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Abstract

This thesis examines options for state es-
timation of a battery pack of an electric
vehicle. The motivation and the ultimate
aim of this work is to improve the bat-
tery state estimation capabilities of a stu-
dent formula race car and help to achieve
better results in motorsport competition.
This thesis follows the state-of-the-art ap-
proach of Extended Kalman Filter. The
thesis broadens the scope and presents the
whole process of a battery model develop-
ment, Extended Kalman Filter implemen-
tation and validation. A substantial part
is dedicated to measurement of model pa-
rameters. Then, the other model parame-
ters that were not measured are identified
via optimal identification from previously
measured data. Successively, the imple-
mentation of the Extended Kalman Filter
itself is described. Finally, the algorithm
is validated using simulation experiments
and real driving data. The chosen ap-
proach presents itself as a viable, working
solution to the problem.
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Abstrakt

Tato prace zkouma moznosti odhadovani
stavu akumulatorového modulu elektric-
kého vozidla. Motivaci a kone¢nym cilem
této prace je vylepsit schopnost odhadu
stavu akumuldtoru ve studentské zéavodni
formuli a pomoci dosdhnout lepsich sou-
téznich vysledki. Tato prace implemen-
tuje pristup v angli¢tiné zndmy jako Ex-
tended Kalman Filter. Ten je v literatufe
Siroce pouzivan. Tato prace rozsifuje za-
bér o popis celého procesu vyvoje modelu
akumuldtoru, implementace filtra¢niho al-
goritmu a validace. Podstatna ¢ast je véno-
vana meéreni parametri modelu. Nasledné,
nemeéritelné parametry jsou identifikovany
z predtim namérenych dat pomoci opti-
malni identifikace. Poté je popsina im-
plementace samotného Kalmanova filtru.
Na konci je algoritmus zvalidovan pomoci
pocitacovych simulaci a cela prace je zhod-
nocena. Zvoleny pristup se ukazuje jako
funkéni feseni daného problému.

Klicova slova: elektrické vozidlo, stav
nabiti baterie, stav zdravi baterie,
kapacita, vnitini odpor, Kalmanuv filtr,
navrh zalozeny na modelu, ndhradni
model, optimalni identifikace

Preklad nazvu: Odhad stavu nabiti a
zdravi akumuldtoru elektrického vozidla
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Chapter 1

Introduction

Nowadays, we are experiencing a shift towards hybrid, fuel-cell, and electric
vehicles in the car industry. There has been a very large amount of studies
published about the future of automotive industry. One such prediction is
shown in figure |1.1.

EXHIBIT 1 | Global EV Sales Will Grow Dramatically Through 2030

Number of vehicles sold (millions)

120

100 1%

1%“ Current EV “1%
“1% ¢ market %

1% ) share: 6%

“\ Estimated
4% / EV market
80 17% [ share: 48%
60
78%
77% 67%
I It
2018 2020 2025 2030
Gasoline Diesel W MHEV W HEV Il PHEV W BEV

Source: BCG analysis.
Note: EV = electric vehicle; MHEV = mild hybrid electric vehicle; HEV = hybrid electric vehicle; PHEV = plug-in hybrid electric vehicle; BEV = battery
electric vehicle. Because of rounding, not all percentages add up to 100.

Figure 1.1: BCG analysis on sales of electric vehicles. Source: [Groal

One of the parts all the electric vehicles have in common is a battery.
Moreover, battery technologies are highly sought-after in the power industry,
too, with their applications ranging from microgrids to gargantuan battery
storage power stations. Their usage can be seen in figure [1.2

Arguably the most important state of the accumulator system is the State
of Charge (SOC). As detailed further in this thesis’s text, it is a nontrivial
task to determine SOC reliably. This thesis addresses the challenge.

Because the SOC estimation is such a hot topic for both the researchers
and the industry players, there is room for mutual collaboration between



1. Introduction

EXHIBIT 2 | Battery Storage Can Be Deployed Behind or In Front of the Meter

®
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Source: BCG analysis.
Note: The transmission grid carries high-voltage electricity over long distances, such as between cities; the distribution grid carries low-voltage
electricity to end users.

Figure 1.2: BCG analysis on battery usage in power grid. Source: [Grob]

companies and schools. This thesis embodies such a symbiosis since it was
created for Garrett Motion company in order to foster its activities in the
field. Parts of code developed for the purpose of this thesis are used in the
company’s proprietary framework. Namely, the company’s framework was
augmented with the estimation algorithm. On the other hand, the optimal
identification tool that was used for model fitting had already been a part of
the framework before.

Furthermore, this work is motivated not only by research interests or
industrial aims but also by a motorsport application. The ultimate goal is to
use the algorithm in a small formula-type race car. Thus, the development is
being done with a future embedded application in mind.

The work is divided into several steps. After this introductory part, there
is a chapter devoted to batteries and their models. After that, an overview of
other approaches to the problem is presented. Then, the estimation algorithm
is chosen and implemented. Then, the algorithm is tested and evaluated.
Finally, results are assessed and discussed.

. 1.1 Formula Student

Formula Student is an engineering students’ competition. The aim is to design
and develop a formula-style car and take part in a competition. Formula



1.1. Formula Student

Student originated in the United States and spread worldwide. The author
of this thesis is a member of the eForce FEE Prague Formula team, which
develops a fully electric race car for the purpose of the Formula Student
competition.

CV&EV  DC

Static Events:
Business Plan Presentation 75 points -
Cost and Manufacturing 100 points -

Engineering Design 150 points 150 points
Dynamic Events:

Skid Pad 50 points -

DV Skid Pad 75 points 75 points
Acceleration 50 points -

DV Acceleration 75 points 75 points
Autocross 100 points -

DV Autocross - 100 points
Endurance 250 points -
Efficiency 75 points -
Trackdrive - 200 points
Overall 1000 points 600 points

Table 1.1: Formula Student Germany 2022 Events & Score

The Formula Student competition events consist of several disciplines which
are awarded with points. For example, the Formula Student Germany 2022
disciplines and respective points are shown in table 1.1l The abbreviations
used in the table mean: CV - combustion vehicle, EV - electric vehicle, DC -
driverless cup, and DV - driverless vehicle. The CV and EV vehicles compete
in the same categories, plus, provided they are equipped with autonomous
systems, they can take part in the Driverless Cup. All the points add up
together, and the team with the highest score wins. Taking the static events
aside (they cover the business and design part of a formula car development),
there remain dynamic events that make up the bigger portion of points. The
Skid Pad examines the lateral acceleration of the vehicle. It is a race on an
8-like shaped track. The Acceleration is done on a 75 meters long, straight
track. The Autocross track is a loop with straights, various kinds of turns,
slaloms, etc. The length of the Autocross is 1.5 km. The Trackdrive is the
same track as in Autocross. Then, there is Endurance & Efficiency. The
track also comprises straights, various turns, slaloms, chicanes, etc. However,
the length of one lap is approximately 1 km, and the length of the complete
endurance is ca. 22 km.

In conclusion, the endurance event is the single event where reliable SOC
estimation (or, in fact, range estimation) is absolutely crucial. It is also the
single most rated event. Moreover, it is vital to know the exact amount of
energy consumed during driving when the team wants to improve its efficiency
score. The Endurance & Efficiency make up together 325 points which might

3



1. Introduction

be a third of all available points if the team does not aspire to compete in the
Driverless Cup. Thus, a proper SOC estimation can improve teams’ results

significantly.



Chapter 2
Battery Modelling

In this section, a brief introduction to lithium-ion (li-ion) batteries is treated
and then a battery model is devised. This model will be used later in the
estimation algorithm. Other approaches to SOC and SOH estimation are
presented in the next chapter.

The field of battery modeling is vast. Not only is there a huge amount of
approaches and techniques, but the spectrum of battery chemistries adds up
complexity, too.

A deep insight into all phenomena occurring in the battery is beyond the
scope of this thesis. This section aims to provide an introductory overview of
the operation and properties of Li-ion batteries.

. 2.1 Li-ion Batteries

The li-ion batteries are widely used across various industries today. They
are the so-called secondary batteries which are, as opposed to the primary
batteries, rechargeable (even multiple times). Their highlight features are
(relatively to other battery technologies): high energy density, high voltage,
long cycle life, low self-discharge, and wide operating conditions [Beal9).

Charging and discharging mechanisms are shown in figure 2.1, Lithium ions
travel back and forth in the battery between the electrodes while electrons
travel in the outer circuit.

B 2.2 State of Charge Background

Even the definition of SOC itself is a matter of dispute. According to [LHLZIT],
taking the underlying physical principles into account, the SOC could be
described as a state of thermodynamic equilibrium. However, instead of
resorting to thermodynamics and statistical physics, an (alternative) empirical
approach is taken in this thesis.

