
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Estimating Sparse Parameterization of Neural
Networks

Metody odhadu řídké parametrizace neuronových
sítí

Master’s Thesis

Author: Bc. Lukáš Kulička

Supervisor: doc. Ing. Václav Šmídl, Ph.D.

Consultant: Ing. Milan Papež, Ph.D.

Academic year: 2021/2022

Acknowledgment:
I would like to thank doc. Ing. Václav Šmídl, Ph.D. for his expert guidance, endless support and patience
he has shared with me over the last three years. It was a privilege to study and work under his supervision.
I would also like to thank Ing. Milan Papež, Ph.D. for his consultancy knowledge and advice especially
in the programming part.
Last but not least, let me thank my parents, Mgr. Jiří Kulička, Ph.D. and Simona Kuličková, my girlfriend
Lucie Kadrmasová and my friends for their never ending support during my studies at the Faculty of
Nuclear Sciences and Physical Engineering, CTU in Prague.

Author’s declaration:
I declare that this Master’s Thesis is entirely my own work and I have listed all the used sources in the
bibliography.

Prague, May 2, 2022 Bc. Lukáš Kulička

Název práce:

Metody odhadu řídké parametrizace neuronových sítí

Autor: Bc. Lukáš Kulička

Program: Aplikované matematicko-stochastické metody

Druh práce: Diplomová práce

Vedoucí práce: doc. Ing. Václav Šmídl, Ph.D.
ÚTIA Akademie věd ČR, Pod vodárenskou věží 4, 180 00 Praha 8

Konzultant: Ing. Milan Papež, Ph.D.
Katedra počítačů FEL ČVUT v Praze, Karlovo náměstí 13, 121 35 Praha 2

Abstrakt: Diplomová práce se zabývá metodami odhadu řídké parametrizace neuronových sítí, jimiž
je možné prořezávat přeparametrizované neuronové sítě a snížit tak jejich komplexitu ve snaze odhalit
pouze relevantní parametry, čímž lze zvýšit celkovou interpretabilitu modelu. V rámci práce jsou popsány
klasické a variační způsoby, jakými lze tyto parametrizace odhadovat. K tomu převážně poslouží přehled
speciálních apriorních distribucí, zde označovaných jako utahující se apriorna, díky kterým dokážeme
do modelu vnést informaci o preferenci řídké parametrizace. Variačními metodami poté lze aproximovat
aposteriorní distribuci parametrů modelu. Pomocí této aposteriorní distribuce je možné lépe kvantifikovat
neurčitost těchto parametrů. Na závěr práce jsou tyto metody aplikovány na různé modely včetně lineární
a logistické regrese, neuronových sítí a multi-instančního učení. Experimenty jsou prováděny jak na
syntetických, tak reálných datech.

Klíčová slova: Bayesovské metody, multi-instanční učení, neuronové sítě, řídkost, utahující se apriorna

Title:

Estimating Sparse Parameterization of Neural Networks

Author: Bc. Lukáš Kulička

Abstract: The Master’s thesis deals with methods for estimating sparse parameterization of neural net-
works, which can be used to prune overparameterized neural networks and reduce their complexity in
an attempt to reveal only relevant parameters, thus increasing the overall interpretability of the model.
In this thesis, the classical and the variational methods, which allow these parameterizations to be es-
timated, are described. This is achieved by reviewing special prior distributions, here referred to as
shrinkage priors, which allow us to incorporate our preferences about sparse parameterizations into the
model. Variational methods then help us to approximate the posterior distribution for model parame-
ters. Using this posterior distribution, it is possible to better quantify the uncertainty of the parameters.
Finally, the methods are applied to various models, including linear and logistic regression, neural net-
works, and are also utilized in the concept of multi-instance learning. The experiments are carried out
on both synthetic and real data.

Key words: Bayesian methods, multi-instance learning, neural networks, shrinkage priors, sparsity

Contents

Introduction 8

1 Theoretical Background 10
1.1 Exponential Family . 10
1.2 Conjugate Exponential Family Priors . 13
1.3 Non-informative Priors . 14
1.4 Shrinkage Priors . 14

1.4.1 Automatic Relevance Determination . 15
1.5 Variational Bayesian Framework . 17

1.5.1 Setup and Goal of Variational Bayes . 17
1.5.2 KL Divergence and Evidence Lower Bound . 17

1.6 Bayesian Neural Networks . 18
1.6.1 Activation Functions . 19
1.6.2 Point Estimates . 20
1.6.3 Posterior Distribution . 20

1.7 Bayesian Ridge Regression . 21
1.7.1 Hyperparameter ψ Prior . 21
1.7.2 ARD in Bayesian Ridge Regression . 23

1.8 Bayesian Logistic Regression . 23
1.8.1 Likelihood Function and Formation of Posterior 24

1.9 Multi-Instance Learning . 24
1.9.1 Embedded-Space Paradigm . 25

2 Variational Optimization 27
2.1 Natural-Gradient Variational Inference . 27

2.1.1 Implementation . 27
2.2 Mean-Field Variational Inference . 28

2.2.1 Natural-Gradient Updates for Model Parameters 28
2.2.2 Natural-Gradient Updates for Hyperparameters 29

2.3 Variational Online-Newton . 31
2.3.1 Mean-Field Variant of Variational Online Newton 32
2.3.2 Reparameterization Trick in Hessian . 32

2.4 Variational Online Gauss-Newton . 33
2.5 Variational RMSprop . 33
2.6 Variational ADAM . 34
2.7 Variational ADAM with ARD Prior . 34

6

3 Experiments 36
3.1 Sparse Linear Regression . 36

3.1.1 Model Architecture . 36
3.1.2 Maximum Likelihood Estimation in Linear Regression 37
3.1.3 L1 Penalization in Linear Regression . 38
3.1.4 Variational ADAM in Linear Regression . 41
3.1.5 VADAM with ARD Prior in Linear Regression 44
3.1.6 Evaluation of Methods . 46

3.2 Sparse Logistic Regression . 47
3.2.1 Model Architecture . 47
3.2.2 Maximum Likelihood Estimation in Logistic Regression 48
3.2.3 L1 Penalization in Logistic Regression . 48
3.2.4 Variational ADAM with ARD Prior in Logistic Regression 51
3.2.5 Evaluation of Methods . 52

3.3 Sparse MIL . 52
3.3.1 Model Architecture . 53
3.3.2 L1 Penalization in MIL . 54
3.3.3 Variational ADAM with ARD Prior in MIL . 56
3.3.4 Evaluation of Methods . 58

Conclusion 59

Appendix A 61

Bibliography 63

7

Introduction

Today, there are no longer many obstacles to train complex models, such as deep neural networks,
due to the enormous computing power of graphical processing units (GPU) or tensor processing units
(TPU). Whether one chooses to invest in their own computer or take advantage of cloud environments,
getting access to high-quality and powerful hardware is easier than ever. However, many state-of-the-art
deep learning models operate as so-called blackbox models – one provides an input and the model returns
an output based on learned parameters, often without you knowing what is going on inside, and why that
particular output was thrown out by the model. Applications of such models can nowadays be found in
many fields, including natural language processing, image processing or time series analysis, where they
face the challenge of processing real-world querries of evergrowing size and dimensionality of input data.
Not only large data with many observations, which usually require a lot of computing power, but also data
whose dimensionality is often larger than the number of observations. Moreover, the models may suffer
from the overparameterization in the production-ready stage, which may prolong their response time and
puts an unnecesarilly high demand on the computing resources. Another challenge to these models is
how to quantify the uncertainty of their outputs. Therefore, having an estimate of the entire distribution
of the unknown parameters (in contrast to the point estimate), i.e., capturing their uncertainty, might
be more preferable. Not only will this increase the interpretability of the models, but it will also make
it possible to embed some prior knowledge about the parameters, which may crucially force a sparser
parameterization of the model and thus remove redundant parameters.

Hence, this thesis should give the reader an insight into methods that can deal with the overparame-
terization in deep learning models using the Bayesian approach and search for the entire distribution of
the parameters instead of their point estimates at the output.

The text is divided into three main chapters. The first one is devoted to the necessary theoretical
background. This chapter will begin by introducing various probabilistic distributions from the exponen-
tial family called priors. Most attention will be paid to the class of shrinkage priors, which allows us to
embed our preferences about sparse parameterization. This will be followed by a description of a frame-
work called variational Bayes (VB) introducing the reader to the alternative to finding point estimates of
parameters. In particular, the relation between Kullback-Leibler (KL) divergence and the evidence lower
bound (ELBO) will be defined, which is the key tool in designing methods to approximate the posterior
distribution of the parameters. A special case of neural networks, i.e., linear and logistic regression, and
a way to approximate the corresponding posterior distributions using a shrinkage prior will be illustrated.
The chapter will conclude with a brief insight into multi-instance learning, especially its structure and its
difference from conventional machine learning.

The second chapter discusses variational optimization and inference and offers a wide range of meth-
ods to approximate the posterior distribution using natural gradients. It will also be shown how efficiently
the expensive computation of Hessian matrix or the inverse Fisher information matrix can be avoided
with the help of the VB framework. Furthemore, variational alternatives to classical optimizers, such as
variational RMSprop and variational ADAM, will be introduced. At the end of the chapter, the author’s

8

proposed algorithm that performs variational inference with the shrinkage prior and helps to find a sparse
parameterization of the model will be described.

In the third chapter, the theoretical knowledge and proposed methods from the previous chapters will
be applied to three experiments. All of them will be concerned with the search for a sparse parameter-
ization of the models relying on neural networks, assuming the smallest possible increase in the model
error. Or, alternatively, in the case of overparameterized neural networks, prune them so that the model
error is even more reduced. Each experiment will include a comparison of various methods.

The Julia programming language (version 1.6) is used exclusively for numerical calculations in
this thesis and all source code will be available at https://github.com/Kulda16/Sparsity.jl.

9

https://github.com/Kulda16/Sparsity.jl

Chapter 1

Theoretical Background

Let us assume, we observe some data as a particular realization (xn,1, . . . , xn,K) of a random vector,
Xn,· = (Xn,1, . . . , Xn,K), consisting of K variables (predictors) and a corresponding realization yn of the
random variable, Y (response variable), which we want to model based on the predictors. Then we repeat
this process N−times and store the values in a matrix form, X ∈ RN×K , (data matrix) and vector form,
y ∈ RN , until we get a dataset D = (y,X). We are interested in obtaining the distribution of parameters
θ, after we have observed the datasetD, which we model with Bayes’ theorem [4]:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D, θ)dθ

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (1.1)

We will describe the individual objects in Eq. (1.1) and their meaning in more detail. The distribution
p(θ) is called the prior distribution (shortly prior) and it represents our prior knowledge of the parame-
ters in model. The distribution p(D|θ), otherwise written as p(y|X, θ), is viewed as a probabilistic model
which assings a probability to each possible output, y, given an input, X, using the set of parameters, θ
[6]. We call it likelihood. The normalization constant, p(D), in the denominator denotes the evidence (or
marginal likelihood), which can be computed via marginalizing the parameters out of the joint distribu-
tion of data and the parameters, and it is an immutable constant normalizing the posterior distribution.
The posterior, p(θ|D), is the distribution which takes both prior knowledge and data into account [45].

Obtaining the posterior will be vital for this work as it allows us to describe the uncertainty of all
parameters in the probabilistic model. As it turns out, we cannot calculate the posterior analytically in
the vast majority of cases because of the integral in Eq. (1.1), so we need to choose procedures and
approximations to estimate this distribution as accurately as possible. It will also be shown how this
calculation relates to sparse parameterization, which will lead to less complex models and increase their
interpretability.

1.1 Exponential Family

Consider K i.i.d.1 random variables, X = (X1, . . . , XK), and parameter θ = (θ1, . . . , θJ) assumed to
belong to an open set Θ ⊂ RJ . Exponential family is a set of specific distributions whose probability
density function (or probability mass function, in case of a discrete random variable) is expressed in the
form

p(x|θ) = k(x) exp

J∑

j=1

t j(x) · η j(θ) − ϕ(θ)

 , (1.2)

1Independent and identically distributed.

10

CHAPTER 1. THEORETICAL BACKGROUND 11

where k(x) is a non-negative real function called base measure, η(θ) stands for the natural parameter,
ϕ(θ) is referred to as a log-normalizer, and t(x) is sufficient statistic [10]. If η(θ) = θ, then the exponential
family is said to be in the canonical form. Moreover, if t(x) = x holds, then we are talking about a natural
exponential family. Exponential family includes many of well-known and common distributions, such
as normal (Gaussian), exponential, gamma, Bernoulli, Wishart, binomial, chi-squared, etc.

Let us derive three simple examples of distributions in the form of the Eq. (1.2) to obtain their natural
parameters. We include them because the insights from these examples will be used extensively later.

Bernoulli distribution

Let K = 1, J = 1 and p(x|π) be Bernoulli distribution with unknown parameter π ∈ [0, 1]:

p
(
x|θ = π

)
= πx(1 − π)1−x

= exp
{
x log (π) + (1 − x) log (1 − π)

}
= 1︸︷︷︸

k(x)

· exp

 x︸︷︷︸
t(x)

· log
(

π

1 − π

)
︸ ︷︷ ︸

η(θ)

−
(
− log(1 − π)

)︸ ︷︷ ︸
ϕ(θ)

 .
(1.3)

In Eq. (1.3), one can notice that the natural parameter for the Bernoulli distribution is the so-called logit
function: η(θ = π) = log

(
π

1−π

)
= logit(π). By the inverse parameter mapping we obtain logistic function:

θ(η) = 1
1+exp(−η) = logistic(η). These two functions are shown for illustration in Fig. 1.1, as they will

appear in later chapters.

0 0.5 1

−4

−2

0

2

4

−5 0 5

0

0.2

0.4

0.6

0.8

1 y=logit(x)
y=logistic(x)

x x

y y

Figure 1.1: The logit and logistic functions.

CHAPTER 1. THEORETICAL BACKGROUND 12

Gamma distribution

Let K = 1, J = 2 and p(x|α, β) be Gamma distribution with unknown parameters α and β:

p
(
x|θ = (α, β)

)
=

βα

Γ(α)
xα−1 exp {−βx}

= 1 · exp
{
(α − 1) log (x) − βx −

(
log (Γ(α)) − α log(β)

)}

= 1︸︷︷︸
k(x)

exp

(
log(x), x

)︸ ︷︷ ︸
t(x)

·

(
α − 1
−β

)
︸ ︷︷ ︸
η(θ)

−
(

log (Γ(α)) − α log(β)
)︸ ︷︷ ︸

ϕ(θ)

 .
(1.4)

The gamma distribution also contains a gamma function represented by the capital letter gamma from
the Greek alphabet Γ(.), which is defined as follows:

Γ(α) =
∫ +∞

0
xα−1 exp (−x) dx.

