Bachelor’s thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Radioelectronics

Eye-Tracking Tools for Virtual Reality
System

Nastroje pro sledovani ocnich pohybii v systému pro
virtualni realitu

Radek Nesnidal

Supervisor: Ing. Karel Fliegel, Ph.D.
Field of study: Electronics and communication
May 2022

ii

U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 R
Student's name: Nesnidal Radek Personal ID number: 491837

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Radioelectronics

Study program: Electronics and Communications

[l. Bachelor’s thesis details

Bachelor’s thesis title in English:

Eye-Tracking Tools for Virtual Reality System
Bachelor’s thesis title in Czech:
Nastroje pro sledovani o&nich pohybl v systému pro virtualni realitu

Guidelines:

Give an overview of recent eye-tracking-based techniques in virtual reality systems with head-mounted displays. Using
available open-source libraries, develop software tools to perform related experiments for provided virtual reality system.
Focus mainly on eye-tracking integration into the omnidirectional video player pipeline. Deliver support for demonstration
tasks.

Bibliography / sources:

[1] Jin, Y., Chen, M., Goodall, T., Patney, A., Bovik, A. C., Subjective and Objective Quality Assessment of 2D and 3D
Foveated Video Compression in Virtual Reality, IEEE Transactions on Image Processing, 2021.

[2] Jin, Y., Chen, M., Bell, T.G., Wan, Z., Bovik, A., Study of 2D foveated video quality in virtual reality, Proc. SPIE 11510,
2020.

Name and workplace of bachelor’s thesis supervisor:

Ing. Karel Fliegel, Ph.D. Department of Radioelectronics FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 01.02.2022 Deadline for bachelor thesis submission: 20.05.2022

Assignment valid until: 30.09.2023

Ing. Karel Fliegel, Ph.D. doc. Ing. Stanislav Vitek, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

\ J
[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank to my supervisor
Ing. Karel Fliegel, Ph.D. for guiding this
work.

Declaration

Prohlasuji, Ze jsem pfedlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o
dodrzovani etickych principt pii priprave
vysokoskolskych zévéreénych praci.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university thesis.

In Prague, 15. May 2022

Abstract

The aim of this thesis was creation of
suitable environment, where eye-tracking
experiments can be performed, as well as
delivering support for demonstration task.
I over-viewed recent techniques for eye-
tracking utilization, such as foveated com-
pression or analytical purposes. I focused
on developing eye-tracking software tools,
with the use of open-source libraries, and
also on the visualization of the acquired
data. The presented demonstration task
consists of watching multiple compressed
videos in virtual reality, while the user’s
gaze would be tracked.

Keywords: eye-tracking, foveation,
HTC VIVE Pro Eye, omnidirectional
video, virtual reality

Supervisor:
CTU FEE,

Technicka 6,
16000 Prague 6

Ing. Karel Fliegel, Ph.D.

vi

Abstrakt

Cilem této prace bylo vytvoreni vhodného
prosttredi, kde by mohli probihat experi-
menty se sledovanim ocnich pohyb1, a
zaroven pripraveni podpory pro demon-
stracni ilohu. Byl podéan prehled moder-
nich technik pro vyuziti sledovani ocnich
pohybti, jako foveovana komprese ¢i analy-
tické vyuziti. Zaméroval jsem se na vyvoj
softwarovych néstroju pro snimani o¢nich
pohybi, s pomoci otevienych knihoven,
a také na vizualizaci ziskanych dat. Uve-
dend demonstrac¢ni tiloha se sestavéd ze
sledovani nékolika komprimovanych videii
ve virtudlni realité, zatimco jsou snimany
uzivatelovy o¢ni pohyby.

Klicova slova: foveace, HTC VIVE Pro
Eye, sledovani o¢nich pohybi, virtualni
realita, vSesmérové video

Pteklad nazvu: Nastroje pro sledovani
ocnich pohybu v systému pro virtualni
realitu

Contents

1 Introduction 1
2 VR related fundamentals 3
2.1 Virtual reality 3
2.2 Eye-tracking in VR 4
2.3 Viewing an omnidirectional footage 14
3 Foveated compression 7
3.1 Human visual system........... 7
3.2 Compression of an omnidirectional
footage i 9
3.3 Impacts of latency 11
4 Omnidirectional video player with
simultaneous eye-tracking 13
4.1 Creation of the video player.... [13
4.2 Analysis of the provided data .. [14
4.3 Quality of Experience 16
5 Otbher fields of use of
eye-tracking 19

5.1 Eye-tracking in medical research (19
5.2 Video games and eye-tracking .. [20

6 Eye-tracking experiment and

setting up a demonstration task 21
6.1 System parameters............ 21
6.1.1 Computer system parameters [21
6.1.2 HTC VIVE Pro Eye........ 22
6.2 Setting up an eye-tracking
experiment..................... 23
6.3 Omnidirectional video player in
Unity ... 24
6.4 Accessing the eye-tracking data . [25
6.5 Processing obtained data 28
6.6 Demonstration task 32
6.7 Discussion 35
7 Conclusion 37
A Bibliography 39

B List of electronic attachments 43

vii

Figures
2.1 A Cubemap projection of
omnidirectional footage, which is
used by Unity.................... 5
2.2 Various viewing angles for constant
90° vision, and their impact on
mapping onto equirectangular

maps [12]. 6
2.3 An equirectangular projection of
an omnidirectional video. 6

3.1 Regions of retina (inspired by [2]). |7
3.2 Simplified illustration of the
distribution of cones and rods on the
retina [I5]. o o L 8
3.3 Demonstration of creation of
foveated footage (inspired by [3])... 9
3.4 Reference uncompressed image and
various types of foveation techniques
with amplified immensity of foveation

for better illustration [14]. 10
3.5 Unwanted impact of lag for large
eye movements [I4]. 12
4.1 The functionality of 360° video
player with eye-tracking.......... 13
4.2 An illustrative visualisation of 2D
heatmap and 2D gaze plot........ 15
4.3 A 3D scatter plot, where visual
attention is determined by color of
plotted points................... 15
4.4 Mlustration of two typical rating
bars used for QoE experiments.... [16
5.1 Gaze-aware non-playable
characters [20]. 20
6.1 The HTC VIVE Pro Eye headset
4] 22
6.2 A screenshot of the Unity
environment with working
omnidirectional video player. 25
6.3 Process of obtaining the
eye-tracking data in Unity. 26
6.4 Scatter plot made from acquired
data.o i 28

viii

6.5 Logic behind plotting of the gaze
data, with dashed line showing the

image’s borders. 30
6.6 Heatmap created from test data,

for checking the methodology. |30
6.7 Difference between plotting

multiple or one circle, showing

current gaze, at given frame. 31
6.8 Process of demonstration task. . 32

6.9 Original video (left) vs H.264 CRF
29 compressed video (right).......
6.10 Cubes in Unity scene, working as
a fixed rating bar.

33

34

Tables

6.1 Selected system parameters. 21
6.2 Parameters of HT'C VIVE Pro Eye,
all taken from [25]...............

6.3 Minimum computer requirements
for HTC VIVE Pro Eye, taken

from [25].o oo
6.4 Status of the eye-tracker dependent
on the shown color.

6.5 Common formats used for
omnidirectional footage according to
[32], and their specifications.

ix

Chapter 1

Introduction

Popularity of virtual reality (VR) headsets, as well as embedding eye trackers
to them, has risen in recent years. This fact is a result of technological
advances, that have been lately achieved, as there was demand for better
parameters of the VR systems. The process of tracking user’s gaze in VR
environment brings new possibilities into this segment, as while we have
limited transmission bandwidth, there are needs for better video quality [1].
Chapter "VR related fundamentals’ describes the basics related to VR, eye-
tracking and omnidirectional footage.

The fact, that we need to keep in mind and that we want to take advantage
of, is that only small part of the full omnidirectional footage can be seen
by the user, which is called viewport [2]. With this knowledge we come
to one of the popular eye-tracking utilization - foveated compression. This
method of compressing the footage only sends the better-quality footage,
where the user’s most sharp vision is currently at, degrading the quality with
the distance from the viewport [3]. This field is covered in the chapter of this
thesis 'Foveated compression’.

Video compression however isn’t the only sphere, where eye-tracking is being
utilized. As tracing the position of one’s gaze carries a lot of information about
their visual acuity, eye-tracking is now being widely used for experiments,
where we want to know where users are looking during omnidirectional videos,
or in any other VR-suited environment [4]. From the collected data various
visualisations can be made, where among the most popular ones are gaze
plots and heatmaps [5]. Creation of this environment, as well as analysis of
the obtained data are part of the chapter ’Omnidirectional video player with
simultaneous eye-tracking’.

In chapter named ’Other fields of use of eye-tracking’ I overview previously
not mentioned areas, where eye-tracking is being utilized. There I focus on
two fields, video gaming and medical research, where in both there have been
various ways, how eye-tracking brought new possibilities into those sectors.

