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Abstrakt

Tato práce do detailu popisuje aplikačńı framework NVIDIA Merlin™ a všechny
jeho části. Dále popisuje jak Merlin využ́ıt při implementaci škálovatelného
předzpracováńı dat, návrhu a implementaci modelu, a generováńı predikćı
v rámci doporučovaćıho systému. Merlin je společnost́ı NVIDIA prezentován
jako jednoduchý pro použit́ı a vysoce škálovatelný framework schopný zvládnout
velikost dnešńıch dat. Tato práce ověřuje výroky společnosti NVIDIA a hod-
not́ı Merlin z pohledu vývojáře. Dále popisujeme obecné př́ıstupy v doporučováńı
a optimalizace implementované společnost́ı NVIDIA. Poté poṕı̌seme, jak využ́ıvat
framework Merlin a jeho moduly. V prostřed́ı Merlin se nám podařilo naim-
plementovat doporučovaćı systém, jehož výstupem jsou relevantńı výsledky.

Kĺıčová slova doporučovaćı systém, využit́ı GPU, aplikačńı framework Mer-
lin™, předzpracováńı dat, hluboké učeńı, inference
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Abstract

This work describes the NVIDIA Merlin™ application framework and all
its parts in detail and how it can be used when implementing scalable data
preprocessing pipeline, designing a model architecture, training a model, or
generating predictions for recommendation system. Merlin is presented by
NVIDIA as easy-to-use and highly scalable framework capable of handling
real-world data and workloads. This thesis verifies claims made by NVIDIA
and reviews Merlin from developers perspective. We describe the general ap-
proaches used in recommendation systems and then discuss the optimizations
NVIDIA implemented. Next we provide a guide in how to use some of the
Merlin modules. We have managed to use Merlin components to implement
a movie recommendation system that is producing relevant results.

Keywords recommendation system, GPU utilization, Merlin™ application
framework, data preprocessing, deep learning, inference
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Introduction

Motivation
Large amount of content is uploaded to the Internet every day. This content
ranges from anything digital, such as videos, pictures, and news posts, to
actual physical items that a customer might buy from an e-Shop. To customize
the browsing experience, many services leverage some kind of recommendation
system. This increased need for unique experience creates a demand on the
people creating these systems, which in turn creates interest in automation
and simplification of the process.

There are many tools available to help with the implementation of a rec-
ommendation system. There are also many people who are just beginning to
explore the options available to them. The decision to use a tool for a job
can be critical to the process. This thesis addresses this problem by analyzing
available frameworks and conducting an experiment with one of them.

We will go through what a recommendation system implementation and
usage looks like. Then, we compare commonly used frameworks, pointing
out the major differences when compared to the one we use. We have se-
lected to experiment with the open-source application framework developed
by NVIDIA called Merlin™. We will implement a pipeline consisting of data
pre-processing, creating and training a machine learning model, and model in-
ference. The benefits and drawbacks of Merlin™ are then evaluated based on
the tool as a whole, including documentation, simplicity of use, performance
impact and versatility.

Goals
The goal of this thesis is to describe how a recommendation system works,
how it is built and used. After this introduction to the domain, we will analyze
Merlin™ and compare it to well-known Python frameworks like Pandas. Com-
bining this knowledge, we design a recommendation system pipeline. Choosing
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Introduction

the data set is an important part of the process, as we want to leverage the
capabilities of the framework. Preferably, we choose an artificial neural net-
work architecture that is supported in our framework. Once this is done, we
evaluate our model in terms of precision and performance.
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Chapter 1
Recommending Introduction

1.1 Recommendation System
Recommendations systems are used today by most of the services that provide
more products and items that a user can browse through. In this chapter,
we analyze the basics and some of the more advanced techniques used in
reccomending. We also analyze tools for building recommendation systems,
with a special focus on NVIDIA Merlin™, an open source recommendation
system framework.

1.1.1 Overview
Recommendation system is a system that encapsulates a method to recom-
mend any arbitrary item. Recommendations are generally served and tailored
to the needs of each user. When the system cannot identify the user, it can
resort to recommending items popular amongst large clusters of users. When
the system can identify the user and has some historical data stored about
them, it can serve items more relevant to each and every user.

Recommendations are vital to the user’s browsing experience. The amount
of content available today is well beyond the limit that a single human being
can browse through, let alone inspect. Machines can help us with this problem
as long as we are able to formulate the problem mathematically.

The need for such systems exists when an application begins to provide
large amounts of content, as is not uncommon these days. There are many
examples for this. Let us say that we want to watch a video; what site do we
choose? Whatever the answer, this site will most likely provide videos cover-
ing multiple topics, such as gardening, cooking, sports, architecture, program-
ming, and more. When a user engages positively with any such topic, we can
say that the user finds it interesting and would like to see more of it.

The well-known approaches are content-based filtering and collaborative
filtering. When content-based and collaborative filtering is combined, it is

3



1. Recommending Introduction

called a hybrid approach. The fourth option would be to filter based on
demographics. Content-based filtering focuses on the properties of each item
individually. We can find similar items on the basis of these properties and
recommend them. In collaborative filtering, we focus on finding a similarity
between users. Then, when we know that a user engaged positively with an
item, we find a similar user and recommend the same item to him/her. [8,
chapter 6]

The goal here is to individually predict for each user the items with which
this user would like to interact. User-item interactions that did not yet happen
can be assigned a value, a prediction. When we rank these items for each user
by their predicted value, we can then select the top few, or use a different
approach, for the items we will recommend.

1.1.2 Data

A data set usually contains users, items, and interactions. This information
can be obtained implicitly or explicitly. Implicit information is any informa-
tion recorded by the system. Some examples of implicit information are view
of an item, time spent watching a single video, or time spent on the site on
average per day. Explicit information is any information provided by the user
on purpose. Explicit information can be a like or a dislike, product rating,
comment, or any kind of reaction that the user explicitly provides when asked.

Information comes in various forms. It can be categorical or numerical.
We further split categorical information into nominal and ordinal information,
depending on whether an order can be found in it. Education usually can be
sorted because elementary school comes first, then high school, and so on. In
color, however, no such phenomena can be found.

Users can have multiple attributes, like age, address, or sex. Some even
more specific would be information on whether the user has kids, education,
color preference, etc. Items can have color, genre, duration, size, and so on.
Interactions usually have some kind of value. This is useful when we want
to distinguish between a movie rating of 1 star out of 5 and 3 stars out of 5.
Timestamp or some other type of time information is also important because
the user’s preferences change in time. A typical example of this are seasonal
items, such as skis and swimsuits.

Interactions are often stored in an interaction matrix. The rows of the
matrix are individual users and the columns correspond to items. The inter-
action matrix is usually sparse as users cannot possibly interact with more
than a fraction of the items. An example of interaction matrix with M users
and N items containing item rating from 0 to 5 is illustrated in Figure 1.1.

4



1.2. Pipeline

Figure 1.1: Interaction matrix

1.1.3 Machine learning
Machine learning is currently the basis for successful large-scale recommen-
dation systems. It refers to learning a model, for whatever task at hand, by
leveraging the information stored in our data. In our case, we will predict the
value of an interaction.