In this thesis, SOC [%] is a ratio of a current charge present in the battery
Qcur to the actual maximum available capacity of the battery Quax ([HHA22|):

5



2. Battery Modelling

Charge and discharge mechanism of

lithium ion rechargeable batteries
Load Charger

T =]

Electrons Electrons

Separator

T~ Electrolyte ~ Electrolyte
(Polymer battery:gel polymer electrolyte) (Polymer battery:gel polymer electrolyte)
Discharge Charge

Figure 2.1: Charge and discharge of a Li-ion battery. Source: [Son|

QCUI‘
Qmax

The advantage of such an approach is that: 1) it allows for a much
simpler mathematical apparatus to be used, 2) techniques for SOC laboratory
determination are much simpler and more easily accessible, 3) it is a concept
widely used in literature - it clearly works.

However, the actual maximum available capacity of the battery Qumax is not
constant, quite the contrary. For example, it can be modelled as a function of
two variables - number of cycles n and temperature T', Quax = f(n, T'). That
means, in fact, that according to this definition, SOC lowers, for example,
in the case when the battery warms up (due to weather conditions), and
its maximum rated capacitance increases even though no current has been
sunk from the battery. However, these technicalities are of no significance
for the end-user as range estimation is an engineering problem on its own.
It is a range estimation systems’ responsibility to provide useful data to the
end-user, and it is out of the scope of this thesis.

The main problem of SOC is that it cannot be measured directly. That is
the reason why estimation is necessary.

SOC =

-100. (2.1)

B 2.3 State of Health Background

Defining State of Health (SOH) is more involved than defining SOC. As
described in m, there are multiple phenomena occurring in the cell,

6



2.4. State of the Art - Battery Models

as depicted in figure 2.2 However, as a result, all these processes have an
impact on two key cell parameters - capacity and internal resistance. The
SOH [%)] is given as a ratio of the actual maximum available capacity to the

initial maximum capacity ([YXT*21], [TKP15)):

Corrosion
of current . .
Generation
collector SET film
Gas k] 2 3 4
evolution . .. .. < Charze ' ‘ (T
metal * o ¢ . Structural —
L] - .
dissoluti . disordering o
1ssolution .. -. .. o . . .. s * Electrode kinetics
. ..‘. * . .. . performance

L]

4 Migration of @ i
Binder .- [T B e Sy . recession
decomposition <] . . ..... . llthlum-lon.s . . ) ’

. Oxidationo.. . «® o ‘ . . ’ Loss of contact to

o of conductive ‘ - 1 . . conductive particles

icl
Re-precipitation of ..part.m.es‘ : Discharge . . . .

Electrolyte
decomposition

Micro-cracking

. Anode material

. Cathode material

e . L ] 1 1 -1 1
Phase transition of clectrode materials Lithium-ion particle

Figure 2.2: Cell aging mechanisms. Source: [YXTT21]

Qmax
Qinit

However, the article [jJLhPK16] uses an alternative definition with Qeng
denoting the capacity the cell has at the end of its life:

SOH¢g =

-100. (2.2)

_ chr — Qend
Qinit - Qend

Furthermore, the SOH can be defined by resistances, e. g. in [JLhPK16] or
in [YXT*21] (with inverse signs) the definition is

SOH¢ (2.3)

Rcur - Rend

SOHp = ———.
R Rinit - Rend

(2.4)
This thesis uses equation as an exclusive SOH definition. The cell

degradation through the increase of the internal resistance is not taken into
account in this thesis.

B 2.4 State of the Art - Battery Models

According to [Beal9|, there are two classes of battery models, empirical and
mechanistic. Alternatively, a comparative study [HLPT2] uses the categories

7



2. Battery Modelling

Ro(SOC, T) I(t)

—
— [+ o o, +—2o

VOC(SOC, T) <> < | | < | | Vtrm(t)
T Vi(t) Va(t)

Figure 2.3: Equivalent circuit model of battery cell

equivalent circuit models and electrochemical models. These two divisions
are in accordance with each other. The principle is that the mechanistic or
electrochemical models describe (by means of differential equations) electro-
chemical procedures that happen in the cell. On the other hand, the empirical
or equivalent circuit models make use of structures that do not reflect the
battery guts. Instead, they link operating conditions and measured quantities
into a model corresponding to the observed battery behavior.

What model to use depends, naturally, on the target application. The
electrochemical models provide better accuracy at a higher computational
cost. It has been shown in the literature, for example, in [BSM ™20, [YHjX15|
LHLZ17], in the series of articles [Ple04al, [Ple04bl [Ple04cl [Ple06al [Ple06b] and
further in [JZK18, HLP12, [YXL17], that equivalent circuit models provide a
sweet spot of both acceptable accuracy, complexity, and computational effort.
In accordance with development previously done within the industrial partner
of this work, Garrett Motion company, the 2RC model has been chosen for
the purpose of this thesis. Other options could be, for example, the 1RC
model, the 3RC model, the Randles model, the one-state hysteresis model...
[HLP12].

. 2.5 Identification Model

The schematic of the equivalent circuit that models the battery is shown in
figure 2.3. It comprises a voltage source Voo (regarded as the source of the
Open Clircuit Voltage, OCV), an internal resistance Ry, two RC elements, and
output terminals.

Generally, the states’ derivatives are given as a function of model states
x(t) that explicitly depend on time, inputs u(t) that depend on time likewise,
parameters p(...) that depend on other quantities than time, and parameters
0 that are assumed to remain constant:

@ = f(z(t), u(t), p(...), 0). (2.5)



2.5. Identification Model

The following equations and tables describe the mathematical relations in

the model in detail. The state equation 2.6,

R 1(t)
SOC(t) _Qmax
: I(t) V()
Va(t) _ T R11C1
. I(t)  Va(t)
V(1) Cy  RoCy
Frunlt) Vi(t)I(t) N Va(t)I(t) N Ro(SOC, Toa)I(t)?  Tair(t) — Thas(t)
L w . L Cin Ctn Cin Rin Cin
(2.6)

is a full realization of the equation [2.5 and prescribes computation of time
derivatives of the system states. The states are described in table [2.1.

’ State name ‘ Unit ‘
State of Charge SOC Percents %
Voltage V1 Volts V
Voltage V5 Volts V
Temperature That Degrees Celsius °C

Table 2.1: System states

The inputs are stated in equation 2.7,

and described in table 2.2l

Input name ‘ Unit

Battery terminal current [/ Amperes A

Battery temperature Tyt | Degrees Celsius °C

Table 2.2: System inputs

(2.7)

The p(...) parameters are represented by the following nonlinear dependen-

cies of the internal resistance Ry (2.8) and Voc (2.9)),

Ry = fro(SOC, T),
Voc = fvoc(SOC, T).

(2.8)

Both are obtained by experimental measurements and stored in the form

of look-up tables.



2. Battery Modelling

Parameter name ‘ Unit
Resistance Ry Ohms
Capacitance Cy Farads F
Resistance Ro Ohms Q
Capacitance Cq Farads F
Thermal resistance Ry Kelvin/Watt K/W
Thermal capacitance Cyy kilojoule/Kelvin kJ/K
Maximum available battery capacity Q. Ampere hours Ah

Table 2.3: Constant parameters

The last element in the function in equation 2.5/ are the constant parameters
#. Their description can be found in table [2.3.
Now the last thing that needs to be introduced are the system outputs

y(t),

SOoC

y(t) = | Vim | » (2.10)
Tbat

where Vi, is the battery terminal voltage,

Virm = Voo — Vo — Vi — Rol . (2.11)

A question arises - how to obtain all the model parameters? Two means
can be utilized, either measurement or identification from gathered data.
The task was split into these two as follows: the u(...) parameters have been
measured, and the 6 parameters have been determined through least-squares
optimal identification.

The SOC can be taken as measured thanks to the SOC estimation method
currently used in the car. This is described in other section. The afore-
mentioned model serves well for parameter identification. Nevertheless, it
is not suited for SOH estimation, and it moreover uses the SOC estimation
algorithm we want to replace. Because of that, later in this thesis, the model
will be modified.

. 2.6 Model Parameter Measurement

Experiments were arranged in order to measure the p(...) parameters. An
underlying assumption was made that these measured parameters would be
easily scalable for various configurations of cells. That, for example, the
open-circuit voltage and the state of charge (Voc - SOC) dependence will
hold even for a battery pack, and it will suffice to simply multiply the curve
by the number of cells in series. Put another way, there is an assumption of
a neglectable cell-to-cell variation among their characteristics.

10



2.6. Model Parameter Measurement

The first type of experiment aimed at obtaining the open circuit voltage
Voc and internal resistance Ry dependencies on state of charge SOC and
temperature Ti,t.

