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Abstract
Human keypoint detection is useful in var-
ious applications. Recently, a number of
solutions based on deep convolutional neu-
ral networks have appeared that recog-
nize human poses in images. Typically,
complete human bodies from different dis-
tances are detected. For human-robot
interaction, human keypoint detection is
key to guarantee safe separation distances
between the machine and the operator.
However, in such close proximity scenarios
where only parts of the human body are
visible, standard algorithms do not per-
form well. For human-robot collaboration,
robust detection of, for example, only hu-
man hands is critical. In this thesis, first,
we create and make publicly available a
close proximity dataset where only parts
of the human body are visible. Second,
we quantitatively and qualitatively com-
pare state-of-the-art human keypoint de-
tection methods (OpenPose, MMPose, Al-
phaPose, Detectron2, and MediaPipe) on
this dataset. The results show that the
best performing detector is AlphaPose for
whole-body annotation and MediaPipe for
detection of finger keypoints. Third, we
deploy the detector on a humanoid robot
iCub with an Intel RealSense RGB-D cam-
era on the head. Detected human key-
points in images are transformed to their
3D positions using depth information from
the RealSense camera. We demonstrate
the performance in a scenario where the
robot uses the detected 3D keypoints for
whole-body avoidance maneuvers.

Keywords: human keypoint detection,
human hands detection, safe
human-robot interaction, 2D to 3D
transformation

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Detekce částí lidského těla je užitečná pro
několik aplikací. V poslední době je k dis-
pozici několik řešení založených na hlubo-
kých konvolučních sítích, které rozpoznají
lidské pózy z obrázků. Typicky jsou dete-
kovány celá lidská těla v různých vzdále-
nostech. Pro interakci člověka s robotem
je detekce částí lidského těla klíčem ke ga-
ranci bezpečné vzdálenosti mezi strojem
a operátorem. Nicméně v případě blízké
vzdálenosti, kdy jsou viděny pouze části
lidského těla, standardní algoritmy nefun-
gují dostatečně správně. Pro spolupráci
člověka s robotem je robustní detekce, na-
příklad pouze rukou, zásadní. V této práci
jsme zaprvé vytvořili a zveřejnili data-
set velké blízkosti, kde se objevují pouze
části lidského těla. Zadruhé jsme kvantita-
tivně a kvalitativně porovnali nejmoder-
nější metody pro detekci částí lidského
těla (OpenPose, MMPose, AlphaPose, De-
tectron2 a MediaPipe) na tomto datasetu.
Výsledky ukazují, že nejlepším detekto-
rem pro anotaci celého těla je AlphaPose a
MediaPipe pro detekci prstů. Zatřetí jsme
implementovali detekci na humanoidním
robotu iCub s Intel RealSense RGB-D ka-
merou na hlavě. Detekované části lidského
těla v obrázcích jsou transformovány do
jejich 3D pozic za pomoci hloubkové in-
formace z RealSense kamery. Řešení jsme
demonstrovali ve scénáři, kde robot pou-
živá detekované 3D části lidského těla pro
manévry vyhýbání se celému tělu.

Klíčová slova: detekce částí lidského
těla, detekce lidských rukou, bezpečná
interakce člověka s robotem,
transformace ze 2D do 3D

Překlad názvu: Detekce částí lidského
těla z velké blízkosti
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Chapter 1

Introduction

Humanoid robots not only look similarly to humans but we also want them to perceive
like humans. Loosely speaking, people have 5 main senses—vision, hearing, touch, taste,
and smell. From the point of view of robotics, taste and smell are not beneficial for its
behavior. However, touch, hearing, and vision are useful for the desired acting of a robot.
One kind of humanoid robot with these senses is iCub [1]. Its body is covered with skin,
enabling sensing touch signals. It is also equipped with a microphone to process the sound
and cameras located in the eye positions to process images.

This thesis deals with the vision sense of iCub. Computer vision is probably the most
complex problem of all human senses. Vision provides a lot of processing, including stereo
vision, detection of objects in the observed scene, or orientation in the surroundings. We
will focus on the detection task, namely detection of human body keypoints even in close
proximity to the robot (camera). A body keypoint is a part of the body that is usually
located in the joints of the human skeleton.

The main motivation is the human-robot interaction (HRI), which is desired to be mainly
safe. This scenario includes the cooperation of humans and robots, see Figure 1.1. So the
crucial task is to know where the human is located in order not to harm the human with
robot motion or to obey the orders given by the human. It is desired to be able to do this
also with a human in close proximity to the robot and also to detect dense keypoints of
human body such as fingers or toes. The method must be primarily robust to fulfill the
Speed and separation monitoring [2] in the ISO/TS 15066 norm, which specifies the safety
requirements for collaborative robots. The close proximity assumption is taken into account
because it is the situation when the touch or harm could be possible. The dense annotation
of the human body not only detects the extending part of the human skeleton, but also
provides other information, such as gestures made by the human. Human body keypoint
detection is also useful for other robots, e.g. robotic arms, from the safety point of view to
prevent the harm.
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1. Introduction ..........................................

Root

camera

Figure 1.1: iCub humanoid robot with skin during human-robot interaction with highlighted
coordinate frames of iCub Root frame and Intel RealSense camera frame.

The goals of the thesis are detection of human body parts (keypoints), from which the
human body (skeleton) pose can be reconstructed, in the RGB images and transforming
those keypoints to 3D position in order to localize the human in the robot working space.
The following processing pipeline is visualized in Figure 1.2.

RGB

2D KEYPOINTS 

DETECTION

TRANSFORMATION

TO 3D

DEPTH

3D
SKELETON

2D 
SKELETON

Figure 1.2: Processing pipeline scheme with example inputs and output.
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.......................................... 1. Introduction

Because the task is very complex and the cameras provided by the original iCub robot
provide only low resolution, we will work with iCub equipped with an Intel RealSense
camera, see Figure 1.3, which provides both high-resolution images and depth information.
The depth information is also much more precise than the one that could be computed
from the iCub camera eyes due to mentioned lower resolution and the imperfect position of
the eyes obtained from the motor encoders in eyes.

Figure 1.3: iCub humanoid robot with Intel RealSense camera equipped.

Contribution

The main contributions of this thesis are: (i) comparison of detection of dense human
keypoints with included finger and face keypoints; (ii) created dataset with people in the
close proximity; (iii) pipeline for detection with the focus on the close proximity scenario;
(iv) solution implemented for the YARP [3] system.

Structure of the thesis

Firstly, related work will be presented in Chapter 2. Next, the materials and methods,
including datasets and evaluation methods description, will be introduced in Chapter 3
alongside with the robot setup. Experiments and their results are described in Chapter
4, with the demonstration of the solution in the HRI scenario in Section 4.5. Finally, the
conclusion and discussion of the solution are described in Chapter 5 including a possible
future work description.

3
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Chapter 2

Related Work

Recently, there are numerous different approaches to human body detection in RGB or
RGB-D images. We can divide them into 2 categories based on how the detected human
pose is represented.

Human keypoints detection
There are 2 general approaches for the detection of human body keypoints in 2D images as
a 2D human body keypoints. Bottom-up method detects the human body keypoints at
first and they are reconstructed (connected) to each human body pose (skeleton) afterwards.
The bottom-up approach is presented, e.g., in [4–7] or in specific models in the MMPose
solutions [8]. The second approach, top-down method, proceeds in the reverse order,
as they first detect people and their bounding boxes and the desired body keypoints are
detected separately in each of the detected human body bounding box. Such approach
is presented in [9–11] or in selected models in the MMPose solutions [8] as well. The
bottom-up approach is faster than the top-down method with more people appearing in
the input images, as the human keypoints are detected all at once.

For the 3D human body keypoints detection in 2D (RGB) images, Cheng et al. [12]
conclude with a solution with the focus on self-occlusion, meaning when the human body
parts occlude each other. More usual approaches for 3D human detection take into
account also the depth from the RGB-D sensors as is presented in [13–16]. Such conclusions
correspond the most with the work and the solution presented in this thesis. The approaches
in [13–15] combine a 2D human body keypoints detection in the RGB images with fitting
a 3D human body model to obtain the resulting 3D keypoints. On the other hand, [16]
concludes with a solution detecting the 2D human body keypoints and transforming them
directly to the 3D positions based on a disparity map constructed from 2 cameras.

Human 3D surface reconstruction
The human surface representation is a dense human body annotation represented as a
human body mesh. A breakthrough solution for this human body annotation is presented
in [17–19] and improved in [20]. They conclude with a 3D human body model fitting
to a detected human body in a single RGB image referenced as SMPL model [17] and
SMPL-X [20]. Additional works in [21, 22] build on top of the 3D SMPL human body
model for the human surface detection from a single RGB image. A similar work building
on top of the SMPL-X model is presented in [23,24].

5



2. Related Work..........................................
In the presented works, the SMPL model or SMPL-X are directly used in the detection

solutions. In DensePose [25] they conclude with a different approach, which does not include
the SMPL models in the solution. Nevertheless, they also build on top of these models in
the data gathering part of the training, as well as the textures provided by the work in [26].

