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Abstrakt

Práce se zaměřuje na odhad ceny nezaměnitelných token̊u, které představuj́ı záznam o vlastnictv́ı
digitálńıho sběratelského uměńı na Ethereum blockchainu. Nejprve jsou představeny metody
strojového učeńı vhodné k řešeńı problému a následně jsou i aplikovány. Výstupem této práce je
model strojového učeńı schopný predikovat hodnotu těchto token̊u. Např́ıč praćı je zd̊urazňováno
využit́ı tohoto modelu k efektivńımu obchodováńı těchto aktiv. Navržený model doćılil pr̊uměrné
absolutńı procentuálńı chyby menš́ı než 10% a zároveň byl schopný identifikovat potenciálně
výdělečné obchody.

Kĺıčová slova NFT, Blockchain, Digitálńı uměńı, Hluboké učeńı, Neuronová śıt’

Abstract

This thesis focuses on estimating value of non-fungible tokens which represent the record of
ownership of collectible digital art asset on the Ethereum blockchain. Suitable machine learning
techniques are described and subsequently applied to solve this problem. The outcome of this
work is a proposal for a machine learning model capable of predicting the value of these tokens.
Throughout this thesis, the application of this estimator to effective trading of these assets
is emphasized. The proposed model was capable of predicting the token value with absolute
percentage error less than 10% and also identifying potentially profitable trades.

Keywords NFT, Blockchain, Digital art, Deep learning, Neural network
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Introduction

Non-fungible tokens (NFTs) are a means of representing unique assets on a blockchain. Similarly
to cryptocurrency tokens, the ownership and complete history of transactions is persistently
stored on a distributed ledger; therefore, the owner can prove the ownership of the asset anytime
and without any doubts. The key difference from other cryptocurrency tokens is the fact that
each non-fungible token is unique, and thus it cannot be interchanged for another non-fungible
token. On the contrary, cryptocurrency tokens should be indistinguishable from each other in
order to trade them as a currency.

In recent months, we have witnessed a massive increase in attention to NFTs on the Internet.
Digital artists, cryptocurrency enthusiasts, pop culture celebrities, or even international corpora-
tions have been trying to catch up with this phenomenon by either purchasing or creating their
own NFT. The dynamics of this industry has attracted both investors and skilled workers in the
hope of forming what the Internet will look like in the next years.

One of the first and most common uses of this technology is digital collectibles. These are
collections of NFTs, where each token contains data of some image or video associated with it.
Usually, each token contains slightly different visual content, but as a whole, it can be recognized
as a collection of digital art.

These collections have gained popularity among long-term collectors and also short-term traders.
Both these groups have been trying to speculate on tokens’ values. Since each token in the
collection is unique, its value is also different. This poses the question of whether it is possible
to estimate the value algorithmically. If so, it would help all investors make better decisions
and even automate trading. Furthermore, if the value of an NFT was estimated, decentralized
finance platforms would be able to accept the NFT as a collateral against a loan.

The aim of this thesis is to propose, implement, and evaluate a machine learning model to
estimate the value of a given NFT token with an emphasis on trading. The foundation of this
work will consist of existing approaches to estimation problems in other domains. The model for
the NFT domain will be based on the principles of these approaches.

In this thesis, we will focus only on NFTs on the Ethereum blockchain. In the practical part
of this work, we will work with publicly available data from a selected collection. However, the
core principles should be transferable to any other NFT collection.

1
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Chapter 1

Theoretical foundation

The key concepts used in this work are introduced in this chapter. The blockchain and NFT
related principles are explained in the beginning; then the machine learning concepts and
models that can be used to tackle the issue of estimating the NFT value are described.

1.1 Ethereum

Ethereum was proposed in a paper known as the Ethereum whitepaper by Vitalik Buterin in
2014 [1]. In this work, he discussed existing concepts for decentralized digital currencies, such
as Bitcoin. According to Buterin, Bitcoin has implemented two radical new concepts. The
first was the concept of decentralized digital currency, which has been around since the 1980s
[2], but these ideas were impracticable in the context of decentralization [1]. The second was
the public consensus mechanism, implemented with the use of a proof-of-work algorithm, which
makes attempts at malicious interventions almost impossible [3].

Bitcoin implemented a scripting language; however, this implementation had several limitations,
such as the lack of Turing-completeness [1]. Ethereum aims to extend the concepts of Bitcoin with
the ability to create consensus-based applications that can be run and replicated on the network.
This was achieved by providing a Turing-complete programming language for the Ethereum
blockchain [1, 4]. Ethereum can be seen as a ”very specialised version of a cryptographically
secure, transaction-based state machine”[5].

On Ethereum, the performing entity is called account. The account is identified by its public
key. If the account is operated by some user, the account’s type is called Externally Owned
Account (EOA) and is associated with cryptographic private key as well. The purpose of the
private key is to sign transactions and messages to prove that the transaction was approved by
the sender [6, 7]. Transactions between accounts represent the state change of the Ethereum
blockchain. The transactions are then grouped into blocks and these blocks are chained together
with a cryptographic hash function [1, 5].

3



4 Theoretical foundation

1.1.1 Smart contracts

Smart contracts are the second type of Ethereum account in which the account is not controlled
by the user, but its behavior is entirely controlled by ”immutable computer programs that run
deterministically in the context of an Ethereum Virtual Machine (EVM)” [7]. In addition to
that, smart contracts can interact with blockhain entities in the same manner as EOAs would.
This feature provides developers with the ability to define a set of actions on the blockchain with
which anyone can interact and which cannot be removed or modified on the blockchain. [8].