Univariate Gaussian distribution

Let K = 1, J = 2 and p(x|µ, σ2) be Gaussian distribution with the unknown mean parameter µ and
unknown variance parameter σ2:

p
(
x|θ = (µ, σ2)

)
=

1
√

2πσ2
exp

{
−

(x − µ)2

2σ2

}
=

1
√

2π
exp

{
− log(σ) −

x2

2σ2 +
µx
σ2 −

µ2

2σ2

}

=
1
√

2π︸︷︷︸
k(x)

exp

(
x, x2

)︸︷︷︸
t(x)

·

(µ

σ2

− 1
2σ2

)
︸ ︷︷ ︸
η(θ)

−
(

log(σ) +
µ2

2σ2

)
︸ ︷︷ ︸

ϕ(θ)

 .
(1.5)

Multivariate Gaussian distribution

For general K and J let p(x|µ,Σ) be multivariate Gaussian distribution with the unknown mean vector
parameter µ and the unknown covariance matrix Σ:

p
(
x|θ = (µ,Σ)

)
=

1
(2π)N/2

1
|Σ|1/2

exp
{
−

1
2

(x − µ)T Σ−1 (x − µ)
}

= (2π)−N/2 exp
{
−

1
2

(
xTΣ−1x + µTΣ−1µ − 2xTµ

)
−

1
2

log(|Σ|)
}

= (2π)−N/2︸ ︷︷ ︸
k(x)

exp

µ
T x −

1
2

Tr
(
Σ−1xxT

)
−

(
1
2
µTΣ−1µ +

1
2

log(|Σ|)
)

︸ ︷︷ ︸
ϕ(θ)

 .
(1.6)

The derivation, which can be found in more detail in [11], takes advantage of a typical property of the
trace operator, i.e., it is invariant under cyclic permutations. The final step is to express sufficient statistics

CHAPTER 1. THEORETICAL BACKGROUND 13

and the natural parameter:

t(x) =
(

x
xxT

)
, η(θ) =

(
Σ−1µ
− 1

2Σ
−1

)
.

1.2 Conjugate Exponential Family Priors

As stated above, to obtain the exact posterior within the Bayes’ theorem in Eq. (1.1) is nearly
an impossible task. To properly normalize this distribution, we need to compute the integral of the joint
distribution, p(x, θ), over the unknown parameters, which in many cases (mostly in higher dimensions)
is intractable. To avoid the numerical integration or approximations [21], we study the conjugate systems
that allow for closure of the Bayes’ theorem under an analytically tractable solution. In other words, if
the likelihood and prior distributions are in the same probability distribution family, e.g., in exponential
family, then they are called conjugate distributions and prior a conjugate prior. More specifically, if
the likelihood function has a functional form that holds structural similarities to the functional form of
the prior distribution, then the posterior distribution which preserves the form of the prior exists. The
main benefit of conjugate probability distribution systems is the existence of a closed-form solution for
updating the sufficient statistics of the posterior, which also belongs to the particular family [12].
Let’s give two examples.

Exponential likelihood and Gamma prior

As mentioned before, both the exponential and gamma distributions belong to the exponential fam-
ily. Consider K i.i.d. observations with the exponential likelihood function, p(x|λ) =

∏K
k=1 λ exp (−λxk),

and the gamma prior, p(λ) = βα

Γ(α)λ
α−1 exp (−βλ), where λ ∈ R+ is the rate and α, β are the prior hy-

perparameters. Then by inserting these expressions into the Eq. (1.1) and using proportionality up to
the normalizing factor, i.e., the ∝-sign, we obtain the unnormalized posterior in the form of the gamma
distribution,

p(λ|x) =
λK exp

(
−λ

∑K
k=1 xk

)
βα

Γ(α)λ
α−1 exp (−βλ)∫ +∞

0 λK exp
(
−λ

∑K
k=1 xk

)
βα

Γ(α)λ
α−1 exp (−βλ) dλ

∝ λK+α−1 exp

−λ
 K∑

k=1

xk + β

 .

(1.7)

Thus, the hyperparameters of the gamma posterior of λ are

α→ α + K,

β→ β +

K∑
k=1

xk.

Gaussian likelihood and Inverse gamma prior

Other members that, too, belong to the exponential family are the Gaussian (normal) and Inverse
gamma distributions. Again, consider K i.i.d. observations drawn from the Gaussian likelihood function

with the known µ parameter and the unknown variance, p(x|µ, σ2) =
∏K

k=1
1√

(2πσ2)
exp

(
−

(xk−µ)2

2σ2

)
. Now

we choose the prior on the variance as the inverse gamma distribution, p(σ2) = βα

Γ(α) (σ
2)−α−1 exp

(
−

β

σ2

)
,

where σ2 ∈ R+ and α, β are hyperparameters.

CHAPTER 1. THEORETICAL BACKGROUND 14

After inserting these expressions into Eq. (1.1) and using proportionality sign, ∝, we obtain the
unnormalized posterior in the form of the inverse gamma distribution:

p(σ2|x, µ) =

1
(2πσ2)K/2 exp

(
−1

2
∑K

k=1
(xk−µ)2

σ2

)
βα

Γ(α) (σ
2)−α−1 exp

(
−

β

σ2

)
∫ +∞

0
1

(2πσ2)K/2 exp
(
− 1

2
∑K

k=1
(xk−µ)2

σ2

)
βα

Γ(α) (σ
2)−α−1 exp

(
−

β

σ2

)
dσ2

∝ (σ2)−α−
K
2 −1 exp

− 1
σ2

∑K
k=1(xk − µ)2

2
+ β

 .
(1.8)

Thus, the hyperparameters of the inverse gamma posterior of σ2 are

α→ α +
K
2
,

β→ β +

∑K
k=1(xk − µ)2

2
.

1.3 Non-informative Priors

In some applications, it is possible to have prior knowledge about the parameters of the model,
often acquired via an expert’s opinion on the real-world system. For example, if the prior assigns zero
probability to a certain value of a random variable, then the posterior distribution necessarily assigns zero
probability to that value, irrespective of any subsequent observations of data [4]. This forces a sparse
parameterization of the model (but more on that later).

On the other hand, if we do not know anything about the parameters, θ, and do not want to introduce
new information into the model, we can use non-informative priors. For example, when nothing is
known about θ in advance, we choose p(θ) in the form of the uniform distribution, which assigns the
same probability to all possible outcomes of θ [49]. Because the domain of the parameter, θ, may be
unbounded, the problem with proper normalization of p(θ) arrises, i.e., the integral over θ may diverge.
Such priors are called improper, and, in practise, they are used provided that the corresponding posterior
can be normalized [4].

In such cases, the so-called Jeffreys prior is widely adopted. It is defined as follows:

p(θ) ∝
√

det
(
F(θ)

)
, (1.9)

where F stands for Fisher information matrix. Its key feature is the invariance under any differentiable
transformation [44].

1.4 Shrinkage Priors

The main focus of this thesis is to find parameterizations of probabilistic models, as this allows
us to achieve less complexity and better interpretability of its outputs. Moreover, in high-dimensional
models with many predictors, the overfitting is often encountered. Penalization techniques are then used
to counteract this phenomenon. Specifically, the so-called shrinkage priors aim to shrink small effects to
zero while maintaining dominant and large effects [53]. In other words, we want as many non-significant
parameters as possible to be zero, which will reduce model complexity and increase its interpretability.

CHAPTER 1. THEORETICAL BACKGROUND 15

1.4.1 Automatic Relevance Determination

Automatic Relevance Determination (ARD) is a technique in Bayesian framework, which requires
the use of a certain type of prior on a parameter whose relevance needs to be determined. We usually
place Gaussian priors on parameters and then hyper-priors on their scales [30]. If we set the prior as
the Gaussian distribution with the zero mean vector, then the main benefit of ARD is that any unnec-
cessary parameters are automatically forced to zero [55]. We can write the prior for all the parameters
in the probabilistic model, θ, including their possible hyperparameters, α, as the integral over their joint
distribution

p(θ,α) −→ p(θ) =
∫

p(θ,α)dα =
∫

p(θ|α)p(α)dα, (1.10)

where p(θ|α) is chosen as Gaussian. ARD priors are also referred to as Gaussian scale mixtures (GSM)
[3], which is defined to be a zero mean Gaussian conditional on its scales with fixed variance σ2

p(θ j) =
∫

N
(
0, α2

jσ
2
)

p(α j)︸ ︷︷ ︸
hierarchical parameterization

dα j, (1.11)

where j = 1, . . . , J. This parametrization is also called hierarchical.

Spike and Slab prior

Mixture priors with spike and slab components are widely used for predictor selection. The spike
component, which concentrates its mass around values close to zero, allows us to shrink the small effects
to zero, whereas the slab component has its mass spread over a wide range of plausible values of the
parameters [32]. Let θ ∈ RJ be parameters with hyperparemeters α acting element-wisely on fixed
variance σ2 and (

θ j|α j, σ
2
)
∼ N

(
0, α2

jσ
2
)
,

α j ∼ Bernoulli(π).
(1.12)

By substituting Eq. (1.12) into the Eq. (1.11), we obtain

pspike and slab(θ j) =
∑

α j∈{0,1}

N
(
θ j|α

2
jσ

2
)

p(α j) = πN
(
θ j|0, σ2

)
+ (1 − π)δ(θ j), (1.13)

where δ(.) denotes the Dirac function. Proof of convergenceN
(
θ j|0, α2

jσ
2
)
→ δ(θ j) for α j → 0 in space

of generalized functions (or distributions) can be found in [26]. The random variable α2
j ∼ Bernoulli(π)

implies the prior on Gaussian’s variance to be also Bernoulli [30].

Laplace prior

One of the most famous shrinkage priors is the Laplace prior. Using the exponential mixing with
prior α2

j on the variance σ2, α2
j ∼ Exp(2),(

θ j|α
2
j , σ

2
)
∼ N

(
0, α2

jσ
2
)
,

α2
j ∼ Exp(2),

(1.14)

CHAPTER 1. THEORETICAL BACKGROUND 16

we can obtain the corresponding prior on the standard deviation α j to express the Laplace prior in the
form of the GSM. Based on the proof in [27], such a standard-deviation prior is the Rayleigh distribution

with its scale parameter equal to 1, p(α j) = α j exp
(
−
α2

j
2

)
. Eventually, we get the Laplace prior formula

pLaplace(θ j) =
∫
N

(
0, α2

jσ
2
)

Rayleigh(1)dα j. (1.15)

Student-t prior

Another prior distribution we are concerned with is the Student-t prior [3] with zero mean, ν degrees
of freedom and the scale parameter σ2

λ :(
θ j|α

2
j , σ

2
)
∼ N

(
0, α2

jσ
2
)
,(

α2
j |ν, λ

)
∼ Inverse-Gamma

(
ν

2
,
ν

2λ

)
,

λ ∼ Half-Cauchy(0, 1).

(1.16)

For the inverse-gamma prior on the variance σ2, there exists a corresponding prior on the standard
deviation in the form of the inverse-Nakagami distrubution [29]. Larger values of λ result in more
shrinkage to the mean. Student-t prior can also be expressed in the form of GSM

pStudent-t(θ j|ν, 0,
σ2

λ
) =

∫
N

(
0, α2

jσ
2
)

Inverse-Nakagami
(
ν

2
,
ν2

4λ

)
dα j. (1.17)

Horseshoe prior

We introduce the horseshoe prior originally proposed in [9] and according to our notation, put it into
the concept of GSM. We write (

θ j|α j, σ
2
)
∼ N

(
0, α2

jσ
2
)

α j ∼ Half-Cauchy(0, 1),
(1.18)

where Half-Cauchy distribution describes the standard deviation α j. The corresponding prior on the
variance cannot be analytically expressed but, there is no problem to write horseshoe prior as GSM:

phorseshoe(θ j) =
∫
N

(
0, α2

jσ
2
)

Half-Cauchy(0, 1)dα j. (1.19)

The prior distributions on the standard deviation or the variance discussed in subsection, including
their corresponsing GSM priors, are summarized in Table 1.1.

Standard deviation prior p(α j) Variance prior p
(
α2

j

)
Marginal prior p(θ j)

Bernoulli Bernoulli Spike and Slab
Rayleigh Exponential Laplace

Inverse-Nakagami Inverse-Gamma Student-t
Half-Cauchy Unnamed Horseshoe

Table 1.1: Standard deviation priors p(α j) and their corresponding GSM priors p(θ j).

CHAPTER 1. THEORETICAL BACKGROUND 17

In practice, and, in the case of the following Bayesian regression example, it is common to choose the
so-called precision hyperparameter as a multiplicative factor in front of the variance with the following,
simple reparameterization:

α−2
j = ψ j, j = 1, . . . , J. (1.20)

For example, the inverse-Gamma prior then switches to the Gamma precision prior.

1.5 Variational Bayesian Framework

As already mentioned in Eq. (1.1) we can not always find the normalization constant for posterior
(especially in higher dimensions). However, we still want to estimate it in some way so that we can
capture as much uncertainty in the system as possible. Variational inference (or Variational Bayes) is
therefore widely used to approximate the posterior for Bayesian models [5].

1.5.1 Setup and Goal of Variational Bayes

Let D = (y,X) be an available dataset. Within Bayesian framework, the vector of latent variables z
has been adopted as a designation for the parameters known from above sections as θ. This is because
we want to estimate not only the mapping between X and y, that are observed directly, but also hidden
variables that are not but rather inferred from others [7]. Given the probabilistic model p(D, z) to model
dataD using the latent variable vector z. The goal of Variational Bayes is computing (or rather inferring)
the posterior p(z|D) using Bayes’s theorem.

1.5.2 KL Divergence and Evidence Lower Bound

Let us now modify and put the latent variables into Eq. (1.1):

p(z|D) =
p(D|z)p(z)

p(D)
=

p(D|z)p(z)∫
p(D, z)dz

=
p(D|z)p(z)∫
p(D|z)p(z)dz

. (1.21)

The problem here is the marginal, p(D). In Eq. (1.7) or Eq. (1.8) we worked in terms of the proportional
and later on we found normalization contants (or we recognized the kernel of distribution). In general,
the dimensionality of the space and complexity of the integrand may prohibit numerical integration and
not always we have a closed-form analytical solution [4]. We consider the integral simply intractable and
if we do not have the marginal, then we do not have a full p(z|D).

We introduce the surrogate q(z), with which we might be able to capture most of the posterior infor-
mation and still be able to handle it:

q(z) ≈ p(z|D). (1.22)

To find as good surrogate as possible we want to optimize over functions2. We also need some metric
to evaluate a goodness of the fit of p(z|D) and our surrogate. There are many such metrics (see [41] for
more), but in this case we use the Kullback-Leibler (KL) divergence [19]:

KL
(
q(z)||p(z|D)

)
= −

∫
q(z) log

(
p(z|D)
q(z)

)
dz. (1.23)

The KL divergence result tells us how similar the two distributions are.

2The name of Variational Bayes consists of variational – optimization over functions (comes from variational calculus) and
Bayes – within framework we mostly use Bayes’s theorem.

CHAPTER 1. THEORETICAL BACKGROUND 18

Note. Technically speaking, KL divergence is not a true metric, as it generally does not satisfy the metric
symmetry axiom, i.e.:

KL
(
q||p

)
, KL

(
p||q

)
, ∀p, q.

That is why it is called a divergence. But other metric axioms are fulfilled.

