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Abstrakt

Akciové trhy jsou náchylné na r̊uzné vlivy a proto je jejich predikce velmi náročná. Existuje
mnoho př́ıstup̊u, jak předpov́ıdat vývoj cen akcíı, nicméně žádný neńı univerzálńı. Tato práce se
zabývá př́ıstupem zvaným machine learning. Do totoho př́ıstupu se daj́ı zařadit modely CNN,
LSTM, GRU, jejich obousměrné varianty a následné kombinace model̊u. Dále jsou jednotlivé
modely použity pro jednodenńı a v́ıcedenńı predikci. V práci je upozorněno na nepoužitelnost
jednodenńı predikce, která je opakovaně použita za účelem predikce několika dńı dopředu. Pro
predikci byla vybrána data SXR8.DE, které koṕıruj́ı index S&P 500. Následně jsou modely na
těchto datech vyhodnoceny a na základě jejich přesnosti je vybrán model, který má největš́ı
úspěšnost za ćılem maximalizovat profit z obchodováńı s akciemi.

Kĺıčová slova LSTM, GRU, CNN, CNN-LSTM, Bidirectional architectures, Stacked archi-
tectures, Kodér-Dekodér LSTM, Vı́cekroková predikce akcíı

Abstract

Stock markets are vulnerable to various factors, and therefore their prediction is very challenging.
There are many approaches to forecasting stock prices, but none is universal. This thesis focuses
on an approach called machine learning. CNN, LSTM, GRU models, their bidirectional variants
and model combinations can be included in this approach. Furthermore, the individual models
are used for one-day and multi-day forecasting. The thesis points out the unusability of the one-
day prediction, which is repeatedly used to predict several days ahead. SXR8.DE data, which
replicates the S&P 500 index, was selected for the forecast. The models are then evaluated on
this data, and based on their accuracy, the model with the highest success rate is selected in
order to maximize the profit from stock trading.

Keywords LSTM, GRU, CNN, CNN-LSTM, Bidirectional architectures, Stacked archi-
tectures, Encoder-Decoder LSTM, Multi-step stock forecasting
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Chapter 1

Introduction

Recently, stocks and financial markets have become the focus of interest for a large part of the
population. Some people see investing as an opportunity to fight inflation, which has increased
drastically in recent months. Others are not so focused on the immediate situation but rather
on the long-term perspective. They try to make money in the long run, thus securing themselves
and their family financially.

Investing comes with many risks, so people try to find ways to minimize those risks. They try
to understand how the market works, how it reacts to inevitable fluctuations in the economy, or
how it responds to the world. Other factors influencing the stock market are political decisions,
interest rates, trends, international relations, currency exchange rates and the environment.
There are many of these factors, and since financial markets are prone to fluctuations of any
kind, their prediction is very difficult and almost unrealistic. However, any kind of help which
can at least slightly determine the development of stocks is welcome by any investor.

Financial market forecasting is nothing more than time series forecasting. A time series is
a sequence of data that is collected over time. Thanks to this fact, the time series can be relatively
easily visualized on a graph with time on the X-axis and the data’s values on the Y-axis. The
nature of a time series implies that the data are ordered. In the real world, there is a large
amount of data that can be expressed as a time series. For example, when facing a problem, at
what time to go to the store in order to not wait in a queue. Most of the time, people look on
the internet to find out the average number of people in the store each hour, which is nothing
but a time series.

There are many methods that can be used to predict time series. Some of them are better
and some worse. These methods differ in their approaches. One part of them follows a more
traditional statistical and analytical path, while the other tries to use state-of-the-art technologies
such as machine learning.

This thesis will discuss machine learning models such as LSTM, GRU, CNN and their com-
binations for predictions of one day and multiple days. The main goal of this thesis is to create
a model which will have the best prediction accuracy. Data SXR8.DE, which is an ETF that
replicates the S&P 500 index, was selected and used to train and validate each model.

1.1 Goals
This bachelor thesis aims to test models from the field of machine learning that can be used for
stock forecasting. Furthermore, its goal is to find a model with the best accuracy in order to
maximize profit. To fulfil the main aim of the thesis, the following sub-goals must be met:

research the methods used for a stock market forecasting,

1



2 Introduction

explain the basics of the models and describe how they work,

implement selected models,

tune the hyperparameters of each model,

propose experiments,

compare implemented models,

measure the accuracy of individual models for both single-day and multi-day forecasts,

point out the problem of repeatable use of 1-day prediction,

evaluate the best model,

test the best model on a larger dataset.

1.2 Approach
Firstly, I research standard models used for stock prediction. From them, I choose the most
used ones, which I also implement. The selected models include LSTM, CNN, CNN-LSTM,
GRU, Encoder-Decoder architecture, Stacked architecture and Bidirectional architecture. Then
for each model, the optimal hyperparameters are found. For the hyperparameter tuning, the
KerasTuner tool is chosen. Subsequently, I present experiments for the prediction of 1 day and
5 days. The experiments are divided based on the shape of the input sequence. Then, the models
are evaluated based on the RMSE value for the prediction of the given stock market, and further,
the best model with the highest accuracy is selected. Next, the best performing multi-step model
is compared with the best performing model for 1-day prediction. Furthermore, I present the
flaws of the 1-day forecast, and then I test the best multi-step model and the best one-step model
on a larger dataset.

1.3 Thesis structure
In the second chapter, called “Related work”, an overview of models and methods used for stock
forecasting is presented. In the next chapter, the theoretical background for selected models is
provided. Also, I introduce the measure function used to evaluate each model. In the fourth
chapter, the implementation details are described. The used programming language, libraries
and the reasons for such a choice are also mentioned. The next chapter, called “Data”, explains
why particular data was chosen and how the data has been preprocessed. The next chapter
describes how the best hyperparameters for each model were selected and which tool was used
for this problem. The chapter “Proposed models” describes models, their variants and chosen
hyperparameters. The following chapter says how the experiments are divided, and then the
experiments are proposed. Also, the results of each model are provided. The next chapter
discusses proposed experiments and evaluates a model for real-world use. The chapter highlights
the problem that occurs when the 1-day prediction is reused. The one-step forecast is then
compared with a multi-step prediction. Furthermore, it mentions future work that will be done.
The last chapter summarises the whole thesis.



Chapter 2

Related work

This chapter serves to explore existing solutions that address the issue of stock market pre-
diction. It also outlines the models that will be subsequently described, explained and imple-
mented.

Among the methods that choose the traditional statistical way can be included models based
on the principle of Moving Average (SMA, EMA, ...). These methods use a moving window
from which the average is usually calculated, which can be further enriched with weights so
that the last days have more influence on the result. These models are used for short-term
forecasting rather than long-term forecasting. Since moving averages are calculated from a his-
torical perspective, they are not predictive in nature, which may result in a randomness of
the result. Other models that are based on an analytical approach include the autoregressive
integrated moving average model (ARIMA), generalized autoregressive conditional heteroskedas-
ticity model (GARCH), vector autoregression model (VAR) and Bayesian vector autoregression
model (BVAR).

Ariyo et al. [1] gave an example of the ARIMA model. The paper mentioned that the ARIMA
model is the most common model used for financial forecasting. It also described how the model
works and said that the ARIMA model is quite robust and effective in short-term forecasting. It
even stated that the model may have a better success rate for short-term forecasting than most
popular ANNs techniques.

Samal et al. [2] mention two other models, namely Prophet and seasonal autoregressive
integrated moving average model (SARIMA). The main difference between SARIMA and ARIMA
models is that SARIMA can consider the seasonality of the data. For example, the model can
predict stock price movements during significant events such as special holidays or some events
that are repeating. Another model that was introduced in the paper is Prophet, which is a model
that was developed by Facebook and is used for time series predictions. The model attempts
to capture the seasonality of the data, which can sometimes be helpful for prediction, but the
season does not always affect the time series. Thus, it is not very universal for every time series.
However, the model works reasonably well for those that follow seasonality. Another thing the
model can capture is the trend.

In their work, Eapen et al. [3] mentioned the use of CNN in combination with Bidirectional
LSTM. Another model mentioned in the paper is the support vector machine regressor (SVR).
The paper was inspired by the idea of SVM for time series prediction presented in the article [4].
In this paper, Meesad et al. claim that SVM along with neural networks are among the machine
learning methods that can handle stock market prediction. SVM can be divided into two parts
depending on which problem it solves. Their division is support vector regressor (SVR) which is
used for regression and the other is support vector classifier (SVC) for classification. The paper

3
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also mentions the so-called Windowing functions, which are used to preprocess the data. The
data is further sent to the machine learning model, whose goal is to detect the pattern of the
dataset. There are many of these windowing functions and some give better results than others.
However, Eapen et al. [3] tried the SVR that was mentioned in [4], but it turns out that CNN
combined with Bidirectional LSTM gives better results than support vector regressor.

Hoseinzade et al. [5] come up with a CNNpred model that can be divided into two variants.
The first is 2D-CNNpred, which takes as input a 2D matrix of data that has individual time
points in its rows and features of a given market in its columns. This variant considers only one
market, making it different from the second one. The second variant takes a 3D data matrix as
input, enriched by one dimension compared to the previous one by stacking multiple markets.
Thus, the result is a matrix with 2D matrices of individual markets next to each other. By doing
this, the model is able to capture multiple different markets. The models are then tested on
various markets to obtain the best model in general.

Another way to improve these models is to add news and social media posts that reflect what
is happening globally. In general, most people who invest are emotional, so they immediately
panic and sell their shares if alarming news occurs. This fact also impacts the resulting price
of a particular stock. Thus, in their work, Gupta et al. [6] try to incorporate the sentiment of
Twitter posts into the model, which tells whether a given tweet is positive (price rises), negative
(price falls) or neutral (price stays the same) for the development of stock. This sentiment is
further combined with historical data, and the result is sent to the LSTM model. The TextBlob
tool is used for message sentiment, but it takes each post word separately, which may not give
adequate sentiment results. However, according to the authors, the model mentioned above gives
better results than the one without sentiment.

Another article that tried to involve the news in a prediction is [7]. The authors used Twitter
data, news headlines and google trends data, which were merged with the historical data. The
VADER tool was used to determine the sentiment of individual news headlines and Twitter data,
which again uses a word-by-word approach, so the resulting sentiment may not match reality.

Khan et al. [8] tried using the Stanford NLP approach for sentiment, which differs in that
it does not use a word-by-word method but looks at the text as a whole. It also divides the
sentiment into five groups: more negative, negative, neutral, positive and more positive.

It is not necessary to use only historical data to predict stocks. In their work, Selvin et al.
[9] mention an approach called Fundamental Analysis, which aims to analyse the company as
a whole. It focuses on its expenses, earnings and other data that may convince an investor to
invest in the company. This approach is suitable for long-term investing and says how much the
investor believes that the company will succeed. This approach is individual, as each investor
has different aspects that are important to them and therefore has its own way of valuing the
company itself. The authors also mention linear models such as ARIMA, ARMA, AR and non-
linear models like ARCH and GARCH. At the end of the article, ARIMA and other models like
CNN and RNN are compared. From the results, it can be seen that CNN and RNN models give
better results compared to the ARIMA model.

2.1 Chapter summary
In this chapter, the basic approaches for stock prediction were analysed. Furthermore, fundamen-
tal models from the field of machine learning were introduced. Based on this research, models
that could be successful for the problem were selected. Based on the research, two basic ap-
proaches for stock prediction were found. From these papers, it was concluded that the machine
learning approach is better.



Chapter 3

Theoretical background

This chapter explains and describes the models and architectures used in the practical part. It
clarifies how the models work and what their strengths and weaknesses are. The chapter also
defines the metrics used to evaluate the models.

3.1 Introduction to neural networks
The artificial neural network (ANN) is inspired by biological systems. The idea and creation
of the ANN came with the desire to mimic the functioning of the human brain. The entire
architecture is based on the human nervous system. However, instead of human cells, there
are artificial neurons. These neurons can be considered the main building blocks of the ANN.
A neuron can be seen as a working unit that has several inputs and produces output. Since there
is a need for greater computational power, the structure of a neural network contains several
of these neurons. These neurons are interconnected and communicate with each other in some
way. These connections are weighted by weights that determine how much a given connected
neuron is affected by another connected neuron. ANNs are powerful models primarily because
they can produce both linear and non-linear dependencies between input and output data due to
the larger combination of neurons. Each neuron then has an internal potential calculated from
the values that enter it [10, 11].

3.1.1 Perceptron
Firstly, I introduce the single-layer perceptron model, which is the simplest ANN consisting of
a single neuron. The structure can be seen in figure 3.1. Given the individual inputs x1, ..., xn,
weights of inputs w0, ..., wn and the internal potential ξ. The resulting internal potential of the
neuron is calculated as follows:

ξ = w0 +
n∑

i=1
wixi = wT x, (3.1)

where x = (1, x1, ..., xn)T , w = (w0, w1, ..., wn)T and w0 is called intercept.
To calculate the output of a neuron, the internal potential is sent to a function called the

activation function, which I will discuss later. In the case of a perceptron, the activation function
is called a step function:

f(ξ) =
{

1 if ξ ≥ 0,

0 if ξ < 0.
(3.2)

5



6 Theoretical background

Figure 3.1 Perceptron model. Inspired by https://www.cs.cas.cz/˜petra/slides/2019_seninka_
vidnerova/fig/single_perceptron.png.

A limitation of the perceptron is that it cannot represent a function that is not linearly
separable. Functions that a perceptron can represent are Boolean functions like AND, OR,
NAND and NOR, but XOR is not a linearly separable function, so XOR cannot be represented
by a perceptron [10, 11].