To obtain the Vo at some point of SOC, all that needs to be done is to
wait sufficiently long for the transients (modeled by the RC elements in 2.3)
to cease away. What does it mean to wait sufficiently long? An experiment
was done to get to know (described below).

Unlike the V¢, it is hard to measure the internal resistance. There are
three methods available - DC load, AC load, and Electrochemical Impedance
Spectroscopy (EIS). The EIS is the richest one in the information provided, yet
the most difficult one to be made working. The DC and AC load methods both
provide different yet correct results because the cell impedance is frequency-
dependent. For the purpose of this thesis, the DC load method was chosen not
only because of the relatively easiest implementation and least instrumentation
requirements, but it can also be justified by looking at figure 2.4. There, the
battery pack terminal current measured during a Formula Student racing
event was taken and underwent the Fast Fourier Transform (FFT). Clearly,
as the current is directly dependent on a human pilot controlling a pedal, the
frequencies are low.

Battery Terminal Current Spectrum

10t £ 1

10°F 1

Magnitude [-]

101+ 1

10'2 Il Il Il Il Il
0 1 2 3 4 5 6

Frequency [Hz]
Figure 2.4: FFT of Battery Terminal Current

B 2.6.1 Measurement setup

A measurement setup schematic can be seen in figure 2.7. There are two
pictures of the setup, too - 2.5 and 2.6. The setup consists of a thermal
chamber, battery cell, electronic DC source, electronic DC load, relay, and a
microcontroller kit STM32 F103 NUCLEO from STMicroelectronics. Fur-
thermore, the source is connected to the PC via GPIB-to-USB. The load and

11



2. Battery Modelling

the microcontroller are both connected via simple USB-USB cables.

Figure 2.5: General look of the measurement setup

Figure 2.6: Inside the thermal chamber

12



2.6. Model Parameter Measurement

--- RELAY ¢
THERMAL[CHAMBER “;
i | source | : _ [ CRLL e LOAD
........... .
t- - MCU  f--------- PC

Power Signal Measurement

Figure 2.7: Measurement setup

Both the source and the load can be used for voltage and current measure-
ments, providing that both are capable of four-wire measurements. However,
different source and load behavior were observed during the switch-off state.
While the output terminals of the load have a large resistance between them
when switched off (over 20 M(), the output terminals of the source have a
very small resistance (less than 12). That means the circuit becomes alive
and starts conducting immediately when the cell is connected to the source
output, which is totally undesirable. The first attempt to overcome this issue
was to connect the cell and the source in series. However, the source and the
load interfered with each other, and the measurement was spoiled. The load
was not able to regulate its output to zero voltage drop. So in the second
step, the issue has been solved by using a relay that disconnects the source
from the cell, as shown in figure [2.7.

The load type is EA EL 9080 170 B HP [Elel9]. It can sink up to 170 A
and 2400 W, which is more than enough for single-cell testing. Also, the
maximum connected voltage is 80 V. The key parameters are summarized in
table [2.4l

The display error adds to the error of the set value.

The source type is Keysight (Agilent) 6673A [Key14].

The figure [2.8| depicts how the cell electrodes and power cables from the
instrumentation are connected and mounted together. A little hole was drilled
through the cell electrodes. The power cables are ended with eyelets. The
two eyelets and the electrode are tightened together by a 3mm bolt and a
nut, both supported by washers. In the left part of the picture, a crocodile
clip of the four-wire measurement cables can be seen.

The connection through eyelets proved to be very effective. Connection

13



2. Battery Modelling

Parameter Value
Maximum input voltage Upax 80V
Maximum input power Ppax 2400 W
Maximum input current Ipax 170 A

Set voltage accuracy <= 0.1% Upax
Voltage display accuracy <=0.1%
Set current accuracy <= 0.2% I ax
Current display accuracy <= 0.1%
Voltage resolution 0.01V
Current resolution 0.1A

Table 2.4: Load key parameters

Parameter Value
Maximum output voltage 35V
Maximum output current 60 A

Set voltage accuracy 0.04% + 35mV
Set current accuracy 0.1% + 40mA

Voltage readback accuracy | 0.05% + 50 mV
Current readback accuracy | 0.1% + 60mA
Voltage resolution 10mV

Current resolution 15 mA

Table 2.5: Source key parameters

resistance was measured at several places in the setup by Gossen Metrawatt
METRAHIT 271 ohmmeter. The values range from 0.02m{2 to 0.11 m{2. For
example, the resistance between the upper eyelet in [2.8 and the electrode
is 0.05 m) and the resistance between the electrode and the lower eyelet is
0.04 mf).

B 2.6.2 Measurement Software

To control all the devices, a program in Python language was written. Both the
source and the load support VISA commands. The F103 kit was programmed
via MBED Compiler, and it only receives 0 or 1 through serial communication
and sets its GPIO to high or low accordingly to connect or disconnect the
relay. The Python software controls the devices and collects measured data,
and stores it in CSV (comma-separated value) format.

B 26.3 Vo, Ry Measurement Procedure

The DC load measurement method is partly inspired by [Key17] and as the
main resource served norm [Com14].

Figure 2.9 shows that typically, the currents drawn from the battery pack
during the Formula Student Endurance Event range up to 60 A. Thus, let this

14



2.6. Model Parameter Measurement

Figure 2.8: Cell mounting

histogram be a supporting justification for the magnitude of the discharge
current pulse stated below.

Firstly, it is necessary to measure cell capacity at the actual temperature.
The cell is discharged to its cutoff voltage, 3.0 V. The rate of discharge is
30 A, which is approximately 4.3 C (C-rate is a unit of current given as a
multiple of battery capacity specified in ampere-hours), which is comfortably
below the maximum continuous discharge current of 105 A (15 C) as specified
in [Shel9]. For most of the voltage range, the load works in constant current
mode - the current remains constant, and the voltage of the cell decreases.
However, on the point of reaching the cutoff voltage, the load switches to
constant voltage mode - cell voltage remains the same while current decreases.
Discharge is stopped when the current is equal to or less than 100 mA. This
value was chosen with respect to the measurement precision of the load. It
was observed that when the discharge task is done, and the cell is left to
rest, its voltage starts to increase immediately, even to a value of roughly
3.1V within a few minutes. That means the load is not able to bring the
Voc to 3.0V within one discharge routine. To get the V¢ closer to 3.0V,
the discharge routine is repeated after five minutes’ rest.

Subsequently, the cell is charged with 7 A (1 C), again far below the max-
imum specified continuous charge current of 14 A (2 C). These values were
chosen as a sweet spot regarding the prevention of excessive heating and cell

15
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Battery Terminal Current Histogram
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Figure 2.9: Histogram of currents drawn from the battery pack

damage on the one hand and the duration of the experiment on the other
hand. Analogously to the discharge routine, charging is done three times
with five minutes’ rest to approach the true Voc of 4.2 V. Then, the value of
charge infused into the cell is stored so that the value of charge corresponding
to 100% SOC is known.

In the next step, the course of measurement keeps on gradually descending
(discharging) from 100% to 0% (for example, equally divided into 4% steps
as in the first measurement) and carries out the open-circuit voltage and
internal resistance measurement at each point.

B 2.6.4 First Measurement

The aim of the first measurement was to get to know how long it is necessary
to wait for the OCV to settle and also if the measurement can provide
meaningful results. Starting at 100% of SOC, a discharge procedure was
carried out, and at 96%, 48%, and 0% of SOC, the algorithm waited for
ninety minutes and read the voltage value every five minutes. The result is
shown in figure [2.10

It can be seen that at 96% of SOC, the terminal voltage Vi, reaches the
Voc right after 10 minutes of resting. At 48% of SOC, the terminal voltage
Virm reaches the Vo after 35 minutes of resting. In the last case, the V¢ is
reached after 70 minutes.

Two possible explanations for these differing settling times were considered.
1) It could be a natural cell property, dependent only on the Voc. 2) It
could be highly influenced by skipping the resting after each measurement
procedure.

It is impractical to wait for 70 minutes to get the Voc. Because of that,
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OCV Settling 1
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Figure 2.10: V¢ Settling during the first measurement

another experiment was necessary to further investigate this behavior.

As a second result of the first measurement, the dependence of the internal
resistance on SOC was measured. It can be seen in|2.11. Strictly speaking, as
the measurement went from 100% SOC to 0%, the dependence of the internal
resistance on the so-called Depth of Discharge, DOD, was measured,

DOD = 100 — SOC. (2.12)

Measured resistances are stratified into four levels. This could be due to
the low current measurement resolution of the used load. The mean value is
2.28 m§2. Thus, the maximum value in the data set is 118.6% of the mean,
and the minimum value is 91.2% of the mean.