Interaction data is a real-world example of what a user prefers, or which
two items go well together. When learning our model, we examine the outputs
it gives us for already known interaction, that is present in our data set. When
the model’s prediction is off, we have to adjust it’s prediction process so that it
will give more accurate prediction the next time. We repeat this process until
we are satisfied with the model results. The process of retrieving a prediction
from a machine learning model is called inference.

Predictions can be made beforehand and saved. In large-scale systems
however, the prediction is not being calculated for every user-item pair, but
rather after retrieving some more-likely candidates[wnd paper or specific re-
trieval literature]. Generation of predictions costs time and energy. Retrieval
is a process where we retrieve a few hundreds to thousands candidate items
using more traditional queries based on logical operators, similar to SQL. Only
for items retrieved are user interactions predicted and ranked.

1.2 Pipeline
Machine learning pipeline in our context defines the following steps:

1. Transformations applied to raw input data.

2. Definition of a machine learning model.

5



1. Recommending Introduction

3. Model training

4. Model inference

The pipeline should be repeatable to allow us to execute a fast prototype
when we introduce some changes. Prototyping is what makes a workflow
efficient and flexible. Obtaining the data set (e.g. download from a website)
is not part of the pipeline, as this usually needs to be done only once, as long
as we do not overwrite the original files.

Information from websites and other systems is usually stored in a format
relevant for, and readable by humans, such as strings. Computers at their
core always work with numbers and this makes data preprocessing a necessary
part of our pipeline. Enhancing the data with features extracted from already
existing ones can also be a process that significantly improves predictions.
Extracting a season, day of the week, and time of day provides a critical
information from a simple feature like timestamp. This process is called pre-
processing and feature engineering. In Merlin, the part responsible for this
part of the pipeline is NVTabular, discussed in Section 2.3.

Model definition will be included in the pipeline, as the structure changes
when we add new features, or change the approach to processing a feature in
a way not compatible with current state of the model. In the experimental
process, this will happen more often than not. Finding the best model ar-
chitecture is usually the result of extensive experimentation that takes a lot
of time. Experimentation is the core reason we try to optimize testing an
architecture. When the model is compiled, we need to train it on the data set.
The following step after training is to save the model to disk, so it is stored
and our training progress cannot be lost by simply restarting the machine or
Python kernel in our case.

After the model has been saved, it will be served using an inference server.
In our case, we inject the model into a Docker container. The container then
runs a server, and we make requests to infer predictions. Besides metrics like
accuracy and recall that are evaluated on the whole data set, we also would like
to see specific item recommendations for specific users. This is a part of our
pipeline, because we want to see for ourselves whether the predictions could
be relevant for the user or not. An example of this could be a user purchasing
only jeans from an e-shop multiple times. Such a users recommendations
should certainly contain jeans, as they clearly are to the customer’s liking.

6



Chapter 2
Analysis

2.1 Merlin™
Merlin is an open source application framework and a library collection that
aims to ease the process of building a high-performance recommendation sys-
tem. Merlin provides tools to help with implementation of all the parts of
a pipeline discussed in Section 1.2. The architecture is shown in Figure 2.1.
Consisting of multiple components, Merlin allows parts of the pipeline to be
substituted with other standard technologies, like TensorFlow, to create and
train an artificial neural network.

Merlin is currently in development and often undergoes changes. New
features and components are added regularly. The developers addressed the

Figure 2.1: Merlin architecture[1]

7



2. Analysis

changing nature of their product by containerization. Docker containers, prop-
erly versioned and customized depending on use are available from NVIDIA’s
catalog site[9]. Merlin builds on some other available libraries that will be pre-
sented and described shortly, like cuDF, Dask, and also uses Triton Inference
Server as inference mechanism.

2.2 cuDF
CuDF is a library that allows us to load, manipulate, and save data on GPU,
rather than CPU, as is typical. CuDF offers an API that mirrors Pandas’ API.
The difference, important for us, is that it utilizes a high memory bandwidth
and processing power of the GPU, on more of this later in Section 2.3.4. GPU
utilization is the reason why cuDF was created. It tries to provide the same
API as Pandas, because Pandas is one of the most commonly used libraries for
tabular data operations. One of the prerequisites for this is CUDA installed
on the system.

Dask is a cuDF superstructure that supports workloads we would like to
distribute across multiple GPUs. This comes handy when a data set does not
fit a single GPU memory or when we want to utilize multiple GPUs processing
power. Dask handles the logic behind splitting the dataset into partitions and
distributing them to specific GPUs. It provides a high-level API for those who
do not wish to delve deep into CUDA programming.

2.3 NVTabular
NVTabular is one of many Merlin components. In the pipeline, it is respon-
sible for feature engineering and other forms of data set manipulation. It
is built on cuDF and Dask (see Section 2.2). NVTabular provides a high-
level API for manipulating the data, allowing us to define what we want to
do with the data instead of what and how. In this sense, NVTabular tries
to act similarly to functional programming languages. As the name suggests,
NVTabular is suitable for handling tabular data, which are organized into rows
and columns. If we would like to include images (or other unstructured data)
in our pipeline, we shall look for a different tool for preprocessing. According
to the documentation[10] it can handle data up to terabytes in size.

Workflow and Operator classes are the building blocks of the framework.
Workflow is a graph (directed acyclic graph) of the operations that will be
applied to the data set once it is loaded in memory. Workflow consists of
Workflow Nodes (e.g. Figure 2.2), that are created by applying Operators
to another Workflow Node, or Column Selectors (described in Section 2.3.2).
Operators can be applied to a list of columns all at once. There are two types
of operators: Operator and StatOperator. Operator performs such actions that
do not need any calculated values from the data as a whole to be applied. In

8



2.3. NVTabular

Categorify

+

SelectionOp

JoinExternal

Normalize LogOp

SelectionOp

FillMedian

[’temperature’]

output cols

SelectionOp

[’sold count’] [’month’, ’decade’]

Figure 2.2: Example Workflow

other words, Operator can perform it’s function without metadata about the
whole dataset. StatOperators use metadata that need to be calculated before
the operator is applied. Let us say we would like to min-max normalize a
column. Min-Max normalization is defined as follows.

yi = xi − min x

max x − min x
(2.1)

Where x is a column, xi is the value of the row i in column x. To calculate
this value, we need to know the minimal and maximal value in the column, in
other words, a statistic. This is achieved by calling the function fit() on our
Workflow and has to be done before actually applying it to the data.

Both kinds of operators offer a base class that can be inherited when we
want to implement a custom dataset operation. The library also offers some of
the commonly used operators already implemented, like Bucketize, Categorify,
and Normalize.

9



2. Analysis

2.3.1 Workflow

In this section we discuss the Workflow object interface and how to save and
load a Workflow from a file.

Workflow can be instantiated by passing any Workflow Node to the con-
structor. Usually, we will want to pass the last Workflow Node of our Work-
flow graph, because we want to include all operations defined in the Workflow.
Two main functions provided in the workflow object are fit() and transform().
This is similar to scikit-learn, a commonly used machine learning Python li-
brary. The functions fit() needs to be called before transform() only when the
Workflow contains a StatOperator. When we violate this rule, the transform()
method throws an exception.

The transformed dataset can then be saved to a directory with files that de-
scribe the data, operations applied to it, file names of the files the transformed
data were spread across, and the data files. The only currently supported data
format is Apache Parquet, which will be discussed later in section 2.4.1. This
can be achieved by calling the to parquet() function.

