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Annotation

This bachelor thesis presents a camera based vision system for an autonomous
formula participating in the Formula Student Driverless competition. In the
competition, the car autonomously drives several laps on a racing track marked
by traffic cones. The objective of the visual perception system is to obtain
3D positions of traffic cones, which are visible in the camera image, creating
a local map of the scene. The local map of the scene is subsequently used for
planning the car’s trajectory by its autonomous system. The presented vision
system uses a neural network based object detection model YOLOv3 to detect
traffic cones in an RGB image, achieving 85.3 mAP at 259 FPS. The traffic cone
detections as bounding boxes are converted to the cone base centers, which are
subsequently projected by a homography into the car’s coordinate system. The
proposed perception system achieves localization error of 0.247 meters for traffic
cones up at 10 meter distance from the car. The thesis also proposes a method
for automatically estimating the homography mapping between the image and
the ground plane based on the current scene. This is done by robustly finding
the correspondences between image and lidar–based detections of traffic cones.

Key-words: Object detection, YOLO, RANSAC, Camera calibration, Autonomous
driving, Formula Student Driverless

Anotace

Tato bakalářská práce prezentuje kamerový systém pro autonomńı formuli,
která se účastńı univerzitńı soutěže Formula Student Driverless. V této soutěži,
plně autonomně ř́ızené formule jezd́ı po závodńım okruhu vyznačeném pomoćı
dopravńıch kužel̊u. Ćılém kamerového systému formule je źıskat 3D pozice do-
pravńıch kužel̊u viditelných na obrazu z kamery a t́ım vytvořit lokálńı mapu ob-
lasti před formuĺı. Źıskaná mapa okoĺı formule je následně použita k plánováńı
trajektorie j́ızdy autonomńım systémem formule. Představený kamerový systém
využ́ıvá algoritmus pro detekci objekt̊u YOLOv3, který je založen konvolučńıch
neuronových śıt́ıch, na detekci dopravńıch kužel̊u v RGB obrazu. Detektor
kužel̊u dosahuje 85.3 mAP př́ı 259 sńımćıch za sekundu. Detekce kužel̊u v
obraze jsou následně projektovány do souřadného systému formule pomoćı
předem spoč́ıtaného projektivńıho mapováńı mezi souřadným systém obrazu
a souřadným systémem formule. Představený systém dosahuje pr̊uměrné lo-
kalizačńı chyby 0.247 metr̊u pro dopravńı kužely vzdálené až 10 metr̊u. Tata
práce dále představuje algoritmus pro automatickou kalibraci kamery, pomoćı
estimace projektivńıho mapováńı mezi obrazem z kamery a rovinou tratě. Toto
je dosaženo pomoćı robustńıho hledáńı koresponduj́ıćıch detekćı dopravńıch
kužel̊u v obrazu a ve scéně.

Keywords: Detekce objekt̊u, YOLO, RANSAC, Kalibrace kamery, Autonomńı
ř́ızeńı, Formula Student Driverless
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1 Introduction
This bachelor thesis presents a camera based vision system of an autonomous formula
of the team FEE eForce Driverless, participating in the Formula Student Driverless
competition. Formula Student Driverless is a world-wide university competition, in
which each year teams compete in building an autonomous formula.

This thesis aims to provide a perception system for the purpose of autonomously
driving through a race track marked by traffic cones. The task of the vision system
is to compute the 3D positions of the cones in real time using a single RGB camera.
The positions of the cones seen through the camera are then used by the car’s
autonomous system to drive.

The thesis has the following structure, in the rest of the section 1, we give context
for the competition disciplines the perception system is designed to operate in. We
also provide brief overview of the car’s autonomous system that the perception
pipeline presented in this thesis is built to work within. In section 2 we outline the
theoretical background and present the design of each part of the perception system.

Figure 1: The eForce Driverless formula during the trackdrive discipline at FSD
Germany 2021.
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1.1 Formula Student Driverless

1.1 Formula Student Driverless
In the Formula Student Driverless competitions, there are static and dynamic dis-
ciplines. The static disciplines are focused on rating the car’s design, the documen-
tation of each of the car’s systems, and the management of the team. In dynamic
disciplines, the physical and autonomous capabilities of the car are tested. In all
dynamic disciplines, the car is placed on a track, marked by four types of traffic
cones, as depicted in Figure 2. There are four different dynamic disciplines; there is
Acceleration, Skid-pad, Trackdrive and Autocross.

Figure 2: The traffic cone variants used to delineate the track in dynamic disciplines.
The big orange with two stripes is used to make the start and end of the race
track. Blue and yellow cones are used to mark the left and right sides of the road,
respectively.

In the acceleration dynamic event, depicted in Figure 3, the car has to drive
through a straight track as fast as possible. The acceleration discipline is designed
to test the car’s speed capabilities as well as it’s ability to steer in a stable way to
keep a straight direction.

Figure 3: Layout of the acceleration dynamic discipline.

In the skid-pad dynamic event, the car has to drive in an eight-shaped circuit, as
depicted in Figure 4. The car first drives two laps on the right side of the track and
then transitions and drives two laps on the left side after which it exits the track.
The skidpad discipline tests the ability of the autonomous system to correctly track
the stage the car is in and execute the following transitions.

The trackdrive and autocross dynamic disciplines are similar to each other. They
both consist of driving in a closed–loop unknown track of length up to 1 km. The
difference being that in the trackdrive discipline, the car has to drive only a single
lap, while in the autocross the car drives 10 laps. By measuring only a single lap

2



1.2 Autonomous System

time in the trackdrive, the focus is put on the car’s ability to drive through a track
it has never seen before, while in the autocross discipline the focus is on the car’s
ability to adapt to the track and optimize its driving driving throughout the 10 lap
drive. In Figure 1 you can see FEE eForce Driverless formula driving through a
trackdrive track.

Figure 4: Layout of the skid-pad dynamic discipline.

1.2 Autonomous System
The autonomous system of the car is responsible for everything from observing
the environment using sensors, planning a trajectory through the track from the
observations and sending the right commands to the car’s actuators to correctly
follow a trajectory. In Figure 6 you can see the design of our car’s autonomous
system. All the nodes can be divided into several categories, the Perception node’s
objective is to build a local map of the scene in front of the car, while nodes such as
Reactive-path planning, SLAM and Optimal path-planning use that information to
plan the actions the car should take and finally the Motion control node’s task is to
make the car follow the planned path by sending commands to the car’s actuators.

1.2.1 Sensors

For visual sensors, we use a single RGB camera, specifically the ZED1 model. The
camera mounted on the main hoop of the car, as can be seen in ??, provides us
with an RGB image of the scene in front of the car, which is then used to detect
and localize the traffic cones visible in the image, by the perception system, which
is the subject of this thesis. The car also uses a LIDAR, specifically the OUSTER1
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1.2 Autonomous System

lidar

camera

Figure 5: Photo of the FEE eForce Driverless autonomous formula. The lidar is
positioned on the front wing and the camera is mounted on the main hoop of the
car.

LIDAR, as an alternative vision sensor, although so far it is being used only as a
secondary option, mainly for camera calibration, due to the difficulty of discerning
the colors of objects, that is needed to differentiate between different types of traffic
cones.

The car also contains an INS, or inertial navigation system, providing the Au-
tonomous system with the car’s position in the world coordinates, as well as with
the car’s current orientation and speed. The car’s position and orientation are then
used in the SLAM node for mapping and localization. The CAN system of the car
also provides the autonomous system with readings from several internal car sensors,
such as the wheel speed.