3.1.2 Activation functions
The activation functions are chosen to be nonlinear. They define the output of the neuron. There
are many activation functions, and each one is suitable for a different kind of problem. One of the
most famous is the sigmoid function. This function is suitable for solving a binary problem, for
example. For classification into c classes, the so-called softmax function is used. For a regression
problem, a linear function is used, or the ReLU function, which is similar to a linear function,
but with the difference, that negative values are replaced by zero. The activation functions for
neurons in hidden layers are mostly differentiable, which means that a derivative of them exists
at each point. This fact is then used in neural network learning using backpropagation, which
requires derivatives of activation functions. Backpropagation will be discussed in the next section
[10].

3.1.2.1 Examples of activation functions
In this subsection the formulas of the basic activation functions are shown [12].
Sigmoid:

f(ξ) = 1
1 + e−ξ

= eξ

1 + eξ
. (3.3)

Hyperbolic tangent:

f(ξ) = tanh(ξ) = eξ − e−ξ

eξ + e−ξ
. (3.4)

Softmax:
f(ξi) = eξi

eξ1 + ... + eξc
. (3.5)

https://www.cs.cas.cz/~petra/slides/2019_seninka_vidnerova/fig/single_perceptron.png
https://www.cs.cas.cz/~petra/slides/2019_seninka_vidnerova/fig/single_perceptron.png
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ReLU:
f(ξ) = max(0, ξ). (3.6)

3.1.3 Multi-layer perceptron (feed-forward ANN)
As already mentioned, the perceptron has some undesirable limitations that cause a small number
of applications in practice. More neurons need to be added in order to get a network that can
represent more complex and non-linear relationships. These neurons can be arranged in a single
layer or multiple layers. If the final network contains multiple layers, it is called a multi-layer
neural network. Thus, the general structure of a neural network includes an input layer, a varying
number of hidden layers, and finally, an output layer. The neurons within a single layer are not
interconnected.

On the contrary, the connected ones are those in different layers, specifically in adjacent
layers. Thus, the output of a neuron of a particular layer is precisely determined by the inputs
from the previous layer and the corresponding weights. This structure is called a feed-forward
network (FNN) and can be seen in figure 3.2. Another type is a recurrent neural network (RNN),
which I will explain later in the thesis [12].

Figure 3.2 Configuration of a three-layer feed-forward neural network, each layer con-
tains 4 neurons. Inspired by https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/
RNN-unrolled.png.

3.1.4 Loss function
Another function I would like to mention is the loss function or sometimes called the error
function. The loss function indicates how much the predictions differ from the actual values. So
the function can evaluate the model’s accuracy quite well and therefore describes how applicable
the model is in the real world. The smaller the value returned by the loss function, the more
accurate the model is. Thus, in practice, the goal is to minimize the loss function [12].

3.1.4.1 Examples of loss functions
There are many different loss functions that differ in what type of problem they are supposed to
solve. The primary division of the issues is into two, namely regression and classification [12].

Firstly focus on the example of a regression problem. The most common loss function for
regression problems is the squared error function. Given an outcome estimate Ŷ , an actual

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
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outcome Y , and a loss function L that has two parameters Y and Ŷ . For one prediction, the
loss function is computed as:

L(Y, Ŷ ) = (Y − Ŷ )2. (3.7)
However, this error only measures the error for one predicted point. To calculate the error

over all inputs, the average of these individual errors must be calculated. The resulting error
function is called the Mean squared error (MSE) and is calculated as follows:

1
N

N∑
i=1

L(Yi, Ŷi), (3.8)

where N is the size of testing data.
Another variation is the root mean squared error (RMSE), also called the root mean squared

deviation (RMSD). This loss function is similar to the previous one 3.8, but the difference is that
the final result is the square root of the previous equation:√√√√ 1

N

N∑
i=1

L(Yi, Ŷi). (3.9)

Another type of task is classification. For simplicity, I will only focus on binary classification.
That is, one that divides the output into two classes. The most common loss function for binary
classification is binary cross-entropy and is calculated as follows:

− Y log p̂− (1− Y ) log (1− p̂), (3.10)

where p̂ is the estimation of the probability that the input vector belongs to the first class
(Y = 1).

There is also Categorical cross-entropy. However, it is not important for this thesis and you
can read about it anywhere, so I will skip it. For further information, you can read the book
[13].

3.1.5 Backpropagation
Backpropagation is an algorithm that allows a neural network to adjust weights and therefore
learn. This style is called supervised learning because the required results are passed into the
network, to which predictions should be as close as possible. These values represent the so-called
teacher, i.e. learning with the teacher. Backpropagation is basically a gradient descent technique
that allows the weights to be updated to optimize the average error of the model. The gradient
determines the direction of the largest growth of the function, so to minimize the given loss
function, the algorithm should go opposite to the gradient. In general, the whole algorithm
works by passing input values to the network, which returns the prediction. Then the error is
calculated and is sent from the output layer through the network back to the input layer. In
each layer, each weight is updated according to the following formula:

wx ← wx − α
( ∂J

∂wx

)
, (3.11)

where wx is the weight to be updated, α is the learning rate, and
(

∂J
∂wx

)
is the loss function

gradient with respect to weight wx.
The learning rate can be thought of as a number that indicates how large steps should the

algorithm take when learning the network. It, therefore, expresses how fast the network learns.
Of course, it is not possible to set a large learning rate with the expectation that the network
will learn quickly, thereby reducing the time and computational requirements of the network.
This is because if the algorithm takes large steps, it may reach and get stuck in a local minimum.
Thus, it is common to choose a small number like 0.1 or 0.01. Often the alpha is chosen to be
floating, so it gradually decreases with the number of iterations [10, 11, 12].
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3.2 Recurrent neural networks
Another feed-forward network that I want to introduce is the recurrent neural network (RNN).
The problem with standard feed-forward ANNs is that they are unable to capture historical
data and remember it. Thus, previous inputs cannot affect the current inputs. This problem is
called “The Problem of Long-Term Dependencies”. This is necessary, for example, when filling
in words in the text. Sometimes, filling in is easy because the text is short. However, sometimes
the network needs deeper context to know what word is most appropriate to fill in. RNNs were
created to solve this problem. The idea was to create a model that would be able to have memory
and therefore remember inputs from the past and thus influence the current output. RNNs have
loops that allow them to persist the information and accordingly handle sequences of inputs that
contain dependencies. These loops are sometimes called recurrent edges. The basic structure of
RNNs is similar to that of ANNs. So it includes an input layer, hidden layers, and an output
layer [14, 15].

Figure 3.3 Unrolled recurrent neural network. Inspired by https://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

In figure 3.3 you can see the basic structure of an RNN, where xt is some input at time t, the
output at time t is yt and the hidden node values at time t is ht. As you see, h contains a loop,
which is used to pass information from the current step to the next one. Thus, the output yt at
each time t is not only determined by the current input xt, but also by the hidden node values
ht−1. Current hidden state ht at time t can be calculated as follows:

ht = f(ht−1, xt). (3.12)

The output yt at time t is further computed from the hidden node values ht at time t using
a squashing function g.

yt = g(ht). (3.13)

In practice, usually sigmoid or softmax is used, but it always depends on the type of task.
The given structure looks hard to understand, as there is no simple one-way flow of information.
However, it can be visualized by unfolding and thus understood as several connected copies of
the same ANN [13, 14, 15, 16].

3.2.1 Backpropagation through time
Backpropagation through time (BPTT) is an algorithm used to learn recurrent neural networks.
It was introduced in 1990 by Werbos et al. [17]. The algorithm treats the RNN in the same way
as a feed-forward neural network. To treat the RNN as a feed-forward neural network, the RNN
needs to be decomposed in time. Each layer represents a one time step, and all layers have the
exact same weights, which is different from FNN. The resulting unrolled network behaves as an

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 3.4 Unfolded RNN to illustrate the BPTT algorithm. Taken from https://raw.
githubusercontent.com/mmuratarat/mmuratarat.github.io/master/_posts/images/BPTT.png.

FNN with the number of layers equal to the number of time steps. Furthermore, the total error
of the network is then calculated as the sum of the errors for each time step.

So, the standard backpropagation algorithm shown in section 3.1.5 can be used for this
unfolded network with the difference that the sum of gradients over all time steps is used as the
subtraction term that was used in equation 3.11. For example, for a gradient with respect to
Whh, which are the weights between two connected hidden layers as shown in figure 3.4, a given
subtraction term can be seen in equation 3.14 below [15].

∂L

∂Whh
=

T∑
t

t∑
k=1

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂hk

∂Whh
, (3.14)

where ht is a hidden state of a time step t and ∂ht

∂hk
is calculated as follows:

∂ht

∂hk
=

t∏
j=k

∂hj+1

∂hj
= ∂ht+1

∂ht

∂ht

∂ht−1
...

∂hk+1

∂hk
. (3.15)

3.2.2 RNN limitations
RNNs should, in theory, be able to handle long-term dependencies. However, in reality, it turns
out that specific problems arise when learning the network during the backpropagation. The
problems occur when a given gap between the current input and a past input that somehow
affects the current input is too large. In this case, RNNs are prone to problems with gradient.
These problems are two, namely vanishing gradient problem and exploding gradient problem.
Some papers point out that it only takes 8–10 hidden layers to cause the mentioned problems
[12, 14, 15].

3.2.3 Gradient problems
Gradient problems appear during the actual learning of the RNN, which is done using the back-
propagation through time algorithm. Backpropagation through time uses a gradient, specifically
at the point when the individual weights are recalculated. According to [18], if a given sequence

https://raw.githubusercontent.com/mmuratarat/mmuratarat.github.io/master/_posts/images/BPTT.png
https://raw.githubusercontent.com/mmuratarat/mmuratarat.github.io/master/_posts/images/BPTT.png
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is too long, it may happen that “long term components go exponentially fast to norm 0, making
it impossible for the model to learn correlation between temporally distant events”. The opposite
can also happen, where long term components grow exponentially.

This is because the derivative of the vector function with respect to the vector is performed
when calculating the gradient. Specifically, in equation 3.15 there is a multiplication of Jacobian
matrices, the result of which is also a Jacobian matrix. Furthermore, it can be shown that if
the highest eigenvalue of the resulting Jacobian matrix is less than zero, the vanishing gradient
problem occurs. Further, for the vanishing gradient problem to occur, the highest eigenvalue of
the matrix must be greater than 1. More can be read in [18].

3.3 Long short-term memory

The first model, which belongs to the RNN, is the Long short-term memory (LSTM). The LSTM
has a similar structure to the RNN, except that each node in the RNN is replaced by a so-called
memory cell, which I will discuss later. This model is able to learn long-term dependencies, which
can be helpful, for example, in time series processing (video processing, audio processing), or
another language modelling, machine translation, handwriting recognition, speech recognition,
speech synthesis and text generation. The LSTM model was introduced by [19] and was designed
in particular to deal with the Vanishing gradient problem and Exploding gradient problem that
occur in recurrent neural networks [15].

3.3.1 Original version
In the original version of the LSTM, which Hochreiter and Schmidhuber proposed in 1997, each
memory cell had in the core a CEC (Constant Error Carousel), which is a central linear unit that
is recurrently self-connected. The activation of CEC is called the cell state. Thanks to CEC,
the vanishing gradient problem can be solved by maintaining a constant error flow (weight set to
a fixed value of 1). Furthermore, the memory cell is protected by the gates, which control what
is changed in the memory cell. An input gate protects the memory cell from being modified by
input data that is not relevant. Input gates also decide whether to leave the data in the memory
cell or overwrite it. The output gate protects other units from irrelevant current memory states
that could affect them negatively by filtering the output. It also decides when to access the
current cell state. It is essential to have control over what information is being kept inside the
memory cell, as it further interacts with other units. The memory cell can be seen as a bridge
that can connect past information with current information, which makes the LSTM model so
effective when dealing with time series or, in general, with data that are dependent on each other
(translation, handwriting recognition, ...). Another advantage that memory cells offer is that
the input gate (output gate) can use input from other memory cells to decide whether to store
certain information in the current memory cell. However, this structure still has its shortcomings
[19].

Although the CEC solves the vanishing gradient problem, there is another problem. If the
data is too long and continuous, it can get to a point where the values in the memory cell grow
so high that there is no control over them. The original design of the LSTM model assumed
that a given input would have the data split so that the end of the sequence and the beginning
of the next one would be recognized. Then, at the beginning of the new sequence, the values in
the memory cell should be reset to zero. However, the problem appears if the input sequence is
too long or not split into more minor sequences at all. This results in the values not being reset
as often, causing the cell states to grow linearly with the length of the sequence, which in the
case of a long sequence means indefinitely. This fact can result in saturation of the squashing
function. Saturation will cause the squashing function’s (sigmoid) derivative to vanish [20].

This problem can be solved by introducing a new gate, called forget gate, instead of CEC.
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This idea was introduced in 2000 by Felix Gers et al. [20]. Forget gates are used to reset
memory cells. Thus, the memory cell does not reset only at the beginning of a new sequence as
it was before, but the network learns itself when and what to reset. This change has proven to
be effective over time and thus has become part of the standard implementation of the LSTM
model [21].

3.3.2 Modern LSTM structure

Figure 3.5 Long short-term memory unit. Taken from [11].

Modern LSTM consists of four parts, which can be divided into a cell and three gates. These
gates are input, output and forget. All these parts are located in a structure named memory
block. This structure can contain one or more memory cells or also called units, which are
the main building blocks of the LSTM model because they can store information in the model.
Furthermore, the structure contains a cell state, which can be thought of as a chain that runs
through the entire structure. The information is added to it, removed and modified using the
gates mentioned above, so the cell state serves as a kind of memory. This information can remain
in the memory cell all the time, depending on its relevance. As part of the learning process, the
network also learns what information to keep and what to throw away as time grows.

