
Instructions

Research current state-of-the-art techniques that are used for detection and segmentation tasks in

the medical imaging domain, and focus on X-Ray images. Implement one or more models that will

work on datasets provided by the supervisor. Compare their performance and focus on preprocessing

data in order to achieve the best accuracy with chosen models. Discuss the pros and cons of the

various preprocessing approaches. Publish your prototype code and make sure your results are

reproducible.

Electronically approved by Ing. Karel Klouda, Ph.D. on 10 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Detection of defects in X-Ray images using Neural Networks

Student: Matúš Botek

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of winter semester 2022/2023

Bachelor’s thesis

Detection of defects in X-Ray images using
Neural Networks

Matúš Botek

Department of Applied Mathematics
Supervisor: Ing. Jakub Žitný

May 12, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Jakub Žitný, for his valuable insight
and guidance during the writing process of my thesis. Furthermore, I would
also like to thank my family and friends, who supported me the whole time.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Matúš Botek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Botek, Matúš. Detection of defects in X-Ray images using Neural Networks.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2022.

Abstrakt

Tato práce si klade za cíl shrnout různé techniky zlepšování a nejmodernější
přístupy použitelné pro úkoly v oblasti lékařského zobrazování. S těmito zna-
lostmi jsou implementovány a trénovány modely konvolučních neuronových
sítí na datovém souboru muskuloskeletálních rentgenových snímků. Je sledo-
ván a diskutován dopad na výkon modelu použitím více metod předzpracování
dat.

Klíčová slova konvoluční neuronové sítě, rentgenové snímky, MURA, kla-
sifikace, předzpracování dat, TensorFlow, Keras

Abstract

This thesis aims to summarize different improvement techniques and state
of the art approaches usable for tasks in medical imaging domain. With
this knowledge, convolutional neural network models are implemented and
and trained on a musculoskeletal radiographs dataset. The impact on model
performance by applying multiple preprocessing methods is watched and dis-
cussed.

vii

Keywords convolutional neural networks, X-Ray images, MURA, classifi-
cation, data preprocessing, TensorFlow, Keras

viii

Contents

Introduction 1

1 Machine Learning 3
1.1 Supervised and Unsupervised Learning 3

1.1.1 Supervised Learning . 3
1.1.2 Unsupervised Learning 4

1.2 Metrics . 4
1.2.1 Basics . 4
1.2.2 Area Under the Curve 6

1.3 Working with Data . 7
1.3.1 Overfitting and Underfitting 7

1.4 Convolutional Neural Networks 7

2 State of the Art 9
2.1 Cross-validation . 9
2.2 Image Preprocessing . 9

2.2.1 Image Augmentation . 9
2.2.2 Histogram Equalization 10
2.2.3 Contrast Limited Adaptive histogram equalization . . . 10
2.2.4 Segmentation . 11

2.3 Gradient-weighted Class Activation Mapping 11
2.4 Hyperparameter Optimization 11
2.5 Transfer Learning . 11
2.6 Ensemble . 12

3 Medical Imaging 13

4 Analysis and Design 15
4.1 Technologies . 15

ix

4.1.1 Python and Jupyter Notebook 15
4.1.2 TensorFlow and Keras 15
4.1.3 Other Libraries . 16
4.1.4 Google Colab . 16
4.1.5 Code Availability . 16

4.2 Dataset . 16
4.2.1 Dataset Preparation . 16
4.2.2 Data Exploration . 17

4.3 Implementation Fundamentals 17
4.3.1 Models . 17

4.3.1.1 ResNet50 . 18
4.3.1.2 DenseNet169 18

4.3.2 Cohen’s Kappa . 19
4.3.3 Class Weights . 20

4.4 Image augmentation . 20
4.4.1 Training Run . 21

5 Experiments and Results 23
5.1 Image Preprocessing Comparison 23

5.1.1 Normalization . 24
5.1.2 CLAHE . 24
5.1.3 Histogram Equalization 24
5.1.4 Cropping Pipeline . 25
5.1.5 Preprocessing Results 26

5.2 Hyperparameter Optimization 27
5.3 Full Dataset Training and Cross-validation 27
5.4 Results Summary and Discussion 28

Conclusion 31

Bibliography 33

A Acronyms 37

B Contents of Enclosed CD 39

x

List of Figures

1.1 Confusion matrix[4] . 5
1.2 ROC curve[7] . 6
1.3 Overfitting and underfitting[10] . 8

2.1 Comparison of histogram equalization and CLAHE 10

4.1 Sample of dataset images . 18
4.2 ResNet50 architecture[30] . 19
4.3 DenseNet169 architecture[32] . 19

5.1 CLAHE clip limit comparison - darker original image 24
5.2 CLAHE clip limit comparison - brighter original image 25
5.3 Grad-CAM visualization of detected abnormalities 29
5.4 Visualisation of individual steps of my custom preprocessing crop-

ping pipeline . 30

xi

List of Tables

4.1 Distribution of normal and abnormal studies, taken from MURA
research paper[19] . 17

5.1 Cohen’s kappa(κ) values achieved in preprocessing experiment . . 26
5.2 Optimized hyperparameter values 27
5.3 Cross-validaton results for ResNet50 with Cohen’s kappa from best

epoch per fold . 28
5.4 Cross-validaton results for DenseNet169 with Cohen’s kappa from

best epoch per fold . 28
5.5 Results of my models compared to selected existing ones 29

xiii

Introduction

Machine learning and neural networks are not a brand new concept, but nowa-
days, the relatively easy access to computational resources and increasing
quality and quantity of data that is being collected are causing significant
growth of interest in these topics. The interest is not solely oriented on infor-
mation technology as such. Machine learning is being found useful more and
more in all sorts of fields like commerce, healthcare, education and others.
This gives us new opportunities to research ways of utilizing machine learning
approaches in fields where it can make positive difference.

Healthcare is definitely one of those fields. Most medical domain tasks
require skilled professionals to solve them. Sometimes, the demand for those
professionals is not satisfiable and that can lead to complications when the
tasks need to be solved in a timely manner. Machine learning, specifically
convolutional neural networks can be utilized to aid in these tasks. The pres-
ence of an expert is still not fully replaceable, but using convolutional neural
networks as a form of assistance can be of use. For example pointing out
potenial problems automatically can make the professionals decision making
faster and more reliable as it provides another view into the task. There is
also a possibility to develop models for these tasks and then deploy them in
areas where medical help is absent to provide a partial replacement in patient
diagnosis.

This thesis focuses on researching techniques that are used for detection
and segmentation in medical imaging domain, especially on X-Ray images.
The next goal is to implement some of those techniques and use them in order
to solve a task from medical imaging domain. In this case, the implementation
will try solving binary classification task of musculoskeletal X-Ray scans into
normal and abnormal categories.