The problem then moves on to minimization of

q⋆(z) = arg min
q(z)∈Q

KL
(
q(z)||p(z|D)

)
, (1.24)

where Q is some family of distribution (e.g. exponential). But we still do not have a solution to the
problem in Eq. (1.21), because if we knew the posterior p(z|D), then we would not have to solve the
minimization of the KL divergence. By expanding the definition (full proof can be found here [18]):

KL
(
q(z)||p(z|D)

)
= −

∫
q(z) log

(
p(z,D)

q(z)

)
dz︸ ︷︷ ︸

Evidence Lower Bound, L(q(z))

+ log
(
p(D)

)
(1.25)

we obtain the KL divergence and Evidence Lower Bound relationship. Logarithm of p(D) is called log-
evidence and although we do not have direct access to it, its value is always smaller or equal to zero.
On the other hand, KL divergence is always a non-negative quantity. It follows that the ELBO is always
smaller or equal to the log-evidence. The equality L(q(z)) = log

(
p(D)

)
holds if and only if

KL
(
q(z)||p(z|D)

)
= 0, (1.26)

which means, that our surrogate is a true posterior. Now we can solve the variational Bayes task, because
we found equivalent solveable problem to Eq. (1.24):

q⋆(z) = arg max
q(z)∈Q

L
(
q(z)

)
. (1.27)

This variation task is extensive just because the families can be really large and searching them all is
a lengthy process. Therefore, in our case, we select one particular distribution from a particular family
and numerically optimize its parameters. So, in Eq. (1.27) let Q = {qopt}, where qopt is our chosen
distribution (such as Gaussian, etc.) parameterized by some parameters we would like to optimize (for
example η) and the optimization problem then transitions to the problem of:

η⋆ = arg max
η

L
(
qopt(z|η)

)
. (1.28)

1.6 Bayesian Neural Networks

Given an observed dataset D = (y,X) and based on [42] we introduce a fully connected artificial
neural network (ANN) with L hidden layers in the following way:

h(0) = X, h(l) = a
(
W(l)h(l−1) + b(l)

)
, l = 1, . . . , L

y = aout
(
W(L+1)h(L)

)
,

(1.29)

where a(.) represents an activation function, aout(.) an output activation function and {W(l),b(l)}L+1
l=1 is a set

of all parameters (weights and biases) in an ANN. The goal of using such an ANN described in Eq. (1.29)

CHAPTER 1. THEORETICAL BACKGROUND 19

is to find the proper mapping y = f(X, θ) from X to y and learn the parameters θ = {W(l),b(l)}L+1
l=1

based on training epochs. However, within Bayesian framework, it is possible to model neural networks
probabilistically and view the parameters as random variables for which we want to estimate uncertainty
given the data. It is a supervised-learning task in machine learning, since we have labeled dataset.

Bayesian Neural Networks (BNN) utilize probabilistic layers with which we can capture uncertainty
over all parameters in model (weights, biases and hyperparameters) and they are trained using Bayesian
inference [20]. First we select the prior p(θ), which represents our prior belief of the parameters con-
figuration (to force sparsity in BNN it could be used one of the shrinkage priors), choose the model
likelihood p(D|θ) (depending on regression or classification task) and via variational inference infer the
posterior of all parameters.

1.6.1 Activation Functions

In every hidden and output layer of neural networks the activation function can be found. This is
a transformation of the weighted inputs, the output of which follows to the next layer. If we use other
than linear activation function, it can help the network to learn complex data, compute and learn almost
any dependence between inputs and output [31]. The activation functions are here written in form of
vector functions, since their output is generally a vector or even matrix, not a single number. But each of
its components is the same in the particular layer.

Here are five examples of activation functions (taken mostly from [4]) used in this work:

1. Identity
The simplest activation function is the linear identity function, which is defined as fId(x) = x. We
list it here only for interest, since if we choose it as an activation to the output layer in a network
without any hidden layer, we get a classical linear regression problem in relation to Eq. (1.29):

y = aout (Xθ) , where aout
n (.) = fId(.) ∀n = 1, . . . ,N. (1.30)

2. Rectified Linear Unit (ReLU)
ReLU is widely used in hidden layers in deep networks, because of its computational efficiency,
non-linearity and simplicity [1]. We define the ReLU activation in each its component as

fReLU(x) = max{0, x}, collectively as a(.) = fReLU(.). (1.31)

We just need to pick the maximum and not to perform expensive exponential operations as in
sigmoid.

3. Sigmoid (Logistic function)
Logistic function is used as an activation mostly in output layer in logistic regression, when we
would like to classify the output into two classes. It was already proposed in Eq. (1.3) and plotted
in Fig. 1.1. We define the logistic activation function as

fsigmoid(x) =
1

1 + exp(−x)
, collectively as aout(.) = fsigmoid(.). (1.32)

Its good feature is output scaling between zero and one, which can also be interpreted as a proba-
bility.

CHAPTER 1. THEORETICAL BACKGROUND 20

4. Hyperbolic tangent
Hyperbolic tangent activation is often used as an alternative to logistic function, because of its
same S-shape. It is defined, as follows

ftanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

= tanh(x), collectively as aout(.) = ftanh(.). (1.33)

Unlike the logistic function, the output of this activation function is scaled between minus one and
one [4].

5. Softmax
A generalized version of the logistic function is the softmax function, which is often found in the
output layer of multi-class classification up to K classes. This extends the properties of the logistic
function, so that each value of the output component in softmax is restricted to the interval zero
to one and their total sum equals to one. Softmax function fsoftmax : RK → (0, 1)K is defined, as
follows

fsoftmax(x)n =
exp(xn)∑K

k=1 exp(xk)
∀n = 1, . . . ,N, collectively as aout(.) = fsoftmax(.). (1.34)

1.6.2 Point Estimates

We assume that the observed data is i.i.d with the likelihood

p(D|θ) =
N∏

n=1

p(yn|Xn, θ), (1.35)

where Xn represents the n−th row of data matrix X (i.e. one observation of K predictors). The parameters
can be learnt by maximum likelihood estimation (MLE) principle

θMLE = arg max
θ

log p(D|θ) = arg min
θ
− log p(D|θ). (1.36)

If we add a shrinkage prior p(θ) from Table 1.1 to the likelihood, we obtain a regularization, which
penalizes the parameters during the training [6]:

θMLE
penalized = arg max

θ
log p(D|θ)p(θ) = arg min

θ
−

(
log p(D|θ) + log p(θ)

)
. (1.37)

The objective in Eq. (1.36) and Eq. (1.37) is called loss function (or cost function) [4], which we
would like to optimize. This task is typically achieved by gradient-based methods (optimizers). The
disadvantage of this approach is only the point estimate of the parameters, which does not tell us much
about their uncertainty.

1.6.3 Posterior Distribution

To capture the uncertainty in the whole network, posterior is then computed via Bayes’ theorem
described in Eq. (1.1) or approximated via maximizing the ELBO and represents the updated belief
of how likely the network parameters are given the observations. We can then calculate its moments
and it also can be used to predict the new response yN+1 of an unseen input XN+1 using the predictive
distribution [42]

p(yN+1|XN+1,D) =
∫

p(yN+1|XN+1, θ)p(θ|D)dθ, (1.38)

or
p(yN+1|XN+1,D) ≈

∫
p(yN+1|XN+1, θ)q(θ|D)dθ. (1.39)

CHAPTER 1. THEORETICAL BACKGROUND 21

1.7 Bayesian Ridge Regression

In this section, an analytically solvable posterior search problem as an alternative to basic linear
regression and its subsequent shrinkage priors upgrade will be presented. It will also be outlined how
this problem is related to BNN.

Given the dataset D = (y,X), setting L = 0 (no hidden layers), aout(.) = fId(.) in Eq. (1.29) and
adding a Gaussian noise e of the mean µe and variance σ2

e will give us the regression model

y = Xθ + e, (1.40)

where y ∈ RN and the data matrix X is (N × K + 1)−dimensional matrix in case with bias (or intercept
in the regression model) and X is (N × K)−dimensional without it. Based on this fact, we can estimate
up to K + 1 (or K in case without bias) parameters in the model. Vector θ denotes the model parameters
(weights and bias) and e represents independent model noise with distribution p(e) = N(0, σ2

e ·I). Thanks
to that, the conditional distribution for y will be

p(y|X, θ, σ2
e) = N

(
Xθ, σ2

e · I
)
∝

1(
σ2

e

)N/2 exp
(
−

1
2
σ−2

e (y − Xθ)T (y − Xθ)
)
. (1.41)

We will now not consider bias, whereby we can estimate up to K parameters (purely just weights) in the
model. We introduce the prior distribution for parameters with known precision ψ and known common
measurement precision ω = 1

σ2
e
:

p(θ|ψ) = N
(
0, ψ−1 · I

)
∝ ψK exp

(
−

1
2
ψθTθ

)
,

p(y|X, θ, ω) = N
(
Xθ, ω−1 · I

)
∝ ωN/2 exp

(
−

1
2
ω (y − Xθ)T (y − Xθ)

)
.

(1.42)

In this such a simple example, when ψ and ω are known, the posterior for weights can be calculated
analytically (inspiration for proof comes from [50]):

p(θ|X, y, ψ, ω) = N
((

XT X + ψ · I
)−1

XT y, ω
(
XT X + ψ · I

)−1
)
. (1.43)

1.7.1 Hyperparameter ψ Prior

Let’s slightly modify Eq. (1.42), when ψ will be the unknown hyperparamter, to which we need to
assign the prior

(θ|ψ) ∼ N
(
0, ψ−1 · I

)
,

ψ ∼ Gamma(γ0, δ0).
(1.44)

We build the model likelihood according to Eq. (1.35):

p(y, θ|X, ω, ψ) = p(y|θ,X, ω)p(θ|ψ) = N
(
Xθ, ω−1 · I

)
N

(
0, ψ−1 · I

)
∝ ωN/2ψK/2 exp

(
−

1
2
ω (y − Xθ)T (y − Xθ)

)
exp

(
−

1
2
ψθTθ

)
∝ ωN/2ψK/2 exp

(
−

1
2
ω||y − Xθ||22 −

1
2
ψ||θ||22

)
.

(1.45)

CHAPTER 1. THEORETICAL BACKGROUND 22

Note. In Eq. (1.45) the symbol ||.||2 is introduced. Let’s clarify, what it means. We define Lp norm [2] of
vector x ∈ RN as

||x||p =

 N∑
n=1

|xn|
p

1/p

,

with special case of p = 2: ||x||2 =
(∑N

n=1 |xn|
2
)1/2
=

√
x2

1 + · · · + x2
N , which is an Euclidian norm on RN

space.

By adding the predefined prior from Eq. (1.44) to Eq. (1.45), we obtain the probability model:

p(y, θ, ψ|X, ω) = p(y|θ,X, ω)p(θ|ψ)p(ψ) = N
(
Xθ, ω−1 · I

)
N

(
0, ψ−1 · I

)
Gamma (γ0, δ0)

∝ ωN/2ψK/2 exp
(
−

1
2
ω||y − Xθ||22 −

1
2
ψ||θ||22

)
δ
γ0
0

Γ(γ0)
ψγ0−1 exp

(
− δ0ψ

)
∝ ωN/2ψK/2+γ0−1 exp

(
−

1
2
ω||y − Xθ||22 −

1
2
ψ||θ||22 − δ0ψ

)
.

(1.46)

Finally, we use Eq. (1.1) to express the unnormalized posterior of all available parameters:

p(θ, ψ|y,X, ω) ∝ ψK/2+γ0−1 exp
(
−

1
2
ω||y − Xθ||22 −

1
2
ψ||θ||22 − δ0ψ

)
. (1.47)

To choose the proper ψwe need to be careful. Values that are too small or too large can be misleading
and the model will not be correct. Thus, a several ways how to estimate ψ have been introduced:

1. k-Fold Cross-validation

This method is based on dividing the dataset into k equal parts. Then we take one part of them
as a test data and the remaining groups as a training data. We fit a model on the training set and
evaluate on test data while retaining the evaluation score (or our monitored metrics). Eventually
we discard the model and the whole process repeates itself. The proper ψ is then chosen based on
our preferences of metrics values results [46].

2. MAP estimate

Taking a maximum argument of marginal p(ψ|y,X, ω) leads us to maximum a posteriori estimate
(MAP):

ψ̂ = arg max
ψ

∫
p(ψ, θ|y,X, ω)dθ. (1.48)

3. L-curve

It is a parametric plot of two functions that measure the size of the regularized solution and its
corresponding residual. L-curve has a clear L-shaped corner located exactly, where the solution of
ψ changes in nature from being dominated by the regularization to being dominated by the model
error [15]. Thanks to that, we can choose such ψ, which makes our parameter θ sparser, but still
keeping an acceptable model error.

CHAPTER 1. THEORETICAL BACKGROUND 23

1.7.2 ARD in Bayesian Ridge Regression

By revisiting Eq. (1.44) and adding the K−dimensional precision prior ψ we rewrite it into a multi-
dimensional shape

(θ|ψ) ∼ N
(
0, diag

(
ψ−1

)
· I

)
,

ψ ∼ p(ψ) =
K∏

j=1

p(ψ j),
(1.49)

with the joint distribution p(θ,ψ) = p(θ|ψ)p(ψ). In this case of the multidimensional hyperparameter ψ
a slight change occurs in the probability model in Eq. (1.46):

p(y, θ,ψ|X, ω) = N
(
Xθ, ω−1 · I

)
N

(
0, diag

(
ψ−1

)
· I

) K∏
j=1

p(ψ j). (1.50)

By replacing p(ψ j) with the Gamma precision prior distribution according to Eq. (1.20), we force a sparse
parameterization. The task of finding the posterior p(θ,ψ|y,X, ω) can also (and more appropriately) be
solved within a variational framework with the surrogate distribution q(z).

1.8 Bayesian Logistic Regression

Another simple example of BNN with no hidden layers (L = 0) and one output layer with the sigmoid
activation aout(.) = fsigmoid(.) will be outlined as an alternative to the basic logistic regression.

Consider a binary response variable yn, which is assumed to have a Bernoulli distribution,

yn ∼ Bernoulli(πn), E
[
yn

]
= πn, n ∈ 1, . . . ,N, (1.51)

where πn ∈ [0, 1]. Let the dataset D = (y,X) consist of the response variable y ∈ {0, 1}N and the data
matrix X ∈ RN×K+1 and θ ∈ RK+1 be a vector of the model parameters we would like to estimate. The
logistic regression model writes that the logit (see also Fig. 1.1) of the probability πn is a linear function
of the predictors Xn = (xn,1, . . . xn,K) [16]

logit(πn) = log
(

πn

1 − πn

)
= θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK . (1.52)

When we put together the equations described above, we obtain

E
[
yn|xn

]
= πn = logit−1 (θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK)

=
exp (θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK)

1 + exp (θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK)
,

(1.53)

where inverse mapping of logit denotes the logistic or sigmoid function. Here we can see the connection
between the logistic regression and the derived natural parameters of the Bernoulli distribution from
Eq. (1.3).

Note. Note that πn represents π(xn), where

πn := π(xn) =
exp (θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK)

1 + exp (θ0 + θ1xn1 + θ2xn2 + · · · + θK xnK)
.