1.1.2 Non-fungible tokens

NFTs are special types of tokens on the Ethereum blockchain. Each token is unique and cannot
be interchanged for another NFT. The purpose of this concept is to implement a way to represent
the ownership of unique assets on the blockchain, where these assets can be further traded.

The standard for non-fungible tokens (NFT) was proposed in EIP-721 in 2018. This standard
provides the ERC-721 smart contract interface, which essentially defines all NFTs smart contracts
on Ethereum. Each token in this contract has its unique identifier. Together with the contract
address, it should form a globally unique identifier throughout the Ethereum blockchain.

Another important concept implemented in the token standard is the extension to handle meta-
data. Each token can be associated with its metadata information. Name and symbol metadata
are required, but the metadata field usually contains more information, e.g. data associated with
digital art on this token. Storing a lot of data on the blockchain would be costful; therefore a
mechanism to associate NFT with a web URL was provided [9].

1.2 Collectibles

The concept of collections of NFTs containing digital art was promoted for the first time by the
CryptoPunks collection in 2017, but the principles described are relevant for most of the currently
released collections. CryptoPunks contained 10,000 tokens containing recongizable pixel art
images “inspired by the 1970s’ London punk scene and the dystopian grit of cyberpunk”[10].
Images were generated algorithmically and randomly assigned to specific assets. Each of the
illustrations had its specific traits such as accessory or gender. These traits are also stored in
the token metadata (CryptoPunks did not use the NFT standard 1.1.2, but a modified former
fungible token standard).

The tokens are often ranked by rarity of their traits to measure how many tokens with similar
traits there are in the collection. Rarer tokens are usually more expensive than common ones.
Tokens that are not that interesting to investors are usually traded at a price close to floor price,
which is the price of the cheapest token sale offer in the collection. This metric is provided to
traders by various analytical platforms, but unfortunately there is no rigorous definition of rarity
functions, so the ranks may differ [11].

https://eips.ethereum.org/EIPS/eip-721
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Code listing 1.1 Example traits
{

" attributes ": [
{

" trait_type ": "Type",
"value ": "Human"

},
{

" trait_type ": "Hair",
"value ": "Blue Spiky"

},
{

" trait_type ": " Clothing ",
"value ": "Black Yukata "

},
{

" trait_type ": "Eyes",
"value ": " Suspicious "

},
{

" trait_type ": "Mouth",
"value ": "Grass"

},
{

" trait_type ": " Background ",
"value ": "Off White D"

}
]

}

1.3 Machine learning

Machine learning (ML) is a discipline of computer science that focuses on the ability of algorithms
to perform in situations for which they were not explicitly programmed [12]. This behavior can be
achieved by improving the performance of the algorithm by learning from its previous experience
with the problem [13]. Therefore, ML algorithms are suitable for solving problems that cannot be
effectively solved with traditional approaches because they are too complex, dynamically change,
or the optimal algorithm is unknown [14], such as computer vision, speech recognition, or natural
language processing.

Machine learning systems can be divided into three groups depending on the type of experience
they learn from.

Supervised learning: The training inputs for supervised ML systems are paired with its
desired outputs. During the training period, the model deduces a generalized function to
map these inputs to their labeled outputs, which can be later applied to previously unseen
inputs.

Unsupervised learning: Unsupervised models do not have the information about the de-
sired output for their inputs, so they have to extract information and structure from unlabeled
data.



6 Theoretical foundation

Reinforcement learning: The ML system interacts with a dynamic environment and learns
from the reward or punishment for its actions.

1.3.1 Supervised learning

Supervised learning is a ML technique for learning a functional mapping from input vectors to
output labels. This is achieved by learning from a portion of the data with the correct output
values called training data. The mapping can then be applied to the rest of the inputs to
predict the output values.

Depending on the type of output labels, supervised learning tasks can be divided into classifica-
tion and regression. Classification output labels are discrete values, whereas regression labels
are continuous.

1.3.2 Ensemble methods

Ensemble learning is an ML technique that takes multiple individual models and combines their
capabilities. This may lead to better prediction accuracy than each model would have alone.
Ensemble systems are convenient in situations where the problem is too complex for one learner,
but can be solved by a suitable combination of learners [15].

The relevant ensemble algorithms for this work are the following:

Bootstrap aggregating: The training dataset is split into n datasets of the same size by
randomly selecting samples with repetition. The model provided for bootsrap aggregation is
then trained on each of the datasets, and the final prediction is either a majority vote of the
models in the case of classification or an arithmetical average of the models’ predictions in
the case of regression.

Gradient boosting: A technique used in both regression and classification tasks. Gradient-
boosting iteratively chooses a new estimator to correct residual errors made by the previous
estimator [16]. The iterative process can be regarded as a gradient descent algorithm.

Ensemble averaging: A process of combining predictions of multiple models that contribute
equally to the final result.

Stacked generalization: Improvement of ensemble averaging in which models do not con-
tribute equally, but their weights are determined by a new combiner model. The final predic-
tion is made by the chosen combiner model, and its inputs are assembled from the predictions
of the underlying ensemble models. Stacking generalization usually outperforms each of the
underlying models [17].

1.3.3 Imbalanced datasets

Most of the ML algorithms require an equal class distribution of data classes to perform well.
Unfortunately, this requirement is not fulfilled for many real-world datasets. Unbalanced data
in classification problems can be detected quite easily by checking the distribution of training
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labels. In contrast, regression problems require some level of knowledge of the data domain,
since the training data contain infinitely many labels to find the imbalance in the dataset.