B 2.6.5 Second Measurement

In the second measurement, the cell was discharged in steps 4% as in the first
measurement (at room temperature). At each point, there was a rest of 20
minutes with voltage measurements every 5 minutes. The aim was to check
if 20 minutes’ rest is enough for the Voc to settle if the resting is carried out
at every SOC point of the measurement procedure. The results are shown in
table [2.6| (not all the values are shown for brevity).

It is clear that 20 minutes are enough for the Ve to settle down. Only
the last row in the table shows that at low SOC values, the Ve would need
more time to settle. The system dynamics in this region are highly nonlinear
and noisy (SOC equals 0.5%), and thus, there is no practical significance in
waiting for the Voc to settle completely.
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Internal Resistance Measurement 1
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Figure 2.11: Internal Resistance Measurement 1
| Settling time [min] | 5 10 15 20
96% SOC 415V | 415V | 416V | 416 V
76% SOC 397V | 397V | 397V | 397V
56% SOC 3.8V |38V 38V |38V
36% SOC 37TV | 37TV | 378V | 3.718V
16% SOC 371V | 372V | 372V | 3.72V
4% SOC 356V | 356V |356V 356V
0.5% SOC 309V | 311V | 312V | 3.14V

Table 2.6: Open circuit voltage Vo settling

The figure [2.12] reveals the Voo - SOC dependence. It is aligned with
curves seen in the literature. These data are fit for polynomial fitting and
usable for the cell model.

On the contrary, the internal resistance measurement is unsatisfactory.
Although at least from |2.13| some trend towards increasing internal resistance
in lower SOC could be derived, from both the 2.11] and [2.13|figures, it is clear
that the measurement cannot be made with sufficient accuracy. The reason
is the resolution of the electronic load.
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OCV - DOD Measurement 2
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Figure 2.12: V¢ - SOC dependence, Measurement 2, room temperature

Rint - DOD Measurement 2
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Figure 2.13: Internal resistance - DOD dependence, Measurement 2, room
temperature

B 2.6.6 Final Measurement

After making several adjustments and bug fixes to the measurement procedure,
complete results were obtained. They are shown in figures and

19



2. Battery Modelling

Rint - DOD - Temperature Measurement
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Figure 2.14: Internal resistance - DOD - Temperature dependence

In it can be seen that cell temperature clearly influences the internal
resistance. Also, the internal resistance steeply increases in lower SOC.

OCV - DOD - Temperature Measurement
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Figure 2.15: V¢ - DOD - Temperature dependence

On the other hand, the temperature does not have any major impact on
the Voo characteristic. Only in the regions of 75 - 80% and then under 30%.

Whether the measurement was successful or not will be evaluated according
to the fitting of the model to the measured formula car data.
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2.7. Optimal Identification

B 2.7 Optimal Identification

As mentioned previously, the way of obtaining the remaining model parameters
is their identification from experimental data. In this case, the Formula
Student Endurance event data were used.

At this point, an important transition happened. The measurements
described in the previous section were carried out with a single cell. But now,
the data were scaled appropriately according to the configuration of cells in
the battery pack in the formula car. So the optimal identification described
below identified model parameters for the whole battery pack, which was
modeled as the same 2RC structure as in 2.3l

The data were divided into two sets: training and test. For the purpose of
identification, the three-output model 2.10| was used. That means the data
provided by the previously used SOC estimation algorithm are utilized in the
process.

H 271

Implementation

The identification was made within a proprietary tool from the Garrett Motion
company. In its core, the tool uses the fmincon function of MATLABE®. It is
suited for solving optimization problems with nonlinear constraints.

The optimization problem states as follows: a sum of squared differences
between observed system output yP (data) and model output y™ for each
sample of the training data signal of length N must be minimized,

N 2
min Z (y? — yZM> . (2.13)
i=1

subject to constraints imposed on y™ by equations 2.6/ and [2.10 and
equality /inequality constraints on the constant parameters 6 that can be seen
in table [2.7.

’ Parameter Initial value | Minimum | Maximum
Resistance R; 30 m$2 1 mQ 200 mf?
Capacitance Cy 100F 25F 400F
Resistance Rs 60 mQ) 1mQ 200 m$?
Capacitance Co 10F 2.5F 40F
Thermal resistance Ry, 50K/W 1K/W 100K/ W
Thermal capacitance Cy, 25kJ/K 15kJ/K 35kJ/K

Table 2.7: Parameter constraints for identification

During the work, it showed up that it is important to scale the model
parameters properly. Otherwise, one may end up in a situation where the
optimized parameter is completely insensitive to any perturbations induced
by the optimizer. In case some parameter is completely unknown, the
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identification tool enabled fixing the other parameters and tuning only a
single one which sped up the computation and facilitated finding a reasonable
range of values for the optimizer to start with.

. 2.8 Results

An example of a result of the optimal identification can be observed in figure
2.16. More precisely, there is a result of validating an identified model. The
model parameters are shown in table

Validation Check: HF , total fit score 93.6355%
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Figure 2.16: Validation of identified model

Through the course of the work, several other models were identified, but
they emerged as unsuitable. For example, the first identified model had
time constants of 3.6 ms and 7.6 ms. Such time constants are problematic
in multiple aspects. Firstly, they are even shorter than the period of the
control program in the car, that is 10 ms. Secondly, they are very close to
each other, which caused observability issues (unobservable system made the
implemented filter to diverge) - it arose necessary to have the time constants
further from each other. Thirdly, they do not capture the behavior the users
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2.9. Aging Experiment

’ Parameter ‘ Value
Resistance Ry 36 mf2
Capacitance Cy 251F
Resistance Ry 21 m¢2
Capacitance Cy 20F
Thermal resistance Ry, | 50K/W
Thermal capacitance Cy, | 25kJ/K

Table 2.8: Identified model parameters

want to grasp. This can be seen in a quick glimpse back to figure [2.4] again.
Inferring from the prospective real-world application, it can be stated that
the faster dynamic should be able to cover pressing the accelerator pedal by
the pilot. The slower dynamic should encompass the battery behavior on a
horizon from lower tens of seconds to lower tens of minutes.

B 2o Aging Experiment

An experiment was carried out to obtain battery capacity degradation data.
A cell (other than that one used in the previous experiments) was connected
in the same setup as already described earlier in the text. The cell was kept at
30°C in a thermal chamber, discharged with 35 A constant current (changing
to a constant voltage regime at the end). The charging current was 10.5 A.
The cell underwent 180 cycles. The results are depicted in figure [2.17] It is to
be noted that the manufacturer of the cell declares preserving at least 80%
of the initial capacity after 100 cycles. However, in this experiment, the cell
preserved roughly 98.5% of its initial capacity after 180 cycles.

Battery Capacity Degradation
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Figure 2.17: Degradation Experimental Data

23



2. Battery Modelling

B 210 Application Model

As it has been noted already, previously measured SOC data were used
for model identification. Nevertheless, such kind of information will not
be available in the target application. Additionally, the cell degradation
dynamics need to be incorporated into the model. In order to account for
these issues, the identification model was augmented with one state - the
cell capacity Qmax. This state has zero dynamics, and its change is only
modeled by noise, wherefore it works in the way of the Schmidt-Kalman Filter
(SKF); see, e.g., [YBDI10] for reference. The state equations are then given in

equation [2.14]

SOC(t)
Vi(t)
Va(t)

Tbat (t)

Vi(t)I(t) n Va(t)I(t) n Ry(SOC, Tiar)I(1)? n Tair(t) — Thar(t)

| Quuax(t) |

Cin Cin Cin Rin Cin
0
(2.14)

The nonlinear dependencies for the internal resistance Ry and open circuit
voltage Ve still hold as in equations [2.15 and [2.16,

Ro = fro(SOC, T, (2.15)
Voc = focv(SOC, T). (2.16)

On the other hand, the model was shortened by one output - the SOC. As
a result, there are only two outputs - the terminal voltage Vi,

Viem = Voo — Vo — Vi — Rol , (2.17)

and the temperature Ti,,;. Together, they make up the output vector in

equation [2.18],

u(t) = l;ﬂ . 218
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Chapter 3

Overview of SOC and SOH Estimation
Methods

This chapter provides a brief overview of SOC and SOH estimation methods.

. 3.1 State of the Art - SOC Estimation

This section is mainly based on [HHA22]. A complete overview of SOC
estimation methods is depicted in figure 3.1

B 3.1.1 Coulomb counting (Ampere-hour Integral)

The first method for SOC determination mentioned in the literature, e. g.
in [LHLZI1T, BSM™20), and others, is the so-called Coulomb counting

which is described by equation

SOC(t) = SOCy — / ") dr, (3.1)
Qmax 0

where SOCY is the initial state, Qmax is the maximum currently available
battery capacity, n is Coulombic efficiency, 4 is current that flows out from
the battery and 7 is time.