CHAPTER 1. THEORETICAL BACKGROUND 24

1.8.1 Likelihood Function and Formation of Posterior

Let y1, . . . , yN be random variables sampled from Bernoulli distribution, p(y|θ) = Bernoulli(π). Since
we assume i.i.d. variables, we can write

likelihood(θ) = p(y|θ) =
N∏

n=1

p(yn|θ) =
N∏

n=1

π (xn)yn (1 − π (xn))1−yn . (1.54)

By taking a negative logarithm of Eq. (1.54), we obtain the loss function (or an objective function to be
minimized) for model parameters

loss(θ) = −
N∑

n=1

(
yn log (πn) + (1 − yn) log (1 − πn)

)
, (1.55)

also known as binary cross-entropy function [13].
Now we can choose the prior to our likelihood, in order to be able to calculate the posterior, since the

Bayes’ theorem from Eq. (1.1) holds. For example, if we use the Laplace prior on parameters described
in Eq. (1.15), we get the equivalent expression of Bayesian LASSO regression [14], which will cause
that instead of Eq. (1.55), the optimization task will be

lossL1(θ) = loss(θ) + λ
K∑

k=0

|θk|, (1.56)

with hyperparameter λ, which can be estimated in similar ways as in the previous Section 1.7 on Bayesian
linear regression.

Exact Bayesian inference for the logistic regression is intractable. In particular, evaluation of the
posterior would require normalization of the product of the prior and the likelihood that itself comprises
a product of logistic sigmoid functions, one for every data point. Evaluation of the predictive distribution
is similarly intractable [4].

1.9 Multi-Instance Learning

Another, slightly more complex type of supervised-learning task is multi-instance learning or MIL.
MIL formalism assumes that each object in the real world (or sample) is represented by a set (bag) of
feature vectors (instances) of fixed length, where knowledge about that object is available on bag level,
but not necessarily on instance level [39]. Let us now set the terminology and graphical explanation of
the difference between the conventional machine learning and MIL.

Consider an instance xi ∈ R
K and a parameter space Θ. We define bag as a set of several instances,

i.e., b = {xi ∈ R
K |i = 1, . . . , |b|}, which can be arbitrarily large and also empty. Therefore, we denote

|b| ∈ N0 the size of bag b. We can write the whole space of bags as B =
⋃
|b|≥0 R

K×|b|. In general, we do
not have to have directly labeled instances, but rather labeled bags. Thus, each bag b ∈ B has its own
label y [33]. We will use MIL mainly for classification tasks with supervised setting and therefore each
label of each bag will come from a finite set C (for example {0, 1}).

We define MIL models, as follows
f : B → C, (1.57)

where the goal is to learn the classifier f based on the parameters θ ∈ Θ and available dataset with bags
and their labelsD = {(bn, yn) ∈ B × C|n ∈ 1, . . . ,N}.

CHAPTER 1. THEORETICAL BACKGROUND 25

Note. Thus, in the available dataset we have a total of N bags together containing I instances each of
dimension K with N corresponding labels, as in the case of the linear regression, logistic regression or
neural networks, but each bag can be a different (but fixed) size. Here is the difference between the
conventional machine learning and MIL, which is graphically described in Fig. 1.2 and Fig. 1.3.

Bag
with one
instance

y = f (x, θ)
x ∈ RK

y ∈ R1
Feature extraction Training

Figure 1.2: By setting |b| = 1 the task of MIL switches to the conventional machine learning.

Observation f Prediction
x

fObservation

x 1
x2

x
|b|

...
Prediction

Figure 1.3: Difference between the conventional machine learning and MIL (taken from [33]).

1.9.1 Embedded-Space Paradigm

We propose an approach that embed each bag into a M−dimensional vector space RM and represent it
in a much more useful form to be able to use standard machine learning techniques [48]. An embedding
of the bag b can be written as

φ : B → RM, (1.58)

with individial projection φm = g
(
{d(x, θm)}x∈b

)
, m = 1, . . . ,M, where d : RK ×Θ→ R+0 is some suitably

distance function parameterized by θ ∈ Θ and g stands for aggregation function [38].
The aggregation (or pooling) function g can be fixed (such as maximum, minimum or mean aggre-

gation) or any other, to which we are able to compute the gradients with respect to its inputs. With
appropriate choice of these functions parameterized by θ we can create a neural network with one or
more layers that implement a set of distance functions followed by pooling layer. The main feature of
the pooling function is that its output is always a vector of fixed dimension. Then we add the output layer
(such as softmax, etc. – depends on our task) and optimize the neural network. A sketch of this idea is
outlined in Fig. 1.4.

The only thing that changes in the optimization is that we have a slightly different network archi-
tecture (by adding the pooling layer) and a different dataset structure. In any case, we are trying to find
a mapping based on the optimized parameters, so using sparse methods like L1 regularization, etc. should
work exactly the same.

CHAPTER 1. THEORETICAL BACKGROUND 26

Distance functions layer

d1(.)

d2(.)

dM(.)

...

Pooling layer

g(.)

g(.)

g(.)

...

x′ ∈ RM

One input with fixed dimension

f (x′, θ f)

Figure 1.4: Sketch of the neural network optimizing the embedding (taken from [39]).

Chapter 2

Variational Optimization

2.1 Natural-Gradient Variational Inference

Consider likelihood p(D|z) and prior p(z). As proposed in Eq. (1.2), we choose the surrogate
posterior from the exponential family, but now parameterized by its natural parameters in the terms of
the latent variables:

qη(z) = q(z|η) = k(z) exp
(〈

t(z), η
〉
− ϕ(η)

)
. (2.1)

Such parameterized approximation written above can be estimated by maximizing the ELBO:

max
η
L(η) = max

η
Eq

[
log p (D, z) − log q

(
z|η

)]
, (2.2)

which can be solved via gradient descent that is simple and convenient to implement by using modern
automatic-differentiation methods and the reparametrization trick.

We propose an alternative approach and express the gradient descent in natural-parameter space
(also called natural-gradient descent), which exploits the information geometry of q to speed-up the
convergence and accelerate the conventional first-order gradient optimization by scalling the gradient
with the Fisher information matrix (FIM), especially when the FIM is well-conditioned [28]. The natural-
gradient descent step in the natural-parameter space is given as follows:

η(t+1) = η(t) + β(t)
[
F(η(t))

]−1
∇ηL(η(t)), (2.3)

where F(.) is the FIM of q(z|η), β the learning rate and t is the iteration.

2.1.1 Implementation

The first problem that may occur in the implementation of Eq. (2.3), is the FIM inversion, which can
be quite computationally demanding. Nevertheless, for certain types of models, such as the mean-field
variational inference in conjugate-exponential family models, using of natural gradients could be simpler
than the ordinary gradients [17]. For exponential family approximations we can use the expectation-
parameter, defined as the function

m(η) := Eq [t(z)] =
∫

q(z|η)t(z) dz, (2.4)

to compute natural-gradients. From [22] we assume a probabilistic framework, where each data exam-
ple is sampled independently from the likelihood, p(D|z), and that the exponential family is in minimal

27

CHAPTER 2. VARIATIONAL OPTIMIZATION 28

representation, which ensures that there exists one-to-one mapping between η and the expectation param-
eter m. That leads us to expressing L(η) in term of m, L⋆(m) = L(η). We also have to reparameterize
qη ↔ qm using the following relation

∇ηL(η) =
[
∇ηmT

]
· ∇mL⋆(m) =

[
F(η)

]
· ∇mL⋆(m). (2.5)

Note. The Jacobian of transformation described in Eq. (2.5) can be obtained by applying the chain rule
for derivatives and using the exponential family properties: F(η) = ∇2

η ϕ(η) = ∇η mT .

By composing Eq. (2.3) and Eq. (2.5), we obtain a simple update for the natural-gradient descent,
where the gradient is computed with respect to the expectation-parameter m, but taking a step in the
natural-parameter space

η(t+1) = η(t) + β(t)∇mL⋆(m(t)), (2.6)

which avoids the difficult computation of the inverse FIM.

2.2 Mean-Field Variational Inference

Another way how to restrict the family of distributions Q for the posterior described in Eq. (1.27) and
exploit the potential of the expectation-parameter is using the factorized distributions. This factorized
form of variational inference is called the mean-field approximation [4]. By sticking to the general latent
variables z, model parameters (weights and biases) θ and hyperparameters α notation, we write this as

q(z) ≈ q(θ)q(α) =
K∏

k=1

qk(θk)
J∏

j=1

q j(α j). (2.7)

We can reparameterize this with the natural parameters and express its natural-gradient updates simulta-
neously for both types of parameters

qη(z) ≈ qη(θ)qη(α). (2.8)

Let us now use knowledge from above to derive these updates for the surrogate posterior from Sec-
tion 1.7 within the mean-field framework. In Eq. (1.49) we selected the Gaussian prior on the model
parameters and the Gamma prior on precision hyperparameters. So, Eq. (2.8) then passes on

qη(z) ≈ qη(θ)qη(ψ). (2.9)

2.2.1 Natural-Gradient Updates for Model Parameters

As the surrogate posterior for model parameters, we choose a Gaussian multivariate distribution with
all its properties derived in Eq. (1.6), q(θ|η) = N(θ|µθ,Σθ) with the mean µθ and the covariance matrix
Σθ:

η(1)
θ = Σ

−1
θ µθ, m(1)

θ = Eq [θ] = µθ,

η(2)
θ = −

1
2
Σ−1
θ , M(2)

θ = Eq
[
θθT

]
= µθµ

T
θ + Σθ,

(2.10)

where m(1)
θ ,M(2)

θ is the first and the second moment. We express the gradients with respect to the
expectation-parameter defined in Eq. (2.10)

∇m(1)
w
L⋆ = ∇µθL − 2

[
∇Σθ L

]
µθ,

∇M(2)
θ
L⋆ = ∇ΣθL.

(2.11)

CHAPTER 2. VARIATIONAL OPTIMIZATION 29

To make the notation more illustrative, the iterations will be marked as the second subscript of the iterated
variable. We rewrite Eq. (2.6) in terms of Σθ

−
1
2
Σ−1
θ,(t+1) = −

1
2
Σ−1
θ,(t) + β(t) · ∇Σθ L(t)

Σ−1
θ,(t+1) = Σ

−1
θ,(t) − 2β(t) · ∇Σθ L(t),

(2.12)

and in terms of µθ

Σ−1
θ,(t+1)µθ,(t+1) = Σ

−1
θ,(t)µθ,(t) + β(t)

[
∇µθ L(t) − 2

(
∇ΣθL(t)

)
µθ,(t)

]
µθ,(t+1) = Σθ,(t+1)

[
Σ−1
θ,(t)µθ,(t) + β(t)∇µθ L(t) − 2 β(t)

(
∇Σθ L(t)

)
µθ,(t)

]
µθ,(t+1) = Σθ,(t+1)

[(
Σ−1
θ,(t) − 2 β(t) ∇Σθ L(t)

)
µθ,(t) + β(t)∇µθ L(t)

]
µθ,(t+1) = Σθ,(t+1)

[
Σ−1
θ,(t+1)µθ,(t) + β(t)∇µθ L(t)

]
µθ,(t+1) = µθ,(t) + β(t) Σθ,(t+1)

[
∇µθL(t)

]
,

(2.13)

where ∇xL(t) means the gradient of the ELBO L with respect to a variable x at iteration t. To sum up,
via Eq. (2.12) and Eq. (2.13) we derived the natural-gradient updates of the Gaussian surrogate posterior
for the model parameters.

In case of the mean-field approximation discussed above, we can define the covariance matrix in
the Gaussian surrogate as Σθ = diag

(
σ2
θ

)
with variances on the diagonal, so that would correspond with

Eq. (2.8):

σ−2
θ,(t+1) = σ

−2
θ,(t) − 2β(t)

[
∇σ2

θ
L(t)

]
,

µθ,(t+1) = µθ,(t) + β(t) σ
2
θ,(t+1) ◦

[
∇µθL(t)

]
,

(2.14)

where a ◦ b denotes the element-wise product between two vectors.

2.2.2 Natural-Gradient Updates for Hyperparameters

For the reparameterized precision hyperparameters in Eq. (1.20) we choose the Gamma surrogate
posterior parameterized by its natural parameters. To simplify the problem, let qη(ψ j) = Gamma

(
ψ j|γ j, δ j

)
,

∀ j ∈ 1, . . . , J. According to Eq. (2.7) and Eq. (2.8), we can write

qη(ψ) =
J∏

j=1

qη(ψ j) =
J∏

j=1

δ
γ j
j

Γ(γ j)
ψ
γ j−1
j exp

(
−δ jψ j

)
(2.15)

and derive the natural-gradient updates of the Gamma surrogate posterior for the hyperparameters.
Again, we start by defining the natural parameters and the expectation-parameter from Eq. (2.4) of

the Gamma surrogate following the same notation as in the Gaussian case:

η(1)
ψ j
= γ j − 1, m(1)

ψ j
= Eq

[
log

(
ψ j

)]
= 𭟋

(
γ j

)
− log

(
δ j

)
,

η(2)
ψ j
= δ j, M(2)

ψ j
= Eq

[
ψ j

]
=
γ j

δ j
.

(2.16)

CHAPTER 2. VARIATIONAL OPTIMIZATION 30

Note. The symbol 𭟋(.) denotes the digamma function defined as

𭟋 (x) =
∂

∂x
log

(
Γ(x)

)
,

where Γ(.) denotes the gamma function. Digamma function will labeled this way, as in [36], to maintain
a consistency. We will also need the trigamma function defined as

𭟋(1)(x) =
∂2

∂x2 log
(
Γ(x)

)
.

To satisfy Eq. (2.5), it is necessary to calculate the FIM and then invert it:

F
(
ηψ

)
=

E

[
− ∂2

∂γ j∂γ j
log

(
qη(ψ j)

)]
E

[
− ∂2

∂γ j∂δ j
log

(
qη(ψ j)

)]
E

[
− ∂2

∂δ j∂γ j
log

(
qη(ψ j)

)]
E

[
− ∂2

∂δ j∂δ j
log

(
qη(ψ j)

)]
 , (2.17)

where log
(
qη(ψ j)

)
= γ j log

(
δ j

)
− log

(
Γ
(
γ j

))
+

(
γ j − 1

)
log

(
ψ j

)
− δ jψ j. Substituing this into the FIM

stated above, we obtain the following:

F
(
ηψ

)
=

∂2

∂γ2
j

log
(
Γ(γ j)

)
− 1
δ j

− 1
δ j

γ j
δ j

 F−1

−→ F
(
ηψ

)−1
=

1
𭟋(1)(γ j)

γ j
δ j
− 1

δ2
j

γ j
δ j

1
δ j

1
δ j
𭟋(1)(γ j)

 . (2.18)

By recalling Eq. (2.5), we will be able to compute the gradients with respect to the expectation-
parameter:

∇m(1)
ψ j
L⋆ =

1
𭟋(1)(γ j) − 1

δ j
γ j
∇γ jL +

1
𭟋(1)(γ j)γ j −

1
δ j

∇δ jL,

∇M(2)
ψ j
L⋆ =

1
𭟋(1)(γ j)γ j −

1
δ j

∇γ jL +
1

γ j
δ j
− 1

δ2
j 𭟋

(1)(γ j)

∇δ jL.
(2.19)

We rewrite Eq. (2.6) in terms of δ j

δ j,(t+1) = δ j,(t) + β(t) ·

 1
𭟋(1)(γ j,(t))γ j,(t) −

1
δ j,(t)

∇γ jL(t) +
1

γ j,(t)
δ j,(t)
− 1

δ2
j,(t) 𭟋

(1)(γ j,(t))

∇δ jL(t)

 (2.20)

and in terms of γ j

γ j,(t+1) = γ j,(t) + β(t) ·

 1
𭟋(1)(γ j,(t)) − 1

δ j,(t)
γ j,(t)
∇γ jL(t) +

1
𭟋(1)(γ j,(t))γ j,(t) −

1
δ j,(t)

∇δ jL(t)

 . (2.21)

Thus, Eq. (2.20) and (2.21) then describe the natural-gradient updates of the Gamma surrogate for
each iteration (t).