Researchers explored methods for handling data imbalance in classification problems, whereas
regression over imbalanced data is not examined that well [18]. Some approaches adapt the
SMOTE algorithm modified for regression problems [19]. This algorithm decreases the num-
ber of more frequent data classes (undersampling) and synthetically increases the number of
infrequent data classes (oversampling).

The infinite label space can be divided into a finite number of bins (classes), and then the methods
used to handle the imbalance in the classification datasets can be applied. Reweighting of classes
by their inverse frequency can be applied, but this approach usually does not perform well on
real-world data [20].

Yet another method was proposed [21] to handle imbalances in classification neural networks
by balancing mini-batches (described in 1.5.3 when training the network. With conventional
mini-batch training, all training samples are used exactly once in a training epoch, whereas this
balancing approach allows for overlapping selections of minority data class. The authors of the
method were able to perform an experiment in which their approach achieved better results than
undersampling and oversampling the data.

1.3.4 Principal component analysis

Principal component analysis (PCA) is a popular technique used to reduce dimensionality, ex-
plore, and visualize data. This method can simplify and extract the most important features
from the observed data.

PCA computes linear combinations of the original variables called principal components. The
first principal component should preserve the largest variance in the dataset, and thus probably
lose less information from the dataset than other projections would [22]. The following principal
components are computed under the constraint of being orthogonal to the previous ones and
containing the most of the remaining inertia in the dataset [23].

1.4 Decision trees

Decision trees are a popular ML model that is suitable for both classification and regression
tasks. They contain a single tree-like model, which recursively splits the data according to some
testing conditions and stores the decision labels in its leaves.

At each node of the tree, the data are divided into branches and pushed downward in the tree.
This step is repeated recursively until a stopping condition is satisfied. The construction of
an optimal decision tree is an NP-complete problem [24], therefore, various different greedy
algorithms are used to split the data. In each iteration, the most appropriate split is chosen.
The quality of the partitioning is typically measured with one of the following metrics:

Information gain: based on the concept of a random variable that represents the impurity
of the data called entropy H. Variables p1, . . . , pk represent the percentual distribution of
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k classes in the set T .

H(T ) = −
n∑

i=1
pi log pi (1.1)

The information gain IG in the context of decision trees is computed as the entropy of
the parent minus the weighted sum of its children’s conditional entropies given the value of
attribute a and it quantifies which attribute provides the maximum gain of information.

IG(T, a) = H(T ) − H(T |a) (1.2)

Gini index: measures the probability that a randomly added attribute will be classified
incorrectly. When all datapoints in the created data partition belong to the same category,
the value of the Gini index is 0, indicating that the maximum information gain can be
obtained. On the contrary, if the samples have a uniform distribution, the Gini index reaches
its maximum value, signaling that the data do not contain useful information [25]. Gini index
GI for a set T with k distinct values is calculated as:

GI(T ) = 1 −
k∑
1

p2
i =

k∑
1

pi(1 − pi) (1.3)

Regression problems can be handled in the same way as classification with the CART algorithm
[26]. The only difference is in the metrics for partitioning the data, for which CART minimizes
the sum of squared residuals at the nodes of the tree [27].

Decision trees combined with the bootstrap aggregation technique 1.3.2 are called random forests.
Another popular ensemble method applied to decision trees is boosting, which usually outper-
forms random forests [28].

1.5 Neural networks

Artificial neural network (ANN) is a general-purpose machine learning model. It can solve both
classification and regression problems. Its architecture was inspired by biological neurons and
the way they are connected in human brains. This idea has been around for quite a long time.
In 1943, the first model approximating the working of animal brains was published. In this
study, Pitts and McCulloch proposed the idea of an artificial neuron with binary activation,
multiple inputs, and a single output and showed that a model based on these artificial neurons
can compute any logical proposition [29, 30].

1.5.1 Perceptron

Perceptron is the simplest implementation of the ANN architecture that can be used for binary
classification tasks. It consists of a single artificial neuron with n numerical inputs x1, . . . , xn

and a single output y. The neuron output is the result of applying activation-function f to
the sum of each input multiplied by its corresponding weight wi and the bias b added.

y = f

(
n∑
1

wixi + b

)
= wtx + b (1.4)
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1.5.2 Multilayer perceptron

Multilayer perceptron (MLP) is a type of feedforward ANN. In feedforward ANNs connections
between underlying neurons never form a cycle; thus, the information is transported in only one
direction. This architecture compensates for the limitations of a single perceptron by grouping
artificial neurons into layers. The output of neurons in one layer assembles the input of the next
layer. MLP consists of at least three layers: the input layer, one or more hidden layers, and the
output layer. The MLP layers are fully connected, so each pair of neurons in the adjacent layers
is connected.

Cybenko proved in the universal approximation theorem [31] that any feedforward ANN with one
hidden layer, nonlinear activations and a finite number of neurons is capable of approximating
any continuous function on a compact subset of R. Thus, we know that there exists a large MLP
capable of representing any function we try to learn. However, the theorem does not guarantee
that the MLP will be able to learn this function [32].

MLP use nonlinear activation functions, to introduce non-linearity to the model. If the activation
functions were linear, the whole model would remain linear, because chaining of multiple linear
transformations produces a linear transformation again. Therefore, w

Popular activation functions are:

tanh: The hyperbolic tangent function is a sigmoid curve with the output range of [−1, 1]
and the layers tend to be centered around 0 at the beginning of training [33]. The hyperbolic
tangent function is defined [34] as:

tanh(x) = ex − e−x

ex + e−x
(1.5)

ReLU: Recitified Linear Unit (ReLU) has become the most successful and for many frame-
works the default activation function [35]. The function is defined as follows:

f(x) = max(0, x) (1.6)

ReLU is popular even though it cannot be differentiable for x = 0 and the gradient descent
algorithm used for the training of ANNs requires the activation function to be differentiable.