Chapter 'Eye-tracking experiment and setting up a demonstration task’
focuses on the practical part of this thesis, where the process of setting up
an eye-tracking experiment in Unity environment is described, as well as
creation of an omnidirectional video player, in the mentioned environment.
After that, I write about how the eye-tracking data are being accessed, and

1. Introduction

the issues revolving around it. The next section then focuses on processing
of the obtained data, where I discuss the way how the data are plotted and
various visualisations are showcased. The final section describes the logic
behind setting up a demonstration task, where the user would watch video
with various degrees of compression, while their gaze would be simultaneously
tracked.

Chapter 2

VR related fundamentals

In this chapter I overview the fundamentals related to VR systems. Through
this chapter the reader should get familiar with basic concepts revolving
around VR, eye-tracking and omnidirectional footage.

2.1 Virtual reality

Virtual reality headsets represent a quite wide range of products with one
common feature - they all are able to display an omnidirectional video or
any other kind of omnidirectional content. The way it is done is through
a head mounted display, that is attached to a headset, typically just a few
centimeters from user’s eyes. This way, the user can feel way more connected
with the content, as VR gives them impression, that they are part of the
scene [6].

Among the most popular headsets nowadays are for example Oculus’s
Quest 2!, HTC’s VIVE Pro? or HP’s Reverb VR3000 G2°, which are all
meant to be connected to a personal computer. However another fields of
use for VR had been growing, such as their use with gaming consoles with
PlayStation VR or the usage of mobile phones as the screen, where we put
the phone into a special headsets made for this purpose.

The differences between the VR headsets from different manufacturers are
for example resolution and size of the built-in screen, its refresh rate or the
present sensors in the headset. To deliver satisfactory user experience, it was
stated that the resolution should be at least 6K (6144 by 3160 pixels), while
the refresh rate should be at least 90 Hz. This however brings a new problem
as high bit rate results into high bandwidth consumption [7].

Typical use of VR is for video gaming, where the user usually interacts
with the environment by using hand-held controllers. Another utilization can
be found for viewing omnidirectional videos or photos, where the user can
turn around to see different parts of the footage [3].

Thttps://store.facebook.com/quest /products/quest-2/
Zhttps:/ /www.vive.com/us,/product/#pro%20series
3https://www.hp.com/us-en/vr/reverb-g2-vr-headset.html

3

2. VR related fundamentals

2.2 Eye-tracking in VR

While eye-tracking is known technique, that has already been used for years,
in VR environment it is quite modern concept, that makes the VR headset a
research tool, that can be easily obtained by wide range of people. One of
the main advantages here is that the VR environment is highly controlled,
while still providing some degree of freedom to the user [§].

The reason why we want to track the gaze of a user can vary - we can use
it for research, as data containing information about where and for how long
the user is looking in given direction, can tell us a lot about visual attention
and mental processes [4]. When analysing the eye-tracking data, we can
either visualize the data, or we can use quantitative metrics, that are based
on fixations and saccades. Thanks to this we can get information about areas
of interest, where we would see longer total fixation duration, or whether the
participant has trouble with processing of some information, which could be
spotted due to long time of average fixation [9].

In order to setup an eye-tracking experiment, according to [8] following
parts are needed

8 VR headset with embedded or attachable eye tracker

® Suitable software - most commonly Unity®* or Unreal Engine®, where we
can create omnidirectional environments, while simultaneously we can
collect the eye-tracking data thanks to scripts

8 P(C with sufficient computing power, in order to run the experiments
flawlessly

® Other - for example cable management, so that the participant has free-
dom of movement, or headphones so that the participant isn’t distracted
by sounds that do not come from the application

2.3 Viewing an omnidirectional footage

In Unity environment, in order to properly display the video on a sphere
surrounding the user, it first needs to be processed. Here the video is viewed
like a set of six frames, known as Cubemap, which can be seen in Figure 2.1/
and which was created from the video available at [10]. Each one of those
frames contains information about the front, back, right side, left side, bottom
and top of the footage, which together carry all the data about the video
while also being a good way of storing spherical data, as it doesn’t carry that
much redundant data as equirectangulary projected footage [11].

“https://unity.com/

®https://www.unrealengine.com/en-US

5The Cubemap was created using an equirectangular image, which was then converted
using https://jaxry.github.io/panorama-to-cubemap/.

4

2.3. Viewing an omnidirectional footage

Figure 2.1: A Cubemap projection of omnidirectional footage, which is used by
Unity.

For my purposes, I need to later view the whole omnidirectional footage
on a 2D computer screen, which means that I need to convert the video into
suitable way, so that it is clearly visible what is happening - this factor makes
the Cubemap a bad choice, as the division into frames might be too confusing
for the viewer. In this case we mostly use equirectangular projection, which
is the same one used for example for projection of the world onto a flat
map. This projection is done by converting spherical coordinates into the
equirectangular ones, which then creates the 2D map. This however comes at
cost, as the footage now becomes deformed, as parts of the image become
stretched. The aftermath of this can be seen in Figure where we can
see how for different viewing angles the area of viewed space changes on
equirectangular map, as well as its shape [12].

However we have to keep in mind, that the projected 2D planes are not
just affected by geometric distortion, but also by artificial creation of borders,
which causes discontinuity of the projected footage. This leads into a problem,
where the traditional compression methods for 2D videos are not applicable
and other suited approaches are necessary [13].

In the Figure it is shown, how the same video from [I0], that was in
the Cubemap in Figure looks like in equirectangular map.

2. VR related fundamentals

HH
mEm
i
[

i

Figure 2.2: Various viewing angles for constant 90° vision, and their impact on
mapping onto equirectangular maps [12].

11.6% 1

H
|
L1
|
i

Figure 2.3: An equirectangular projection of an omnidirectional video.

Chapter 3

Foveated compression

Foveated compression is one of the recent eye-tracking-based techniques in
VR that keeps on getting more popular. Knowing the position, where user’s
most sharp vision is, at given time, allows us to compress the quality of the
footage, which is outside of it. This part of one’s sight with highest visual
acuity is called fovea, and the described type of compression is also named
after it. In this chapter I write about the human visual system (HVS), how
the footage is compressed and also how latency might negatively affect user
experience.

3.1 Human visual system

v

Perifovea

Fovea

Parafovea

Periphery Macula Periphery

Figure 3.1: Regions of retina (inspired by [2]).

To understand the problematics of foveated compression we need to know
how the HVS works. As we can see in Figure 3.1, the retina consists of
two main parts - macula and periphery. Macula can be then divided into
three smaller parts - fovea and transition region consisting of parafovea and
perifovea, where we can see linear density falloff - this effect is shown in
Figure 3.1, where the color of the perifoveal part gets gradually lighter. So

7

3. Foveated compression

can we halve periphery into its near and far sections [2],[I4]. The human
vision related to the mentioned segments is specified in [2] as

B Fovea - 5° of the central part of eye’s vision with high density of cones -
this region has highest susceptibility to fine details

® Parafovea - sight for eccentricity between 2.5° and 4° which contains
more rods than fovea leading into lightly worsened perception for details

B Perifovea - region related to eccentricity between 4° and 9°, where the
rods start to outnumber the cones

® Near periphery - perception for eccentricity between 9° and approximately
30° - linear regression of visual acuity as the eccentricity ascends

® Far periphery - vision beyond eccentricity of 30°, with low density of
rods, where the acuity falloff is way steeper

The part of the eye we are especially focusing on is fovea, as it is the most
significant part of our vision. In Figure [3.2] we can observe the distribution
of light sensitive cells (cones and rods) in human eye. A spike in number of
cones can bee seen in the fovea’s region. Cones allow us to perceive color
and great quantity of visual details, which gives us the ability to do highly
detail-oriented tasks, such as reading [15].

Cones density

Cones

per'square mm

Rod density Rod density

Density in thousands

Fovea

80 60 -40 -20 0 20 40 60 80
~. Angular separation from fovea (degrees)

AMAMAACCTEECCCCEA o

~ s

Figure 3.2: Simplified illustration of the distribution of cones and rods on the
retina [I5].

On the other side rods, which are the cells mainly located in peripheral
vision (as can be seen in Figure 3.2)), are tuned for situations, where we don’t
have much light. Rods are not capable of seeing color, but they are able to
sense contrast and movement, which is something we have to lookout for
when applying foveated compression [15].

In the VR environment people do not tend to behave all the same. While
all people give their attention to faces, signs or moving objects, the time
they spend looking at them varies. Some people tend to only focus at those
objects, but some on the other hand tend to look mainly on the surrounding

8

3.2. Compression of an omnidirectional footage

and focus on these points just for a short period of time. Another interesting
event happens when people watch the same video multiple times, as they start
to focus on one point for longer time before moving their head an focusing
on other point [9].