6



Chapter 3

Materials and Methods

In this chapter we will present the materials and methods used in this thesis. First, we
will introduce and describe the existing datasets in Section 3.1 and their contribution to
this thesis, followed by the created Close Proximity Dataset in Section 3.2. The human
body keypoint detectors will be listed and specified in Section 3.3. We will also describe
the iCub robot [1] and the robot setup alongside with the transformation from the Intel
RealSense camera frame to the iCub Root frame in Section 3.4. The transformation of
detected keypoints from 2D to 3D will be presented in Section 3.5. In Section 3.6 we will
describe the evaluation processes used in the following experiments in Chapter 4.

3.1 Existing Datasets

In this section, multiple existing datasets will be introduced together with the description of
the advantages or disadvantages following from them. The focus will be on the utilization
of the datasets in the close proximity scenario for human body keypoints detection. The
keypoint annotation standards are visualized and specified in Section 3.3 in Figure 3.10.

3.1.1 COCO Dataset

One of the most well-known datasets for human keypoints detection is the COCO dataset
presented in [27]. It consists of more than 200 000 images with several features, such as
object segmentation, object detection, or people with keypoints. The crucial feature for
this thesis are the human keypoints annotations.

The original annotations with human keypoints provided with the COCO dataset have
17 keypoints per person. Such annotations do not contain finger, foot, and face keypoints.
In [28] the COCO-WholeBody annotations with finger, foot, and face keypoints are presented.
All combined together results in 133 keypoints. Especially the finger keypoints are important
in the human-robot interaction because it often contains scenarios with handing over some
things or other manipulation using fingers. Foot keypoints could be useful because they are
an extension of the body which is mandatory for human safety. On the other hand, the
face keypoints are not necessary for the safe human-robot interaction because some head
keypoints are present in the body annotations as can be seen in Figure 3.1.

7



3. Materials and Methods .....................................

(a) Visualization of COCO body and head
keypoints.

(b) Visualization of COCO-WholeBody key-
points.

Figure 3.1: Example image from COCO dataset with visualized both original COCO body
keypoints and COCO-WholeBody keypoints.

Furthermore, Figure 3.1 shows why finger keypoints are needed, as they significantly
extend the length of the arm. It is also noticeable that the COCO-WholeBody annotation
is not perfect, as the foot keypoints are not present in the provided example image.

The resulting dataset contains about 64 000 training and 2 700 validation images with
people occurring in the scene.

3.1.2 Halpe Dataset
The concurrent work of the COCO dataset with the COCO-WholeBody annotations is
the Halpe dataset [9, 29]. The Halpe dataset contains similar human keypoints to the
COCO-WholeBody annotations with slight differences. The difference is in the number of
keypoints, where the Halpe dataset has 136 keypoints per person. An additional minor
difference is in the annotation format.

The Halpe dataset has 41 000 training images with people and shares the same 2 700
validation images with the COCO dataset. An example of the validation image with
visualized keypoints is shown in Figure 3.2.

8



....................................... 3.1. Existing Datasets

Figure 3.2: Example of validation image from COCO dataset with Halpe keypoints annotation.

3.1.3 DAVIS Dataset
Another dataset has been published in [30] as the DAVIS (Densely Annotated VIdeo
Segmentation) dataset. On the contrary to the previous Halpe or COCO datasets, DAVIS
dataset consists of Full HD video sequences. This leads to the possibility of improving the
human body keypoints detection with tracking.

DAVIS dataset aims at video object segmentation. It means that the video sequences do
not contain only people, but also other objects such as animals, vehicles, or sport equipment
and activities. Thanks to the last mentioned, sport activities, there are images with people
in challenging poses, an example in Figure 3.3.

Figure 3.3: Example of video frame from DAVIS dataset “breakdance-flare” video sequence.

9



3. Materials and Methods .....................................
Unfortunately, as was stated earlier, the DAVIS dataset annotations contain exclusively

object segmentations. That is, they lack the human body pose (keypoints) annotations.
From that follows that the DAVIS dataset can not be used for the purposes of this thesis.

3.1.4 DensePose-Posetrack Dataset

The DensePose-Posetrack dataset [31] is another dataset consisting of video sequences
with multiple people. The dataset aims at pose estimation and human tracking in videos
challenges.

Such challenges are partially similar to the goals of this thesis. The difference is mainly
in the close proximity requirements for safe human-robot interaction. Annotations of the
video frames contain 17 human body keypoints per person—similarly to the COCO dataset
without the WholeBody annotation extension. The absence of finger keypoints is the main
disadvantage of the DensePose-Posetrack dataset for possible usage in our approaches and
evaluations. An example of a video frame from the dataset is shown in Figure 3.4.

Figure 3.4: Example of image from DensePose-Posetrack dataset with visualized keypoints and
head bounding boxes.

3.1.5 EPIC-KITCHENS Dataset

In [32,33] the EPIC-KITCHENS dataset was published. The dataset contains first-person
(egocentric) audio-visual recordings of common human activities in the kitchen. It is the
largest egocentric dataset with 100 hours of recordings resulting in about 20 million video
frames in Full HD quality.

The first-person view of the human body is not specifically what is desired from the dataset
simulating the human-robot interaction scenario. On the other hand, a straightforward
transformation of the video frames can be applied—rotating the image by 180 ◦ leads
to a similar view that a robot could observe. This conclusion follows directly from the
natural behavior of the human during kitchen duties—looking down on hands or kitchen
counter. Figure 3.5 shows an application of this transformation. The rotated image, Figure

10



....................................... 3.1. Existing Datasets

3.5b, simulates the situation when the robot observes the action performed by the human
interacting with it.

(a) Example of original image from EPIC-
KITCHENS dataset.

(b) Rotated example image from EPIC-
KITCHENS dataset.

Figure 3.5: Demonstration of the rotation transformation of the image.

The challenges following from the EPIC-KITCHEN dataset are mainly object detection
and action detection/recognition. Thus, the respective annotations of videos contain ground
truth for action segments along with timestamps of start and end of the action in the
corresponding video. Additional automatic annotations provide object/hand masks or
bounding boxes.

Even though the EPIC-KITCHENS dataset consists of exclusive and human-robot
interaction close views, the need of keypoints annotation is crucial for the purposes of this
thesis and that is not provided by this dataset.

Summary of Datasets

Dataset Keypoints Data type Size [frames]
COCO 17 image 200 000

COCO-WholeBody 133 image 66 700
Halpe 136 image 43 700
DAVIS — video 3 455

DensePose 17 video 50 000
EPIC-KITCHENS — video 20 000 000

Table 3.1: Summary of the properties of presented datasets.

The properties described in this section are summarized in Table 3.1. The DAVIS and the
EPIC-KITCHENS datasets contain original video sequences with people occurring, but
lack the human body keypoints annotation. The DensePose-Posetrack dataset provides
video sequences with the body keypoints but without the finger and the face keypoints
as well as the COCO dataset. The COCO dataset is extended with the wholebody
keypoints annotation thanks to the COCO-WholeBody dataset. The second dataset with
the wholebody keypoints annotation is the Halpe dataset.

11



3. Materials and Methods .....................................
3.2 Creating of Close Proximity Dataset

Only the COCO and Halpe datasets, introduced in 3.1.1 and 3.1.2, meet the requirements
in terms of dense keypoints annotations. In this section, a method for close proximity
scenario simulation will be proposed, and we will contribute with a Close Proximity Dataset
with people in close proximity with the wholebody keypoints annotation.

The idea of simulating the close proximity scenario is based on cropping the original
images from datasets. Most detectors, which will be introduced in Section 3.3, are trained
on the COCO or Halpe dataset. Based on this assumption, some of the detectors could be
biased with respect to the training parts of these datasets. Thus, our approach will take into
account only the validation part of the COCO and Halpe dataset. As was mentioned earlier,
the validation images of both datasets are shared, and therefore none of the detectors is
favored due to the training dataset it uses.

The first baseline method of simulating the close proximity focuses on the rough bounding
boxes of people occurring in the images. For each annotated person in the image the
bounding box is available. Based on this information, each person with its occurrence in
the image will be cropped out.

(a) Original image from COCO/Halpe validation dataset
with visualized bounding box.

(b) Cropped image according
to the bounding box.

Figure 3.6: Demonstration of cropping the images to simulate closer proximity.

The proposed method is visualized in Figure 3.6. Following this approach, the keypoints
annotations are also moved accordingly in order to fit the cropped image correctly.

The main disadvantage of this method is the resulting resolution downscale. The original
images often contain multiple people in the background which would lead to very low
resolution for each cropped image. An additional condition for the cropped image is to
have a number of pixels higher than 20 000.

This baseline method results in the Close Proximity Dataset containing 1624 cropped
images with the corresponding dense keypoints annotations.

12



............................... 3.2. Creating of Close Proximity Dataset

The second approach to the close proximity simulation extends the first baseline method.
The goal is to make the dataset more challenging and to crop out also the head of each
person. Finding the head is straightforward, as the head keypoints are usually provided.
The 2D position of the rest of the human body with respect to the head is determined as a
mean of the rest body keypoints present in the annotation.