Figure 6: Diagram of the individual components making up the autonomous system
of our driverless formula.

1.2.2 Autonomous driving

Even though for each dynamic disciple a specific driving strategy is employed, our
autonomous system works in two different modes of driving: the reactive and optimal
driving mode. The reactive driving mode means the car is driving through a track
it has never seen before. It drives based only on the current picture of the scene in
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1.2 Autonomous System

front of the car provided by the RGB camera. A more conservative path and speed
profile are computed by the Reactive Path-planning node, which is subsequently
passed to the Motion control node that sets the torque and steering angle of the
wheels for the car to drive along the planned trajectory. The reactive driving mode
is used for the Accelaration, Autocross and the first lap of the Trackdrive dynamic
disciplines.

The optimal driving mode requires a map of the whole track to be known, there-
fore it is only used for the autocross dynamic discipline, since the other disciplines
consist of driving through a track only a single time. During the autocross disci-
pline, while the car is driving reactively, the SLAM node of the Autonomous system
is using the bird-eye view frames from the perception node combined with the car’s
world position and velocity vector provided by the INS to build a map of the track.
When a map of the whole track is built, the car switches to the optimal driving
mode. The map of the track is passed to the optimal path planning [1] node that
computes an optimal path and speed profile for the whole track based on the car’s
physical capabilities.

5



2 Related Work

2.1 Object detection
The task of object detection consists of detecting objects in an image by predicting
bounding boxes around them and correctly determing the class of each detected
object. It is a common and popular problem, that has been studied in the fields of
computer vision and artificial intelligence for several decades.

Most notable historical approaches, before the rise of neural networks in popu-
larity, include the Viola-Jones [2] and HOG object detectors [3]. The Viola-Jones
detector would perform facial detection by splitting the task into two steps. Sliding
window would be moved across the image to check for all possible face locations, on
which subsequently an AdaBoost face recognition model, trained on predefined fea-
tures would be used to determine whether the current window contained an image
of a face. The HOG(histogram of oriented gradients) detector, worked by dividing
the image into a grid of cells. From the pixels within each cell, directional gradients
would be computed, conceptually representing edges and regional color transitions of
objects. This regional map of gradients, called HOG feature descriptor, would then
be used to train a support vector machine [4] classifier, which would then determine
if an object is present in a given region of an image.

In 2012, new state-of-the-art result has been achieved in image classification
by convolutional neural network(CNN) [5] model AlexNet [6]. Demonstrating the
CNNs ability of automatically learning features from large sets of images. Aswell as
starting a new trend of research in the fields of computer vision and artificial intel-
ligence focused on neural networks. In 2013, the R-CNN (Regions with CNNs) [7]
object detection model set the new state-of-the-art result by achieving mean average
precision (mAP) of 58.5% on the VOC-2007 dataset [8] compared to the previous
state-of-the-art of 33.7%. The R-CNN detector, split the task into several steps,
first using a selective search algorithm, it would generate 2000 proposed regions
in the image, subsequently for each region, a 4096 dimensional feature vector was
computed, using a pretrained CNN image classification model stripped of its last
layer. Subsequently an SVM [4] classifier was trained to detect presence of an object
within the proposed region and to correctly predict object’s class. Due to a large
number of candidate regions to classify per image, each test image took around a
minute of computation time, making the model not viable for real time detection.
In the following years, there have been several models improving on the R-CNN,
notably the SPPNet [9], Fast R-CNN [10] and Faster R-CNN(2015) [11], achieving
new state-of-the-art results in terms of both mAP and detection speed, Faster R-
CNN achieving 73.20% mAP on the VOC-2007 [8] dataset with detection speed of 6
images per second. Due to splitting the object detection task into two stages, stage
of region proposing and stage of region classification, these detectors are commonly
referred to as “two stage object detectors” [12].

In 2016, object detection model YOLO(You Only Look Once) [13] was intro-
duced, achieving significantly better detection speeds, 45 frames per second (FPS)
for the large version of the model and 155 FPS for the smaller version, while achiev-
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2.2 YOLO

ing competitive mAP with the state-of-the-art detectors at the time. The YOLO
approach, is to frame the object detection task as a single regression problem, on
which a convolutional neural network is trained end-to-end, receiving an image as
input and outputting positions of bounding boxes and their classes as output. Fol-
lowing the original YOLO paper, there have been several publications improving
the original YOLO algorithm, namely YOLO9000 [14] and YOLOv3 [15], aswell
as proposing other models, also using a single CNN end-to-end approach to object
detection, such as SSD (Single Shot Multi-box Detector) [16], Retina-net [17] and
SqueezeDet [18], matching and surpassing the two-stage detectors both in mAP and
in detection speed. These models are commonly referred to as “single stage object
detectors” [12].

2.2 YOLO
As mentioned in subsection 2.1, YOLO is a CNN based object detection architec-
ture known for achieving a low detection time, while being competitive in terms
of accuracy with other state-of-the-art object detection models. Since the first
YOLO paper, the original authors published two more papers, YOLO9000 [14] and
YOLOv3 [15], introducing several innovations to the model with each version, each
time imporoving the models performance. In this section, we first give a brief de-
scription of how the original YOLO model was designed and subsequently highlight
the key innovations introduced in the second and the third versions of YOLO.

Figure 7: Depiction of how the YOLO neural network splits the image into an S×S
grid of cells, generates predictions for each one and finally filters out detections with
low confidence and reduces overlapping detections using non-maximum supression.

The YOLO object detection process can be divided into three separate steps.
First, the image is rescaled to a pre-defined, typically square, resolution, eg. 448x448.
Secondly, the rescaled image is passed through a convolutional neural network re-
turning the predictions encoded as a tensor of shape S × S ×B × (5 +C). Meaning
the YOLO network divides the image into a even S×S grid of cells. For each cell it
predicts B bounding boxes, where each bounding box prediction contains probability
that the cell contains an object p, center coordinates (x, y), width and height (w, h)
and C class probabilities for the object inside the bounding box. Lastly, all bounding
box predictions with confidence below a predefined confidence threshold are filtered
out and overlapping bounding box predictions of the same class are reduced using
the non-maximum supression method to avoid detecting the same object multiple
times. The process of splitting the image into a grid, generating detections and
lastly selecting the best predictions is depicted on Figure 7.
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2.2 YOLO

The YOLO network is trained using a multipart cost function, combining three
different losses: object loss, box loss and classification loss. During training, for each
ground truth bounding box a cell containing the bounding box center is selected
as “responsible” for its detection. From the B bounding boxes, predicted by the
selected cell, the bounding box with the highest IOU(intersection over union) with
the ground truth box is selected. The object loss incentivices the network to predict
p = 1 for selected bounding boxes and p = 0 for the other bounding boxes. The
box and classification losses, representing the predicted bounding boxes and the
predicted class probabilities are computed only for the selected boxes.

The YOLO convolutional neural network can be divided into two parts, the back-
bone and the head. The backbone part, comes first in the network, fulfilling the task
of feature extraction from the image. After the backbone comes the head, turning
the extracted features into the detection tensor. The backbone part of the network
is typically pretrained on an image classification dataset such as ImageNet [19], so
that when the network is trained on the task of object detection, it already has a
preexisting knowledge about extracting object features from images.