3.2 Compression of an omnidirectional footage

To determine the distortion of foveated footage, we need two parameters -
inner radius of each region and the level of compression distortion withing
the areas. In typical implementation of foveated compression we separate the
field of view into three concentric parts, where various degrees of foveation
can be applied. It is possible to use more than three concentric regions as
it improves the level of foveation, however for research purposes it might be
too time-consuming, as quantity of footage that needs to be analyzed, would
rise [3].

ref CRF 23 CRF 25

®

Final product

Figure 3.3: Demonstration of creation of foveated footage (inspired by [3]).

In Figure [3.3| we can see the process of creation of foveated footage. In the
case of this figure we have three various qualities, with one of them being the
reference uncompressed video, and the other two are compressed by H.264
codec with Constant Rate Factors (CRFs) of 23 and 25. Every one of these
videos are used for different parts of the final footage, where for the innermost
part we use the reference footage, because the user’s gaze is the sharpest in

9

3. Foveated compression

here. After that, the second best quality, which in this case is the CRF 23
compressed video, is then used for the part surrounding the reference video
and for the rest of the footage we use the worst quality video - in this case
CRF 25. This way we gradually worsen the quality of the footage with the
distance from the middle of the circle, which is determined by the position of
user’s fovea.

However we can use more than three levels of compression and also we can
have more radii, that we could work with. Nevertheless, the logic stays the
same, and the process still consists of two steps, that result into creation of
foveated footage, with the quality being the best in the middle, and then
consistently dropping with the distance from the user’s fovea. With more
parameters we however have to face the difficulty, that the total number of
possible variation of foveated videos increases [3].

Various types of foveation techniques can be implemented for peripheral
compression - different kinds of techniques have their own specifics that affect
the way the footage is compressed. The technicalities, that we mostly care
the most about, are how much they can compress the footage and how much
computing power is needed for this compression.

In [14] they tested three types of peripheral compression - fCPS, sub-
sampling and Gaussian blur (see Figure . It was also examined how
the methods differ when we change the fixed eccentricity for far periphery -
peripheral eccentricities of 5°, 15° and 20° were applied.

Subsampling S&#*

Figure 3.4: Reference uncompressed image and various types of foveation
techniques with amplified immensity of foveation for better illustration [I4].

10

3.3. Impacts of latency

The specifics of shown techniques according to [14] are

® Subsampling - reduces image resolution as the retinal eccentricity in-
creases

8 Gaussian Blur - utilizes Gaussian image-space blur where blur radius
amplifies as retinal eccentricity increases

m fCPS - uses foveated coarse-pixel shading with prefiltered shading,
foveated temporal anti-aliasing and post-processed contrast enhance-
ment.

From this list of techniques, the one that would stand out is fCPS, as
already for eccentricity of 10° it supported remarkably more foveation than
subsampling or Gaussian blur [I4] - this probably has connection to the way
the footage is compressed here, as the periphery is responsive to sharp edges
and contrast changes [I5]. For eccentricity of 20° both f{CPS and Gaussian
blur allow more foveation than the subsampling method [14].

While this is very popular way of creation of foveated footage, other ap-
proaches have also been proposed. For example in [16] it was mentioned
that we could implement the foveation by preprocessing before we encode
the footage. Here we focus on areas that attract human gaze, called salient
regions and we would reduce the amount of detail in non-salient areas before
the encoding process. This is done by disposing of high frequency compo-
nents from video frames in the non-salient regions. If using encoder with
fixed bitrate, this means that the encoder will allocate more bits for the
salient regions to the detriment of the non-salient parts of the footage. This
method then consists of two steps - generating saliency maps from eye tracker
coordinates and then blurring the non-salient areas.

3.3 Impacts of latency

Among one of the main problems with VR and omnidirectional footage is
its high bit rate and limited bandwidth of the system. This means that our
goal is to optimize the available system resources to function as efficiently
as possible, while still delivering satisfactory user experience [2],[7]. While
foveated compression could be the solution, it also comes with its own
difficulties that shouldn’t be overlooked.

One of them is latency - while some algorithms might provide us better
compression, they also might add too much latency into the system, which
would lead to worsened overall user experience. When creating compressing
methods for omnidirectional footage, we have to try to find the best possible
balance between the compression and latency. According to [14], if the eye
to image latency would be around 20 to 40 ms, making the system’s total
latency 50 to 70 ms, the user experience will not be affected by it.

The phenomenon that we have to look out for is called saccadic omission,
as it is an event where observer changes their gaze position rapidly between

11

3. Foveated compression

Frame i Frame i+1

sl -l

@ — >Q

Figure 3.5: Unwanted impact of lag for large eye movements [14].

two locations. If the system’s latency is too high, the computer wrongly
estimates the gaze position, meaning the user is looking at the compressed
part of the footage due to the offset of the viewport with high quality - this
can be seen in Figure Extreme occurrence of this phenomenon is when
a person would turn and look behind them. This means that low-latency
data from eye tracker are significant, as lag between large eye movements
and display updates can negatively impact the extent of foveation [14].

However it was stated in [17], that most of the time people tend to move
their heads to avoid large eye movements. It was also noted that according to
their studies, for 95 % of time people keep their gaze inside 20°. This means
that mostly saccades are not the main problem that would occur, but it is
something that we have to lookout for, as it is situation that could negatively
affect the user experience.

12

Chapter 4

Omnidirectional video player with
simultaneous eye-tracking

For data analysis purposes or other eye-tracking related experiments, such
as foveated compression, we need a suitable environment, where our experi-
ments can be performed. This environment for me is a video player that is
simultaneously able to track the eye movements. In this chapter I overview
the process of creation of this video player, analysis of the provided data and
also how various factors impact quality of experience.

4.1 Creation of the video player

The process displaying how a 360° video player works is shown in Figure 4.1
The data from the VR headset’s eye tracker are sent to Unity, as well as the
data about the omnidirectional footage. Unity works here as a 360° video
player and simultaneously allows us to process the obtained data and merge
them, so that we have precise information about where a person is looking in
given time. We can then take advantage of this, and sent back to the VR
only parts of the video, that the user is looking at, instead of sending back
data about the whole omnidirectional footage. These merged data can also
be used for analysis, that could be done in various programs for data analysis.

Merged
VR Eye data Unity eye and
video data

¥
Data

360° video analysis
tools

Figure 4.1: The functionality of 360° video player with eye-tracking.

To acquire the gaze position data of a person watching a 360° video, we can
use various existing applications or write own code. Among the applications,

13

4. Omnidirectional video player with simultaneous eye-tracking

that have already been created, are for example iMotions', Cognitive3D?
or Tobii Pro VR Analytics®, which however is discontinued. While all of
these programs are very advanced and are a great solution for analysis of the
provided data, their disadvantage is usually price.

The other mentioned way to get eye-tracking data while watching omnidi-
rectional footage is by using Unity, where I have to create or use existing code
for a 360° video player and then merge it with a code for tracking of the eye
movements. A guide for eye-tracking in Unity at maximal possible rate of 120
Hz is available at HTC’s forum at [I8]. Implementation of this code and its
combination with a code for omnidirectional video player would be the next
step. A problem we have to look out for here is correct connection between
the data and the video, so that we can credibly interpret the data in further
examinations. The biggest downside of creation of own code is absence of
additional software for data analysis, that we would have to do by ourselves.
Other disadvantage here is time consumption, however a big advantage on
the other hand is that writing our own code is way less financially demanding,
and also we can easily adjust the codes to our particular needs. As our specific
needs could vary, depending on the goal of our task, the modifiable code is
way better option for my research needs.

4.2 Analysis of the provided data

The retrieved data from the eye tracker are then ready for analysis, which can
be done by various visualisations, where each of them have their differences
and advantages. Among the most popular ones are gaze plots and heatmaps,
that are both shown in Figure 4.2 or three dimensional scatter plots, that
can be seen in Figure |4.3|

Probably the most popular type of visualisation of the eye-tracking data is
heatmap - an attention map displaying how looking is distributed throughout
the scene. As it can be seen in Figure 4.2a), the warmth of the color indicates
which part of the stimulus is the most looked at. This means that the red
areas show the most viewed part of the image, where areas that are not
covered in any color are parts which was not viewed for a long time, if at all.
This method is suitable for both mapping focus of visual attention of multiple
people, as well as for visualisation of looking of a single person. However
heatmaps are often misinterpreted, which results in misleading findings, so
we should be careful when working with them [5].

Another way how to display the data is with gaze plots. These plots give
us information about locations, where a person is looking, but also show
us the order and time spent looking at various positions of the footage. In
Figure 4.2b| the size of the circle determines the time spent watching a given
location and the numbers in them indicate the sequence in which the positions
were seen [5].