(a) Original image from COCO/Halpe validation dataset
with person bounding box (red) and bounding box with-
out head (green) visualized. The head position, body
position, is visualized as a blue, red, point respectively.

(b) Cropped image according to the
bounding box without head.

Figure 3.7: Demonstration of cropping the images to simulate closer proximity with the head
cropped out.

To demonstrate the second approach, Figure 3.7 is provided. The bounding box with
head excluded is determined such that the center of body keypoints is included in the
bounding box and the head keypoint is on the boarder of the bounding box. The same
condition as in the baseline method for the number of pixels in the resulting image is taken
into account as well as correction of the keypoint positions in the annotations. Following
this extended approach leads to a Close Proximity Dataset with Excluded Head with 1608
images total, an example in Figure 3.8.

(a) Image cropped using the first baseline ap-
proach.

(b) Image cropped using the second extended
approach.

Figure 3.8: An example image from both Close Proximity Dataset (a) and Close Proximity
Dataset with Excluded Head (b) with visualized keypoints.

13



3. Materials and Methods .....................................
Both of the Close Proximity Datasets obtained from COCO/Halpe validation part using

cropping the images are available at [34] and will be used for further evaluation of 2D
human body keypoints detectors in the following part of the thesis.

3.3 Human Keypoint Detectors
There are multiple open source detectors trained for human keypoint detection. They will
be introduced and described in this section.

3.3.1 OpenPose
OpenPose [4–7] is the most well-known multi-person system to detect human body keypoints.
OpenPose is built using 3 blocks, body and foot detection, hand detection, and face detection.
The body and foot detection block is trained on COCO and MPII [35] datasets. Both
the hand and face detection blocks use the same approach for training using multiview
bootstrapping. OpenPose in its latest version also provides tracking but is limited to a
single person.

OpenPose detector is also already part of the yarpOpenPose iCub module included in
the human-sensing repository1.

3.3.2 Detectron2
More than a single detector, Detectron2 is a library available in [36]. Besides human
keypoint detection it also provides solutions to other computer vision tasks such as object
detection and segmentation.

Human body keypoint detection included in Detectron2 was trained on the original COCO
dataset. This detector outputs only the main body keypoints without hands (fingers). It
results in a crucial disadvantage for usage in our approach. Hand detection can be provided
externally with some hand speciallized detector, e.g., MediaPipe Hands in Section 3.3.5.
Another disadvantage of Detectron2 for human body keypoints detection is the lack of a
people tracking feature.

3.3.3 MMPose
Similarly to Detectron2, OpenMMLab project contains several solutions for multiple
computer vision problems. MMPose [8] is part of the OpenMMLab project with focus on
the human pose estimation.

Unlike Detectron2 keypoint detection, MMPose also contains models for the annotation
of the whole human body (including face and finger keypoints). The chosen model is firstly
trained on the original COCO dataset and then fine-tuned using the COCO-WholeBody
dataset. Furthermore, the MMPose also provides tracking of people poses in the images.

1More information available at https://github.com/robotology/human-sensing.
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3.3.4 AlphaPose

Another whole body human keypoint detector is AlphaPose [9–11]. AlphaPose provides
models trained either on the COCO-WholeBody dataset, on the Halpe dataset or the
model trained with multi-model knowledge distillation. The last mentioned model is also
recommended to use by the authors, as it is ought to be the most accurate and flexible
model. As well as MMPose, AlphaPose also contains the possibility of using the tracking of
people occurring in the input images.

3.3.5 MediaPipe

MediaPipe is an open source framework from Google introduced in [37]. Alongside with
the framework there are also solutions to multiple tasks. The main task corresponding
to this thesis is the hand keypoints detection referred to as the MediaPipe Hands and its
solution described in [38, 39]. The hand detector provides output in a similar way as in
the Halpe or COCO-WholeBody annotations. From this follows that it can be used to
obtain alternative finger keypoint detection for other listed detectors or provide the hand
detection for detectors which do not detect fingers such as Detectron2 in Section 3.3.2.

Another solution from MediaPipe can be taken into consideration and it is the Hollistic
model. This model combines pose, face, and hand keypoints detection resulting in a dense
annotation of human body with 33 body keypoints, 468 face keypoints, and 21 keypoints for
each hand. The disadvantage of this solution is that it detects only single person occurring
in the image, which is limiting for the real human-robot interaction scenarios.

Summary of Human Keypoint Detectors

Detector Keypoints Multi-person
tracking

Multi-person
detection

Training
dataset

OpenPose 135 no yes COCO + MPII
Detectron2 17 no yes COCO
MMPose 133 yes yes COCO + Halpe

AlphaPose 136 yes yes Halpe
MediaPipe Hands 21 yes yes private

MediaPipe Hollistic 543 no no private

Table 3.2: Properties of presented human keypoint detectors.

Each of the presented human keypoint detectors has different properties. These are
summarized in Table 3.2. For the purposes of this thesis, MediaPipe Hollistic solution
does not suit for the HRI scenario as it is desired to be able to detect multiple persons
occurring in the robot working space. The performance of the other detectors will be
analyzed in Sections 4.1 and 4.2. As an example, we provide detection by AlphaPose,
OpenPose, MMPose, and Detectron2 with MediaPipe for the hand detection in Figure 3.9.
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(a) AlphaPose visualized output. (b) OpenPose visualized output.

(c) MMPose visualized output. (d) Detectron2 and MediaPipe hand detection
visualized output.

Figure 3.9: Human keypoint detectors output on an example image from the Close Proximity
Dataset with Excluded Head.

The human body keypoints are defined and visualized in Figure 3.10. The hand keypoints
in Figure 3.10c are detected by all detectors in this format for both hands, with the
exception of Detectron2, which does not detect hand keypoints at all. As for the face
keypoints in Figure 3.10d, this format is standardized for all detectors as well. Only the
MediaPipe Hollistic model has even more dense face keypoints with a total of 468. The
detectors outputs different formats for the body keypoints. OpenPose detects 25 body
keypoints as visualized in Figure 3.10b excluding the keypoint annotated as 17 on the top
of the human head. MMPose provides output in the format visualized in Figure 3.10a with
foot keypoints from Figure 3.10b (labeled 20-25) in addition. AlphaPose detector uses the
BODY26 keypoints standard, Figure 3.10b.
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(a) Visualization of BODY17 keypoints stan-
dard.

(b) Visualization of BODY26 keypoints stan-
dard

(c) Hand keypoints standard. (d) Face keypoints standard with 68 keypoints.

Figure 3.10: Overview of the wholebody keypoints standards.2

3.4 Robot with camera setup
This thesis focuses on the real usage on the iCub humanoid robot [1] with the Intel RealSense
D435 camera equipped. RealSense camera provides additional depth information, which
is needed for correct 3D coordinates of the detected keypoints. Moreover, the iCub robot
is controlled in its base coordinate system named Root. Besides transformation the 2D
human keypoints to 3D RealSense coordinate system, additional 3D → 3D transformation
from the camera coordinate system to the iCub Root coordinate system is necessary. A
schematic visualization of the iCub coordinate systems with the additional Intel RealSense
camera frame is provided in Figure 3.11.

2Image 3.10a taken from [28]. Images 3.10b, 3.10c, and 3.10d taken from https://github.com/
Fang-Haoshu/Halpe-FullBody.
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Intel RealSense

iCub head

iCub Root

Figure 3.11: iCub humanoid robot coordinate frames with highlighted coordinate frames of
iCub Root and head frames and Intel RealSense camera frame.

This transformation implies a calibration of the RealSense camera position with respect
to the iCub Root coordinate system. Because the camera position is not fixed with respect
to the Root coordinate system, it is solved by calibration of the RealSense camera with
respect to some fixed coordinate system, in our case it is the coordinate system of the iCub
head. This can be done using the realsense-holder-calibration iCub module3.

After obtaining the RealSense camera position in the iCub head coordinate system, it
is possible to compute the transformation from the iCub head coordinate system to the
iCub Root coordinate system using forward kinematics. The final transformation is then
computed as

Troot
cam = Troot

head · Thead
cam , (3.1)

where Troot
cam is the resulting transformation from the camera frame to the iCub Root frame,

Troot
head is the transformation from the iCub head frame to the iCub Root frame obtained with

forward kinematics and Thead
cam is the transformation from the RealSense camera frame to the

iCub head frame obtained from the calibration process of the camera. Subsequently, this

3Code publicly available at https://github.com/robotology/realsense-holder-calibration.
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final transformation can be used to transform the 3D position from the camera coordinate
system to the iCub Root coordinate system.