2.2.1 YOLOv2

In the first version of YOLO, height and width of each bounding box is predicted
directly, leaving the problem of learning object aspect ratios for the network to learn.
In YOLOv2 [14], the concept of anchor boxes was introduced, instead of having the
network predict the bounding box size directly, it predicts an offset to a predefined
width to height ratio, called an anchor box. Anchor boxes provide the network with
prior information about the width to height ratio of objects it is detecting. For
example, pedestrians have a width to height ratio of around 1 : 3, while cars have
a width to height ratio of about 3 : 1. Giving the network this information before
training, insentivises it to detect humans with the first and cars with the second
bounding box, assuming B = 2. The anchor box values are typically computed by
clustering width to height ratios of all objects in the training dataset using k-means
algorithm.

2.2.2 YOLOv3

In the first and second versions of YOLO, the features extracted by the backbone
were through several convolutional layers transformed to form an S × S ×B × (5 +
C) prediction tensor. In YOLOv3, a method of predicting multiple predictions at
multiple different scales, inspired by feature pyramid networks [20], was introduced.
Three prediction tensors of three grid sizes would be predicted, doubling the grid size
with each prediction tensor. The network would first predict a S×S×B1× (5+C),
then a (2 · S) × (2 · S) × B2 × (5 + C) and lastly a (4 · S) × (4 · S) × B3 × (5 + C)
prediction tensor. The three prediction tensors would be merged together into a
single tensor of shape N ×N ×B× (5+C). Adding multi-scale detections increased
YOLO’s detection accuracy, especially at detecting smaller objects [15].
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2.3 RANSAC

2.3 RANSAC
RANSAC or Random Sample Consensus [21], is a general and robust algorithm
for fitting mathematical models on data containing outliers. RANSAC works by
iteratively selecting random subsets of points of minimal size to determine the model,
using the drawn subsets. Subsequently, it computes the model’s error for each data
point. Data points with errors less than a predefined threshold are considered inliers
and points with errors above the threshold are considered outliers. If the number
of inliers is high enough, the algorithm recomputes the model on all inliers and
terminates, otherwise another random subset is selected and the algorithm continues.
In Algorithm 1, overview of the basic RANSAC algorithm is given.

Algorithm 1 RANSAC basic algorithm outline

Parameters:
select size - number of points selected for computing model (typically the mini-
mum number of points needed for model estimation)
max iters - maximum number of iterations
threshold - error threshold for data points to be considered inliers
min inlier ratio - ratio of inlier to dataset size required to terminate the model

iter = 1
while iter <= max iters do
1. Random select

Randomly select set of select size points to be used for fitting a model.
2. Fitting a model
Fit a model on select size selected points.

3. Compute Error
Compute error for each data point, for the computed model and select the
points with error less than threshold as a set of inliers.

4. Termination condition
If the fraction of the number of inliers over the total number of points in the
dataset exceeds min inlier ratio, fit new model on the set of inliers and
terminate, otherwise continue back to step 1.

end while

In this work, in subsection 3.5, we present an algorithm that uses RANSAC to
automatically find correspondences between two sets of points, in our case detections
of traffic cones in image and world coordinates.
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3 Method

3.1 Overview
We divide the problem of computing 3D positions of traffic cones from an RGB
image in real time into three separate steps: image cone detection, cone center esti-
mation and cone localization. There is another separate step of camera calibration,
that is not active during the real-time deployment of the perception pipeline. The
perception system architecture is depicted in Figure 8.

In the cone detector part, after an RGB image is received from the camera, the
traffic cones visible in the image are detected using the YOLOv3 [15] object detection
model trained for traffic cone detection. We propose a scaled-down version of the
YOLOv3-tiny neural network architecture designed specifically for the task of real-
time traffic cone detection for an autonomous formula. We also propose a method
of splitting the image into several crops, in order to maximize the detection rate of
more distant cones and minimize the computation time.

In the cone center estimation part, we propose a method for estimating the image
point corresponding to the center of the traffic cone’s base from its bounding box
detection. The estimation of the cone base center is realized using a polynomial fitted
on a dataset of bounding box and cone base center image point pairs. We describe
the process of creating the dataset by projecting the cone base center point from the
cone into the image coordinate system, using a homography computed between a
plane defined by handlabeled keypoints in the image and the cone coordinate system
defined using 3D model of a traffic cone.

Subsequently, the cone base center image points are projected into the world
coordinates using a separetely computed homography matrix, creating a local map
of the scene.

Lastly, we propose a method of automatically calibrating the camera by com-
puting a homography matrix between image and world coordinate system. Given a
set of cone detections in an image and a set of cone detections in a point cloud, the
proposed method finds correct correspondences between the sets of detections using
a modified version of the RANSAC[21] algorithm.

We describe each part of the detection system in the following sections, namely
cone detector in subsection 3.2, cone center estimator in subsection 3.3, cone localizer
in subsection 3.4 and method of automatic camera calibration in subsection 3.5.

Figure 8: Diagram denoting the individual components of the perception system.
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3.2 Image Cone Detection

3.2 Image Cone Detection
In this section, we present the design of the image cone detector part of the pipeline.
The process of detecting cones in an image is depicted in Figure 9. The image is first
split into several crops, which are subsequently batched together and processsed with
a YOLOv3 model trained for detecting traffic cones. The bounding box detections
in each image crop are then converted into original image coordinates and merged
together.

Figure 9: The steps of the process of detecting cones in an image. The image is first
split into several sub–crops, on each sub–crop cones are detected using YOLOv3
detection model. Lastly, the detections are merged back into the original image.

3.2.1 YOLOv3 for Detection of Traffic Cones

As discussed in subsection 2.2, YOLOv3 is an object detection algorithm known for
exceeding other state–of–the–art models in detection speed, while keeping up in the
detection accuracy metrics. Detection speed in autonomous racing is comparable
to the reaction time of the human driver in classical racing, making it crucial for
the perception system to focus on minimizing its computation time, in order for the
autonomous system to be able to control the car at high speeds. For these reasons,
we chose YOLOv3 as the object detection algorithm to use for the detection of traffic
cones delineating the track.

To train YOLO models for traffic cone detection, we use the FSOCO(Formula
Student Objects in Context) dataset [22]. It is a dataset of tens of thousands of
hand–labeled images containing traffic cones, that has been crowd–sourced by many
Formula Student Driverless teams. After manually discarding the images containing
inaccurate labels or traffic cones incompatible with the competition rules, the final
dataset we use for training contains 14877 images. The class distribution of blue,
yellow, orange and big orange traffic cones is show in Table 1.
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3.2 Image Cone Detection

id Class name Occurences

0 blue cone 11382
1 yellow cone 10579
2 orange cone 2172
3 big orange cone 1949

Table 1: Distribution of cone classes in the FSOCO dataset.

Due to the small number of classes and small complexity of the objects, we expect
the task of detecting four types of colored traffic cones to be simpler compared
to the detection tasks of benchmark datasets such as COCO [23] or PASCAL–
VOC [8], containg many complex classes with high intra–class variability such as a
dog and a person. Therefore, a model with fewer parameters than state–of–the–art
object detectors should be sufficient for our task of detecting traffic cones. For these
reasons, we trained two YOLOv3 based models. First, we trained the YOLOv3–
tiny, a smaller and faster version of the original YOLOv3. Secondly, we designed
and trained an even smaller model, removing several layers from the YOLOv3–tiny
neural network architecture and reducing number of filters in all the convolutional
layers, we propose YOLOv3–cones. Comparison of these models, in terms of number
of parameters, neural network layers and size of the output tensor can be seen in
Table 2 and a full listing of all layers in both models is shown in Table 3. We
train each of the two models, on three different resolutions, specifically 224x224,
448x448 and 640x640, giving us 6 models with different detection capabilities in
terms of detection speed and detection quality. We can use each of the models in
the perception system depending on the requirements by the rest of the autonomous
system.