Any metadata gathered while fitting the Workflow will be used later during
inference. Example of this is categorization. When categorizing values, we
certainly want to remember what numerical value did we assign to a specific
string value of a column, so we can reproduce this assignment later. This
is why we also want to save the workflow. After calling the save() function
on a workflow, NVTabular saves the Workflow object as a pickle. Pickle is a
library for Python object serialization, meaning that the object representation
is saved to a file and can be later loaded back into memory. Metadata such
as Python version, cuDF version, and NVTabular version are stored as well
as previously mentioned StatOperator data.

2.3.2 Column Selector

This section describes Column Selectors and how they are relevant to the
process of designing a NVTabular Workflow.

Understanding Column Selectors is critical to designing our NVTabular
workflow. The sequence of operations applied to data can be shared by multi-
ple columns. Let us consider a dataset, where two columns have string values
saved in them. One corresponds to a user’s highest degree of education, like
elementary school, high school, and college. The second column stores data
about the users age group, like child, teenager, adult, and senior. Both of
these columns data incorporate a sort of order, and the cardinality of values
is low. This makes for a perfect example to use a Categorify Operator, see
2.3.3, on both columns at once.

These column selectors are defined independently of loading the dataset
into a memory. Column Selector can be instantiated explicitly, by using the
class constructor. This constructor takes in a list of strings, the names of

10



2.3. NVTabular

Figure 2.3: Example operator use

import nvtabular as nvt
categorical_cols = ["age_group", "education"]
categorized = categorical_cols >> nvt.ops.Categorify()

the columns we wish to select. Column selector constructor is rarely used in
practice, as there are overloads implemented, so we can work with a list of
strings the same way we would with a column selector.

2.3.3 Operators
This section is dedicated to Operators and their base classes offered by NVTab-
ular. We will describe some of the available, already implemented operators
and their parameterization. We will refer to NVTabular Operators with upper-
case O or by name. Native Python operators are referred to as operators with
lower case o.

Operators are applied to either a Column Selector or Workflow Node.
Adding an Operator to a workflow is achieved by using the overloaded bit-
shift operator », as shown in Figure 2.3. This bit-shift operator can be applied
either to a Column Selector or a Workflow Node and returns a Workflow Node.
Multiple operators can be chained together to reach the desired result.

2.3.3.1 Operator Base Classes

Base classes for operators, namely Operator and StatOperator aim to make
the implementation of custom Operators easier, and the code more readable.
At the time of writing this thesis, these implementations and how to derive
from them are unfortunately not documented, and experimentation has not
led us to any results worthy of attention.

2.3.3.2 Categorify

Categorization in this context is the mapping of any values to a range of inte-
gers. Categorify is the name for the Operator that implements the commonly
used but configurable encoding. Now we explain some of the configuration
options available to us.

Frequency threshold is a threshold that dictates how many occurrences of
a value need to be present in the dataset within a specific category, for the
category value to be included in the categorization process. This is useful when
we spot some outliers in the dataset, meaning we can exclude rare category
occurrences from the process.
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Categorify Operator can be configured to use hash encoding. This means
that there is a hashing function included in the transformation process. Hash-
ing function can be modified with modulo, to define the maximum feature
cardinality of the result. When we do not want to use hash encoding, Cate-
gorify uses label encoding.

”The main advantage of using Hash Encoding is that you can control the
number of numerical columns produced by the process. You could represent
categorical data with 25 or 50 values with five columns (or any number you
want).” [11, section 3]

2.3.3.3 Normalize

Normalize Operator performs transformation so that the resulting data will
have a mean of 0 and standard deviation of 1. This process is also known
as standardization. For normalization to the range of 0 to 1, we can use the
Min-Max normalization, described in Figure 2.1. This is achieved by using
NormalizeMinMax Operator.

2.3.3.4 JoinExternal

Joining is a typical operation performed when our data is split into multiple
files. We then use a unique identifier to join the data, so we get a data set
containing all the required information we use. JoinExternal allows us to join
external data sets, allowing us to choose between left and inner join. We can
also specify the names of the columns by which we want to join.

2.3.3.5 LambdaOp

LambdaOp is an Operator that takes a lambda function as a parameter. This
lambda function can apply any operation row-wise, meaning that at the time
of execution, the lambda only works with information contained in a single
row. We can also specify a list of dependency columns. This is useful when
we refer to a different column value in the data set from within the lambda.

2.3.4 Data Loader
Data loading and data access are the main parts that Merlin focuses on in
its optimizations. Not having a steady stream of data from disk into GPU
memory is one of the bottlenecks when processing the data or training a
neural network. Compared to TensorFlow, NVTabular Data Loaders offer the
following features and optimalizations:

• Loading the data from disk batch by batch instead of item by item

• Processing data set larger than GPU memory
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Figure 2.4: GPU Direct Memory Principle[2]

• Eliminating CPU-GPU communication, loading the dataset directly into
GPU

• Supporting binary file formats, such as Parquet

• Tensorflow Data Loader interchangeability

The most important part here is loading the data from disk directly to GPU
memory. Usually, the CPU dictates what data need to be loaded. The data is
then transfered to system memory (RAM) and only then, passed from system
memory to GPU memory. With the development of the GPU industry, the
GPUs became so fast that supplying the GPUs with enough data to process
became the bottleneck, rather than GPU computing time. This process has
been redesigned and with the help of GPUDirect Storage (GDS) the data travel
from the storage directly to the GPU memory, as illustrated in Figure 2.4.
This helped both reduce I/O latency and increase memory bandwidth. I/O
latency matters the most when a program requests new data. When new data
for a GPU is requested, neither CPU nor RAM is bothered with communi-
cation, which leads to improved latency. The latency reduction is visualized
in Figure 2.5. Finally, the overall memory bandwidth, which corresponds to
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the amount of data that can be loaded into the GPU memory per second,
increased up to two times, as shown in Figure 2.6.

Figure 2.5: GPU Direct Memory Latency[2]

Figure 2.6: GPU Direct Memory Bandwidth[2]

NVTabular data loaders are parametrizable. Multiple implementations
have been created to support Tensorflow and PyTorch interoperability. We
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will now address KerasSequenceLoader and KerasSequenceValidater imple-
mented in NVTabular to see how they can substitute their counterparts pro-
vided by Tensorflow.

Both KerasSequenceLoader and KerasSequenceValidater are fairly simple
to use. KerasSequenceLoader takes in as parameters the data files or the data
set in memory, column description, batch size, buffer size, and shuffle options.
Column descriptions consist of separating the columns into categorical, nu-
merical, and label based on column name. Batch size is the size of the data
prepared for training at a time. The buffer size is the percentage, or exact
number of GPU memory maximal consumption. The size of the buffer serves
the purpose of loading multiple batches ahead of time. Shuffle parameter is
a boolean and it states whether to randomize the data before sending it to
training or not.

2.4 Data File Formats
In this section, we look at how different file formats can affect the performance
of I/O operations. We also describe the Apache Parquet format in detail.

