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Abstrakt

Tato bakalářská práce je zaměřena na vytvořeńı plnohodnotného nezávislého systému sledováńı
server̊u, vhodné pro použit́ı v jakékoliv společnosti, která vlastńı libovolným počtem zař́ızeńı,
a využit́ı strojového učeńı pro detekci anomálíı v provozu technických zař́ızeńı k odstraněńı
problémů v co nejkratš́ım čase. V d̊usledku toho se mi podařilo vytvořit monitorovaćı systém,
který dokáže sledovat stav v́ıce než 6000 zař́ızeńı a automatický systém pro detekci anomálíı
schopný předpovědět selháńı práce 6 hodin před samotným selháńım.

Kĺıčová slova monitoring, anomaly, detection, Grafana, Prometheus, alert, Promscale, py-
caret, fbprophet, InfluxDB, Time series

Abstract

This bachelor’s thesis is aimed at creating a full-fledged independent server monitoring system
suitable for use in any company that owns any number of devices, and using machine learning to
detect anomalies in the operation of technical devices to eliminate problems as soon as possible.
As a result, I managed to create a monitoring system capable of monitoring the status of more
than 6000 devices and an automatic anomaly detection system capable of predicting a failure of
6 hours before the failure itself.

Keywords monitoring, anomaly, detection, Grafana, Prometheus, alert, Promscale, pycaret,
fbprophet, InfluxDB, Time series

ix



Abbreviations list

CPU Central processing unit
YAML Yet Another Markup Language

SQL Structured query language
PromQL Prometheus Query Language

x



Chapter 1

Introduction

Nowadays, many large companies have a large number of devices that support their operation.
Any malfunction in the operation of the devices can cause great harm and loss to the company.
While the company is trying to find the source of the problem and fix it, it may lose a large
number of customers. Therefore, I want to create a system that will minimize the probability of
such an event. The purpose of this work is creating a full-fledged independent server monitoring
system suitable for use in any company that owns any number of devices, and using machine
learning to detect anomalies in the operation of technical devices to fix problems and eliminate
them as soon as possible.

Objectives of the thesis: Flexible monitoring system. Automated fault detection system.
Alert system that allows you to quickly solve the problem.

In the Data collection section, I solve data collection problems, such as automatically iden-
tifying and finding the company’s devices for data collection using the installed exporters
on each of the devices and the AutoDiscovery script, which automatically creates a list of
targets.

In the Data storage I solve the problem of optimal storage of the received data about the
operation of a large number of devices.

In the Alerting section, I solve the problem of identifying problems using static defined rules.
They also solve the notification problem by automatically creating a message in chats and
creating an issue in Github with the definition of a person to solve the problem.

In the Anomaly Detection section, I conduct an experiment in which I compare more than 10
algorithms for detecting anomalies, find the most suitable one and use it to detect anomalies
in real time.

1
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Chapter 2

Collection of data

For monitoring, the first important task is to collect data, which is what I’m going to do in this
section. I have created a flexible monitoring system that can be used in each company with
configuration changes. The architecture provides methods for collecting data from each device
and further managing the collected data.

In short , the collection scheme 2.1 consists of three components:

Each of the devices has ”Exporters” installed - programs that collect data about the device.

Prometheus is a service that collects and combines data from all devices.

AutoDiscovery is a program that automatically creates a list of all devices for monitoring.

Figure 2.1 Data collection scheme

3



4 Collection of data

2.1 Exporters
It was necessary to receive data about the operation of the devices. The ideal solution for this was
the open-source Node Exporter program - a program for exporting data in the form of metrics -
numerical measurements in the form of time series. Time series means that changes are recorded
over time. For a web server, this may be the request time. For a database, this can be the
number of active connections or the number of active requests [1]. But Node Exporter did not
perform specific monitoring requests, such as getting information about the location of devices
or the name of the team to whom this device belongs. So I wrote an additional functionality
that exports local metrics.

2.1.1 Hardware Exporter
Hardware Exporter is a program written in Python for the special needs, collects local data that
Node Exporter does not pay attention to but which are essential for the company, for example,
which department this device belongs to, the serial number of the device, the location of the
position in the data center. To control updates was added the export of the installed version
of the Hardware Exporter. After collecting, the Hardware Exporter creates a file with these
metrics, which will read Node Exporter. The path to the file must be specified in the Node
Exporter configuration, Node Exporter must have the rights to read this file, and the metrics
must be in the particular format drawn by Node Exporterem [1]:

1 metric_name{label_key1 = label_value1, label_key2 = label_value2, ...} metric_value

Listing 2.1 Metric format

2.1.2 Node Exporter
Node Exporter is an open-source program written in Go that collects various metrics, such as
disk temperature, CPU load, network load... For each metric, it is possible to set scrape interval
- how often Node Exporter will update the metric value. It is also possible to configure metrics
that Node Exporter will ignore. So was stopped following many unnecessary metrics that would
reduce the load on the server and not take up memory. After collecting the metrics, Node
Exporter combines them with the Hardware Exporter metrics.