ANN with more than 3 hidden layers is called deep neural network. In practice, ANNs with
more hidden layers are preferred because they can exponentially reduce the number of neurons
required to generalize the problem [36]. The deep architecture is suitable if we believe that the
learning problem is composed of a variation of more simple factors [32].

1.5.3 Learning

The goal of learning ANNs is to minimize the value of loss function, which represents the error
of the values predicted by the model. The selection of the right loss function for the problem is
crucial. Typical loss functions used for regression problems are the following:

Mean squared error (MSE) - measures the squared difference of the predicted values Ŷ
and observed values of the predicted variable Y from n samples. MSE is more sensitive to
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larger errors than MAE because of squaring.

MSE = 1
n

n∑
i=1

(
Yi − Ŷi

)2
(1.7)

Mean absolute error (MAE) - measures the arithmetic average of absolute errors of
predictions y and true values x from n samples.

MAE =
∑n

i=1(xi − yi)
n

(1.8)

Mean absolute percentage error (MAPE) - measures the average absolute percentage
error of predictions y and the true values x from n samples. MAPE has several practical
drawbacks [37], such as asymmetry [38], and it cannot be used when there are zero values in
the real values. However, according to studies reviewed in [39], it is still one of the most widely
used metrics for forecasting in business and organization, due to its good interpretability.
MAPE is defined as:

MAPE = 1
n

∗
n∑

i=1

∣∣∣∣xi − yi

yi

∣∣∣∣ (1.9)

Huber loss - a robust regression loss function that is less sensitive to outliers, because the
function is quadratic for values smaller than δ and linear for values larger than δ [40].

Lδ(a) =
{

1
2 a2 for |a| ≤ δ,

δ ·
(
|a| − 1

2 δ
)

, otherwise.
(1.10)

The development of ANNs had stalled for several years because it was not clear how to train
MLPs. This changed in 1986 when the backpropagation algorithm was introduced. The idea
behind this is that for each training instance, a prediction is made by passing the input data
through all layers of the network. The prediction error is then measured with the selected
loss function. The gradient descent algorithm is used to find a set of network weights that
minimize the loss function. The steepest descent direction of the loss function is propagated
from the output layer recursively towards the input layer. The descent direction is obtained by
effectively computing the partial derivations of the error by applying the chain rule, which is
essentially the application of the reverse automatic differentiation algorithm [41]. As a result,
the activation function of neurons should be differentiable (or at least in most of its domain).

Computing the gradient for all training data would be impractical, hence a modification of the
gradient descent algorithm was proposed. Stochastic gradient descent (SGD) is an approximation
of gradient descent calculated only with a single sample or alternatively with n samples called
SGD.

1.5.4 Overfitting

Overfitting is a common issue in ML that causes poor model performance. This phenomenon can
be observed in situations where the model fits the training data very well but cannot generalize
for unseen data, and thus performs poorly on validation or testing data. Let us examine how
this problem can be addressed in the context of ANNs.
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One strategy to prevent overfitting is the early-stopping technique. This is a straightforward
method, which keeps track of the validation error during the training period, and when the
validation error does not improve sufficiently or not at all, the training is stopped, and the best
parameters are returned.

Another way to address this problem is called dropout. The key idea behind this method
is to randomly choose some units of hidden layers with probability p and leave them and all
their connections out of the network for the current training step. This also means that with
each training step, a new ANN architecture is created. Effectively, this is a way to combine
exponentially many ANNs [42].

Regularization techniques can also be used to avoid overfitting. “Regularization is any modifi-
cation we make to a learning algorithm that is intended to reduce its generalization error but not
its training error” [43]. This is often achieved by adding a parameter norm penalty Ω(θ) to the
model cost function E. In the context of ANN, the modified cost function Ê can be expressed
as:

Ê(θ, X, y) = E(θ, X, y) + αΩ(θ) (1.11)
where α is a normalization hyperparameter and θ is a vector containing the ANN’s weights and
the unregularized parameters. L2 regularization, also known as Ridge regression, is a method,
that makes the model keep its values as small as possible [44] by adding a penalty:

Ω(θ) = 1
2 ∥θ∥2

2 (1.12)

where ∥· ∥2 denotes Euclidean norm. Applying the L2 regularization makes the model “perceive
the input X as having higher variance, which makes it shrink the weights on features whose
covariance with the output target is low compared to this added variance” [45].

Furthermore, L2 regularization can be constrained by a fixed constant c upper bound. This
method is called max-norm regularization, because it limits the maximum norm of any weight
to c [42].

1.5.5 Deep embedding

Deep embedding is a method of encoding categorical features into a continuous trainable dense
vector representation of this feature. This type of encoding does not only produce low-dimensional
embeddings, which is very often desired, but during model training, embeddings of similar cate-
gories should become proximate in the embedding space [46]. This approach can be successfully
applied to natural language processing to create meaningful word embeddings [47].

1.5.6 Deep and wide learning

In 2016 a team of Google researchers introduced [48] a new concept of Wide & Deep learning,
which was then implemented and evaluated in the recommendation system for the Google Play
application store. The main concept was to combine the generalization abilities of deep neural
networks with the memorization provided by wide linear models.