The available file formats can differ in readability, compression, nesting,
and tool compatibility. The most common and widely used formats, such as
csv or json, are relatively simple, readable by humans, and widely supported
in the IT industry. When we take a look into the cuDF documentation, we
discover multiple supported formats to load and save a DataFrame. These
include the mentioned csv and json, but also parquet, orc, hdf, and feather.
We will discuss the parquet format in more detail in the following sections, as
it is supported by Merlin.

One big difference that sets file formats apart is whether they are row
or column oriented. Row formats store data row by row. Columnar data
formats store first all (or a partition) rows’ first column data, then the data
for the second column. This distinction comes from the fact that different
workloads access data differently. This is best illustrated with the following
scenario. Let us say, we want to print a movie with all its features and
properties to the screen. We have to look up where the movie is located in
the file and then load all the movie information into memory. This is a row-
oriented workload. Now let us consider a different, more data-science oriented
yet simple scenario. We want to calculate the average movie length for all
movies. For this calculation, all we need to know is the length of the movie,
other movie metadata do not interest us. This makes a columnar data format
very well suited for us, as the storage can read data continuously and does
not need to perform a lookup as often, nor does it need to read data that is
not relevant for the calculation.

Another difference is the format of the saved data itself. There are plenty
of formats available, but for our use case the main difference will be in size.
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During data pre-processing and model training (discussed in Section 2.5.1) the
data need to be read from the storage and then manipulated. The physical
size of the data on a storage clearly plays a big role in how fast we can go
through the data. Two files containing the same amount of information can
differ in size. If we want our data to be readable by humans who only use a
basic text editor, we save the data to a text file. This file can contain strings
and numbers, but all these numbers are saved as text as well. This is because
computers nowadays support saving and reading a plethora of characters,
and so our encodings have to support thousands and thousands of different
characters as well. If we agreed to use a special tool to read and manipulate the
data, we could easily save space. Formats that require special tools, software
or hardware to read and manipulate data are called binary file formats. The
binary formats being non-readable allow for space optimizations, and this is
useful, especially when handling large amounts of data. This is one of the
optimizations that the Merlin framework tries to utilize.

2.4.1 Apache Parquet

In this section, we present Apache Parquet, an open-source binary data format
developed for use in Hadoop big data ecosystems. Support for parquet is built
into the Merlin framework and so we will take a look at how does the format
work and what it supports.

Apache Parquet file format is visualized in Figure 2.7. The Parquet file
format supports both simple and complex nested data types. It is designed
to store booleans, integers, maps, lists, and the like. The file is split into Row
Groups, which are essential file chunks. We can imagine a Row Group as a
table, where each row contains single column data for a number of rows in
the original data set. After the column data, the metadata segment follows.
The second row contains data from the second column and the corresponding
metadata. Single Row Group contains data from all columns, but each column
is stored contiguously. Along with multiple Row Groups, each file also contains
metadata for the file as a whole.

PyArrow is the Python library for manipulating parquet files that Merlin
leverages. In PyArrow, we can specify the Row Group size for the engine and
customize the file ourselves. NVTabular even specifies that Row Group size
of 128MB is optimal for its performance. According to [3, page 3] Row Group
size when handling big data is typically larger, around 1GB.

The Row Group metadata even contain statistics, like the maximum and
minimum value for each column, which sometimes allow the engine to skip
a column chunk read. This slightly complicates the logic of the reading pro-
cess, adding the need to check if it is necessary to read a column chunk in
order to receive the required information. Such optimization, in turn, leads
to performance boost.
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Figure 2.7: Parquet File Format[3]

Compression algorithms can also be used when saving the data in Parquet
format. Compression takes place per chunk, so whole chunks can be skipped
without decompressing the data. Some of the supported codecs are GZIP and
Snappy.

2.5 Machine Learning Model
In this section we discuss what machine learning and especially deep learning
is. Then we describe one of the modern approaches used in recommendation.
Then we discuss how a model is implemented in Tensorflow, one of the most
commonly used tools for deep learning. Merlin also provides a framework for
building and training deep learning models called HugeCTR, which will be
discussed as well.

Machine learning is a term that describes any sort of algorithm that can
learn based on provided data. This learning process usually aims to create
or adjust a model. This technique proved to be useful in many different
fields and industries. Machine learning models are created for a wide variety
of purposes, such as classification, regression, clustering, etc. Examples of
those in practice would be a recommendation system, facial recognition, image
classification, and natural language processing. The most promising subset of
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machine learning is deep learning, so deep learning experienced the greatest
boom, influx of people, and changes in the past few years. Deep learning refers
to training an artificial neural network with multiple hidden layers, usually
three or more.

2.5.1 Artificial Neural Network
Artificial neural networks are oversimplified models of a human brain. How-
ever, they are still far too complex for us to interpret. Artificial neural net-
works (shown in Figure 2.8) are sometimes referred to simply as neural net-
works (NN). NNs are a sort of complex mathematical functions that try to
approximate a function that best describes the problem presented. They are a
composition of basic units called neurons. One or more neurons form a layer.
A neuron is a function that receives inputs, weighs them with a weight corre-
sponding to each of the inputs, and then calculates the sum of the weighted
input. The result of a neuron is called activation (potential). Weights are
numbers, and their value describes the impact that a previous neuron (or
neurons) has on the activation of the following neuron. The activation of
a neuron can only be calculated based on a specific input. In contrast, the
weights are stable (unless we are training the model), and the values of the
weights are what define how a model performs.

The input to a neural network is usually multiple numbers accepted by
an input layer. In a recommendation system context, the input numbers
can represent item identification, item features, user identification, and user
features, but also interaction features (e.g. time of the interaction). This
data is then passed to the next layer, activating some of the neurons and
leaving others inactive. The data is passed deeper and deeper (forward) in
the NN, until it reaches the output layer. The output layer also consists of
neurons and their weights and produces a result. An example of an output
layer in a NN could be a single output neuron that predicts if a user would
like to interact with an item. The value of this neuron is then passed to an
activation function, which gives us the result, a single number, representing a
positive, negative, or somewhat neutral interaction.

The first step in creating a NN model is to define a layer architecture.
Different architectures are more suited to different tasks. After defining the
architecture, the model is initialized. Initializing the model means that we
have to define the weights of the model. The initialization of the weights can
be random or use some of the more advanced techniques, such as the Xavier
Initialization [12]. After initialization, the model is trained on a data set.
Training a model is the process of adjusting weights, and thus adjusting the
approximation function to better fit results observed in previously gathered
data. This is why data collection is more important than ever, as deep learning
turned out to be more proficient at solving problems that are too complex
(time-wise or design-wise) for human-defined algorithms. Finding weights for
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Figure 2.8: Example Neural Network

a model to produce good results is a lengthy process, as the input to the
model is multidimensional data, and each of the weights contributes to the
result. A model can easily consist of billions of weights, which are essentially
parameters of the approximation function as well. When our model is trained,
we can start using it to calculate the results. The process of receiving results
from a model is called inference.

