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Introduction

Numerical simulations have always been an integral part of modern physics, allowing
to research the character of an unimaginable amout of complex physical phenomena,
ranging from mechanics to quantum physics. The study of hydrodynamics is no dif-
ferent in this regard, as CFD (Computational Fluid Dynamics) is a discipline with an
esteemed reputation, ever since the dawn of modern numerical methods and computers
in the late 1940s.

Lagrangian hydrodynamical methods have enjoyed widespread use for many decades
now, with numerous practical applications. There are two main types of Lagrangian
numerical schemes employed in computing, the staggered schemes and cell-centred
schemes. The designations come from the means of discretization of field variables
in the compuational mesh. Whereas staggered schemes define velocity in nodes of the
mesh and the rest of the field variables in cell centres, the cell-centred schemes define
all field variables in cell centres. Both approaches have their pitfalls and merit.

The staggered schemes have historically been more popular, because storing velocity
in mesh nodes naturally solves the issue of Lagrangian mesh movement. However, this
comes at a price of loss in consevativity, which has to be compensated by the design of
the numerical scheme [8]. In addition, because the staggered discretization corresponds
to inviscid flow, it is necessary to ensure proper conversion of kinetic energy into internal
in non-smooth flows. This is achieved by the means of artificial viscosity [15], which
dissipates energy across the shock waves and ensures the validity of the second law of
thermodynamics. The staggered schemes have thus been a subject of great interest and
considerable research was done on the subject of artificial viscosity, making staggered
schemes a very powerful tool in the frame of Lagrangian hydrodynamics.

The cell-centred schemes, on the other hand, are naturally conservative. There is
also no need to employ artificial viscosity, because in cell-centred schemes based on the
Godunov method, the conversion of kinetic energy into internal is natively provided by
the solution of the Riemann problem. The issue of mesh movement however requires
resolution, establishing a need to construct solvers for the nodal velocity in order to
realize Lagrangian mesh movement, on the condition that they are compatible with
the so-called GCL (Geometric Conservation Law). Construction of such a nodal solver
has historically been somewhat challenging, however, in the recent past, numerous
cell-centred schemes have been successfully developed, such as [5] or [9] and have also
become a popular subject of research.

However, the use of hydrodynamical simulations is not limited to mere hydrody-
namics itself. It is additionally possible to employ them in the framework of plasma
simulations, since plasma under certain conditions can be described using a hydrody-
namical model. Therefore Lagrangian hydrodynamical methods are also used in the
simulations such as ICF (Inertial Confinement Fusion), where numerical modeling is an
absolutely essential part of research, since perpetually conducting physical experiments
would be extremely wasteful, ineffective and expensive. A somewhat less extreme al-
ternative to ICF simulations is its simpler variant, general interaction of radiation with
matter, for example interaction of a laser radiation with foils of various materials. Such
simulations are one of the foci of the staggered hydrodynamical code PALE [6] (Prague
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ALE1), developed in our institution.
Thus arises an interest of also possessing a cell-centred code, constituting an alter-

native to the PALE code. Although our code is purely Lagrangian cell-centred, the
primary intention is to study the effects generated by the difference in discretization
methods.

The primary concern of this thesis is to extend our existing code CCLUS (Cell-
Centred Lagrangian Unstructured Suite) into cylindrical coordinates, assess its func-
tionality on a variety of reference test problems and implement a simple model of laser
absorption on critical surface to simulate interaction of radiation with matter.

In section 1 we shall introduce the main aspects of Lagrangian hydrodynamics in
2D cylindrical coordinates, notably the governing equations and specifics related to the
geometry.

Section 2 will be dedicated to the construction of a 2D cylindrical Lagrangian nu-
merical scheme, which was selected for the extension of the CCLUS code into cylindrical
geometry.

In section 3 we will briefly describe the physics related to absorption of radiation
in plasma and formulate the basic principles of the model of absorption on critical
surface.

The focus of section 4 will be to provide necessary information about the structure
and functional capabilities of the developed code, discussing some of its notable features
and certain practical aspects.

In section 5 we shall present the results obtained using the developed code. We
will demonstrate its performance on typical test problems such as Sod shock tube, Noh
implosion and Sedov blast wave and finally, we shall present the result of the simulation
of laser absorption on critical surface.

1 Lagrangian hydrodynamics in 2D cylindrical co-
ordinates

In this section we shall briefly recapitulate some crucial information and results re-
garding Lagrangian hydrodynamics which will be relevant in context of this thesis. See
publications [9] or [12] for more details.

The primary feature of Lagrangian hydrodynamics is the assumption that the com-
putational volumes V (t) (i.e. computational cells) represent the movement of the fluid.
The conserved variables, namely momentum and total energy, are subsequently com-
puted under said assumption. The task at hand is to discretize the governing equations,
in this case, the Lagrangian form of the Euler equations, in 2D cylindrical coordinates,

1Arbitrary Lagrangian-Eulerian
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d

dt

ˆ
V (t)

ρ dV = 0, (1.1a)

d

dt

ˆ
V (t)

dV −
ˆ
V (t)

∇ ·U dV = 0, (1.1b)

d

dt

ˆ
V (t)

ρU dV −
ˆ
V (t)

∇P dV = 0, (1.1c)

d

dt

ˆ
V (t)

ρEdV −
ˆ
V (t)

∇ · (PU) dV = 0, (1.1d)

where ρ represents density, P pressure, U velocity, E specific total energy and d
dt

is
the material derivative. Equations (1.1a) to (1.1d) have their physical interpretation,
namely (1.1a) is the mass conservation equation, (1.1b) represents the GCL (geometric
conservation law), (1.1c) is the conservation of momentum and (1.1d) is conservation of
total energy. Note that the GCL (1.1b) captures the time evolution of a computational
volume and is equivalent to the local kinematic equation

dX

dt
= U, X|t=0 = x0, (1.2)

where X(t) is an arbitrary point located on the surface S(t) of the control volume V (t)
and x0 is its starting position.

Thermodynamic closure of the set (1.1) is achieved by an equation of state of the
form

P = P (ρ, E) , (1.3)

where E = E − 1
2
‖U‖2 is the specific internal energy.

Now we shall introduce the specifics related to the geometry of 2D cylindrical
coordinates. In our particular situation, the use of 2D cylindrical coordinates assumes
symmetry in the azimuthal direction, in other words, rotational symmetry around
the z-axis. For demonstration purposes we shall stress the dimensionality of defined
geometric objects in this section.

It is useful to note here, that in computational fluid dynamics in 2D Cartesian
coordinates, it is customary to use the terms area and volume interchangeably, which
can be seen for example in publications [5] or [12]. However, it is crucial to point out
that in 2D cylindrical coordinates, these two terms must be properly distunguished,
see Figs. 1 - 2, where the distinction is made clear. The importance of proper distinc-
tion of these two terms shall become clearer when defining vector operators prior to
discretization of our governing equations (1.1). All geometric quantities are computed
at a fixed time level, therefore we shall omit the time dependence in the following text
(i.e. V (t) → V ). Let us have a 2D set Ω localized in the r-z plane and let ∂Ω be its
boundary. Thus, Ω is a 2D surface and ∂Ω is a curve in 2D, also localized in r-z plane.
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Figure 1: Cylindrical area.

Figure 2: Cylindrical volume of a set Ω located in the z − r plane.
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The area A of the set Ω is analogous to 2D Cartesian surface in the sense that

A =

ˆ
Ω

dA =

ˆ
Ω

dz dr. (1.4)

The volume is then calculated by rotating the area A about the z-axis, namely

Ṽ =

ˆ
Ω×[0,2π]

r dA dϕ, (1.5)

however, it is customary to define all quantities per unit angle (radian), in the sense
that V = Ṽ

2π
, therefore the formula for volume reduces to

V =

ˆ
Ω

r dA. (1.6)

The transition between (1.5) and (1.6) might be the source of severe confusion for the
uninitiated reader, although the process itself is obviously trivial, because it effectively
discards the integration in the angular coordinate, thus leading to a certain distortion
in comprehension, since the result of the formula (1.6) poses as a 2D object.

In similar fashion, L is the boundary of area A and the surface S is the boundary
of the volume V , therefore

S =

ˆ
∂Ω

r dL (1.7)

Lastly, we define the orthonormal basis

ez = (1,0) ; er = (0,1) ,

and a normal N to the curve L(t), which will be used in the following text. The
introduced notation is visualized in Fig. 3.