3.5 Transformation of 2D Keypoints to 3D Keypoints
Human body keypoints are detected in 2D images as 2D positions in the image plane.
In order to determine the 3D positions of detected keypoints, we will take into account
intrinsic parameters of the camera, such as focal length or principal point position. This
transformation is described using the following equation.

k

u
v
1

 =

fx 0 cx

0 fy cy

0 0 1


x

y
z

 (3.2)

The focal lengths fx, fy and the coordinates of the principal point cx, cy in Equation 3.2
are the intrinsic parameters of the used camera. 2D position corresponds to the u and v
coordinates, and the 3D position is determined as the x, y and z coordinates. The last
parameter in Equation 3.2 is the parameter k, which describes the depth of the (u, v) 2D
point. From this equation, we can derive formulas for computing the 3D position.

x = k (u − cx)
fx

(3.3)

y = k (v − cy)
fy

(3.4)

z = k (3.5)

The depth k in Equations 3.3, 3.4 and 3.5 is obtained from the used RealSense camera.
Following these equations we can compute 3D position of a single pixel (keypoint) in the
image.

For better performance of extracting the 3D position, we use a neighborhood of keypoints
detected in 2D to compute the final 3D position. The size of the neighborhood is determined
dynamically based on the depth of the keypoint and the type of the keypoint. For the body
keypoints, e.g. shoulders, elbows or wrists, the neighborhood is chosen with a radius of 2
cm around the keypoint in the 3D coordinate system. Smaller keypoints, such as finger
keypoints, have a neighborhood with radius 3 mm. To compute the radius in the 2D pixel
coordinates in the image, we derive the expression from Equations 3.3 and 3.4.

x1 = k (u1 − cx)
fx

x2 = k (u2 − cx)
fx

x1 − x2 = k (u1 − cx)
fx

− k (u2 − cx)
fx
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(x1 − x2)fx = k (u1 − cx) − k (u2 − cx)

fx

k
(x1 − x2) = u1 − cx − u2 + cx

fx

k
(x1 − x2) = u1 − u2 (3.6)

The expression (x1 − x2) corresponds to the desired distance in 3D and the expression
(u1 − u2) is the resulting distance in the 2D image plane on the x-axis. Using the same
approach, we can derive Equation 3.7 for the size of the neighborhood on the y-axis in the
image plane.

fy

k
(y1 − y2) = v1 − v2 (3.7)

The pixels in the derived neighborhood are then transformed to the 3D positions in the
camera frame using Equations 3.3, 3.4, 3.5. The final 3D position in the camera frame
of the detected 2D keypoint is computed from all the 3D positions of the keypoint in its
neighborhood. We propose 2 methods: (i) computing the mean of 3D positions in the
neighborhood, and (ii) computing the median of 3D positions from the neighborhood.

Following the described approach, we obtain the 3D position of the detected keypoint in
the camera coordinate system. The final step is to compute the 3D position in the Root
coordinate system of the iCub robot using the transformation from Equation 3.1.

3.6 Evaluation methods
In this section, we will introduce multiple evaluation methods for both 2D keypoint detection
and 3D position estimation.

3.6.1 Object Keypoint Similarity
Object Keypoint Similarity (OKS) [40] is a method for evaluating the 2D keypoints detection.
It is a similar metric to an Intersection over Union (IoU) used for object detection evaluation.
After computing OKS, we can define Average Precision (AP) and Average Recall (AR) in
the same manner as for IoU. Object Keypoint Similarity is a commonly used evaluation
metric in the COCO keypoint detection challenge.

OKS are computed from the detected keypoints and from the ground truth annotations
as follows

OKS =

∑
i exp

(
−d2

i

2s2k2
i

)
δ(vi > 0)∑

i δ(vi > 0) , (3.8)

where di is the distance between the detected keypoint and its corresponding ground truth
position, s is an object (person) scale and ki is a keypoint constant to control the falloff. δ
function is defined as

δ(vi > 0) =
{

1, if vi > 0 is true
0 otherwise,

(3.9)
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where vi is the so-called visibility flag of the keypoint which is > 0 if the keypoint occurs in
the image, otherwise it is equal to 0. All values correspond to the keypoint with index i
and are summed over all ground truth annotated keypoints.

For computing the AP and AR we need to define true/false positive and true/false
negative detections. We will use the same metric as in the COCO keypoints challenge.
They define thresholds to consider the detection to be true/false positive (or true/false
negative). If the computed OKS is greater than a threshold, it is considered as a true
positive detection; otherwise it is considered as a false positive.

When we have obtained the number of true/false positives and negatives, we can compute
average precision and average recall from Equations 3.10 and 3.11, where TP is the number
of true positives, FP is the number of false positives and FN is the number of false negatives.

Precision = TP
TP + FP (3.10)

Recall = TP
TP + FN (3.11)

We used the same OKS thresholds as in the COCO challenge which are: 0.5, 0.75 and
averaging the precision and recall over thresholds from the interval from 0.5 to 0.95 with a
step value 0.05. This means that we sample the interval with the mentioned step value
and compute precision and recall for all these threshold values and the resulting average
precision (AP) and average recall (AR) over this interval of thresholds are the mean of
computed precisions and recalls.

3.6.2 3D Positions Evaluation
In the ideal scenario, we would like to evaluate our estimated 3D positions by comparing
with the actual positions. Determining the ground truth 3D positions of the human
keypoints with respect to the robot Root frame is a problem due to an unknown exact
position of the Root coordinate frame, meaning that we do not know how to measure the
human position with respect to the Root frame, and problematic measuring of the position
with respect to the roughly estimated Root frame. We propose 2 experiments to solve these
issues.

Relative Position Evaluation

The first experiment for 3D positions evaluation assumes a static human pose with respect
to the Root frame. During this procedure, the robot will observe the human pose from
different positions but with the static Root frame. Specifically, the robot will move with its
torso and head parts in order to observe the human keypoints positions from 100 predefined
positions. The example of images recorded with the Intel RealSense camera is provided
in Figure 3.12. The desired output is ought to output the same 3D positions of detected
human body keypoints for all of the robot poses.
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(a) Example input image from one of the pre-
defined robot positions.

(b) Example input image from another of the
predefined robot positions.

Figure 3.12: Example input images recorded with Intel RealSense camera during experiment
for the relative position evaluation.

The detected 2D positions of the keypoints are transformed to the Intel RealSense camera
frame using the method described in Section 3.5 using both mean and median approach.
These 3D positions are transformed to the robot Root frame as described in Section 3.4.
The resulting 3D positions of the human body keypoints correspond to the static iCub
Root coordinate frame.

This approach is able to overcome the lack of ground truth 3D positions and results can
be evaluated relatively thanks to static position of observed human. It is highly inspired by
camera calibration processes where the approach is similar.

Absolute Position Evaluation

The second experiment aims at the comparison of the 3D positions with respect to the
reference frame, located in a different position than the robot coordinate system, and
the estimated 3D positions provided by our pipeline with 2D keypoints detection and
transformation to the 3D positions in the camera frame. As was mentioned earlier, we
do not have the ground truth 3D position of human keypoints. In fact, we can obtain
their estimation using the Qualisys Motion Capture (MoCap) System, where the crucial
keypoints can be marked with special marker points which are then located using the
system. The specifications of the Qualisys MoCap System are 8× Miqus M3 cameras with
2 MP (1824×1088), 340 Hz in full resolution (0.5 MP, 650 Hz in the reduced resolution)
with 1× Miqus Video camera, 2 MP (1920×1080), 85 Hz in full resolution (1 MP, 180 Hz
in the reduced resolution).

Thanks to the MoCap system, the observed human can move during the experiment.
This results in the ability to compare the detected 3D positions of human body keypoints
with its estimated ground truth positions. Such an approach yields another problem, which
is obtaining the transformation from the Intel RealSense to the reference frame of the
Qualisys MoCap system. The absolute position evaluation experiment is visualized in
Figure 3.13 alongside with the transformation we seek.
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desired transformation 
Tcamref

RealSense 
coordinate frame

Qualisys 
coordinate frame

x

x

y
y

z

z

Figure 3.13: Demonstration of the absolute position evaluation experiment with the Intel
RealSense coordinate frame, Qualisys reference coordinate frame and desired transformation
Tref

cam.

For determining the transformation from the Intel RealSense camera to the reference
frame of Qualisys we used an algebraic approach using the Singular Value Decomposition
(SVD) for estimating the rotation part of the transformation [41]. Let us assume we have N
points in both coordinate frames (camera frame and reference frame of Qualisys) with their
correspondences. The points in the Intel RealSense camera frame were manually annotated
in the 2D image to precisely determine the positions of the marked points and transformed
to the 3D camera frame using the method described in Section 3.5. We organize those
points into two matrices

A =


x1A y1A z1A

x2A y2A z2A

...
...

...
xNA

yNA
zNA



B =


x1B y1B z1B

x2B y2B z2B

...
...

...
xNB

yNB
zNB


where xiA , yiA , ziA are the xyz coordinates in the first (Intel RealSense camera) coordinate
system of the i-th point. The corresponding point in the second (Qualisys reference)
coordinate system is as well on the i-th row of the B matrix.

The next step is to compute centroids of both sets of points which is a mean of all
columns in the corresponding matrix. When we subtract the centroid from all rows of the
matrix we end up with a set of points with centroid located in the origin (zero) position.
We will denote this matrix Ac, Bc respectively.