The main problem of this method is the necessity of precise knowledge of
the initial condition and noiseless measurement. As the precise measurement
is never truly available, regular calibration is inevitable. Moreover, this
method cannot compensate for a battery self-discharge. Also, there is a large
cumulative error.

Bl 3.1.2 Voltage measurement

There is a direct mapping from SOC to Open Circuit Voltage Voc. This
dependency could have a form of a look-up table, for example. Then, by
measuring the Vog, the SOC can be inferred directly. There are three major
drawbacks. First, to measure the Vpc, the battery must be disconnected
from the load, and it must rest for sufficiently long for all the transients
to vanish. Second, some battery chemistries exhibit hysteresis in the V¢ -
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Figure 3.1: The family of SOC estimation methods. Source: [HHA22]

SOC dependence - different values for charging and discharging. Third, some
battery chemistries have very flat regions of the function, which means that
even a little change in the measured voltage means a big change in SOC.
All things considered, this method is not suitable for applications where the
highly dynamic loading of the battery is present. Also, the suitability of this
method is not equal for all battery chemistry types.

B 3.1.3 Electrochemical Impedance Spectroscopy

The Electrochemical Impedance Spectroscopy (EIS) is able to capture several
phenomena happening inside the cell ([WHST18], [GP18]). The result is
typically a Nyquist plot with distinct parts of characteristics related to inner
electrochemical phenomena - a double-layer capacitance, charge transfer
resistance at the electrode, diffusion effects of ions into the active material
of the electrode, and phenomena occurring in places of contact of various
electrical components of the cell. As a result, the EIS can provide high-
precision data. On the other hand, creating a battery management system
with EIS capability is expensive. Also, to fully exploit the information given
by EIS, one must thoroughly understand electrochemical processes such as
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ion conduction, diffusion, migration, charge transfer, and so on.

B 3.1.4 Machine Learning

The area of machine learning (ML) is vast, and there is a huge amount of
methods that can be employed for SOC determination. Oftentimes, though,
as the ML is able to supplement custom nonlinear mapping, these algorithms
also typically estimate the remaining useful life (RUL), model parameters,
and so on. Some of the techniques used in this area are: artificial neural
network (ANN) [LPR™19|, adaptive neuro-fuzzy inference system (ANFIS)
[DGWT15], support vector machine (SVM) |[AGd™13|, fuzzy logic, particle
swarm optimization (PSO) and others. As summarized in [HHA22)], their
advantages are typically the ability to work well for nonlinear systems - they
achieve high accuracy. On the other hand, their main disadvantage is the
need for a large amount of training and testing data and the computational
expense.

B 3.1.5 Model-based Methods

The model-based methods (MBM) use a mathematical model, typically a
set of algebraic-differential equations that exhibit behavior analogous to
the real system in question. This model is embedded directly into the
control algorithm. A distinct position among the MBM holds the numerous
family of Kalman Filters (KF). However, apart from that, there are many
other model-based estimation techniques: Luenberger observer, proportional-
integral observer, sliding mode observer, particle filter [AW22], H-infinity
filter [CSXH16], [YXL17], and moving horizon estimator [PBA14].

The best known optimal filter is Linear Kalman Filter (LKF). Compared
to other filters, it has relatively low computational requirements. However, it
is suited for linear systems. A battery cell is not a linear system. Thus, a
relatively large estimation error must be accepted, or some ad-hoc linearization
of the nonlinear part of the model must be carried out, as in [YHjX15].

The first alternative to LKF is Eztended Kalman Filter (EKF). At the cost
of increased computational effort, a smaller error can be achieved. In spite
of the ad-hoc linearization of the model for use in the LKF, the EKF works
universally. It is an approach widely used in the literature, for example, in
the series of articles [Ple04al [Ple04bl [Ple04c]. The EKF uses the first-order
approximation to deal with the model nonlinearity.

As a further development of the aforementioned articles on EKF, articles
[Ple06a] and [Ple06b] were created. They examine an approach fundamentally
different from the EKF, the so-called Sigma Point Kalman Filter (SPKF).
The SPKF does not carry out the first-order linearization. It describes the
system states as probabilistic variables. There are two subtypes of SPKF
mentioned - Unscented Kalman Filter (UKF) and Central Difference Kalman
Filter (CDKF). The articles claim a superior performance of CDKF to EKF
and [JZK18| privileges UKF to EKF.
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. 3.2 State of the Art - SOH Estimation

The SOH is often being estimated in combination with SOC and other battery
parameters, and thus the SOC and SOH estimation methods overlap. However,
the SOH cannot be estimated by any equivalent to Coulomb counting or Voc
measurement, so the pool of SOH methods narrows down to model-based
and machine learning (also called data driven) methods.

Regarding the model-based methods, there are several options for combining
the SOC and SOH estimation. Firstly, the maximum available capacity Qmax
can be included as a state in the system model. Such an approach was adopted
in this thesis as it is the easiest and most straightforward way. Secondly, it
can be estimated separately. For this purpose, there are multiple options
from which to choose: recursive least squares and filters - Kalman, H-infinity...

Some of the methods can be seen in [Ple06b|, [PBA14], [AW22], [TKP15].
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Chapter 4

Estimation Algorithm Implementation

It resulted from literature research that the EKF serves as a benchmark
for all the model-based SOC and SOH estimation algorithms. Thus, it
was implemented in this thesis, too, even though there are algorithms with
reported better results.

B 21 Kalman Filtering

Loosely speaking, the Kalman filter is a clever way to combine system model
and measurements to estimate the systems’ states. It is assumed that both
the system dynamics and measurements are subject to noise.

In the case considered in this thesis, the dynamic system in question is per
se continuous, but it is assumed it has been discretized previously and that
the measurements are discrete, too. The mathematical description goes as
follows:

T = feo1(Tp—1, Uk—1, We—1), (4.1)
Yk = gr(Tk, vk), (4.2)
wy, ~ (0, Qr), (4.3)
v ~ (0, Rg), (4.4)

where x denotes system states, & is differentiation of states according to time
t, u denotes inputs and w is process noise. Furthermore, y; stands for system
output, £ = 1, 2, 3... are samples of discrete-time and v, is measurement
noise. Both the process and the measurement noise are random variables with
zero mean and covariances given by @ and R. Also, they are by assumption
mutually uncorrelated, white and Gaussian.

B 4.1.1 Algorithm

The incorporation of the system model and measurements into states and
covariance propagation can be divided into two steps, called time step and
data step. The discrete time is indicated by the lower index k, and the data
step is indicated by the upper index plus (+) and minus (-). Also, the estimate

29



4. Estimation Algorithm Implementation

before the data step is called a priori, and after the data step, it is called a
posteriori.
In the beginning, filter states and covariance must be initialized,

&g = E(xo), and Py = E[(x0 — 20)(x0 — #0)7]. (4.5)

It can be seen that the initial estimates are treated as being a posteriori.
Henceforth, the states and covariance will be propagated through the system
over the course of time. At each time step, the following partial derivative is
evaluated:

0 fr—1

T |zr
O |4+

Ap_y = (4.6)

It is a first-order approximation of the nonlinear state function f. The
time step is then

Pk_ = AkfIP]:'__lA%Ll + Qkflv (47)
ii‘;; = fk—l('%;:_p Uk—1, 0)

After that, a partial derivative

g,
Cr=—5- 4.9
is computed and then the data step can be performed.
Ly, = P, C{(CkP, Cf + Ry) ™! (4.10)
& = 25 + Lifyr — gr(dy, 0)] (4.11)
P =P, — LICP;CT + R)LT (4.12)

| W Implementation

The algorithm was implemented in MATLAB® environment using the mat-
lab.System class| which enables a great interconnection to MATLAB System
Block in Simulink ®. This framework is directly adjusted for dynamic systems’
modeling, simulation, and subsequent code generation. The MATLAB Sys-
tem Block can be executed in two regimes - Code execution and Interpreted
execution. The first one is fast, and the second one can be debugged step by
step. However, the Code generation mode does not support some functional-
ities (e. g. storing function handles as object properties) that would come
in handy during the implementation. As a result, several inevitable clumsy
workarounds were made. After all, though, the MATLAB System class and
block appeared as a suitable way for filter implementation.
The application-oriented model (equations 2.14 - [2.18)) was used.
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4.2. Implementation

B 4.2.1 Discretization

In this thesis, the Kalman Filter is implemented in its discrete form. Therefore,
the battery model must be discretized. For this purpose, the simple forward
Euler method was utilized,

xp = Tr—1 +Ts- fxp_1, up—1), (4.13)

where 75 is a discretization step. With respect to the prospective embedded
application, the discretization step is Ts = 0.01 s. This is the frequency of
CAN bus in the car.