The individual gates contain functions called squashing functions, which are functions that
expect an arbitrarily large input and return a number that is bounded from the top and also
from the bottom. Specifically, the sigmoid function is used, which returns a number between
0 and 1. This number indicates how much information should be passed on. For example, for
forget gate due to vector multiplication, 1 means leave the information as it is, while 0 means
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forget the information [14, 21, 22].
The whole structure of the LSTM unit can be seen in figure 3.5.

3.3.3 Forget gate
Firstly, the input passes through the forget gate, which determines which information should be
erased from the cell state because it is no longer relevant. The actual deletion may not take
place immediately, the information may gradually decrease until it reaches zero, at which point
it is forgotten. The forget gate expects the hidden state of the previous LSTM unit ht−1 on its
input, as well as the current input xt. These values are further sent to the sigmoid function,
which returns a number for each information in the cell state. The output of the sigmoid function
ft is further multiplied with the cell state from the previous LSTM unit Ct−1 using a pointwise
multiplication operation.

The final formula is as follows:

ft = σ(Wf · xt + Uf · ht−1 + bf ), (3.16)

where Wf is vector of input weights, xt is input at time t, Uf is vector of weights of forget gate,
that is shared across all time steps, which means the forget gate weights are time-independent,
ht−1 is previous hidden state, bf is bias and σ is sigmoid function [14, 21].

3.3.4 Input gate
The next step is to update the values in the cell state and decide what information should be
added. The values are updated using the input gate, which again receives the hidden state of
the previous LSTM unit ht−1 and the current input xt on its input. This is again sent to the
sigmoid function. The formula is as follows:

it = σ(Wi · xt + Ui · ht−1 + bi), (3.17)

where Wi are input weights, xt input at time t, Ui are input gate’s weights, ht−1 is previous
hidden state and bf is bias.

To get new values that should be added to the cell state, the same inputs that were passed
into the sigmoid function are taken and, this time, sent to the tanh function (hyperbolic tangent),
which returns the weight between [−1, 1]. This number indicates the “level of importance”. This
will create a vector C̃t of new candidate values that should be added to the cell state. To calculate
new values C̃t, the following formula is used:

C̃t = tanh(Wc · xt + Uc · ht−1 + bc), (3.18)

where Wc are input weights, xt input at time t, Uc are weights which regulates new values, ht−1
is previous hidden state, bc is bias and tanh is a hyperbolic tangent function.

At this point, the model has everything that it needs to modify the cell state Ct at time t.
So firstly, the network does the forget phase and then the update phase. The input gate also
serves as a sort of shield against adding information to the cell state that is irrelevant and could
potentially negatively affect following units. The current cell state Ct is updated as follows:

Ct = ft · Ct−1 + it · C̃t, (3.19)

where C̃t is the vector of candidate values, Ct−1 is previous cell state, it is input gate and ft is
forget gate [11, 14, 15, 22, 23].
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3.3.5 Output gate
The next and final stage that the LSTM model does is to decide what values should be at the
output of the current memory cell. The decision is made by the sigmoid function and is calculated
as follows:

ot = σ(Wo · xt + Uo · ht−1 + bo), (3.20)

where Wo are input weights, xt is input at time t, Uo are weights of output gate, bo is bias and
σ is sigmoid function.

This output ot is further multiplied by the cell state Ct of the current memory cell, which is
inserted into the tanh function before the actual multiplication. The output of the tanh function
is therefore multiplied by the output of the sigmoid function as can be seen in the the following
formula:

ht = ot · tanh(Ct), (3.21)

where ot is output gate, Ct is cell state at time t and tanh is a hyperbolic tangent function.
The output gate decides what should be in the final output of the current unit. The resulting

hidden state ht is sent as the output of the current memory cell (if the user wants it that way). It
is also sent to the next memory cell as a hidden state ht along with the memory state Ct. Thanks
to the output gate, the model does not output the entire cell state but only the information that
the model wants to. This can protect other units from irrelevant information or any kinds of
disturbances [11, 14, 15, 22].

3.4 LSTM variants
Since the LSTM has been around for quite a long time, many variants have been created. I have
already shown the first variant, the original LSTM with forget gate. Another variant was even
created in the same year when Felix Gers came up with the idea of the forget gate. That year
he and the author of the original model Schmidhuber came up with a variant of the peephole
LSTM. This variation has so-called Peehole connections, which are used to allow each gate to
access the internal state of the memory cell. Gers et al. [24] mention that “this makes LSTM
a promising approach for numerous real-world tasks that require to learn to measure the size of
time intervals” [14, 15, 24].

The last variant worth mentioning is the GRU, which I will discuss separately.

3.5 Gated recurrent unit

Another model that can be included in the RNN is the Gated recurrent unit (GRU). The model
was introduced in 2014 by Cho et al. [26]. This model is similar to the LSTM model and can be
said to be its more modern equivalent. This variant of the LSTM is a bit more different than the
other variants. The main difference is that the cell state has been removed. It has been merged
together with the hidden state. Also, the output gate itself has been removed.

Another modification is merging the forget and input gates into a single gate called the update
gate. This gate is used to do both of the things that the original input and forget gates did, i.e.
it decides what information should be added to be remembered and what information should be
thrown away. Another gate that can be found in the GRU model is the reset gate, which is used
to let the network decide how old information should be discarded. Due to the smaller number
of gates, the GRU model has fewer parameters than the LSTM and is, therefore, easier to learn
in terms of training time.
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Figure 3.6 Gated recurrent unit. Taken from [25].

The disadvantage of the GRU model is that it always exposes the entire memory. There is
no way to limit it as the LSTM did with the output gate. Many papers also point out that GRU
gives better results in almost all RNN application areas. The whole structure of the GRU unit
can be seen in figure 3.6 [14, 27].

The activation ht of the gated recurrent unit at time t can be calculated as follows:

ht = (1− zt) · ht−1 + zt · h̃t, (3.22)

where ht−1 is previous hidden state, zt is update gate, which regulates what and how much
should be updated and h̃t is candidate activation.

Update gate zt can be computed by:

zt = σ(Wz · xt + Uz · ht−1), (3.23)

where σ is sigmoid function, Wz are input weights, Uz are update gate’s weights, xt is input at
time t and ht−1 is previous hidden state.

As you can see, the equations for update gate in gated recurrent unit are similar to those
used in input (3.17) and forget (3.16) gate in the LSTM model.

The candidate activation h̃t is calculated as follows:

h̃t = tanh(W · xt + U · (rt ⊙ ht−1)), (3.24)

where rt is a reset gate, ⊙ is element-wise multiplication, W are input weights, xt is input at
time t, U are weights that control new values and ht−1 is previous hidden state..

The equation for the reset gate rt is as follows:

rt = σ(Wr · xr + Ur · ht−1), (3.25)
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which is similar to the update gate. The only difference is that the used weights are weights of
reset gate [27].

3.6 Stacked or Unidirectional architectures
In their work, Cui et al. [28] mentioned that existing articles “have shown that deep LSTM
architectures with several hidden layers can build up a progressively higher level of representations
of sequence data, and thus, work more effectively”. This statement can be taken from a greater
perspective, which means that a similar approach could also be used to improve RNN models and
ANNs in general by having several hidden layers stacked on top of each other. Furthermore, the
output of one layer is passed as input into the next layer. The resulting model is called Stacked
or Unidirected architecture. This combination of layers can result in the model returning more
sophisticated data patterns. The name of the architecture implies that all stacked layers process
the sequence in the same flow direction. This means that they cannot see into the future and
cannot learn dependencies from both directions. Thus, they learn only from previous data [29].

3.6.1 Stacked LSTM, Stacked GRU
Instead of RNN, the above-mentioned models, such as LSTM and GRU, can be used. Created
models are called Unidirectional Stacked LSTM and Undirectional Stacked GRU. The structure
of the Stacked LSTM model can be seen in figure 7. In a way, it can be said that a Bidirectional
architecture (which will be discussed in the next section) is a subgroup of a stacked architecture
since both models have stacked layers. Still, as the name suggests, this structure is bidirectional.

Figure 3.7 Stacked architecture with two LSTM layers.

3.7 Bidirectional architectures
So far, I have introduced models that had a “casual” structure. This structure’s output at time
t was affected only by the inputs and internal states from the past, i.e. x1, ...., xt−1 and the



Bidirectional architectures 17

current input xt. However, some problems suggest that it might not be a bad idea for the model
to have access to the entire sequence and hence to future data. For example, when solving the
problem of filling a word in a sentence within a context, the model might want to know words
which come after the word that the model is currently supposed to fill in. Other problems where
the above approach could be applied are handwriting recognition, translation and many others
[30].

The first ideas about how the model could look at future information were that the RNN
would not give a result at time t, but would return the result after M other time blocks. This
would delay its output and allow it to look at other future data. Theoretically, the proposed
method could work. However, in reality, it turns out that the accuracy of the result decreases with
a higher time delay M . To take into account the whole sequence, or at least a more significant
subset of an input sequence, a different approach needs to be invented. A method that would
satisfy the desired conditions should use all the information.

This can be achieved by making two separate networks. Each of these networks will have
the opposite flow direction so that one will take the sequence from the beginning, and the other
will take the sequence from the end. The result is then a combination of both directions, which
would give the model information from both the past and the future data. There is still one
problem though, and that is how to connect both directions.

One approach is more analytical and statistical. In this case, one takes the two directions
as separate experts, then does their merging using the arithmetic mean for regression and the
geometric mean for classification. However, this approach assumes the independence of the
experts. In practice, it turns out that this approach is not entirely appropriate since the two
different directions (experts) are not independent. This stems from the fact that the various
networks are learned on the same data [31, 32].

3.7.1 Bidirectional RNN
Due to the limitation of conventional RNN, bidirectional recurrent neural networks (BRNN)
were designed. The principle is the same as above. The network is divided into two RNN
subnetworks, each with opposite directions. The Bidirectional architecture is similar to the
previously mentioned Stacked architecture. The individual layers are also stacked, but with the
difference that the direction flow is opposite in each layer. The outputs of each layer can be
calculated according to the equations below.

For a forward hidden layer hF
t :

hF
t = σ(W F

x · xt + W F
h · hF

t−1 + bh), (3.26)

where xt is input at time t, hF
t−1 is previous hidden state of forward layer at time t− 1, W F

x and
W F

h are weights in forward pass for input xt and hidden state hF
t−1 respectively and bh is bias.

For a backward hidden layer hF
t :

hB
t = σ(W B

x · xt + W B
h · hB

t+1 + bb), (3.27)

where xt is input at time t, hB
t+1 is previous hidden state of backward layer at time t + 1, W B

x

and W B
h are weights in backward pass for input xt and hidden state hB

t+1 respectively and bb is
bias.

The final result is further calculated using the following formula:

yt = h(W F
y · hF

t + W B
y · hB

t + by), (3.28)

where hF
t is hidden state of a forward layer at time t, hB

t is a hidden state of a backward layer at
time t, W F

y and W B
y are weights for hidden layers for a forward and a backward layer respectively

and by is bias.
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Since the network tries to minimize the loss function for both directions simultaneously, there
is no need to deal with how to connect the individual directions [32].

The basic idea of Bidirectional RNN can be extended to two dimensions, which could be used
for images, for example. In this case, the network would not consist of two but four RNNs for
each direction - up, down, left and right [30].

3.7.2 Bidirectional LSTM, Bidirectional GRU
Bidirectional LSTM can be seen as a Bidirectional RNN. The only change is that there are LSTM
memory blocks instead of hidden layer activation. The whole structure of Bidirectional LSTM
model can be seen in figure 3.8. In the case of the GRU model, GRU units are used instead of
hidden layer activation [33].

Figure 3.8 Bidirectional architecture with two LSTM layers, each layer has an opposite flow
direction with the Softmax layer. Taken from
https://nedatavakoli.github.io/Modeling-and-Clustering-Genome-using-Bidirectional-LSTM/
CS6220-ModeilingGenome/Architecture/BiLSTM.png.

3.8 Encoder-Decoder

This type of architecture was invented by Cho et al. [34]. The architecture is very efficient
because it can map a sequence to another sequence. The advantage is that the input and output
sequences do not necessarily have the same length. This fact is used, for example, in translation,
where an input sentence in one language may have a different word count than an output sentence
in another language. The resulting model consists of two submodels. As the name implies, these
are an encoder and a decoder.

https://nedatavakoli.github.io/Modeling-and-Clustering-Genome-using-Bidirectional-LSTM/CS6220-ModeilingGenome/Architecture/BiLSTM.png
https://nedatavakoli.github.io/Modeling-and-Clustering-Genome-using-Bidirectional-LSTM/CS6220-ModeilingGenome/Architecture/BiLSTM.png
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3.8.1 Encoder
The encoder is used to read and encode the input and create a so-called context C that represents
and describes the input sequence. This context is a vector of fixed length. The encoder usually
consists of an RNN that reads the sequence sequentially and uses the last hidden state as the
context C.

3.8.2 Decoder
The decoder is usually also made up of an RNN and is used to create a sequence from a given
context C. This context serves as input to all RNN units. Thus, the current hidden state ht

of the decoder at time t is determined by the previous hidden state ht−1, the previous output
yt−1 and context C and is computed by:

ht = f(ht−1, yt−1, c), (3.29)

where f is an activation function [30, 35, 34].

3.9 Convolutional neural network

The convolutional neural network (CNN) was created in 1995 by LeCun et al. [36]. The greatest
strength of CNN is that it can extract features. The structure of CNN consists of five layers laid
one behind the other. These layers are called input, convolutional, pooling, fully connected and
output. The network is called convolutional because it uses convolution, which is a mathematical
operation on two functions. A common use of CNNs is for tasks where the input data are in the
form of a grid. So the usual use is for images, but a time series can also be thought of as a 1D
grid. Thus, there is a possibility to use CNNs also for time series.