2.5.1.1 Embedding

When we lookup the definition of the word ”embedding” in non-scientifical
dictionaries, we find such phrases as ”to make something an integral part
of” [13]. In deep learning, embedding refers to creating an n-dimensional
representation (a vector) of some values, such as texts, images, or even mu-
sic. Representations of item features or words are assigned to a value in an
n-dimensional space. This provides us with number representation of an ob-
ject regardless of its type. Deep learning models only work with numbers,
and therefore embedding can be critical to the process of feeding data into
a NN. Another feature of embedding is that the resulting vectors exist in a
space where values such as difference (or distance) can be calculated. How
do we find the formula for mapping an arbitrarily complex item to a vector?
What should be the distance between the red and blue colors? The answer is
machine learning. Embeddings are also very important in Natural Language
Processing, where it plays a big role in deducing semantics from words, as
words can differ slightly in form but represent the same thing. One of the
widely known and used algorithms that transforms word into embeddings is
Word2vec [14]. As embedding can be interpreted as a machine learning task,
the proper embedding calculation for every possible value is sometimes calcu-
lated beforehand, and the calculated embeddings are saved to an embedding
table. Embedding tables, which are essentially lookup tables, can be very
large, and thus, if we want to load them into a GPU memory and use them,
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we need large amounts of memory available to us.
In Natural Language Processing, precalculated word embedding can usu-

ally be reused and shared among multiple NNs because the semantic meaning
of the words does not change. In recommendation, however, we are often
tasked with calculating our own embeddings. Some services, offering a large
number of items to a user, will require a large embedding table, unless we want
to always calculate an embedding during inference. Embedding NN takes a
long time to train as any NN, and therefore using precalculated embeddings
also saves us time. NVIDIA’s deep learning framework HugeCTR addresses
this problem with Embedding Training Cache, and we will discuss it in the
matching Section 2.5.3.

2.5.1.2 Wide & Deep

Wide & Deep is a NN model architecture, presented by Google Inc. in a
paper[15] published in 2016. Wide & Deep, as the name indicates, is a NN
with two parts: wide and deep. Before this article, wide models and deep
models were usually used independently, and this architecture tries to utilize
each model’s strengths. The strength of deep models is to find deeper relations
between the features of the items. The strength of wide models in Wide&Deep
architecture lies in memorizing what items go well together. The wide part
of the model is what is considered as an alternative to logistic regression,
which is another machine learning algorithm that is sometimes used when
recommending. Google has been able to use this relatively new Wide&Deep
architecture to increase application acquisitions on their service Google Play.
Google Play relies on the recommendation system when presenting the user
with applications selected from thousands of possible candidates.

The wide part in this model plays the role of identifying what items go well
together. On the input, the wide part receives a history of items liked by the
user (their identifiers) along with an item identifier for the predicted identifier.
The deep part of the model receives all the items’ features along with its
identifier. Multiple hidden layers in the deep model are usually interpreted
in such a way that the deeper the layer, the more complex the feature of the
item each neuron represents. An example of Wide & Deep model architecture
is shown in Figure 2.9.

2.5.2 Tensorflow
Tensorflow is a widely used deep learning framework. It is essentially a collec-
tion of modules that provide the tools required to build and train deep learning
models, manipulate datasets, and more. Merlin has built-in interoperability
with Tensorflow, so we will take a look at how TensorFlow fits into the Mer-
lin pipeline. Tensorflow provides Feature Columns, a module to help with
conversion of raw data into data digestible by a NN. Keras is a library built

20



2.5. Machine Learning Model

Figure 2.9: Wide & Deep Model Architecture[4]

on TensorFlow. Keras used to be a separate framework, supporting multiple
underlying machine learning libraries among which was TensorFlow. Since
TensorFlow version 2.0 Keras is fully integrated in TensorFlow and does not
support other machine learning libraries. Keras provides an API, for creating
machine learning models by layer composition, which is a more high-level view
than what Tensorflow allows. Keras also contains metrics and optimizations
that have already been implemented for model training and evaluation.

2.5.2.1 Feature Column

Feature Column is a class in Tensorflow, meant to be used on raw data. Fea-
ture Columns are mainly used to specify how an input to a NN is going to
look. There are multiple transformations that are applicable on the raw data
and we take a look on a few along with examples in the following section. The
Feature Columns are then passed into Keras Input layers.

The features can be split into two types: categorical and numerical. Cate-
gorical features usually have low cardinality in contrast to numerical features,
where a value for each row in the data set can be unique. In the Tensorflow
feature column namespace we find such a distinction, namely the Categorical
column and the Numeric column.

Numeric columns are the simplest columns as they do not change the data
at all. They simply pass the column values unchanged.

Categorical columns provide multiple ways of mapping raw input data
into vectors of numbers that are digestible by a NN. Categorical columns are
the equivalent way of treating unique data as One-Hot Encoding. One-Hot
Encoding is visualized in Figure 2.10. One-Hot Encoding is a technique where
we introduce a feature to the whole data set for every individual value of
a categorical feature. This newly created columns value is equal to 1 when
the original value corresponds to the newly created column and zero for all
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Figure 2.10: One-Hot Encoding[5]

other newly created columns. The process of One-Hot Encoding can increase
the number of dimensions for the data, which results in more weights in the
resulting model. More weights in the model result in longer training times,
but also in capturing a more complex relationship between input data and
result.

Bucketized columns can be applied to a categorical feature or a numerical
feature. As the name suggests, the Bucketized column splits the data into
buckets, based on criteria specified by us. An example of this could be splitting
a year feature into four buckets, depending on the value.

Embedding columns are used when input categorical feature has high car-
dinality but is still a categorical feature. It would become unfeasible to apply
One-Hot Encoding in such a case because the dimension of the data would
grow drastically. This problem is known as the curse of dimensionality [16].
The embedding can map such values into a lower-dimensionality space. This
comes with trade-offs, bringing into the model the concept of distance between
two values, which may not be desirable.

2.5.2.2 Model

Model is a Keras class that encapsulates a model layer architecture. It is
intended to group multiple NN layers that can be chained either sequentially
or by using the newer Keras Functional API. As Keras’ sequential models
have multiple limitations, in this Section and throughout this thesis, only the
Functional API will be discussed.

The Model class supports saving a model to storage and loading a model
from storage. To save a model, Keras stores the model architecture definition,
model weights (both of which are explained in Section 2.5.1), an optimizer,
and a set of loss and metric functions. Loss is a function that measures the
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difference (or distance) between the desirable result and the current result
infered from a model. The optimizer’s role in model training is to decide how
to adjust the model weights so that the loss function is minimized.

When defining a NN architecture, we usually start with the input layers
of the model. Input layers are created using the Input class in Keras and
they serve the purpose of defining what attributes the input to our NN has.
The input layer constructor takes the following parameters: column name,
data type, shape, sparsity, etc. Data type specifies the data type of the input,
typically integers or floating-point numbers. The shape dictates the input
shape of the data. The input shape can be any tensor shape, where a tensor
is basically a vector or a matrix of a specified shape initialized in the GPU
memory. After defining the input layers, we usually create embedding layers
that convert preprocessed input data to embeddings. The most important
parameters of an embedding layer are the input dimension and the output
dimension. When embedding layers are defined, we can attach fully connected
hidden layers (dense layers) to create a deep model. The Keras Functional
API, as the name suggests, is designed to work with layers as you would with
functions. A layer in NN model takes as input the preceding layer, and this
is no different in Keras, we simply pass the preceding layer to the following,
and Keras handles connecting the layers. When we want our model to return
a single number, we can then append a single last dense layer with the size of
one, which will result in a single neuron layer.