1 drive_temperature_celsius{SN="S465930",capacity="1920383410176",protocol="NVMe",type="nvme"} 30
2 drive_temperature_celsius{SN="S411937",capacity="1920383410176",protocol="NVMe",type="nvme"} 31
3 go_gc_duration_seconds{quantile="0"} 4.6989e-05
4 go_gc_duration_seconds{quantile="0.25"} 8.9057e-05
5 go_gc_duration_seconds{quantile="0.5"} 0.00012571
6 go_gc_duration_seconds{quantile="0.75"} 0.000165834
7 go_gc_duration_seconds{quantile="1"} 0.0002714
8 go_gc_duration_seconds_sum 122.994432347
9 go_gc_duration_seconds_count 942139

10 go_goroutines 11

Listing 2.2 Metric examples
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2.2 Prometheus
To collect device performance data, I chose Prometheus because it has excellent documentation
and a large community ready to help with any problem that arises. Prometheus is an open-
source monitoring system. Prometheus collects and stores metrics in the form of time series data
- information about metrics is stored with the timestamp in which it was recorded, along with
optional key-value pairs called labels[2]. Also, with the help of Prometheus, it is possible to build
simple graphs using a PromQl request.

Figure 2.2 Prometheus graph

The principle of operation of Prometheus is that it sends get requests to devices that are
defined in the configuration as targets. The targets can be written directly in the configuration
itself or specify the path to the file with the targets or the URL where is the list of targets.

1 scrape_configs:
2 - job_name: 'node' # the name will be added to the metrics label
3 scrape_timeout: 30s # how often to send a request to targets to get metrics
4 file_sd_configs: # files with list of targets
5 - files:
6 - 'target.json'
7 - 'targets.d/localhost.json'

Listing 2.3 Prometheus configuration

Prometheus is also a database with a query language - PromQL (Prometheus Query Lan-
guage) that lets the user select and aggregate time-series data in real-time.

1 sum(http_requests_total{method=\GET"} # Returns the number of all http get requests

Listing 2.4 PromQL example

2.3 Autodiscovery
Each company with a more significant number of devices keeps an inventory. All devices will
be stored in a database and may be accessible via a web service. To combine this data and
monitoring, was written the program - Autodiscovery. The task of Autodiscovery is to configure
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targets and update them automatically. It is possible to configure the search parameters in
the configuration file in YAML format. The program parameters can be configured by filling
arguments in the command line to run the program.

For greater flexibility, the program was written so that to change the final list of targets, it is
enough to change the configuration file and there is no need to change the code. In configuration
Autodiscovery, it is needed to fill in the URL to the database of data or the Web service API, fill
in the token or login/password to the service from where the monitoring devices will be taken.
Autodiscovery allows you to configure filters for selects by which the target list will be created. It
is possible to specify regex for hostname, shortname, serial number, team, and position. To use
the ”or” operator in select, you need to set the number of select in exports number and fill in the
required number of filters, and all filters will be combined using the ”or” operator. If all conditions
are set in one filter, they will be combined by the ”and” operator. To further simplify the target
search process, a new ”monitoring” label has been added to the device database. AutoDiscovery
is able to filter targets by location and given label. Autodiscovery startup arguments require a
location and an ordered number of target parts.

Horizontally scaling
To optimize the work of monitoring with a large number of devices, more specifically, to optimize
the load on Prometheus by reducing the number of targets the ability to configure the separation
of targets has been added. If there are many monitoring objects in one location, it is possible to
scale horizontally by adding another monitoring host and changing the ”separate to” parameter in
the config. You will also need to specify the monitoring host sequence number in the Autodiscover
startup argument. After that, each target list will be divided into an equal number of targets
for monitoring and each host monitors a given part of the targets.



Chapter 3

Storage of data

The data obtained during the collection process must be stored. I use two databases for this
3.1. Promsclae, which is ideally combined with Prometheus, since in addition to SQL it supports
PromQL. And InfluxDB for storing string data, since Prometheus can only work with numeric
values.

Figure 3.1 Data storage scheme

3.1 Promscale

The next part of monitoring that is important for analysis and intelligent use is the database
mentioned above - Promscale 3.2. [3]

7



8 Storage of data

Promscale

Figure 3.2 Promscale scheme

Promscale is an open source observability backend for metrics and traces powered by SQL.
Collector and is 100% PromQL compliant.

The use of Promscale as a long-term database instead of alternatives is due to 2 things. The
first is that the Promscale community is quite large, and there is always a place where it is
possible to ask or consult in case of any problem. The second is the ability to use PromQL
for queries, which greatly facilitated data acquisition for analysis and anomaly detection. For
security reasons, when working with the Promscale API or using Promscale as a data source
from Grafan in a remote location, the TLS protocol is used, and Promscale is only accessible via
HTTPS.

3.2 InfluxDB
The last part of monitoring that ensures the entire working of monitoring is InfluxDB [InfluxDB].

Using InfluxDB alone is not optimal because, firstly, it does not support SQL or PromQL,
and secondly, it is not free. The features of the free version are quite enough to work only with
string data, so it was chosen for these purposes.

InfluxDB is a time series database designed to handle high write and query loads. It is an
integral component of the TICK stack. InfluxDB is meant to be used as a backing store for any
use case involving large amounts of timestamped data, including DevOps monitoring, application
metrics, IoT sensor data, and real-time analytics.