Another reason why CNN is primarily used for images is that if the image were to be processed
using ANN, there would be many parameters to be set. For example, for an image size of 64×64,
there would be a need to deal with 12 288 weights on one neuron (one weight for each pixel).
CNN uses so-called filters or kernels. Moreover, these kernels share the weights for each point of
the input matrix, thus rapidly reducing the number of network parameters, which made ordinary
ANNs a problem [37, 9, 38, 39, 40].

3.9.1 Convolutional layer
The first layer I am going to talk about is the convolutional layer. This layer is used to extract
features and performs the main part of the whole network, the convolution operation. The
output of the convolution is then mostly sent to the activation function, which is nonlinear.
Thus, a linear (convolution) and nonlinear (activation function) combination are obtained. The
most well-known activation function is the ReLU function [39].

3.9.1.1 Convolution
Convolution is a mathematical operation that is used for feature extraction. It is a specialized
kind of linear operation. As I wrote earlier, convolution handles two functions. In CNN, it can
be understood that the input is one function and the individual kernels are the other functions.
Convolution is then the operation that determines the changes of the input caused by the kernel.
Let’s have an input matrix V of size N ×N and the filter W with F ×F size. The input changes
are computed according to the following formula:
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Figure 3.9 Application of the convolution on the first position with a filter of size F × F to get value
of V1,1. Taken from [5].

vi,j =
F −1∑
k=0

F −1∑
m=0

wk,mVi+k,j+m. (3.30)

In figure 3.9, you can see the kernel applied to the input to get the value v1,1. This is repeated
for all points in the input matrix, assuming that stride equals 1. (I will discuss what stride is
later). The resulting matrix, which comes out by applying the filter to the input matrix, is called
a feature map. Before the new feature map itself is sent on to the next layer, it usually goes
through an activation function.

As you can see from the figure 3.9, the resulting feature map has a smaller size than the input
matrix. The specific sizes of the output are N −F + 1. This shrinkage can be avoided by adding
so-called padding to the input matrix [37, 39].

3.9.1.2 Padding
Padding is a technique to affect the output size of the convolutional layer. Padding works by
adding zeros from each side of the input matrix. Enough zeros needs to be added to keep the
feature map dimensions the same as the input. The way to do this is that when the output is
computed for the first point v1,1, the centre of a kernel will sit on that point. For example, for
a 3× 3 kernel, we only add one “layer” of zeros [39].

3.9.1.3 Stride
A stride is the size of a kernel’s shift. In typical cases, the stride equals 1, but sometimes it is
better to choose a larger stride in case of the need for downsampling of the feature maps because
if the kernel moves more squares, there will be fewer results in the feature maps [39].

3.9.2 Pooling layer
The pooling layer is primarily used for downsampling feature maps. This reduces the complexity
of the network and, therefore, the learning time. Due to the reduction in network parameters,
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CNNs are also quite resistant to overfitting. The pooling layers also contain a kernel, usually of
size 2× 2 and stride set to 2. This reduces the input matrix size by a factor of 2 (a 4× 4 matrix
at the input is reduced to 2× 2), so overall, the number of parameters is reduced to 25 % of the
original size. Pooling works by taking all the values from the feature maps inside the kernel and
making a single number out of them. The most well-known forms of pooling are Max pooling
and Average pooling [37, 40].

3.9.2.1 Max pooling
Max pooling is probably the most popular form of pooling. It works by taking the maximum
value of all the values in the region represented by the filter [39].

Let’s say the size of the kernel is F ×F and input matrix is x. Max pooling can be computed
as follows:

yi,k = max
k=0,...,F,m=0,...,F

xi+k,j+m. (3.31)

3.9.2.2 Average pooling
Another type of pooling is Average pooling, which works in the same way as the previous Max
pooling, but returns the average of the values instead of the maximum [39].

3.9.2.3 Global average pooling
Another type of pooling worth mentioning is Global average pooling. This method works by
taking the average of each feature map. So it makes only one number out of each feature map.
Global average pooling is also able to reduce the number of parameters, and also, thanks to this,
the input can be of any size. So it does not necessarily have to be a square matrix [39].

3.9.3 Fully connected layer
The next layer is called the fully connected layer. It is usually placed either after the convolutional
or pooling layer. The output of these layers is flattened, so the output is changed into a vector.
This vector is sent to the fully connected layer, also called the dense layer. The layer has
connected neurons so that all previous layer neurons are connected to all neurons in the fully
connected layer. The output number of neurons is the same as the required number of classes
for classification. Then the output of this layer is further sent to an activation function, usually
ReLU, or softmax [39].

Let’s assume that vj
i is the value of i neuron in j layer and wk,i are connection’s weights.

The output of neuron vj
i is calculated from all neurons in the previous layer k. The formula is

as follows:

vj
i = σ

( ∑
k

vj−1
k wj−1

k,i

)
. (3.32)

3.9.4 The overall structure of CNN
In figure 3.10, you can see an example of a CNN. The overall structure of CNN can vary a lot,
and it primarily depends on the problem it is supposed to solve. The network consists of the
layers mentioned above. However, the layers may be repeated. For example, sometimes, it is
convenient to use a convolutional layer again after the pooling layer. This convolutional layer
can be followed by the pooling layer again and so on. Another possibility is, for example, to use
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Figure 3.10 Example of CNN architecture, which consists of Input, convolutional, pooling and fully-
connected layer, stacked in specific order. Taken from [40].

two convolutional layers directly behind each other, followed by a pooling layer. There are many
options, and it is not possible to determine which one would be universally the best [38, 40].

3.10 CNN-LSTM
The last model I will talk about is the CNN-LSTM model. The model can be seen in figure 3.11,
and it is a combination of the CNN and the LSTM models. The resulting model should benefit
from the strengths of both models. Convolutional layers are suitable for feature extraction, while
the LSTM is good for capturing dependencies in the data. The final model should have both
strengths [41].

Figure 3.11 Example of CNN-LSTM model with two convolutional layers, one max pooling layer and
one LSTM layer. Taken from [41].

3.11 Chapter summary
This chapter explained and introduced the basic models that can be applied to stock market
forecasting. Furthermore, neural networks and recurrent neural networks were explained in order
to present more complex models afterwards. The models mentioned include LSTM, GRU, CNN,
CNN-LSTM, Encoder-Decoder architecture, Bidirectional architecture and Stacked architecture.
The chapter also contains the RMSE metric that I will use to evaluate the models.



Chapter 4

Implementation

The chapter describes the basic implementation details. It defines what programming language
and libraries were used in the thesis and why these tools were chosen. Then the layers used
and their implementation details are described.

For the implementation, I chose the Python programming language because it is the most widely
used language for ML and also has the most support for creating neural networks from my
point of view. Another advantage is the implementation itself in Jupyter notebooks, which is
a development environment in which the Python code can be executed. Furthermore, the Jupyter
notebooks can be used in Google Colaboratory, which I will talk about separately.

4.1 Keras and TensorFlow

Keras is an Open Source Neural Network library written in Python. Keras was created for ease
of use and simplicity when building neural networks and ML models. The Keras library runs
on TensorFlow, a Python library that has the advantage of being GPU and CPU optimized.
TensorFlow was created by Google and is used to solve machine learning tasks.

In this work, I used layers from the Keras library, which are described below. The layers that
will be mentioned are further used to create models proposed in chapter 7.

4.1.1 LSTM and GRU layer
The LSTM layer provided by the Keras library implements the base version of the model, so
it is not a peephole variation. The main parameters of the unit include the number of hidden
neurons. This parameter is the only mandatory one. After that, the user has the possibility to
change a large number of other parameters, which are set by default. These parameters include
dropout, recurrent dropout, activation, recurrent activation and many more. The last parameter
I would like to mention is return sequences. This parameter is used to determine whether each
LSTM unit should return its result (the output of the entire model is then a sequence of results)
or if only the result from the last unit should be returned. I modify this parameter in my thesis
as needed. For example, for the Stacked approach, I require that a specific unit at time t sends
its result to the next unit in the next layer, which is also at time t. Thus, I need each unit to
send its output, which I achieve by setting the return sequences parameter to True.

The next layer that has been used in this work is GRU, which is very similar to the previous
one. It contains similar parameters so I will not comment too much on it.

23



24 Implementation

4.1.2 CNN layers
The following layers that I will mention were used in the CNN model. These are the Conv1D,
MaxPooling, Flatten and Dense layers. I use the Dense layer in other models (e.g. LSTM), and
it serves primarily as an output layer. The other layers that have been used in the CNN models
do what the name implies. Conv1D performs the convolution operation. The kernel in this layer
is one-dimensional since it accepts vectors at the input layer. The mandatory parameters for this
network are filters and kernel size, which are used to determine the number of filters and the
kernel’s size. In addition, the user can set padding and strides. The MaxPooling layer performs
the standard Max Pooling operation, explained in section 3.9.2.1. The last layer is the Flatten
layer, which shrinks the input to a vector. Thus, the size of the vector is the product of the
individual dimensions.

4.1.3 Bidirectional layer
This layer is used to create the Bidirectional architecture described in section 3.7.1. The Keras
implementation accepts the model as a parameter and also other optional parameters. These
include the backward layer, which is the backward model. This parameter is optional, as already
mentioned. If the user does not fill in the parameter, Keras uses the model that was passed to
the layer as the layer parameter, which is the original forward model. This implementation also
requires that the inserted models have the values of their go backwards parameters set in reverse.

4.1.4 Encoder-Decoder layers
The layers that have been used in the Encoder-Decoder model include TimeDistributed and
RepeatVector. The RepeatVector has n as a parameter, which indicates how many times
the vector, or input in general, that the layer receives should be repeated. So if the input
has size (num samples, features), the output will have size (num samples, n, features), where
num samples is a number of input data and features is the number of features provided to mo-
dels. The TimeDistributed layer is used to apply some other layer, which it takes as a parameter,
to every temporal slice of input data. The layer requires its input to be at least three dimensional.

4.2 Google Colaboratory
Google Colaboratory is a product from Google Research. It is primarily used to run Python
code in the browser. The advantages are that the user does not have to worry about the virtual
environment. So, for example, when sharing a Jupyter notebook, the author does not have to
worry about anything. Another advantage is the optimization mentioned above of the Keras
library for GPUs. Google Colaboratory offers to switch the runtime to run on the GPU, but
this feature is time-limited. Using the GPU, I trained the models approximately ten times faster
than on a local machine. Google Collaboratory can also connect to Google Drive, which can be
suitable for saving individual models. Last but not least advantage of Google Colaboratory is
that the program runs on a different machine than the user’s pc, so the user does not have to
use his resources.

4.3 Chapter summary
This chapter introduced the programming language in which the models are implemented.
Furthermore, the Keras library in which I created the selected models is presented. Then the
layers that were used to create the models are described. Also, the chapter mentioned the Google
Collaboratory tool that was used to run the Python code.



Chapter 5

Data

This chapter introduces the stock market that has been selected for learning and evaluating
models. It also describes how the data was collected. The chapter includes a basic description
of the dataset along with a statistical description of the selected target column. Next, the data
splitting style is introduced, followed by a description of the types of predictions for which the
data must be specially prepared. Subsequently, the data preprocessing flow is described.

5.1 Data selection
As I mentioned before, for learning and validating each model, I will use SXR8.DE data, which
is an ETF (Exchange-traded fund) that replicates the S&P 500 index, one of the most famous
indexes in the world. It is an index that contains the 500 wealthiest companies in America.
I generally chose this ETF and this index because it is one of the most well-known. Many investors
consider it the least controversial because it has continued to grow historically. Therefore they
claim that for people who do not have experience with trading on the stock exchange, investing
in the S&P 500 is the easiest option.

5.2 Data collection

The data has been collected on the Yahoo Finance1 website, which is a website where anyone
can look at individual stock markets. There is also news regarding the stock markets, which an
investor can also use to make a prediction or to determine whether a stock will rise or fall. Yahoo
Finance also offers a basic price chart as well as historical data that goes back to the beginning
of the selected stock market. So on Yahoo finance, all you have to do is select the stock market,
then choose the period from which you want the data, and then click the download button to
download the data in CSV format, which is a standard format for people who work with data,
so you do not have to convert the resulting dataset to another format.

5.3 Data description
The data I used was collected over the period March 23, 2020–December 3, 2021. The main reason
for this choice of data was that I wanted to remove the dates when the COVID-19 pandemic
started. Furthermore, before Christmas last year, the market began to be very volatile due to
the situation in Ukraine. Since the models only rely on time series data, I wanted to minimize

1https://finance.yahoo.com/
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these fluctuations. Since the stock exchange is open only on working days, the individual records
are days of the week, excluding the weekends and holidays. The basic downloaded data contains
7 columns: “Date”, “Open”, “High”, “Low”, “Close”, “Adj Close” and “Volume”. The “Date”
column describes what date it is. “Open” indicates the price at the stock exchange opening
on a particular day. “High” indicates the highest price of the day, and “Low” is the lowest.
“Adj Close” or adjusted close indicates the closing price after adjusting for all relevant splits
and dividend payments. The last column is “Volume”, which indicates the number of shares of
a company or index traded on a given day. The column that the models will try to predict is
called “Close”. You can see a data example in figure 5.1.

Figure 5.1 Example of data selected from Yahoo Finance. The first column denotes the date, the
next column denotes the opening price of a particular day. Next are the columns with the highest and
lowest value per day. Then there is a column that shows the closing price after adjusting for all relevant
splits and dividend payments and the last column indicates the number of shares of a company or index
traded on a given day.