CHAPTER 2. VARIATIONAL OPTIMIZATION 31

2.3 Variational Online-Newton

In this method we firstly (per-sample) factorize the likelihood part in ELBO L and take its negative
logarithm form

f (θ) =
1
N

N∑
n=1

fn(θ) = −
1
N

N∑
n=1

log p(Dn|θ). (2.22)

We also prepare the minibatch stochastic-gradient estimatesM of the function f (θ), where the samples
M are chosen uniformly at random:

ĝ(θ) =
1
M

∑
n∈M

∇θ fn(θ) (2.23)

and eventually choose the model parameters prior p(θ) as the Gaussian with zero mean and the unit
covariance matrix controlled by the known precision hyperparameter ψ and the surrogate posterior also
as the Gaussian parameterized by its natural parameters:

p(θ) = N
(
θ|0,

1
ψ

I
)
, q(θ|η) = N

(
θ|µθ,Σθ

)
. (2.24)

After this preparation, we are able to derive the Variational Online-Newton (VON) method originally pro-
posed in (and according to) [22], which should facilitate an efficient application of the backpropagation
to computing the gradients and Hessians in the natural-gradient updates.

Note. Since some derivations are too long, they will be defended in Appendix A for better readability
and orientation in the text.

The VON method slightly modify Eq. (2.12) and Eq. (2.13). Therefore, we need to rewrite Eq. (2.2)
to our terms

L(µθ,Σθ) = Eq
[
−N f (θ) + log p(θ) − log q

(
θ|η

)]
, (2.25)

and express the gradients of the expectation of f (θ) with respect to µθ and Σθ in terms of the gradient
and Hessian of f (θ), to which we use the knowledge from [35]:

∇µθEq
[
f (θ)

]
= Eq

[
∇θ f (θ)

]
= Eq

[
g(θ)

]
,

∇ΣθEq
[
f (θ)

]
=

1
2

Eq
[
∇2
θθ f (θ)

]
=

1
2

Eq [H(θ)] .
(2.26)

The aforementioned Hessian matrix (or Hessian) H(.) is defined as a square matrix of all second-order
partial derivates of the input function with respect to its variables. Using these, we rewrite the gradients
of L, which are required in the natural-gradient updates in Eq. (2.12) and (2.13):

∇µθ L = −Eq
[
N g(θ)

]
− ψµθ,

∇Σθ L =
1
2

Eq [−NH(θ)] −
1
2
ψI +

1
2
Σ−1
θ .

(2.27)

To approximate the expectation over q, the Monte Carlo sampling can be used, where one sample will
be defined, as follows

θ(t) ∼ N
(
θ|µθ,(t),Σθ,(t)

)
, (2.28)

with which we can rewrite the natural-gradient updates for µθ and Σθ:

µθ,(t+1) = µθ,(t) − β(t) Σθ,(t+1)
(
N g(θ(t)) + ψµθ,(t)

)
,

Σ−1
θ,(t+1) = (1 − β(t))Σ−1

θ,(t) + β(t)
[
NH(θ(t)) + ψI

]
.

(2.29)

CHAPTER 2. VARIATIONAL OPTIMIZATION 32

By defining the transform matrix Sθ,(t) = 1
N

(
Σ−1
θ,(t) − ψI

)
→ Σθ,(t) =

[
N

(
Sθ,(t) + 1

NψI
)]−1

, we get the
following changed updates:

µθ,(t+1) = µθ,(t) − β(t)

[(
Sθ,(t+1) +

1
N
ψI

)]−1 [
g(θ(t)) +

1
N
ψµθ,(t)

]
,

Sθ,(t+1) = (1 − β(t))Sθ,(t) + β(t)H(θ(t)).
(2.30)

The updates shown in Eq. (2.30) are reffered to as Variational Online-Newton method, which was pro-
posed in [22]. It resembles a regularized version of online Newton’s method where the scaling matrix is
estimated online using the Hessians [47].

2.3.1 Mean-Field Variant of Variational Online Newton

We can also use the mean-field approximation of the updates from Eq. (2.30) by taking only the
diagonal in Hessian H(.) and the diagonal s in the transform matrix S:

µθ,(t+1) = µθ,(t) − β(t)

 g(θ(t)) +
ψ
Nµθ,(t)

sθ,(t+1) +
ψ
N

 ,
sθ,(t+1) = (1 − β(t))sθ,(t) + β(t) diag

(
H(θ(t))

)
,

(2.31)

where the two vector division a/b is defined element-wisely. Another approximation can be the use of
stochastic gradient from Eq. (2.23) and the estimation of the Hessian of f (θ):

µθ,(t+1) = µθ,(t) − β(t)

 ĝ(θ(t)) +
ψ
Nµθ,(t)

sθ,(t+1) +
ψ
N

 ,
sθ,(t+1) = (1 − β(t))sθ,(t) + β(t) diag

(
∇̂2
θθ f (θ(t))

)
.

(2.32)

Although there is a plenty of modern methods using automatic-differentiation to calculate the Hes-
sian, this computation is very expensive [56]. Furthermore, we can assume that, in general, f can be
a non-convex function, which can cause the Hessian and also the variances being negative. That would
be incompatible with the definition of the variance and the method might break down.

2.3.2 Reparameterization Trick in Hessian

One of the ways how to avoid an expensive computation of the Hessian is to apply the reparame-
terization trick to the expectation over the Gaussian distribution. The reparameterization trick can be
described as a way how to rewrite the expectation, so that the distribution with respect to which we take
the gradient is independent of the model parameters θ [25].

Using the derived identity in Eq. (2.26) and the mean-field variant of VON leads to the approximation
of the expectation over the Hessian of the function f :

Eq
[
∇2
θθ f (θ)

]
= 2∇σ2

θ
Eq

[
f (θ)

]
≈ ĝ(θ)

e
σθ
, (2.33)

where e ∼ N(e|0, I) and θ = µθ + σθ ◦ e.

CHAPTER 2. VARIATIONAL OPTIMIZATION 33

2.4 Variational Online Gauss-Newton

Another improvement of the VON method (specifically its updates) and especially a way to avoid
negative variances is the use of the Generalized Gauss-Newton (GGN) approximation [34]:

∇2
θ jθ j

f (θ) ≈
1
M

∑
n∈M

[
∇θ j fn(θ)

]2
= ĥ j(θ), (2.34)

where θ j is the j−th element of the model parameter vector θ. If we set the initial σ2
θ,(t=1) as a positive

number, it will remain positive throughout the whole iteration cycle. Using this approximation to the
update sθ,(t) in Eq. (2.32), we get

sθ,(t+1) = (1 − β(t))sθ,(t) + β(t) ĥ(θ(t)), (2.35)

whereas the update for µθ remains unchanged. We refer to these two updates combined as the Variational
Online Gauss-Newtom (VOGN) method, which eliminates the constraint on σ2

θ . Due to this approxima-
tion and the assumption of a positive variance at the beginning of the iteration cycle, it can be assumed,
that the VOGN should have an advantage over the VON method. As in the previous case, this method
was originally demonstrated in [22].

2.5 Variational RMSprop

A similar approximation of the Hessian of the function f (θ) was proposed in [8], there referred to as
the Gradient Magnitude (GM) approximation:

∇2
θ jθ j

f (θ) ≈

 1
M

∑
n∈M

∇θ j fn(θ)

2

=
[
ĝ j(θ)

]2
, (2.36)

but the order of operations is reversed here – GGN first squares the gradients and then sums them, while
GM sums the gradients first and then squares them. Approximation in Eq. (2.36) is also used in the
RMSprop (see also [43]), which is the well-known optimizer in the neural networks optimization. The
RMSprop optimizer uses following updates on the model parameters θ(t):

θ(t+1) = θ(t) − α(t)
ĝ(θ(t))√

s̄θ,(t+1) + ζ
,

s̄θ,(t+1) = (1 − β(t))s̄θ,(t) + β(t)
[
ĝ(θ(t)) ◦ ĝ(θ(t))

]
,

(2.37)

where s̄θ,(t) is the vector that adapts the learning rate, ζ denotes a small positive scalar added to the
denominator in order to avoid unintended dividing by zero and α(t) and β(t) are different learning rates.

By revisiting Eq. (2.31), taking square-root over sθ,(t+1) and using the GM approximation for the
Hessian, we get a very similar update to the RMSprop update called the Variational RMSprop:

µθ,(t+1) = µθ,(t) − α(t)
ĝ(θ(t)) +

ψ
Nµθ,(t)

√sθ,(t+1) +
ψ
N

,

sθ,(t+1) = (1 − β(t))sθ,(t) + β(t)
[
ĝ(θ(t)) ◦ ĝ(θ(t))

]
,

(2.38)

where θ(t) ∼ N
(
θ|µθ,(t),σ

2
θ,(t)

)
and σ2

θ,(t) =
1[

N
(
sθ,(t)+ ψ

N

)] . This means, that the gradient in Variational

RMSprop is computed at the model parameters θ(t) sampled from the Gaussian distribution. We call it
a weigth-perturbation, because the variance σ2

θ,(t) of perturbation is obtained from the vector sθ,(t) that
adapts the learning rate [22].

CHAPTER 2. VARIATIONAL OPTIMIZATION 34

2.6 Variational ADAM

A state-of-the-art optimizer in neural network optimization is widely-used ADAM, a method for
efficient stochastic optimization that only requires first-order gradients and computing individual adaptive
learning rates for different parameters from the estimates of gradient’s first and second moments [24].

Similar to the variational alternative of the RMSprop optimizer, the Variational ADAM (VADAM)
can be proposed. VADAM, like Variational RMSprop, was originally introduced in [22] and performs
the variational inference. It updates the parameters and the hyperparameters in the model at each step
considering them as random variables whose surrogate posterior q(θ|µθ,σ

2
θ) given the training data is

inferred by variational inference at every training step [54].
The full derivation of VADAM update can be found in the original paper [22]. However, we give only

the resulting equations (in combination with [24]) for the update in each iteration t for the parameters
known from the Variational RMSprop description, θ(t) ∼ N

(
θ|µθ,(t),σ

2
θ,(t)

)
and σ2

θ,(t) =
1[

N
(
sθ,(t)+ ψ

N

)] :
uθ,(t+1) = ξ1uθ,(t) + (1 − ξ1)

(
ĝ(θ(t)) +

ψ

N
µθ,(t)

)
,

sθ,(t+1) = ξ2 sθ,(t) + (1 − ξ2)
[
ĝ(θ(t)) ◦ ĝ(θ(t))

]
,

ûθ,(t+1) =
uθ,(t+1)

1 − ξt
1
,

ŝθ,(t+1) =
sθ,(t+1)

1 − ξt
2
,

µθ,(t+1) = µθ,(t) − υ ·
ûθ,(t+1)√

ŝθ,(t+1) +
ψ
N

,

(2.39)

where υ is the learning rate and ξ1, ξ2 ∈ [0, 1) are the hyperparameters controlling the exponential decay.

Note. During the computing bias-corrected first and secont moment estimates in Eq. (2.39) the symbols
ξt

1 and ξt
2 denote ξ1 and ξ2 to the power t.

2.7 Variational ADAM with ARD Prior

Within this thesis, we propose a new possible algorithm for finding a sparse parameterization of
the model. Let us assume probability model with likelihood p(D|θ) (Gaussian in the regression task,
Bernoulli in the classification task), Gaussian prior on weights and Gamma prior on hyperparameter ψ
in following expression

p(y, θ|X,ψ, ω) ∝ p(D|θ)N
(
0, diag

(
ψ−1

)
· I

) K∏
j=1

Gamma (γ0, δ0) . (2.40)

Our goal is to approximate the posterior for all latent variables in factor form

p(θ,ψ, ω|D) ≈ qη(z) = qη(θ)qη(ψ)qη(ω). (2.41)

We use part of the derived equations to update the posterior factors of the hyperparameters in the linear
regression from [50]:

q(ψ j|γ j, δ j) = Gamma
(
γ0 +

1
2
, δ0 +

1
2

E
[
θ2

j

])
, ∀ j = 1, . . . ,K,

q(ω|γ j, δ j) = Gamma
(
δ0 +

K
2
,E

[
(y − Xθ)T (y − Xθ)

])
,

(2.42)

CHAPTER 2. VARIATIONAL OPTIMIZATION 35

where E
[
θ2

j

]
= µ2

θ j
+ σ2

θ j
and E

[
ψ j

]
=

γ j
δ j

.

Note. The posterior factor for the hyperparameter ω is mentioned here only in the context of Section 1.7,
where it was used. It will not appear in the following experiments as it will be taken as a known constant,
but it can be estimated together with all latent variables in the case, where it is unknown according to
Eq. (2.42).

Our proposed algorithm combines model negative log-likelihood described in Eq. (2.22) with the
ARD prior in negative logarithm form:

fnew(θ) = −
1
N

N∑
n=1

log p(Dn|θ)︸ ︷︷ ︸
f (θ)

−

K∑
j=1

1
2
θ2

jψ j. (2.43)

This changes the meaning of the function f (θ) from Eq. (2.22) entering the optimization. The resulting
proposed algorithm using the variational ADAM with the ARD prior can then be written, as follows in
Algorithm 1.

Algorithm 1 VADAM with the ARD prior, updates for the posterior parameters in one iteration (t).
1: Initialize prior parameters γ0, δ0, learning rates in ADAM, (ω).
2: Calculate in each dimension γ j,(t), δ j,(t), (γ j,(t), δ j,(t)).
3: ψ j,(t) ←

γ j,(t)
δ j,(t)

,
(
ω(t) ←

γ j,(t)

δ j,(t)

)
.

4: Do step described in Eq. (2.39) with fnew(θ).
5: Update γ j,(t), δ j,(t) (γ j,(t), δ j,(t)) according to Eq. (2.42).
6: (t + 1)← (t).

This algorithm is designed to search for possible sparse solutions using prior knowledge. By doing
so, we insert new information into the model, in the form of the shrinkage prior, that we want in particular
the sparse solutions from the set of all possible solutions.

Chapter 3

Experiments

3.1 Sparse Linear Regression

In the first simulation scenario, we set up a simple linear regression problem on which we want to
observe the behavior of different methods for achieving a sparse parameterization. We use artificially
generated (synthetic) dataset given by a data matrix X, where the entries are sampled from the Gaussian
distribution, and the response variable, y = Xθtrue+e, with a fixed known parameter vector (groundtruth)
θtrue and the Gaussian noise e of the mean µe and variance σ2

e . Keep in mind that one realization of the
data matrix (using a fixed seed) is equivalent to one realization of the random matrix with the Gaussian
distribution.