After laying out the layer architecture, we simply pass all the input layers
and the last output layer to a Model class constructor, and Keras handles the
rest. When the model is initialized, it still needs to be compiled. Compiling
a model requires specifying what optimizer, loss function, and metrics do we
want to use and track. For information on how to choose an optimizer, what
is a gradient descent, and how to choose an optimizer, please refer to this
article [17] which serves as a basic orientation guide.

2.5.3 HugeCTR
HugeCTR is the second part part of Merlin after NVTabular. HugeCTR is
an abbreviation for Huge Click Through Rate, implying its use in the area of
building recommendation systems. It is an optimized machine learning library
written in C++. HugeCTR is designed to support model training across mul-
tiple GPUs. HugeCTR’s interface for defining a model’s architecture is very
similar to Keras. HugeCTR also provides hardware abstraction, allowing for
scaling up from a single GPU to multiple machines or even clusters of GPUs.
One of the optimizations required for GPU scaling is embedding table dis-
tribution. The embedding table distribution mechanism is called Embedding
Training Cache and it comes with an in-built smart memory caching mech-
anism. Another optimization is Mixed Precision Training, which is utilizing
NVIDIAs GPUs Tensorcores to boost matrix multiplication and also changing
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some layers data type to a floating point number with only 16 bits represen-
tation. Many parts of HugeCTR can be configured, so we will stick to the
high-level view, which will give us a rough idea of how the framework works.

A model can be defined in HugeCTR in a way very similar to Keras.
The process of defining the model in Tensorflow Keras is described in Section
2.5.2.2. When training a model in HugeCTR, the framework also allows us to
specify learning rate scheduling. The learning rate is an optimizer parameter
that specifies a step size when adjusting the weights of the model to achieve
the minimization of the loss function. Learning rate scheduling allows us to
use a higher learning rate in the beginning of the training, and after specified
number of epochs, the learning rate starts to decay.

2.6 Triton Inference Server

The Triton Inference Server is the last part in the pipeline and is currently
recommended to use in Merlin. Triton Inference Server is a server for model
inference, request batching, and model instance scaling. The server, much
like all other parts of Merlin comes in a Docker container, along with all
dependencies required for inference. We will now discuss what is required to
run the server, supply a model, and succesfully infer results from a model.
Triton Inference Server architecture is illustrated in Figure 2.11.

2.6.1 Model Repository

Model repository can be located on the local file system or cloud storage ser-
vices, such as Google Cloud, Amazon S3, and Azure Storage. The model
repository is made up of stored models. Triton supports loading models from
multiple repositories at the same time. A saved model at this point is a di-
rectory with the name of the model. A model directory contains a model
configuration file that contains information about the inputs, outputs, and
model composition if the model is an ensemble. Ensemble is a term used
for models that are made up of more models and then connected. When us-
ing NVTabular for preprocessing along with a machine learning model, the
resulting model will always be an ensemble model. The model directory fur-
ther contains versions of the model itself. When loading a model into Triton
memory, we can specify which version of a model we want to use. Triton
supports plenty of modern models created in frameworks such as Tensorflow
and PyTorch, but also models in openly defined formats, such as ONNX or
OpenVINO. For a more specific definition of the model format, please refer to
the documentation [18].
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Figure 2.11: Triton Inference Server Architecture[6]
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2.6.2 Requests
When Triton is started up, it automatically hosts two services to receive re-
quests. First is a HTTP Inference request service which listens for HTTP
requests and then queues them for Inference. The second is a Google Routing
Protocol service that listens for GRPC requests. GRPC is similar to HTTP
but introduces some optimizations to the communication process. Triton pro-
vides an API for making requests to both of these services. Establishing a
connection to a Triton server means simply to instantiate a class with an IP
address as a parameter. After creating an inference client, we can use it to
probe the server to see if it is alive and if the connection is working. When
our client is set up, we can make requests to the server, such as asking about
available models, models configurations (required inputs and outputs), or pro-
viding inference statistics.

2.6.3 Model Ensemble
Triton server supports ensemble models. An ensemble model directory con-
tains similar configuration files as described in Section 2.6.1. The configu-
ration file of an ensemble model requires an additional section that defines
steps. Let us consider an ensemble model composed of NVTabular Workflow
and a NN created in Tensorflow. There would be two steps in such a case.
The first step describes inputs and outputs of a Workflow. The second step
describes the input and output of the NN model. Triton Inference Server uses
this information for, among other things, inference from a single model of an
ensemble.

Triton server contains a Python module that allows us to export an NVTab-
ular Workflow and Tensorflow model into an ensemble. This is not limited
to only TensorFlow but supports PyTorch models and HugeCTR models as
well. The provided function takes in an NVTabular Worklow instance, Model
instance (or path to model directory), output path, and label column name as
required parameters. Other parameters we can specify are the model name,
the names of categorical features, and continuous features.

2.6.4 Request Scheduling
Scheduling the requests that arrive at the server can help optimize inference
and increase the throughput of the entire process. Triton server implements
three different scheduling strategies. Oldest strategy is a strategy for grouping
incoming inference requests based on a time window. When a certain time
windows passes, all requests that arrived to the server during the time window
are grouped into a batch and sent to the model for inference. Direct is oriented
on models that keep a state associated to requests. This means that requests
cannot be batched, as each client sends requests in a sequence. When using the
Direct strategy, each request belongs to a single batch. The state is assigned
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Figure 2.12: Parallel Model Execution[6]

to a batch slot. Finally, the Ensemble strategy is used when we try to infer
from an ensemble of models.

2.6.5 Inference
When infering from a specific model loaded in Triton server, we need to prepare
a few parameters. First a list of column names, the request will contain.
Second a Pandas dataframe or cuDF dataframe, that is composed of columns
listed in the first parameter. Third parameter when creating a Triton inference
input, we specify a type (class) of the input. These parameteres are then
encapsulated by an inference request object. This object is then ready to be
sent to a specific model loaded in the memory of Triton server. Each inference
request takes a model name as a parameter. Note that we do not specify
any instances of the model, as this is handled internally by the Triton server,
which has been designed with scalability in mind, like other components of the
Merlin framework. Options for Parallel Model Executions are also available,
if we would like to use multiple instances of the same model at the same time.
Parallel Model Execution is illustrated in Figure 2.12. After the Triton server
processes our requests, it returns an object that contains the result. We then
simply extract the data as a tensor or numpy array and save it to storage.
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Chapter 3
Realisation

Now that we are familiar with Merlin components, we will use this knowledge
to build a recommendation system. First, we prepare our Docker containers
for training and inference. We host a JupyterLab service for development and
experimentation to take place in. Then, we choose and describe a MovieLens
data set. After looking at the data, we will design a data pre-processing Work-
flow using NVTabular. For optimal performance, we use the Apache Parquet
columnar data format, described in Section 2.4.1. Then, using TensorFlow we
define a variation to the Wide & Deep neural network architecture and train
the model. Training is monitored using Tensorboard. The trained model is
then injected into our inference container and we measure throughput.

Throughout these steps, we take notes on what processes are demanding on
GPU processing power and memory. We discuss the limitations and benefits of
the framework as a whole, including documentation, stability, error reporting,
and ease of use.

3.1 Environment
Taking the time to set up a proper development environment can be time
consuming but usually pays off in the long run. NVIDIA manages their Docker
containers for machine learning and other purposes on a site called NGC.