"https://imotions.com /vr-simulations/
https://cognitive3d.com/
3https://www.tobiipro.com/product-listing/vr-analytics,/

14

4.2. Analysis of the provided data

(a) : A 2D heatmap [5]. (b) : A 2D gaze plot [5].

Figure 4.2: An illustrative visualisation of 2D heatmap and 2D gaze plot.

Three dimensional scatter plots are also used for visualisation of eye-
tracking data. The plot, as can be seen in Figure consist of multiple
points with various colors, that indicate how long the viewer spent looking in
given direction.

Figure 4.3: A 3D scatter plot, where visual attention is determined by color of
plotted points.

During the many analysis of the eye-tracking data that have been done,
various interesting discoveries were made. According to findings from [9]
people in the VR environment tend not to look in vertical dimension and
rather they look around in the horizontal one. Furthermore the degradation
of the video quality does not affect VR user’s selective attention, meaning
that whether the footage is compressed or not, people tend to look at the
same things.

Another way we can analyze the data is through determination of the
eye movements. Typically we look for saccadic eye movements - a motion

15

4. Omnidirectional video player with simultaneous eye-tracking

where the person’s gaze changes rapidly between two places. This either is a
response to some visual stimulus, but it can also occur without one [19].

4.3 Quality of Experience

Quality of experience (QoE) shows us how well a user perceives given app-
lication or service. For an omnidirectional footage the QoE is affected by
various factors such as the video quality, its degradation or freezing events
(stopping the video for a given time). These factors are different than those
for 2D footage, due to the differences between these types of content. For
omnidirectional VR footage we have more interactive freedom, as the user
determines in which way they want to look, but also there are problematics
such as cybersickness, that influence the user experience [9].

In the experiments, that would provide us the QoE for omnidirectional VR
footage, we usually ask the participants few questions about the video quality
or overall experience. Then they answer by typically rating the quality on
a scale - the scale can either have fixed points that we can choose from (as
shown in Figure [4.4a), or there can be a continuous rating bar (which can
be seen in Figure |4.4b). In both cases there is one side representing the
best experience and the other side indicating the worst one. The difference
between them is the freedom of choice, as the fixed bar allows us to only
choose from limited selection of choices, while on the continuous bar let’s us
to drag the point wherever we want it on the scale, which results into greater
freedom of choice.

O O 0O ® Of |! o—
’ Worst ‘ ’ Mediocre ‘ ’ Best ‘

’ Please rate the video quality. ‘ ’ Please rate the video quality. ‘

=

(a) : Fixed rating bar. (b) : Continuous rating bar.

Figure 4.4: Illustration of two typical rating bars used for QoE experiments.

The experiments, that took part in [9], used the integrated eye tracker in
VR and asking the participants for feedback to get results of the experiment.
The participants were watching multiple 4K videos, with various degree of
compression and the questions they were asked related to the quality of the
footage and user experience. According to their observations, the QoE of a
360° video would differ among the participants, as some had rated the quality
on average high, while some on average low. This means that some people
tend not to notice the differences made to the quality of the footage.

The negative effect on the QoE, that is caused by worsening the video
quality by compression of the footage, is stronger than linear. Another
unwanted impact on the QoE have the freezing events, as it takes just one

16

4.3. Quality of Experience

freezing event to ruin the user experience and drop the QoE to levels, that are
unacceptable for the users, which means that we need adequate computing
power in order not to spoil the user’s experience. It was stated that for better
QoE it would be better to increase the compression, if it result into less
freezing events, than keeping the footage in higher quality with higher risk
of those events. The videos, where the change in quality of the footage was
most noticeable, were the ones with higher motion activity [9].

In [3], it was also noted that for the omnidirectional footage, subjective
quality was influenced by the quality of the innermost part that is perceived
by fovea, rather than the peripheral quality.

For experiments, where we have static camera position and the user doesn’t
move, we don’t have to worry about cybersickness caused by compression or
freezing events, as those factors don’t affect it in these experiments [9].

The QoFE is very important factor and many researches revolved around
this problematics. One of them is [16], where they improved the QoE by
using saliency-based foveated compression of the video, which was mentioned
in previous chapter.

Among the cases, where the usage of the eye-tracking data is not advised
and could result into worsened QoE are for example laser eyes, where the
user would shoot rays from their eyes. If we would implement this, it might
result into worsened ability of reading or unwanted casting of the beams from
eyes, both being unpleasant for the user. Another bad case is using blinking
as an input, as we could run into an event called accidental activation, where
it is wrongly assumed, that the user blinked on purpose and it also leads to
worsening of the QoE [20].

17

18

Chapter 5
Other fields of use of eye-tracking

In this chapter I overview other fields of use, where tracking of the eye
movements in the VR environment have been implemented or used for research.
Among those fields are mentioned as an example medical research and video
gaming, where eye-tracking helped make progress in various ways.

5.1 Eye-tracking in medical research

One of the fields where eye-tracking in VR is being utilized is medicine. Here
various experiments were performed ranging across many of its branches,
from studying Parkinson’s disease to ophthalmology.

In [19] the research revolved around neurodegenerative disorders, as due to
the ageing of world’s population this becomes an important recent problem.
In this paper it was tested whether the HTC VIVE Pro Eye could be used in
research analyzing the assessment of saccadic eye movement, and the results
showed that this VR system is suitable for this type of research and could be
used in upcoming experiments.

One of the experiments about neurodegenerative disease, where eye-tracking
was used for research of Parkinson’s disease was described in [2I]. The
researchers here collected performance metrics and gaze analytics when the
participants were playing their game. The goal of their research was collecting
the eye data and head movements of people with Parkinson’s disease, and to
assess their cognitive function using a game in VR system.

Other medical area that takes advantage of the embedded eye trackers in
the VR headsets is ophthalmology. In [22] they reviewed the eye-tracking
in VR for ophthalmological purposes and tested the capability of the HTC
VIVE Pro Eye for potential online clinical applications. However it was found
that this headset has limitations for online usage, but the future headsets
might become a better fit for this application.

19

5. Other fields of use of eye-tracking

5.2 Video games and eye-tracking

Another field, where we can expect to see more eye-tracking applications are
video games. From social avatars to gaze-aware interface, video gaming might
greatly benefit from these eye-tracking implementations.

One of the examples where we can use the eye-tracking data are social
avatars - those are avatars controlled by the VR user. There we can use the
data to match the avatar’s and the user’s eye movements and blinking. This
makes the avatar more human-like and responsive and this implementation
will probably become popular in multiplayer video games, where there will
be an interaction between multiple human-controlled avatars [20].

tobiiEYETRACKING

Figure 5.1: Gaze-aware non-playable characters [20].

Another example, where we can use the data from the eye tracker, is creation
of gaze-aware non-player characters. This means that those characters will
know, when the user is looking at them and they can become more responsive,
just as shown in Figure where the blue circle indicates the user’s gaze
and above each of the characters is written, how they will respond when a
user looks at them. In case of this image, we can see that the character, that
the user is looking at, is supposed to be awkward, so it tries to dodge eye
contact with the user [20].

We can also use the eye-tracking data to hide the user interface like character
data or other elements, that would distract the user. This means that when
we are not looking at the position, where the user interface is located, it is
hidden and only shows up when the user looks there [23].

20

Chapter 6

Eye-tracking experiment and setting up a
demonstration task

This chapter focuses on the practical side of my thesis, which mainly consists
of the experiments with the VR headset. At the beginning I specify the
parameters of the workstation, where all the experiments will take place. In
the next section I describe the process of getting the eye-tracking data and
how I implemented it. I also focus on creation of demonstration task, that
would utilize eye-tracking.

6.1 System parameters

In this section I overview the used devices, as well as their parameters, namely
the specifications of the used computer and also parameters of the VR headset.

6.1.1 Computer system parameters

All experiments were performed on computer, with its most important pa-
rameters being mentioned in Table 6.1, Those parameters are the operating
system (OS), central computing unit (CPU), graphics computing unit (GPU)
and random access memory (RAM). The software that I use for the exper-
iments is the 2020.3.27f1 version of Unityl', with installed SteamVR? and
SRanipal®| packages.

(O] Windows 10 Pro

CPU Intel Core i7-4790
GPU | NVIDIA GeForce RTX 2060
RAM 16 GB

Table 6.1: Selected system parameters.

"https://unity3d.com/unity /whats-new/2020.3.27
Zhttps://assetstore.unity.com/packages/tools/integration /steamvr-plugin-32647
3https://developer.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/

21

6. Eye-tracking experiment and setting up a demonstration task

6.1.2 HTC VIVE Pro Eye

The VR headset used in my experiments is VIVE Pro Eye, developed by
HTC (shown in Figure . The special thing about this headset is that it is
equipped with multiple eye-tracking sensors, which bring new possibilities
into the VR world. Those sensors were developed by Tobiﬁ and work on
infrared basis. In total, there are nine infrared light-emitting diodes and one
infrared camera per eye, which then provide us data about eye movements
and gaze direction [19].