In this way, we can then monitor whether the estimates delivered by various methods actually con-
verge to the exact values obtained from an analytically solvable estimator. That is, in this simple linear
regression problem, there surely exists the analytically tractable estimate of θtrue given by

θ̂true =
(
XT X

)−1XT y. (3.1)

With θtrue = (2.9, 1.1, 0.02, 0.05, 10.0, 7.2, 0.06, 9.1, 0.001, 0.2, 0.76)T ∈ R11, (1,X) ∈ R100×10+1 and
Gaussian noise en ∼ N

(
0, σ2

e

)
with σ2

e = 0.5 we generate response variable y ∈ R100. Our model will
then look like this (in matrix form):

y1
yn
...

y100

 =

1 x1,1 . . . x1,10
1 x2,1 . . . x2,10
...

...
. . .

...

1 x100,1 . . . x100,10

 ·

θtrue,1
θtrue,2
...

θtrue,11

 +

e1
e2
...

e100

 (3.2)

We shuffle the data, split dataset D = (y,X) into the train and test sets with the ratio 0.8 and choose the
batchsize 16. Eventually, we run several methods with various settings.

3.1.1 Model Architecture

In the neural networks paradigm, the model in Eq. (3.2) can be interpreted as a neural network with
no hidden layer. The architecture of this simple neural network consists of an input layer (R11) and
an output layer with an identity activation function. We choose total of 11 trainable parameters in this
network, showing its graphical representation in Fig. 3.1.

36

CHAPTER 3. EXPERIMENTS 37

Input 1

Input 2

...

Input 11

Input layer

Output layer
with

identity
activation

Figure 3.1: Neural network architecture for the linear regression task.

3.1.2 Maximum Likelihood Estimation in Linear Regression

In the first experiment, we will try to tune the full model, while closely monitoring the model error
(loss) in the form of the mean-squared error (MSE) and the parameter convergence across epochs. We
choose the ADAM optimizer with the hyperparameters υ = 0.001, ξ1 = 0.9 and ξ2 = 0.999 to fit the
model’s parameters.

0 10k 20k 30k

0

2

4

6

8

10 param 1
param 2
param 3
param 4
param 5
param 6
param 7
param 8
param 9
param 10
param 11
analytical estimation

Param history

epochs

va
lu

e

Figure 3.2: Linear regression parameters during training.

CHAPTER 3. EXPERIMENTS 38

0 10k 20k 30k

0

50

100

150

200

250

300

0 10k 20k 30k

−1

0

1

2

3

4

5

6
train
test
train
test

epochs epochs

lo
ss

 (
M

S
E)

lo
g

lo
ss

 (
M

S
E)

Losses Log losses

Figure 3.3: Values of loss function on train and test sets in linear regression.

In Fig. 3.2, we can see that the classical MLE method has converged to an analytical solution from
Eq. (3.1). The loss function values in Fig. 3.3 have reached their minimum. This is no surprise – the
response variable was generated according to the known parameter θtrue. The training of the full model
is presented here mainly for interest, since we only have a point estimate of the parameters and did
not force any sparsity. Alternatively, it would have to be at everyone’s opinion how they would like to
assess the area around the point estimates. The intention was to have components close to zero in the
θtrue so we could either control the sparsity at our discretion or use a method that could automatically
zero them. Therefore, we add the Laplace prior on the model parameters to help us achieve a sparser
parameterization.

3.1.3 L1 Penalization in Linear Regression

Adding the Laplace prior from Eq. (1.15) with the zero mean on the model parameters to the Gaus-
sian likelihood creates a new optimization task. The new loss function to minimize is then in the same
form as in Eq. (1.56) with optional hyperparameter λ, which is a tunning knob we would like to set right
to achieve a sparse parameterization.

Thus, we first analyze the relationship of how the values of the trained parameters change as a func-
tion of λ to estimate its reasonable range. This is mainly for an initial look, when most parameters start to
converge to zero by estimation. Initial setting of the optimizer, the batchsize, and the data split, will be the
same as those in the MLE estimation. We choose a rough λ-grid in the range λ ∈ (0.0, 1.0, 2.0, . . . , 40.0).
We always take one particular λ, train the parameters and record their values to plot the convergence
history.

CHAPTER 3. EXPERIMENTS 39

0 10 20 30

0

2

4

6

8

10

12

14

0 2 4 6 8

0

2

4

6

8

10

12

14

λ λ

pa
ra

m
et

er
 v

al
ue

s

pa
ra

m
et

er
 v

al
ue

s

λ curve λ curve (restricted)

Figure 3.4: Relationship between λ and parameters values in λ ∈ (0.0, 1.0, 2.0, . . . , 40.0) grid. On the
right with zoomed range of λ ∈ (0.0, 1.0, 2.0, . . . , 9.0).

Fig. 3.4 shows us which values of the hyperparameter λ is required to zero the parameters of the
model. A closer look reveals that except for one parameter in the model, it is possible to zero out the
vast majority of the other parameters using λ ∈ (0.0, 4.0). It is clear that the most change happens in
this restricted interval, so we make the λ-grid smoother with a smaller step, λ ∈ (0.0, 0.1, . . . , 4.0), and to
find a certain trade-off between the model error and sparse parameterization, we plot the so-called Pareto
frontier, as described in Algorithm 2.

Algorithm 2 Pareto frontier.
1: Set the model, loss, optimizer, λ.
2: Train the model and save the results of the last epoch.
3: Check if any component of the trained parameter vector belongs to an ε-neighborhood of zero.
4: Compute the loss value on test data with selected parameters.
5: Plot loss value on test data and number of components, which do not belong to the ε-neighborhood.
6: Repeat step 1 to 5 with another value of λ.
7: Highlight the set of models with the lowest error given λ.

Pareto frontier is a good graphical tool for comparing models in the case of observed sparsity. Ideally,
we would like one of the axes of the Pareto frontier to be the model error and the other the L0 norm of
trained parameter (the number of non-zero parameters). However, due to numerical calculations, the
strict L0 norm does not give good results, so it needs to be generalized. We define its generalized form,
L0,ε, as follows:

||θ||0,ε = #
{
θk <

(
0 − ε, 0 + ε

)
|k = 1, . . . ,K

}
, (3.3)

where the symbol # denotes total number of elements falling in the ε-neighborhood and ε is the optional
tolerance parameter. The parameter ε can be set manually according to personal preference, as to how
much around the zero the user considers the parameter to be accepted as zero. In the case of variational
methods (as shown in the following sections), this tolerance parameter, ε, can be replaced by the variance
estimates already included in those methods.

CHAPTER 3. EXPERIMENTS 40

0 1 2 3 4
10

10.5

11

11.5

12

0 1 2 3 4

5

10

0 1 2 3 4

5

10

0 1 2 3 4

6

8

10

λ λ

λ λ

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

0.0-neighborhood 0.01-neighborhood

0.001-neighborhood 0.0001-neighborhood

Figure 3.5: The relationship between λ and non-zero parameters depending on the ε-neighborhood given
by ε ∈ {0.0, 0.01, 0.001, 0.0001}.

With each minor adjustment of the tolerance parameter ε in Fig. 3.5, we get a more precise insight
into at what λ-value and what ε-preference, the trained parameters start to zero out (leading to a sparse
parameterization of the model). Although sparsity can be achieved in this way, it is still necessary to
evaluate whether any particular choice of λ is adequate compared to the error of the model on the test
data. Therefore, we select ε = 0.001, and, according to Algorithm 2, the Pareto frontier of the linear
regression using L1 penalization will be plotted.

CHAPTER 3. EXPERIMENTS 41

λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.0λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.1λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.2λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.3λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.4λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.5λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6λ=0.6
λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7λ=0.7

λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8λ=0.8
λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9λ=0.9
λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0λ=1.0
λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1λ=1.1
λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2λ=1.2
λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3λ=1.3
λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4λ=1.4
λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5λ=1.5
λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6λ=1.6
λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7λ=1.7
λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8λ=1.8
λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9λ=1.9
λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0λ=2.0
λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1λ=2.1
λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2λ=2.2

λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3λ=2.3

λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4λ=2.4
λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5λ=2.5

λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6λ=2.6
λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7λ=2.7
λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8λ=2.8

λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9λ=2.9
λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.0λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1λ=3.1

λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2λ=3.2
λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3λ=3.3
λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.4λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5λ=3.5
λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6λ=3.6 λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7λ=3.7
λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8λ=3.8
λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9λ=3.9
λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0λ=4.0

2 4 6 8 10

0

5

10

15

20

Various modelsAa

Pareto frontier

Pareto frontier, ϵ=0.001

Number of parameters in model

M
S
E

(t
es

t
da

ta
)

Figure 3.6: The Pareto frontier of linear regression using the L1-penalization for λ ∈ (0.0, 0.1, . . . , 4.0)
grid and tolerance parameter ε = 0.001.

Pareto frontier shown in Fig. 3.6 is a good graphical tool to select a preferable model. It is up to
the subjective view of the reader whether they prefer a model with more parameters but a less error, or
fewer parameters but still an acceptable error. The reader should keep in mind, however, that it is still
necessary to determine in advance the threshold at which the parameter can be taken as zero (the tolerance
parameter ε) – which is, again, a matter of subjective discretion. For example, choosing λ = 0.3 leaves 4
parameters in the model (zeroes out 7 parameters), but the error on the test data is still comparable to the
full model with 11 parameters. However, removing another parameter from the model would increase
the model error by almost 20 times.

3.1.4 Variational ADAM in Linear Regression

A possible disadvantage of the previous way to force sparsity is the manual setting of the tolerance
parameter, ε. The following method (divided into two cases) uses the findings from Section 2.6 and
Section 2.7 to perform the variational inference and obtain the Gaussian posterior for θtrue. Thus, at the
end of learning, we get not only the estimates of the mean values µθ of the parameters θtrue, but also their
variances σ2

θ , which allows us to compute the standard deviations σ̂θ.
We first check the convergence of the VADAM optimizer without the prior to see if the mean values

converge to the analytical solution in Eq. (3.1). Similarly to the classic ADAM optimizer, the hyperpa-
rameters υ = 0.001, ξ1 = 0.9 and ξ2 = 0.999 are chosen for this method.

CHAPTER 3. EXPERIMENTS 42

0 2k 4k 6k 8k 10k

0

2

4

6

8

10
param 1
param 2
param 3
param 4
param 5
param 6
param 7
param 8
param 9
param 10
param 11
analytical estimation

VADAM param history

epochs

va
lu

e

Figure 3.7: The parameters of the linear regression model during the training with the VADAM optimizer
without any prior.

Similarly to the MLE (Fig. 3.2), this variational method converged to an analytical solution in
Eq. (3.1), as shown in Fig. 3.7. There are minor oscillations around the mean values in the last few
epochs of training. This is due to the corrections of the first and second moments in the VADAM opti-
mizer. Unlike the MLE or L1 regularization at the end of training, we have the inferred posterior estimate
of the parameters. Fig. 3.7 can also be taken as a kind of check that the method does what it is supposed
to do and that the variational inference was successful.

The estimated standard deviations are used to declare whether a parameter is irrelevant to the model
and therefore can be zeroed out. To evaluate the number of relevant non-zero parameters, we introduce
a similar generalized form of the L0 norm for variational methods as in Eq. (3.3), i.e.,

||θ||0,σ̂θ,d = #
{
µθk <

(
0 − d · σ̂θk, 0 + d · σ̂θk

)
|k = 1, . . . ,K ∧ d ∈ R+

}
, (3.4)

where one can choose as a high value of d as preferred. In this variational case, we make a grid for
the parameter d to observe its impact on the zeroing-out behaviour and the test loss. Using the variance
estimates, the corresponding standard deviations are calculated and then put into the generalized L0 norm
in Eq. (3.4) for mean values of the last epoch. First, we show an example with the choice d = 2 in the
last-epoch’s parameters from Fig. 3.7, and, eventually, by selecting a particular d-value in the grid of
d ∈ (0.0, 0.5, 1.0, . . . , 10.0), applying the generalized L0 norm and computing the loss in the form of the
MSE on the test data, the Pareto frontier will be plotted.

CHAPTER 3. EXPERIMENTS 43

5 10

0

2

4

6

8

10

5 10

0

2

4

6

8

10

last epoch
relevant parameters

No. of parameter component No. of parameter component

va
lu

e

va
lu

e

VADAM trained parameters Relevant parameters

Figure 3.8: The linear regression parameters of the VADAM optimizer from the last epoch with the
means and the corresponding standard deviations for d = 2, ||θ||0,σ̂θ,2 = 6.

d=0.0d=0.5

d=1.0, d=1.5, d=2.0, d=2.5

d=3.0, d=3.5, d=4.0, d=4.5, d=5.0

d=5.5, d=6.0, d=6.5, d=7.0, d=7.5, d=8.0, d=8.5, d=9.0, d=9.5, d=10.0

4 6 8 10

0.4

0.6

0.8

1

1.2

1.4

1.6

Various modelsAa

Pareto frontier

Pareto frontier VADAM

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.9: The Pareto frontier of the linear regression using the VADAM optimizer for d ∈

(0.0, 0.5, 1.0, . . . , 10.0).

CHAPTER 3. EXPERIMENTS 44

The Pareto frontier in Fig. 3.9 shows the model error on the test data including the relevant number
of parameters estimated by the VADAM optimizer for a particular choice of the number of standard
deviations d. For the aforementioned setting, d = 2, we get Fig. 3.8, which shows us the parameter value
of each component in a sparse parameterization with a minimal loss according to Fig. 3.9.

3.1.5 VADAM with ARD Prior in Linear Regression

We now demonstrate our proposed algorithm, as described in Section 2.7, to perform an alternative
variational inference to the VADAM optimizer without any prior from above. With the same experi-
mental setup as with the MLE, L1 regularization and the VADAM optimizer without prior, we check the
convergence of the method and the ability to find the sparse solution we want.

0 2k 4k 6k 8k 10k

0

2

4

6

8

10
param 1
param 2
param 3
param 4
param 5
param 6
param 7
param 8
param 9
param 10
param 11
analytical estimation

VADAM param history with ARD prior

epochs

va
lu

e

Figure 3.10: The parameters of the linear regression during the training using the VADAM optimizer
with the ARD prior.

Fig. 3.10 shows that the method has converged to a sparse solution that matches the analytical
estimate in Eq. (3.1). Compared to Fig. 3.7, it is clear that adding the ARD prior to the method speeded
up the convergence considerably, while still finding out the correct estimate. The hyperparameter ψ is
estimated automatically (see Algorithm 1).

As in previous case of the VADAM optimizer without the prior, we show an example with the choice
d = 2 for the parameters from the last epoch in Fig. 3.10 and then plot the Pareto frontier.

CHAPTER 3. EXPERIMENTS 45

5 10

0

2

4

6

8

10

5 10

0

2

4

6

8

10
last epoch
relevant parameters

No. of parameter component No. of parameter component

va
lu

e

va
lu

e

VADAM trained parameters (ARD) Relevant parameters

Figure 3.11: The linear regression using the VADAM optimizer with the ARD prior for the parameters
from the last epoch, with the mean values and the correspoding standard deviations for the choice d = 2,
||θ||0,σ̂θ,2 = 6.

d=0.0d=0.5
d=1.0, d=1.5, d=2.0, d=2.5, d=3.0

d=3.5, d=4.0, d=4.5, d=5.0

d=5.5, d=6.0, d=6.5, d=7.0, d=7.5, d=8.0, d=8.5, d=9.0, d=9.5, d=10.0

4 6 8 10

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Various modelsAa

Pareto frontier

Pareto frontier VADAM with ARD

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.12: The Pareto frontier of the linear regression using the VADAM optimizer with the ARD prior
for d ∈ (0.0, 0.5, 1.0, . . . , 10.0).