1

Chapter 1
Machine Learning

Machine learning (ML) is a computer science field focused on algorithms that
adjust themselves to the given task based on experience and provided data in
order to improve their performance. They are capable of extracting features
and finding relationships or rules in provided data. This chapter introduces
ML and describes it’s fundamentals.

1.1 Supervised and Unsupervised Learning
We can divide ML algorithms into two main categories, based on the learning
approach that is used. These categories are supervised and unsupervised
learning

1.1.1 Supervised Learning
In supervised learning, the algorithm works with a set of labeled data. It
receives n input-output pairs (x1, y1), (x2, y2), ...(xn, yn) where xi represents
the input and yi the corresponding labeled output. The algorithm’s task is
to find a function that will approximate the true function f : X −→ Y which
maps inputs X to their corresponding outputs Y . The goal is to correctly
assign y values not only to inputs from provided pairs but also to new inputs
for the same task that were not yet seen, by learning on the provided example
pairs. We call the set of example input-output pairs training data.[1]

We can further distinguish supervised learning tasks by their domain of
output values. Tasks where inputs are assigned to a small, finite set of output
values are called classification problems. When the domain of output values
is continuous or there are so many values that it’s better to treat them as
continuous, it is a regression problem. Below are some examples for supervised
learning approaches:

• Logistic regression (classification problems)

3

1. Machine Learning

• Linear regression (regression problems)

• Decision trees (both problem types)

1.1.2 Unsupervised Learning
Unlike supervised learning, for unsupervised learning there are no labels pro-
vided with the input data. The algorithm has no reference for determining
the output values, so the goal is to find connections, similarities or patterns
between the inputs.[2] These are some of the common unsupervised learning
approaches:

• Clustering - The goal of clustering is to divide the inputs into several
clusters so that the similar inputs belong to the same cluster and dis-
similar inputs are in separate clusters.[2]

• Dimensionality reduction - This technique can be used to reduce the
number of features for given dataset in order to improve the performance
of other ML methods, while trying not to remove important informa-
tion.[3]

Unsupervised learning can also be very useful at extracting features or detect-
ing anomalies and outliers.

1.2 Metrics
Measuring the performance of models and the quality of achieved results is a
crucial part in ML models training. The use of metrics can help us compare
different training approaches or simply evaluate achieved outcomes. There are
many different types of metrics each suitable for specific type of tasks. They
usually reflect the goal of our task. This section focuses on metrics relevant
to binary classification tasks.

1.2.1 Basics
Confusion Matrix visualizes the relevant values used for calculating other
metrics used for binary classification.[5] It contains these values:

• True Positive (TP): number of positive samples classified as positive

• False Positive (FP): number of negative samples classified as positive

• False Negative (FN): number of positive samples classified as negative

• True Negative (TN): number of negative samples classified as negative

4

1.2. Metrics

Figure 1.1: Confusion matrix[4]

After defining these 4 values, we can define the following metrics:[5][4]
Accuracy is the most common and simple metric used for measuring

performance of ML algorithms in medicine, but it tends to be misleading
when the dataset classes are imbalanced. If the model were to always predict
the majority class, it would achieve high accuracy even though it completely
ignored the minority class. We define it as

ACC = TP + TN

TP + FP + TN + FN

True Positive Rate / Sensitivity / Recall represents the fraction of pos-
itive samples that were correctly classified.

TPR = TP

TP + FN

True Negative Rate / Specificity represents the fraction of negative sam-
ples that were correctly classified.

TNR = TN

TN + FP

Positive Predictive Value / Precision represents the chance that a sample
classified as positive is actually positive

PPV = TP

TP + FP

Negative Predictive Value represents the chance that a sample classified
as negative is actually negative

PPV = TP

TP + FP

5

1. Machine Learning

False Positive Rate represents the fraction of negative samples that were
incorrectly classified

FPR = FP

TN + FP
= 1 − Specificity

1.2.2 Area Under the Curve

Receiver operator characteristic (ROC) curve is a metric that plots true pos-
itive rate against false positive rate. We can measure model performance by
using the Area under the curve (AUC) ROC curve, AUC-ROC curve. AUC
tells us how good is the model in distinguishing positive samples from negative
samples. We want our model to have the highest AUC possible, AUC = 1
means the model always classifies the sample correctly, AUC = 0.5 means the
model classifies at random and has no ability to distinguish the samples and
AUC < 0.5 means the separability is worse than random.[6] Figure 1.2 shows
an example for ROC curve.

Figure 1.2: ROC curve[7]

6

1.3. Working with Data

1.3 Working with Data
When it comes to data, there are some practices that should be taken into
account when working with ML models. The goal of every model is to learn
from available data. The amount of data can determine how well can the
model generalize the task and how good it’s performance will be on unknown
samples. But no matter how big our data is, we should provide only a portion
of it to our model. When we provide data to the model, we want to measure
it’s performance, but doing that only on the training data might be unreliable
as models are prone to learn too much detailed features and end up degrading
their performance. It is much more reliable to simulate model response to
new, unseen data. We can do a train test split. We select a small portion of
data and use it as a test set. This data will be used only after the model has
been trained to verify it’s ability to generally solve the given task.

Another more advanced option is to do a train-validation-test split. The
training set is used to train given model with specific parameters and then
the model performance is measured on the validation set. The validation set
acts as new data for the model and therefore should provide more accurate
measurement. We can use the error from validation set to choose the cor-
rect configuration of our model. This is called model selection[8] The test
set should only be used to make a final measurement of model performance.
By comparing the model performance on training and test data we can spot
learning problems.

1.3.1 Overfitting and Underfitting
Overfitting and underfitting are a common problem in the ML domain. When
a model fits perfectly on the training data and then performs poorly on test
data, we can calculate the difference in performance on train and test data, it is
called the generalization gap. Big generalization gap is a sign of overfitting.[9]
On the other hand, when the model is underfitting it shows that the model
was not able to extract any relations from the data, it did not learn how to
solve the task.

1.4 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are derived from traditional Artificial
Neural Networks (ANNs). Their are primarily used for pattern recognitions
in the imaging domain. CNNs are built using three types of layers.

• convolutional layers

• pooling layers

• fully-connected layers

7

1. Machine Learning

Figure 1.3: Overfitting and underfitting[10]

Basic run of a CNN consits of multiple steps. First, the input layer will
obtain the input image shaped to appropriate dimensions, then operations
will be applied on the image based on the layer it goes through. [11]

”The convolutional layer will determine the output of neurons which are
connected to local regions of the input through the calculation of the scalar
product between their weights and the region connected to the input vol-
ume.”[11]

The pooling layers are used for applying downsampling, then the fully-
connected layers produce scores used for classification.

8

Chapter 2
State of the Art

This chapter covers multiple improvement techniques and state of the art
approaches for working with CNNs.

2.1 Cross-validation
In section 1.3 I mentioned approaches to splitting data into distinct sets.
Cross-validation is also a form of data splitting. The validation and train sets
are not static. Together they are divided into K splits randomly, where for
every split, all other splits are used as a training set and the specific split acts
as a validation set. The model is trained like this for each split, reinitialized
between them.