The goal of memorization in this framework is to learn the correlation between the historical oc-
currences of the features and the resulting value. Memorization is often used in recommendation
systems because it can learn which combination of features users like.
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On the other hand, generalization aims at learning the correlations between unseen or rare
combinations of features. In the architecture of the proposed model 1.1 for the Google Play
store, the component responsible for deep learning contained deep embedding layers 1.5.5. The
model was able to generalize by matching items that are proximate in the embedding space,
which improved the diversity of its recommendations.

Figure 1.1 Deep & Wide architecture [49]



Chapter 2

Analysis

This chapter analyzes the objective of this thesis and the context of the NFT domain in
more detail. Furthermore, existing methods of value estimation are discussed. The end of
the chapter is dedicated to the methodology for the practical implementation of the proposed
solution.

2.1 Objective and domain

The goal of this thesis is to propose a machine learning model capable of estimating the price
for which the NFT will be sold. This could help traders identify underpriced assets or sell their
tokens for a reasonable price.

Since the NFT space is fairly new, there is a lack of research, especially in the ML field. This
thesis utilizes general machine learning concepts that are suitable for this type of problem. The
target variable is continuous, so a regression ML algorithm should be used. In order to estimate
the price, we can use historical transfers labeled with the actual price, and this leads to the
process of supervised learning.

2.2 Existing approaches

The NFT area is new and has not been explored by researchers in detail yet; especially in the
context of ML.

In an article [50] the concept of token valuation was introduced. It explained why conventional
financial estimation methods are inappropriate and ML techniques perform better, which corre-
sponds to observations made by another anonymous author [51].

The estimator proposed in the article is a gradient-boosted tree, combined with a non-linear
transformation function implemented like a neural network, that creates dense embeddings of
categorical traits of NFTs.

13
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But the author of the article [50] had to keep some of the details of the implementation secret.
The estimations were evaluated on the CryptoPunks collection, which has a very specific position
in the NFT space, because it popularized NFT collectibles (as discussed in section 1.2).

Articles [50, 51] should be perceived more as an inspiration than as a solid foundation.

2.3 Methodology

Concepts introduced in this thesis will be tested and applied to a single selected collection.
For these purposes, the Azuki collection was chosen because it was one of the most successful
recently introduced NFT collections. Since its creation in January 2022, its floor price1.2 has
risen approximately ten times. Although there are collections with a longer history, more trades,
or higher prices, the Azuki collection is more representative of the current state of the NFT
market.

The data used in this thesis are time-dependent; therefore, it is crucial to treat the data during
training chronologically, because otherwise unknown information at that time could be leaked to
the model.



Chapter 3

Implementation and design

This chapter analyzes the technical aspects of the proposed implementation. It starts with a
detailed description of the models that were used for the final solution. The accuracy of each
model is benchmarked. At the end of the chapter, the proposed solution combining all of the
previously described models is described.

3.1 Datasets and preprocessing

A dataset containing a history of transfers with their prices and token traits is needed to train
and evaluate a supervised ML model. Data retrieval and processing can be done separately for
the history of transfers and tokens metadata. The final data set consists of these two data frames
joined by the asset id attribute.

3.1.1 Sales

Sale occurs when an NFT owner successfully sells his asset to someone else for an agreed price,
usually via a specialized marketplace for NFTs. Sales data were retrieved from the OpenSea API,
which is currently the largest NFT marketplace in terms of volume traded [52]. In the observed
period from 2022-01-20 19:00, when the token traits were revealed (until then the traits were
hidden and could not impact the trades), to 2022-05-08 there were more than 15,000 transfers
of Azuki tokens.

The token with an attribute assed id equal to 0 was excluded from this dataset because it was
owned by the creators of the collection and was traded internally between Ethereum addresses
of the same owner in a way that does not reflect the market.

The retrieved transaction data contain information on the date of the transfer, the price and
the id of the transferred token. Most of the tokens were traded more times during their history;
therefore, the dataset is enhanced by the number of historical trades for each specific token. This
feature may contain information on the nature and liquidity of the token.

15
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We assume that the predicted price will be strongly correlated with a floor price 1.2 of the
collection at a given time. Since a floor price is based only on an offer and not on the actual
sale, we have decided to use the lowest sale price instead. This attribute named sales floor was
calculated by finding the minimum price of the previous 5 sales.

3.1.2 Assets

Each of 10,000 Azuki tokens must be associated with its traits. Each token can have an arbitrary
number of traits. Metadata containing information on traits can be obtained directly from the
collection smart contract, respectively, from the metadata URL provided by the smart contract.
In practice we encoutered limitations of this approach, such as restraint of the requests that can
be made to the metadata server. Thus, we decided to use OpenSea as a source of asset metadata
as well.

The types of traits that an asset can have and the number of possible values for each trait are
shown in 3.1.

Trait type Number of distinct values
Hair 124
Clothing 99
Background 8
Mouth 30
Offhand 54
Type 4
Eyes 27
Headgear 37
Ear 33
Special 10
Face 20
Neck 16

Table 3.1 Trait types and unique values counts

Assets are categorical attributes that cannot be handled by most ML models. Since we are
interested in the rarity of each token, a naive approach to encoding categorical variables into
numerical is just counting their occurrence (these features have a postfix “ occurence” after the
trait name). Yet, we do not exclude the original categorical traits because they might be useful
for embedding techniques.