Now we can compute the covariance matrix H of both sets of points, Equation 3.12, and
find the SVD factorization, Equation 3.13.
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H = AT

c Bc (3.12)

USVT = H (3.13)

The final rotation part of the wanted transformation from the camera frame to the
MoCap reference frame is computed from the orthogonal matrices of the SVD factorization
in Equation 3.14.

R = VUT (3.14)

Finding the translation part of the transformation is straightforward. This method is
described in Equation 3.15, where cA, cB, are the centroids of the set A and B, respectively.

t = −RcA + cB (3.15)

The transformation Tref
cam from the camera frame to the reference frame of the Qualisys

Motion Caption System is standardly constructed as follows

Tref
cam =

[
R t
0 1

]
. (3.16)

Thanks to this transformation Tref
cam we are able to determine the 3D positions of the

detected keypoints and compare them with the 3D positions tracked with the Qualisys
Motion Capture system. For further evaluation we will use the Mean Absolute Error (MAE),
Equation 3.17, in each of the axis during the time of motion to determine the precision of
2D human body keypoints detections combined with transformation to the 3D positions.

The formula for Mean Absolute Error is as follows

MAE =
∑n

i=1 |xi − x̂i|
n

, (3.17)

where xi is the coordinate of the detected and transformed 3D keypoint and x̂i is the
ground truth coordinate estimated by the Qualisys Motion Capture system.
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Chapter 4

Experiments and Results

This chapter contains the description of the performed experiments and the results. All the
human body keypoints detectors introduced in Section 3.3 are analyzed and evaluated on the
Close Proximity Datasets in Section 4.1. The best performing detectors are also analyzed
in the real scenarios of human-robot interaction (HRI) in Section 4.2. The experiments
and results of the 3D positions of human body keypoints are presented in Sections 4.3 and
4.4. In the last Section 4.5 we will introduce a demonstration of the proposed method in a
human-robot interaction scenario.

4.1 Evaluation of Detectors on the Close Proximity Datasets
Both the Close Proximity Dataset and the Close Proximity Dataset with Excluded Head,
Section 3.2, will be annotated using all detectors described in Section 3.3. An example of
input images from the evaluated datasets is provided in Figure 4.1. These annotations will
be evaluated using Average Precision (AP) and Average Recall (AR) metric using Object
Keypoint Similarity (OKS) presented in Section 3.6.1. The AP and AR will be listed for 4
different parts of the human body—Body, Foot, Hand and Wholebody.

(a) Example image from Close Proximity
Dataset.

(b) Example image from Close Proximity
Dataset with Excluded Head.

Figure 4.1: Example images from both Close Proximity Dataset (a) and Close Proximity
Dataset with Excluded Head (b) with visualized ground truth annotation of human keypoints.
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Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.683 0.875 0.778 0.756 0.927 0.830
Foot 0.506 0.612 0.523 0.762 0.858 0.783
Hand 0.108 0.301 0.054 0.224 0.498 0.169

Wholebody 0.296 0.779 0.419 0.508 0.839 0.531

Table 4.1: AlphaPose evaluated on the Close Proximity Dataset.

Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.593 0.779 0.628 0.707 0.874 0.739
Foot 0.550 0.629 0.560 0.791 0.863 0.802
Hand 0.118 0.287 0.082 0.244 0.464 0.223

Wholebody 0.264 0.589 0.206 0.423 0.730 0.397

Table 4.2: AlphaPose evaluated on the Close Proximity Dataset with Excluded Head.

Tables 4.1 and 4.2 show the resulting AP and AR on both Close Proximity Datasets for
AlphaPose detector. Body part includes the main skeleton joints such as shoulders, elbows
or wrists, and the head keypoints such as nose or ears. Foot part has only 6 keypoints
in total, 3 per foot. Finger keypoints are included in the Hand body part and all these
keypoints are taken into account in the Wholebody part. Face keypoints which are also
detected by AlphaPose were not mentioned as they are not significant for the purposes of
this thesis.

Average Precision (AP) @0.5:0.95 means an average precision over OKS with thresholds
set from the interval from 0.5 to 0.95 with step value 0.05 and, for example, AR @0.5 stands
for average recall using OKS with threshold set to 0.5, as previously described in Section
3.6.1. The most important body parts for us are the Body and Hand parts, as they will be
the most common in human-robot interaction scenarios.

Table 4.2 shows that the Close Proximity Dataset with Excluded Head is harder to
annotate because the AP (AR) is lower for the body part. On the other hand, the detection
of finger keypoints is similar for both datasets.

Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.291 0.508 0.289 0.579 0.849 0.631
Foot 0.129 0.172 0.129 0.591 0.696 0.594
Hand 0.077 0.167 0.064 0.314 0.524 0.328

Wholebody 0.142 0.316 0.126 0.391 0.667 0.422

Table 4.3: OpenPose evaluated on the Close Proximity Dataset.
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Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.235 0.391 0.222 0.496 0.668 0.497
Foot 0.143 0.189 0.143 0.560 0.650 0.565
Hand 0.089 0.168 0.082 0.321 0.476 0.331

Wholebody 0.134 0.263 0.124 0.360 0.548 0.380

Table 4.4: OpenPose evaluated on the Close Proximity Dataset with Excluded Head.

OpenPose results are summarized in Tables 4.3 and 4.4. In comparison with the AlphaPose
detector (4.1, 4.2), the OpenPose detection algorithm is outperformed in all the body parts.

Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.711 0.846 0.782 0.851 0.967 0.906
Foot 0.440 0.525 0.458 0.793 0.879 0.821
Hand 0.138 0.427 0.042 0.302 0.695 0.226

Wholebody 0.352 0.718 0.274 0.533 0.869 0.526

Table 4.5: MMPose evaluated on the Close Proximity Dataset.

Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.653 0.804 0.690 0.815 0.940 0.844
Foot 0.421 0.490 0.434 0.801 0.865 0.817
Hand 0.249 0.526 0.208 0.430 0.756 0.435

Wholebody 0.387 0.684 0.380 0.563 0.847 0.589

Table 4.6: MMPose evaluated on the Close Proximity Dataset with Excluded Head.

MMPose wholebody keypoint detector provides results competitive with the AlphaPose
detector. The AP and AR are summarized in Tables 4.5 and 4.6. The average precisions
of Body part and the Hand part are higher in comparison with AlphaPose detection and
these parts are the most important for us. Especially the difference in the hand keypoints
detection is a valuable advantage.

Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.671 0.858 0.734 0.765 0.930 0.816
Hand 0.118 0.307 0.082 0.243 0.505 0.217

Table 4.7: Detectron2 in combination with MediaPipe hand detector evaluated on the Close
Proximity Dataset.
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Body
parts

Average Precision Average Recall
@0.5:0.95 @0.5 @0.75 @0.5:0.95 @0.5 @0.75

Body 0.572 0.783 0.601 0.696 0.888 0.726
Hand 0.113 0.259 0.093 0.268 0.481 0.257

Table 4.8: Detectron2 in combination with MediaPipe hand detector evaluated on the Close
Proximity Dataset with Excluded Head.

The last evaluation on the Close Proximity Datasets is done on 2 detectors simultane-
ously. For the Body part detection the Detectron2 human body keypoint detector is used.
Detectron2 is combined with MediaPipe hand detection, which provides annotations for
the Hand part. The Foot keypoints are not present in neither Detectron2 or MediaPipe
detection and therefore are not evaluated. In addition, the evaluation of Wholebody would
be biased due to the lack of Foot key points.

Resulting AP and AR are listed in Tables 4.7 and 4.8. Both body parts provide similar
results when compared with AlphaPose or MMPose wholebody keypoint detection.

(a) Annotation from AlphaPose wholebody
keypoint detector.

(b) Annotations estimated with OpenPose key-
point detector.

(c) MMPose wholebody annotations. (d) Annotations of body keypoints by Detec-
tron2 and hand keypoints detected with Me-
diaPipe hand detector.

Figure 4.2: Visualized human body keypoint annotations on an example image from Close
Proximity Dataset with Excluded Head.
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We also provide example annotations from the detectors on an example image from the
Close Proximity Dataset with Excluded Head in Figure 4.2. The original image with the
ground truth annotation is shown in Figure 3.8b.

From Figure 4.2, it is visible that OpenPose is outperformed by other detectors not only
statistically, as the hip keypoints are detected on the abdomen in Figure 4.2b. The hip
keypoints are detected by AlphaPose in Figure 4.2a and by MMPose 4.2c.

Summary

The AlphaPose and MMPose are considered to be the best performing detectors. MediaPipe
hand detector also provides correct annotations for finger keypoints. Detectron2 performs
well too, but there is the disadvantage of missing finger, foot, and face annotations, and
thus we can choose the AlphaPose or MMPose with similar results but also with finger,
face, and foot keypoints included.

(a) Average Precision of the detectors on the
Body part.

(b) Average Recall of the detectors on the
Body part.

Figure 4.3: Graphical visualization of the results of all detectors for the Body part on the Close
Proximity Dataset.

(a) Average Precision of the detectors on the
Body part.

(b) Average Recall of the detectors on the
Body part.