The reason for using the second long-term database is that Prometheus cannot work with text
data as with the value of metrics. However, text data, such as the department that the device
belongs to, the bios version, or the firmware version, are fundamental. Therefore, it is necessary
to add a database that could work with this. A separate program that works on monitoring host
pars labels from Prometheus and sends them to InfluxDB. InfluxDB, in turn, is a data source
for Grafana [4], thanks to which it is possible to control many text parameters.

3.3 InfluxDB parser
The next small but essential program for monitoring is the InfluxDB parser. Its purpose is to
get string data from labels metrics and write them to a database that supports InfluxDB string
data.



Chapter 4

Alerting

To prevent serious problems, I monitor some important parameters using static rules. For ex-
ample, I look to ensure that the battery voltage is not below 2.6 volts. For tracking and primary
processing of these values, I use Alert Manager. After the alert occurs, it is processed a second
time by the AlertHandler program implemented by me, which adds information to facilitate the
identification of the problem and informs about it in the chat and creates an issue in Gitlab 4.1.

Figure 4.1 Alert scheme

4.1 Alert manager

The next monitoring service is Alertmanager [5]. The Alert manager handles alerts sent by
client applications such as the Prometheus server. It takes care of deduplicating, grouping, and
routing them to the correct receiver integration such as email, PagerDuty [6], or OpsGenie [7].
It also takes care of silencing and inhibition of alerts. The URL to Alertmanager is specified in
the Prometheus configuration. When alerts occur, Prometheus sends them to the Alertmanager.

9
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That eliminates duplicates and processes and groups them according to the rules written in the
configuration 4.2.

1 route:
2 group_by: [alertname]
3 receiver: 'pagerduty-notifications'
4 group_interval: 5m

Listing 4.5 AlertManager configuration

Figure 4.2 Alert manager

Alert manager allows integration with different services. In monitoring, it was decided to
use integration with PagerDuty. I chose PagerDuty Because it has a convenient API and web
interface. PagerDuty is an online incident handling platform. When a new alert appears, Alert-
manager sends it to PagerDuty, which creates an incident and, depending on the escalation
policy, sends an alert to the mail or a messagecall to the person’s mobile phone is responsible
during the incident. PagerDuty provides many different options for setting the frequency and
method of warning 4.3.
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Figure 4.3 PagerDuty

4.2 AlertHandler

An equally important part of monitoring is alerting. To simplify the understanding of alerts
and to process them more conveniently, the AlertHandler program was written. This program
performs several essential functions at once 4.4.
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Figure 4.4 Alert scheme

Adding the necessary information
The first task of the alert handler is to track the appearance of new alerts. AlertHandler checks
the list of active incidents in PagerDuty. When a new incident occurs, the program refers to
the exporter of the node of the device on which the incident occurred. There AlertHandler will
take the serial number information to identify the device and the team to which this device
belongs. Then the program will request information about it from the database where all the
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company’s devices are stored. In addition, AlertHandler uses the information received to create
links to Grafana on the Detailed Control Panel of this device. As a result, AlertHandler adds
the necessary information to speed up the problem solving process, such as serial number, IP
address, link to Grafana, link to web inventory, location, position in the data center, team. With
all this information, the program creates a convenient table in markdown format by contacting
a special channel and creates an alert there about the occurrence of a new incident.

Figure 4.5 New Incident in Mattermost

Incidents history
The second thing that AlertHandler allows us to do is the ability to track the history of incidents.
The program reports a new incident immediately. If the incident has not been resolved within a
specific time, AlertHandler will send a warning that the problem has not yet been resolved 4.6.
The time between repeated warnings depends on the level of criticality of the incident. Also,
when the incident is resolved, the AlertHandler ler will notice it and send a laudatory notification
about it 4.7.

Figure 4.6 Incident was not resolved
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Figure 4.7 Incident was resolved

GitLab issue
The next thing that simplifies the solution of the problems that have arisen is the automatic
generation of the issue in GitLab. After receiving additional information (the process was de-
scribed in the previous part), AlertHandler creates an issue in a specially created project. The
issue description contains all of the above parameters of the problematic device extracted by
AlertHundler. The issue 4.8 is always assigned to a person from the supervision team and to a
person who is a representative of the team that owns the device. Also, to find the issue faster,
each issue will be labeled with a label with the team’s name. This will do possible to quickly get
a list of team’s issues using label filtering.

Figure 4.8 Alert issue

4.3 Visualization
To monitoring the operation of the device, some kind of visualization is needed. One of the
best open-source projects for data visualization, including time-series data, is Grafana. When an
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alert occurs, the alert will contain a link to the graphs of the device in which the failure occurred
4.9. Thanks to which it will be possible to track the trend of changes in this metric and better
understand the situation to determine the cause of the failure.

Figure 4.9 Grafana dashboard

Grafana
In monitoring, Grafana is used to display metrics data in tables, graphs, and other suitable
forms [4]. In Grafana, it is possible to create dashboards that will contain panels with graphs
and tables 4.10. To create a panel is needed to select the visualization form, data source, and
write select. If the data source is Promascale or Prometheus, select should be in PromQL.