This way all parts of data act as new samples and the measurement is
more reliable. The final model error can then be calculated by averaging all
individual split errors. The approached I described is called KFold. This can
be especially useful when the provided dataset would be too small if split
statically.[12]

2.2 Image Preprocessing
Image preprocessing techniques focus on preparing the data prior to model
training in order to improve the performance. They can try to remove un-
wanted defects from the images, improve some features or enhance the dataset
by creating new samples.

2.2.1 Image Augmentation
Image augmentation is a good way to provide different samples for the model
training. If the used dataset is too small, we can increase it by taking existing
samples and applying transformations to them in order to create new data.

9

2. State of the Art

Image augmentation can also be used online during training to reduce over-
fitting. By randomly modifying the samples it lowers the chance of the model
to learn detecting only specific input data.

2.2.2 Histogram Equalization

Histogram equalization is a method for increasing the global contrast of an
image. It may not work good on images where multiple areas have huge
differences in intensity, then it tends to create noise in the image. The Figure
2.1 shows the difference between applying CLAHE, which is mentioned later
in this chapter and histogram equalization.

2.2.3 Contrast Limited Adaptive histogram equalization

Contrast limited adaptive histogram equalization (CLAHE) is another algo-
rithm for increasing the contrast of images. It is an advancement to adap-
tive histogram equalization (AHE). AHE tends to overenhance noise in rela-
tively homogeneous regions and CLAHE proposes a way to battle this over-
enhancement by clipping the histogram,on which the equalization is based,
at a given value called the clip limit.[13] Any histogram bins, that are above
the clip limit are clipped and redistributed uniformly among other bins be-
fore the equalization is applied.[14] It should also produce better results then
standard histogram equalization. The comparison to histogram equalization
is visible in Figure 2.1 A study proposing usage of ”N-CLAHE” algorithm was
published[15], where they normalized images using a log function with blank
scan image.

Figure 2.1: Comparison of histogram equalization and CLAHE

10

2.3. Gradient-weighted Class Activation Mapping

2.2.4 Segmentation
Image segmentation tries to segment images into multiple regions. These re-
gions can be further used to provide additional data to images being used for
training by selecting regions of interest, labeling different segments of image
with custom labels. By segmenting an image one can remove unwanted re-
gions, crop image according to found boundaries. Segmentation can be done
automatically by using pre-trained models or other automated algorithms.

2.3 Gradient-weighted Class Activation Mapping
Gradient-weighted Class Activation Mapping (Grad-CAM) is a method used
to better explain CNN model decisions when solving tasks. By obtaining the
gradients from the last convolutional layer, it calculates signicance of each
feature in the feature map for the final prediction and creates a heatmap that
can visualize areas of image that took the biggest part in the final prediction.
Using Grad-CAM can be beneficial when we want to find out underlying issues
to which we come accross during configuration of our models. Two sample
images created using my final models can be seen in Figure 5.3.

2.4 Hyperparameter Optimization
The task of successfully training ML models hugely depends on the correct
choice of hyperparameters. Hyperparameters are defining the learning process
and by changing them one can influence the performance. Hyperparameter
optimization is a process of finding the combination of searched parameters
that provide best model performance. Multiple search algorithms for hyper-
parameter optimization are implemented, I used a state of the art algortihm
called Hyperband[16] in my experiments. It uses successive halving for filter-
ing the search space and it adaptively assigns resources for individual trial
runs.

2.5 Transfer Learning
Transfer learning is a method used to take advantage from already pretrained
models. The goal of transfer learning is to transfer features learned on an-
other dataset to a new one that is similar in order to improve the preformance.
Today the most popular approach to transfer learning is taking weights from
models that were trained on the ImageNet[17] dataset, which is a large com-
petitive dataset with over 14 milion images belonging to over 20,000 categories
for benchmarking. Research showed that using pre-trained weights from Im-
ageNet dataset and transfering them to a different, not even similar problem
produces satisfiable results.

11

2. State of the Art

Transfer learning sometimes also consists of fine-tunig. First, a CNN model
pre-trained on ImageNet is created, while the top classification layers can be
removed. These layers are replaced by new custom layers suitable for our
task. The base architecture layers are frozen as to not disrupt the pretrained
weights and only the top layers are trained. After this training ends, all or
some specific layers can be fine-tuned, being trained for a small number of
epochs on very small learning rate to adjust to the new task.

2.6 Ensemble
Ensemble methods are currently one of the most popular approaches to solv-
ing ML tasks. They are based on predicting the final output with the help
of multiple learners. The learners can represent various machine learning
algorithms and the main idea is that the use of multiple learners can overcom-
pensate for a possible error of an individual. This approach provides several
advantages. One is definitely the smaller chance of overfitting due to multiple
provided predictions. Usage of different algorithms can improve the ability of
the ensemble model to fit the task as wider space is can searched.[18]

The outputs from individual models can be joined into a single output by
the usage of weighted methods or meta-learning. Weigthed methods assign
weight to individual models outputs and meta-learning is based on learning
from learners.[18]

Example usage of ensemble model can also be found in the Musculoskeletal
radiographs (MURA) paper[19] as their proposed baseline model consists of
multiple DenseNet models. Another paper was published on using ensemble
models to classify selected studies from MURA dataset by using VGG19 and
ResNet architectures.[20]

12

Chapter 3
Medical Imaging

This chapter summarizes my findings in regards to use of ML in medical
imaging domain. I was focusing mostly on musculoskeletal applications.

Medical imaging is a field that is focused on creating body images for
the purpose of diagnosis. ML algorithms and especially CNNs can contribute
to this domain. For ML, quality and size of datasets is really important,
some of the biggest medical imaging datasets are our used MURA dataset[19],
CheXNet dataset[21] for pneumonia detection and probably the most impor-
tant one these days is the COVID-19-detection dataset.[22]

In muscoskeletal research, I found several studies about MURA dataset.
I found a study focused on automatic segmentation on femur bones, which
contained very thourough research into the topic[23]. This study focused
on detecting bone fractures in shoulder area[24] which used both individual
deep learning models and ensemble models to complete the task. A paper
using unsupervised methods was researching the application of those methods
trained on images without anomalies for evaluating X-Ray images of hands.[25]

Even though I wanted to focus on muscoskeletal research, I wanted to in-
clude Covid-19 works as it is a totally new task widely and actively being
research. Some studies are focused on data preprocessing[26] using segmen-
tation to improve the images, even a deep convolutional neural architecture
named COVID-NET was proposed[27] in late 2020. It was and still is a goal
for many ML researchers to aid in the fight against Covid-19 desease and being
able to detect it using ML could be very beneficial.

13

Chapter 4
Analysis and Design

This chapter lists technologies used during the implementation, describes ma-
jor practical part decisions, including the chosen dataset and CNN architec-
tures.

