches of a benchmark fps are significantly
slower than the rest of the batches. For this reason, the first 5 batches are
discarded and marked as warm-up batches.

The rest of the batches still contains outliers, i.e. runs where the inference
time was much higher than in the rest of the runs. Thus the median value
of each session is calculated as the representative of each session (see Figure
4.12).
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.................................4.3. Evaluation description

Figure 4.11: Benchmark warm-up. The reason for benchmark warm-up is
that the initial epochs of each benchmark are significantly slower than the rest
of them.

Figure 4.12: Benchmark median. When the warm-up episodes are discarded,
the rest of the measured times contains still many outliers. For this reason,
median is calculated from the values, which is known to be less sensitive to
outliers.
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Chapter 5

Results

Considering the image extraction task and the ellipse fitting task from List
3, several neural network architectures were tested in terms of accuracy and
inference time. In this chapter, I will present the results of the comparison,
that led to the choice of the final fine-tuned architectures presented in Section
4.2. The details of the neural networks are presented throughout Section 4.1.

The next section presents the results of the detection accuracy (see Section
4.3.1) of the above-mentioned networks. The following section presents
the FPS benchmark (see Section 4.3.2) of those networks, with some extra
variations of those architectures for reference that were not trained.

5.1 Detection Accuracy

In Figure 5.1, the architectures from the patch extraction task are compared
using the maximum L2 distance on the test dataset as proposed in Section
4.3.1.

In Section 4.3.1, the metrics called detection rate and ellipse detection
rate are introduced. The purpose of these metrics is to calculate how many
predictions on the images from the test dataset are within x pixels, i.e. 5
pixels, within the ground truth pupil position. In Figure 5.2, the resulting
detection rates of the architectures from Table 4.2 are presented.
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Figure 5.1: Patch extraction accuracy results. The maximum L2 distances
on the test dataset of the neural network architectures from Table 4.1 and the
final fine-tuned model NvGaze F1 (see Section 4.2.1).
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Figure 5.2: Detection rates of the architectures considered for the
ellipse fitting task. The 5-pixel and 3-pixel detection rates of the neural
network architectures from Table 4.2 and the final fine-tuned model NvGaze F2
(see Section 4.2.2).

To work with ellipses, the detection rate was adjusted so that each of the 4
points defining the ellipse are within x pixels of the ground truth position.
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The ellipse detection rate of the same networks is presented in Figure 5.3.
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Figure 5.3: Ellipse detection rates of the architectures considered for
the ellipse fitting task. The 5-pixel and 3-pixel ellipse detection rates of
the neural network architectures from Table 4.2 and the final fine-tuned model
NvGaze F2 (see Section 4.2.2).

5.2 FPS benchmark

The benchmark procedure was described in Section 5.2. Note that some
architectures that were benchmarked are not presented in the results, as
they were not trained. Those are marked with the asterisk (*) symbol. The
following figure compares the frames per second rates of the networks used
for pupil extraction (see Figure 5.4).

The networks considered for ellipse fitting yielded the following results (see
Figure 5.5).

43



5. Results .......................................

Resn
et3

4 (
B)*

Resn
et3

4

Resn
et3

4 (
gs)

CCT (
gs)

ViT 
Sm

all

ViT 
Tin

y

NvG
aze

 (B
)

NvG
aze

 (g
s, B

)

NvG
aze

 (g
s)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250

Fr
am

es
 p

er
 se

co
nd

fps of patch extraction architectures on different GPUs
Tesla_K80
Tesla_T4
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rates of the neural network architectures in Table 4.1 and their modifications
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Chapter 6

Discussion and future work

The main goal of this thesis was to build a framework that is suitable for the
continuous development of models used in eye-tracking. Certainly, the main
features of the proposed framework, presented in Section 4.1, are the ease of
integration of novel neural network architectures and techniques, the variety
of datasets for these models, and tracking and comparison of the models
through the state of the art frameworks.

The framework was tested on an eye-tracking dataset provided by the
supervisor of this thesis. Several architectures were researched and considered,
including Resnet [HZRS16], ViT [DBK+20] and NvGaze [KSM+19a]. The
comparison of these models in terms of accuracy and inference time was
presented in Chapter 5. As can be seen from the results, the NvGaze model
[KSM+19a], with its simple architecture to be fast, outperformed the other
models in terms of speed by a great amount (see Section 5.2). Considering
the tested architectures, the model also outperformed other models in terms
of accuracy 5.1.

As our goal was to test the framework with several models and choose
the one that works best for the provided dataset, the network was not
trained on any popular dataset [KSM+19a] [FSK+17]. The downside of this
approach is that models that require a huge amount of data, i.e. vision
transformers [DBK+20], may perform better when trained on a different
dataset. Conversely, the advantage of this strategy is that models converge
faster on smaller datasets, and all of the networks could be trained within a
day. In addition, the role of dataset augmentation is much more significant
on smaller datasets, and the most relevant augmentations could be chosen.
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That said, the NvGaze architecture was chosen for this thesis mainly due

to its simplicity and possibility to run the model on cheaper GPUs yet still
achieving real-time performance. To demonstrate the modularity of trained
and exported .onnx networks [dev21], the networks were tested on a simple
inference pipeline (see Section 4.1.4).

In addition to the possible improvement of all the networks, especially vision
transformers [DBK+20], through bigger datasets, it is essential to consider
segmentation datasets as well. As was described in Section 2.2, the RitNet
network [CKA+19] showed promising results on the OpenEDS challenge
[GSS+19]. For this reason, the main point of future work is the integration
of the segmentation task in the framework. In parallel, the regression task
can be extended with the popular datasets in order to compare the trained
models to the existing ones.

The other important field of future work is building a hardware-specific
inference pipeline such as Deepstream [NVIa] or OpenVINO [Int] to integrate
the trained .onnx models [dev21]. This part can be designed separately from
the framework.
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Chapter 7

Conclusion

This work proposes a framework for the development of eye-tracking models
that integrates state of the art libraries. The framework integrates novel
neural network architectures and techniques for several instances of a problem
of an eye-tracking pipeline. The framework was tested on a dataset, provided
by the supervisor of this thesis, with numerous neural network architectures.
After testing the most suitable model in terms of accuracy and real-time
performance, the model was further fine-tuned to achieve better accuracy
on the test dataset. By testing the framework on the real eye-tracking
problem, the thesis verified that the framework can be used in the continuous
development of eye-tracking models that are based on novel neural network
architectures.
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Appendix A

Contents of the enclosed CD

. eye-tracking – Library that contains the code described in this thesis
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