Figure 6.1: The HTC VIVE Pro Eye headset [24].

The data that the eye tracker provides are timestamp, gaze origin and
direction, pupil size and position and eye openness. The eye tracker’s binocular
gaze data output frequency is 120 Hz, the accuracy within FOV of 20° is
between 0.5° and 1.1°, and the rendered FOV is 110° [25]. However the visible
FOV is 98° - this means that not all of the rendered footage is visible and is
covered by parts of the headset [26]. Another parameters of the headset are
stated in Table and the minimum required computer specifications are
present in Table 6.3

According to [27] the best case of capturing the gaze changes, for the HTC
VIVE Pro Eye VR headset, is for the latency of 0 ms, where the transposition
of the gaze direction is captured immediately, while the worst latency would
be 8.3 ms, where the change of gaze direction occurs right after the last
sampling of the eye tracker.

“https://vr.tobii.com/integrations/htc-vive-pro-eye/

22

Display

Resolution of the display

6.2. Setting up an eye-tracking experiment

Dual OLED 3.5"

1440 by 1600 pixels per eye
(2880 by 1600 pixels total)

Display refresh rate 90 Hz

Sensors

Connections

SteamVR, Tracking
G-sensor

Gyroscope
Proximity

Eye Comfort Setting
Eye tracker

USB-C 3.0, DP 1.2,
Bluetooth

Supported room scale 5 times 5 meters

Table 6.2: Parameters of HTC VIVE Pro Eye, all taken from [25].

(O]

CPU

GPU

RAM

Video output

Windows 7/8.1/10/11

Intel Core i5-4590 or
AMD FX 8350 equivalent

NVIDIA GeForce GTX 970 or
AMD Radeon R9 290 equivalent

4 GB

DisplayPort 1.2 or newer

Table 6.3: Minimum computer requirements for HTC VIVE Pro Eye, taken

from [25].

6.2 Setting up an eye-tracking experiment

To access the data, I am using HTC’s interface called SRanipal SDK, available
from VIVE’s developer website’. The SDK is compatible with Unity and
Unreal - in my thesis I will only use the Unity program.

First step, when setting up the VR system for eye-tracking, is installing
application called SR, Runtime, as it enables us to track the eye movements.
After starting the application, we can check the computer’s notification tray,
where a status icon should appear. Depending on the color of shown in the

"Download available at https://developer.vive.com /resources/downloads/

23

6. Eye-tracking experiment and setting up a demonstration task

icon, we can find out the status of the eye-tracking device - the meaning of
the colors is shown in Table 16.4.

Color ‘ Status

The application is launched but

Black the eye-tracking is unavailable

Orange Eye-tracking is in idle mode

Green | Eye-tracking data are being retrieved

Table 6.4: Status of the eye-tracker dependent on the shown color.

In Unity we start with creation of 3D project, which provides us three-
dimensional workspace area, where the experiments will take part. To build an
eye-tracking plugin we have to import the SteamVR and SRanipal packages
into the project. This is done by selecting the Asset folder, where than
we choose to Import Package, and then select the Custom package option
and choose the SteamVR and then we can follow the same steps to import
the SRanipal plugin. The usage of VR in Unity is then possible thanks to
SteamVR, while SRanipal enables us to work with eye-tracking data.

In order to enable functionality of eye-tracking in the Unity project, we
have to add SRanipal Eye Framework to the Unity scene by dragging it
into the scene hierarchy from the SRanipal prefab folder. We then have to
configure the Framework Settings by checking "Enable Eye" and "Enable Eye
Data Callback" [I8]. After that our Unity project is ready for experiments
with eye-tracking.

6.3 Omnidirectional video player in Unity

To create a video player that is able to replay omnidirectional footage in
Unity, I followed steps from [I1]. This allows me to use render textures as a
Skybox material, meaning that the video will be projected as the sky.

The steps when creating the omnidirectional video player, if we have some
360° footage that can be then replayed (in my case it was video from [10]),
are according to [11] following

® Creation of SkyBox material, which is done by creating a material in
Unity, and then in the inspector setting the shader to Skybox panoramic

® Creating a render texture, as it is the texture that the Skybox will use
to display the video.

® Changing the parameter of the texture is necessary, in order to correspond
with the resolution of the used video

24

6.4. Accessing the eye-tracking data

Bk —0e
<

Figure 6.2: A screenshot of the Unity environment with working omnidirectional
video player.

® Applying the texture to the Skybox material

® Creation of a GameObject in Unity, called VideoPlayer, where component
called Video Player is added afterwards

B Inserting the video and the render texture into video player

After this, the video player is ready to display our video. If we want to
change the video for another, we need to add it into the video player. However
if the resolution of the video is different, than the resolution of the previously
viewed one, changes in texture are needed, in order to display the video

properly.
6.4 Accessing the eye-tracking data

To access the eye-tracking data, I wrote a C# script that I attached in Unity
to the CameraRig prefab, which is available from the SteamVR package. The
script was inspired by parts of code from [19] and also uses segments of code
from [I8] and [28]. The logic behind the process of obtaining the gaze data is
shown in Figure [6.3l

Before the start of any of my experiments, I first need to call function
LaunchEyeCalibration() that starts the process of calibration of the eye
movements and gaze direction in separate program. This function is called in
the Start () function, which means that it will only happen at the start of
the experiment. There the user calibrates the eye-tracking sensors by looking
at and following a blue dot,that moves in various directions.

As mentioned in documentation for the SRanipal SDK®, before the cali-

6 Available for download at https://developer-express.vive.com/resources/vive-sense/eye-
and-facial-tracking-sdk /documentation/

25

Eye tracker’s
calibration

EyeData

Next update

NO

Register
EyeData
Callback

Gaze ray
in local
coordinates

Transform
Direction()

Gaze ray
in world
coordinates

|

.ToString()
and saving
the data
to .txt

callback

26

6. Eye-tracking experiment and setting up a demonstration task

YES

Unregister
EyeData
Callback

END

Figure 6.3: Process of obtaining the eye-tracking data in Unity.

6.4. Accessing the eye-tracking data

bration begins, the program can ask the user to adjust the position of the
headset on their head by moving the headset itself. The program can also
tell the user to fix the interpupillary distance value (distance between the
center of the pupils) by rotation of the knob, that is located on the side of
the headset.

In the Update() function I check the functionality of the VR system’s
eye-tracking, and I also register the EyeData callback and unregister it, when
the callback is completed or the user quits the application [I8§].

The EyeData callback however runs on separate thread, as Unity is not
thread-safe, meaning that we cannot call any UnityEngine API (Application
Programming Interface) from within the callback thread. In the script this
means that we have to setup internal class MonoPInvokeCallbackAttribute
that inherits from the Attribute class, which is part of the System name-
space. This is necessary, as we need this class for IL2ZCPP scripting backend
support [18].

Here I, however, run into a problem - it is not possible to call any functions
from Untiy API in the MonoPInvokeCallbackAttribute [I8]. This is rather
a big complication for me, as this would be the only way to get the wanted
data at maximal possible frequency, but the fact, that certain functions
couldn’t be called, makes obtaining vectors showing where user is looking a
challenging task. The SRanipal SDK lacks any functions that would help me
get the data in the Unity’s world coordinate system, so I have to get more
creative. I decided to ignore the fact, that I will acquire the data at lower
frequency, as for my particular experiment it is not that important, because
I will still obtain the gaze data more often, than the frame changes.

To obtain the wanted data, I was inspired by code shown in [29], so I used
function SRanipal_Eye.GetGazeRay (), with out GazeOriginCombinedLocal
and out GazeDirectionCombinedLocal being the most important parame-
ters for me. This gives me information about gaze ray in local coordinate
system, meaning it is linked to users current rotation, so it is related to
current screen, seen by the user. I then need to transform it from the local
coordinates into the world ones, so that it consists of vectors in the Unity
world, that are suitable for data analysis purposes. The local coordinates
are useful for non-analytical work, like foveated compression or for observa-
tion of saccades, but those data lack information about the rotation of the
user and where they are located in the world coordinates, which are neces-
sary for me. The transformation then happens thanks to a Unity function
Transform.TransformDirection() that converts the vector from the local
to the world coordinate system.

When converting the obtained data, I have to look out for a one small,
but very important detail. The data are Vector3 structure, which rounds
numbers to one decimal, when function ToString() is applied. This however
makes the eye-tracking data very imprecise, which means that I had to work
my way around this problem. The solution is in overloading the ToString()
function with parameter "F2" that makes the function convert the data to
String, while the data will be rounded to two decimal places.

27

6. Eye-tracking experiment and setting up a demonstration task

6.5 Processing obtained data

The processing of the acquired data was made in the MATLAB environment.
All the data were stored in text files, where I saved them using scripts in
Unity. Those data had already been pre-processed, clearing all unwanted
characters like parentheses, making the data ready to be inserted into MATLAB.