4.1 Technologies

4.1.1 Python and Jupyter Notebook
The whole implementation is written in Python. It has high code readability
and strong community support. There are many powerful libraries focused
on ML for Python, which make it one of the most popular programming lan-
guages when it comes to ML tasks. The version I used is Python 3.8. For
better presentation purposes, some code is written in Jupyter Notebook files.
Jupyter Notebook is a web application for creating documents consisting of
independent cells that can contain code, text or visualisations. These doc-
uments support running Python code, with outputs being visible directly in
the document.

4.1.2 TensorFlow and Keras
Model building and training was done using open-source libraries TensorFlow
and Keras. TensorFlow is a machine learning platform originally developed
by Google. It can be used in multiple programming languages. It is efficient
at executing low-level tensor operations on CPU, GPU, or TPU, with the
possibility of scaling computation to many devices.[28] I was using the latest
version of this library, TensorFlow 2.8.

Keras is a high-level deep learning API, running on top of TensorFlow.
The library is written in Python and it’s aim is to make model building and
experimentation faster and simpler together with utilizing the scalability and
efficiency of TensorFlow. Together with it’s Functional API, it allows us to

15

4. Analysis and Design

build both simple and complex architectures, with many of the popular CNN
architectures made available as pre-built models. It also offers data prepro-
cessing and hyperparameter tuning methods.[28]

4.1.3 Other Libraries
In addition to libraries mentioned above, I used Pandas for dataset handling
using Dataframes, Matplotlib for creating visualisations, NumPy for math-
ematical operations, OpenCV for image preprocessing and Scikit-learn for
cross-validation.

4.1.4 Google Colab
Google Colab is a cloud-based service offering computational resources in-
cluding GPUs for Python code execution. It can run Jupyter Notebooks and
access files from Google Drive or GitHub. The computational resources are
limited and might fluctuate. Training a CNN is a computationally demanding
task, therefore I chose to run most of the training and experiments on Google
Colab.

4.1.5 Code Availability
The whole implementation is shared in a public Github repository with com-
ments and descriptions for better understanding of the project.

4.2 Dataset
The dataset I used is the MURA dataset assembled by researchers from Stan-
ford University. It contains 14,863 studies from 12,173 patients, totalling
40,561 images. All images were obtained from the Picture Archive and Com-
munication System of Stanford Hospital. The body parts present in the studies
are the following: elbow, finger, hand, humerus, forearm, shoulder and wrist.
Each study contains images of only one specific body part and was manu-
ally labeled as normal or abnormal by board-certified radiologists from the
Stanford Hospital. The dataset was split into train, validation and test sets
without patient overlap between them.[19] Detailed distribution of normal and
abnormal studies can be seen in Table 4.1.

4.2.1 Dataset Preparation
I was only able to obtain the train and validation sets of the dataset. The test
set is not publicly available, so I decided to reproduce the test set on my own,
using a subset of original training data. In the MURA research paper[19],
they state, that the test set contains 556 images belonging to 207 studies.

16

https://github.com/k4kTuS/BP_CNN/

4.3. Implementation Fundamentals

Study Train Validation TotalNormal Abnormal Normal Abnormal
Elbow 1094 660 92 66 1912
Finger 1280 655 92 83 2110
Hand 1497 521 101 66 2185
Humerus 321 271 68 67 727
Forearm 590 287 69 64 1010
Shoulder 1364 1457 99 95 3015
Wrist 2134 1326 140 97 3697
Total No. of Studies 8280 5177 661 538 14656

Table 4.1: Distribution of normal and abnormal studies, taken from MURA
research paper[19]

No further information such as label or body part distribution is provided.
I decided to copy the study distribution from training set by calculating the
ratio of studies per body part to all studies. I then calculated the approximate
number of studies using the ratio and original number of test studies and ended
up with a test set consisting of 204 studies and 548 images.

4.2.2 Data Exploration
The images from the dataset vary in multiple aspects. They have different
dimensions, lighting properties, portions of captured body parts. I found some
images that contain multiple X-ray scans of the same body part in slightly
different positions, grouped together, others with scans covering more than
one body part, for example both hands in one image. There are also some
inscriptions present outside the scanned areas. When the scan focuses on a
smaller, specific area, the image sometimes has unnecessarily big background
with the actual scan taking only a small portion of the image. A selected sam-
ple of dataset images can be seen in Figure 4.1. These mentioned properties
could influence the learning process, so I tried several approaches to deal with
them during experimentation.

4.3 Implementation Fundamentals
This section introduces and explains core parts of the implementation, on top
of which the experimentation part is built.

4.3.1 Models
I chose two CNN architectures available directly from Keras functional API
as a base for my models, ResNet50 and DenseNet169. Both of them achieved

17

4. Analysis and Design

Figure 4.1: Sample of dataset images

impressive results on the most popular competitive image datasets and are
widely used in a range of classification or detection tasks. I conducted several
experiments with them and compared their performance.

4.3.1.1 ResNet50

The ResNet model[29] was introduced in a paper 2015. The variant ResNet50
has 48 convolutional layers and 1 max pooling and 1 average pooling layer.
It is also available from the Keras Functional API, which makes it easy to
implement even with custom changes. I used the model preloaded with Im-
ageNet weights, removed the original classification layers top and replaced it
with one Global Average Pooling layer and a Dense layer with one output
and Sigmoid activation. The input size for the model was (224, 224, 3). The
detailed architecture can be seen in Figure 4.2.

4.3.1.2 DenseNet169

The ResNet model[31] was introduced in a paper 2015. The variant ResNet50
has 48 convolutional layers and 1 max pooling and 1 average pooling layer.
It is also available from the Keras Functional API, which makes it easy to
implement even with custom changes. I used the model preloaded with Im-
ageNet weights, removed the original classification layers top and replaced it
with one Global Average Pooling layer and a Dense layer with one output
and Sigmoid activation. The input size for the model was (224, 224, 3). The
detailed architecture can be seen in Figure 4.3.

18

4.3. Implementation Fundamentals

Figure 4.2: ResNet50 architecture[30]

Figure 4.3: DenseNet169 architecture[32]

4.3.2 Cohen’s Kappa

The metric I used for the evaluation is Cohen’s kappa statistic(κ). I chose
this metric because both the model proposed in the original MURA paper and
models from other researchers, who took part in a MURA dataset competition,
created by the Stanford researchers, were evaluated using Cohen’s kappa.
That allowed me to compare my results with the baseline and competition
models.

Furthermore, in the medical, and in our case, musculoskeletal research,
it is often important to determine the reliability of observations made by
experts. The use of Cohen’s kappa is suited for that task.[33] This metric
measures the agreement between two raters, also called inter-rater reliability.