5.3.1 Statistical description of the “Close” column
In image 5.2, you can see a Boxplot that shows how the data is spread out. The Boxplot shows
half of the data, namely the data bounded by the 3rd quartile and the 1st quartile. These
data are placed in a rectangle that also shows the median. The Boxplot also contains so-called
whiskers, which indicate the range of the values. Sometimes you may also see a Boxplot with
outliers behind the whiskers. However, there are no outliers in the dataset used in this work.

The median of the “Close” column is equal to 320.07. Further, the mean is 326.407 and the
standard deviation is equal to 48.122.

Also, in figure 5.3 are shown the values of the “Close” column, which indicate the daily values
of the observed dataset.

5.4 Data splitting
The next step after data collection is to split the data into training, validation and testing in
the ratio 70:20:10. This approach is common in machine learning. The training part of the data
is used to train the model. The validation is used to tune the hyperparameters, and the final
testing is used to test the model on data that has never been seen to determine how good the
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Figure 5.2 Boxplot of “Close” values of the dataset. The plot shows half of all the data. The chosen
data is in the rectangle, which also contains the median. The data are bounded by the first and third
quartile. Then there are whiskers to indicate the range of the data.

Figure 5.3 Graph showing “Close” column values of dataset. The chart shows the individual days
on the X-axis and the values of the “Close” column on the Y-axis.

model will be for real-world usage. Since my data is in the form of a time series, I cannot use
the usual techniques for data splitting. A function called train test split() from the scikit-learn
library is often used to split the data. However, the splitting by scikit-learn is done randomly,
which cannot be applied to a time series since the data is dependent on each other, so it cannot
be randomly split that easily. Therefore, to split the data, I first calculate how much data will
be in each part and then split all the data using Python slices, which preserves the dependency
of the data between time points.

5.5 Division by type of prediction
The model can predict how many days ahead it wants, and it is primarily up to the individual
user. In the real world, investors try to forecast as many days ahead as possible to maximize
their profits. However, forecasting several days is much more challenging than predicting 1 day
ahead. Therefore, I try to forecast 1-day and 5-day predictions in my thesis.
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5.5.1 Prediction of 1 day ahead
This task is considered in most papers, and the reason is that the results are pretty promising, or
at least they look good on a graph, which is also demonstrated in section 9.1. However, they still
have their shortcomings, and later in the thesis, I will show that this prediction is not applicable
in practice as the model overfits and does not predict well. Let us denote the number of days
that the model will use to predict the next day as time steps and the last day from which the
following day is predicted as t. Then the prediction can be written as follows:

[t− time steps, ..., t− 1, t]→ [t + 1] (5.1)

This is also what the final modified data should look like for one particular prediction of 1 day
ahead, where the part before the arrow shows the input and the part after the arrow indicates
the output or a forecast.

5.5.2 Multi-step prediction
This task is more complicated than predicting 1 day ahead, and this is because no one can say in
advance how a given stock will move, as some significant change can happen that can significantly
affect the development (the outbreak of the COVID-19 pandemic or a war). No one can expect
these influences and changes, so in this thesis, I will not be dealing with an entirely long term
prediction, but only for 5 days, which is a week in my dataset. The notation is the same as in
the previous case. However, there is a need to denote the number of days that the model should
predict. Let us denote this as n. The prediction for a specific point can be calculated as follows:

[t− time steps, ..., t− 1, t]→ [t + 1, ..., t + n] (5.2)

Where again, the part before the arrow indicates the input data for prediction several days
ahead, and the part after the arrow indicates the output or predicted data.

5.6 Data preprocessing

5.6.1 Separation of tasks
Since the data is already collected, the next step is to preprocess the data and prepare it to a state
that can be used for training and validation. That being said, in this thesis, I am dealing with
both 1-day and multi-step forecasting. Another division is how many columns from the original
dataset will be used for prediction. The first option is to use only the “Close” column. In this
case, the input is called univariate. If more columns are used, the input is called multivariate.
The last division is the number of days, which the models will use to predict. The fundamental
split will be 10 and 15 days, which means two weeks and three weeks. The data must be prepared
separately for each type of problem as the input sizes differ. The next step is to prepare the
input and output data.

5.6.2 Preprocessing of input data
The first step is to prepare the input data for the models. As I said, the original dataset has
seven columns. However, some of them can be removed in advance as they will not play any role
in the final prediction.

The first column that has no effect on the result and which I can therefore safely remove is
the “Date” column, which specifies a particular date of the data.
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Next, the input dimensions for the problems need to be determined. In the case of a prediction
where multiple variables are used, the input will be of shape (samples, time steps, features), where
features denote the number of variables (in the current case, features equals 5). The time steps
variable expresses what it did in the previous section, i.e. the number of days the model uses for
prediction (specifically, the value will be equal to 10 and 15). Variable n describes how many
days the model should predict, and variable samples represents the number of input data. For
prediction using a single variable (“Close”), the input will be of shape (samples, time steps,
1) since features, in this case, equals 1. LSTM units expect 3D input, so these dimensions fit
perfectly.

5.6.3 Preprocessing of output data
Next, I need to prepare the expected results of the models in advance. The target variable in
this case will be the “Close” column, which is the only column that the output data will contain.
As I mentioned earlier, I need to emphasize what type of problem I will be solving. For a 1-day
prediction, the output will be of shape (samples, 1). While for a multi-step prediction (n days),
the result will have the dimension equal to (samples, n). In this case, I do not have to deal with
the number of features since all models try to predict only the “Close” column. More closely,
for a 1-day prediction, the output is a vector where each component represents a prediction of
1 day ahead from a certain point. In the case of the multi-day forecast, the result is a matrix
that contains the prediction for n days in its rows, so if the last day we send to prediction is t,
the result is [t + 1, t + 2, ..., n] as shown in equation 5.2.

5.6.4 Normalization
To normalize the data, I use MinMaxScaler, from the sklearn library. In MinMaxScaler, you can
define the range on which to normalize. The default value is set to (0, 1). The scaler is trained
on the training data using the fit() function. The advantage of the scaler is that it remembers
the individual constants and can do the inverse operation based on these recalculations, i.e. get
back the actual values.

5.7 Chapter summary
The chapter described the reasons for the choice of data used for training and validation of the
models. It also mentioned where the data was collected. Afterwards, a basic description of the
data and a statistical description of the target column were made. Next, it was explained how
the data must be preprocessed to have the shape required for the specific type of prediction.
Then the actual data splitting and normalization of the data were described.
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Chapter 6

Hyperparameter tuning

The chapter describes one of many procedures for tuning hyperparameters. It is also explained
why this particular procedure cannot be used in this thesis, so an alternative one is chosen. The
options that could have been chosen and the subsequent final decision and its reasons are also
described. Furthermore, the style of obtaining the best model with the best hyperparameters is
proposed.

Hyperparameter tuning is a big part of the work in ML, as each model accepts different hyper-
parameters, which can take many values. Moreover, for each problem, different values of these
parameters are suitable, and therefore there are many possibilities by which a given model could
be trained. There is no way to determine the correct most optimal values of the hyperparameters
that would fit every model.

6.1 Grid Search

Grid Search is one of the tools that can be used to find optimal hyperparameters. Grid Search
uses the so-called param grid, which is nothing more than the definition of hyperparameters
and the values that each hyperparameter can take. In order to be able to validate the current
hyperparameters in some way, Grid search uses a validation dataset. However, this dataset is
taken from the training dataset using cross-validation. I will not explain cross-validation much
in this thesis, but in a nutshell, it is the principle of using a window that “slides” over the entire
training set. During training, this window is discarded from the data to be trained, and then
the window itself is used for validation.

6.2 Grid Search and time series

Grid search variation with CV (cross-validation) uses data shuffling before cross-validation, in
order to calculate the accuracy of the model more precisely. You can set this parameter to False
so that the shuffling itself does not take place, however, Grid search still has some problems
that appear for time series applications. As you may have already guessed, due to removing
the window from the training set and then merging the two parts, the dependency between the
training data is lost.
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6.3 KerasTuner
KerasTuner is a tool that is offered by the Keras library itself and is similar to the Grid Search.
It also defines what values can hyperparameters take, and then this tool optimally searches the
hyperparameter space to find the best ones for the model and the current task. The difference
is that the parameters are not defined in a unique object (like params grid in Grid Search), but
they are defined directly on the model. Thus, creating a function that returns a Keras model is
necessary. Alternatively, you can create the model as a class that inherits from the HyperModel
class, where you just override the build function. I chose the second variant since I needed to
pass parameters to models.

Another difference is that Grid Search searches the whole space, i.e. it makes combinations
of all hyperparameters, which in practice means that Grid Search has to go through many
combinations when working with a complex model with many hyperparameters that take on
a large number of different values. Moreover, if another hyperparameter is added, or another
value to a hyperparameter is added, the number of combinations grows exponentially, and so
does the training time.

The thing Grid Search and KerasTuner have in common is that both tools use a validation
dataset for parameter validation. The validation dataset can be added to the tuner during
initialization.

In my thesis, I will use KerasTuner primarily to find out:

the optimal number of hidden layers,

the optimal number of neurons in each layer,

the optimal activation function,

the value in Layer Dropout,

other optional hyperparameters of individual networks.

6.3.1 Defining the search space
KerasTuner offers a large number of values that can be set to search for hyperparameters.
These values differ in their types. Keras offers hp.Int() for integer types, hp.Float() for deci-
mal numbers and hp.Choice() for choosing, for example, an activation function. As I said, these
types can be set either in the function that returns the model or in a class that inherits from
HyperModel. For example, to get the number of neurons to be in the Dense layer, the code
model.add(Dense(hp.Int(’dense layer’, min value=16, max value=240, step=32))) is used. You
can see that Keras offers the option to specify a range on which to find the hyperparameter value.
Next, the name and step size are defined. In my case, the range is from 16 to 240 neurons and
step size equals 32.

6.3.2 Selection of a tuner
KerasTuner currently offers three tuners that the user can use. Namely, RandomSearch,
BayesianOptimization and Hyperband.

6.3.2.1 RandomSearch
The RandomSearch tuner searches the search space randomly, as the name implies. Compared
to Grid Search, it has higher performance and therefore explores the space faster. However, if
the search space is too large, Random Search is not able to cover it all, and thus, the tuner
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may not find the optimal hyperparameters. Because of randomness, the tuner can take values of
hyperparameters that may already seem incorrect at the beginning of the algorithm.

6.3.2.2 Hyperband
Compared to the RandomSearch tuner, the Hyperband tuner addresses the problem of random-
ness. So its search is not purely random. In the beginning, the Hyperband tuner again makes
random combinations of hyperparameters, as the RandomSearch tuner did. However, the Hyper-
band tuner trains these given combinations on only a few epochs. It then chooses the ones that
have the most promising results from these combinations, which enormously reduces the number
of combinations to the next step. Next, the combinations are again trained on additional epochs.
This process is repeated until the entire training process is complete or until the model hits the
maximum number of epochs. At the end of this iterative algorithm, the model that has the
highest accuracy is selected.

Compared to the RandomSearch tuner, the Hyperband tuner is more capable of finding more
good parameter values. Since it discards those hyperparameters that are not optimal during the
execution of the algorithm, it is also able to cover a more significant number of combinations of
these hyperparameters at the beginning. However, the tuner still has the problem of randomly
selecting hyperparameter combinations at the beginning of the algorithm.

6.3.2.3 BayesianOptimization
The last tuner offered by the Keras library is the BayesianOptimization tuner. This tuner
addresses the problems of both previous tuners. Specifically, the random selection of combi-
nations of hyperparameter values. The BayesianOptimization tuner selects only a few random
combinations, from which it further determines which combinations might be better than the
others. Thus, it takes into account the history of tried combinations of hyperparameter values.
The algorithm runs until it finds the optimal combination of hyperparameter values or until it
encounters the maximum number of trials that the user can set when initializing the tuner.

6.3.2.4 Final selection
I tested each tuner on a randomly selected model, which was the same for all tuners. Based on
this comparison, I decided to use only the Hyperband tuner primarily because of the speed of
the search itself.

I also send a callback function to the tuner to stop learning if the validation loss function has
not changed over several epochs. This function is called EarlyStopping() and is provided by the
Keras library. The function also helps to ensure that the model does not overfit.

6.3.3 Getting a model from KerasTuner
KerasTuner keeps the individual models that have been examined during the algorithm. In
addition, Keras supports a function that can return the best n combinations of hyperparameters.
In addition, there is a function that can return the n best models. This function is called
get best models(num models=1) and takes as its argument a number that expresses how many
best models the user wants to return.

Since the function’s output is an array, the user must query the first element if he wants to get
the best model. These models are also already trained. However, the Keras documentation states
that it is best to take only the best hyperparameters, rebuild the model, and train it on the whole
dataset. Since I continue to send the model to a function that retrains the model and further
returns the training history, I chose the option recommended by the official documentation. This
way, I can get the model with the best hyperparameters.
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6.4 Chapter summary
The chapter describes one of the tools that can be used for tuning hyperparameters. It also
explains why this particular tool cannot be used. An alternative one is then offered in the form
of KerasTuner, which satisfies what I need for the work involved. A tuner selection is then made,
as the Keras library currently provides 3 of them. The reason for choosing a particular tuner is
also given, followed by a description of how to obtain a model from the tuner that has the best
hyperparameters and can be further trained on the data.



Chapter 7

Proposed models

This chapter describes the used models. It specifies the style in which the models are trained
and how the training yielded the most optimal model. It also discusses implementation details,
such as the shape of the input data. The chapter divides models into 7 groups based on the used
model. Each model group has 4 variants. Furthermore, the model labelling is introduced. It
also provides a description of the models and their optimal hyperparameters that were chosen
in the previous chapter.