Figure 4.10 Grafana dashboard
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Below are some essential dashboards from monitoring:
Detailed Dashboard that dashboard is a summary of data in the form of tables and a bar
gauge about a specific device.

Figure 4.11 Detailed dashboard

List Dashboard is the second important dashboard. It contains tables about all devices in
monitoring and their number.

Figure 4.12 List dashboard
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Anomaly detection

Anomaly detection is understood as the identification of rare elements, events, or observations
that differ significantly from most data and do not correspond to a well-defined concept of normal
behavior.

The most significant potential of the entire monitoring system is using machine learning to
analyze the collected data. I have about 20 alert rules written, which is too little to use all the
monitoring features. Considering that the number of metrics exceeds 150, 20 alert rules do not
use even 20%. It should also be borne in mind that the alert rules were written by people based
on their experience and expertise and cannot consider all possible scenarios of the device and
will not be able to report a serious problem. Therefore, the use of artificial intelligence as a more
objective and flexible form of error detection is necessary.

To detect anomalies in the operation of devices, a script was written - Anomaly Detection
5.1.

Figure 5.1 Anomaly detection scheme

The script takes data from a source specified in the configuration, learns from this data or

17
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detects anomalies using a scientific model, stores a graph showing normal behavior and behavior
taken for an anomaly and reports in case of detection.

The program is written in Python and has its configuration file in which it is possible to
specify all the essential parameters for detecting anomalies.

5.1 Data source
The script should first get data to train the model or use a ready-made model to detect anoma-
lies in this data. Anomaly Detection can use three data sources: Prometheus, Promscale, and
PromsclaeAPI. Each of the data sources has its class written. The configuration needs to specify
which data source will be used and set the necessary parameters for connecting to the selected
source and parameters for receiving data.

After that, the selected class will be passed to the main function, and the data will be received
depending on the specified parameters.

Each of the classes has a ”connect” method that connects to the database or simply checks
the availability of the data source. Also, each of them has a ”get data” function that receives
data depending on the configured parameters in the configuration and returns them in the
”pandas.DataFrame” table format with time series data 5.1.

1 def main(
2 database = None ,
3 dbname : str = None
4 ):
5 """
6 Getting data and call detection function
7 :param database : (class) Class for working with datasource
8 :param dbname : (str) Database name
9 """

10 # Getting data
11 if not CONFIG [" only_read "]:
12 database = database (** CONFIG [ dbname ][" connect "], logger = logger )
13 if not database . connect ():
14 return False
15 data = database . get_data ( metrics = CONFIG [" metrics "], params = CONFIG

[ dbname ][" params "])
16 else:
17 data = read_data ( dbname = dbname )
18 # Detection
19 for metric , table in data.items ():
20 detection (data[ metric ], metric , CONFIG [" metrics "][ metric ])

Code listing 5.1 Detection code

The main parameters for obtaining data are set in the configuration. The whole process of
data analysis is very flexible and automated. In order to add analysis to new data, in this case
to a new metric, it is enough to set three parameters to the config, while the code does not need
any changes.

Data source parameters
You need to define the metric by writing its name. Then it needs to write three parameters
5.6. ”Query”: PromQl query to get data in the desired format. ”Separator”: the parameter
for dividing the metric into several by some label, can be left empty. This parameter was
necessary because many metrics contain information about different components of the device.
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For example, the ”node cpu second total” metric measures CPU load, but it measures this for
different mods. For example, ”user” or ”system” both mods have different trends and normal,
non-abnormal behavior for the time. Therefore, it is better to divide this metric into several
depending on the mode and analyze them independently of each other.

The third parameter is the value of the static alert. It is needed for a more informative graph.
It will be shown on the graph along with the analysis results after detection. It is also a source
of truth for determining anomaly detection quality for artificial intelligence models (more details
later). The parameter can also be left blank.

1 metrics:
2 # metric name
3 node_cpu_seconds_total:
4 # query for metric getting
5 query: "sum by (mode)(rate(node_cpu_seconds_total
6 {instance=\"to_replace_instance\"}[8m])"
7 # separator label name
8 separator: mode
9 # value of static alert

10 static_alert: 420
11 node_hwmon_temp_celsius:
12 query: "node_hwmon_temp_celsius{instance=\"to_replace_instance\"}"
13 separator: chip
14 static_alert: 85
15 ...

Listing 5.6 Metrics configuration

In the configuration it is possible to set the value of the ”read only” parameter to ”True” and
the path to the file with the previously received data in CSV format 5.7. It is possible not to
specify or configure the data source in this case.

1 only_read: True
2 data_path: "data/node_cpu_seconds_total.csv" # path to data file

Listing 5.7 Data getting configuration

5.2 Prometheus - data source

Prometheus is the class implementing data source Prometheus. To connect to it, it needs to
specify only the access URL. It is possible to specify the file to process the data to save it. If the
”save” parameter is set to false in the config, you can not specify the path to the file to save 5.8.
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1 datasource: "Prometheus"
2 save: False
3 Prometheus:
4 connect:
5 url: "http://12.224.2.113:9090"
6 save_to: "data/Prometheus/"
7 params:
8 label_config: {}

Listing 5.8 Prometheus - data source configuration

Prometheus class uses the package ”Prometheus api client” to communicate with the data
source. This package provides a function for translating exported data into the ”pan-
das.DataFrame” format, which is what most anomaly detection models work with. There-
fore, it is the most convenient DataSource for analysis and requires no additional modifica-
tions 5.2.