”The NGC Catalog is a curated set of GPU-optimized software for AI,
HPC and Visualization.”[19]

3.1.1 Docker containers
First we download Docker containers Merlin-training and Merlin-inference.
During the development process, we were forced to update our container im-
ages, as the newer versions contained bug fixes for encountered problems. All
the final code discussed in this thesis is run on the 22.02 versions of the con-
tainers which were released in February 2022. For those trying to reproduce
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the results, we recommend downloading images with the same version, as up-
dates can sometimes break old functioning code, and the Merlin framework
is undergoing structural and functional changes at the time of writing this
thesis.

Merlin-training is a container that contains NVTabular, HugeCTR, Ten-
sorFlow, Pandas, Numpy, cuDF, and other essential Python packages we use
during development. Before running the container we create a directory that
will contain all notebooks, dataset, and models. After opening our working
directory, the training container is run using the following command:

docker run
--gpus all
--rm
-it
-v $(pwd):/movielens
-w /movielens
-p 18888:8888
nvcr.io/nvidia/merlin/merlin-training:22.02
/bin/bash

We pass in all of the available GPUs to the container. After that, we specify
we want to remove the container after execution is finished and run bash in
interactive mode. We specify the image name along with a tag (version) and
map the port 8888 in the container to 18888 on the host machine. In the
container we start a JupyterLab service using the jupyter-lab command.

Merlin-inference is a container with Triton Inference Server and corre-
sponding packages installed. The inference container is run using the following
command:

docker run
--gpus all
--rm
-it
-p 18000:8000
-p 18001:8001
-p 18002:8002
-v ${PWD}:/model/
nvcr.io/nvidia/merlin/merlin-inference:22.02

This container has to be run from within the model repository, as it maps
the currently opened directory to the model directory inside the Docker con-
tainer. The model directory is the default directory for a local file system
Model Repository (discussed in Section 2.6.1) used by Triton. In this case, we
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map three ports that correspond to HTTP inference service, GRPC inference
service, and health and metrics service respectively.

Later on, we will make inference request from the JupyterLab notebook
running in the training container to the Triton Inference Server running in the
inference container. Since we want the containers to communicate, we need to
check what IP addresses are assigned to what containers. We can inspect the
Docker bridge network. Bridge network is the default network Docker assigns
the containers to as long as we do not specify otherwise. The command that
shows us the containers IP addresses is:

docker network inspect bridge

After running this command we simply take a note on what IP address was
assigned to the Merlin-inference container, as we will need to know it when
creating an inference client.

3.2 Dataset
One of the datasets we have experimented with is the MovieLens 20M Dataset[20].
The data contains some basic movie metadata like genres and name. User in-
teraction data store the value assigned by a user to a movie, as in rating. This
dataset will be refferred to as MovieLens 20M.

The other datasets we have worked with, provided by the supervisor is
private and the details will not be shared. This dataset will not be refferred
to, but served us to build an initial pipeline.

3.2.1 MovieLens 20M

MovieLens 20M is commonly used in the recommendation community. It
serves well when demonstrating a proof of concept or comparing model per-
formance. It is one of few publicly available free large datasets.

The two files we will use are movies.csv and ratings.csv. The file movies.csv
contains three columns: movieId, genres, and title. We have decided to re-
move movie titles from the dataset. Genres column contains lists of strings,
the names of the genres. MovieId is a movie unique identifier shared across
the two files. The file ratings.csv contain four columns: userId, movieId, rat-
ing, and timestamp. We have decided to remove the timestamp column, as
we encountered problems trying to correctly process this continuous feature.
Rating column contains a rating a user explicitly assigned to some subset of
available movies. Rating values range from 0 to 5 with the granularity of 0.5
and they correspond to the typical movie star rating.
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3. Realisation

Figure 3.1: Parquet and csv formats comparison[7]

The dataset contains a total of 20 million ratings, assigned by 138 000
users to 27 000 movies. The original file sizes are 1.3MB for movie.csv and
650.7MB for ratings.csv.

3.3 Pandas
The columns timestamp and title were dropped before feeding the data to
NVTabular, as it does not provide an Operator for dropping a column. After
dropping the columns, we also sort the values in the genres column and then
join the list values together using a comma. The reasoning will be explained
in Section 3.4.

Movie data as well as ratings data are then saved to Apache Parquet format
on the storage. The conversion from csv format to Apache Parquet reduced
the movie file size from approximately 700KB to 200KB. This conversion alone
saves us around 70% in storage space. These are the benefits of binary data
formats discussed in Section 2.4, not to mention the data access times. An
article[7] comparing the csv and parquet formats found similar results, along
with other speedups and savings which are illustrated in Figure 3.1.

The data is split to train and validation subsets. Before splitting the data,
we shuffle it to remove any ordering that might have been present in the
dataset. The train data subset will make up 80% of the whole dataset, and
the validation data subset will be the remaining 20%.

3.4 NVTabular
Now that our data is saved in Parquet we can move on to NVTabular prepro-
cessing. The first utility provided by NVTabular is selection of a DataFrame
library. DataFrame is the name both Pandas and cuDF use to denote an
in-memory dataset. NVTabular provides a function that checks for available
packages and if cuDF is present, it chooses cuDF, in other cases it falls back
to Pandas. This behavior is what we observed when experimenting, unfor-
tunately the documentation for the function is missing. The import of a
DataFrame library then looks as shown in Figure 3.4.
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Figure 3.2: Dataframe library import

# Get dataframe library - cudf or pandas
from nvtabular . dispatch import get_lib
df_lib = get_lib ()

Figure 3.3: Rating Values Distribution

Now let us discuss the data preprocessing. First we will decide on which
columns will have the same preprocessing pipeline. We will want to label
encode the genres column. The genres column contains comma separated
values of the movie genres. Label encoding the genres column will result in
every unique genre combination being encoded as a unique number. UserId
and movieId columns will also be label encoded, as this will map the values to
number ranging from 0 to C-1 where C is the cardinality of the column. Label
encoding in NVTabular can be achieved by applying the Categorify Operator.
This means that the columns userId, movieId, and genres will have the same
sequence of Operators applied to them.

Second let us take a look at the label column. Label is a denotion of the
column we will be predicting, in our case, the column is rating. Rating column
values range from 0 to 5. We will split the dataset based on movie rating,
and consider a rating greater than 3 to be positive and the rest negative.
Positive ratings will be assigned a value of 1 and negative a 0. This approach
was proposed in a publication [21]. For this we will use the LambdaOp. The
rating value distribution is shown in Figure 3.4.

Third we address the problem of the data being split into two separate
files. We have our movies file and our ratings file. We need to perform
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Figure 3.4: Workflow Definition

CATEGORICAL_COLUMNS = [" userId ", " movieId "]
LABEL_COLUMNS = [" rating "]

joined = CATEGORICAL_COLUMNS
>> nvt.ops. JoinExternal ( movieDataFrame , on=[" movieId "])

encoded_features = joined >> nvt.ops. Categorify ()

ratings = nvt. ColumnGroup ( LABEL_COLUMNS )
output = encoded_features + ratings

>> nvt.ops. LambdaOp ( lambda col: (col > 3). astype ("int8"))
workflow = nvt. Workflow ( output )

a join operation on these two datasets. NVTabular provides an Operator
JoinExternal, which is used when we need to join two datasets on a column.
Both files include the columns movieId. Let us join the data on the movieId
column to receive a dataset composed of all of the following columns: userId,
movieId, genres, and rating.