Model Layers Parameters GFLOPs Output tensor

YOLOv3 333 61539889 154.9 3087× (5 + 4)
YOLOv3–tiny 59 8676806 12.9 2940× (5 + 4)
YOLOv3–cones 54 2367066 4.4 1568× (5 + 4)

Table 2: Comparison of YOLOv3 model architectures in terms of the number of
layers, parameters, computational requirements of a single forward pass and the
dimensions of its output tensor.
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3.2 Image Cone Detection

No. Layer type Filters Kernel/Stride

- input img. - -
1 conv. 16 3x3/1
2 maxpool - 2x2/2
3 conv 32 3x3/1
4 maxpool - 2x2/2
5 conv 64 3x3/1
6 maxpool - 2x2/2
7 conv 128 3x3/1
8 maxpool - 2x2/2
9 conv 256 3x3/1
10 maxpool - 2x2/2
11 conv 512 3x3/1
12 maxpool - 2x2/2
13 conv 1024 3x3/1
14 conv 256 1x1/1
15 conv 512 3x3/1
16 conv 256 1x1/1
17 YOLO - -
18 route - -
19 conv 128 1x1/1
20 upsample - -
21 route - -
22 conv 256 3x3/1
23 conv 256 1x1/1
24 YOLO - -

(a) YOLOv3–tiny

No. Layer type Filters Kernel/Stride

- input img. - -
1 conv 8 3x3/1
2 maxpool - 2x2/2
3 conv 16 3x3/1
4 maxpool - 2x2/2
5 conv 32 3x3/1
6 maxpool - 2x2/2
7 conv 64 3x3/1
8 maxpool - 2x2/2
9 conv 128 3x3/1
10 maxpool - 2x2/2
11 conv 256 3x3/1
12 maxpool - 2x2/2
13 conv 512 3x3/1
14 conv 256 1x1/1
15 conv 256 3x3/1
16 conv 256 1x1/1
17 YOLO - -

(b) YOLOv3–cones

Table 3: Full listing of layers for YOLOv3–tiny and YOLOv3–cones convolutional
neural network architectures. Each convolutional layers is also followed up by a
ReLU and BatchNorm layer.
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3.2 Image Cone Detection

3.2.2 Image splitting

As mentioned before, instead of feeding the whole image into the YOLOv3 detection
model, we take crops of several pre–defined areas in the image and feed them to the
detection model instead. Splitting the image this way has several benefits. Firstly,
due to the geometry of the scene and the camera pose, we know that all cones will
appear in the bottom half of the image, below the horizon, therefore by excluding the
top half of the image from being processed by the detection model, we avoid using
computational resources on processing parts of the image, that contain zero relevant
information for our task. Secondly, due to the small size of traffic cones and the
geometry of the scene, most of the traffic cones appear visually small in the image.
If we were to feed the whole image to neural network, after downscaling the image
to input resolution for the YOLO detector, most of the cones would be represented
only by a few pixels on the image, making them hard to detect. Comparatively, by
generating several sub–crops of the image, the downscaling of the images is avoided,
since the crops fit the required resolution by YOLO or even need to be upscaled.
This way, the YOLO network receives all the pixel information from the relevant
areas of the image, which would otherwise be lost in the downscaling process. As
can be seen in Figure 9, the distant cones appear larger on the image crops, making
them easier to detect.

We define an image crop as a following tuple:

(Cx, Cy,W,H) ∈ [0, 1]4

Where (Cx, Cy) is the center of crop, W is the width and H is the height. All the
values are in the relative image coordinates between 0 and 1, where (0, 0) indicates
the top left corner and (1, 1) the bottom right corner of the image. The complete
configuration of image crops for the image detector, is defined as a list of image
crops. We call the image crop configuration of the detector a split profile. For
example, the split profile used in Figure 9 would be defined as:

[(0.75, 0.167, 0.5, 0.333), (0.75, 0.5, 0.5, 0.333), (0.75, 0.833, 0.5, 0.333)]

To maximize the benefits of splitting the image, namely increase in detection
accuracy of distant cones, while keeping the computation cost low, we propose two
ways of structuring split profile configurations. First, is the bottom N–split, evenly
splitting the part of the image below the horizon into N crops. The split in Figure 9
is a bottom N–split for N = 3. Secondly, since the cones in the image are unevenly
distributed(most cones appear just below the horizon) placing the image crops closer
could potentially lead to improved detections of distant cones compared to the bot-
tom N–split strategy. We also propose a horizontal N–split way of generating split
profiles. The line of horizontal image crops is positioned in a predefined vertical
interval closer to the horizon. Moreover, there is an extra image crop containing the
full area below the horizon to cover for detecting traffic cones positioned closer to
the car, that appear in the very bottom of the image.

Sometimes a cone in an image is positioned on the border between two image
crops, causing the cone to be detected by two imprecise bounding boxes. To prevent
this, we introduce horizontal overlap between the image crops of 5% of their width.
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3.3 Cone Center Estimation

3.3 Cone Center Estimation
In this section, we present the design of the cone center estimator part of the pipeline.
The goal is to estimate the image point corresponding to the center of the base of
each traffic cone from its bounding box, as is depicted in Figure 10. By obtaining
the cone base centers in the image, we can subsequently project them into the
world coordinates and obtain accurate positions of the cones in the local map of the
scene, as is discussed in subsection 3.4. We achieve this by first creating a dataset
of bounding box and cone base center image point correspondences. We obtain
these pairs by computing a planar homography projection between cone model and
image coordinate system. Secondly, we fit an N-degree polynomial on the dataset of
bounding box, cone base center pairs. The polynomial is then used for estimating
the cone base centers at test time.

Figure 10: Task of cone base center estimation. From the bounding box information,
the goal is to estimate the pixel corresponding to the center of the traffic cone’s base.

3.3.1 Cone coordinate system

Since the image point corresponding to the center of the traffic cone base is oc-
cluded, it is difficult to label accuratately by a human. To solve this, we hand–label
several keypoints on occluding contours of a traffic cone and use them to compute
a homography mapping between cone and image coordinates. Using this mapping
we subsequently project the cone base center point into the image.

Due to the traffic cone circular shape, we can represent the cone as the cross-
section between the traffic cone and a plane perpendicular to the ground, going
through the center of the traffic cone, resulting in a shape of isosceles trapezoid, as
is visually depicted on the left side of Figure 11. Using our prior knowledge about
the traffic cone 3D model, we construct the cone coordinate system. As is depicted
on Figure 11, the points on the outer contours on the left and right sides of the
cone in the image correspond to the outer left and right lines in the cone coordinate
system.

From computer vision, we know that two images of the same planar surface are
related by a homography, a projective mapping realized by a 3 × 3 matrix. Since
both the cross-section defining the traffic cone and the image plane are both planar
surfaces, a homography mapping between them exists. To compute a homography,
at least 4 pairs of corresponding points from both surfaces are required. As depicted
in Figure 11, we manually label 8 keypoints in the image, which correspond to the
known points in the cone 3D model. This gives us 8 correspondences between the
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3.3 Cone Center Estimation

Figure 11: The hand-labeled red points in the image on the right are used to
compute a homography mapping between the cone model on the left and the image
coordinate system on the right. Subsequently, the green point, representing the
traffic cone base center is projected into the image.

cone and image coordinate systems. Using these 8 pairs of corresponding points, we
compute a homography between the cone and image coordinate systems, which we
subsequently use to project the the traffic cone base center point from the cone to
the image coordinate system.