19

4. Analysis and Design

It’s value ranges from -1 to 1, with κ = 0 meaning there is only agreement
expected by chance between the raters. Negative values indicate there is
no agreement between the raters or that they are in disagreement. These
negative values don’t typically occur in practice. Values above 0 represent
increasing agreement with κ = 1 being perfect agreement. Cohen’s kappa can
be calculated using the following formula

κ = pa − pe

1 − pe

where pa is the observed agreement between the two raters and pe represents
the expected agreement by chance. The chance agreement is calculated using
the numbers of labels for each category from both of the raters. In our case,
we can calculate it as

pe =
A1·A2

T + N1·N2
T

T

where Ai, Ni stand for the number of images labeled as abnormal or normal
by rater i and T represents the total number of labeled images.[34]

Cohen’s kappa statistic is not affected by imbalanced datasets as it focuses
solely on the differences in predictions between raters. In our case, the image
labels provided by radiologists act as one rater, with our model being the
other one. If our model learned to always predict only one class due to high
imbalance, Cohen’s kappa would reflect that even though achieved accuracy
could be seemingly good.

4.3.3 Class Weights

The numbers of abnormal and normal studies, more specifically abnormal and
normal images in MURA dataset are not balanced. To address this issue, I
implemented class weights that were passed to the loss function during train-
ing. I used formulas for calculating binary task weights w0 = N/(A + N),
w1 = A/(A + N), where wi is weight for predicted label i, A is number of
abnormal images and N is number of normal images.

4.4 Image augmentation
Online image augmentation is a good way to limit model overfitting. I de-
cided for this setup for all of my training runs, if it is not later explicitly
stated otherwise. I used ImageDataGenerator from Keras to randomly apply
augmentations that I specified. I allowed random rotations up to 20 degrees,
width and height shifts by up to 0.05 proportion of the image, brightness shift
value from range (0.9, 1.1), random zoom from range (0.9, 1.1) and horizontal
flips.

20

4.4. Image augmentation

4.4.1 Training Run
Training was done in a Jupyter notebook which served as a template for config-
uring the desired model, augmentation, preprocessing, hyperparameters. The
notebook was run in Google Colab to make use of the available GPU resources.
I used the train validation test split approach when dividing the dataset. The
CNN model was trained for a given number of epochs on training data, then
being validated after each epoch. For the loss function I chose weighted bi-
nary cross-entropy with class weights calculated as mentioned above. Cohen’s
kappa statistic was used as a metric. I also used checkpoints for storing the
best model weights from all epochs, measured by Cohen’s kappa metric on val-
idation set at the end of each epoch. For longer training runs, early stopping
was implemented to stop the training when Cohen’s kappa stopped improving.
Images were fed to the model in batches of given size. At the end of the train-
ing run, model was restored with it’s best weights from created checkpoints
and evaluated on my manually-created test set described in Section 4.2.1.

21

Chapter 5
Experiments and Results

This chapter reports all experiments that I conducted. The main focus was
on trying different preprocessing techniques and comparing their impact on
model performance. After that, some other experiments were carried out,
with preprocessing methods that performed the best during last experiment.
Both ResNet50 and DenseNet169 models were used in the experiments. At
the end of this chapter, the final results are measured.

5.1 Image Preprocessing Comparison
The first experiment I tried was the comparison of different image preprocess-
ing methods. As I mentioned earlier, during the data exploration I found some
images with low brightness, inscriptions and other properties that could po-
tentially make the learning process harder. Preprocessing can help the model
extract features easier and therefore should bring better results.

For this experiment I decided to use a subset of the MURA dataset. I only
used shoulder studies, as they had good ratio between normal and abnormal
studies and second most number of studies per body part, after wrist studies,
which were more imbalanced. The experiment was performed on both models,
default setup for both models if not stated otherwise was:

• Adam optimizer with initial learning rate = 0.0001, β1 = 0.9, β2 = 0.999

• Batch size = 32

• Model weights initialized with weights pre-trained on ImageNet by cor-
responding used model

• Images were resized to 224x224 pixels and their pixel values normalized
between 0 and 1, rescaling them by 1/255

23

5. Experiments and Results

5.1.1 Normalization

The first preprocessing method I used was normalization, as it is described
at the start of this experiment, rescaling each pixel by 1/255. Normalization
ensures that all the features have normalized scales, this is important for
multiple ML models. I used normalization as the last method after every
other preprocessing method as it should have only positive efect on the model
performance and it’s usage on input data very usual.

5.1.2 CLAHE

Another method I used was CLAHE. As desribed in 4.2.1, it improves the
images contrast with limiting noise amplification. I empirically selected two
values for CLAHE’s clip limit parameter, 2 and 10 and kept the tile sizes (8,8)
for both. Figures 5.1 and 5.2 show the comparison of applying CLAHE with
both clip limit values. Initially I experimented with the clip limit value and
saw that bigger values led to over-intensified portions of the image. It is also
visible from the figures that both values have their disadvantages. Lower clip
limit increases the contrast but on some darker images it may be insufficient.
On the other hand, the higher clip limit created some over-intensified regions
on bright images.

Figure 5.1: CLAHE clip limit comparison - darker original image

5.1.3 Histogram Equalization

A preprocessing method similar to CLAHE is histogram equalization. It also
adjusts the contrast of the image but tends to create more noise then CLAHE
overall as it only focuses on the whole image, not the local areas.

24

5.1. Image Preprocessing Comparison

Figure 5.2: CLAHE clip limit comparison - brighter original image

5.1.4 Cropping Pipeline

As the last preprocessing method I created my own pipeline that consisted of
multiple steps. At first, I determined the dominant color of the image which I
transformed into a grayscale pixel intensity. Then, if this value indicated that
the image is mostly white, it was inverted, because during my manual data
exploration I found some images that looked as if their colors were inverted
and when using binary masks on them, important image areas were masked
out. I then applied CLAHE with clip limit = 4, tile size = (8, 8) and blurred
the image using gaussian blur with kernel = (5, 5). During the testing of my
method this proved to lead to better mask selection when applying binary
threshold to the image. I determined the threshold for binary thresholding
using Otsu’s method[35], which determines it automatically from the image
histogram. Then by using a bounding rectangle around the created mask, I
cropped he image if the area of the rectangle was bigger than a proportional
area of the whole image. I implemented this in order to rule out the cropping
of wrongly selected areas containing bright inscriptions. After the potential
cropping, another binary threshold with Otsu’s method and I find the contours
of the mask. Then I select the biggest one a fit a convex hull onto it. If the
convex hull area is bigger than a proportion of the whole image a mask created
from the convex hull area is used to remove all regions outside the convex
hull. This area threshold is also implemented in order to deny removal of
important areas, which usually happens if the convex hull was found only on
a small portion of the image, for example a bright part of one bone. Lastly, I fit
another bounding rectangle around the image and cropped it if it was possible.
My aim with this method was to address multiple defects I found during data
exploration4.2.2. I tried to remove unnecessary background, detect the region
of interest and remove the outside regions. I also hoped this method will be

25

5. Experiments and Results

able to remove the inscriptions on the images. A sample of visualizations for
this pipeline can be seen in Figure 5.4.