1 metric_data = self. connection . custom_query_range (
2 query=query ,
3 start_time =start_time ,
4 end_time =end_time ,
5 step=step # 240s
6 )
7 metric_table = MetricRangeDataFrame ( metric_data )

Code listing 5.2 Prometheus getting data

5.3 Promscale - data source
The following class uses Promscale as a data source, more precisely, a PostgreSQL [8] database
that uses by Promscale. The parameters needed to connect and work with this data source are
also specified in the configuration. This is the host and port on which the PostgreSQL database
is available. The connection parameters are also username, password, and database name. If
the ”save” parameter is set to True, you also need to set the ”save to” parameter with the path
where the data will be saved 5.9.

1 datasource: "promscale"
2 save: False
3 promscale:
4 connect:
5 host: "12.239.21.42"
6 port: 5432
7 user: "postgres_user"
8 dbname: "postgres_dbname"
9 password: "db_password"

10 save_to: "data/promscale/"

Listing 5.9 Promscale - data source configuration

The Promscale class uses the ”psycopg2” library to work with a PostgreSQL database 5.3.
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1 cursor = self. connection . cursor () # cursor for communicating with
db

2 self. logger .info(f'{ metric } :', to_term =False)
3 query = Query. get_metric ( metric ) # <- PostgreSQL query
4 try:
5 cursor . execute (query)
6 except Exception as e:
7 self. logger .info(f'Error. {e}', to_term =False)
8 cursor .close ()

Code listing 5.3 Promscale getting data

This data source is less convenient for analysis since additional processing of the received
data is required. The resulting table contains labels as one common column, and it needs
to be parsed into separate columns for each individual label. In addition, PostgreSQL does
not support PromQL, which is why a class was created that returns the desired SQL query
for each metric.

1 table = Promscale . cursor_to_dataframe ( cursor )
2 table = self. label_to_columns (metric , table)

Code listing 5.4 Transform data to DataFrame

5.4 PromscaleApi - data source

The third class for getting data is PromscaleApi. Like the previous one, it also uses Promscale,
but in this case, the program does not connect to the PostgreSQL database via ”psycopg2”. It
uses the Promscale API to work with data source.

For correct connection, configuration needs to set precisely the same parameters as in the
case when the data source is Prometheus. The URL, the path to the file to save, and additional
parameters for the data specification to receive 5.10.

1 datasource: "promscaleapi"
2 save: False
3 promscaleapi:
4 connect:
5 url: "http://14.234.1.123:9090"
6 save_to: "data/promscaleapi/"
7 params:
8 label_config: {}

Listing 5.10 PromscaleApi - data source configuration

The advantage of this approach before using a ready-made library to connect to PostgreSQL
is two key things at once. Firstly, it is an opportunity to use PromQL for a query. PromQL
is created specifically for convenient data retrieval from time series tables. It is a much more
convenient tool in our case. The second point is the data format in response, as in the case
when the data source is Prometheus, the data obtained can be transferred to pandas.DataFrame
without problems and additional modifications are used for training and anomaly detection 5.4.
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1 url = self.url
2 headers = {
3 'Content -Type ': 'application /json ',
4 } # request header
5 params = {
6 "query": query , # <- PromQl query
7 "start": time. mktime (start. timetuple ()),
8 "end": time. mktime (end. timetuple ()),
9 "step": step

10 }
11 response = requests .get( # request to PromscaleApi
12 url=url ,
13 params =params ,
14 headers =headers ,
15 )
16 result = response .json ()['data '][ 'result ']
17 table = pd. DataFrame (result , columns =['timestamp ', 'value ',

separator ]) #
convert to Pandas table

Code listing 5.5 PromscaleApi getting data

5.5 Detection

After collecting the data, the program makes an detection. The detection process can be con-
figured using the parameters in the configuration file. There are three parameters that can be
configured in the configuration file 5.11.

The model can be overfitted, so it will not always be rational to use the old model and
it will be necessary to learn the new one. So I added the following configuration parameter -
”get model”. Depending on which the script will learn from the data anew or take the previously
saved fully finished model or the parameters of the finished model from the file and use them to
detect anomalies.

The second parameter is ”save model”, which is responsible if the program saves the model
for detecting anomalies and writes it to the file.

The third parameter is ”model path”, which should contain the path to the file where the
model will be written or from where the program will take the finished model for detecting
anomalies.

1 save_model: True
2 get_model: True
3 model_path: "Detection/model"

Listing 5.11 Model configuration

After preparing the data, the program calls the ”detection” function. The selected model
processes the data, and at the output, we get a new table with the indicated anomalies and a
graph in which all this is clearly depicted.