3.3.2 Polynomial regression

For estimating the cone base center from the bounding box, we transform the bound-
ing box into the center of its bottom side, formally:

(Cx, Cy,W,H) → (Cx +
W

2
, Cy)

As can be seen on Figure 12, assuming the bounding boxes consistently surround
the cones tightly, a relationship between the bottom bounding box center and the
cone base center image points exists, where the bounding box center is always below
the cone base center.

By labeling keypoints and projecting the cone base center from the cone into the
image coordinate system for several hundred cone detections, we create a dataset of
bottom bounding box center and cone base center image point pairs. Subsequently,
we learn the relationship between them by fitting a N-degree polynomial on the task
of predicting the correction vector between the bounding box and cone base centers.

Formally, we have two equally sized ordered sets of image points, the bounding
box centers and traffic cone base centers:

Ibbox = {b1, ...,bN | bn ∈ R2}
Icenter = {c1, ..., cN | cn ∈ R2}

We find a polynomial regression model f̂ : R2 → R2, which minimizes the least
squares error of the cone base center predictions, expressed as:
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3.3 Cone Center Estimation

f̂ = argmin
f

N∑
n=1

∥bn + f(bn)− cn∥2 (1)

The process of using the bounding box center point bn to predict the correction
vector f(bn) using the polynomial regression model from Equation 1 is depicted in
Figure 12. In the experiments it is shown that the polynomials of second or higher
degrees overfit the dataset, while the first degree polynomial or affine function fit
the dataset well.

Figure 12: The task of predicting a correction vector for the center of bottom bound-
ing box side to estimate the cone base center image point.
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3.4 Cone localization

3.4 Cone localization
The final part of the detection pipeline is the Cone Localizer. It receives a set of
image points corresponding to the cone base centers, as discussed in subsection 3.3.
Since the race track is flat, a homography mapping between the image and the car
coordinate system exists. For the sake of this section, we assume the homography
matrix has already been computed. The process of computing the homography
matrix is described in subsection 3.5. Using the homography matrix, the cone base
center image points are projected into the car coordinate system, creating a local
map of the scene, as is depicted on Figure 13.

Figure 13: The process of projecting cone base center image points into the car
coordinates with a homography matrix, creating a local map of the scene.
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3.5 Camera calibration

3.5 Camera calibration
In this section, we explain our approach for computing homography between the
image and the world coordinate system. We propose a method of automatically
determining correspondences between two overlapping sets of image and world points
using a modified version of the RANSAC algorithm. By world coordinates, we mean
the local coordinates with the car’s position in (0, 0) point, that change with each
frame.

Due to the race trtack ground being flat, computing a homography matrix be-
tween the ground plane in the image and the ground plane in the world coordinates
is sufficient for calibrating the camera. To compute a homography, at least four
correspondences between image and world points are needed. In our case, we gen-
erate the image points using the image from the camera and detecting traffic cones
in it with the perception pipeline parts up to the cone center estimator. We detect
the cones in the world coordinate system from a point cloud provided by the car’s
LIDAR [24].

Formally, we have two sets, a N × 2 set of image points and M × 2 set of world
points. The task is to find the correct mapping between the two sets. We assume,
that atleast 4 image points and 4 world points correspond to each other, ie. they are
the detections of the same cone in different coordinate systems. Formally, we are
looking for a mapping between the set of image points I and a set of world points
W :

m : I → W

Where if m(Ii) = Wj means, that the i-th image point corresponds to the j-th world
point. If f(Ii) = ∅, then the i-th image point does not have a corresponding world
point.

3.5.1 RANSAC for automatic homography com-

putation

The RANSAC algorithm, as described in subsection 2.3, is a general method for
estimating mathematical models on data containing outliers. The general idea in
using the RANSAC algorithm for the task of automatically finding correspondences
is to be iteratively selecting sets of four possible correspondences, computing a ho-
mography for the sampled sets and subsequently verifying the correctness of the
homography. In order to use RANSAC for this task, several additional steps and
adjustments need to be implemented.

In order to be able to solve this task with RANSAC, we generate a dataset of all
possible correspondence between the image and world points. The set of all possible
correspondences C is defined as the cartesian product of I and W :

C = {(Ii,Wj) | (Ii,Wj) ∈ (I ×W )} (2)

In each RANSAC iteration, we first randomly sample four correspondences from
the set C. Since it can never occur that two image points are in correspondence
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3.5 Camera calibration

with the same world point, we filter out all sampled sets containing the same image
or world point twice:

Csampled = {(Ii1 ,Wj1), (Ii2 ,Wj2), (Ii3 ,Wj3), (Ii4 ,Wj4)}
where i1 ̸= i2 ̸= i3 ̸= i4 and j1 ̸= j2 ̸= j3 ̸= j4

(Ii1 ,Wj1), (Ii2 ,Wj2), (Ii3 ,Wj3), (Ii4 ,Wj4) ∈ C

(3)

Secondly, a homography matrix is computed, projecting between the sampled
image points and world points:

H = compute homography([Ii1 , Ii2 , Ii3 , Ii4 ], [Wj1 ,Wj2 ,Wj3 ,Wj4 ]) (4)

When computing the error on the dataset of all possible correspondences C, we
must first filter out all correspondences that contain any of the image points or world
points from the sample correspondences. The set of remaining correspondences
Cremain is defined as:

Cremain = {(Ii,Wj) | Ii ̸= Ik and Wj ̸= Wl for any (Ik,Wl) ∈ Csampled)} (5)

We subsequently compute projection error for each pair of image and world
points from Cremain. The correspondences with error below a predefined threshold
are considered inliers, rest of the points are considered outliers.

E = {∥HIi −Wj∥ | (Ii,Wj) ∈ Cremain} (6)

Cinliers = {Ci | Ei ≤ threshold; Ci ∈ Cremain} (7)

If the number of inliers is higher than the highest number of inliers encountered so
far, the counter of maximum inliers encountered is updated and the homography ma-
trixH is saved asHbest. Followingly, the termination condition is checked. RANSAC
terminates if either the maximum number of iterations has been reached or if the
current count of inliers is higher than a predefined threshold of min inlier ratio.

Pseudo-code description of the RANSAC algorithm for finding correspondences
is given at Algorithm 2.
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3.5 Camera calibration

Algorithm 2 RANSAC for automatic correspondence finding algorithm outline

Parameters:
max iters - maximum number of iterations
threshold - error threshold for data points to be considered inliers
min inlier ratio - ratio of inlier to dataset size required to terminate the model

iter := 1
max inlier count := min(card(I), card(W ))
best inlier count := 0
while iter <= max iters do
1. Random select

Randomly select 4 entries from the dataset of all possible correspondences as
is outlined in Equation 3

2. Fitting a model
Compute homography matrix on the sampled imaged and world points as
described in Equation 4

3. Compute Error
Select a subset of the dataset of correspondences with no overlap with the
points used for computing the homography according to Equation 5 and com-
pute projection error for each correspondence it contains as is shown in Equa-
tion 6.