B 4.2.2 Jacobian Matrix Computation

In each step of the filtering algorithm, states, inputs, and outputs are scaled
in the first place (that appeared necessary to prevent numerical issues).
Then, in the time step, the nonlinear states’ function is approximated by a
derivative which is obtained by numerical differentiation, more precisely by
the finite difference method. This way, the matrix A in 4.6 is obtained. The
perturbation size in the finite difference algorithm is constant, which is why
proper scaling is so important. The equations |4.7| and 4.8 are computed. The
time step is followed by the data step, where a finite difference differentiation
is used once again to get the C matrix from equation |4.9 After that, the
computation of equations |4.10} 4.11, and |4.12 follows.

The finite difference method approximation is computed according to
equation [4.14],

which comes from the definition of a derivative, equation |4.15)

fe) — 1 TE ) = @)

h—0 h (4.15)

The letter h denotes the perturbation. The equations |4.14) and 4.15| are
written for scalar case. Since the model states are a 5-state vector, the differ-
entiation algorithm must be adjusted accordingly. The states are perturbed
one by one, and the division [4.14] yields a 5-by-1 vector in each iteration; this
vector shows how a perturbation in one state (respective to the iteration)
influences all the system states. In the end, a 5-by-5 matrix A is obtained.

Other differentiation methods that might come into consideration would
be for example symbolic differentiation or algorithmic differentiation. The
first one cannot be used because of the lookup tables present in the model.
The second one is more involved than the finite difference method and would
certainly bring an excessive computational burden. Nevertheless, it surely
might be interesting to explore this option more in the future.
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Chapter 5
Estimation Algorithm Validation

In this chapter, the implemented algorithm is tested. Two types of tests were
made - with artificial simulation data and with data from a Real Driving
Experiment (RDE). Because of that, this chapter starts with a description
of the source of this RDE data - the formula car of the eForce FEE Prague
Formula student racing team.

B 5.1 eForce Formula Car Description

Figure 5.1: eForce Formula Car Season 2021

In figure the 11th generation of the formula car is shown. This car
took part in the F'S competition in season 2021.

For the purpose of this thesis, it is important to focus on powertrain
systems. All units in the car communicate via CAN bus with a frequency
of 100 Hz. The car is propelled by four independent in-hub motors. These
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5. Estimation Algorithm Validation

are excited by two inverters. The only source of energy for the whole car is a
battery pack. A more detailed description of the battery and its electronics
can be found in [Hai21].

. 5.2 Accumulator

The accumulator contains Melasta SLPBA942126 cells ([Shel9]) in a config-
uration 144s2p - 144 in series and 2 in parallel, divided into 9 stacks. The
nominal voltage is 600 V, nominal energy is 14 Ah. Each stack is controlled
by a Battery Management System (BMS). The BMS printed circuit board
(PCB) uses the chip Texas Instruments q76PL455A-Q1. The BMS sends
voltage and temperature data and also enables passive balancing. It subordi-
nates to an Accumulator Management System (AMS). The AMS has several
functions: it controls the Accumulator Insulation Relays (AIRs), which lay
between electrodes of batteries and output terminals of the whole battery
pack. It also controls the Precharge circuit, which prevents huge currents in
the system during startup. It governs a Shutdown circuit, a safety feature that
detaches the battery pack from the rest of the car in case of a malfunction or
accident. It makes multiple voltage and current measurements. It takes care
of communication. It also possesses an auxiliary power source for DC/DC
converter startup.

The brain of the AMS is an STM32F105 microcontroller unit from ST
Microelectronics. The currently used algorithm of SOC estimation works
followingly: it models the battery pack as a real voltage source, i.e. an ideal
voltage source in series with a resistor, and computes a voltage drop on
this internal resistance and then directly infers on SOC from a previously
determined look-up table. Also, it integrates instantaneous power at battery
terminals and thus estimates energy drawn from the pack.

In figure 5.2, data from a Formula Student Endurance event were analyzed.
As the current solution of the battery pack in the eForce formula car lacks
active cooling, the temperature in the pack rises during the drive. Therefore,
it is necessary to include thermal dynamics in the model.

B 53 Vehicle Dynamics Control Unit

Relatively to other electronic units, the Vehicle Dynamics Control Unit
(VDCU) has the most computational power. Because of that, any compu-
tationally demanding algorithm, even for battery pack control, would be
entrusted to VDCU and not to AMS. The microcontroller unit in the VDCU
is a Texas Instruments TMS320F28377S chip which boasts a good digital
signal processing performance.
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Figure 5.2: Power and temperature as output from battery pack

. 5.4 SOC Estimation Validation In Simulation

Firstly, the estimation algorithm is to be tested in a simulation environment.
In the tests described below, the continuous model and the filter are compared.

B 5.4.1 Zero Input

The first experiment is the following: zero inputs and different initial condi-
tions. Expected outcome: convergence of the states and outputs of the filter
to that of the continuous model. The initial conditions are summarized in
table where CTM stands for continuous time model and KF stands for
Kalman filter. The values in the middle two columns are scaled. Therefore
there are the adjacent scaling constants stated in the last column.

’ State name \ Initial Value CTM \ Initial Value KF ‘ Scaling ‘

SOC 0.7 0 100
Wi 0 0 1
Va 0 0 1

That 0.5 0 65

Qmax 0.95 0.5 14

Table 5.1: Simulation Initial Values
Simulation results are shown in figure 5.3. The V; and V5 states remained
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5. Estimation Algorithm Validation

zero for both the model and the filter, and the capacity Qumax unsurprisingly
did not have any chance to converge to the model value of Q.x, so it stayed
at its initial value.

Zero Input Test
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Figure 5.3: Simulation results for zero input

B 5.4.2 Constant Nonzero Input

This time, the initial conditions are the same for the continuous-time model,
but changed for the filter to [1; 0.5; 0.5; 0.9; 0.95] (downscaled). The inputs
are 50 A, and 20 °C. The simulation result is shown in figure [5.4

It can be noted that the measured temperature converges instantly to
model values. On the other hand, the SOC and the terminal voltage converge
more slowly. That is also heavily affected by the time constants of the model.

B 5.4.3 Sine Sweep Input

The next experiment was done with [1; 0.5; 0.5; 0.9; 0.95] filter initial states’
values and [100; 5; 5; 65; 14] scaling with the continuous-time model initial
states being the same as in the preceding cases. The temperature input was
constant at 20 °C. The current input performed a sweep from 0 to 5 Hz with
30 A amplitude and 30 A bias (so the wave oscillates between 0 and 60 volts).
These values were chosen based on 2.4l and 2.9
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Sine Sweep - Output
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The filter algorithm exhibits a convergence of the filter SOC value to that
of the continuous-time model under 30 seconds, as depicted in figure [5.5

B 55 S0C Estimation Validation with Experimental
Data

The filter was tested not only against artificial simulation data but also
against data taken during a Real Driving Ezperiment (RDE). The data used
in the following test were collected during the Formula Student Spain 2021
Endurance event (so it is a different data set than the one used for model
identification). Five signals are taken from the RDE data: the inputs Battery
Terminal Current and Ambient Temperature that are shown in figure the
outputs Terminal Voltage and Battery Temperature, and one state, the SOC
estimated by the then-used method.
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RDE Experiment Inputs
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Figure 5.9: Output Comparison for RDE Input

In figure the filter output terminal voltage and battery temperature
are compared to the RDE terminal voltage and battery temperature. It can
be seen that the data overlap - they overlap completely in the case of the
second output (temperature) and somewhat less for the first output.

The figure depicts an excerpt of several signals from between 300s
and 400 s of simulation time.

One of the descriptors that can be used for algorithm evaluation is Root
Mean Square Error (RMSE). The RMSE of the terminal voltage signals is

39



5. Estimation Algorithm Validation

RDE Data Detail 1
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Figure 5.10: A detailed look at a part of the simulation data

given as

S (v e’

RMSE = !
N b

(5.1)

where N is a number of samples, VX is a terminal voltage signal streaming

from the filter, and VPP is battery terminal voltage coming from the real
driving data. The value of the root mean square error is RMSE = 1.54 V,
which is roughly 0.26 % of the maximum value of 600 V.

In figure [5.11], states of the filter and of the continuous-time model (both
fed by the RDE inputs) are compared. The V; and V5 voltages of the model’s
RC elements exhibit a decent overlap with RMSE equal to 0.12V for both of
them. The last state is the battery capacity Qumax. It is also influenced by
the tuning of @) and R matrices. Increasing the weight of the model provides
better results under dynamic load. On the other hand, if the measurements
are regarded as more important, it improves behavior in a steady-state (after
the open-circuit voltage settles). Thus, smaller error in the dynamic part
typically causes larger error in the steady-state and vice versa.