The model receives new data, learns, does detection, and improves every time. If anomalies
are found, the program will report the time and metric in which the anomaly was found through
a special channel. 5.5.
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Figure 5.2 Anomaly alert

Optimization
When choosing the algorithm, the speed of learning and detection was also taken into account.
The chosen algorithm works fast enough for 6000 devices. Learning and detection for one device
according to data from a week ago will last only 0.4 seconds. Detection on all 6000 devices takes
about 40 minutes.
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Chapter 6

Experiment

I tried to use two frameworks: fbprophet [9] and pycaret [10]. A total of 11 different models in
order to find the most suitable for detecting anomalies in monitoring.

6.1 Model scoring

The learning of the anomaly detection model on the data obtained from monitoring is unsuper-
vised learning because we are not given an exact explanation of what an anomaly is and normal
behavior. Therefore, the judgment on the quality of detection could only be judged on my ex-
pert opinion. However, I wanted to express this judgment in numbers. To do this, additional
functionality was written that returned an estimate of the final detection for each model. The
source of truth for this is a time-tested and compiled of many years of experience - static alert.
Based on this, the judgment about the quality of detection is based.

The function accepts a data table after detection, that is, in which there is an ”anomaly”
column that indicates whether the model considered this value abnormal or normal. The second
parameter is the value of a static alert, at the intersection of which an incident will be created,
and the monitoring team will be alerted about it. And the third parameter is if the behavior
under a static alert is considered normal or above it.

To simplify, I will demonstrate everything with an example of when the behavior under the
static alert line is considered normal. Everything is likewise in the case when the behavior is
considered normal if the value does not fall below the static alert line.

Except two models (about them later), all recognized abnormal behavior in values exceeding
the static alert line. Therefore, the ”calculate score” function considers the quality of anomaly
detection under the static alert line for a more objective assessment. In an ideal situation, the
model would have to warn that the line might be crossed in the near future, and the monitoring
team would have to react somehow to prevent this. At the same time, the model would not have
to react to values in the ”trust” interval, thereby not creating panic from scratch. Therefore, the
ideal method for evaluating models is to compare the distance between the line of static alert and
the line of the average value of all found anomalies. Thus, we reward the model for anomalies
near the static alert line and penalize it for the value of normal behavior as an anomaly 6.1.

25
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1 def score_for_detected (
2 anomaly : pd. DataFrame = None ,
3 static_alert : float = 0.0,
4 under: bool = True
5 ):
6 """
7 :param anomaly : (pd. DataFame ) Table of all detected anomaly
8 :param static_alert : (float) Value of static alert
9 :param under: (bool) If point under alert is it normal

10 : return : (float) Score for detected points
11 """
12 anomaly_over_alert_line = anomaly .loc[ anomaly .value >

static_alert ]. value # values of anomaly points over line
13 anomaly_under_alert_line = anomaly .loc[ anomaly .value <

static_alert ]. value. # values of anomaly points under line
14

15 if under:
16 # if static warnings check a value above a certain value , it

means that score counts for detection under the static warning
line

17 anomaly_mean = anomaly_under_alert_line .mean ()
18 else:
19 anomaly_mean = anomaly_over_alert_line .mean ()
20

21 anomaly_point = abs( static_alert - anomaly_mean )
22 return 100/ anomaly_point # <- value normalization

Code listing 6.1 Score calculate

6.2 Model comparison

For comparison, I took the data for the last week from the ”node cpu seconds total” metric in
the system mode, which shows the CPU load. The principle is absolutely the same about other
metrics and different instances. A static alert rule for this metric restricts normal behavior from
above to a value of 420. For this metric, I trained all models, drew a graph with the results, where
normal behavior will be shown by blue lines and abnormal activity by red dots, and calculated
each score. Below are two graphs on which you can clearly compare all tire models by their
score, and the time of training and detection 6.1.

Node cpu seconds total

First, let us look at the metric itself and its behavior during the week. Also, on the graph, you
can see the static alert line and the values that intersect it.
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Figure 6.1 Node cpu seconds total

Now let us take a look and analyze each of the models and their results in more detail. Let
us start with the more unsuitable ones to the better ones.

6.2.1 Principal Component Analysis
The idea is to split the data into its main components and then restore the original data using
only the first few main components [11]. The recovered data will not be the same as the original
data. The recovered data elements that differ most from the corresponding source elements are
anomalous. Applying this approach to monitoring data is not good. Because this model, like
the next two, did not find abnormal behavior in the data at all 6.2.

Figure 6.2 Principal Component Analysis
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6.2.2 Subspace Outlier Detection
Stochastic Outlier Selection - his uncontrolled outlier selection algorithm takes either a feature
matrix or a difference matrix as input and outputs the probability of outliers for each data point
[12]. Intuitively, a data point is considered an outlier when other data points have low similarity.

The algorithm also did not detect abnormal behavior, so it is not applicable in this case.

6.2.3 Connectivity-Based Outlier Factor
The first algorithm that begins to identify anomalies in the data is the Connectivity-Based
Outlier Factor [13].

Connectivity-Based Outlier Factor - it is a method for detecting outliers. The idea behind
the join-based radiance algorithm is to assign a radiance to each data point. The third emission
power is the compound-based emission factor, COF data points. A high COF value of a data
point represents a high probability that it is an outlier 6.3.