Figure 3: Visualization of notation in cylindrical geometry.
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1.1 Discretization of gradient and divergence operators

Similarly to the discretization process undertaken in [12] for 2D Cartesian geometry, the
volume integrals also have to be expressed with the use of certain theorems of vector
calculus, in this particular case, the Green theorem. The gradient and divergence
operators are given by

∇ ·U =
∂u

∂z
+
∂v

∂r
+
v

r
, (1.8)

∇P =

(
∂P

∂z
,
∂P

∂r

)
=
∂P

∂z
ez +

∂P

∂r
er. (1.9)

Firstly, we shall express the second integral in (1.1b) using the expression for the
divergence operator (1.8)

ˆ
V

∇ ·U =

ˆ
A

[
∂u

∂z
+
∂v

∂r
+
v

r

]
r dA =

ˆ
L

(U ·N) r dL. (1.10)

Thus we have obtained the Green theorem (or the 2D form of the divergence theorem),
allowing us to express the aforementioned volume integral with a line2 integral

ˆ
V

∇ ·U =

ˆ
L

(U ·N) r dL. (1.11)

Now will we similarly rewrite the second integral in (1.1d). With the use of the well-
known vector identity

∇ · (ϕA) = A · ∇ϕ+ ϕ∇ ·A, (1.12)

valid for a scalar function ϕ and a vector A, the second integral of (1.1d) yields
ˆ
L

PU ·N r dL =

ˆ
V

U · ∇P dV +

ˆ
A

P∇ ·U r dA. (1.13)

If the velocity U is assumed constant in space, (1.13) takes the form
ˆ
V

∇P dV =

ˆ
L

PNr dL− er

ˆ
A

P dA. (1.14)

Contrary to the 2D Cartesian case, the volume integral of the gradient operator is
expressed not only by a line integral (1.14), but there is also an additional source term,
essentially meaning that in 2D cylindrical case, the surface integral over a closed surface
is no longer equal to zero. This term assures the compatibility of the volume integral
of the gradient operator with the surface integral of the divergence operator, leading
to the first approach to discretization of (1.1), which is commonly referred to as the
control volume formulation.

2It is technically a surface integral, because r dL is actually the surface element dS.
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There exists also an alternative approach, the so-called area-weighted formulation.
This approach rests upon initially setting

ˆ
V

∇PdV =

ˆ
A

∇P r dA = r

ˆ
A

∇PdA, (1.15)

where r is the average radius of the area A calculated using the mean value theorem

r =

´
A
r dA´
A

dA
. (1.16)

Thus have we reformulated the volume integral of the gradient operator in a manner
closely resembling its Cartesian form, save for the additional multiplication by the
average radius r ˆ

V

∇P dV = r

ˆ
L

PN dL. (1.17)

The use of the area-weighted formulation (1.17) primarily leads to the loss of com-
patibility of the surface integrals of the defined differential operators gradient and
divergence. However, it has certain well-desired positive attributes, for example re-
lated to symmetry preservation of discretization schemes, as will be discussed and
demonstrated later.

We point out that in the 2D Cartesian case both formulations (1.14) and (1.17)
coincide, since r = r = 1 and the source term in (1.14), er

´
A
PdA, vanishes.

1.2 Reformulation of the Euler equations for discretization

In the following text, we will rewrite the Euler equations (1.1) in Lagrangian form
using the identities involving previously defined differential operators gradient and
divergence. We will do so using both control volume and area-weighted formulations.

1.2.1 Control volume

We will begin with the control volume formulation. Firstly we have to define some new
objects related to the Lagrangian formulation, which will be used in this section.

We define a mass density average for an arbitrary fluid variable ϕ by the expression

〈ϕ〉 =

´
V
ρϕ dV´
V
ρ dV

=

´
V
ρϕ dV

m
, (1.18)

where mass m of the volume V is defined as

m =

ˆ
V

ρ dV.

Using the aforementioned results and most importantly (1.14), the system (1.1)
yields

7



m
d

dt

〈
1

ρ

〉
−
ˆ
L

U ·N r dL = 0, (1.19a)

dV

dt
−
ˆ
L

U ·N r dL = 0, (1.19b)

m
d

dt
〈U〉+

ˆ
L

PN r dL− er

ˆ
A

P dA = 0, (1.19c)

m
d

dt
〈E〉+

ˆ
L

PU ·N rdL = 0. (1.19d)

The source term in the momentum conservation equation (1.19c) can still be rewritten
in a more favorable form, especially in context of the imminent spatial discretization.
Because ˆ

L

Nr dL = Aer, (1.20)

the source term assumes the form

er

ˆ
A

P dA =

ˆ
L

PN r dL, P =

´
A
P dA´
A

dA
, (1.21)

where P is an averaged pressure over the area A. Therefore we can reformulate the
momentum conservation equation (1.19c) in the form of a flux over the outer boundary
line elements dL, or technically over surface elements dS = r dL,

m
d

dt
〈U〉+

ˆ
L

(
P − P

)
N r dL = 0. (1.22)

1.2.2 Area-weighted

The area-weighted formulation of the Euler equations (1.1) is reached with the use of
the expression for the volume integral of the gradient operator (1.17). The only actual
difference between the control volume and area-weighted formulations thus appears
in the momentum conservation equation. Under the area-weighted formulation, the
momentum conservation equation (1.1c) assumes the form

m
d

dt
〈U〉+ r

ˆ
L

PN dL = 0. (1.23)

If we divide (1.23) by the average radius r, we arrive at

m

r

d

dt
〈U〉+

ˆ
L

PN dL = 0. (1.24)

Upon closer inspection of (1.24), a perceptive reader can realize that this equation
is similar to the momentum conservation equation in Cartesian coordinates, the only
difference being the division of mass by the averaged radius m/r. The term µ = m

r

8



is the so-called Cartesian inertia. It is however not constant in time, in other words,
it does not have the required Lagrangian conservative property, therefore the use of
the momentum equation in this form can be spurious. This is the source of many
deficiencies of the area-weighted formulation, notably the violation of conservative
properties, which the control volume formulation inherently retains.

With a small amount of foreshadowing, it is possible to summarize at this point that
whereas the control volume formulation prioritizes the inherent Lagrangian conserva-
tive properties, at the cost of symmetry preservation, which is violated by the source
term in the momentum conservation equation (1.19c), the area-weighted formulation
prioritizes symmetry preservation by almost artificially removing the source term in
the momentum conservation equation, at the cost of certain conservative properties.
All of these statements will be demonstrated more intuitively, once we will present the
numerical results of discretization schemes derived from both formulations on select
test problems.
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2 Cylindrical first-order EUCCLHYD numerical scheme

One of the main tasks formulated in this thesis is to extend the cell-centred Lagrangian
code developed in [12] and [13], which was up until this point developed in 2D Cartesian
coordinates, into 2D cylindrical coordinates. The first numerical scheme implemented
in the code in 2D Cartesian coordinates was the first-order EUCCLHYD scheme [9].
Therefore it seemed only natural to select its first-order cylindrical equivalent, intro-
duced in [7], as the first scheme-of-choice for the extension of this code into cylindrical
coordinates. The reason is quite apparent, since the first-order cylindrical EUCCLHYD
is formulated both in control volume and area-weighted forms. Therefore, both for-
mulations can be tested and compared, especially when simulating laser absorption.
Additionally, the scheme and its properties are well-documented which is extremely
beneficial as far as result assessment is concerned, not to mention the fact that the
treatment of boundary conditions in this framework is rather simple, which is extremely
important from the technical perspective. Such details regarding implementation will
be discussed in a separate section.

In this chapter, we will introduce the first-order cylindrical EUCCLHYD numerical
scheme for the discretization of the Euler equations in unstructured formulation.

From this moment on we are operating in the realm of the discrete numerical
formulation of the physical system described by the Euler equations (1.1). For this
purpose, we assume a certain domain in 2D cylindrical coordinates, which consists of
a number of generally polygonal computational cells, which we denote Ωc(t). The cells
are not overlapping, nor can there be gaps between them, so that they constitute a mesh
covering the entire domain. Since we are operating in an unstructured formulation,
each cell is assigned a unique index c. Similarly, vertices of this mesh are denoted by
their unique index p. Since every cell Ωc(t) is defined by the position of its vertices, we
denote the anti-clockwise ordered list of vertices of a cell by P(c).

The list of cell vertices is the bare minimum in terms of mesh connectivity, which we
require for a description of this numerical scheme. However, practically speaking, we
typically store many more lists containing mesh connectivity information, such as lists
containing cell-cell connectivity etc., mostly to accelerate the implementation. Again,
such practical details will be discussed at an appropriate time.