In MATLAB, the vectors, showing me where the user was looking at given
time, were loaded into a matrix, where each row represented one of those
vectors. I then separated the x, y and z coordinates into separate arrays, and
I also loaded the video, using VideoReader function, so that I can plot the
eye-tracking data on it.

Firstly, I decided to create a scatter plot, where the colors of the points
would determine how long a user spent looking there. The code that I used
was inspired by [30], and was adjusted for my particular needs. The number
telling me how much time user’s gaze was at given location, was obtained
by hist function. Before using this function, I needed to know, how many
unique rows there are in my data, which I got by using unique () function
with parameters MAT representing the matrix and ’rows’.

(a) : A view. (b) : A second view.

Figure 6.4: Scatter plot made from acquired data.

To showcase the omnidirectional footage as a 2D one, I use equirectangular
projection. To visualize the obtained data this way, I first need to change
the Cartesian coordinates into spherical ones. This is done by using following
formulas

Y
z

¢ = arctan

© = arctan <\/17> .
T

After that I used equirectangular projection to convert the spherical coor-
dinates into two dimensional ones that are suitable for viewing a spherical
footage on flat projecting screen. To do this, I used the equations (6.2).

(6.1)

28

6.5. Processing obtained data

-0
S
g (6.2)
y_T/Z

However, in my case, all the vectors are normalised, so that the radius r is
constantly equal to one, and so the equation can be simplified to

)
o2

7T¢ (6.3)
y= 7/2

A difficulty, that I faced, was plotting of the data, while using the mentioned
equirectangular projection. In MATLAB, the coordinate system, that is present
while plotting on an image, which is shown below of the plot, can be seen in
Figure 6.5l In the same figure, I also show, where I put the starting point,
that has fixed position at half of the maximal width and half of the maximal
height. The values of height and width of the video are present in video object,
that has been loaded to MATLAB using VideoReader function. The position
of the actual gaze is then obtained by Equation (6.4), where max height and
max width values are needed, as well as values = and y, that I calculated
using previously mentioned Equation (6.3)). After computing, we obtain this
position at (&width, Eheight), Where the point’s position is then moved, as it can
be seen in the mentioned figure.

max width max width
Ewidth = 5 —x- 5
. . (6.4)
max height max height
Eheight = 5 —y- 5

The reason, why I plotted the data this way, is because the x and y values
were both in range between —1 and +1, and so starting in the middle of
the image made sense, where both of the values —1 and 1 would show to
one of the borders of the equirectangulary projected image. I also tested,
whether this is the right method, on suited data that I created by looking
mainly on the person that was right in front of me and then I followed edges
of the building, present in the video. I then created a heatmap, by again
customising the code from [30] and using scatter plot, for visualisation. The
result can be seen in Figure 6.6, where it is clear, that the purposed method
is convenient.

Another visualisation of the data was created by plotting them on each
frame of the video, so that it showcases where the user is looking at given
time. To do that, I use function videofig from [31], as this allows me to
merge the frames into one figure, that also can be played as video. This
figure consists of all the frames of the video, that I used for my experiments,

29

6. Eye-tracking experiment and setting up a demonstration task

max width

Swidth 2 max width
= Width
Actual position
gheight
max height
2

Starting position

max height ¢ -------------------~-~----—-

Height

Figure 6.5: Logic behind plotting of the gaze data, with dashed line showing
the image’s borders.

BORrEEREBERERREREN
NWhODNDOOSP,NWSEGD

[
o P

PNWAEOD - D

Figure 6.6: Heatmap created from test data, for checking the methodology.

as well as a circle, that showcases where the user is looking at given frame.
Here I came across a challenge, whether I should plot multiple circles on
one frame (shown in Figure [6.7a), as the sampling rate of the eye tracker
is higher than how many frames per second there are, or if I should repeat
this frame multiple times, while plotting always only one circle (as shown in

Figure |6.7D)).

30

6.5. Processing obtained data

(a) : Multiple circles per frame. (b) : One circle per frame.

Figure 6.7: Difference between plotting multiple or one circle, showing current
gaze, at given frame.

For Figure it should be noted, that it actually contains three circles,
blue, red and orange one, while the orange and red overlap, meaning that
the user’s gaze was at those two times at the same position. As this actually
happens most of the time, I decided to use the ’one circle per frame’ option,
and for the video playback I configured it, so that it shows more frames per
second to match the speed of the playback of the original video.

Repeating a given frame and plotting the user’s gaze was done in separate
function redraw, where the input parameters were

® frame - particular frame, for which I want to plot the multiple gaze
locations

B video object - loaded with MATLAB function VideoReader, necessary as
this allows me to display the video frame, and also provides various data
about the video

® 1 and y coordinates changes - they carry the information about the user’s
gaze position, they are in range [—1,+1] and determine the change on
given axes

® time - indicates when the gaze coordinates were captured, used for
synchronisation of the gaze and video.

The function is programmed, so that for every set of coordinates, I check
to which frame they belong to. This is done by division of the time, when the
data were captured, by inverse value of the video’s frame rate. This calculated
value was then rounded towards positive infinity, using ceil function and as
a result I obtained the responding number of the frame.

When we have the correct video frame, then the gaze is displayed in form of
a circle placed on top of it. This process repeats for every set of coordinates,
until all the eye-tracking data aren’t plotted, and as a result we get set of
multiple figures with visible current gaze, which can also be played as a video.

31

6. Eye-tracking experiment and setting up a demonstration task

6.6 Demonstration task

Merging all the information, that I mentioned in the previous sections of this
chapter, lead up to a demonstration task, that can easily be reproduced. The
task consists of eye-tracking experiment that focuses on gaze position of user
who watches an omnidirectional video, that has been compressed. The whole
process is shown in Figure |6.8|

Original
video

FFmpeg

CRF 17 CRF 25 CRF 29

Unity

Experiment

Gaze data

Data
analysis

Figure 6.8: Process of demonstration task.

The video, which I used, was in .mp4 format, which is one of the most
common containers both for normal and omnidirectional videos. For the
demonstration task, I chose to work with this format only, because it is
probably the one, that most people will come across. List of some of the most

32

6.6. Demonstration task

popular video formats used for 360 footage are mentioned in Table 6.5

Video format ‘ Compression codecs

.mp4 H.265, H.264
.mkv H.265, H.264, VP9
.webm VP9, VP8

Table 6.5: Common formats used for omnidirectional footage according to [32],
and their specifications.

If we don’t have the video, which we would like to use, in this format, it
can easily be converted using FFmpeg application, where in Listing an
example code for conversion between .mkv and .mp4 can be seen. Here the
video doesn’t have to be encoded and is just simply copied into different
container.

Llffmpeg -i video.mkv -codec copy video.mp4

Listing 6.1: Conversion of .mkv file into .mp4 one.

As we have our wanted video in MP4 container, we can start working
with it. In my demonstration task I chose to encode the video, using H.264
codec with CRFs of 17, 25 and 29. This provides me the same video in three
different qualities, and the goal should then be to subjectively compare the
quality by the VR user, while simultaneously their gaze would be tracked. In
Figure it can be seen the difference, between uncompressed video, and
video, that has been encoded with CRF 29 at medium speed.

Figure 6.9: Original video (left) vs H.264 CRF 29 compressed video (right).

During the demonstration task, the eye-tracking are being collected, and
their analysis is done, after all the experiments are over. Here, difference
between user’s behaviour for each compression can be seen, as they will watch
the same video three times, and when evaluating the data, the researcher
should keep this in their mind.

33

6. Eye-tracking experiment and setting up a demonstration task

The analysis can be done by using the processes, that were mentioned in
Section 6.5. This means that heatmaps can be created, so we can see, where
the highest visual acuity could be spotted. Another way can be done by
creating gaze plot, which we would produce by plotting the gaze location on
the video.

After the video has ended, the participant is asked to rate their QoE. This
is done by selecting one of the five cubes in Unity scene, where each one of
them represent value form one to five, one being the best and five the worst.
The cubes appear after the video is over, and their selection is done thanks
to the knowledge of which object is currently in participants focus. There I
used code inspired by [28], where function SRanipal_Eye.Focus() is utilized.
Here as a return value, I receive information about gaze ray’s collision with
a gameObject.

Figure 6.10: Cubes in Unity scene, working as a fixed rating bar.

The actual scene with the cubes displayed can be seen in Figure The
way as the cubes are shown in this figure however isn’t optimal, and if wanted
to be implemented in a real experiments, I suggest that the researchers should
try to make this interface more user-friendly. The way as it is exhibited here
is just showcasing possible implementation and doesn’t follow any guidelines
for interface design. Also the code is only showcasing how to obtain the given
data, where the researcher can either just get strings containing the name of
the current focused gameObject for every update, or further implementation
can be done, by using bool obtained by checking if two strings are equal.
The first mentioned way needs to be processed afterwards, while the second
one enables us to process the data in the script.