Figure 6.3 Connectivity-Based Outlier Factor

The algorithm recognizes abnormal behavior at points above the static alert line. Neverthe-
less, the algorithm loses many points since he sees anomalies in a large number of values that are
not far from normal behavior but, at the same time, are very far from the line of static alerts.

6.2.4 Isolation Forest
The third algorithm is Isolation Forest, which makes a decision about the anomaly of the value
by building forests [14]. Isolation forests were built because anomalies are data points that are
”few and different from each other.” In an isolated forest, randomly selected data is processed
based on randomly selected objects in a tree structure. Samples that move deeper into the trees
are less likely to be anomalies because more incisions are required to isolate them. Similarly,
samples that end with shorter branches indicate anomalies because it was easier for the tree to
separate them from other observations 6.4.
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Figure 6.4 Isolation Forest

The algorithm is quite clear and really determines even tiny deviations from the norm. How-
ever, for monitoring purposes, small deviations are often not important, because many metrics
have a large interval of normal behavior.

6.2.5 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method that
computes the local density deviation of a given data point for its neighbors [15]. The local
anomaly factor is based on local density, where locality is given by k nearest neighbors, the
distance to which is used to estimate the density. By comparing the local density of an object
with the local densities of its neighbors, it is possible to identify areas with a similar density
and points that have a significantly lower density than their neighbors. They are considered an
anomaly 6.5.
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Figure 6.5 Local Outlier Factor

The problem with this algorithm is that the algorithm sees abnormal behavior in less dense
data, despite the fact that the values are in the confidence interval.

6.2.6 Clustering-Based Local Outlier
This method uses data partitioning into clusters to detect anomalies. Clustering-based ap-
proaches detect outliers by extracting the relationship between objects and the cluster [16]. This
outlier detection method assumes that normal data objects belong to large and dense clusters,
whereas outliers belong to small or sparse clusters or do not belong to any clusters 6.6.

Figure 6.6 Clustering-Based Local Outlier

The problem of this algorithm for our purposes is similar to the problem of the previous algo-
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rithm. Clustering-Based Local Outlier is too sensitive for data with a large range of acceptable
values.

6.2.7 Angle-base Outlier Detection
This algorithm is also not the best choice for our data but is based on a very interesting idea.
Angle-based Outlier Detection is based on the idea that for a normal data point, the angle it
forms with any two other data points varies greatly as you select different data points [17]. In
the case of abnormal values, the angle that a data point forms with other data points does not
change much when different data points are selected 6.7.

(a) Normal data point (b) Abnormal data point

Figure 6.7 Angle-base Outlier Detection

6.2.8 Histogram-based Outlier Detection
The Histogram-based Outlier Detection algorithm is in the top two. The algorithm builds a
histogram for each feature, where it estimates the probability of an anomaly for each of them
[18]. A data point with a high probability of having an anomaly on several features will be
designated as an anomaly 6.8.
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Figure 6.8 Histogram-based Outlier Detection

The algorithm shows itself perfectly on our data. Therefore, it has the most significant score
by a large margin compared to other algorithms. Histogram-based Outlier Detection does exactly
what is required. That is, it detects anomalies in values exceeding the value of the static alert
and falsely does not detect normal values. And it is able to warn that the values will probably
soon exceed the norm. Considering the above, it was decided to focus on this algorithm and
launch it into actual use.

6.2.9 FBprophet

The algorithm from the ”fbprophet” library by Facebook was also tested [9].

The algorithm first outputs patterns and determines trends in data changes depending on
time. Specific trends depend on the size of the data. The algorithm is able to make trends during
the day, week and even year 6.9.
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Figure 6.9 Trends

Here, for example, we can see that the CPU is most loaded during the morning at the
beginning of the working day and least at lunch and night.

After that, the algorithm, taking how many date points, predicts the further behavior and
the upper and lower edges of the more possible values 6.10. Anomalies are detected depending
on the difference in prediction and real values. On the graph, you can see the black points show
the real value, the thin blue line is a prediction and the wide blue one is a probable range 6.11.
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Figure 6.10 Prediction

Figure 6.11 FBprophet

6.3 Result of experiment

In repeated tests with different metrics, the situation remained the same. Two leadership con-
tenders have been identified. Which are clearly superior to other algorithms in the quality of
anomaly detection 6.12. Histogram-based Outlier Detection was ahead of everyone in terms of
detection quality and also detected abnormal behavior 12 hours before the values crossed the



Result of experiment 35

static alert line, as you can see from the graph 6.8. There are plans for the future to conduct
a repeat experiment, but with more data for a longer period. I also think that the result may
change depending on the hyperparameters of these algorithms. Therefore, in future plans to
conduct research with changes in hyperparameters and see how the efficiency of algorithms will
change.