The finalized code is shown in Figure 3.4. The NVTabular Workflow re-
sulting from such code is visualized in Figure 3.5. Next, the Worklow is fitted
on the data. The fitted Workflow is then applied to our dataset and the trans-
formed data saved for use in training. The Workflow itself is also saved to
disk, for use when creating an ensemble model consisting of the Workflow and
the model.

3.5 Model
We have decided to use TensorFlow for model definition because it is widely
used by machine learning specialists. Experimenting with Merlin TensorFlow
interoperability could potentionally be a rewarding process, as this could al-
low us to utilize Merlins strengths in already implemented recommendation
systems. Before creating the architecture of our model, we load the Workflow
from the disk and pass it as a parameter to the get embedding sizes() function
that returns the suggested embedding dimensions for each feature. We will
use these suggested embedding sizes later, when we create embedding layers
in the wide part of our model.

We have designed a variation on the Wide & Deep Model. Our goal for
the model is to predict the value of users interaction with an item. The model
will return a number in the range from 0 to 1 expressing the positivity of
a user item interaction. Just like when preprocessing, the number one will
represent a positive interaction and the number zero will represent a negative
interaction. The model can also return values close to 0.5 which will mean
that the model does not have a decisive prediction on a user item interaction.
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SelectionOp

LambdaOp

[’rating’]

Categorify

+

JoinExternal

LambdaOp

SelectionOp

output cols

[’userId’, ’movieId’]

Figure 3.5: Example Workflow
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The deep part (visualized in Figure 3.6) in our design will be accepting all
of the available features, which are userId, movieId, and genres. In the deep
part we try to utilize NVTabulars DenseFeatures layer, that automatically
handles transformations for both continuous and categorical columns. After
these DenseFeatures layers, we will attach the same sequence of layer three
times. The layer sequence will consist of a Dense layer, Dropout layer, and
BatchNormalization layer. The Dense layes will be composed of 32, 16, and
8 neurons respectively as we go deeper in the model. Finally, we append one
last Deep layer with a single neuron, because we want the result to be a single
number.

The wide part (visualized in Figure 3.7) of the model will utilize all of the
available features as well. In the wide part, we start by creating TensorFlow
Feature Columns, namely the IdentityCategoricalColumn for each of the input
feature. These Feature Columns simply return an identity of the inputs, and
are passed into Keras Input layers. The Input layers will be each followed by
an embedding layer. After the embedding, we apply the Flatten layers, which
changes the output shape of the embedding layers. A sum of the results
returned by Flatten layers is a final result of the wide part of our model.

The final result from the model when the wide and deep parts are com-
bined, is a weighted sum of the wide and the deep part.

3.6 Training

For model training, we need the to create a KerasSequenceLoader for loading
and supplying the training data. The KerasSequenceValidater will be serving
as a dataloader and a callback, and provide us with validation loss and other
metrics during training. Another callback we will use during training is the
TensorBoard callback, that also provides us useful information about how is
the model training advancing.

The wide and deep parts of the model will be trained jointly. Joint train-
ing, in contrast to ensemble training, will optimize model parameters simul-
taneously. The joint training method allows for the parts of the model to
complement each others’ strengths. As wide models excel in memorization,
deep models excel in generalization, using both combined makes for a promis-
ing model. The wide part of the model is evaluated using binary accuracy
metric and our model reaches almost 80% on the validation dataset. The
binary accuracy learning process is captured in Figure 3.8. The metric used
upon the deep part of the model is the same as in the publication of Wide &
Deep Model [15] and it is called Area Under Curve (AUC). In our model, it
reaches around 0.86 as shown in Figure 3.9.

The loss function used during training was binary cross-entropy. This
function is typically used when we are facing a classification problem, where
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Figure 3.6: Our Models Deep Part
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Figure 3.7: Our Models Wide Part

Figure 3.8: Binary Accuracy
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Figure 3.9: Area Under Curve

the label can be a 1 or a 0. The loss function training progress is illustrated
in Figure 3.10.

3.6.1 Batch Size

The model training is trained in multiple epochs. An epoch is an iteration
over the whole dataset. Each epoch is then subdivided into batches. Finding
a batch size that minimalizes the epoch training time is vital to the training
process. In our experiments, we have found that a batch size of around 800
000 results in the fastest epoch training time, averaging 6.4 seconds per epoch,
in a 10 epoch long training.

3.7 Inference

To create an inference client, we initialize an instance of the InferenceServer-
Client class. We pass in the IP address of the container and port 8001 for
GRPC inference. Our inference algorithm will infer the results for 50 users
at a time, resulting in batches of 1 363 900 predictions per request. One such
batch takes around 9.6 seconds to process if we include time spent writing the
data to the storage, resulting in a throughput of approximately 284 000 items
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Figure 3.10: Binary Cross-Entropy Loss

per second. Generating the predictions for a single user takes approximately
200 milliseconds.

3.8 Hardware Used
The machine used for the calculation is an NVIDIA DGX with a dedicated
single GPU. The GPU model used in this machine is NVIDIA V-100 with
32GBs of HBM2 memory. The total RAM available on the system was 256GB.
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Conclusion

In the analysis part of this thesis we have described what is a recommenda-
tion system and how the tools provided in NVIDIA Merlin help to implement
one. All areas including data preprocessing, model training, and model in-
ference were discussed. The high-level architecture of the Merlin framework
was described along with some of the optimalizations NVIDIA managed to
implement.

Merlin framework is still undergoing changes that break backwards com-
patibility and should be considered as a tool under development at the time
of writing this thesis. The documentation is not always clear or straight out
missing. Exceptions thrown during the development process are usually not
clear nor concise and we have had to resort to source code browsing when
troubleshooting.

That being said, NVTabular offers a high-level, object oriented and func-
tional approaches to data preprocessing, which enables us to define custom
arbitrarily complex operators while maintaining readability. The framework
includes good compatibility and integration with TensorFlow.

HugeCTR offers multiple high-level and low-level optimalizations that can
help with scaling up the largest recommendation systems.

Triton inference server offers a number of customizations and optimaliza-
tions that are crucial when developing a high-performance recommendation
system. Statistics are gathered for the loaded models and their lifetime.

A deep learning model was implemented, trained, and used to predict
user-item interactions on the MovieLens 20M dataset.

Future work following this thesis is to be supported with this thesis as an
introduction to the topic and a guide on how to use Merlin. The following
work could focus on implementing state-of-the-art deep learning models, such
as Transformers, for commercial purposes.
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Appendix A
Acronyms

ETL Extract transform load

API Application programmable interface

GPU Graphical processing unit

NN Neural network

GRPC Google Routing Protocol
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Appendix B
Contents of enclosed SD card

notebooks....................the directory of source JuPyter notebooks
01 Inspect convert.ipynb ................... Pandas preprocessing
02 NVTabular.ipynb......................NVTabular preprocessing
03 TensorFlow wide and deep.ipynb......Model definition, training
04 inference.ipynb....................Inference from Triton server

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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