5.1.5 Preprocessing Results

As I mentioned before, all of the preprocessing methods were applied to both
models and the images were always normalized at the end. To save computa-
tion time, I applied CLAHE and my custom cropping pipeline preprocessing
offline and saved each image into a new, preprocessed dataset. Histogram
equalization and normalization were not computationally expensive, so I ap-
plied them online during model training. I ran each model configuration for
10 epochs and stored the best weights. When the training was complete, I
restored the weights to the best ones and evaluated the model on my custom
test set. Table 5.1 contains the results of this experiment. All of the proposed
methods seem to have achieved satisfiable results. It seems that the custom
cropping pipeline was capable of removing defects in images and that lead
to increased model performance. It achieved value κ over 0.6 in both mod-
els. In ResNet50, normalization and histogram equalization achieved worse
results than both CLAHE approaches, which I expected. I was surprised to
see CLAHE with clip limit = 10 outperform the other one as I expected the
higher clip limit would have similar an negative effect on the performance. In
DenseNet169, CLAHE with clip limit = 2 had better results than normaliza-
tion and histogram equalization, but CLAHE with clip limit = 10 performed
significantly worse than in ResNet50 model, achieved κ almost the same as
normalization.

To address this, I conducted a quick experiment by running DenseNet169
and CLAHE with clip limit = 10 again, for the same number of epochs. The
best weights achieved even worse results, κ = 0.427. I decided to consider it
a bad configuration for DenseNet169 and proceeded to next experiments.

Preprocessing method Cohen’s kappa(κ)
ResNet50 DenseNet169

Normalization 0.510 0.522
CLAHE (clipLimit=2) 0.578 0.593
CLAHE (clipLimit=10) 0.638 0.526
Histogram Equalization 0.553 0.560
Cropping pipeline 0.618 0.616

Table 5.1: Cohen’s kappa(κ) values achieved in preprocessing experiment,
measured on shoulder studies test with best result for each model highlighted.

26

5.2. Hyperparameter Optimization

5.2 Hyperparameter Optimization
The next experiment was hyperparameter optimization. I used a framework
KerasTuner available from Keras library. For each model I selected the pre-
processing method which achieved best Cohen’s kappa value. The parameters
I chose for optimization and their possible values were:

• Batch size:
[8, 16, 32]

• Learning rate for Adam optimizer:
[0.001, 0.0005, 0.00025, 0.0001, 0.00005]

• Pooling layer after convolution layers:
max or average pooling

The algorithm I chose for hyperparameter optimization was Hyperband. It
uses successive halving as a subroutine for filtering out parameter configura-
tions.[16] I set the maximum number of epochs to 80 and limited each trial run
to 7 epochs. In addition, early stopping with patience of 5 epochs was used.
The training was done again on shoulder studies. The best configuration of
searched parameters found during hyperaparameter optimization is in Table
5.2. The run summary can be seen in corresponding Jupyter notebooks for
hyperparameter optimization

These parameters combined with selected preprocessing method for each
model from last experiment created my two final model configurations, which
I trained and evaluated on the full dataset in the next experiment.

Parameter ResNet50 DenseNet169
Batch size 32 16
Learning rate 0.0001 0.0001
Pooling average average

Table 5.2: Optimized hyperparameter values

5.3 Full Dataset Training and Cross-validation
This is the final experiment that I tried. Using the information I gained from
previous experiments, I measured the performance of my final models on the
full dataset.

The ResNet50 model was trained using CLAHE with clip limit = 10 and
normalization, batch size of 32, Adam optimizer with learning rate = 0.0001,
global average pooling layer after the last convolutional layer with weights
initialized by pre-trained weights from ImageNet.

27

5. Experiments and Results

The DenseNet169 model was trained using custom cropping pipeline and
normalization, batch size of 16, Adam optimizer with learning rate = 0.0001,
global average pooling layer after the last convolutional layer with weights
initialized by pre-trained weights from ImageNet.

At first, I trained each model for 10 epochs on the full dataset, then eval-
uated it on my test set. ResNet50 achieved κ = 0.618, DenseNet κ = 0.712.
These results looked promising, but in order to be more confident in the re-
sults, I used cross-validation for both models. It was a KFold cross-validation
with 4 folds, each run for 5 epochs with early stopping after 3 epochs with no
improvement. Tables 5.3 and 5.4 show us the results from cross validation.
There is the best Cohen’s kappa achieved on validation set during training
per each fold.

After cross-validation, I restored each model from weights obtained from
best epoch across folds and evaluated it on the test set. ResNet50 achieved
κ = 0.591 and DenseNet169 κ = 0.683 which is slightly worse then from the
initial full dataset training run, but still very promising.

ResNet50
Fold Cohen’s kappa (κ)
Fold1 0.560
Fold2 0.553
Fold3 0.540
Fold4 0.533

Table 5.3: Cross-validaton results for ResNet50 with Cohen’s kappa from best
epoch per fold

DenseNet169
Fold Cohen’s kappa (κ)
Fold1 0.576
Fold2 0.568
Fold3 0.558
Fold4 0.593

Table 5.4: Cross-validaton results for DenseNet169 with Cohen’s kappa from
best epoch per fold

5.4 Results Summary and Discussion
After all the conducted experiments I obtained two trained models that had
the best performance throughout the experiments. The final models were
trained using cross-validation with 4 folds, each running for 5 epochs and the

28

5.4. Results Summary and Discussion

Figure 5.3: Grad-CAM visualization of detected abnormalities

best model from all folds was evaluated on my test set. I also implemented
Grad-CAM for visualizing, explaining, the networks decisions. In Figure 5.3
there is one example of detected abnormality visualization for each of my
models.

In Table 5.5 I compared my models to the MURA Paper baseline and best
radiologist from the ones who evaluated the test set[19] and I also included
the best model in the competition that was organized with the release of the
dataset but is no longer open. The best model is an ensemble model. I have
to state that the comparison may not be accurate as the test set is not public.
Even though I tried to imitate it, I do not know study and label distribution.
Also, I evaluated my models on individual images as opposed to full studies
like in the MURA paper.

The results I obtained could be further improved by giving more atten-
tion to the architectures. For example experimenting with individual layer
parameters, adding more layers on top of the base model or optimizing more
hyperparameters for longer periods of time. The possibility to build an en-
semble model, like it was also proposed in original MURA paper[19] could
probably bring better results than those achieved by my experiments. When
it comes to the dataset, a more complex segmentation, for example manual
or automated markings of joints could help the CNN models to make better
predictions.