Table 6.1 Score table

Score Table Score Time
Principal Component Analysis 0 0:00:00.25
Subspace Outlier Detection 0 0:00:04.50
Connectivity-Based Outlier Factor 0.5045 0:00:00.60
Isolation Forest 0.5816 0:00:00.75
Local Outlier Factor 0.5820 0:00:00.26
Clustering-Based Local Outlier 0.6596 0:00:00.93
Angle-base Outlier Detection 0.8409 0:00:01.18
FBprophet 1.5134 0:00:02.98
Histogram-based Outlier Detection 2.1826 0:00:00.92

Figure 6.12 Model score comparison
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Figure 6.13 Time of training and detection comparison
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Conclusion

As a result, it turned out to make a flexible, automatic data collection and storage system. Where
the collection components work independently of each other and are connected using auxiliary
scripts such as AutoDiscovery and InfluxParser. Through which you can configure all monitoring
in case of any changes. With the help of scripts, it also turned out to distribute the load on
Prometheuses, thereby optimizing the system for a larger number of devices. The system calmly
copes with monitoring more than 6000 devices. It turned out to build a system of warnings and
monitoring of the received data. The system provides the warning with additional information
that helps to quickly understand what the problem is and fix it. The anomaly detection system
has yet to be finalized by conducting additional experiments with a large amount of data and
changing hyperparameters. Also, over time, it will be seen how the algorithms behave after
learning on different data.

This project is open-source. [19]

37



38 Conclusion



Bibliography

1. EXPORTER, Node. Prometheus/node exporter: Exporter for machine metrics. GitHub.
[N.d.]. Available also from: https://github.com/prometheus/node_exporter.

2. PROMETHEUS, howpublished=”[online]”. Prometheus - Monitoring System, Time Series
Database. Prometheus Blog. [N.d.]. Available also from: https://prometheus.io/.

3. PROMSCALE. Timescale/promscale: The open-source observability backend for metrics
and traces powered by SQL. GitHub [[online]]. [N.d.]. Available also from: https://github.
com/timescale/promscale.

4. GRAFANA. Grafana/Grafana: The open and composable observability and data visual-
ization platform. visualize metrics, logs, and traces from multiple sources like prometheus,
Loki, Elasticsearch, InfluxDB, postgres and many more. GitHub [[online]]. [N.d.]. Available
also from: https://github.com/grafana/grafana.

5. ALERTMANAGER. Prometheus/Alertmanager: Prometheus Alertmanager. GitHub [[on-
line]]. [N.d.]. Available also from: https://github.com/prometheus/alertmanager.

6. Real-time operations: Incident response: On-call. PagerDuty [[online]]. 2021. Available also
from: https://www.pagerduty.com/.

7. OPSGENIE. Opsgenie: Alerting and on-call management. opsgenie [[online]]. [N.d.]. Avail-
able also from: https://www.atlassian.com/software/opsgenie.

8. POSTGRESQL, PostgreSQL Global Development. PostgreSQL. PostgreSQL [[online]]. 2022.
Available also from: https://www.postgresql.org/.

9. FACEBOOK. Quick start. Prophet [[online]]. 2022. Available also from: https://facebook.
github.io/prophet/docs/quick_start.html.

10. Pycaret. PyCaret [[online]]. 2022. Available also from: https://pycaret.org/.
11. JAADI, Zakaria. A step-by-step explanation of principal component analysis (PCA). Built

In. [N.d.]. Available also from: https : / / builtin . com / data - science / step - step -
explanation-principal-component-analysis.

12. CABERO, Ismael; EPIFANIO, Irene; PIÉROLA, Ana; BALLESTER, Alfredo. Subspace
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AlertHandler.....................................the directory with AlertHandler 4.2

README.md...................................the file with AlertHandler description
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data ............................................... items info and incident history
lib...........................................the directory with class and function
log .............................................. the directory with log of running
main.py.......................................................the main script file

AnomalyDetection ........................... the directory with AnomalyDetection 5
configuration ................ the directory with AnomalyDetection configuration
data ...................................................metrics files and logs files
lib...........................................the directory with class and function
main.py ......................................................the main script file

AutoDiscovery .................................the directory with AutoDiscovery 2.3
configuration .................... the directory with AutoDiscovery configuration
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main.py ......................................................the main script file
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InfluxDBParser ...............................the directory with InfluxDBParser 3.3

config.yaml ............................ the file with InfluxDBParser configuration
metric parser.py ............................ file with functions for metric parsing
main.py.......................................................the main script file
README.md.................................the file with InfluxDBParser description

thesis ................................................ the directory with thesis text

41


	Acknowledgments
	Declaration
	Abstrakt
	Abbreviations list
	Introduction
	Collection of data
	Exporters
	Hardware Exporter
	Node Exporter

	Prometheus
	Autodiscovery

	Storage of data
	Promscale
	InfluxDB
	InfluxDB parser

	Alerting
	Alert manager
	AlertHandler
	Visualization

	Anomaly detection
	Data source
	Prometheus - data source
	Promscale - data source
	PromscaleApi - data source
	Detection

	Experiment
	Model scoring
	Model comparison
	Principal Component Analysis
	Subspace Outlier Detection
	Connectivity-Based Outlier Factor
	Isolation Forest
	Local Outlier Factor
	Clustering-Based Local Outlier
	Angle-base Outlier Detection
	Histogram-based Outlier Detection
	FBprophet

	Result of experiment

	Conclusion