2.1 Face flux discretization

Now we shall conduct the discretization of (1.1) itself. It is desired to express the
system (1.1) in the framework of cell, nodal and subzonal variables, analogously to
the Cartesian discretization in [9] or [12]. However, we shall initially formulate the
discretization using the so-called numerical face flux form. The reason for this decision
is motivated by the desire to provide some substance to the claims related to symmetry
preservation of control volume and area-weighted formulations.

2.1.1 Control volume formulation

To conduct the numerical face flux discretization in the control volume formulation,
we have to apply (1.19) to the discrete computational cells Ωc(t). Also, we introduce
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an anti-clockwise ordered list of cell faces F(c). The faces themselves can be recovered
by their vertices, which are p and p+ in the anti-clockwise sense, see Fig. 4 for a visual
representation of used notation. Thus we arrive at the discrete form of the system
(1.19)

mc
d

dt

(
1

ρc

)
−
∑
f∈F(c)

rcfL
c
fU

c
f ·Nc

f = 0, (2.1a)

mc
d

dt
Uc +

∑
f∈F(c)

rcfL
c
fΠ

c
fN

c
f − AcPcer = 0, (2.1b)

mc
d

dt
Ec +

∑
f∈F(c)

rcfL
c
f (ΠU)cf ·N

c
f = 0, (2.1c)

where Nc
f is the face unit outward normal, Lcf is the face length and the face radius rcf

is given by the average of its endpoint radii

rcf =
1

2
(rp + rp+) .

Similarly to (1.22), the discrete momentum conservation equation (2.1b) can be rewrit-
ten using the geometric identity (its discrete form) (1.20) to obtain

mc
d

dt
Uc +

∑
f∈F(c)

rcfL
c
f

(
Πc
f − Pc

)
Nc
f = 0. (2.2)

The numerical face fluxes present in the sums of (2.1) are given by

Uc
f =

1

rcfL
c
f

ˆ
f

Ur dL, (2.3a)

Πc
f =

1

rcfL
c
f

ˆ
f

Pr dL, (2.3b)

(ΠU)cf =
1

rcfL
c
f

ˆ
f

PUr dL. (2.3c)

Finally, the kinematic equation (1.2), after discretization, assumes the form

d

dt
Xp = Up, Xp|t=0 = xp. (2.4)

The equation (2.4) serves as the prescription for the mesh movement, since Up denotes
nodal velocity and Xp nodal positions.
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Figure 4: Visualization of notation in the numerical face flux discretization.

2.1.2 Area-weighted formulation

Again, to reach the area-weighted formulation, we will use the identity (1.17), this
time in its discrete form. We remark once again that the only difference between
the area-weighted and control volume formulation lies in the form of the momentum
conservation equation (1.23). We immediately arrive at

mc
d

dt
Uc + rc

∑
f∈F(c)

Lcf Π̂
c
fN

c
f = 0, (2.5)

where rc = Vc/Ac is the cell-averaged radius and Π̂c
f is the area-weighted face pressure

flux, defined by

Π̂c
f =

1

Lcf

ˆ
f

P dL. (2.6)

If we divide (2.5) by the cell-averaged radius rc, we reach

mc

rc

d

dt
Uc +

∑
f∈F(c)

Lcf Π̂
c
fN

c
f = µc

d

dt
Uc +

∑
f∈F(c)

Lcf Π̂
c
fN

c
f = 0, (2.7)

which is phenomenologically the Cartesian form of the discrete momentum conservation
equation, where µc = mc/rc = ρcAc is the cell Cartesian inertia.

The main reason why we decided to include the numerical face flux discretization
in area-weighted and control volume formulations was due to the claims made about
symmetry preservation, as we remarked beforehand. It is not the purpose of this thesis
to analyze or verify these properties, but using the derived expressions (2.1) for the
control volume numerical face flux discretization or (2.1a), (2.7), (2.1c) for the area-
weighted numerical face flux discretization, it can be proven, that the area-weighted
formulation preserves symmetry on equi-angular polar meshes, contrary to the control
volume formulation. We shall not do so within the scope of this thesis, for the full
proof see [7].
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At this moment, we only lack a solver providing the nodal velocities for the mesh
movement. We shall rectify this momentarily, since we will conduct the full first-order
discretization in the following section.

2.2 Node-based discretization

One of the primary issues concerning cell-centred Lagrangian numerical schemes is the
fact that, unlike staggered schemes, the velocities are defined in cell centres and not
in nodes. Therefore there is no inherent means to move the mesh and it is necessary
to construct a solver to obtain the nodal velocities Up, in order to realize said mesh
movement. Since the mesh movement is equivalent to cellular volume variation, the
nodal solver has to be compatible with the volume variation equation (GCL) (2.1a).
Let us rewrite (2.1a) into a more suitable form, so the use of the label volume variation
equation is justified. Since mc

ρc
= Vc, (2.1a) becomes

dVc
dt
−
∑
f∈F(c)

rcfL
c
fU

c
f ·Nc

f = 0. (2.8)

As we can see in (2.8) however, the nodal velocities Up are still hidden behind the face
velocities Uf . For this reason, we will perform a transition from the numerical face
flux discretization to a node-based discretization.

For a graphic visualization of the situation at hand see Fig. 5.

Figure 5: Node-based discretization in cell Ωc.

Firstly, we will perform a linear interpolation of the velocity field Uc along the cell
faces to be able to express the face velocities Uf using nodal velocities Up. It is in
fact an interpolation of a product of two linear functions U and r, thus leading to the
recognizable Simpson’s rule. This process yields the conversion expression between the
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numerical face flux and node-based discretizations

rcfU
c
f =

1

2

(
rp+ + 2rp

3
Up +

rp + 2rp+

3
Up+

)
= 0. (2.9)

The previous equation essentially expresses the velocity of a face f using the velocities
of its endpoints p and p+. The idea is to express the nodal velocity Up using the
knowledge of geometry of the cell faces surrounding it. To that effect, we will define new
geometric objects corresponding to the announced shift in perception of the situation
(i.e. from expressing face using nodes to expressing a node using connected faces in a
cell).

Assuming we are located at a node p, we define the half-lengths Lcp, L
c
p, outward-

facing normals Nc
p, N

c
p and radii rcp, r

c
p of each connected face (in the anti-clockwise

sense) as follows

Lcp =
1

2
Lpp− , Nc

p = Npp− ,

Lcp =
1

2
Lpp− , Nc

p = Npp− , (2.10)

rcp =
rp− + 2rp

3
, rcp =

rp+ + 2rp
3

.

Additionally, we define nodal pressures Πc
p and Πc

p for later use in the discretization
process, see Fig. 6 for a graphic visualization of their localization in the cell corner.

Figure 6: Localization of nodal pressures at node p

Similarly to the nodal velocities Up, the nodal pressures Πc
p and Πc

p are obtained by

linear interpolation along the cell faces. The face momentum flux Π̂c
f is then expressed

using nodal pressures

Π̂c
f =

1

2

(
Πc
p+ + Πc

p

)
.

Although it seems that the nodal pressures Πc
p and Πc

p introduce extra unknowns into
the system, they can fortunately be expressed using nodal velocity, using the approx-
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imate half Riemann problems [3]. Since we will employ the acoustic approximation,
the nodal pressures can be calculated using

Πc
p = Pc − Zc (Up −Uc) ·Nc

p,

Πc
p = Pc − Zc (Up −Uc) ·Nc

p, (2.11)

Zc = ρcac,

where Zc is the acoustic impedance of the cell and ac is the cell sound speed.
If we substitute (2.9) and (2.10) into the equation (2.8) and shift the nodal indices

p± appropriately, we arrive at

dVc
dt
−
∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
·Up = 0. (2.12)

The equation (2.12) represents the GCL in node-based discretization, but it is also
useful in a couple more ways. Firstly, if the term with the sum is shifted to the
right-hand-side and subsequently divided by cell volume, i.e.

1

Vc

dVc
dt

= 〈∇ ·U〉c =
1

Vc

∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
·Up, (2.13)

we have recovered an expression for the divergence operator in the node-based dis-
cretization. Also, if we remind ourselves of the identity (1.20), the sum in (2.12)
represents the integral on the left-hand side. Therefore we can write the form of the
identity (1.20) in our node-based discretization as∑

p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
= Acer. (2.14)

The newly obtained identity (2.14) also provides us with a direct means to calculate
the cell area Ac. At this point in text, since we have stumbled upon the formula for
cell area, we will also include the formula for calculating the cell volume.

The cell volume Vc of a generally polygonal cell Ωc is calculated using its triangular
decomposition and subsequent rotation around the z-axis, see Fig. 7 for a graphic
visualization.
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Figure 7: Calculation of cell volume Vc of a cell Ωc.