There is no standard for calculating the rarity of assets. However, the basic concept of rarity
scoring was described by the founder of the analytical platform Rarity.tools in an article [53].
The metrics he described first calculate the rarity of a single trait as follows:

p(a) = number of assets with trait a

total number of assets
(3.1)

then the rarity of the asset is computed as the sum of rarities of its n traits:

rarity =
n∑

i=1

1
p(ai)

(3.2)
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This method was then improved by reflecting the number of traits the asset has; sometimes
called trait count weight. For example, token from the Azuki collection with the id. 2152 is
the only asset in the collection that has only five traits, whereas all other tokens have at least
six attributes, which makes it rare.

Furthermore, the distribution of the values for each trait type must be taken into account.
This is commonly referred to as trait normalization. If the values of a trait type are equally
distributed, the rarity of this trait type shall contribute less to the rarity score than the rarity of
the trait type, which is distributed unequally. In this work, we compute the contribution weight
as the mean of the probabilities of values of the trait type.

Although the exact algorithm for computing rarities is not standardized, the usage of trait
normalization and trait count weight has become a standard among NFT analytical platforms.

3.2 Data exploration

The first step to better understand the data was to visualize the traits of the assets and their
interaction with the sale price. This can be represented by the visualization of PCA with two
principal components, each represented by an axis of the scatterplot and the points colored by
the price relative to sales floor.

Figure 3.1 PCA visualization of traits and sales price

In this visualization 3.1, two narrow strips with lower asset density can be seen, which were traded
at the highest prices relative to the cheapest sale at the time. This supports our assumption that
less common combinations of traits have an impact on the sale price.

It is also worth examining the relationship of the price with the cheapest sale at a given time.

We can see from the figure 3.2 and table 3.2 that most of the assets are traded at prices close to
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Figure 3.2 Histogram of price relative to the cheapest purchase

count 21698.0
mean 1.42
std 1.12
min 0.16
0.25 quantile 1.05
0.5 quantile 1.15
0.75 quantile 1.42
max 32.5

Table 3.2 Statistical analysis of floor price relative to the cheapest sale

the floor price of sales, and more than 75% of the assets are traded at a price less than 1.5 times
the sales floor price. This is not surprising because the vast majority of assets have common
traits, whereas there are much fewer rare assets, and consequently, much fewer trades of these
rare tokens. This may cause problems for the models because they can learn more about the
common tokens than about the rare ones. The dataset is imbalanced1.3.3 in terms of the price
distribution relative to the lowest sales price at a given time.

3.3 Models

In this section, we propose and measure the accuracy of multiple models that can be used to
solve the problem. The models should be diverse. At the end of this section, these models are
combined with the ensemble techniques.

3.3.1 Gradient boosted regression tree

The first proposed model is the gradient-boosted tree 1.3.2 implemented with the Scikit library.

This model accepts only numerical attributes; thus it was wrapped by pipeline, which excludes
the categorical traits from the dataset and leaves only the occurence of traits and its rarity score.
This pipeline also normalizes the features to improve the accuracy of the model.

The best hyperparameters of the tree were exhaustively searched and evaluated with cross-

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
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validation. The hyperparameters found are shown in 3.3.

name description value
learning rate reduces the contribution of each tree 0.2
n estimators number of boosting stages 85

Table 3.3 Hyperparameters of gradient-boosted tree model

Figure 3.3 Predictions of gradient boosted regressor for testing data

In 3.3 we can see the predictions of the gradient-boosted tree model for previously unseen data.
The problem is that it often overprices sales, which is undesirable for traders and does not follow
the change of the floor price. Also, it uses the explicitly computed rarity instead of deciding
which traits are important and which are not on its own. On the other hand, the regression tree
was able to deal with the outliers with reasonably good accuracy since the training data were
unbalanced and no special technique was implemented to handle that.

statistic absolute error in ETH percentage error
mean 4.271 15.371
std 6.573 12.42
min 0.0 0.003
quantile 0.25 0.89 5.409
median 2.607 12.266
quantile 0.75 6.296 23.563
max 233.364 151.687

Table 3.4 Descriptive statistics for absolute and percentage test error of gradient-boosted tree

The MAPE of the gradient-boosted tree model was 14.5% and almost 50% of all assets had an
absolute percentage error lower than 10%
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Figure 3.4 Empirical cumulative distribution function of test prediction errors of gradient-boosted
tree model

3.3.2 Deep and wide ANN

The price of the tokens could not only be driven by the rarity of their traits, but some fairly
common traits may also become popular among traders and consequent demand can raise the
price of the asset. For this reason, we propose two ANN models which can determine how the
traits impact the price without any explicit formula. However, we do not exclude information
on the explicit rarity score and the occurrence of traits.

We want the models to be able not only to generalize the attributes but also to memorize the
specific combinations of them regarding the sale price. The charachteristics of deep and wide
learning seem to be suitable for this problem. In this section of the work, we will refer to the part
of the models responsible for generalization as deep branch and to the other part responsible
for memorization as wide branch.

For building the ANN models, the Keras framework will be used. Keras is a deep learning
framework built on top of the Tensorflow2 library, which was developed by Google.

To allow the model to determine the relationship between traits and the sale price, we can
leverage the deep embedding technique 1.5.5. Our neural network models have two inputs; one
for the categorical attributes and the other for the numerical ones. First, categorical inputs
that contain the traits of a given asset are encoded in a numerical representation by converting
the categorical string to their index in the vocabulary search table. The vocabulary consists
of all possible values that a trait can have and is adapted during the training period by the
StringLookupLayer.