Figure 4.4: Graphical visualization of the results of all detectors for the Body part on the Close
Proximity Dataset with Excluded Head.

29



4. Experiments and Results.....................................
Additionally, we provide a graphical comparison of the detectors with the Average

Precisions and Recalls from the tables in this section in Figures 4.3, 4.4, 4.5 and 4.6.

As we mentioned earlier, all the detectors outperform the OpenPose human keypoints
detection significantly in the Body keypoints part on both of the created Close Proximity
Datasets. The difference is visible in the example annotation Figure 4.2 and in Figures 4.3
and 4.4 in the comparison with other detectors.

(a) Average Precision of the detectors on the
Hand part.

(b) Average Recall of the detectors on the
Hand part.

Figure 4.5: Graphical visualization of the results of all detectors for the Hand part on the Close
Proximity Dataset.

(a) Average Precision of the detectors on the
Hand part.

(b) Average Recall of the detectors on the
Hand part.

Figure 4.6: Graphical visualization of the results of all detectors for the Hand part on the Close
Proximity Dataset with Excluded Head.

Finally, we provide a Precision-Recall graphs for both Body and Hand parts in Figure
4.7—the AP and AR correspond to the threshold interval from 0.5 to 0.95 with a step value
0.05. The hand keypoints detection, Figures 4.5, 4.6, 4.7b, is a crucial problem for all of
the detectors due to the task complexity and also due to the resolution reduction in the
datasets images. Neither of the detectors performs well enough to pick the best one for the
hand detection. We will focus on this problem in the following section with analysis on the
real data.
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(a) (b)

Figure 4.7: Precision-Recall graphs for both Body and Hand parts with AP and AR @0.5:0.95.
Colors correspond to the detector; × marker stands for the Close Proximity Dataset;  marker
stands for the Close Proximity Dataset with Excluded Head.

4.2 Analysis of Detectors on Real Data
Based on the results from the previous Section 4.1, we implemented the 2D detection of
human body keypoints in the YARP (Yet Another Robot Platform) [3] system running on
the real iCub robot. We took into account AlphaPose and MMPose wholebody detection in
combination with MediaPipe hand detector, as they provided the best results on the Close
Proximity Datasets in the wholebody keypoints annotation, and hand keypoints annotation,
respectively.

Because of complicated and time inefficient manual annotating of real images recorded
on the Intel RealSense camera on the iCub robot, we analyzed the data by observation of
detected human body keypoints qualitatively only. We focus on the correct detection of
keypoints alongside with robustness of the annotation and also speed of the detection.

(a) Human body keypoints detected with Al-
phaPose detector.

(b) Human body keypoints detected using
MMPose detector.

Figure 4.8: An example real data image with detection of human keypoints using both AlphaPose
and MMPose.
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Figure 4.8 shows the different detections by AlphaPose (4.8a) and MMPose (4.8b). We can

notice the difference mainly in the finger keypoints, where AlphaPose detects them smoothly
and more precisely than MMPose. MMPose detection on fingers provides keypoints in an
unnatural manner, as the fingers look like they were broken and often even outside the
correct position of the finger. It would cause problems in 3D position computation due to
incorrect depth information for such keypoints.

Another issue with MMPose detection is that it provides more false positive detections
when only a part of the human body is visible. This is demonstrated in Figure 4.9.
AlphaPose detection, Figure 4.9a, detects precisely the visible human keypoints but MMPose
additionaly outputs false positive detection of foot keypoints, which are detected on the
hands and annotated with red circle points (keypoints) in Figure 4.9b.

(a) Human body keypoints detected with Al-
phaPose detector.

(b) Human body keypoints detected using
MMPose detector.

Figure 4.9: Demonstration of false positive detection (red circled keypoints) with MMPose
human body keypoints detector.

We also simulated a scenario where human hands are partially occluded by iCub robot
parts. It is important that the detectors do not detect iCub as a human, as it would lead
to incorrect behavior in future usage, e.g. avoiding the human during motion. The image
example alongside the detections is visualized in Figure 4.10.

(a) Human body keypoints detected with Al-
phaPose detector.

(b) Human body keypoints detected using
MMPose detector.

Figure 4.10: Scenario with covering the human body parts with iCubs hands.
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As can be seen in Figure 4.10, both detections by AlphaPose and MMPose do not consider
iCub hands as a human body, which is mandatory for later usage. The detection itself is
pretty similar by both as the finger keypoints which are barely visible are not detected
precisely by neither of the detectors.

Detector Speed [fps]
AlphaPose 15
MediaPipe 15
MMPose 7-8

Table 4.9: Speed of AlphaPose, MediaPipe and MMPose keypoint detectors in fps. Measured
on PC with Intel Xeon W-2295 CPU (36 × 3.0 GHz) and NVIDIA Quadro RTX 5000 GPU
(16GB GDDR6).

Another difference between the chosen detectors is in the time of detection. AlphaPose
and MediaPipe hand detection are able to run at approximately 15 fps. On the contrary,
MMPose detection is almost 2 times slower and runs only at about 7-8 fps. The time
requirements are measured on the PC with Intel Xeon W-2295 CPU (36 × 3.0 GHz) and
NVIDIA Quadro RTX 5000 GPU (16GB GDDR6) and are listed in Table 4.9. The speed
factor is also important for real usage because we want to know the position of a human as
often as possible in order to prevent any harm which could be caused to a human.

Based on the mentioned advantages and disadvantages of chosen detectors we propose a
method that takes into account both AlphaPose and MediaPipe detectors as their speed
of detection are almost similar and MMPose detection does not provide any significant
improvement and is slower. Our approach will detect the human body in the input image
using AlphaPose detector in combination with the MediaPipe hand detection, see Figure
4.11 with the pipeline visualization. MediaPipe is able to detect finger keypoints precisely
even in challenging poses, but does not detect fingers when only part of the hand (fingers)
is visible. On the other hand, AlphaPose is able to detect such partially observable fingers
thanks to the additional information of the wrist and other hand keypoints. The conclusion
is that when MediaPipe detects finger keypoints, we will consider them preferably and
replace them in the whole body detection provided by AlphaPose.

RGB
DETECTED 

2D KEYPOINTS

AlphaPose

D
ET
EC
TI
O
N

MediaPipe

YES

NO

Figure 4.11: Human keypoints detection pipeline used for the 2D human keypoints detection
in RGB images.
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4.3 Relative Evaluation of the 3D Human Pose

According to Section 3.6.2 the evaluation of relative human body keypoints position has
been done. In this experiment, the observed human body is static and the iCub robot
observes the participant from 100 predefined positions. The goal of this evaluation is
to determine which of the 2D to 3D transformation methods introduced in Section 3.5
provides more robust and accurate resulting 3D positions. The difference is in the method
of processing the neighborhood of detected keypoint, namely the median or mean approach.

The first measurement was done on a participant sitting in front of the robot. The
position of Intel RealSense was adjusted to 2 different positions with different field of view.
The first position of the RealSense camera was heading directly forward with no tilt which
results in observing mainly the upper body of the participant.

Figure 4.12: Example image during experiment with detected human body keypoints and
RealSense position adjusted with no tilt.

We provide an example image in Figure 4.12 where the detection is performed as was
proposed in Section 4.2 using AlphaPose wholebody keypoints detection in combination with
MediaPipe hand detection. The keypoints detected in a 2D input image are transformed to
3D coordinates in the iCub Root frame following the process specified in Sections 3.4 and
3.5. For the 2D keypoint we also transform the neighborhood pixels and the resulting 3D
position is computed either as a mean of the neighborhood points or as a median of these
points.
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(a) 3D positions of selected keypoints com-
puted using the mean method with the aver-
age human skeleton.

(b) 3D positions of selected keypoints com-
puted using the median method with the av-
erage human skeleton.

Figure 4.13: Visualization of the 3D positions of detected keypoints and the human skeleton.

We processed the keypoints using both methods (mean and median) and visualized them
in 3D space. Figure 4.13 shows the difference of 3D positions, where in Figure 4.13b the
positions are more stable than in Figure 4.13a. The most visible discrepancy is in the
positions of the left wrist keypoint. The detected human skeleton is an average over all
skeletons detected in the 100 poses of the robot. We also provide a visualization of all the
skeletons in Figure 4.14.

(a) 3D skeletons constructed from the key-
points using mean method.

(b) 3D skeletons constructed from the key-
points using median method.

Figure 4.14: Visualization of the 3D position of the human skeletons during the experiment.

There is a significant difference between the constructed skeletons as for the mean
approach, Figure 4.14a, there are many wrong 3D keypoints positions in the hands area.
The median approach, Figure 4.14b, provides more accurate and robust skeletons throughout
the experiment. The important note is that the 2D detections in the images are the same
for both used methods, and the differences are results of the different approaches only.
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We also computed the standard deviation of distances from the average skeleton of the

selected keypoints. These are listed in Table 4.10 in centimeters.

Approach LWrist RWrist LElbow RElbow LShoulder RShoulder
Median 0.8 0.9 1.1 0.9 0.8 1.1
Mean 2.1 0.9 1.1 1.3 0.8 1.2

Table 4.10: Standard deviations of distances from the mean human pose for both median and
mean approaches. The deviation is in centimeters.