The formula for cell volume then writes

Vc =
1

6

∑
p∈P(c)

(rp + rp+) (zprp+ − rpzp+) . (2.15)

The numerical face flux and node-based discretizations can also be linked by the
geometric identity (2.14), since∑

p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
= Acer,∑

f∈F(c)

rcfL
c
fN

c
f = Acer,

=⇒
∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
=
∑
f∈F(c)

rcfL
c
fN

c
f . (2.16)

At this point, we can discretize the momentum conservation equation using the intro-
duced node-based discretization. We will do so both for the control volume and the
area-weighted variants, using their respective derived expressions for the differential
operators.

2.2.1 Control volume discretization of the momentum equation

For the control volume variant, we shall make use of the discrete form of (1.14) and its
compatible discrete divergence operator from (2.13). The discrete cell pressure gradient
in control volume formulation then becomes

〈∇P 〉CVc =
1

Vc

 ∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
− AcPcer

 . (2.17)
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Using the discrete pressure gradient operator (2.17), we can express the momentum
conservation equation in the form

mc
dUc

dt
+
∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
− AcPcer = 0. (2.18)

We have thus derived a node-based control volume discretization of the momentum
conservation equation, which is equivalent to the numerical face flux discretization
(2.1b), on the condition that the numerical face flux satisfies

rcfΠ
c
f =

1

2

(
2rp + rp+

3
Πc
p +

rp + 2rp+
3

Πc
p+

)
, (2.19)

in other words, that the nodal values were obtained by linear interpolation along the
cell faces.

2.2.2 Area-weighted discretization of the momentum equation

The area-weighted variant of the momentum conservation equation is obtained using
the corresponding definition of the gradient operator (1.17) in its discrete form

〈∇P 〉AWc =
rc
Vc

∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
. (2.20)

Under these conditions, the area-weighted variant of the momentum conservation equa-
tion assumes the form

mc
dUc

dt
+ rc

∑
p∈P(c)

(
LcpΠ

c
pN

c
p + LcpΠ

c
pN

c
p

)
= 0. (2.21)

The area-weighted variant of the interpolaton condition is as follows

Π̂c
f =

1

2

(
Πc
p + Πc

p

)
. (2.22)

2.2.3 Node-based discretization of the energy conservation equation

Finally, once possessing a discretization of the divergence operator and using the node-
based discretization introduced in the beginning of section 2.2, we can discretize the
final equation of the system (1.1). The node-based discretization of the energy conser-
vation equation is expressed as

mc
dEc
dt

+
∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
·Up = 0. (2.23)

Once more, this formulation is valid only if the following condition, expressing the com-
patibility of the node-based discretization with the numerical face flux discretization,
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is satisfied

rcf (ΠU)cf =
1

2

(
2rp + rp+

3
Πc
pU

c
p +

rp + 2rp+
3

Πc
p+U

c
p+

)
. (2.24)

2.2.4 Nodal solver compatible with GCL

The current endeavour culminates in the search for the nodal velocities Up. To that end
we have to construct a solver, under the condition that the mesh movement realized be
the computed velocities Up is compatible with the GCL (1.1b). The construction of the
solver has already been thoroughly described in [9], in the Cartesian variant or in [7],
in the cylindrical variant, therefore we shall be rather brief and mention only the most
important elements regarding its construction. The construction itself is derived, quite
predictably, from conservation of total energy and conservation of momentum. One of
the ubiquitous concepts appearing in the cell-centred numerical schemes in Cartesian
coordinates implemented in [12] and [13], as far as the quest for nodal velocities Up is
concerned, is the solution of 1D Riemann problems in the direction of the face. This
cell-centred cylindrical numerical scheme is not any different in this regard.

As we were saying, the first step is to assume total energy conservation around the
node p. Let C(p) be a list of cells connected to node p. In that case, total energy
conservation is represented by the sufficient condition∑

c∈C(p)

rcpL
c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p︸ ︷︷ ︸

Fpc

= 0. (2.25)

The argument of the sum in (2.25) can be interpreted mechanically as a subzonal3

force Fpc impinging at node p. Therefore the condition (2.25) is merely expressing the
balance of subzonal forces around node p. Substituting the defined nodal pressures
(2.11) into the expression for the subzonal force in (2.25), the subzonal force can be
written as

Fpc =
(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
Pc −Mpc · (Up −Uc) , (2.26)

where Mpc is the subzonal matrix defined as

Mpc = Zc

[
rcpL

c
p

(
Nc
p ⊗Nc

p

)
+ rcpL

c
p

(
Nc
p ⊗Nc

p

)]
. (2.27)

Since nonzero nodal velocity Up stems from an imbalance of forces at node p, the solver
then, using (2.25), (2.26) and (2.27), finally assumes the form

MpUp =
∑
c∈C(p)

Fpc, (2.28)

where nodal matrix Mp is defined as

Mp =
∑
c∈C(p)

Mpc. (2.29)

3Also known as subcell.

18



It is important to note at this point, that the subzonal matrix Mpc defined by (2.27) is
symmetrical positive-definite by design, thus even the nodal matrix Mp is symmetrical
positive-definite, and therefore always invertible. In other words, the nodal solver
(2.28) is well-defined and always provides a valid solution.

It may be useful to note here that we have yet to take the boundary conditions into
account, which, in the framework of cell-centred numerical schemes can sometimes
prove rather tricky. Although this particular scheme is indeed provided with a proper
boundary condition treatment from the theoretical standpoint, from experience, the
practical implementation may or may not require certain ingenuity beyond a theoret-
ically sound formula. We shall elaborate on the topic of practical implementation of
boundary conditions at an appropriate time.

2.2.5 Boundary condition treatment

As we remarked, now it is necessary to apply the boundary conditions. As far as
this numerical scheme is concerned, the boundary conditions are applied in the nodal
solver, in other words, we have to properly calculate the balance of subzonal pressures
at boundary nodes. We are assuming two situations in this regard. Either we are
operating with prescribed pressure at the boundary edge or we shall have prescribed
velocity at an edge. In any case, the boundary condition manifests itself formally as
a missing subcell force contribution in the subcell force balance around node p (2.25),
where we re-designate p± as next and previous nodes situated on the boundary. We
shall designate the boundary force term as F?

p which is defined phenomenologically as∑
c∈C(p)

Fpc = F?
p. (2.30)

Thus the nodal solver (2.28) for nodes p on the boundary of the domain becomes

MpUp =
∑
c∈C(p)

Fpc − F?
p. (2.31)

Our remaining task is now to specify the nodal boundary force term F?
p for both

assumed types of boundary conditions.

Prescribed pressure

The case of prescribed pressure is fairly simple and easy to comprehend. Assuming we
have a certain pressure prescribed on the boundary cell faces surrounding the node p,
the boundary force term is quite naturally

F?
p = r?pL

?
pΠ

?
pN

?
p + r?pL

?
pΠ

?
pN

?
p, (2.32)

see Fig. 8 for visualization of notation on the domain boundary.
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Figure 8: Boundary nodes.

Prescribed velocity

In the case of velocity prescribed on the boundary faces, the situation is a bit more
complicated. First, we have to project the general prescribed velocity V? onto the
faces, to obtain the normal velocity applied on the boundary faces

V?p = N?
p · V?,

V?p = N?
p · V?.

(2.33)

Then we define the nodal normal Np, using the expression

Np =
N?
p + N?

p∥∥∥N?
p + N?

p

∥∥∥ . (2.34)

Now we have to translate the normal velocities prescribed on the edges into an average
pressure acting at the node p. Using the results already obtained in [12], we arrive at
the formula for the average boundary nodal pressure Π?

p.

Π?
p =

[
M−1
p

(∑
c∈C(p) Fcp

)
·Np

]
− (r?pL

?
pV?p + r?pL

?
pV?p )

M−1
p Np ·Np

. (2.35)

The boundary force for the velocity boundary condition is then

F?
p =

(
r?pL

?
pN

?
p + r?pL

?
pN

?
p

)
Π?
p. (2.36)

2.2.6 Time step control

The time step is controlled using three requirements. The first one is the standard
CFL condition, the second condition is based on limiting cell volume variation over a
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time step and the third serves as a condition, which allows the time step to increase
during the simulation. We shall introduce all of them in this section.