It can be seen in the lower graph of figure[5.10/that the filtered signal catches
noise. However, the peak-to-peak value is usually around 0.7 percentage points.
In other words, it has low significance.
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Figure 5.11: States Comparison for RDE Input

The presence of noise in the SOC filtered signal is directly connected to the
ability of the filter to follow the terminal voltage. These effects counteract
each other (waterbed effect), so a balance must be found. This behavior can
be controlled by tuning the adjacent coefficients in covariance matrices ) and
R in equations and For example, dividing the Q(1, 1) element by 10
lowers the value of the peak-to-peak oscillation to ca. 0.2 percentage point.
However, the RMSE of output terminal voltage increases to 1.59 V. On the
other hand, multiplying the original value of Q(1, 1) by 10 results in higher
SOC peak-to-peak value, around 1.5 p. p., and lower voltage RMSE, 1.41 V.
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Figure 5.12: Old and new SOC estimation

In figure two SOC estimation algorithms are compared to each other.
It can be seen that the filter starts from perturbed initial conditions. Those
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5. Estimation Algorithm Validation

are the same as in the above described cases. The two algorithms present
significantly different results. Their endpoints are 58.5% for the legacy
algorithm and 45.2% for the new algorithm, which makes a 13.3 percentage
points difference at the end of the run. The RMSE is 9.94 percentage points (p.
p.). At this point it is worthy to remind the way the previous SOC estimation
algorithm works. It models the battery as a real voltage source and uses a
constant pre-determined internal resistance value and the measured current to
compute the voltage drop over the internal resistance. After that, it calculates
the open circuit voltage as a difference between the measured terminal voltage
and the voltage drop. In the last step, it determines the SOC from an SOC
- open circuit voltage look-up table. However, this look-up table was only
guessed, not measured. The performance of the algorithm was improved by a
digital filter based on real driving experiments. Computing the energy drawn
from the battery pack is done via instantaneous power integration. These
things considered, the previously used algorithm does not appear to be a
reliable estimator. The newly implemented EKF-based algorithm utilizes
truly measured SOC - OCV dependence and internal resistance dependence,
the system’s model covering two electrical dynamics and one thermal dynamic
and even estimating the battery capacity. Moreover, there is the Coulomb
counting method naturally embedded in the filter. Based on that, a conclusion
can be stated that the new algorithm deserves more trust. Actually, under
such circumstances, the inclusion of the previously estimated SOC into the
identification process might be abandoned in the future.

Another interesting system’s behavior is observed in the middle and at the
end of the data signal. The two plateaus correspond to the change of drivers
(as prescribed by the Formula Student rules) and to the end of the race. The
filter algorithm claims the SOC rises in these moments. The open-circuit
voltage rises, too. That can be seen in more detail in the snapshot of the
middle plateau in figure [5.13] Taking common sense into account, this cannot
be true because the terminal current is zero and so are voltages V; and Vs.
Therefore, the increase in SOC must be a consequence of the unmodelled
dynamics. That would justify the introduction of the third RC element into
the model. Such an RC element would then have the longest time constant
(the slowest dynamic) and would prevent the filtered SOC from rising.
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Figure 5.13: A detailed look at the phenomena occurring during the driver
change

. 5.6 SOH Estimation Validation in Simulation

In order to test the algorithm’s ability to estimate the SOH, a self-standing ex-
periment was arranged where the filter is against compared to the continuous-
time model. It was not possible to make an RDE experiment for SOH
validation.
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Figure 5.15: Filter and model SOC at the beginning of the simulation
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Figure 5.16: Filter and model SOC at the end of the simulation

To the input, a terminal current sine wave and constant ambient tempera-
ture were brought. The sine wave had an amplitude of 20 A and 0 bias and a
frequency of 0.1 radians per second. Thus, the battery is both discharged and
charged during the test, and the SOC remains close to its initial value. The
initial states are set to [0.5; 0; 0; 0.2; 0.6] for the continuous-time model and
to [0.5; 0.5; 0.5; 0.2; 0.95] for the filter. The figure shows the complete
run of the experiment. There, the filter correctly converges from its erroneous
initial value to the correct value represented by the continuous-time model.
The convergence takes approximately 2 hours and 45 minutes. The figure
shows the beginning of the test, and there it can be seen that the filter is
not successful in tracking the CTM because of the incorrect value of battery
capacity. On the other hand, the figure exhibits the SOC values at the
end of the test, and it can be observed that this time the signals are perfectly
overlapped thanks to the correct value of the battery capacity.
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Chapter 6

Conclusion

In this thesis, the usage of an Extended Kalman Filter for State of Charge and
State of Health estimation of a pack of lithium-polymer batteries was described.
This approach was chosen based on literature research. Subsequently, a model
of the battery pack was devised. The model parameters were partly measured
and partly identified from previously gathered data. The filter algorithm
was implemented. Finally, the filter was tested both with simulation data
and real driving experiment data against the continuous-time model of the
battery pack. The whole work has been done with a prospective embedded
automotive application in mind. However, it has not been possible to test
the algorithm deployed in a car so far. The validation experiments proved
successful convergence of the filter for both the states and the outputs.
Future work will be focused on the deployment of the algorithm into
an embedded controller. That means examining the computational power
of the target microcontroller unit by profiling. Then, it must be ensured
the filter will work reliably in single-precision arithmetic. Furthermore, the
performance of the filter could be assessed either by real driving experiments
or (preferably) by a lab experiment, for example, by a rest-bus simulation.
Expanding on the topic, there are many other filter algorithms that could be
implemented both from the family of Kalman filters and beyond.

45



46



Bibliography

[AGd*13]

[AW22]

[Beal9)]

[BSMT20]

[Com14]

[CSXH16]

[DGW+15]

J.C. Alvarez Anton, P.J. Garcia Nieto, F.J. de Cos Juez,
F. Sanchez Lasheras, M. Gonzalez Vega, and M.N. Roquenhi
Gutierrez, Battery state-of-charge estimator using the svm tech-
nique, Applied Mathematical Modelling 37 (2013), no. 9, 6244—
6253.

Mohamed Ahwiadi and Wilson Wang, An enhanced particle filter
technology for battery system state estimation and rul prediction,
Measurement 191 (2022), 110817.

Kirby W Beard, Linden’s handbook of batteries, fifth edition; 5th
ed, McGraw-Hill Education, May 2019.

H. Bouchareb, K. Saqli, N. M’Sirdi, M. Oudghiri, and A. Naa-
mane, FElectro-thermal coupled battery model: State of charge,
core and surface temperatures estimation, ICEERE2020 2nd
International Conference on Electronic Engineering and Re-
newable Energy (Saidia, Morocco), April 2020, Available at
https://hal.archives-ouvertes.fr/hal-02486440.

International Electrotechnical Commission, IEC 62620:201/ Sec-
ondary cells and batteries containing alkaline or other non-acid
electrolytes - Secondary lithium cells and batteries for use in
industrial applications, 2014.

Cheng Chen, Fengchun Sun, Rui Xiong, and Hongwen He, A
novel dual h infinity filters based battery parameter and state
estimation approach for electric vehicles application, Energy Pro-
cedia 103 (2016), 375-380, Renewable Energy Integration with
Mini/Microgrid — Proceedings of REM2016.

Haifeng Dai, Pingjing Guo, Xuezhe Wei, Zechang Sun, and
Jiayuan Wang, Anfis (adaptive neuro-fuzzy inference system,)
based online soc (state of charge) correction considering cell
divergence for the ev (electric vehicle) traction batteries, Energy
80 (2015), 350-360.

47


https://hal.archives-ouvertes.fr/hal-02486440

6. Conclusion

[Ele19] Elektro-Automatik GmbH, Operating manual el 9000 b hp,
8 2019, Available at https://elektroautomatik.com/shop/
media/pdf/20/36/25/33200700_EN. pdf.

[GP1§] Arijit Guha and Amit Patra, Online estimation of the electrochem-
ical impedance spectrum and remaining useful life of lithium-ion
batteries, IEEE Transactions on Instrumentation and Measure-
ment 67 (2018), no. 8, 1836-1849.

[Groa] Boston Consulting Group, https://www.bcg.com/publications/2018 /future-
battery-production-electric-vehicles.

[Grob] , https://www.bcg.com/publications/2017 /energy-
environment-how-batteries-and-solar-power-are-disrupting-
electricity-markets.

[Hai21] Petr Hainc, 2021, Available in Czech at https://dspace.cvut!.

cz/handle/10467/9544371ocale-attribute=en.

[HHA22] M. Hossain, M.E. Haque, and M.T. Arif, Kalman filtering tech-
niques for the online model parameters and state of charge esti-
mation of the li-ion batteries: A comparative analysis, Journal of
Energy Storage 51 (2022), 104174.