34

6.7. Discussion

6.7 Discussion

In this chapter the creation of suitable environment for eye-tracking ex-
periments was showcased. I integrated eye-tracking into omnidirectional
video player pipeline in Unity, where the process of obtaining the data is
secured by a script attached to CameraRig. In the script I utilized function
SRanipal_Eye.GetGazeRay (), which provided me vectors of the gaze ray in
local coordinate system, that I then converted into world coordinates. Those
data then were analysed and I created various plots, in order to showcase the
differences between them. I then presented demonstration task, that can be
reproduced and adjusted for the needs of future works. The further experi-
ments can for example focus on compression approaches, that are mentioned
in [I3], where methods from various papers have been summarised.

35

36

Chapter 7

Conclusion

In this work I analyzed several eye-tracking-based techniques in VR systems
and their state of the art. At the beginning I wrote about fundamentals, that
revolve around this subject, where functionality of both VR and its embedded
eye tracker were described. I also mentioned the way an omnidirectional
footage can be viewed and how equirectangular projection affects an image.

Foveated compression was another covered field in this thesis. In the
chapter, where I reviewed this issue, I described its connection to HVS, how
the foveated footage is created, how foveation techniques affect the way the
footage is compressed, and also how latency can negatively affect this whole
process.

Then I focused on omnidirectional video player, as an suitable environment
for eye-tracking experiments, where the relationship between the eye-tracking
and the video player was described. I also mentioned various types of
visualisations of the eye-tracking data, namely heatmaps, gaze and scatter
plots. Another covered issue revolved around QoE, where various influences
that affect the user experience were stated.

I also overviewed some other fields, where the eye-tracking in VR has been
utilized. One of them was medical research, where the researchers used those
techniques for experiments in ophthalmology or in studies about Parkinson’s
disease. I also focused on video gaming, as it is another sector, where eye-
tracking is being used, whether it is by creation of gaze-aware non-player
character, or gaze-responsive user interface.

In the practical part of the thesis, I focused on the experiments, that
I performed. Among them was setting up the Unity environment, so that the
eye-tracking tasks can be performed, as well as creation of a video player, that
is capable of replaying omnidirectional footage. I described how I accessed
the eye-tracking data and how I dealt with issues, that occurred. To acquire
the data I used function called SRanipal_Eye.GetGazeRay (), that allowed
me to access the ray of user’s gaze in local coordinate system, which I then
converted into world coordinates. Processing of the obtained data was then
explained, and as an outcome I created a scatter plot, as well as a heatmap
from the acquired data. In all two dimensional plots I used equirectangular
projection, as it is probably the best one for visualisation of omnidirectional
data. The issue revolving around plotting of those data on top of an image in

37

7. Conclusion

MATLAB environment was also described. I further created a series of figures,
that can be replayed as a video, where I plotted the gaze data for each frame.
Then I described a demonstration task, which consists of watching multiple
videos, that have various degrees of compression. The goal of this task is to
track the user’s gaze, and also to obtain a review of the user’s experience,
which is acquired by selection of one of the cubes in Unity, using eye-tracking.

In future work further research into the VR and eye-tracking techniques
would be necessary, as it is modern and rapidly developing field. Study on
actual subjects can also be arranged, using the presented demonstration task,
that would be adjusted for its specific needs. The field of the study can range
from implementation of foveated compression to medical research.

38

Appendix A
Bibliography

Y. Jin, T. Goodall, A. Patney, R. Webb, and A. C. Bovik, “A foveated
video quality assessment model using space-variant natural scene statis-

tics,” in 2021 IEEE International Conference on Image Processing
(ICIP), 2021. doi: 10.1109/1CIP42928.2021.9506032 pp. 1419-1423.

H. T. T. Tran, D. V. Nguyen, N. P. Ngoc, T. H. Hoang, T. T. Huong,
and T. C. Thang, “Impacts of retina-related zones on quality perception
of omnidirectional image,” IEFE Access, vol. 7, pp. 166 997-167 009,
2019. doi: 10.1109/ACCESS.2019.2953983

Y. Jin, M. Chen, T. Goodall, A. Patney, and A. C. Bovik, “Subjective
and objective quality assessment of 2d and 3d foveated video compression
in virtual reality,” IEEFE Transactions on Image Processing, vol. 30, pp.
5905-5919, 2021. doi: 10.1109/TTP.2021.3087322

B. T. Carter and S. G. Luke, “Best practices in eye tracking
research,” International Journal of Psychophysiology, vol. 155, pp. 49-62,
Sep. 2020. doi: 10.1016/j.ijpsycho.2020.05.010. [Online]. Available:
https://doi.org/10.1016 /j.ijpsycho.2020.05.010

Tobii, “How to work with heat maps and gaze plots - tobii pro,”

Sep 2015, accessed on 19.1.2022. [Online]. Available: |https://www|
tobiipro.com /learn-and-support /learn /steps-in-an-eye-tracking-study /
interpret /working-with-heat-maps-and-gaze-plots/

7

I. Wohlgenannt, A. Simons, and S. Stieglitz, “Virtual reality,
Business € Information Systems FEngineering, vol. 62, no. 5, pp.
455-461, Jul. 2020. doi: 10.1007/s12599-020-00658-9. [Online]. Available:
https://doi.org/10.1007/s12599-020-00658-9

Z. Chen, Y. Li, and Y. Zhang, “Recent advances in omnidirectional video
coding for virtual reality: Projection and evaluation,” Signal Processing,
vol. 146, pp. 66-78, May 2018. doi: 10.1016/j.sigpro.2018.01.004.
[Online|. Available: |https://doi.org/10.1016/j.sigpro.2018.01.004

V. Clay, P. Konig, and S. U. Koénig, “Eye tracking in virtual
reality,” Journal of FEye Movement Research, vol. 12, mno. 1,

39

https://doi.org/10.1016/j.ijpsycho.2020.05.010
https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/interpret/working-with-heat-maps-and-gaze-plots/
https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/interpret/working-with-heat-maps-and-gaze-plots/
https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/interpret/working-with-heat-maps-and-gaze-plots/
https://doi.org/10.1007/s12599-020-00658-9
https://doi.org/10.1016/j.sigpro.2018.01.004

A. Bibliography

[10]

[17]

[18]

[19]

Apr. 2019. doi: 10.16910/jemr.12.1.3. [Online]. Available: |https:!
J/dot.org/10.16910 /jemr.12.1.3

A. Kasteren, K. Brunnstrém, J. Hedlund, and C. Snijders, “Quality
of experience of 360 video — subjective and eye-tracking assessment of

encoding and freezing distortions,” Multimedia Tools and Applications,
pp. 1-32, 02 2022. doi: 10.1007/s11042-022-12065-1

Mettle, “Ayutthaya - easy tripod paint: 360/vr master se-
ries: Free download,” accessed on 20.3.2022. [Online]. Avail-
able: |https://vimeo.com/2144017127embedded=true&source=
video_title&samp;owner=3032121

Unity, “Play 360 video with a skybox in unity,” accessed
on 20.3.2022. [Online|. Available: |https://learn.unity.com/tutorial/
play-360-video-with-a-skybox-in-unity#

G. He, J. Hu, H. Jiang, and Y. Li, “Scalable video coding based
on user’s view for real-time virtual reality applications,” IEEE Com-
munications Letters, vol. 22, no. 1, pp. 25-28, 2018. doi: 10.1109/L-
COMM.2017.2764021

M. Xu, C. Li, S. Zhang, and P. L. Callet, “State-of-the-art in 360°
video/image processing: Perception, assessment and compression,” IEEE

Journal of Selected Topics in Signal Processing, vol. 14, no. 1, pp. 526,
2020. doi: 10.1109/JSTSP.2020.2966864

R. Albert, A. Patney, D. Luebke, and J. Kim, “Latency requirements
for foveated rendering in virtual reality,” ACM Transactions on Applied
Perception (TAP), vol. 14, no. 4, pp. 1-13, 2017.

Tobii, “The eye,” accessed on 19.1.2022. [Online]. Available:
https://vr.tobii.com/sdk/learn/eye-behavior /the-eye/

A. Polakovi¢, R. Vargic, G. Rozinaj, and G.-M. Muntean, “An approach
to video compression using saliency based foveation,” in 2018 Interna-
tional Symposium ELMAR, 2018. doi: 10.23919/ELMAR.2018.8534631
pp- 169-172.