Model Cohen’s kappa (κ)
MURA paper baseline 0.705
Best Radiologist - Stanford University 0.778
Leaderboard no.1 0.843
ResNet50 0.591
DenseNet169 0.683

Table 5.5: Results of my models compared to selected existing ones

29

5. Experiments and Results

Figure 5.4: Visualisation of individual steps of my custom preprocessing crop-
ping pipeline. Images a) and c) best represent the full functionality of the
pipeline. Both images have their backgrounds removed, then the region of
interest is found and images are successfully cropped again. Image b) is al-
ready positioned well by default, but has it’s inscriptions removed. In image
d) the region of interest is found but it is smaller than the defined threshold so
the image is not cropped, which was a correct decision as the cropping would
remove major part of the important area. Images e) and f) are examples of
undesirable pipeline behavior. In image e) it excluded important portion of
the image containing part of an abnormality. Image f) contains multiple scans
of the same wrist and the pipeline detected only one and removed the others,
which leads to loss of information.

30

Conclusion

The first part of the thesis shortly presents the fundamentals in machine learn-
ing and then focuses on individual techniques that can be used for medical
imaging tasks. Some of them are selected and used in my implementation,
which conducts experiments primarily on image preprocessing in order to im-
prove model performance. The comparison of used methods is both addressed
in their definition and in the experimentation part. Even though my results
did not reach the scale of success achieved by existing models, they can still
be consider fairly satisfiable.

All code was published on Github with comments and descriptions for
better understanding of code structure in order for it to be reusable. It con-
tains multiple interactive notebook for presenting and visualizing parts of the
preprocessing steps.

More experiments could have been carried out, but the task of training
CNN models is computationally expensive and more time would be needed
to increase the scope of experiments. Possible improvements for future would
definitely be ensemble models, adjusting of model architectures or detailed
image segmentation.

31

https://github.com/k4kTuS/BP_CNN/

Bibliography

1. RUSSELL, Stuart J.; NORVIG, Peter. Artificial Intelligence: A Modern
Approach. In: 3rd ed. Prentice Hall, 2009, pp. 695–696. isbn 0-13-604259-
7.

2. HU, Fei; HAO, Qi. Intelligent sensor networks: the integration of sensor
networks, signal processing and machine learning. In: Taylor Francis,
2012, pp. 16–17. isbn 978-1-4398-9281-7. Available from doi: 10.1201/
b14300.

3. EDUCATION, IBM Cloud. What is unsupervised learning? [Online].
[N.d.] [visited on 2022-05-10]. Available from: https://www.ibm.com/
cloud/learn/unsupervised-learning.

4. KAYYATH, Aatish. Confusion Matrix : Let’s clear this confusion. Medium,
2021. Available also from: https://medium.com/@aatish_kayyath/
confusion-matrix-lets-clear-this-confusion-4b0bc5a5983c.

5. HICKS, Steven A. et al. On evaluation metrics for medical applications
of artificial intelligence. medRxiv. 2021. Available from doi: 10.1101/
2021.04.07.21254975.

6. NARKHEDE, Sarang. Understanding AUC - ROC Curve. Towards Data
Science, 2018. Available also from: https://towardsdatascience.com/
understanding-auc-roc-curve-68b2303cc9c5.

7. BUI, Huy. ROC Curve Transforms the Way We Look at a Classification
Problem. Towards Data Science, 2020. Available also from: https://
towardsdatascience . com / a - simple - explanation - of - the - roc -
curve-and-auc-64db32d75541.

8. XU, Yun; GOODACRE, Royston. On splitting training and validation
set: a comparative study of cross-validation, bootstrap and systematic
sampling for estimating the generalization performance of supervised
learning. Journal of analysis and testing. 2018, vol. 2, no. 3, pp. 249–
262.

33

https://doi.org/10.1201/b14300
https://doi.org/10.1201/b14300
https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
https://medium.com/@aatish_kayyath/confusion-matrix-lets-clear-this-confusion-4b0bc5a5983c
https://medium.com/@aatish_kayyath/confusion-matrix-lets-clear-this-confusion-4b0bc5a5983c
https://doi.org/10.1101/2021.04.07.21254975
https://doi.org/10.1101/2021.04.07.21254975
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/a-simple-explanation-of-the-roc-curve-and-auc-64db32d75541
https://towardsdatascience.com/a-simple-explanation-of-the-roc-curve-and-auc-64db32d75541
https://towardsdatascience.com/a-simple-explanation-of-the-roc-curve-and-auc-64db32d75541

Bibliography

9. MURPHY, Kevin P. Probabilistic Machine Learning: An introduction.
MIT Press, 2022. Available also from: probml.ai.

10. Overfitting and underfitting. [N.d.]. Available also from: https://www.
educative.io/edpresso/overfitting-and-underfitting.

11. O’SHEA, Keiron; NASH, Ryan. An Introduction to Convolutional Neural
Networks. arXiv, 2015. Available from doi: 10.48550/ARXIV.1511.
08458.

12. HEATON, Jeff. Ian Goodfellow, Yoshua Bengio, and Aaron Courville:
Deep learning. Genetic Programming and Evolvable Machines. 2018. issn
1389-2576. Available from doi: doi:10.1007/s10710-017-9314-z.

13. PIZER, Stephen M. et al. Adaptive histogram equalization and its vari-
ations. Computer Vision, Graphics, and Image Processing. 1987, vol. 39,
no. 3, pp. 355–368. issn 0734-189X. Available from doi: https://doi.
org/10.1016/S0734-189X(87)80186-X.

14. ITSEEZ. Histograms - 2: Histogram equalization [online]. [N.d.] [visited
on 2022-05-12]. Available from: https://docs.opencv.org/4.x/d5/
daf/tutorial_py_histogram_equalization.html.

15. KOONSANIT, Kitti; THONGVIGITMANEE, Saowapak; PONGNAPANG,
Napapong; THAJCHAYAPONG, Pairash. Image enhancement on digi-
tal x-ray images using N-CLAHE. In: 2017, pp. 1–4. Available from doi:
10.1109/BMEiCON.2017.8229130.

16. LI, Lisha et al. Hyperband: A Novel Bandit-Based Approach to Hyper-
parameter Optimization. 2016. Available from doi: 10.48550/ARXIV.
1603.06560.

17. DENG, Jia et al. ImageNet: A large-scale hierarchical image database.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
2009, pp. 248–255. Available from doi: 10.1109/CVPR.2009.5206848.

18. SAGI, Omer; ROKACH, Lior. Ensemble learning: A survey. WIREs Data
Mining and Knowledge Discovery. 2018, vol. 8, no. 4, e1249. Available
from doi: https://doi.org/10.1002/widm.1249.

19. RAJPURKAR, Pranav et al. MURA: Large Dataset for Abnormality
Detection in Musculoskeletal Radiographs. 2017. Available from arXiv:
1712.06957.

20. MONDOL, Tusher Chandra; IQBAL, Hasib; HASHEM, MMA. Deep
CNN-Based Ensemble CADx Model for Musculoskeletal Abnormality
Detection from Radiographs. In: 2019 5th International Conference on
Advances in Electrical Engineering (ICAEE). 2019, pp. 392–397. Avail-
able from doi: 10.1109/ICAEE48663.2019.8975455.