[HLP12]  Xijaosong Hu, Shengbo Li, and Huei Peng, A compara-
tive study of equivalent circuit models for li-ion batteries,
Journal of Power Sources 198 (2012), 359-367, Available
at |https://www.sciencedirect.com/science/article/pii/
S0378775311019628l

[[LhPK16] Hyun jun Lee, Joung hu Park, and Jonghoon Kim, Comparative
analysis of the soh estimation based on various resistance param-
eters for licoo2 cells, 2016 IEEE Transportation Electrification
Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2016,
pp. 788-792.

[JZK18] Ivan Joki¢, Zarko Zedevié¢, and Bozo Krstaji¢, State-of-charge
estimation of lithium-ion batteries using extended kalman filter
and unscented kalman filter, 2018 23rd International Scientific-
Professional Conference on Information Technology (IT),
2018, Available at https://ieeexplore.ieee.org/document/
8350462, pp. 1-4.

[Key14] Keysight Technologies, Keysight models 664za, 665za, 667xa,
668xa, and 669xa gpib dc power supplies operating guide, 12
2014, Available at https://www.keysight.com/de/de/assets/
9018-01422/user-manuals/9018-01422.pdf?success=truel

[Keyl7] Keysight Technologies, Battery testing application note, 12 2017.

48


https://elektroautomatik.com/shop/media/pdf/20/36/25/33200700_EN.pdf
https://elektroautomatik.com/shop/media/pdf/20/36/25/33200700_EN.pdf
https://dspace.cvut.cz/handle/10467/95443?locale-attribute=en
https://dspace.cvut.cz/handle/10467/95443?locale-attribute=en
https://www.sciencedirect.com/science/article/pii/S0378775311019628
https://www.sciencedirect.com/science/article/pii/S0378775311019628
https://ieeexplore.ieee.org/document/8350462
https://ieeexplore.ieee.org/document/8350462
https://www.keysight.com/de/de/assets/9018-01422/user-manuals/9018-01422.pdf?success=true
https://www.keysight.com/de/de/assets/9018-01422/user-manuals/9018-01422.pdf?success=true

[LHLZ17]

[LPR*19]

[PBA14]

[Ple04a]

[Ple04b)

[Ple04c]

[Ple06a]

[P1e06b]

6. Conclusion

Zhe Li, Jun Huang, Bor Yann Liaw, and Jianbo Zhang,
On state-of-charge determination for lithium-ion batteries,
Journal of Power Sources 348 (2017), 281-301, Available
at [https://www.sciencedirect.com/science/article/pii/
S0378775317302859.

Massimiliano Luzi, Maurizio Paschero, Antonello Rizzi, Enrico
Maiorino, and Fabio Massimo Frattale Mascioli, A novel neural
networks ensemble approach for modeling electrochemical cells,
IEEE Transactions on Neural Networks and Learning Systems
30 (2019), no. 2, 343-354.

B. Pattel, H. Borhan, and S. Anwar, An evaluation of the moving
horizon estimation algorithm for online estimation of battery
state of charge and state of health, Proceedings of the ASME 2014
International Mechanical Engineering Congress and Exposition
(Montréal, Quebec, Canada), no. IMECE2014-37140, November
2014.

Gregory L. Plett, Extended kalman filtering for battery manage-
ment systems of lipb-based hev battery packs: Part 1. background,
Journal of Power Sources 134 (2004), no. 2, 252-261, Avail-
able at https://www.sciencedirect.com/science/article/
pii/S0378775304003593,

, Bxtended kalman filtering for battery management sys-
tems of lipb-based hev battery packs: Part 2. modeling and iden-
tification, Journal of Power Sources 134 (2004), no. 2, 262—
276, Available at https://www.sciencedirect.com/science/
article/pii/S037877530400360X.

, Bxtended kalman filtering for battery management sys-
tems of lipb-based hev battery packs: Part 3. state and parameter
estimation, Journal of Power Sources 134 (2004), no. 2, 277—
292, Available at https://www.sciencedirect.com/science/
article/pii/S0378775304003611.

, Stgma-point kalman filtering for battery management
systems of lipb-based hev battery packs: Part 1: Introduction
and state estimation, Journal of Power Sources 161 (2006),
no. 2, 1356-1368, Available at https://doi.org/10.1016/j}
jpowsour.2006.06.003/

, Stgma-point kalman filtering for battery management sys-
tems of lipb-based hev battery packs: Part 2: Simultaneous state
and parameter estimation, Journal of Power Sources 161 (2006),
no. 2, 1369-1384, Available at https://doi.org/10.1016/j}
jpowsour.2006.06.004/

49


https://www.sciencedirect.com/science/article/pii/S0378775317302859
https://www.sciencedirect.com/science/article/pii/S0378775317302859
https://www.sciencedirect.com/science/article/pii/S0378775304003593
https://www.sciencedirect.com/science/article/pii/S0378775304003593
https://www.sciencedirect.com/science/article/pii/S037877530400360X
https://www.sciencedirect.com/science/article/pii/S037877530400360X
https://www.sciencedirect.com/science/article/pii/S0378775304003611
https://www.sciencedirect.com/science/article/pii/S0378775304003611
https://doi.org/10.1016/j.jpowsour.2006.06.003
https://doi.org/10.1016/j.jpowsour.2006.06.003
https://doi.org/10.1016/j.jpowsour.2006.06.004
https://doi.org/10.1016/j.jpowsour.2006.06.004

6. Conclusion

[Shel9]

[Son]

[TKP15]

[WHS*18]

[YBD10]

[YHjX15]

[YXL17]

[YXT+21]

Shenzhen Melasta Battery, Product specification polymer li-ion
battery 3.7v 7000mah 15¢, 10 2019.

Sony Corporation, Lithium ion rechargeable batteries technical
handbook.

Shijie Tong, Matthew P. Klein, and Jae Wan Park, On-line
optimization of battery open circuit voltage for improved state-of-

charge and state-of-health estimation, Journal of Power Sources
293 (2015), 416-428.

Qian-Kun Wang, Yi-Jun He, Jia-Ni Shen, Xiao-Song Hu, and
Zi-Feng Ma, State of charge-dependent polynomial equivalent
circuit modeling for electrochemical impedance spectroscopy of
lithium-ion batteries, IEEE Transactions on Power Electronics
33 (2018), no. 10, 8449-8460.

Chun Yang, Erik Blasch, and Phil Douville, Design of schmidt-
kalman filter for target tracking with navigation errors, 2010 IEEE
Aerospace Conference, 2010, pp. 1-12.

Zhihao Yu, Ruituo Huai, and Lin jing Xiao, State-of-Charge
Estimation for Lithium-Ion Batteries Using a Kalman Filter
Based on Local Linearization, Energies 8 (2015), 1-20, Available
at https://www.researchgate.net/publication/282462924|

Quanging Yu, Rui Xiong, and Cheng Lin, Online estimation
of state-of-charge based on the h infinity and unscented kalman
filters for lithium ion batteries, Energy Procedia 105 (2017),
2791-2796, Available at https://doi.org/10.1016/j.egypro}
2017.03.600.

Lei Yao, Shiming Xu, Aihua Tang, Fang Zhou, Junjian Hou,
Yanqiu Xiao, and Zhijun Fu, A review of lithium-ion battery
state of health estimation and prediction methods, World Electric
Vehicle Journal 12 (2021), no. 3.

50


https://www.researchgate.net/publication/282462924
https://doi.org/10.1016/j.egypro.2017.03.600
https://doi.org/10.1016/j.egypro.2017.03.600

	Introduction
	Formula Student

	Battery Modelling
	Li-ion Batteries
	State of Charge Background
	State of Health Background
	State of the Art - Battery Models
	Identification Model
	Model Parameter Measurement
	Measurement setup
	Measurement Software
	VOC, R0 Measurement Procedure
	First Measurement
	Second Measurement
	Final Measurement

	Optimal Identification
	Implementation

	Results
	Aging Experiment
	Application Model

	Overview of SOC and SOH Estimation Methods
	State of the Art - SOC Estimation
	Coulomb counting (Ampere-hour Integral)
	Voltage measurement
	Electrochemical Impedance Spectroscopy
	Machine Learning
	Model-based Methods

	State of the Art - SOH Estimation

	Estimation Algorithm Implementation
	Kalman Filtering
	Algorithm

	Implementation
	Discretization
	Jacobian Matrix Computation


	Estimation Algorithm Validation
	eForce Formula Car Description
	Accumulator
	Vehicle Dynamics Control Unit
	SOC Estimation Validation In Simulation
	Zero Input
	Constant Nonzero Input
	Sine Sweep Input

	SOC Estimation Validation with Experimental Data
	SOH Estimation Validation in Simulation

	Conclusion
	Bibliography