CFL condition

The CFL condition concerns itself with the numerical scheme’s stability. The CFL
condition employed in this case, in the physical point of view, aims to preserve positive
entropy generation in cells Ωc across the time step. A time step calculated using such
a condition can be expressed as

∆tcfl = Ccfl min
c

(
Lnc
anc

)
, (2.37)

where Ccfl is the Courant-Friedrichs-Lewy number, a coefficient satisfying

Ccfl ∈ (0,1],

Lnc is the distance between two closest nodes of a cell Ωc and anc is the cell sound
speed. The coefficient Ccfl is selected based on a stability analysis conducted for the
particular scheme. According to [7], the choice of Ccfl = 0.25 provides stable numerical
results and is compatible with entropy monotonicity, therefore we regard this value as
a benchmark.

Volume variation condition

The second condition aims to limit the volume variation of a cell during a time step.
This particular condition is conceptually very natural and extremely useful from the
practical standpoint. Firstly, assuming we are located in cell Ωc at the time level tn

with volume V n
c , we will estimate the new cell volume V n+1

c at the next time level using
the Taylor expansion

V n+1
c = V n

c +
d

dt
Vc(t

n)∆t,

where the volume derivative is calculated using the discrete GCL (volume variation
equation) (2.12). The limit for volume variation is expressed using a strictly positive
coefficient CV , therefore we aim to calculate the new volume V n+1

c so that

|V n+1
c − V n

c |
V n
c

≤ CV .

To achieve that, the time step must be

∆tV = CV min
c

[
V n
c∣∣ d

dt
Vc(tn)

∣∣
]
. (2.38)

In practice, we usually require that the new cell volume V n+1
c does not vary from the

initial volume V n
c by more than 10%, in other words CV = 0.1.
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Full formula for the time step

The timestep is then evaluated by selecting the minimum of three proposed time steps.
The third condition we mentioned simply prevents the time step to increase too rapidly,
should time steps calculated from (2.37) or (2.38) be much greater than the previous
one. Such a condition is expressed using a strictly positive coefficient Ct. To be precise,
the time step selection is performed by evaluating

∆tn+1 = min (∆tcfl,∆tV , Ct∆t
n) . (2.39)

We typically require that the maximum time step increase is 1%, in other words
Ct = 0.01.

2.2.7 Equation of state

The scheme achieves thermodynamic closure with the use of an equation of state (1.3).
In this case we use the equation of state for the ideal gas in the form

P = ρE (γ − 1) , (2.40)

where γ is the Poisson constant.
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2.2.8 Discretization summary for the first-order cylindrical EUCCLHYD
numerical scheme

Finally, we present the results of the discretization for both control volume and area-
weighted formulations. Firstly, we will mention the variant-specific equations and
then summarize the common features. We include all necessary formulas used for the
construction of the numerical scheme below.

Control volume

mc
d

dt

(
1

ρc

)
−
∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
·Up = 0, (2.41a)

mc
d

dt
Uc +

∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
− AcPcer = 0, (2.41b)

mc
d

dt
Ec +

∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
·Up = 0, (2.41c)

Area-weighted

mc
d

dt

(
1

ρc

)
−
∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
·Up = 0, (2.42a)

mc
d

dt
Uc + rc

∑
p∈P(c)

(
LcpΠ

c
pN

c
p + LcpΠ

c
pN

c
p

)
− AcPcer = 0, (2.42b)

mc
d

dt
Ec +

∑
p∈P(c)

(
rcpL

c
pΠ

c
pN

c
p + rcpL

c
pΠ

c
pN

c
p

)
·Up = 0, (2.42c)

Common
The discrete kinematic equation (2.4) and the derived nodal solver (2.28) are the same
for both variants

Up = M−1
p

∑
c∈C(p)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
Pc −Mpc · (Up −Uc) ,

Mpc = Zc

[
rcpL

c
p

(
Nc
p ⊗Nc

p

)
+ rcpL

c
p

(
Nc
p ⊗Nc

p

)]
, Mp =

∑
c∈C(p)

Mpc,

Πc
p = Pc − Zc (Up −Uc) ·Nc

p,

Πc
p = Pc − Zc (Up −Uc) ·Nc

p,

Zc = ρcac.
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Geometric quantities
Cell area Ac and volume Vc are calculated using the formulae (2.14) and (2.15)

Acer =
∑
p∈P(c)

(
rcpL

c
pN

c
p + rcpL

c
pN

c
p

)
,

Vc =
1

6

∑
p∈P(c)

(rp + rp+) (zprp+ − rpzp+) .

Time step
The time step is evaluated using three requirements

∆tn+1 = min (∆tcfl,∆tV , Ct∆t
n) ,

∆tcfl = Ccfl min
c

(
Lnc
anc

)
,

∆tV = CV min
c

[
V n
c∣∣ d

dt
Vc(tn)

∣∣
]
,

with typical values

Ct = 0.01,

Ccfl = 0.25,

CV = 0.1.

This concludes the description of the cylindrical first-order cell-centred EUCCLHYD
numerical scheme.
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3 Modeling of laser absorption in plasma

In this section, we shall introduce the mechanisms of propagation and absorption of
laser radiation in plasma and provide a comprehensive overview of practically applied
approaches to laser plasma simulations. We do not aim to provide an exhausting theo-
retical decomposition of the subject, since our main concern is the implementation and
assessment of a numerical model. For a more extensive description of the underlying
physical processes refer to [1].

3.1 Propagation of radiation in plasma

Since our main task will eventually be modeling plasma absorption on critical surface,
as discussed for example in [14], we will first mention the underlying physical argument
for this model. The simplest approach for description of propagation of radiation in
plasma is the following.

Let us assume the radiation in question is an electromagnetic field with angular
frequency ω, satisfying the dispersion relation

ω2 = ω2
p + ‖k‖2 c2, (3.1)

where k is the wave vector, c phase speed of light and ωp is the plasma frequency
defined by the expression [2]

ωp =

√
4πe2ne
me

, (3.2)

where ne is the electron density, e is the electron charge and me electron mass. Using
(3.1) and (3.2), it is possible to show that there exists a frequency ω, for which the
electromagnetic field can no longer propagate. We shall rearrange the dispersion rela-
tion (3.1) to demonstrate this claim more clearly. We will isolate the norm of the wave
and obtain

‖k‖2 =
ω2 − ω2

p

c2
.

Thus, for a particular frequency ωcrit = ωp, the norm of the wave vector can become
equal to zero, which means no propagation.

Since we are ultimately going to simulate interaction of laser radiation with a target,
it is beneficial to express the radiation using its wavelength λ and not angular frequency
ω. Since

ω = 2πf =
2πc

λ
,

then, using (3.2) and taking into account, that ωcrit = ωp, we arrive at the equation(
2πc

λ

)2

=
4πe2ncrit

e

me

,

where ncrit
e is the critical electron density. Now we can finally write the defining ex-
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pression for critical electron density

ncrit
e =

meπc
2

e2λ2
. (3.3)

We have therefore shown that the electromagnetic field propagates only when the
electron density of the environment is lower than the critical electron density ncrit

e

defined by (3.3). Note, that we can also bind the environment’s permittivity and
frequency or electron density by the means of

ε = 1−
ω2
p

ω2
= 1− ne

ncrit
e

. (3.4)

It is also necessary to point out that the aforementioned process merely reveals
the existence of an upper limit of electron density within the material, in which the
radiation can propagate, but there is no mention of any absorption processes. For
the absorption model we will eventually employ, the exact mechanism of absorption
of radiation in the material is completely irrelevant, therefore it is also unnecessary to
delve deeper into the physical details of any underlying mechanisms. For an increased
degree of understanding concerning the physical processes involved, see [1].

3.2 Design of absorption model

Since we are discussing 2D simulations, the issue of propagation of radiation within
the plasma is extremely important and selecting an appropriate propagation model
and meticulously establishing its frame of applicability greatly influences the level of
realism offered by the numerical simulation. For simplicity, we shall assume that the
laser field is represented by an array of mutually independently propagating rays. This
assumption is valid for such an environment which does not undergo too rapid changes
over time.

There are essentially two approaches to simulating the propagation of radiation
in plasma, under the assumptions made above. The first and rather natural way is
to solve the ray equation for every ray propagating through the environment. Let us
assume that the material which we intend to irradiate is covered by a computational
mesh consisting of generally polygonal cells Ωc. The ray is entering the domain at a
certain boundary cell. At every cell edge, we solve the Snell law to determine the next
direction of propagation. Such models can also take the permitivity of the material into
account, adjusting the speed and direction of propagation even further for increased
realism. The absorption of energy carried by the individual rays is then carried out,
once the ray reflects from a particular cell. This type of model is quite aptly called ray
tracing.