CHAPTER 3. EXPERIMENTS 46

The Pareto frontier plotted in Fig. 3.12 shows only the set of the lowest loss value models given
an appropriate d. The example with the choice d = 2 and the corresponding selected relevant components
of the estimated parameters is shown in Fig. 3.11.

3.1.6 Evaluation of Methods

We would like to compare and evaluate the methods used to obtain the sparse parameterization in this
linear regression model illustrated in Fig. 3.1, in particular, the L1 penalization and our proposed method
of the VADAM optimizer with the ARD prior. We take the Pareto frontiers from both cases plotted in
Fig. 3.6 and Fig. 3.12, plot them into one figure and compare their curves. If one curve is lower than
the other in a certain region of this figure, it can be said that in terms of finding a sparse parameterization
of a certain number of parameters, and evaluating the model error on the test data, one method performs
better than the other.

2 4 6 8 10

0

5

10

15

20
L1
VADAM with prior

Evaluation of methods using Pareto frontiers

Number of parameters in model

M
S
E

(t
es

t
da

ta
)

Figure 3.13: The evaluation of the methods to estimate a sparse parameterization in the linear regression
experiment.

The ability to find a sparser parameterization is satisfied by both methods, as shown in Fig. 3.13.
Our proposed method performs better in finding sparse parameterization with 5, 6 or 8 parameters. In
the case of a 4-parameter parameterization, the L1 penalization reached a smaller error on the test data.
It can be stated that for such an experimental setup, both methods performed well and both revealed the
number of relevant elements in θtrue. We can state that with a minimal increase in the error on the test
data, up to 7 parameters can be removed from the model in Eq. (3.2) using either the L1 regularization
or the VADAM optimizer with the ARD prior.

CHAPTER 3. EXPERIMENTS 47

3.2 Sparse Logistic Regression

In the next experiment, we are concerned with sparsifying a logistic regression model when applied
to the classification of the well-known Iris dataset [51] from UCI Machine Learning Repository. The
dataset contains 150 observations of 4 variables describing the length and width of the sepals and petals
with a three-class response variable encoding the affiliation to a given plant species, i.e., X ∈ R150×4 and
y ∈ {setosa, versicolor, virginica}150. The data are split with the ratio 0.8 to the train and the test sets.
The batchsize is chosen to 4. The dataset is labelled, hence this clearly a supervised learning task. This
experiment relies on description from Section 1.8.

3.2.1 Model Architecture

For this task, the architecture of the neural network is as follows: the input layer of dimension 4,
single hidden layer containing eight neurons and the ReLU activation function, and the output layer of
dimension 3 with a softmax output activation function. There is the total of 67 trainable parameters. This
architecture is shown in Fig. 3.14.

Input 1

Input 2

Input 3

Input 4

Input layer

Hidden
layer 1

with ReLU
activation

Output layer
with

softmax
activation

Figure 3.14: The neural network architecture for the logistic regression applied to the Iris dataset.

One can argue why to construct such a complex network just for the simple Iris dataset, which not
only contains only 150 observations, but also the classes are well separable (the data are depicted in [40]).
This second experiment is designed to use the methods from the first one with the linear regression and
try to prune this neural network to obtain a sparse parameterization of only those parameters that are
relevant to this problem, assuming the smallest possible increase in the model error.

CHAPTER 3. EXPERIMENTS 48

3.2.2 Maximum Likelihood Estimation in Logistic Regression

The first run of this experiment was carried out without any prior or sparsity assumptions. We
used, again, the ADAM optimizer with the hyperparameters υ = 0.001, ξ1 = 0.9 and ξ2 = 0.999. We
monitored the classification accuracy of the model and the value of the binary cross-entropy loss function
from Eq. (1.55). These values calculated at each epoch during the training are plotted in Fig. 3.15.

0 10k 20k 30k

0.6

0.65

0.7

0.75

0.8

0 10k 20k 30k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 train
test
train
test

epochs epochs

lo
ss

ac
c

Losses Accuracy

Figure 3.15: Values of the binary cross-entropy loss function and the classification accuracy on the train
and the test sets.

Already during the first hundreds of epochs, there is a sharp increase in model accuracy towards 95%.
One can also observe oscillating values of the test loss and the test accuracy at the end of the training. It
is clear that this model was overfitted and, therefore, it is necessarry to prune it.

3.2.3 L1 Penalization in Logistic Regression

We add the Laplace prior with the zero mean on the model parameters to the Bernoulli likelihood
and obtain the loss function described in Eq. (1.56) with an optional hyperparameter λ. We will follow
the same procedure as in the linear regression task. First, we plot how the parameter values depend on
λ, and then, by selecting four different tolerance parameters ε, a dependency of the corresponding L0,ε
from Eq. (3.3) on λ. Since this is a logistic regression task whose parameters are usually small, a smooth
grid with a small step-size should be chosen. Therefore, we choose λ ∈ (0.0, 0.0005, . . . , 0.04) grid.

CHAPTER 3. EXPERIMENTS 49

0 0.01 0.02 0.03 0.04

−6

−4

−2

0

2

4

0 0.005 0.01

−6

−4

−2

0

2

4

λ λ

pa
ra

m
et

er
 v

al
ue

s

pa
ra

m
et

er
 v

al
ue

s

λ curve λ curve (restricted)

Figure 3.16: The relationship between λ and parameter values for λ ∈ (0.0, 0.0005, . . . , 0.04) grid (left)
and λ ∈ (0.0, 0.0005, . . . , 0.01) grid (right).

0 0.01 0.02 0.03 0.04
64

65

66

67

0 0.01 0.02 0.03 0.04
0

20

40

60

0 0.01 0.02 0.03 0.04
0

20

40

60

0 0.01 0.02 0.03 0.04

30

40

50

60

λ λ

λ λ

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

0.0-neighborhood 0.01-neighborhood

0.001-neighborhood 0.0001-neighborhood

Figure 3.17: The relationship between λ and the number of the non-zero parameters depending on the
ε-neighborhood for ε ∈ {0.0, 0.01, 0.001, 0.0001}.

CHAPTER 3. EXPERIMENTS 50

Fig. 3.16 illustrates that many parameters in the model have a really small value (even if the grid was
chosen very smoothly) and the trend decreases to zero. A slight increase in λ immediately penalizes the
parameters and quickly tightens them to zero, which is confirmed in Fig. 3.17 by the fact that even small
choices of the tolerance parameter ε do not hold the majority of the parameters of the model. Now, we
select ε = 0.001 and plot the Pareto frontier according to Algorithm 2.

λ=0.0

λ=0.0005
λ=0.001

λ=0.0015λ=0.002
λ=0.0025

λ=0.003

λ=0.0035λ=0.004
λ=0.0045

λ=0.005

λ=0.0055
λ=0.006λ=0.0065

λ=0.007
λ=0.0075

λ=0.008

λ=0.0085

λ=0.009λ=0.0095λ=0.01

λ=0.0105

λ=0.011

λ=0.0115λ=0.012

λ=0.0125
λ=0.013

λ=0.0135 λ=0.014
λ=0.0145λ=0.015λ=0.0155
λ=0.016λ=0.0165λ=0.017λ=0.0175λ=0.018

λ=0.0185λ=0.019

λ=0.0195λ=0.02

λ=0.0205

λ=0.021λ=0.0215

λ=0.022λ=0.0225

λ=0.023λ=0.0235

λ=0.024

λ=0.0245λ=0.025

λ=0.0255λ=0.026

λ=0.0265

λ=0.027

λ=0.0275

λ=0.028λ=0.0285λ=0.029

λ=0.0295

λ=0.03λ=0.0305λ=0.031

λ=0.0315

λ=0.032λ=0.0325λ=0.033λ=0.0335λ=0.034λ=0.0345λ=0.035λ=0.0355λ=0.036λ=0.0365λ=0.037λ=0.0375λ=0.038λ=0.0385λ=0.039λ=0.0395λ=0.04

0 20 40 60

0.6

0.65

0.7

0.75

0.8

Various models
Aa

Pareto frontier

Pareto frontier, ϵ=0.001

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.18: The Pareto frontier of the logistic regression with the L1 penalization for λ ∈

(0.0, 0.0005, . . . , 0.04) grid and the tolerance parameter ε = 0.001.

The Pareto frontier in Fig. 3.18 shows us several possible ways to choose a level of sparsity in the
model depending on the test loss, always with a corresponding value of λ. Now it is again up to personal
preference what parameterization to choose. For example, choosing λ = 0.001 can prune the neural
network so that only 15 parameters remain, and the model error significantly decreases. At the cost
of a small increase in test loss, the neural network can be pruned so that only the 3 most significant
parameters remain.

CHAPTER 3. EXPERIMENTS 51

3.2.4 Variational ADAM with ARD Prior in Logistic Regression

Now let us apply our proposed algorithm from Section 2.7 to this problem and thus search for a sparse
parameterization using the variational inference. The experiment setting remains the same as in the MLE
and L1 cases. Plotting the convergence of the parameters is redundant in this case, since there is no
analytical estimation as in the linear regression. Therefore it is appropriate to evaluate the sparsified
models using the loss function evaluated on the test data.

d=0.0

d=0.1d=0.2d=0.3d=0.4d=0.5d=0.6d=0.7d=0.8d=0.9d=1.0d=1.1d=1.2d=1.3d=1.4d=1.5d=1.6d=1.7d=1.8d=1.9d=2.0

0 20 40 60

0.765

0.77

0.775

0.78

0.785

0.79
Various models

Aa

Pareto frontier

Pareto frontier

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.19: The Pareto frontier of the logistic regression using the VADAM optimizer with the ARD
prior for d ∈ (0.0, 0.1, . . . , 3.0) grid.

As can be seen in Fig. 3.19, our proposed method, relying on the VADAM optimizer with the
ARD prior, found several sparse parameterizations, but even with an increasing number of standard
deviations, the model error on the test data stabilized for only 3, 4 or 6 parameters of the model. As
expected in Subsection 3.2.1, there are really just a few relevant parameters in such an overparameterized
model sketched in Fig. 3.14. As revealed by our method, the model error with such a parameterization
increases. We need to compare this method with L1 penalization.

CHAPTER 3. EXPERIMENTS 52

3.2.5 Evaluation of Methods

In a similar way to the linear regression, we would like to evaluate and compare the L1 penalization
and the VADAM optimizer with the ARD prior in terms of their ability to find sparser parameterizations.
We take the Pareto frontiers from Fig. 3.18 and Fig. 3.19, plot them into one figure and compare them.

0 10 20 30

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76
L1
VADAM with prior

Evaluation of methods using Pareto frontiers

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.20: The evaluation of the methods to estimate a sparse parameterization in the experiment with
the logistic regression.

Fig. 3.20 shows us that the ability to find a sparser parameterization is satisfied by the both meth-
ods. Here, the L1 penalization has the advantage of providing multiple possible solutions for sparse
parameterizations, whereas the VADAM optimizer with the ARD prior revealed only one possible sparse
parameterization of the model. The ideal trade-off between a sparse parameterization and a minimal
increase in the test error seems to be λ = 0.001, which leaves 15 significant parameters in the model.
This fact also confirms Fig. 3.18. The VADAM optimizer with the ARD prior leaves only 3 parameters
in the model, but the error on the test data is significantly higher than leaving a few more parameters in
the model.

3.3 Sparse MIL

The third experiment is concerned with the multi-instance learning problem (as covered in Section
1.9). We adopt the dataset, D, called Musk [52], which describes a set of 92 molecules (bags) of which
47 are judged by human experts to be musks and the remaining 45 molecules are judged to be non-
musks. Our task is to classify whether the new molecule will be musk or non-musk. Along the lines of
Section 1.9, we have 92 bags (N = 92) in toto, containing 476 instances (I = 476) of dimension 166
(K = 166) and 92 corresponding response variables, y ∈ {0, 1}92. Again, the dataset will be split into the
train and test subsets with the ratio 0.8.

CHAPTER 3. EXPERIMENTS 53

3.3.1 Model Architecture

The following architecture, see in Fig. 3.21, was proposed by the authors of the Mill.jl library
[37], written in the Julia programming language. The library includes an example with this architec-
ture, being suitable for the Musk dataset, on which we will test the L1 regularization and the VADAM
optimizer with the ARD prior to force a sparse parameterization.

The first part of the network is composed of an input layer for bags with instances of the fixed
dimension 166 and a hidden layer with the tanh activation and 10 neurons. This is followed by a pooling
layer with the meanmax aggregation operator whose output is a vector of the fixed dimension 20. The
second part of the network contains another hidden layer with the tanh activation and 10 neurons, and
is enclosed by an output layer with the binary output. In total, this architecture contains 1922 trainable
parameters.

Input 1

Input 2

...

Input 166

Input layer

Hidden
layer 1

with tanh
activation

Pooling layer
(MeanMax

aggregation)

...

Output from
aggregation

Hidden
layer 2

with tanh
activation

Output layer
with

sigmoid
activation

Figure 3.21: The neural network architecture for the MIL problem and the Musk dataset.

CHAPTER 3. EXPERIMENTS 54

3.3.2 L1 Penalization in MIL

Since we have a classification problem, binary cross-entropy function will be used as the loss to
monitor the model error. Similar to the regression, we apply the Laplace prior with an additional hyper-
parameter λ from Eq. (1.15). Despite the fact that there are now an order of magnitude more parameters,
we plot them depending on the increasing λ during training. We set the λ ∈ (0.0, 0.001, . . . , 0.1) grid
(101 models in total) and, each time, we take a specific λ, train the parameters, record their values and
plot. Then we apply the L0,ε norm to see how many parameters we can zero out based on a prefered
tolerance parameter ε.

0 0.05 0.1

−8

−6

−4

−2

0

2

4

6

8

0 0.005

−8

−6

−4

−2

0

2

4

6

8

λ λ

pa
ra

m
et

er
 v

al
ue

s

pa
ra

m
et

er
 v

al
ue

s

λ curve λ curve (restricted)

Figure 3.22: The relationship between λ and parameter values for λ ∈ (0.0, 0.001, . . . , 0.1) grid (left) and
λ ∈ (0.0, 0.001, . . . , 0.01) grid (right).

CHAPTER 3. EXPERIMENTS 55

0 0.05 0.1
0

500

1000

1500

2000

0 0.05 0.1
0

500

1000

1500

2000

0 0.05 0.1
0

500

1000

1500

2000

0 0.05 0.1
0

500

1000

1500

λ λ

λ λ

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

nu
m

be
r

of
 n

on
-z

er
o

pa
ra

m
et

er
s

0.001-neighborhood 0.002-neighborhood

0.005-neighborhood 0.01-neighborhood

Figure 3.23: The relationship between λ and the number of the non-zero parameters depending on the
ε-neighborhood given by ε ∈ {0.001, 0.002, 0.005, 0.01}.

From the Fig. 3.23, it is clear that for this problem we need to choose the tolerance parameter ε really
small, so that we do not zero out all parameters with the small change of λ. We also use Algorithm 2
with the tolerance parameter ε = 0.001 and plot the Pareto frontier for the Musk problem.