Then the numerical representation of the traits is fed to the embedding layer provided by Keras.
This layer randomly initializes a matrix that contains a dense vector representation of traits
[54], which will be further trained to contain meaningful values. The embedding layer is also
responsible for looking up in this matrix.
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The embedded vector representation of traits is pushed forward in the network together with
the rest of numerical attributes into the deep branch of our neural network, which is a sequence
of fully connected layers. Each of these branches uses a ReLU activation function. This branch
needs to be deep enough to learn and generalize the relationships between the input features and
the final price.

There are multiple approaches to avoid overfitting 1.5.4 in our network. The dropout technique is
used and, as suggested in [55], dropout layers are placed before each hidden layer and low dropout
probabilities are set for these layers. The max-norm method is applied together with a dropout
technique, because it performed very well in [42]. And finally, the early-stopping technique is used
to stop the training and restore the best weights after 6 epochs of not improving the validation
loss.

The numerical input is also passed to the wide branch. The processings there are fairly simple
— all numerical inputs are scaled to have mean equal to zero and standard deviation equal to
one.

Finally, the outputs of the deep and wide branches are concatenated. This last layer is fully
connected to the single output. The output has a linear activation function, which is typical for
regression ANNs.

3.3.2.1 Conservative model

As we have mentioned, there will be two instances of the previously described architecture; each
with different hyperparameters and targeting slightly different problems.

The first might be called the conservative one, because it aims to predict well the prices of assets,
which were traded for lower prices. This model should not be distracted by outlying assets
and neither should the estimated prices be higher than the real values.

This model uses the Huber loss function 1.5.3 with the parameter α set to the median of the ratio
of the sale price to the sales floor price in the training dataset. Therefore; the loss error grows
quadratically for the common assets, but for the rare assets it grows linearly, so the outliers do
not mislead the model. Also, the dataset is left unbalanced with the vast majority of common
assets in it.

From the predictions visualized in figure 3.5 we can see that the conservative model is capable
of modeling trend changes of the cheapest sales and rarely overprices an asset. It can signal that
rarer NFTs are sold at higher prices, but the error for these assets is quite large.

statistic absolute error in ETH percentage error
mean 3.16 9.756
std 4.876 9.143
min 0.002 0.007
quantile 0.25 0.789 3.004
median 1.833 6.57
quantile 0.75 3.908 14.014
max 72.838 72.116

Table 3.5 Descriptive statistics for absolute and percentage test error of conservative ANN
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Figure 3.5 Predictions of conservative model for testing data

Figure 3.6 Empirical cumulative distribution function of testing error for conservative model

3.3.2.2 Progressive model

The second implementation of the deep and wide ANN architecture tries to improve the estimates
of the rarer tokens.

This is achieved by balancing the mini-batches during the training process. Each of these
batches should contain a fraction of sales data that has the price to the sales floor ratio greater
than the value of the parameter balance threshold. This compensates for the fact that such sales
are rarely seen during the training. These sales are randomly sampled for each mini-batch, and
for this reason, the model may perform slightly differently after it is trained again. Also, the
model uses the mean squared error metric, which is more sensitive to outliers.
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Figure 3.7 Predictions of progressive model for test data

In figure 3.7 we can see that the trend of the test predictions of the progressive model was quite
similar to the predictions of the conservative model, but it was more optimistic toward the rarer
assets; sometimes it even overvalued some NFTs.

statistic absolute error in ETH percentage error
mean 3.359 10.794
std 4.504 10.537
min 0.009 0.033
quantile 0.25 0.917 3.523
median 2.142 8.04
quantile 0.75 4.181 14.853
max 71.281 121.267

Table 3.6 Descriptive statistics for absolute and percentage test error of progressive ANN
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Figure 3.8 Empirical cumulative distribution function of testing error for progressive model

3.3.3 Ensemble

And finally, the capabilities and performance of the models described above must be prop-
erly combined to use them to their maximum potential. This can be achieved with ensemble
techniques 1.3.2, such as stacking or model averaging, because these techniques allow the
combination of diverse models.

We will compare the performance of a StackingRegressor and VotingRegressor provided by the
Sklearn library. These techniques require the underlying models to follow the library’s interface
for estimators; thus, a wrapper above the ANNs implemented with a different framework is
needed.

Let us start with the VotingRegressor. This model fits its underlying estimators and averages
their predictions. Table 3.7 shows the precision achieved by this model.

statistic absolute error in ETH percentage error
mean 3.544 11.334
std 4.471 8.813
min 0.002 0.008
quantile 0.25 1.197 4.62
median 2.45 9.148
quantile 0.75 4.617 16.107
max 73.367 72.641
’

Table 3.7 Descriptive statistics for absolute and percentage test error of averaging ensemble model

The StackingRegressor combines the predictions of the underlying estimators, in our case, the
gradient-boosted tree, conservative, and progressive ANNs, by applying the final regressor to
their output. We use a Ridge regression for this purpose, which applies the L2 penalization and
is suitable for situations where independent variables are highly correlated [56]. We also tested

https://scikit-learn.org/stable/modules/classes.html?highlight=ensemble#module-sklearn.ensemble
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multiple values for the penalization hyperparameter α.

statistic absolute error in ETH percentage error
mean 3.004 9.246
std 4.757 8.638
min 0.003 0.012
quantile 0.25 0.741 2.828
median 1.743 6.501
quantile 0.75 3.86 13.256
max 75.737 71.998

Table 3.8 Descriptive statistics for absolute and percentage test error of stacking ensemble model

The metrics of the stacking model 3.8 show that this model performs better than the averaging
one. Therefore; we propose this technique to combine the gradient-boosted tree, conservative
ANN, and progressive ANN to tackle the problem of estimating the value of NFTs.
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Chapter 4

Evaluation

In this chapter, the results and possible use cases of the proposed model are discussed. The
estimations of this model are then put in the context of NFT trading.