A simpler version of a model using rays for the representation of laser radiation
assumes that the ray does not change its propagation direction, therefore is a straight
line across the domain. It is possible to make such a simplification in such constellation
of environment and radiation, where the direction of propagation is colinear with the
permitivity gradient of the environment [14]. We assume that this ray is propagating
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through the material, until it reaches a cell with density, that is higher than critical
density, i.e. until it reaches the critical surface. The energy carried by the ray is then
deposited in the cell that is hit by the ray. Since it would not be realistic to deposit the
entire amount of energy carried by the ray, for the reason that a certain ratio of energy
is reflected from the material, this model is accompanied by an empirical coefficient
representing the fraction of energy of the radiation, which we allow to absorb.

Our task is to implement the model of absorption on critical surface. We shall do
so in the following text.

3.3 Absorption on critical surface

As we remarked before, in this case, the laser radiation is represented by an array of
colinear rays, assuming that they propagate in the same direction across the domain.
The rays are localized at the beginning of the simulation and their position remains
the same throughout the whole simulation. The irradiated material is represented by
a disc in 2D cylindrical coordinates, while the laser radiation represented by the rays
is assumed to propagate in the negative direction of the z-axis, see Fig. 9 for details
regarding the geometry of the situation.

Figure 9: Schematic for absorption on critical surface.

The energy carried by the individual rays is determined by the intensity profile.
The main laser profile which we will use, will be the Gaussian profile in time and space

I(r,t) = Imax exp

[
−8

(r − rs)2

d2
0

]
exp

[
−4 ln 2

(t− ts)2

τ 2

]
, (3.5)

where Imax is the maximum intensity of the laser, which can be calculated from the
pulse total energy, rs is the shift in r-coordinate, ts is the shift in time, d0 is beam
diameter4 and τ is beam FWHM5 in time domain.

The ray itself is then characterized by its position on the r-axis rr, its width dr,
given by its distance from the surrounding rays and its intensity Ir calculated using

4defined by the width at 1/e2 of peak intensity
5Full width at half maximum
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the formula (3.5). When the ray hits a cell with density higher than critical density, in
other words ρc ≥ ρcrit, the energy of the ray is deposited in the cell, effectively acting
as an energy source term in the form of divergence of intensity, i.e.

∇ · I ≈ A
Vc

N∑
k=1

Ikdkrk, (3.6)

where k denotes the ray index, N is the number of rays hitting cell Ωc and A is an
additional absorption coefficient, which we employ as a macroscopic parameter, A ∈
(0,1), roughly simulating the absorption mechanism. The cell internal energy update
then, taking into account that the laser absorption takes place after the Lagrangian
step, and therefore using the internal energy values at time level tn+1, using (3.6),
yields

Ẽn+1
c = En+1

c +A∆t

Vc

N∑
k=1

Ikdkrk. (3.7)

The equation (3.7) represents the laser absorption in our particular model.
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4 CCLUS Lagrangian cell-centred code

Now we shall describe the developed code itself. We refer to the code by the acronym
CCLUS (Cell-Centred Lagrangian Unstructured Suite). It was conceived as a 2D un-
structured code for Lagrangian hydrodynamics and its development began first in [12],
with a continuation in [13]. The core feature of the code is its modularity, and its pri-
mary use is for research purposes. The sense of the mentioned modularity is mostly to
allow interchangeability of different components related to various numerical schemes
which are implemented within, to allow testing of various scheme settings, be it multi-
tudes of time step computation methods, interpolation methods, which was extensively
discussed in [13], usage of various mesh types and analysis of scheme behaviour related
to said mesh types, which was one of the instrumental tools in our article [4], where we
analysed the performance of the FLW Cartesian numerical scheme on various generally
polygonal and perturbed meshes, and the ability to conduct tests on various industry-
standard numerical problems, such as Noh implosion or Sedov explosion tests.

At the current state of implementation, the code includes both Cartesian and cylin-
drical numerical schemes. The Cartesian schemes include first- and second-order EU-
CCLHYD numerical schemes, introduced in [9] and a Lax-Wendroff type predictor-
corrector type FLW (Fridrich-Liska-Wendroff ) numerical scheme, introduced in [5].
The second-order Cartesian EUCCLHYD numerical scheme was also implemented in
the scope of this thesis. The FLW numerical scheme was additionally extended to
include new interpolation methods in the predictor [13]. The cylindrical extension of
this code was initialized with the first-order EUCCLHYD numerical scheme [7] in both
control volume and area-weighted formulations, see section 2 for its description.

The aforementioned numerical schemes present are implemented in unstructured
formulations, therefore it is necessary to provide computational meshes in correspond-
ing unstructured format. The code allows for an import of computational meshes from
file, however, the code is also equipped with an unstructured mesh generator, so there is
no dependence on an external mesh file. The integrated mesh generator allows for con-
struction of unstructured6 meshes based on logically rectangular meshes, polar meshes
etc., including certain special types of meshes, such as a Cartesian mesh with varying
spacing based on geometrical series, which are used in laser plasma absorption prob-
lems. We present examples of two meshes which can be used in simulations in Fig. 10,
namely a regular mesh consisting of hexagons Fig. 10a, a regular mesh consisting of
triangles Fig. 10b, an irregular mesh consisting of general polygons Fig. 10c and an
irregular mesh consisting of general triangles Fig. 10d.

6In terms of representation.
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(a) Hexagonal mesh (b) Triangular mesh
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(c) Polygonal mesh (d) Irregular triangular mesh

Figure 10: Examples of meshes in unstructured format usable in simulations.

The modularity also manifests itself in aspects such as ease of extension in various
ways. For example, although the code in its current state uses an equation of state for
ideal gas for thermodynamic closure of the system, it is evaluated by calling separate
routines, rather than hard coded. Therefore it is possible to merely change the function
for equation of state to incorporate a new one. This theme is maintained throughout
the whole code, so there is an opportunity for quick reformulation, should the simulated
physical model require it.

30



4.1 Practical remarks

We shall now discuss some practical aspects regarding the implementation, which we
were already foreshadowing before. During the whole process, we have established that
while certain things seem theoretically obvious and easy, it is usually extremely helpful
to properly document any difficulties encountered, so it may be at immediate disposal
for future reference.

4.1.1 Code structure

For a general overview of the basic functionality of the code, see Fig. 11 below.

Program Start

Load Input
Parameters

Create or
load mesh

Setup problem
parameters

Begin simulation

Lagrangian step

Laser absorption step

Reached final time?

Write In-
Between Results

Write Fi-
nal Results

Program End

no

yes

Figure 11: Flowchart of the CCLUS Lagrangian unstructured code.

31



4.1.2 Symmetrical boundary conditions

One of the crucial aspects of cell-centered schemes are the boundary conditions. While
it may seem rather trivial at first glance, their implementation can become difficult
in certain situations. In case of the first-order cylindrical EUCCLHYD scheme, the
boundary conditions manifest themselves during the computation of the nodal veloci-
ties as part of the nodal solver (2.28). While we have treated any imaginable boundary
condition theoretically using the expressions (2.31), (2.32) and (2.36), their compuation
in practice is not always so straightforward. Since we are now operating in the 2D cylin-
drical coordinates, the bottom boundary is located on the z-axis, where we typically
prescribe the zero normal velocity boundary condition. Similar situation takes place
on the left boundary, which is located on the r-axis. These two boundary conditions,
the bottom and left zero velocity boundary condition, can generate certain problems
in the implementation.

In certain types of problems, mesh nodes situated on both mentioned boundaries
should only move in the direction of the boundary axis, and they should never deviate
from the axes themselves. For example, if we blindly attempt to solve the linear system
(2.28) for the bottom boundary, because the radius of the boundary nodes is rp = 0, the
matrix of the system (2.28) becomes singular. Therefore the bottom boundary demands
separate treatment. Since we remarked that the nodes on the bottom boundary are
not allowed to deviate from the z-axis, we can set the r-velocity component identically
to zero, in other words

up = 0.

Thus, the nodal solver for the bottom boundary nodes assumes the form of an algebraic
equation for the z-velocity component

vp =
(Fp)z
(Mp)zz

, (4.1)

where (Fp)z is the z-component of the subzonal force (2.26) and (Mp)zz = (Mp)1,1 is
the element from the first row and first column of the nodal matrix (2.29). We stress
the fact that this replacement is a necessity in terms of successful implementation.

For the left boundary, the linear system (2.28) is solvable, unlike for the bottom
boundary. However, it is still sometimes beneficial to fix the nodes on the r-axis as
well, since it is in line with the assumptions made when simulating certain types of
problems. The treatment for this boundary is similar to (4.1), we merely switch the
components

vp = 0, up =
(Fp)r
(Mp)rr

. (4.2)

For the other boundaries, right and top, the generic formula for the nodal solver (2.28)
is perfectly applicable under all circumstances.