As already mentioned, the models were created using the Keras library. Specifically, I used the
Sequential model, which serves the purpose of being able to add custom layers to it, and their
arrangement is purely up to the user’s choice. There are two ways to create a sequential model.

The first one is to define a sequential model and then add individual layers using the add()
function. I found this method the most user-friendly, and therefore it is primarily used. However,
in some cases, I had to use the second method.

The second one is defining a layer that is then added as an input to the next layer.

7.1 Model training
The individual models were extracted from KerasTuner using the method described in the pre-
vious section 6.3.3. As mentioned before, I obtained the best combinations of hyperparameters
utilising this method. However, I still need to train the model on the training data. The mo-
dels are sequentially trained using the fit() function, to which I also send a callback function as
a parameter, namely ModelCheckpoint(), which allows me to save the model weights after each
epoch. I can then load those weights with the highest accuracy on the validation set in order to
get the best model.

When the model calls the training function, it returns a history showing how the model was
learned and its accuracy at each epoch. An example of one of the learning histories can be seen
in figure 7.1. The figure shows the training history of the Univariate LSTM 1 model proposed
below.

7.2 Implementation details
The models were trained to predict from previous 15 and 10 days. In the figures mentioned below,
the number of days from which the models predicted is indicated by the variable ts. The other
divisions are the dimensions of the models’ input. The split is into univariate and multivariate.
The shape of the input are (Samples, ts, 1) for univariate and (Samples, ts, 5) for multivariate.
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Figure 7.1 Example of Univariate LSTM 1 model learning history.

The subsequent division is how many days the model predicts. In my thesis, I consider 1-day
and 5-day predictions, so the dimensions of the outputs are (Samples, 1) for 1-day prediction
and (Samples, 5) for 5-day prediction.

7.3 Model labelling
Since each model can have four variants, I divide each model into a separate group, marked with
a number. Then, I label each variant, specifically Univariate 1 (1-day prediction), Univariate
multi-step (multi-step prediction), Multivariate 1 and Multivariate multi-step, with a letter.
Thus, if I am talking about a model from group 2, the Univariate multi-step variant, I use the
label 2.b.

7.4 LSTM models (1)
The first group are the LSTM models. The hyperparameters of this model include input unit,
which determines the number of neurons in the input LSTM layer, and then the Dropout layer
with the parameter dropout rate. Next is the Dense layer, which has been optionally inserted,
i.e., depending on whether the network chooses to do so, the choice parameter is add dense layer.
If the Dense layer has been chosen, it contains the parameter dense layer, specifying the number
of neurons. The last parameter dense activation is the activation function of the Dense output
layer. In table 7.1 you can see the values of each parameter for all 4 variants. Furthermore, in
figure 7.2(a) you can see the structure of the Multivariate multi-step LSTM model with input
shapes and output shapes.

7.5 Stacked LSTM models (2)
The next group is the Stacked LSTM models. The models have a parameter input neurons, which
specifies the number of neurons in the input LSTM layer. The models contain the parameter
n layers which is the number of extra hidden layers. All variants chose the number of hidden
layers to be 0, so I do not consider the number of neurons in the hidden layers in the table. The
next layer is again an LSTM with the number of neurons layer 2 neurons. Next, the models had
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the option to add a Dense layer, that is, the parameter add dense layer, which has the number of
neurons denoted as dense layer. The last parameter dense activation is the activation function
of the Dense output layer. The exact values of the hyperparameters can be seen in table 7.2.
The structure of the Univariate Stacked LSTM 1 model can be seen in figure 7.3(a).

Parameters 1.a 1.b 1.c 1.d
input unit 480 448 480 192

dropout rate 0.2 0.25 0.1 0.1
add dense layer True True True True

dense layer 240 208 144 176
dense activation linear linear linear linear

Table 7.1 Table of parameters that can be set in
the LSTM model. Each column describes a unique
model variant proposed in section 7.3.

Parameters 2.a 2.b 2.c 2.d
input unit 384 384 416 384
n layers 0 0 0 0

layer 2 neurons 160 160 128 32
dropout rate 0.1 0.25 0.25 0.15

add dense layer True True False True
dense layer 112 48 - 208

dense activation linear linear linear ReLU
Table 7.2 Table of parameters that can be set in

the Stacked LSTM model. Each column describes
a unique model variant proposed in section 7.3.

7.6 CNN models (3)
Another group is the CNN models. The models have again 4 variants. The hyperparameters of
the first layer include filters, which determine the number of filters, kernel size, which specifies
the size of the filters. Furthermore, the network contains pool size, which denotes the size of
the MaxPooling operation. Another hyperparameter is dropout rate, which is located in the
Dropout layer. Next, the model again has a choice of an additional Dense layer based on a value
of add dense layer parameter. The dense layer also has parameter dense layer which specifies the
number of neurons. The last hyperparameter dense activation is again the activation function
of the Dense output layer. Detailed hyperparameters of each variant can be seen in table 7.3.
The structure of the Univariate CNN 1 model can be seen in figure 7.4(b).

7.7 CNN-LSTM models (4)
The following is a combination of CNN and LSTM models. The model has the same parameters
as the CNN, namely filters, kernel size and pool size. Then, the LSTM layer follows with the
parameter LSTM units, which indicates the number of neurons. Next is the Dropout layer with
dropout rate. After that, the models again have a choice of the Dense layer using add dense layer
with the number of neurons dense layer. This is followed by the Dense output layer with the
activation function dense actiovation. All the parameters of the models can be seen in table 7.4.
The structure of Univariate CNN-LSTM 1 can be seen in figure 7.3(b).

Parameters 3.a 3.b 3.c 3.d
filters 208 144 48 208

kernel size 6 6 6 2
pool size 2 4 2 6

dropout rate 0.25 0.25 0.25 0.05
add dense layer True True True True

dense layer 112 176 240 80
dense activation ReLU ReLU ReLU linear

Table 7.3 Table of parameters that can be set in
the CNN model. Each column describes a unique
model variant proposed in section 7.3.

Parameters 4.a 4.b 4.c 4.d
filters 176 80 144 176

kernel size 6 4 2 2
pool size 6 2 2 6

LSTM units 160 224 96 160
dropout rate 0.25 0.2 0.25 0.0

add dense layer False True False True
dense layer - 144 - 80

dense activation linear linear linear linear
Table 7.4 Table of parameters that can be set

in the CNN-LSTM model. Each column describes
a unique model variant proposed in section 7.3.
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7.8 Bidirectional LSTM models (5)
The fifth group is the Bidirectional LSTM models. The models contain the parameter LSTM units,
which specifies the number of neurons in the LSTM unit that is in the Bidirectional layer. Sub-
sequently, the models contain a Dense layer with dense layer neurons. The last parameter is
activation function, which specifies the activation function of the Dense output layer. The de-
tailed parameters of each variant can be seen in table 7.5. The structure of the Multivariate
multi-step Bidirectional LSTM can be seen in figure 7.2(b).

Parameters 5.a 5.b 5.c 5.d
LSTM units 448 256 128 64
dense layer 208 208 208 240

dense activation linear linear ReLU linear
Table 7.5 Table of parameters that can be set in the Bidirectional LSTM model. Each column

describes a unique model variant proposed in section 7.3.

7.9 Stacked GRU models (6)
The next group is the Stacked GRU models. The parameters are similar to the Stacked LSTM
models, except that the input GRU layer has GRU units neurons. The number of hidden layers
is n layers. Each hidden layer has many neurons. In this case, only one extra layer was chosen,
which has gru 0 units neurons. This is followed by another GRU layer with gru 2 neurons neu-
rons. The models had the option of choosing the Dense layer using the parameter add dense layer
with the number of neurons dense layer. The last parameter dense activation is the activation
function of the Dense output layer. As I said, the Stacked GRU model is similar to the Stacked
LSTM model, but LSTM is replaced by GRU. In figure 7.3(a), you can see the Univariate Stacked
LSTM 1 model.

7.10 Encoder-Decoder models (7)
The last group is the Encoder-Decoder models. These models contain an encoder layer with
encoder neurons and a decoder layer with decoder neurons. Next is the Dropout layer with
the parameter dropout rate. Like all groups, the models had the option of choosing the Dense
layer using the parameter add dense layer with the number of neurons dense layer. The last
parameter dense actiovation is the activation function of the Dense output layer. A detailed
description of the hyperparameters chosen for each variation of the model can be seen in table
7.7. The structure of the Univariate Encoder-Decoder LSTM 1 model can be seen in figure 7.4(a).

Parameters 6.a 6.b 6.c 6.d
GRU units 448 448 320 96

n layers 0 0 0 1
gru 0 units - - - 160

gru 2 neurons 32 128 96 32
dropout rate 0.15 0.3 0.05 0.05

add dense layer False True False True
dense layer - 80 - 112

dense activation linear linear ReLU ReLU
Table 7.6 Table of parameters that can be set

in the Stacked GRU model. Each column describes
a unique model variant proposed in section 7.3.

Parameters 7.a 7.b 7.c 7.d
encoder 448 160 448 224
decoder 512 384 192 416

dropout rate 0.3 0.15 0.2 0.0
add dense layer True True False False

dense layer 448 512 - -
dense activation ReLU ReLU sigmoid linear

Table 7.7 Table of parameters that can be set
in the Encoder-Decoder LSTM model. Each col-
umn describes a unique model variant proposed in
section 7.3.
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(a) (b)

Figure 7.2 (a) Structure of the Multivariate multi-step LSTM model (1.d) with output and input
shapes of each layer. (b) Structure of the Multivariate Bidirectional multi-step LSTM model (6.a) with
output and input shapes of each layer.

(a) (b)

Figure 7.3 (a) Structure of the Univariate Stacked LSTM 1 model (2.a) with output and input shapes
of each layer. (b) Structure of the Univariate CNN-LSTM 1 model (4.a) with output and input shapes
of each layer.
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(a) (b)

Figure 7.4 (a) Structure of the Univariate Encoder-Decoder LSTM 1 model (7.a) with output and
input shapes of each layer. (b) Structure of the Univariate CNN 1 model (3.a) with output and input
shapes of each layer.

7.11 Chapter summary
The chapter introduced the implemented models. First, it was presented how the models were
created, how they were trained, and how the weights with the best accuracy were obtained from
the training process. Next, the implementation details were presented, precisely the shape of the
input data, which is divided into two groups: univariate and multivariate. Then the shape of
the output for 1-day prediction and 5-day prediction is presented. Next, the models themselves
were divided into groups, each containing 4 model variants. The way in which I labelled each
model variant was presented. The models and their variants were then presented along with
their hyperparameters selected in the previous chapter. At the end of the chapter, the structures
of the selected models with the shapes of the inputs and outputs of each layer were shown.



Chapter 8

Experiments and results

In this part of the thesis, the individual experiments are described. The experiments are divided
into parts according to the shape of the input and the shape of the output. The particular model
validations are shown in the tables presented in the chapter.

8.1 Experiments

Experiments were conducted for 1-day and multi-step prediction (5-day). The final evaluation
was based on the RMSE value. For 1-day prediction, RMSE is calculated from the predicted
day. For multi-step prediction, RMSE is calculated on every day of the forecast. Thus, if the
model predicts five days, the RMSE will be calculated for all five days. Then the resulting overall
RMSE is calculated, which the models tried to minimize. Thus, experiments can be divided into
predictions of 1 or more days and further based on the shape of the model input: multivariate
or univariate. The other experiment that I have done is the effect of the number of days that
the model uses for prediction. In the thesis, 10 and 15 days were tested. The last experiment
I conducted was to retrain the selected models on a larger dataset. The dataset consists of the
previous 5 years of stock data. This dataset is preprocessed the same as the last one. I would
also like to mention that a lot depends on the actual training of the model. If the model is
retrained, it can have better or worse results.

8.1.1 1-day prediction

8.1.1.1 10 days

As can be seen in table 8.1, for the 1-day prediction, the best performing model is called Uni-
variate LSTM 1 with RMSE equal to 3.807, and then the Univariate Stacked GRU 1 with 3.81
RMSE.

8.1.1.2 15 days

For the option of 15 days from which the model should predict the next day, the model called
Univariate CNN-LSTM 1 with an RMSE value of 3.956 works best. Another model with similar
results is the Univariate LSTM 1, with an RMSE value of 4.109.
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Model Dataset 10 days 15 days

Univariate LSTM 1 (1.a)
Train 3.708 3.431
Val 2.368 2.411
Test 3.807 4.109

Multivariate LSTM 1 (1.c)
Train 4.257 4.146
Val 3.052 3.408
Test 6.253 6.610

Univariate Stacked LSTM 1 (2.a)
Train 3.557 3.530
Val 2.444 2.661
Test 4.441 4.302

Multivariate Stacked LSTM 1 (2.d)
Train 3.911 3.558
Val 3.251 3.217
Test 10.075 9.575

Univariate CNN 1 (3.a)
Train 3.502 3.148
Val 2.298 2.433
Test 4.106 4.260

Multivariate CNN 1 (3.c)
Train 3.744 3.518
Val 5.338 5.224
Test 13.245 13.658

Univariate CNN-LSTM 1 (4.a)
Train 3.429 3.318
Val 2.495 2.453
Test 4.084 3.956

Multivariate CNN-LSTM 1 (4.c)
Train 5.426 4.722
Val 2.908 3.310
Test 8.747 11.926

Univariate Bidirectional LSTM 1 (5.a)
Train 3.367 3.353
Val 2.406 2.508
Test 4.030 4.124

Multivariate Bidirectional LSTM 1 (5.c)
Train 3.317 100.341
Val 3.707 173.512
Test 9.286 207.356

Univariate Stacked GRU 1 (6.a)
Train 3.556 3.359
Val 2.392 2.372
Test 3.810 4.119

Multivariate Stacked GRU 1 (6.c)
Train 4.664 4.881
Val 2.735 3.467
Test 5.480 8.332

Univariate Encoder-Decoder LSTM 1 (7.a)
Train 3.350 3.356
Val 2.377 2.507
Test 3.885 4.145

Multivariate Encoder-Decoder LSTM 1 (7.c)
Train 4.972 4.261
Val 3.090 3.158
Test 6.059 8.034

Table 8.1 Prediction of 1 day from the previous 10 and 15 days. The first column describes the
model’s name. The second column represents which dataset was used and the last two columns describe
the RMSE value of 10 used days and 15 used days.
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8.1.1.3 Overall
In general, it can be seen that for almost all models, the ones based on 10 days, from which
they have to predict the next one, work better compared to 15 days. Only for the Univariate
CNN-LSTM 1 and the Univariate Stacked LSTM 1 models, 15 days have better results than
10 days. Detailed results of all models can be seen in table 8.1.