4. Select Inliers
Consider the points with projection error lower than threshold inliers, as is
described in Equation 7.

5. Update
if best inlier count < inlier count then
inlier count := best inlier count

Hbest := H
Inliersbest := Cinliers

end if
6. Termination condition

if best inlier count ≥ min inlier ratio · max inlier count then
Compute new H with image and world points from Inliersbest.
return H

end if
end while
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3.5.2 Correspondence dataset optimization

When sampling the Csampled sets from the set of of all possible correspondences C,
as denoted in Equation 3, we don’t make any assumptions about the points. For
example, a correspondence between two points of two traffic cones, which are position
on the other side of the scene is just as likely to be sampled as a correspondence
between points of traffic cones which are both on the left side of the scene. This
leads to the RANSAC algorithm running for many iterations in order to find the
correspondence selections which lead to the correct solution. To limit the space
of all possible correspondences, we describe a more efficient method for generating
Csampled, taking prior knowledge about the geometry of the scene into account.

Due to the alignment of the lidar and camera mounted on our car, the X-axis
in the image and the Y-axis in the world coordinates both represent the lateral di-
mension of the scene in front of the car. If we assume the detections are precise
enough, so that the ordering between the sets sorted by their lateral dimensions is
preserved, then we can cut down the number of possible correspondence samplings
Csampled. The problem of finding the correct correspondences, can be represent as
looking for a matching in a bipartial graph. Then the method of randomly sampling
from a Cartesian product of the sets is equivalent to trying out all possible match-
ings. Comparatively, the method of sampling correspondences, that are consistent
with the lateral dimension ordering, as is depicted on Figure 14, is equivalent to
considering only the non–crossing matchings.

When comparing these two methods of sampling correspondences, we can express
the number of possible Csampled sets for the approach of fully random drawing of
correspondences as:

sample countrandom = 4!

(
card(I)

4

)(
card(W )

4

)
(8)

While count of possible Csampled sets, when considering only the non–crossing
mappings is only:

sample countnon crossing =

(
card(I)

4

)(
card(W )

4

)
(9)

Meaning that the non-crossing approach eliminates 23
24 or 95.6% of possible

Csampled sets for the RANSAC algorithm to consider. This leads the algorithm both
needing less computation time, but also a potentially higher success rate of finding
the current mapping, since the eliminated eliminated possibilities could have con-
tained degenerate solutions, leading to a high inlier count, but wrong homography
mapping.
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(a) example of Csampled with random sampling

(b) example of Csampled sampling when assuming correct lateral
order

Figure 14: Comparison of Csampled when sampling the correspondences randomly
versus sampling with an assumption of correct lateral ordering, visualized as a bi-
partite graph. Respecting lateral ordering of the detections leads to a single possi-
ble matching due to respecting lateral ordering being equivalent to matching being
non–crossing. When not taking the lateral ordering into account, for every two
quadruplets of points, there is 12 possible matchings instead of 1. Also the random
matching allows for samplings, where points representing detections of cone position
on opposite sides of the scene are in correspondence.
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4 Evaluation
In this section, we evaluate the individual parts of the perception system. When
evaluating each part, we measure their performance in terms of prediction accu-
racy, reliability and computation time. We compare several configurations of each
part in terms of these metrics and discuss their advantages and disadvantages for
deployment in the car.

4.1 Image Cone detector
Since the image cone detector is the first step of the perception pipeline, meaning all
other parts pipeline rely on its performance. We test several different configurations,
in terms of different YOLOv3 models and different split profiles. We compute several
different metrics relevant to the task of autonomous driving on a custom made test
dataset containing images exclusively from our autonomous formula.

4.1.1 Dataset

We test the image cone detector configurations on a dataset of 160 images containing
1937 bounding box labels of all four classes of traffic cones. All the images were
taken directly from the camera of our autonomous formula either during Formula
Student Driverless dynamic events or during test drives. Therefore, all the images
are representative of the competition environment the perception system will be
deployed in. The images in the dataset contain a wide range of lighting and weather
conditions, as is shown on Figure 15.

4.1.2 Metrics

There are several metrics we focus on when testing the cone detector configurations.
We test the detectors for detection speed in terms of FPS (frames per second)
and accuracy by computing the mAP (mean average precision) at different ranges
of bounding box sizes, reflecting the detector’s ability of detecting traffic cones at
specific distances.

The image cone detector is by far the most computationally intensive part of the
perception pipeline due to computing a forward pass of the YOLO object detection
model, which contains millions of parameters for each image frame provided by the
camera. Computation time of this part determines the detection speed of the whole
pipeline. Therefore, prioritizing a configuration with high FPS for deployment is
desirable.

Since the detections from the perception pipeline are used for planning of the
path through the track, detecting the traffic cones positioned in closer proximity
to the car takes higher priority compared to the cones that are far in the distance.
We evaluate the detectors using the mean–average precision (mAP), a widely used
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4.1 Image Cone detector

(a) sunny lighting when oriented towards the sun

(b) sunny lighting when not oriented towards the sun

(c) sunny lighting when oriented towards the sun

Figure 15: Camera images from the evaluation dataset with diverse lighting condi-
tions. The third image has been taken only few moments after the second one.
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4.1 Image Cone detector

object detection accuracy metric [8]. The mAP metric is computed by taking the
area under a precision-recall curve for each class and taking the average across all
classes. We consider a detection to be correct, if the IoU (Intersection over union)
value of the predicted and the ground truth bounding box is atleast 0.5.

To evaluate the detector’s ability to detect cones at different distances, we intro-
duce mAP for minimum bounding box height. Due to the geometry of the scene, the
height of the traffic cone’s bounding boxes is proportional to their distance from the
car. Therefore, by computing mAP only for bounding box labels of a certain min-
imal height, we are able to evaluate the detector’s accuracy at different distances.
We use the following notation: mAP35px stands for mAP for bounding boxes of
minimal height of 35 pixels.

4.1.3 Configurations

We evaluate the predictions of several image cone detector configurations. As ex-
plained in subsubsection 3.2.1, we trained 2 different YOLO architectures with three
different receptive field resolutions, namely, the YOLOv3–tiny and its reduced ver-
sion YOLOv3–cones. We trained each of the models on three different resolutions:
224 × 224, 448 × 448 and 640 × 640. Moreover, for each of the models, we test
its performance with several different split profile configurations. Specifically, we
evaluate each model, with a bottom N–split and horizontal N–split split profiles for
N = 1, 2, 3, 4.

4.1.4 Results

In this subsection, we present the evaluation results of the image cone detector.
First, we present the evaluation of all cone detector configurations. Due to the high
count of configurations, we will select a few best performing and most notable ones
and subject them for further analysis of their performance.

In Table 4, the evaluation of the cone detector configurations is shown. For each
cone detector configuration, we compute mean–average precision for the minimum
bounding box heights of 0px, 20px and 35px, representing the detection capabili-
ties of traffic cones in all distances. We also measure the detection speed for each
configuration.