As a side note, the treatment of boundary conditions by the means of formulat-
ing a boundary force contribution in the form of (2.30) is not the only possible ap-
proach. There also is the possibility of constructing an array of cells located outside
the boundary, named ghost cells, outfitting them with desired parameters constituting
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the boundary conditions and then applying the formula for internal nodes (2.28) for all
nodes including the boundary nodes. This method for boundary condition treatment
is theoretically equivalent to the boundary force approach, however, once again, the
complexity in terms of implementation varies. We do not use ghost cells for boundary
condition treatment in this code.
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5 Numerical results

In this section, we will display the results obtained from simulations by our code in the
cylindrical extension. First we conduct tests on three well-known test problems, the
Sod test problem, Noh implosion problem and Sedov blast wave problem. Ultimately
we shall present the results of laser absorption on critical surface simulation. For the
aforementioned widely used test problems, we will adhere to the convention of display-
ing dimensions and field variables as dimensionless quantities. For laser absorption
problems, we will use the CGS system of units.

5.1 Spherical Sod test problem

For the testing of the first-order cylindrical schemes, we will employ the extension of the
well-known Sod shock tube test [11] into spherical geometry. This extension consists
of a spherical shock tube of unit radius, where the interface between the two states is
located at r = 0.5. The initial conditions are two states, we shall remain calling them
left for the state closer to the origin and right for the outer state. The left state is
physically a high pressure fluid defined by ρL

PL

UL

 =

1

1

0

 ,

while the right state is a low pressure fluid with the parameters ρR

PR

UR

 =

0.125

0.1

0

 .

The Poisson constant in the equation of state (2.40) for this problem is γ = 7/5.
The initial computational domain is defined in polar coordinates by (r, ϕ) = [0,1] ×[
0, π

2

]
since it is run by default on an unstructured polar mesh. The primary goal

when attempting to simulate this test is to assess symmetry preservation of the used
numerical scheme, be it control volume or area-weighted variant. The final time of the
simulation is set at tfin = 0.2. The solution is a point-symmetric shock-wave emerging
from the interface between the two states.

We present the solution for density in Figs. 12 - 16, on polar meshes of various
dimensions. As we stated above, our primary concern regarding the solution of this
problem is the assessment of the level of symmetry preservation by the numerical
scheme.

It is fairly well visible that the number of cells in the angular direction influences
symmetry preservation, while the number of cells in the radial direction is the primary
factor in terms of accuracy and convergence towards the reference solution. The refer-
ence solution used for validation in Fig. 16 was obtained by a calculation using a 1D
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spherical Lagrangian code, using a mesh constising of 10 000 cells. As far as symme-
try is concerned, it is evident, based on the solution displayed in the scatter plot in
Fig. 16b, that the control volume scheme violates symmetry, whereas the area-weighted
scheme in Fig. 16a preserves it.
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Figure 12: Density colour plot for the Spherical Sod test on polar mesh with 3x50 cells.
Computed using area-weighted and control volume schemes.
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(b) Control volume

Figure 13: Density colour plot for the Spherical Sod test on polar mesh with 9x50 cells.
Computed using area-weighted and control volume schemes.
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(a) Area-weighted (b) Control volume

Figure 14: Density colour plot for the Spherical Sod test on polar mesh with 9x100
cells. Computed using area-weighted and control volume schemes.

(a) Area-weighted (b) Control volume

Figure 15: Density colour plot for the Spherical Sod test on polar mesh with 9x200
cells. Computed using area-weighted and control volume schemes.
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Figure 16: Density scatter plots for the Spherical Sod test on polar meshes with in-
creasing number of cells in the radial direction. Computed using area-weighted and
control volume schemes.

5.2 Noh test

The Noh test problem [10] is a classical hydrodynamic test developed to verify proper
conversion of kinetic energy into internal energy, essentially validating the used La-
grangian scheme in the presence of strong shock waves. It is physically an implosion
at the origin, where the initial conditions are defined by the expression

ρ0

P0

U0

E0

 =


1.0

10−6

− Xc

‖Xc‖
P0

ρ0(γ−1)

 , (5.1)

where we set the Poisson constant to γ = 5
3
, which corresponds to monoatomic gas.

The initial computational domain is [0, 1] × [0, 1] and the final time of simulation is
tfin = 0.6. The solution of the Noh problem is an outward propagating shock wave
with constant velocity U = 1/3, where the density region inside the shock is constant
with the value ρin = 64, while density in the region outside the shock has the profile
ρout =

(
1− t

r

)2
.

We are displaying the solution for density in Figs. 17 - 27. When we examine the
solution computed using Cartesian meshes in Figs. 17 - 21, it is possible to notice
the apparent influence of whether the control volume or area-weighted variant of the
scheme is used. The trend in Fig. 19 and Fig. 21 shows that the solution obtained
by the area-weighted variant preserves symmetry much better than the conrol volume
variant, however, the plateau in the region behind the shock wave is slightly lower than
in case of the control volume scheme. The distortion in the direction of the diagonal,
most noticeable in Fig. 20, is consistent with the results obtained with the Cartesian
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variant of the first-order EUCCLHYD scheme [12].
The issue of symmetry preservation is much better shown on the results obtained

using polar meshed in Figs. 22 - 27, where the violation of symmetry by the control
volume variant is evident at first glance.

Figure 17: Density colour plot for the Noh test on Cartesian mesh with 100x100 cells.
Computed using area-weighted scheme. Whole computational mesh displayed.
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(a) Area-weighted (b) Control volume

Figure 18: Density colour plot for the Noh test on Cartesian mesh with 50x50 cells.
Detail of the region where the shock wave is located. Computed using area-weighted
and control volume schemes.
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Figure 19: Density scatter plot for Noh test on Cartesian mesh with 50x50 cells. Detail
of the region where the shock wave is located. Computed using area-weighted and
control volume schemes.
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(a) Area-weighted (b) Control volume

Figure 20: Density colour plot for the Noh test on Cartesian mesh with 100x100 cells.
Detail of the region where the shock wave is located. Computed using area-weighted
and control volume schemes.
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Figure 21: Density scatter plot for Noh test on Cartesian mesh with 50x50 cells.
Computed using area-weighted and control volume schemes.
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Figure 22: Density colour plot for the Noh test on polar mesh with 3x50 cells. Com-
puted using area-weighted and control volume schemes.
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Figure 23: Density colour plot for the Noh test on polar mesh with 3x100 cells. Com-
puted using area-weighted and control volume schemes.
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(a) Area-weighted (b) Control volume

Figure 24: Density colour plot for the Noh test on polar mesh with 3x200 cells. Com-
puted using area-weighted and control volume schemes.
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Figure 25: Density colour plot for the Noh test on polar mesh with 9x50 cells. Com-
puted using area-weighted and control volume schemes.
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(a) Area-weighted (b) Control volume

Figure 26: Density colour plot for the Noh test on polar mesh with 9x100 cells. Com-
puted using area-weighted and control volume schemes.

(a) Area-weighted (b) Control volume

Figure 27: Density colour plot for the Noh test on polar mesh with 9x200 cells. Com-
puted using area-weighted and control volume schemes.

5.3 Sedov test

The Sedov test is also a ubiquitously used hydrodynamic test, which represents an
explosion at the origin followed by a spherical shock wave propagating in the outward
direction. The initial conditions are determined by inserting the total system energy
into the cells in the epicentre. The epicentre is defined as a neighbourhood of the origin
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point U(0). Therefore, the initial conditions can be expressed mathematically as ρ0

P0

U0

 =

 1.0

10−6

0

 , Xc /∈ U(0),

 ρ0

P0

U0

 =


1.0

ρ0(γ − 1) Etot∑
c∈U Vc

0

 , Xc ∈ U(0),

(5.2)

where again we set γ = 7
5

and Etot = 0.425536. To avoid confusion, this energy value
represents total energy inserted into the 3D physical domain. However, we must not
forget, that all variables are defined per unit radian, and therefore the actual numerical
value we store in the epicentre cells is 0.425536/2π. We use the initial computational
domain of size [0.0, 1.2]× [0.0, 1.2].

The solution is an outward propagating blast wave, reaching the peak of ρ = 6
situated at R =

√
z2 + r2 = 1 at time t = 1.