8.1.2 5-day prediction
8.1.2.1 10 days
Another experiment is the prediction of 5 days from the previous 10 days. For this problem,
the best model is 7.b, i.e. the Univariate multi-step Encoder-Decoder LSTM model with RMSE
value equal to 5.882 overall 5 days. Another model with similar results is the model with an
overall RMSE value equal to 5.979. This model 6.b is called Univariate multi-step Stacked GRU.
The detailed outcomes of the models can be seen in Table 8.2.

8.1.2.2 15 days
The models are then evaluated based on the previous 15 days for the 5-day prediction. The best
model in this aspect was the 4.b model, i.e. the Univariate multi-step CNN-LSTM model with
an RMSE value of 6.038. The second best model with a similar value is model 6.b, i.e. the
Univariate multi-step Stacked GRU model, with an RMSE value of 6.103. The detailed results
of the models based on 15 days for predicting the next 5 days can be seen in Table 8.3.

8.1.2.3 Overall
Again, based on tables 8.2 and 8.3, it can be seen that for the prediction of 5 days, the models
that predict from the previous 10 days work better than those that predict from 15 days. For
almost all models, the 10-day variant performs better. However, some models perform better for
15 days.

8.2 Chapter summary
The chapter introduced the individual experiments. These experiments are divided according to
the shape of the input. The next division is by how many days the models used for forecasting.
In the thesis, I considered 10 and 15 days. Another division is by the number of columns
the models used for prediction. The last division is based on the number of days the models
predict. Experiments were conducted for the prediction of 1 and 5 days. The chapter contains
the performance of each model, shown in tables.
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Model Dataset t+1 t+2 t+3 t+4 t+5 overall

1.b
Train 5.179 5.632 6.482 6.462 6.636 6.105
Val 2.658 3.004 3.504 3.851 4.132 3.472
Test 3.492 4.796 5.375 7.660 8.871 6.347

1.d
Train 4.220 5.081 5.955 5.873 6.122 5.496
Val 3.151 3.893 34.683 4.249 4.591 4.151
Test 5.757 6.240 6.436 8.507 9.749 7.496

2.b
Train 3.719 4.655 5.089 5.570 5.980 5.063
Val 2.562 3.258 3.870 4.114 4.411 3.702
Test 3.931 4.807 5.766 6.895 8.223 6.115

2.d
Train 3.857 4.429 4.971 5.378 5.769 4.928
Val 2.890 3.527 3.877 4.138 4.456 3.816
Test 7.060 8.338 8.789 9.950 9.851 8.862

3.b
Train 3.962 4.621 5.598 5.723 6.118 5.264
Val 2.316 3.000 3.607 3.809 4.089 3.423
Test 4.029 5.551 5.231 7.092 8.712 6.334

3.d
Train 3.593 4.781 5.923 5.593 5.730 5.196
Val 3.988 4.591 5.513 4.184 4.946 4.676
Test 10.429 10.377 7.583 8.073 11.091 9.614

4.b
Train 4.035 4.794 5.370 5.816 6.381 5.341
Val 2.931 3.273 3.592 4.089 4.167 3.641
Test 5.005 5.622 6.072 7.857 8.513 6.749

4.d
Train 5.109 5.412 6.339 6.559 6.521 6.019
Val 2.907 3.613 3.589 3.834 4.566 3.740
Test 8.267 10.314 9.094 8.968 9.392 9.231

5.b
Train 3.710 4.488 5.134 5.558 5.922 5.025
Val 2.786 3.474 3.898 4.280 4.686 3.881
Test 3.957 4.839 5.655 6.966 8.411 6.170

5.d
Train 4.090 4.971 5.544 5.742 6.020 5.318
Val 3.440 4.288 4.493 4.168 4.733 4.247
Test 6.451 6.687 6.985 7.969 8.993 7.477

6.b
Train 3.798 4.699 5.417 5.763 6.188 5.241
Val 2.443 3.164 3.530 4.019 4.063 3.496
Test 3.712 4.450 5.536 7.233 7.887 5.979

6.d
Train 3.989 4.677 5.281 5.787 5.961 5.190
Val 3.587 4.101 4.352 4.640 4.732 4.302
Test 6.931 7.492 7.513 8.628 10.019 8.191

7.b
Train 3.289 4.198 4.943 5.568 5.943 4.882
Val 2.287 3.129 3.550 3.953 4.247 3.501
Test 3.631 5.350 5.341 6.463 7.801 5.882

7.d
Train 4.291 5.031 5.574 5.997 6.320 5.490
Val 3.532 3.683 3.875 4.073 4.355 3.914
Test 5.444 7.876 7.427 8.599 9.499 7.887

Table 8.2 Prediction of 5 days from the previous 10 days. The first column describes the label of
a model. The next column represents the dataset that was used. The following six columns represent
the RMSE value of each day. Thus, the 3rd column is the RMSE value of the first day. The 4th column
represents the RMSE value of the second predicted day, and so on. The last column defines the RMSE
value through all predicted days.
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Model Dataset t+1 t+2 t+3 t+4 t+5 overall

1.b
Train 3.474 4.309 4.919 5.375 5.681 4.817
Val 2.422 3.139 3.630 3.856 4.067 3.473
Test 3.900 4.842 6.010 7.151 8.480 6.290

1.d
Train 4.054 4.657 5.184 5.536 5.840 5.094
Val 3.150 4.081 3.848 4.040 4.229 3.888
Test 6.227 8.040 6.736 8.268 9.279 7.788

2.b
Train 3.537 4.367 5.048 5.453 5.764 4.899
Val 2.548 3.255 3.709 4.002 4.218 3.596
Test 4.158 5.008 5.533 7.176 8.458 6.261

2.d
Train 4.581 5.093 5.574 5.848 6.149 5.477
Val 3.607 3.999 4.409 4.529 5.067 4.350
Test 6.371 7.449 7.964 9.690 10.052 8.419

3.b
Train 3.474 4.262 4.755 5.201 5.380 4.666
Val 2.335 3.100 3.740 4.085 4.412 3.611
Test 4.325 5.286 6.879 7.547 8.841 6.769

3.d
Train 3.789 4.403 4.963 5.252 5.531 4.828
Val 4.716 5.675 6.282 6.561 6.522 5.992
Test 10.345 12.746 10.837 14.760 16.154 13.159

4.b
Train 3.360 4.198 4.835 5.305 5.611 4.731
Val 2.417 3.118 3.678 3.915 4.192 3.521
Test 3.799 4.735 5.843 6.875 8.002 6.038

4.d
Train 5.172 5.706 6.194 5.786 5.973 5.776
Val 3.537 4.441 4.001 4.461 5.139 4.349
Test 7.518 7.219 11.697 9.491 13.248 10.110

5.b
Train 3.422 4.214 4.844 5.242 5.452 4.693
Val 2.530 3.330 3.930 4.238 4.636 3.805
Test 3.976 4.742 6.095 7.252 8.947 6.451

5.d
Train 4.506 5.371 5.705 5.818 7.041 5.747
Val 3.740 4.490 4.598 4.890 5.873 4.768
Test 8.470 11.356 12.320 14.428 10.822 11.642

6.b
Train 3.625 4.574 5.211 5.651 5.850 5.047
Val 2.647 3.127 3.530 3.770 3.958 3.439
Test 4.546 4.727 5.542 6.749 8.184 6.103

6.d
Train 4.912 5.472 5.735 6.060 6.346 5.726
Val 2.967 3.368 3.672 3.893 4.157 3.635
Test 5.798 7.907 9.522 10.566 10.057 8.940

7.b
Train 3.565 4.310 4.833 5.231 5.491 4.736
Val 2.718 2.958 3.459 3.724 3.931 3.389
Test 3.665 6.304 5.932 7.142 8.361 6.469

7.d
Train 3.908 4.640 5.164 5.528 5.823 5.058
Val 3.379 3.543 3.794 3.981 4.222 3.796
Test 5.369 8.126 7.248 8.513 9.496 7.874

Table 8.3 Prediction of 5 days from the previous 15 days. The first column describes the label of
a model. The next column represents the dataset that was used. The following six columns represent
the RMSE value of each day. Thus, the 3rd column is the RMSE value of the first day. The 4th column
represents the RMSE value of the second predicted day, and so on. The last column defines the RMSE
value through all predicted days.
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Chapter 9

Discussion

In this chapter, a discussion of the individual experiments is presented. It also points out the
flaws of the repeatedly used 1-day prediction, which can be found in most scientific papers.
This method is compared with the multi-step prediction. Subsequently, the best model is tested
to predict the specific 5 days of the test dataset. Then a discussion about the experiment with
a larger dataset is presented.

9.1 Iterative 1-day vs multi-step prediction
In this thesis, I try to highlight the problem of many articles that address the topic of stock
market prediction. Most of the papers try to predict only 1 day, which is not applicable in
practice for many reasons.

The first reason is that the predicted day is further used for the next prediction. Since no
model is error-free, the error produced by the prediction of the first day is reflected in the next
day’s forecast since the model uses this incorrectly predicted day to predict the next one. The
consequence is that the resulting error increases exponentially.

Another problem is that the models mentioned in the papers learn to predict almost the
same number they got on the last day of the input. In practice, the papers show figures that are
similar to picture 9.4. The graph is excellent, and many people will say that the model predicts
beautifully, but if the figure is zoomed in, its shortcomings become apparent. As you can see in
image 9.5, the entire prediction is shifted by 1 day to the right. As mentioned, this is because the
model has learned to return a very similar number to what it was on the last day of input data.
The biggest problem with this approach is that if the model were to predict 5 days iteratively,
the resulting prediction would just become a straight line, as you can see in figure 9.1. This
makes this type of prediction useless in practice. A better approach is multi-step prediction,
which you can see in figure 9.3. The trained models try to predict 5 days ahead and not just 1.

I want to mention that only the selected univariate model was used in the thesis for iterative
prediction since all my models predict only close prices. The multivariate model could not use
this predicted value and thus could not predict iteratively.

9.2 Multi-step prediction
Figure 9.2 shows the multi-step prediction for the test data. This is specifically a prediction of
5 days ahead of each point. As you can see, the model tried to capture the pattern in the data,
but the data are so different from each other that it failed to do so. It can predict some days
quite well, but it could have happened by chance.
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Figure 9.1 Example of an iterative 1-day prediction. As you can see, the model is unusable. The
5 days mentioned are days from the penultimate week of test data.

Figure 9.2 Graph showing the 5-day prediction of the best multi-step model. Specifically, this is the
test data set.

9.3 Last 5 days prediction

For the selected models, the prediction was tested on the last 5 days of the test dataset. The
results can be seen in figure 9.3. However, this is only for the selected 5 days. For other choices
of data, the results might be completely different. As you can see, the model tried to capture
a specific pattern. However, it is essential to note that it is highly dependent on the choice of
data and the actual training of the model.
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Figure 9.3 Example of the best multi-step model. The model is evaluated on last 5 days of testing
data.

9.4 Larger dataset

The selected models that were most successful for both the 1-day and 5 days predictions were
used and retrained on larger data to test if the prediction success rate would increase. This
success rate did not improve, and for example, for the best model (7.b) for the 5-day prediction,
the overall RMSE increased to 7.725. For the 1-day prediction, the resulting difference was not
as significant. The RMSE increased to 4.754 for model 1.a, which was the best one-step model.

Figure 9.4 Example of the best model that predicts 1-day prediction. The model is trained on data
collected over a period of 5 years. The graph shows the training data.
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Figure 9.5 Example of the best model for 1-day prediction. The model is evaluated on test data of
a data collected over a period of 5 years.

9.5 Selection of best model
Since the 1-day prediction is useless in practice, as I showed above, I can eliminate all models
that predict only 1 day. This leaves only multi-step models, for which the choice of data and
also the learning itself is very important, as the RMSE can vary by as much as 0.5. For my
particular training and my particular data, the Encoder-Decoder multi-step LSTM model works
best, specifically its univariate variant, i.e. model 7.b. The model is tested to predict 5 selected
days of test dataset, which can be seen in figure 9.3.

9.6 Future work
Many improvements are on the table for the future. The primary change from the current
solution is to use world news or posts on social networks that relate to a given stock market in
a prediction. Subsequently, obtaining the sentiment of these news headlines will determine the
news’s emotion. People react based on these emotions, so it is pivotal to include the given feature
in the work. Extracting the sentiment of the news itself can be done by using the LSTM model
that has been introduced in the thesis. There are other possibilities here, and it is essential to
explore the issue further.