Tobii, “Visual angles,” accessed on 6.1.2022. [Online]. Available:
https://vr.tobii.com/sdk/learn/eye-behavior /visual-angles/

Corvus, “Vive eye tracking at 120hz,” Feb 2021, accessed
on 19.1.2022. [Online|. Available: |https://forum.vive.com/topic/
9341-vive-eye-tracking-at-120hz/

Y. Imaoka, A. Flury, and E. D. de Bruin, “Assessing saccadic eye
movements with head-mounted display virtual reality technology,”
Frontiers in Psychiatry, vol. 11, 2020. doi: 10.3389/fpsyt.2020.572938.
[Online]. Available: https://www.frontiersin.org/article/10.3389 /fpsyt|
2020.572938

40

https://doi.org/10.16910/jemr.12.1.3
https://doi.org/10.16910/jemr.12.1.3
https://vimeo.com/214401712?embedded=true&source=video_title&owner=3032121
https://vimeo.com/214401712?embedded=true&source=video_title&owner=3032121
https://learn.unity.com/tutorial/play-360-video-with-a-skybox-in-unity#
https://learn.unity.com/tutorial/play-360-video-with-a-skybox-in-unity#
https://vr.tobii.com/sdk/learn/eye-behavior/the-eye/
https://vr.tobii.com/sdk/learn/eye-behavior/visual-angles/
https://forum.vive.com/topic/9341-vive-eye-tracking-at-120hz/
https://forum.vive.com/topic/9341-vive-eye-tracking-at-120hz/
https://www.frontiersin.org/article/10.3389/fpsyt.2020.572938
https://www.frontiersin.org/article/10.3389/fpsyt.2020.572938

A. Bibliography

[20] Tobii, “Recommendations,” accessed on 6.3.2022. [Online]. Avail-
able: |https://vr.tobii.com/sdk/learn/interaction-design/use-cases)
recommendations/|

[21] G. Adlakha, S. Singh, A. Patil, K. Nuthalapati, P. Khandve, P. Bhat-
tacharyya, S. Manoharan, S. M. Santhanam, I. J. Lachica, J. M. Finley,
and V. Lympouridis, “Development of a virtual reality assessment of
visuospatial function and oculomotor control,” in 2021 IEEE Conference
on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW), 2021. doi: 10.1109/VRW52623.2021.00259 pp. 753-754.

[22] A. Sipatchin, S. Wahl, and K. Rifai, “Eye-tracking for clinical oph-
thalmology with virtual reality (vr): A case study of the htc vive pro
eye’s usability,” Healthcare, vol. 9, p. 180, 02 2021. doi: 10.3390/health-
care9020180

[23] Tobii, “How to use eye tracking in games,” Aug 2019, accessed on
6.3.2022. [Online]. Available: https://gaming.tobii.com/onboardingj/
lhow-to-use-eyetracking-in-games /|

[24] ——, “Htc vive pro eye,” accessed on 6.1.2022. [Online]. Available:
lhttps://vr.tobii.com/sdk/products/htc-vive-pro-eye/|

[25] HTC, “Vive pro eye specs: Vive united states,” accessed on 1.3.2022.
[Online]. Available: https://www.vive.com/us/product/vive-pro-eye/

[26] VRcompare, “Htc vive pro eye: Full specification - vrcompare,” accessed
on 1.3.2022. [Online]. Available: |https://vr-compare.com/headset /

tcviveproeye

[27] Y. Jin, M. Chen, T. G. Bell, Z. Wan, and A. Bovik, “Study of 2d
foveated video quality in virtual reality,” in Applications of Digital Image
Processing XLIII, vol. 11510. International Society for Optics and
Photonics, 2020, p. 1151007.

[28] Corvus, “How to detect object that is being focused 7”7 Mar 2022,
accessed on 9.5.2022. [Online]. Available: https://forum.vive.com/topic/
19142-how-to-detect-object-that-is-being-focused /|

[29] HTC, “Assets/vivesr/scripts/eye/sample/sranipal avatareyesample.cs,”
accessed on 9.5.2022. [Online]. Available: https
/gitup.uni-potsdam.de/mm__vr/vr-klassenzimmer /blob/
a5132a7dd0a97b0ef43¢2a82991210dae21ed7d1/Assets/ ViveSR /Scripts
[Eye/Sample/SRanipal__AvatarEyeSample.cs

[30] J. Doke, “Coloring scatterplots based on frequency of
point occurrence in input,” accessed on 4.5.2022. [On-
line]. Available: |https://www.mathworks.com/matlabcentral /answers

[28849-coloring-scatterplots-based-on-frequency-of-point-occurrence-in-input|

41

https://vr.tobii.com/sdk/learn/interaction-design/use-cases/recommendations/
https://vr.tobii.com/sdk/learn/interaction-design/use-cases/recommendations/
https://gaming.tobii.com/onboarding/how-to-use-eyetracking-in-games/
https://gaming.tobii.com/onboarding/how-to-use-eyetracking-in-games/
https://vr.tobii.com/sdk/products/htc-vive-pro-eye/
https://www.vive.com/us/product/vive-pro-eye/specs/
https://www.vive.com/us/product/vive-pro-eye/specs/
https://vr-compare.com/headset/htcviveproeye
https://vr-compare.com/headset/htcviveproeye
https://forum.vive.com/topic/9142-how-to-detect-object-that-is-being-focused/
https://forum.vive.com/topic/9142-how-to-detect-object-that-is-being-focused/
https://gitup.uni-potsdam.de/mm_vr/vr-klassenzimmer/blob/a5132a7dd0a97b0ef43e2a82991210dae21ed7d1/Assets/ViveSR/Scripts/Eye/Sample/SRanipal_AvatarEyeSample.cs
https://gitup.uni-potsdam.de/mm_vr/vr-klassenzimmer/blob/a5132a7dd0a97b0ef43e2a82991210dae21ed7d1/Assets/ViveSR/Scripts/Eye/Sample/SRanipal_AvatarEyeSample.cs
https://gitup.uni-potsdam.de/mm_vr/vr-klassenzimmer/blob/a5132a7dd0a97b0ef43e2a82991210dae21ed7d1/Assets/ViveSR/Scripts/Eye/Sample/SRanipal_AvatarEyeSample.cs
https://gitup.uni-potsdam.de/mm_vr/vr-klassenzimmer/blob/a5132a7dd0a97b0ef43e2a82991210dae21ed7d1/Assets/ViveSR/Scripts/Eye/Sample/SRanipal_AvatarEyeSample.cs
https://www.mathworks.com/matlabcentral/answers/28849-coloring-scatterplots-based-on-frequency-of-point-occurrence-in-input
https://www.mathworks.com/matlabcentral/answers/28849-coloring-scatterplots-based-on-frequency-of-point-occurrence-in-input

A. Bibliography

[31] J. Henriques, “Figure to play and analyze videos with
custom plots on top,” accessed on 3.4.2022. [Online].
Available: |https://www.mathworks.com/matlabcentral/fileexchange
|29544-figure-to-play-and-analyze-videos-with-custom-plots-on-top|

[32] B. Miller, “360 video format: Video audio formats for 360 vr
video,” Dec 2018, accessed on 13.5.2022. [Online]. Available:
/ /www.macxdvd.com/online-video/360-video-format-vr-audio.htm|

42

https://www.mathworks.com/matlabcentral/fileexchange/29544-figure-to-play-and-analyze-videos-with-custom-plots-on-top
https://www.mathworks.com/matlabcentral/fileexchange/29544-figure-to-play-and-analyze-videos-with-custom-plots-on-top
https://www.macxdvd.com/online-video/360-video-format-vr-audio.htm
https://www.macxdvd.com/online-video/360-video-format-vr-audio.htm

Appendix B

List of electronic attachments

The electronic attachments are following

8 Eye.cs - code written in C#, used for data acquisition and preprocessing,
so that the data could be easily worked with in MATLAB. The creation
and basic work with cubes, used in demonstration task, is also present
in this code.

B scatter.m - creation of three and two dimensional scatter plots was done
thanks to this MATLAB code, where for the 2D plot I used equirectangular
projection

® video.m - MATLAB code, where usage of function Videofig is utilized,
and I created series of figures with gaze position being present on top of
the current video frame. Equirectangular projection was again used for
2D plotting.

43

	Introduction
	VR related fundamentals
	Virtual reality
	Eye-tracking in VR
	Viewing an omnidirectional footage

	Foveated compression
	Human visual system
	Compression of an omnidirectional footage
	Impacts of latency

	Omnidirectional video player with simultaneous eye-tracking
	Creation of the video player
	Analysis of the provided data
	Quality of Experience

	Other fields of use of eye-tracking
	Eye-tracking in medical research
	Video games and eye-tracking

	Eye-tracking experiment and setting up a demonstration task
	System parameters
	Computer system parameters
	HTC VIVE Pro Eye

	Setting up an eye-tracking experiment
	Omnidirectional video player in Unity
	Accessing the eye-tracking data
	Processing obtained data
	Demonstration task
	Discussion

	Conclusion
	Bibliography
	List of electronic attachments