The solution for the Sedov blast wave problem is displayed in Figs. 28 - 34. It is
immediately noticeable, for example in Fig. 28 or Fig. 32, that the solution obtained by
the area-weighted variant is symmetrical, whereas the solution procured by the control
volume variant is not, if we focus on the shock position in the vicinity of the z-axis.
The loss of symmetry is also quite apparent in Fig. 34a, where we display the result of
computation on 30x30 Cartesian mesh using both schemes. As we can see, the solution
obtained by the control volume scheme is significantly more dispersed than the area-
weighted solution. Furthermore, the mesh during the computation using the control
volume scheme is subject to some intense deformation. This is well distinguishable
in Fig. 29. In addition, if we examine the solution by the area-weighted scheme in
Figs. 34b - 34c, it is also possible to observe the improving shock resolution with
increasing mesh fineness.
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(a) Area-weighted (b) Control volume

Figure 28: Density colour plot for the Sedov test on Cartesian mesh with 30x30 cells.
Computed using area-weighted and control volume schemes.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

(a) Area-weighted

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

(b) Control volume

Figure 29: Density colour plot for the Sedov test on polar mesh with 3x50 cells. Com-
puted using area-weighted and control volume schemes.
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(b) Control volume

Figure 30: Density colour plot for the Sedov test on polar mesh with 6x50 cells. Com-
puted using area-weighted and control volume schemes.
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(b) Control volume

Figure 31: Density colour plot for the Sedov test on polar mesh with 9x50 cells. Com-
puted using area-weighted and control volume schemes.
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(a) Area-weighted (b) Control volume

Figure 32: Density colour plot for the Sedov test on polar mesh with 12x50 cells.
Computed using area-weighted and control volume schemes.

(a) 40x40 cells (b) 100x100 cells

Figure 33: Density colour plot for the Sedov test on Cartesian meshes computed using
the area-weighted scheme.
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(c) 100x100 cells

Figure 34: Density scatter plots for the Sedov test on Cartesian meshes computed using
the area-weighted and control volume schemes.
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5.4 Laser absorption

We simulate a very simple laser absorption problem, with parameters inspired from
the interaction of laser radiation from the third harmonic frequency of the PALS laser,
λ = 438 nm, with an Aluminium target, used as one of the basic absorption problems
in the PALE code [14]. All values concerning the laser absorption simulation will
be displayed in the CGS (centimeter-gram-second) system of units. The initial mesh
constitutes the Aluminium target with parameters in Tab. 1.

ρ [g/cm2] P [Ba] U [cm/s]

2.7 4 · 1010 0

Table 1: Table with initial parameters for every cell in the computational domain.

The pressure value P = 4 · 1010 Ba corresponds to room temperature. Assuming a
Gaussian profile (3.5), the maximum laser intensity is

Imax = 2 · 1022 erg · s−1 · cm−2,

with focal spot of the radius
r0 = 100 µm,

and FWHM of
τ = 800 ps.

The critical density corresponding to these parameters has the value

ρcrit = 0.02 g/cm2,

and we set the absorption coefficient from (3.7) as A = 0.75. Because the simulation
is extremely time-consuming, coupled with the fact that our code is working with
generally unstructured meshes, thus theoretically slower than structured codes such
as PALE [14] from the perspective of computational speed and efectiveness, we have
decided to select the final time

tfin = 400 ps,

in other words, we terminate the simulation when the laser radiation reaches peak
intensity. We are using an Aluminium foil with the dimensions 20 µm× 500 µm as
the target, which is also the initial computational domain. The laser radiation is
represented in the form of rays colinear with the z-axis, while we distribute the rays in
such manner that there are 6 rays hitting each cell on the right boundary of the target.

The computational mesh used during the simulation is a rectangular mesh of the
size 40x100 with geometric factors qz = 0.85 and qr = 1.01 and is generated using the
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formula for cell dimensions

dz =
zmax − zmin

qnz
z − 1

, (5.3)

dr =
rmax − rmin

qnr
r − 1

, (5.4)

where rmax,zmax and rmin,zmin are the maximal and minimal coordinate values respec-
tively and nz, nr represent the number of cells in respective axes. The geometric factors
specify how the cell size decreases (q < 1) or increases (q > 1) in the positive direction
of an axis. Out of many simulations, we shall display a representative set of results
below.

The results of the simulation are plotted in Figs. 35-38. In Fig. 36 we can see the
progression of the density profile in time until the simulation is terminated at 400 ps.
In Fig. 35, we can clearly see how the radiation is evaporating the material, drilling
a hole in the process. This is visualized in greater detail in Fig. 38, where we are
zooming on the area where the critical surface is localized. We can say that the result
we obtained is similar to the simulation results obtained from the PALE code [14],
however, we have to keep in mind that we terminated the simulation 400 ps earlier.

Figure 35: Logarithmic density plot for laser absorption on critical surface at stopping
time. Mesh consisting of 40x100 cells, qz = 0.85, qr = 1.01.
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(a) 50 ps (b) 100 ps

(c) 150 ps (d) 200 ps

(e) 300 ps (f) 400 ps

Figure 36: Time evolution of the plasma corona during the laser absorption on critical
surface simulation from starting time 0 ps until stopping time 400 ps. Displaying
logarithm of density.
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(a) 0 ps (b) 50 ps

(c) 150 ps (d) 200 ps

(e) 300 ps (f) 400 ps

Figure 37: Time evolution of the crater during the laser absorption on critical surface
simulation from starting time 0 ps until stopping time 400 ps. Displaying logarithm of
density.
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Figure 38: Density plot for laser absorption on critical surface at stopping time. Detail
of the region around the critical surface. Displaying logarithm of density.
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6 Conclusion and perspectives

The main objectives of this thesis were the extension of the 2D cell-centred unstructured
Lagrangian hydrodynamical code into cylindrical coordinates, as a natural continua-
tion of the research and development documented in [12] and [13] and to subsequently
devise and implement a simple model for laser absorption on critical surface. We have
selected the first-order cylindrical EUCCLHYD numerical scheme for the discretiza-
tion of the Euler equations for the implementation, in both area-weighted and control
volume variants. The scheme and its construction was described in a detailed man-
ner, to elucidate some of the complexities regarding its practical implementation. We
have also included a variety of standard numerical tests to assess the attributes of the
aforementioned numerical scheme such as symmetry preservation and robustness. The
assessment of the first-order control volume and area-weighted variants yields, that the
first-order control volume scheme displays significant loss of symmetry preservation,
whereas the area-weighted scheme preseves symmetry quite well. This is consistent
with the results in [7].

We have subsequently designed and implemented a model for laser absorption on
critical surface, intended primarily as a proof-of-concept, that the hydrodynamic code
is applicable for laser plasma simulations and can provide results similar to equivalent
settings of the PALE code [6], [14], which we are using for reference. Thus, we have
fulfilled all requirements of the assignment.

In the current state of affairs, the CCLUS code, as we have decided to call it, is
quite an extensive tool for research of Lagrangian cell-centred schemes in unstructured
formulation. It contains a variety of implemented schemes, namely the first-order
and second-order EUCCLHYD scheme in Cartesian geometry [9], a FLW predictor-
corrector [5] scheme in Cartesian geometry and most recently the aforementioned first-
order area-weighted and control volume EUCCLHYD scheme in cylindrical geometry.
As we have already mentioned in publications [4] or [13], the FLW scheme is also
outfitted with several weighting methods for use in its predictor phase for the interpo-
lation of nodal variables. In addition, the code is designed to operate with arbitrary
unstructured meshes, provided in the form of node and cell connectivity lists and node
positions.

There are countless possibilities regarding its further development. Since the code in
its current state is purely Lagrangian, probably the most natural continuation would
be its extension into the framework of ALE, incorporating rezoning and remapping
into the code. The extension into ALE would be extremely valuable, because this
methodology safeguards the simulations against significant mesh deformation, which
happens rather often in laser plasma simulations, see the results in [14] for reference.

To increase the degree of sophistication of the physical model, it would also be
beneficial to incorporate heat conductivity and additional equations of state, such as
QEOS7, into the model. However, the issue of heat conduction poses certain issues. The
code operates with meshes in unstructured format and heat conduction is manifesting
itself as an additional parabolic term in the energy equation (1.1d). The system for
heat conduction is then solved implicitly. The use of an implicit scheme for variables

7quotidian equation of state
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defined on generally unstructured meshes is problematic in practical terms, because
it results in solution of a system with a sparse matrix, which is extremely ineffective
without an appropriate robust solver.

To conclude, the CCLUS code has a lot of potential and can become a useful tool
in research of cell-centred Lagrangian schemes and simulations of physical problems
where the discretized governing equations are applicable.
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