9.7 Chapter summary
The chapter highlighted the problem of repeatedly using a 1-day prediction. It was explained
why this method is flawed and was compared with a multi-step approach that had better results.
Furthermore, the selected model for multi-step prediction was tested on the last 5 days of the
test dataset. The same was done for the iterative 1-day prediction where the mentioned problems
could be shown. At the end of the chapter, the best multi-step model and the best 1-day model
were tested on a larger dataset containing data collected over 5 years. Also, the future work that
can be done was mentioned. Also, adding a sentiment of news headlines was noted, which can
help to improve the models.
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Conclusion

The main aim of this work was to create a model with the highest accuracy in predicting selected
stock market. Firstly, a literature overview of existing solutions was carried out. The research is
divided into several parts. The first part is the traditional statistical approach. The exploration
shows that this approach is not as successful as the ML approach. The survey showed that the
most commonly used models in ML are CNN, LSTM and GRU. However, even this approach
is not the best and has its shortcomings mentioned in this thesis. Next, papers that take into
account both historical data and news from the world that affect the development of stock prices
are presented. The last approach is fundamental analysis, which aims to analyse the company
as a whole.

The most famous models were explained and implemented in the next chapters. Each model
has 4 variations based on the input and output shape. These variations are Univariate, Univariate
multi-step, Multivariate and Multivariate multi-step. The optimal hyperparameters for each
model were tuned using the KerasTuner tool. From the tuner, the untrained models with the
best hyperparameters were created. The models were further trained on selected training data.

The data on which the models were trained and validated were selected from Yahoo Finance
website, which provides individual stock markets and their historical data. The stock market
that the models attempted to predict is the ETF SXR8.DE, which replicates the S&P 500 index,
which is one of the most famous indexes in the world. The basic description and statistical
description of the data were provided. The data had to be split and preprocessed. Since the
input and output shape differs for each problem, the preprocessing part had to be done separately
for each of them.

Later, the models were evaluated for both 1-day and 5-day predictions of the selected stock
market. In addition, several different approaches have been suggested as to how each model is
evaluated. The results show that the best model is the Univariate LSTM 1 model for 1-day
prediction and the Univariate multi-step Encoder-Decoder LSTM model for 5-day forecasting.
The model Univariate LSTM 1 had an RMSE equal to 3.807 on testing data. Similarly, the
Univariate multi-step Encoder-Decoder LSTM model had an overall RMSE equal to 5.882 on
testing data. Based on the results from the experiments, the best model was selected and then
tested on a larger dataset.

In the thesis, I also warn about the iterative reuse of single-day prediction in order to predict
multiple days. Many papers show prediction charts and claim that the model predicts well.
However, the experiments proposed in this work show that this approach is unusable as the
predictions are biased by the overfitting of the models.

The main goal of the thesis and all the sub-goals were successfully fulfilled. There are still
many improvements that can be applied in order to increase the model accuracy. For example,
adding sentiment of news headlines or tweets related to the selected stock market, as these things
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have a significant influence on the price development. How the sentiment of news headlines can
be obtained is described in section 9.6. Since I am interested in this topic, I have decided to
work on the topic as part of the VýLeT (Výzkumné léto na FIT) programme, where I would like
to integrate news and tweets sentiments into the selected models.
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//kam.fit.cvut.cz/bi-vzd/lectures/index.html.

13. NIELSEN, Michael A. Neural networks and deep learning. Determination press San Fran-
cisco, CA, USA, 2015.

14. OLAH, Christopher. Understanding LSTM Networks. 2015. Available also from: http :
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

15. LIPTON, Zachary C.; BERKOWITZ, John; ELKAN, Charles. A Critical Review of Recur-
rent Neural Networks for Sequence Learning. arXiv, 2015. Available from doi: 10.48550/
ARXIV.1506.00019.

16. CHEN, Gang. A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation.
arXiv, 2016. Available from doi: 10.48550/ARXIV.1610.02583.

17. WERBOS, P.J. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE. 1990, vol. 78, no. 10, pp. 1550–1560. Available from doi: 10.1109/5.58337.

18. PASCANU, Razvan; MIKOLOV, Tomas; BENGIO, Yoshua. On the difficulty of training
recurrent neural networks. In: International conference on machine learning. 2013, pp. 1310–
1318.

19. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-term Memory. Neural com-
putation. 1997, vol. 9, pp. 1735–80. Available from doi: 10.1162/neco.1997.9.8.1735.

20. GERS, Felix A.; SCHMIDHUBER, Jürgen; CUMMINS, Fred. Learning to Forget: Continual
Prediction with LSTM. Neural Computation. 2000, vol. 12, no. 10, pp. 2451–2471. Available
from doi: 10.1162/089976600300015015.

21. GERS, Felix; SCHMIDHUBER, Jürgen; CUMMINS, Fred. Learning to Forget: Continual
Prediction with LSTM. Neural computation. 2000, vol. 12, pp. 2451–71. Available from doi:
10.1162/089976600300015015.

22. STAUDEMEYER, Ralf C; MORRIS, Eric Rothstein. Understanding LSTM–a tutorial into
long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586. 2019.

23. SHERSTINSKY, Alex. Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020, vol. 404, p. 132306.
issn 0167-2789. Available from doi: https://doi.org/10.1016/j.physd.2019.132306.

24. GERS, Felix; SCHMIDHUBER, Jurgen. Recurrent nets that time and count. In: 2000, vol. 3,
189–194 vol.3. isbn 0-7695-0619-4. Available from doi: 10.1109/IJCNN.2000.861302.

25. CHEN, Jing; HUANG, Xinyu; JIANG, Hao; MIAO, Xiren. Low-Cost and Device-Free Hu-
man Activity Recognition Based on Hierarchical Learning Model. Sensors. 2021, vol. 21,
p. 2359. Available from doi: 10.3390/s21072359.

26. CHO, Kyunghyun; MERRIENBOER, Bart van; BAHDANAU, Dzmitry; BENGIO, Yoshua.
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv,
2014. Available from doi: 10.48550/ARXIV.1409.1259.

https://doi.org/10.1109/ICACCI.2017.8126078
https://doi.org/10.1109/ICACCI.2017.8126078
https://doi.org/10.3390/w11071387
https://kam.fit.cvut.cz/bi-vzd/lectures/index.html
https://kam.fit.cvut.cz/bi-vzd/lectures/index.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.48550/ARXIV.1506.00019
https://doi.org/10.48550/ARXIV.1506.00019
https://doi.org/10.48550/ARXIV.1610.02583
https://doi.org/10.1109/5.58337
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.3390/s21072359
https://doi.org/10.48550/ARXIV.1409.1259


Bibliography 55

27. CHUNG, Junyoung; GULCEHRE, Caglar; CHO, KyungHyun; BENGIO, Yoshua. Empir-
ical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv, 2014.
Available from doi: 10.48550/ARXIV.1412.3555.

28. CUI, Zhiyong; KE, Ruimin; PU, Ziyuan; WANG, Yinhai. Deep Bidirectional and Unidirec-
tional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction. arXiv,
2018. Available from doi: 10.48550/ARXIV.1801.02143.

29. ALTHELAYA, Khaled A.; EL-ALFY, El-Sayed M.; MOHAMMED, Salahadin. Stock Mar-
ket Forecast Using Multivariate Analysis with Bidirectional and Stacked (LSTM, GRU). In:
2018 21st Saudi Computer Society National Computer Conference (NCC). 2018, pp. 1–7.
Available from doi: 10.1109/NCG.2018.8593076.

30. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. MIT press,
2016.

31. GRAVES, A.; SCHMIDHUBER, J. Framewise phoneme classification with bidirectional
LSTM networks. In: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. 2005, vol. 4, 2047–2052 vol. 4. Available from doi: 10.1109/IJCNN.2005.
1556215.

32. SCHUSTER, Mike; PALIWAL, Kuldip. Bidirectional recurrent neural networks. Signal Pro-
cessing, IEEE Transactions on. 1997, vol. 45, pp. 2673–2681. Available from doi: 10.1109/
78.650093.

33. ARISOY, Ebru; SETHY, Abhinav; RAMABHADRAN, Bhuvana; CHEN, Stanley. Bidi-
rectional recurrent neural network language models for automatic speech recognition. In:
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2015, pp. 5421–5425. Available from doi: 10.1109/ICASSP.2015.7179007.

34. CHO, Kyunghyun; MERRIENBOER, Bart van; GULCEHRE, Caglar; BAHDANAU, Dzmitry;
BOUGARES, Fethi; SCHWENK, Holger; BENGIO, Yoshua. Learning Phrase Representa-
tions using RNN Encoder-Decoder for Statistical Machine Translation. arXiv, 2014. Avail-
able from doi: 10.48550/ARXIV.1406.1078.

35. MEHTAB, Sidra; SEN, Jaydip; DUTTA, Abhishek. Stock Price Prediction Using Ma-
chine Learning and LSTM-Based Deep Learning Models. In: THAMPI, Sabu M.; PIRA-
MUTHU, Selwyn; LI, Kuan-Ching; BERRETTI, Stefano; WOZNIAK, Michal; SINGH,
Dhananjay (eds.). Machine Learning and Metaheuristics Algorithms, and Applications. Sin-
gapore: Springer Singapore, 2021, pp. 88–106. isbn 978-981-16-0419-5.

36. LECUN, Yann; BENGIO, Y. Convolutional Networks for Images, Speech, and Time-Series.
In: 1995.

37. HOSEINZADE, Ehsan; HARATIZADEH, Saman. CNNPred: CNN-based stock market pre-
diction using several data sources. arXiv, 2018. Available from doi: 10.48550/ARXIV.1810.
08923.

38. GAMBOA, John Cristian Borges. Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887. 2017.

39. YAMASHITA, Rikiya; NISHIO, Mizuho; DO, Richard Kinh Gian; TOGASHI, Kaori. Con-
volutional neural networks: an overview and application in radiology. Insights into Imaging.
2018, vol. 9, no. 4, pp. 611–629. issn 1869-4101. Available from doi: 10.1007/s13244-018-
0639-9.

40. O’SHEA, Keiron; NASH, Ryan. An Introduction to Convolutional Neural Networks. arXiv,
2015. Available from doi: 10.48550/ARXIV.1511.08458.

41. LIVIERIS, Ioannis E.; PINTELAS, Emmanuel; PINTELAS, Panagiotis. A CNN–LSTM
model for gold price time-series forecasting. Neural Computing and Applications. 2020,
vol. 32, no. 23, pp. 17351–17360. issn 1433-3058. Available from doi: 10.1007/s00521-
020-04867-x.

https://doi.org/10.48550/ARXIV.1412.3555
https://doi.org/10.48550/ARXIV.1801.02143
https://doi.org/10.1109/NCG.2018.8593076
https://doi.org/10.1109/IJCNN.2005.1556215
https://doi.org/10.1109/IJCNN.2005.1556215
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/ICASSP.2015.7179007
https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1810.08923
https://doi.org/10.48550/ARXIV.1810.08923
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.48550/ARXIV.1511.08458
https://doi.org/10.1007/s00521-020-04867-x
https://doi.org/10.1007/s00521-020-04867-x


56 Bibliography



Contents of attached medium

README.md........................................a brief description of medium structure
thesis.......................directory with source codes of the text of the bachelor thesis

text ............................................................. directory with text
ctufit-thesis.tex......................................source of the thesis in LATEX
thesis.pdf ...................................................... thesis in PDF form

src.................................................. source codes of the implementation
README.md...................................a brief description of the implementation
requirements.txt.......................required libraries used in the implementation
stock prediction.ipynb...........................source code of the implementation
datasets.........................................datasets used in the implementation

57


	Acknowledgments
	Declaration
	Abstrakt
	List of abbreviations
	Introduction
	Goals
	Approach
	Thesis structure

	Related work
	Chapter summary

	Theoretical background
	Introduction to neural networks 
	Perceptron
	Activation functions
	Multi-layer perceptron (feed-forward ANN)
	Loss function
	Backpropagation

	Recurrent neural networks
	Backpropagation through time
	RNN limitations
	Gradient problems

	Long short-term memory
	Original version
	Modern LSTM structure
	Forget gate
	Input gate
	Output gate

	LSTM variants
	Gated recurrent unit
	Stacked or Unidirectional architectures
	Stacked LSTM, Stacked GRU

	Bidirectional architectures
	Bidirectional RNN
	Bidirectional LSTM, Bidirectional GRU

	Encoder-Decoder
	Encoder
	Decoder

	Convolutional neural network
	Convolutional layer
	Pooling layer
	Fully connected layer
	The overall structure of CNN

	CNN-LSTM
	Chapter summary

	Implementation
	Keras and TensorFlow
	LSTM and GRU layer
	CNN layers
	Bidirectional layer
	Encoder-Decoder layers

	Google Colaboratory
	Chapter summary

	Data
	Data selection
	Data collection
	Data description
	Statistical description of the ``Close" column

	Data splitting
	Division by type of prediction
	Prediction of 1 day ahead
	Multi-step prediction

	Data preprocessing
	Separation of tasks
	Preprocessing of input data
	Preprocessing of output data
	Normalization

	Chapter summary

	Hyperparameter tuning
	Grid Search
	Grid Search and time series
	KerasTuner
	Defining the search space
	Selection of a tuner
	Getting a model from KerasTuner

	Chapter summary

	Proposed models
	Model training
	Implementation details
	Model labelling
	LSTM models (1)
	Stacked LSTM models (2)
	CNN models (3)
	CNN-LSTM models (4)
	Bidirectional LSTM models (5)
	Stacked GRU models (6)
	Encoder-Decoder models (7)
	Chapter summary

	Experiments and results
	Experiments
	1-day prediction
	5-day prediction

	Chapter summary

	Discussion
	Iterative 1-day vs multi-step prediction
	Multi-step prediction
	Last 5 days prediction
	Larger dataset
	Selection of best model
	Future work
	Chapter summary

	Conclusion
	Contents of attached medium