As can be seen in the evaluation results, for every detector configuration, re-
gardless of resolution and split profile, the YOLOv3–cones architecture achieves up
to 80% more frames per second than the YOLOv3–tiny variants do. It can also be
observed that the image splitting method leads to an increase in mAP. As expected,
a higher mAP increase occurs in the configurations with lower resolution. For most
of the configurations, the YOLOv3–tiny performs better at mAP35px compared to
YOLOv3–cones, meaning it is better at detecting traffic cones, that are in closer
proximity to the car. This can be attributed to the lack of the second detection
layer in the YOLOv3–cones architecture, which splits the image into a grid with less
cells, focusing more on the detection of objects that appear larger in the image.
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4.1 Image Cone detector

Models mAP0px mAP20px mAP35px FPS

(1-bot)-yolov3-cones (224 x 224) 28.3 50.5 75.4 315.7
(1-bot)-yolov3-tiny (224 x 224) 28.9 51.8 75.1 263

(2-bot)-yolov3-cones (224 x 224) 49.4 71.3 74.3 230.6
(2-bot)-yolov3-tiny (224 x 224) 53.3 73.9 84 180.3

(2-hor)-yolov3-cones (224 x 224) 50.3 73.4 81.5 181.4
(2-hor)-yolov3-tiny (224 x 224) 53.1 73.1 84.5 139.8

(3-bot)-yolov3-cones (224 x 224) 55.2 70.2 58.5 198.2
(3-bot)-yolov3-tiny (224 x 224) 60.7 76.5 75.3 144.8

(3-hor)-yolov3-cones (224 x 224) 60.8 78.2 83.4 160.3
(3-hor)-yolov3-tiny (224 x 224) 63.4 78.3 83.8 135.5

(4-bot)-yolov3-cones (224 x 224) 55.1 65.9 46.4 175.1
(4-bot)-yolov3-tiny (224 x 224) 63.3 75.7 69.3 120.7

(4-hor)-yolov3-cones (224 x 224) 62.3 79.4 80.3 144.8
(4-hor)-yolov3-tiny (224 x 224) 65.3 79.9 83.2 119.6

(1-bot)-yolov3-cones (448 x 448) 51 76.8 87.8 305.2
(1-bot)-yolov3-tiny (448 x 448) 51.1 76.2 87 217

(2-bot)-yolov3-cones (448 x 448) 66.7 87.1 85.6 205.3
(2-bot)-yolov3-tiny (448 x 448) 69.2 88.2 90.6 150.6

(2-hor)-yolov3-cones (448 x 448) 72.1 87.1 90.1 155.4
(2-hor)-yolov3-tiny (448 x 448) 72 88 89.2 104

(3-bot)-yolov3-cones (448 x 448) 64 80.8 67.2 159.5
(3-bot)-yolov3-tiny (448 x 448) 69.5 87.5 84.3 113.7

(3-hor)-yolov3-cones (448 x 448) 70.2 89.2 87 127.3
(3-hor)-yolov3-tiny (448 x 448) 73.8 88.8 89.9 86.9

(4-bot)-yolov3-cones (448 x 448) 61 74.8 55.9 135.6
(4-bot)-yolov3-tiny (448 x 448) 68.4 85.1 79.3 95.8

(4-hor)-yolov3-cones (448 x 448) 69.8 89.7 87.2 107.2
(4-hor)-yolov3-tiny (448 x 448) 72.7 88.5 90.5 80.1

(1-bot)-yolov3-cones (640 x 640) 61.3 85.3 92.8 259.1
(1-bot)-yolov3-tiny (640 x 640) 59.9 82.9 93.3 152.2

(2-bot)-yolov3-cones (640 x 640) 71.4 87 81.9 164
(2-bot)-yolov3-tiny (640 x 640) 64.9 87.7 91 102.3

(2-hor)-yolov3-cones (640 x 640) 77 91.1 90.5 119.6
(2-hor)-yolov3-tiny (640 x 640) 65.7 86.2 92.5 74.2

(3-bot)-yolov3-cones (640 x 640) 67.1 82.1 66.4 122.8
(3-bot)-yolov3-tiny (640 x 640) 64.1 89.1 91.2 67.9

(3-hor)-yolov3-cones (640 x 640) 74.5 91.5 91.3 97.4
(3-hor)-yolov3-tiny (640 x 640) 68.5 89.2 91.9 58.1

(4-bot)-yolov3-cones (640 x 640) 62.5 74.3 49.3 104.3
(4-bot)-yolov3-tiny (640 x 640) 65 87.9 89.3 59.4

(4-hor)-yolov3-cones (640 x 640) 74.8 92.1 91.4 72.1
(4-hor)-yolov3-tiny (640 x 640) 69.5 90.1 91.9 49.6

Table 4: Evaluation of image cone detector configurations, comparing the detection
speed and capabilities of the yolov3-tiny and yolov3-cones architectures. The naming
convention is [split profile][YOLO architecture][resolution], where (N-hor) means
horizontal N-split and (N-bot) for bottom N-split. All computations evaluation tests
were performed on the car’s computer with Nvidia 2070 RTX GPU.
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4.1 Image Cone detector

Models mAP0px mAP20px mAP35px FPS

(1-bot)-yolov3-cones (224 x 224) 28.3 50.5 75.4 315.7
(1-bot)-yolov3-tiny (224 x 224) 28.9 51.8 75.1 263

(2-bot)-yolov3-cones (224 x 224) 49.4 71.3 74.3 230.6
(2-bot)-yolov3-tiny (224 x 224) 53.3 73.9 84 180.3

(1-bot)-yolov3-cones (448 x 448) 51 76.8 87.8 305.2
(1-bot)-yolov3-tiny (448 x 448) 51.1 76.2 87 217

(2-bot)-yolov3-cones (448 x 448) 66.7 87.1 85.6 205.3
(2-bot)-yolov3-tiny (448 x 448) 69.2 88.2 90.6 150.6

(2-hor)-yolov3-cones (448 x 448) 72.1 87.1 90.1 155.4
(2-hor)-yolov3-tiny (448 x 448) 72 88 89.2 104

(1-bot)-yolov3-cones (640 x 640) 61.3 85.3 92.8 259.1
(1-bot)-yolov3-tiny (640 x 640) 59.9 82.9 93.3 152.2

(2-hor)-yolov3-cones (640 x 640) 77 91.1 90.5 119.6
(2-hor)-yolov3-tiny (640 x 640) 65.7 86.2 92.5 74.2

Table 5: Evaluation of selected image cone detector configurations from Table 4.

We have selected detectors from table Table 4 into Table 5, which achieved the
best evaluation results compared to other configurations, for further analysis. In
particular, the combination of achieving high mAP in all three pixel intervals and
high FPS. We also selected the configurations with only a single image split for
comparison with the configurations that utilize multiple splits.

We have selected detectors from Table 4, which achieved the best combination
of metrics of all the configurations into table Table 5 for further evaluation. In
particular, the combination of achieving both high mAP in all three pixel intervals
and high FPS. We also selected the configurations with only a single image split for
comparison with the configurations that utilize multiple splits.

In Figure 16, we can see a comparison of the selected cone detector configura-
tions in terms of their mean–average precision based on a minimum bounding box
height of detections. We can see that the configurations using the YOLOv3–tiny
architecture generally achieve the same results of mAP compared to the YOLOv3–
cones detectors. However, when the detection speed is taken into consideration, as
is visualized in Figure 17, we see that the YOLOv3–cones configurations achieve in
every case higher frames per second with similar mAP scores, outperforming the
YOLOv3–tiny configurations.

When choosing the optimal cone detector configuration to use in competition, we
are looking for a middle ground between minimizing detection speed and maximizing
capability and reliability of detecting traffic cones positioned up to 20 meters away
from the car. The (2–bot)–yolov3–cones (448 × 448) and (1–bot)–yolov3–
cones (640×640) detectors both achieve a frame rate of over 200 fps, while achieving
high detection quality for all distances. The first detector being able to detect cones
that are further away, while the second detector is more stable at detecting the cones
closer to the car. To decide, with which detector the autonomous system performs
better, further testing of both detectors in experiments with the whole autonomous
system must be conducted to see, which detector yields better results.
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Figure 16: Comparison of selected image cone detector configurations of mean–
average precision based on minimal bounding box height. Comparing the ability of
the detectors to detect traffic cones as a function of distance from the car.
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Figure 17: Comparison of selected image cone detector configurations. Comparing
the mean–average precision of the detectors, for bounding boxes of minimal height
of at least 20 pixels over the detection speed in frames per second.
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4.2 Cone center estimator

4.2 Cone center estimator
The cone center estimator, as described in subsection 3.3, estimates the image point
corresponding to the traffic cone’s base center from its bounding box. The cone base
center image points are subsequently projected into the car’s coordinate system,
obtaining the accurate positions of the traffic cones corresponding to their centers.
In this section, we evaluate the accuracy of the polynomial regression model for
estimating the cone base center from its bounding box.