Our stacking model achieved an MAPE 3.8 of 9.2%, which is better than the average of the
results of the model proposed in [50]. However, each of the models was trained on different
collections, so they cannot be compared appropriately.

The solution proposed in this paper is not suitable for use cases where exact predictions are
crucial. An example of such a scenario might be a situation in which the NFT serves as a
collateral for a loan.

Figure 4.1 The predictions of the proposed model for previously unseen data

However, as shown in 4.1, the model introduced in this thesis is capable of capturing asset price
trends with reasonable precision. This might be leveraged by NFT traders. Trading NFTs is

27
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always extremely speculative, but the risk is balanced with the possibility of profit in the tens
or hundreds percent. Therefore, the insight about valuing NFTs is valuable for traders, even
though the estimation might have an offset of a couple of percent.

A typical scenario would be for a trader to let the trained model estimate the prices of assets
that are currently listed for sale and look for emerging promising deals.

The model’s predictions are rather conservative as it rarely overprices any asset. An opportunity
for NFT trader would be to buy one of the assets which are undervalued according to the
prediction in hope that the model estimated the price correctly and someone is willing to sell
this asset cheaper.

Figure 4.2 shows the trades of the ten most undervalued tokens (the prices were estimated to
be higher than they actually were) that were traded later in the testing dataset period. The sale
prices were calculated relative to the sales floor price at the time of sale. The relative price of
almost all of these assets increased over time. This suggests that the model estimated the price
higher correctly and that the assets offered for sale for a price lower than the price estimated by
the model might be profitable deals. This also opens up new opportunities for automation of
NFT trading.

Figure 4.2 Trades of the ten most underpriced tokens in observed period
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Investors also want to avoid buying items that will lose value. This is another use-case in which
the proposed model might be helpful. If the model estimates the price of an asset significantly
lower than it is offered to buy for, it could indicate that the asset may lose its value in the future;
we say that the asset is overpriced.

Figure 4.3 Trades of the ten most overpriced tokens in observed period

Figure 4.3 shows the trades of the ten most overpriced assets, which have been traded later in the
period of the testing dataset. The price to sales floor ratio was lower for the sales that occurred
after the model estimated that the asset should be cheaper. Such trades should be avoided.
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Conclusion

The goal of this thesis was to propose and implement a method to estimate the value of NFTs
using ML techniques. This model was meant to be useful in practice for traders.

We started with the description of Ethereum ecosystem, NFTs, and digital art collectibles in the
theoretical part 1.1.

Then methods for estimating NFT values were researched in the section 2.2. This research has
shown that the area is very new and has not been thoroughly researched yet. As a consequence,
this thesis is based on the application of general machine learning concepts to the specific problem
of NFTs.

In the practical part, we tested multiple models to solve the problem of estimating the NFTs
value. These models were shown to perform best when combined together, forming the final
estimator.

The implementation of the final model was capable of estimating the NFT price with an absolute
percentage error of less than 10%. These estimations may help identify underpriced assets.
Furthermore; we demonstrated that some of the predictions reflected the value of the asset better
than the price requested by their sellers, which creates opportunities for profitable trading.

The model for valuating NFTs proposed in this thesis may become the foundation for practical
solutions and have an impact on how people trade NFTs.
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33. GÉRON, Aurélien. ”Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow”. In: ”Second”. ”O’Reilly Media, Inc.”, 2019, pp. 290–291. ISBN:
9781492032649.

34. ZAMANLOOY, Babak; MIRHASSANI, Mitra. Efficient VLSI Implementation of Neural
Networks With Hyperbolic Tangent Activation Function. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. 2014, vol. 22, no. 1, pp. 39–48. Available from
doi: 10.1109/TVLSI.2012.2232321.

35. RAMACHANDRAN, Prajit; ZOPH, Barret; LE, Quoc V. Searching for Activation
Functions. CoRR. 2017, vol. abs/1710.05941. Available from arXiv: 1710.05941.

36. LIANG, Shiyu; SRIKANT, Rayadurgam. Why deep neural networks for function
approximation? arXiv preprint arXiv:1610.04161. 2016.

37. TOFALLIS, Chris. A better measure of relative prediction accuracy for model selection
and model estimation. Journal of the Operational Research Society. 2015, vol. 66, no. 8,
pp. 1352–1362.

38. GOODWIN, Paul; LAWTON, Richard. On the asymmetry of the symmetric MAPE.
International journal of forecasting. 1999, vol. 15, no. 4, pp. 405–408.

39. GNEITING, Tilmann. Making and Evaluating Point Forecasts. Journal of the American
Statistical Association. 2009, vol. 106. Available from doi: 10.1198/jasa.2011.r10138.

40. HUBER, Peter J. Robust Estimation of a Location Parameter. The Annals of
Mathematical Statistics. 1964, vol. 35, no. 1, pp. 73–101. Available from doi:
10.1214/aoms/1177703732.

41. ELLIOTT, Conal. The Simple Essence of Automatic Differentiation. Proc. ACM Program.
Lang. 2018, vol. 2, no. ICFP. Available from doi: 10.1145/3236765.

42. SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex; SUTSKEVER, Ilya;
SALAKHUTDINOV, Ruslan. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research. 2014, vol. 15, pp. 1929–1958.

43. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning [online].
In: MIT Press, 2016, pp. 116–117. http://www.deeplearningbook.org.
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