The resulting standard deviations correspond to the results of the observation of Figures
4.13 and 4.14. The biggest difference is again in the left wrist keypoint as the standard devi-
ation is significantly higher for the mean method. The absolute values of the keypoints are
appropriate to the rough estimation of the manually measured distances of the participant.

A similar human position was evaluated with tilting the Intel RealSense camera down.
Due to tilt, the field of view focuses on the core and lower part of the human body, as shown
in the example in Figure 4.15. We provide the same visualizations for this experiment
setup, as well as the standard deviation statistics.

Figure 4.15: Example image during experiment with detected human body keypoints and
RealSense position adjusted with tilt.
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(a) 3D positions of selected keypoints com-
puted using the mean method with the aver-
age human skeleton.

(b) 3D positions of selected keypoints com-
puted using the median method with the av-
erage human skeleton.

Figure 4.16: Visualization of the 3D positions of detected keypoints and the human skeleton
with tilted RealSense camera.

(a) 3D skeletons constructed from the key-
points using mean method.

(b) 3D skeletons constructed from the key-
points using median method.

Figure 4.17: Visualization of the 3D position of the human skeletons during the experiment
with tilted RealSense camera.

Approach LWrist RWrist LElbow RElbow LShoulder RShoulder
Median 1.4 0.6 1.0 1.3 1.5 1.0
Mean 2.0 0.6 1.5 1.6 1.5 1.0

Table 4.11: Standard deviations of distances from the mean human pose for both median and
mean approaches. The deviation is in centimeters.

The left shoulder keypoint is affected by the problematic 2D detection because the
shoulders often are not visible and the estimations vary significantly. Also, the right elbow
was affected by a less stable 2D keypoint detection in this setup. On the visualizations
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4. Experiments and Results.....................................
in Figures 4.16 and 4.17 the difference in both methods is visible, resulting in a similar
conclusion as in the previous setup, where the median approach is more robust and provides
more accurate 3D positions. The standard deviations are lower for the median approach
and are listed in Table 4.11.

Summary
Resulting 3D positions of the detected human body keypoints are more accurate and
robust using the median approach for computing 3D position from the detected keypoint
neighborhood described in Section 3.5. Exact 3D positions also depend on the point of
view of the camera, as the depth may vary due to different shape and size of each human
body keypoint.

4.4 Absolute Evaluation of the 3D Human Pose
We prepared an experiment to compare the estimated (detected) 3D positions of keypoints
to their ground truth positions obtained by Qualisys MoCap system as was stated in Section
3.6.2. Specifically, we marked the human body with 12 reflective markers on 6 keypoints,
namely both shoulders, elbows and wrists, see Figure 4.18 for the demonstration. Each
keypoint was marked with 2 markers to ensure its visibility by the MoCap system as well
as more precise ground truth position estimation. The ground truth position of a keypoint
was computed as a mean of both markers positions detected by the Qualisys MoCap. An
extra marker was placed on the Intel RealSense camera to have an estimation of translation
between the camera frame and the Qualisys reference frame.

Figure 4.18: Image of the participant in the absolute evaluation of 3D human pose experiment
with visible reflective markers placed on the body keypoints.

For computing the transformation between camera and Qualisys frame, we manually
annotated 8 markers in 2 images from the Intel RealSense camera and computed the
transformation using the SVD algorithm as described in Section 3.6.2. We checked that the
translation part of the transformation corresponds to the marker located on the RealSense
camera.

The human body keypoints were detected in RGB images using the AlphaPose detector
and transformed from 2D to 3D using the method described in Section 3.5 with the median
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approach of the neighborhood of keypoint. At the 3D point we applied the transformation
from the SVD algorithm, Equation 3.16.

The resulting positions of each marker keypoint were plotted in the following graphs
alongside with the computed Mean Absolute Error (MAE) using Equation 3.17. The
discontinuities in the graphs are caused by either not detecting the keypoint in the RGB
image from the RealSense camera as they did not occur in the images or the marker points
were not visible in the MoCap system.

(a) (b) (c)

Figure 4.19: Graphs with right wrist coordinates during the experiment and Mean Absolute Er-
rors (MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and transformed
to 3D position with computing the median of the points in the keypoint neighborhood.

(a) (b) (c)

Figure 4.20: Graphs with left wrist coordinates during human motion and Mean Absolute Errors
(MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and transformed to
3D position with computing the median of the points in the keypoint neighborhood.

Figures 4.19 and 4.20 show that wrists were detected correctly and the 3D positions more
or less align with the ground truth from the Qualisys MoCap. The Mean Absolute Errors
are around 1-2 cm, which is caused mainly due to imprecise 2D detections meaning that
the human keypoints were detected at a slightly different position in comparison with the
marked positions. On the other hand, 2 centimeters are in bounds of the size of human
wrist.

39



4. Experiments and Results.....................................

(a) (b) (c)

Figure 4.21: Graphs with right elbow coordinates during human motion and Mean Absolute
Errors (MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and trans-
formed to 3D position with computing the median of the points in the keypoint neighborhood.

(a) (b) (c)

Figure 4.22: Graphs with left elbow coordinates during human motion and Mean Absolute Errors
(MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and transformed to
3D position with computing the median of the points in the keypoint neighborhood.

The 3D positions of both elbows have slightly higher MAEs, 2-4 cm, as visualized in
Figures 4.21 and 4.22. The reason is the same as for the wrists, as the 2D detections do not
correspond precisely with the marked positions. Moreover, the elbow is a bigger joint than
the wrist, so the errors are greater. There is also a spike for both elbows in the middle of
the experiment, where both elbows were overlaid with the wrists in the RGB image and
the depth from the RealSense camera was not correct for the elbow keypoints, as can be
seen in Figure 4.23.

Figure 4.23: Image causing the spike in the 3D positions of both elbows.
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(a) (b) (c)

Figure 4.24: Graphs with right shoulder coordinates during human motion and Mean Absolute
Errors (MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and trans-
formed to 3D position with computing the median of the points in the keypoint neighborhood.

(a) (b) (c)

Figure 4.25: Graphs with left shoulder coordinates during human motion and Mean Absolute
Errors (MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and trans-
formed to 3D position with computing the median of the points in the keypoint neighborhood.

(a) (b) (c)

Figure 4.26: Graphs with right wrist coordinates during human motion and Mean Absolute
Errors (MAE). Keypoint detected using AlphaPose and MediaPipe hand detector and trans-
formed to 3D position with computing the mean of the points in the keypoint neighborhood.

The shoulder 3D positions during the experiment are visualized in Figures 4.24 and 4.25.
The graphs and also the Mean Absolute Errors are worse in comparison with other keypoints.
The error caused by the 2D detection is more significant for the shoulder detection because
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it is the biggest joint and the marker points were placed on the outter part of the shoulder
joint whereas the detection usually detects the shoulder in the inner part of the joint.

We also provide the graph with the MAE of the right wrist when the 3D position is
determined from the keypoint neighborhood using the mean approach. We can compare
Figures 4.19 and 4.26. The resulting MAEs are worse by about 1 cm for the mean approach,
and the detected coordinates are noisier and less accurate. This tendency is also present
for the other keypoints detected in this experiment, but for simplicity, we did not provide
the resulting graphs and MAEs.

Summary

The 3D positions depend heavily on the correct 2D detection in the input image and the
clearance of visibility of the keypoint in order to be able to determine the correct depth
of the keypoint. If the keypoint is detected and visible flawlessly, then the 3D position is
computed correctly with the error in the bounds of the size of keypoint. As well as in the
results of experiment in Section 4.3 the median method for extracting the position from
the keypoint neighborhood is more accurate and robust.

4.5 Demonstration on Human-Robot Scenario
As a demonstration of the proposed solution, we prepared a human-robot interaction
scenario, when the iCub robot holds the defined position of the left arm. When the
participant tries to reach the defined hold position of the left arm of the iCub, the robot
should avoid him and move away as shown in Figure 4.27. The holding position of
the iCub robot is visualized in Figure 4.27a and the avoidance maneuver is visible in
Figure 4.27b. The control module used for the avoidance maneuver was adjusted and
prepared by Ing. Jakub Rozlivek. A video of the demonstration experiment is available at
https://www.youtube.com/watch?v=z-mdR8C6o9g.

(a) iCub robot holding position of the left arm. (b) iCub robot with the moved left arm be-
cause of the human body avoidance.

Figure 4.27: Demonstration of the human body avoidance scenario.

During the experiment, the participant was instructed to perform 3 different poses. The
first pose was sitting in front of the robot in its field of view and reaching the critical
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position with the participants hand. The second pose of the participant included standing
in front of the robot and reaching the position with the hand again. In the last pose, the
participant tries to displace the robot using his head. The described poses of the participant
will be shown in the following figures.