34

probml.ai
https://www.educative.io/edpresso/overfitting-and-underfitting
https://www.educative.io/edpresso/overfitting-and-underfitting
https://doi.org/10.48550/ARXIV.1511.08458
https://doi.org/10.48550/ARXIV.1511.08458
https://doi.org/doi:10.1007/s10710-017-9314-z
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
https://doi.org/10.1109/BMEiCON.2017.8229130
https://doi.org/10.48550/ARXIV.1603.06560
https://doi.org/10.48550/ARXIV.1603.06560
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.1002/widm.1249
https://arxiv.org/abs/1712.06957
https://doi.org/10.1109/ICAEE48663.2019.8975455

Bibliography

21. RAJPURKAR, Pranav et al. CheXNet: Radiologist-Level Pneumonia
Detection on Chest X-Rays with Deep Learning. arXiv, 2017. Available
from doi: 10.48550/ARXIV.1711.05225.

22. medicalsegmentation.com. COVID-19 CT Images Segmentation [online].
[N.d.] [visited on 2022-05-12]. Available from: https://www.kaggle.
com/competitions/covid-segmentation/data.

23. DING, Feng; LEOW, Wee Kheng; HOWE, Tet. Automatic Segmentation
of Femur Bones in Anterior-Posterior Pelvis X-Ray Images. In: 2007,
pp. 205–212. isbn 978-3-540-74271-5. Available from doi: 10.1007/978-
3-540-74272-2_26.

24. UYSAL, Fatih et al. Classification of Shoulder X-ray Images with Deep
Learning Ensemble Models. Applied Sciences. 2021, vol. 11, no. 6. issn
2076-3417. Available from doi: 10.3390/app11062723.

25. DAVLETSHINA, Diana et al. Unsupervised Anomaly Detection for X-
Ray Images. arXiv, 2020. Available from doi: 10.48550/ARXIV.2001.
10883.

26. GIEŁCZYK, Agata et al. Pre-processing methods in chest X-ray image
classification. PLOS ONE. 2022, vol. 17, no. 4, pp. 1–11. Available from
doi: 10.1371/journal.pone.0265949.

27. WANG, Linda; LIN, Zhong Qiu; WONG, Alexander. COVID-Net: a tai-
lored deep convolutional neural network design for detection of COVID-
19 cases from chest X-ray images. Scientific Reports. 2020, vol. 10, no.
1, p. 19549. issn 2045-2322. Available from doi: 10.1038/s41598-020-
76550-z.

28. KERAS. Keras documentation: About keras [online]. [N.d.] [visited on
2022-04-27]. Available from: https://keras.io/about/.

29. HE, Kaiming et al. Deep Residual Learning for Image Recognition. arXiv,
2015. Available from doi: 10.48550/ARXIV.1512.03385.

30. KAUSHIK, Aakash. Understanding Resnet50 architecture [online]. Open-
Genus IQ: Computing Expertise, 2020 [visited on 2022-05-12]. Available
from: https://iq.opengenus.org/resnet50-architecture/.

31. HUANG, Gao et al. Densely Connected Convolutional Networks. arXiv,
2016. Available from doi: 10.48550/ARXIV.1608.06993.

32. PYTORCH. Pytorch DenseNet [online]. [N.d.] [visited on 2022-05-12].
Available from: https://pytorch.org/hub/pytorch_vision_densenet/.

33. SIM, Julius; WRIGHT, Chris C. The Kappa Statistic in Reliability Stud-
ies: Use, Interpretation, and Sample Size Requirements. Physical Ther-
apy. 2005, vol. 85, no. 3, pp. 257–268. issn 0031-9023. Available from
doi: 10.1093/ptj/85.3.257.

35

https://doi.org/10.48550/ARXIV.1711.05225
https://www.kaggle.com/competitions/covid-segmentation/data
https://www.kaggle.com/competitions/covid-segmentation/data
https://doi.org/10.1007/978-3-540-74272-2_26
https://doi.org/10.1007/978-3-540-74272-2_26
https://doi.org/10.3390/app11062723
https://doi.org/10.48550/ARXIV.2001.10883
https://doi.org/10.48550/ARXIV.2001.10883
https://doi.org/10.1371/journal.pone.0265949
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://keras.io/about/
https://doi.org/10.48550/ARXIV.1512.03385
https://iq.opengenus.org/resnet50-architecture/
https://doi.org/10.48550/ARXIV.1608.06993
https://pytorch.org/hub/pytorch_vision_densenet/
https://doi.org/10.1093/ptj/85.3.257

Bibliography

34. MCHUGH, Mary. Interrater reliability: The kappa statistic. Biochemia
medica. 2012, vol. 22, no. 3, pp. 276–282. Available also from: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/.

35. OTSU, Nobuyuki. A Threshold Selection Method from Gray-Level His-
tograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979,
vol. 9, no. 1, pp. 62–66. Available from doi: 10 . 1109 / TSMC . 1979 .
4310076.

36

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076

Appendix A
Acronyms

AHE Adaptive Histogram Equalization

AUC Area Under the Curve

CLAHE Contrast Limited Adaptive Histogram Equalization

Grad-CAM Gradient-weighted Class Activation Mapping

CNN Convolutional Neural Network

ML Machine Learning

MURA Musculoskeletal Radiographs

ROC Receiver Operator Characteristic

37

Appendix B
Contents of Enclosed CD

logs..............................the directory with logged training runs
weights............................the directory of saved model weights
readme.txt........................ the file with CD contents description
src.........................the directory of implementation source codes
thesis..................the directory of LATEX source codes of the thesis
text.. the thesis text directory

thesis.pdf............................the thesis text in PDF format

39

	Introduction
	Machine Learning
	Supervised and Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Metrics
	Basics
	Area Under the Curve

	Working with Data
	Overfitting and Underfitting

	Convolutional Neural Networks

	State of the Art
	Cross-validation
	Image Preprocessing
	Image Augmentation
	Histogram Equalization
	Contrast Limited Adaptive histogram equalization
	Segmentation

	Gradient-weighted Class Activation Mapping
	Hyperparameter Optimization
	Transfer Learning
	Ensemble

	Medical Imaging
	Analysis and Design
	Technologies
	Python and Jupyter Notebook
	TensorFlow and Keras
	Other Libraries
	Google Colab
	Code Availability

	Dataset
	Dataset Preparation
	Data Exploration

	Implementation Fundamentals
	Models
	ResNet50
	DenseNet169

	Cohen's Kappa
	Class Weights

	Image augmentation
	Training Run

	Experiments and Results
	Image Preprocessing Comparison
	Normalization
	CLAHE
	Histogram Equalization
	Cropping Pipeline
	Preprocessing Results

	Hyperparameter Optimization
	Full Dataset Training and Cross-validation
	Results Summary and Discussion

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed CD