4.2.1 Dataset

By the process of labeling traffic cone keypoints, a homography between the cone
and the image coordinate system is computed. Subsequently, by projecting the
center of the traffic cone’s base into the image coordinate system, as is described
in subsubsection 3.3.1, we create a dataset of bounding box and traffic cone base
center pairs. The dataset consists of 64 images of traffic cones from all positions in
the image. For evaluation, we split the dataset into train and test sets, consisting
of 48 and 16 pairs, respectively.

4.2.2 Polynomial Regression

We train polynomials of first and second degree on the dataset of bounding box and
cone base center pairs for the task of predicting the correction vector for the bounding
center. Reliability of the predictions is essential, because a single estimation of the
cone’s position in the middle of the road, instead of on its edge, can lead to a failure
of the car’s ability to drive through the track. Therefore, when evaluating the cone
base center estimation, we not only compute the mean error, but also focus on the
maximal error across the test dataset.

Model RMSEtrain RMSEtest Max-RSEtrain Max-RSEtest

pol-1 1.405 1.592 3.496 4.599
pol-2 1.071 2.192 2.631 8.335

Table 6: Comparison of errors of first and second degree polynomials fitted on the
regression task of correcting bounding box center to traffic cone base center, as is
visualized on Figure 12. RMSE stands for Root Mean Squared Error and Max-RSE
for Max Root Squared Error. All values are in pixels.

Table 6 contains the evaluation of the regression models using first degree and
second degree polynomials. We can see that the polynomial of the second degree
overfits on the training data, achieving lower train errors and higher test errors
compared to the first degree polynomial. The first degree polynomial, achieving a
mean test error of 1.6 pixels and maximal test error of 4.6 pixels seems to be fitting
the dataset decently well. In Figure 18, you can see the visualization of the first
and second degree polynomial estimates on the test data. In Figure 19, cone centers
estimation using the first degree polynomial model is depicted.
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4.2 Cone center estimator

Figure 18: Visual comparison of estimating image point corresponding to the traf-
fic cone base center from it’s bounding box using polynomials of first and second
degree. The images are cropped around the cones only for visualization purposes,
the estimation takes as input the position of the cone in the full image coordinates,
taking the geometry of the scene into account.

Figure 19: Depiction of cone base center estimation in the entire image.
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4.3 Camera calibration

4.3 Camera calibration
In this section, we evaluate the algorithm for camera calibration by automatically
finding correspondences between cone detections in the image and in the world co-
ordinates of scene. We compare the two ways of sampling correspondences in each
RANSAC iteration, the random and the non–crossing, as presented in subsubsec-
tion 3.5.2. We also compare the performance of the algorithm, when computing the
reprojection error in world coordinates (meters) anand in image coordinates (pixels).

When evaluating the RANSAC algorithm variants, we used the same parameter
values for each one, the only difference being in the threshold value based on if we
are measuring the homography projection error in world or image coordinates. We
used the following parameter values:

max iter = 100000

threshhold(px) = 20

threshhold(m) = 0.6

min inlier ratio = 0.85

For evaluation, we collected 8 different pairs of point clouds and camera images of
scenes. We split the data into 5 scenes for the evaluation of the RANSAC algorithm
for automatic camera calibration. We have hand–labeled correspondences in the
remaining scenes to be used as a test set to verify the correctness of the solutions
found by the algorithm. We evaluate the correspondence finding algorithm variants
by running them on each of the 5 evaluation scenes and for each computed solution,
we evaluate its projection error on the test set scenes. We consider the found solution
to be correct, when the mean projection error of the found homography is below 0.5
meters on the test set.

Configuration Success rate Avg. iterations Avg. time

non-cross (m) 100% 13193.2 6.37
non-cross (px) 60% 33086.6 15.07
random (m) 40% 80768.4 136.78
random (px) 60% 84917.2 143.29

Table 7: RANSAC comparison

In Table 7, the evaluation results of each of the algorithm variants are shown.
As expected, the non–crossing variants needed fewer iterations and took less compu-
tation time to find the same or better solution, compared to the RANSAC variants
using random sampling. Since the evaluation set contains only so few examples, it
is difficult to make definitive judgements about the reliable accuracy of the algo-
rithm. Figure 20 contains a visualization of a found solution by the non–cross (m)
RANSAC variant.
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Figure 20: Visualization of homography reprojection in image and world coordi-
nates. The homography was computed using the algorithm for automatic traffic
cone detection correspondence finding for camera calibration. The mean reprojec-
tion error in this scene is equal to 0.13 meters or 1.24 pixels.
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4.3 Camera calibration

4.3.1 Localization Error

In this subsection, we evaluate the localization error of the traffic cones. To evalute
the accuracy of the cone detections projected by the homography into the world,
we use the traffic cone detection from lidar point cloud as the ground truth. The
lidar detector only detects traffic cones up to around 13 meters away from the car,
therefore we only able to evaluate the localization accuracy of traffic cones up to
that distance.
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Figure 21: Evaluation of the localization error of the perception pipeline. The plot
visualizes the mean localization error of all detections from the test set for a given
maximum cone distance from the car. After 12 meters, there no more traffic cone
detections in our test set to measure the error, therefore the error is unknown for
more distant detections.

In Figure 21 we see, that the localization error of the traffic cones rises with
the distance of the traffic cones from the car. Even though the localization error
for traffic cone detections, which are more distant than 12 meters is unknown, the
detection of cones up to 12 meters covers the most important distance range for
accurate detections. The perception pipeline achieves mean localization error of
0.247 meters for traffic cone detections up to 10 meters away from the car and error
of 0.323 meters for detections up to 12 meters.
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5 Conclusion
In this thesis, we presented a perception pipeline for predicting 3D traffic cone
positions using a single RGB camera. The perception pipeline was made up of three
parts, the image cone detector, the cone center estimator and the cone localizer.

For the image cone detector, we presented a new YOLOv3 based neural network
architecture called YOLOv3–cones, designed specifically for the task of traffic cone
detection. We also presented and evaluated a method of splitting the image into
several sub-crops to minimize the computational detection cost and maximize the
accuracy of detecting distant traffic cones.

For the cone center estimator, we presented a method, which from a traffic
cone’s bounding box, estimates the image point, which corresponds to the center of
the traffic cone’s base. The method utilized fitting a polynomial regression model
on dataset of bounding box and traffic cone center image point correspondences.
The image points corresponding to the traffic cone base centers are subsequently
projected by the cone localizer to the car’s coordinate system, building a local map
of the scene.

Finally, we presented an algorithm for automatically estimating the homography
mapping between the image and the ground plane, by finding the correspondences
between traffic cone detections in the scene in the car’s coordinates and in the image
coordinates.

In the future, the perception system needs to be tested in competion–like ex-
periments, working while integrated with the rest of the car’s autonomous system.
Some future developments of the system would include further optimization of hy-
perparameters of the YOLOv3 architecture, attempting to achieve higher detection
speed and accuracy.
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