The proposed solution consists of the human keypoints detection using AlphaPose and
MediaPipe hand detectors with transformation to 3D positions using the median approach
for processing the keypoint neighborhood. For comparison we also executed this experiment
with the solo AlphaPose human keypoints detection as well as the detection using only
OpenPose, which is used in the yarpOpenPose iCub module. We will compare these different
detection approaches in each of the participant poses.

Firstly, we will compare the different detection methods on the first pose with the
participant sitting in front of the robot and reaching its left arm. As can be seen in Figure
4.28, all of the detectors are able to detect the human body keypoints correctly alongside
with the correct 3D positions. The correct detection caused the iCub robot to move his left
arm to avoid the participants hand.

The second comparison of the detectors for the demonstration includes the standing pose
of the participant visualized in Figure 4.29. Whereas the AlphaPose is able to detect the
human in the standing position in Figure 4.29b, OpenPose, Figure 4.29c, not only does not
detect the finger keypoints, but it is unable to detect the wrist or the elbow keypoint even
with having subjectively the best view of the human body. As a result, in the OpenPose
experiment, the robot did not move his left arm. As we stated earlier, MediaPipe provides
more precise finger keypoints detection, as can be seen in Figure 4.29a. In both cases,
AlphaPose with MediaPipe detection and AlphaPose only, the robot moved in order to let
the participant reach the crucial position.

As the last compared position, the participant tried to move the robot using his head. In
this case, AlphaPose again overperformed the OpenPose detection, illustrated in Figure 4.30,
as AlphaPose was able to detect the human body unlike OpenPose. In this participants
position setup, the hand is not occuring in the RGB image and thus the MediaPipe does
not provide any benefits.

The conclusion of the demonstration is that the AlphaPose proved to be the best human
body keypoint detector and is able to perform even better when used alongside MediaPipe
hand detection, as it provides more accurate finger keypoints detection. In terms of the 3D
position computation, the results are accurate enough to be able to localize the detected
human keypoints in order to control the robot avoidance.
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(a) Human pose detection with AlphaPose in combination with MediaPipe hand detection.

(b) Human pose detection with AlphaPose.

(c) Human pose detection with OpenPose

Figure 4.28: Comparison of the human body keypoints detections in the sitting pose of the
participant reaching the iCub left arm. Keypoints detection is visualized in the left part of
images; 3D positions of the keypoints visualized in the right part of the images
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(a) Human pose detection with AlphaPose in combination with MediaPipe hand detection.

(b) Human pose detection with AlphaPose.

(c) Human pose detection with OpenPose

Figure 4.29: Comparison of the human body keypoints detections in the standing pose of the
participant reaching the iCub left arm. Keypoints detection is visualized in the left part of
images; 3D positions of the keypoints visualized in the right part of the images
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(a) Human pose detection with AlphaPose in combination with MediaPipe hand detection.

(b) Human pose detection with AlphaPose.

(c) Human pose detection with OpenPose

Figure 4.30: Comparison of the human body keypoints detections in the scenario with the
participant reaching the iCub left arm with his head. Keypoints detection is visualized in the
left part of images; 3D positions of the keypoints visualized in the right part of the images
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Chapter 5

Conclusion, Discussion and Future Work

In this chapter, we will summarize the results and methods in Section 5.1. The drawbacks
and limitations of the proposed solution will be discussed in Section 5.2. In Section 5.3 we
will present possible improvements for future work.

5.1 Conclusion
In this thesis, we created the Close Proximity Dataset and the Close Proximity Dataset with
Excluded Head, Section 3.2, from the existing Halpe validation dataset, including people in
simulated close proximity with their wholebody keypoint annotations. Datasets available
at [34]. Both datasets were created by cropping the original images according to people
occurring in the images, resulting in the Close Proximity Dataset with 1624 annotated
images and the Close Proximity Dataset with Excluded Head with 1608 annotated images.

These datasets were used for the evaluation and comparison of selected state-of-the-art 2D
human body keypoint detectors (listed in Section 3.3) in Section 4.1. As a result, the best
performing detectors were AlphaPose and MMPose human body keypoint detectors and the
MediaPipe detector for the finger keypoints detection. These were qualitatively evaluated in
Section 4.2 and the AlphaPose human pose detector and the MediaPipe hand detector were
selected as the best performing in terms of the keypoint detection accuracy and robustness
of keypoint detection, as well as the speed of detection. Furthermore, we proposed a
combined solution for the detection of the 2D human keypoints using simultaneous detection
by AlphaPose in combination with MediaPipe for the finger keypoints. The schematic
visualization is available in Figure 4.11, where the MediaPipe finger keypoints detection
is preferred over the finger keypoints detected by AlphaPose. This solution provides even
more robust 2D detection of finger keypoints, which are one of the most important to detect
for human-robot interaction (HRI).

A method for obtaining the 3D positions of the detected keypoints was proposed in Section
3.5 taking into account a 2D neighborhood of the keypoint. The size of the neighborhood
is determined dynamically based on the distance from the camera, as well as the type of
the keypoint. The points in the neighborhood of the keypoint were transformed to the 3D
camera coordinate frame using Equations 3.3, 3.4 and 3.5. Additionally, we proposed 2
approaches for determining the resulting 3D position computing either the (i) mean or
the (ii) median of the 3D positions in the neighborhood. Finally, the 3D positions were
transformed to the iCub Root coordinate frame as described in Section 3.4.
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Firstly, the proposed method for the computation of the 3D keypoint positions was

evaluated in Section 4.3 using the relative evaluation with a static human participant that
was supposed to be detected by the moving robot. The conclusion of this experiment was
that the 3D positions depend heavily on the correct 2D keypoints detection, as expected.
However, the median approach for obtaining the final 3D position from the neighborhood
of the keypoint was shown to be more robust and accurate than the mean approach.

Secondly, the 3D keypoint positions were evaluated in Section 4.4 using the absolute
evaluation as well. The resulting 3D positions were compared with respect to the estimated
ground truth positions provided by the Qualisys Motion Capture (MoCap) system. The
3D coordinates of the keypoints corresponded to the ground truth positions with Mean
Absolute Errors (MAEs) in bounds of the keypoint (joint) sizes. In addition, we provided a
comparison for the mean and the median approaches as well, with the same results, as the
median approach is more accurate and robust.

Finally, the proposed pipeline solution consisting of the 2D human keypoints detection
using AlphaPose and MediaPipe detectors followed by the 2D to 3D transformation with the
median approach was demonstrated in Section 4.5 in a HRI scenario with the iCub humanoid
robot equipped with the Intel RealSense camera. Furthermore, we compared other 2D
detection methods in the human-robot interaction scenario, with the conclusion that the
proposed combined 2D detection solution provides the most robust and accurate results. The
accompanying video is available at https://www.youtube.com/watch?v=z-mdR8C6o9g.

5.2 Discussion
Our method for close proximity keypoint detection does not deal with a partially occluded
human body ideally. Although we detect occluded 2D keypoints, the depth information for
them is not correct due to occlusion. In our setup with a camera located on the robot and
providing first person POV, this issue does not directly imply problems for the safety as it
only results in 3D positions closer to the robot. However, the detected human pose is not
detected correctly, e.g. for human action recognition or gesture recognition.

Another drawback of the proposed solution is the Intel RealSense camera depth framerate.
As we stated earlier in Section 4.2, the 2D keypoint detection runs at approximately 15 fps.
But the framerate of the Intel RealSense included in the YARP system is only 8 fps. As
a result, the framerate of the depth information becomes a bottleneck in the processing
pipeline. According to documentation, the Intel RealSense camera should be able to provide
depth information even with up to 90 fps. A possible solution to this bottleneck would be
to improve the implementation of the Intel RealSense device in the YARP system.

During the development of the solution, we encountered a few limitations. The first
limitation were the datasets. Most of the dataset images do not contain people in close
proximity with their wholebody annotation. For this purpose, we created the Close
Proximity Datasets with cropping the images which lead to lower resolution images. However,
the resulting lower resolution influences the performance of the detectors mainly for the
finger keypoints detection.
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Another limitation were different outputs of the detectors, which led to the necessity of
different postprocessing of the detectors outputs. Even though this limitation was solved,
it required additional time dedicated to this issue. Moreover, to change the detection
method in the processing pipeline, it is required to treat the whole 2D detection pipeline
individually, which is not development-friendly.

5.3 Future Work
The close proximity human detection is a complex task, and there are multiple ways how
to improve our presented solution. For the purposes of even more accurate and robust 2D
detection, the real dataset with people in the close proximity could be created alongside
with a precise wholebody annotation, ideally manually annotated. Thanks to such dataset,
it would be possible to finetune the AlphaPose (or others as well) neural network in order
to perform better on people in the close proximity.

Another improvement would be to solve the issue with the partial occlusion of the human
body. It would be possible to take into account the SMPL [17] or SMPL-X [20] models in
order to correct the 3D keypoint positions accordingly. Or even try the 3D pose detection
in the RGB images directly.

For a better overall performance of human detection, the RGB-D sensor could be improved
as well. As we stated earlier, we could improve the Intel RealSense performance in the
YARP system. Thanks to that, the human body detection would be even more safe and
robust for the HRI scenarios thanks to the more frequent updates of the human pose.
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