λ=0.0

λ=0.001

λ=0.002
λ=0.003

λ=0.004

λ=0.005

λ=0.006

λ=0.007

λ=0.008

λ=0.009

λ=0.01

λ=0.011

λ=0.012λ=0.013

λ=0.014

λ=0.015

λ=0.016

λ=0.017

λ=0.018

λ=0.019

λ=0.02

λ=0.021

λ=0.022

λ=0.023

λ=0.024

λ=0.025

λ=0.026
λ=0.027

λ=0.028

λ=0.029

λ=0.03

λ=0.031λ=0.032

λ=0.033
λ=0.034

λ=0.035

λ=0.036

λ=0.037λ=0.038

λ=0.039

λ=0.04

λ=0.041λ=0.042λ=0.043λ=0.044λ=0.045λ=0.046λ=0.047λ=0.048λ=0.049λ=0.05λ=0.051λ=0.052λ=0.053λ=0.054λ=0.055λ=0.056λ=0.057λ=0.058λ=0.059λ=0.06λ=0.061λ=0.062λ=0.063λ=0.064λ=0.065λ=0.066λ=0.067λ=0.068λ=0.069λ=0.07λ=0.071λ=0.072λ=0.073λ=0.074λ=0.075λ=0.076λ=0.077λ=0.078λ=0.079λ=0.08λ=0.081λ=0.082λ=0.083λ=0.084λ=0.085λ=0.086λ=0.087λ=0.088λ=0.089λ=0.09λ=0.091λ=0.092λ=0.093λ=0.094λ=0.095λ=0.096λ=0.097λ=0.098λ=0.099λ=0.1

800 1000 1200 1400 1600 1800

1

1.5

2

2.5
Various modelsAa

Pareto frontier

Pareto frontier, ϵ=0.001

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.24: The Pareto frontier of the MIL problem using the L1 penalization for λ ∈

(0.0, 0.001, . . . , 0.1) grid and the tolerance parameter ε = 0.001.

CHAPTER 3. EXPERIMENTS 56

λ=0.039
λ=0.041 λ=0.042

λ=0.043λ=0.044
λ=0.045λ=0.046λ=0.047

λ=0.048λ=0.049λ=0.05
λ=0.051

λ=0.052λ=0.053λ=0.054λ=0.055

λ=0.056λ=0.057λ=0.058

λ=0.059
λ=0.06

λ=0.061λ=0.062
λ=0.063λ=0.064

λ=0.065

λ=0.066

λ=0.067λ=0.068λ=0.069λ=0.07
λ=0.071

λ=0.072λ=0.073
λ=0.074

λ=0.075 λ=0.076
λ=0.077

λ=0.078
λ=0.079

λ=0.08
λ=0.081λ=0.082

λ=0.083
λ=0.084

λ=0.085
λ=0.086

λ=0.087
λ=0.088λ=0.089

λ=0.09

λ=0.091

λ=0.092λ=0.093

λ=0.0
λ=0.095

λ=0.096

λ=0.097
λ=0.098

λ=0.099
λ=0.1

800 820 840 860 880 900 920
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Various modelsAa

Pareto frontier

Pareto frontier (zoomed), ϵ=0.001

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.25: The Pareto frontier of the MIL problem using the L1 penalization for λ ∈

(0.0, 0.001, . . . , 0.1) grid and the tolerance parameter ε = 0.001 (zoomed Fig. 3.24 in the bottom-left
clutter for L0,ε ∈ (800, 1000) ∧ loss ∈ (0.5, 1)).

The Pareto frontier in Fig. 3.24 is a good help when tuning the λ hyperparameter, as it already zeroes
out many parameters with small values and a specified tolerance parameter ε. It is, again, up to the
subjective view of the reader whether they prefer a model with more parameters but less error, or fewer
parameters and still an acceptable error. We have to determine our preferable ε. However, we must
also remember that this is only valid with the previously mentioned smoothness of the λ grid and the
tolerance parameter ε. Nonetheless, the sparse parameterization can be achieved. It is obvious that the
neural network proposed in Fig. 3.21 is strongly overparameterized, since, by pruning the parameters in
half, we can significantly reduce the model error on the test data.

This is confirmed by the choice λ = 0.0 in Fig. 3.24, where we obtain the test loss in the full model
with 1922 parameters and without any penalization. This is in contrast to the choice λ = 0.039, which
corresponds to the test loss with 822 parameters in the model, as depicted in Fig. 3.25.

3.3.3 Variational ADAM with ARD Prior in MIL

Since we have a dataset with real data and a more complex network architecture with more param-
eters than in the case of the linear regression, it is not valid to show the parameter convergence. This is
because of the opacity of the convergence curves (1922 curves), and also because we do not have an an-
alytical solution to which the parameters should converge (strongly non-linear model). From Fig. 3.22,
we can assume that the vast majority of the parameters of the model will, indeed, have small values.

CHAPTER 3. EXPERIMENTS 57

d=0.0

d=0.0001

d=0.0002

d=0.0003

d=0.0004

d=0.0005

d=0.0006

d=0.0007

d=0.0008

d=0.0009

d=0.001

d=0.0011

d=0.0012

d=0.0013

d=0.0014

d=0.0015

d=0.0016
d=0.0017

d=0.0018d=0.0019

d=0.002

d=0.0021

d=0.0022

d=0.0023d=0.0024d=0.0025

d=0.0026

d=0.0027d=0.0028

d=0.0029d=0.003d=0.0031d=0.0032d=0.0033
d=0.0034d=0.0035d=0.0036d=0.0037d=0.0038

d=0.0039d=0.004d=0.0041d=0.0042d=0.0043d=0.0044d=0.0045

d=0.0046d=0.0047d=0.0048d=0.0049d=0.005d=0.0051

d=0.0052d=0.0053d=0.0054

d=0.0055d=0.0056d=0.0057d=0.0058d=0.0059d=0.006d=0.0061

d=0.0062d=0.0063d=0.0064
d=0.0065d=0.0066d=0.0067d=0.0068d=0.0069d=0.007d=0.0071d=0.0072d=0.0073d=0.0074
d=0.0075d=0.0076

d=0.0077d=0.0078d=0.0079

d=0.008d=0.0081d=0.0082d=0.0083d=0.0084d=0.0085d=0.0086d=0.0087d=0.0088d=0.0089d=0.009d=0.0091d=0.0092d=0.0093d=0.0094d=0.0095d=0.0096d=0.0097d=0.0098d=0.0099d=0.01d=0.0101d=0.0102d=0.0103

d=0.0104d=0.0105

d=0.0106d=0.0107d=0.0108d=0.0109d=0.011d=0.0111d=0.0112d=0.0113d=0.0114d=0.0115

d=0.0116d=0.0117d=0.0118d=0.0119d=0.012d=0.0121d=0.0122
d=0.0123d=0.0124d=0.0125d=0.0126d=0.0127d=0.0128d=0.0129d=0.013d=0.0131d=0.0132d=0.0133d=0.0134d=0.0135d=0.0136d=0.0137d=0.0138d=0.0139d=0.014d=0.0141d=0.0142d=0.0143d=0.0144d=0.0145d=0.0146d=0.0147d=0.0148d=0.0149d=0.015

800 1000 1200 1400 1600 1800
0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72
Various modelsAa

Pareto frontier

Pareto frontier

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.26: The Pareto frontier of the MIL problem using the VADAM optimizer with the ARD prior
for d ∈ (0.0, 0.0001, . . . , 0.015) grid.

The VADAM optimizer with the ARD prior found several possible sparse parameterizations, differ-
ing slightly in the value of the corresponding model error, which is illustrated in Fig. 3.26. The numbers
of the standard deviations are set a bit tighter in this case, but this yields a more accurate estimate of the
sparse parameterization and the number of relevant parameters (which differs rapidly).

CHAPTER 3. EXPERIMENTS 58

3.3.4 Evaluation of Methods

In this third experiment, we would also like to evaluate and compare the L1 penalization with the
VADAM optimizer with the ARD prior. We compare the Pareto frontiers from Fig. 3.24, Fig. 3.25 (due
to zoomed area) and Fig. 3.26 and plot them into a single figure (Fig. 3.27).

800 900 1000 1100 1200

0.68

0.7

0.72

0.74

0.76

L1
VADAM with prior

Evaluation of methods using Pareto frontiers

Number of parameters in model

lo
ss

 (
te

st
 d

at
a)

Figure 3.27: The evaluation of the methods to estimate a sparse parameterization in the experiment with
the MIL.

We can see in Fig. 3.27, that both tested methods were able to prune the neural network sketched
in Fig. 3.21 and found sparse parameterizations with significantly fewer parameters than the originally
proposed architecture (1922 parameters). Our proposed method performs better in finding a sparse pa-
rameterization with two possible solutions containing of 792 or 991 relevant parameters.

We can state that the VADAM optimizer with the ARD prior successfully pruned the network from
1992 parameters to less than 1000 parameters, while still significantly reducing the test error with this
sparser parameterization. On the other hand, it should also be noted that the second method, i.e., the
L1 penalization did not perform too badly. It pruned the network, found a sparse parameterization and
reduced the test error of the original (non-sparisified) model, but not as much as the VADAM optimizer
with the ARD prior.

Conclusion

This Master’s thesis was focused on estimating sparse parameterizations of neural networks as a tool
for pruning neural network architectures, i.e., achieving less complexity in such models. Deep neural
networks can often suffer from overparametrization, which puts high demands on computing power to
even train them properly. Therefore, this thesis presented and tested useful methods to achieve sparser
parameterizations that can reduce the complexity of the network and also allow to quantify its uncertainty.

In the first chapter, a clear description of different shrinkage priors was introduced. These priors
allowed to embed prior knowledge about sparse parameterization, thus reducing the number of irrelevant
parameters in the model. It was outlined that it is not always possible to analytically compute the poste-
rior distribution of the parameters. Making it necessary to introduce the variational Bayes framework. It
was also illustrated how, in some special cases of neural networks, i.e., linear and logistic regression, one
can approximate, or, even analytically derive, the posterior distribution of the parameters, using a partic-
ular shrinkage prior. The chapter concluded with a theoretical insight into the concept of multi-instance
learning, which uses the specific learning structure, as opposed to conventional machine learning.

The second chapter dealt with variational optimization and inference. A comprehensive interpreta-
tion of methods using natural gradients as a tool to avoid the demanding, and expensive computation of
Hessian matrices and inverse Fisher matrices during optimization, was given. Various variational meth-
ods were derived to approximate the intractable posterior distribution of the parameters. In particular,
the variational RMSprop and variational ADAM optimizers, for which connections with the conventional
optimizers were shown. At the end of the second chapter, the author’s newly proposed variational method
was described. This method consisted of combining the variational ADAM method with the shrinkage
prior and aimed at finding the posterior distribution of the parameters with a sparse parameterization.

The third chapter tested the author’s proposed method on different neural network architectures. In
total, three major experiments were carried out on synthetic and real data. The first experiment with linear
regression and synthetic data studied the ability of the conventional and variational methods to search
for a sparse parameterization that would corresponded to a known solution so that convergence could be
verified. Here, the proposed method was found to perform similarly to the L1 penalization widely used
against overfitting in practise, and its suitability for finding sparse parameterizations was confirmed.
The second experiment focused on a deeper network, performing classification on the Iris dataset. The
goal was to reveal how much the network can be pruned to still find a sparse parameterization with a
minimal error growth on the test data. In this respect, the L1 penalization and the author’s proposed
method were again compared. Although sparse parameterizations were found by both methods, the
L1 penalization performed better in parameter selection at the cost of less error on the test data. The
author’s proposed method found an overly strict sparse solution, achieving a higher error on the test
data. The third experiment studied whether it is possible to prune the neural network designed on group
data from the Musk dataset, while reducing its error on the test data. The proposed method was able to
prune the network more than the L1 penalization, including a significant reduction of error on the test
data. Overall, it can be stated that the author’s proposed method has a good potential for finding sparse

59

parameterizations and can be used as an alternative to conventional tools preventing overfitting in deep
neural networks, to make them less complex.

In the field of neural network optimization, the topic of sparse parameterizations is particularly useful
as a tool to prevent overfitting or to reduce model complexity. The ability of variational methods to detect
irrelevant parameters in the neural network, and thus prune them, can be really helpful in designing the
resulting model architectures. Therefore, this thesis could give the reader guidance on how to incorporate
prior knowledge of a sparse parameterization into deep learning models, and how to use the proposed
methods to achieve it. And not only achieve a sparse parameterization, but also the inferred posterior
distribution of all the parameters in neural network, with which its uncertainty can be quantified.

60

Appendix A

Variational Online-Newton

To express Eq. (2.25) we firstly derive the ELBO in the natural parameterization with VON assump-
tion of the factorized likelihood:

L(η) = Eq
[
log p (D, z) − log q

(
z|η

)]
= Eq

[
log

(
p (D|z) p(z)

)
− log q

(
z|η

)]
= Eq

[
log p (D|z) + log p(z) − log q

(
z|η

)]
= Eq

[
log p (D|z) + log

(
p(z)

q
(
z|η

))]
= Eq

N
N

N∑
n=1

log p (Dn|z) + log
(

p(z)
q
(
z|η

)) .
(A.1)

The variational lower-bound in Eq. (A.1) can be rewritten for the model parameters as

L(µθ,Σθ) = Eq
[
log p (D|θ) + log p(θ) − log q (θ)

]
= Eq

[
−N f (θ) + log p(θ) − log q

(
θ|η

)]
.

(A.2)

For obtaining the gradients with respect to µθ and Σθ we use this derivation of Eq. (2.27)

∇µθ L = ∇µθ Eq
[
−N f (θ) + log p(θ) − log q

(
θ|η

)]
= −Eq

[
N∇θ f (θ)

]
− ψµθ

= −Eq
[
N g(θ)

]
− ψµθ

∇Σθ L =
1
2

Eq
[
−N∇2

θθ f (θ)
]
−

1
2
ψI +

1
2
Σ−1
θ

=
1
2

Eq [−NH(θ)] −
1
2
ψI +

1
2
Σ−1
θ .

(A.5)

Final derivation of the natural-gradient updates for µθ and Σθ in Eq. (2.29):

µθ,(t+1) = µθ,(t) + β(t) Σθ,(t+1)
(
∇µθ L(t)

)
= µθ,(t) + β(t) Σθ,(t+1)

(
−N g(θ(t)) − ψµθ,(t)

)
= µθ,(t) − β(t) Σθ,(t+1)

(
N g(θ(t)) + ψµθ,(t)

) (A.6)

Σ−1
θ,(t+1) = Σ

−1
θ,(t) − 2β(t)

(
∇Σθ L(t)

)
= Σ−1

θ,(t) − 2β(t)

[
−

1
2

NH(θ(t)) −
1
2
ψI +

1
2
Σ−1
θ,(t)

]
= Σ−1

θ,(t) + β(t) N H(θ(t)) + β(t)ψI − β(t)Σ
−1
θ,(t)

= (1 − β(t))Σ−1
θ,(t) + β(t)

[
NH(θ(t)) + ψI

]
.

(A.7)

61

By defining a transform matrix Sθ,(t) = 1
N

(
Σ−1
θ,(t) − ψI

)
→ Σθ,(t) =

[
N

(
Sθ,(t) + 1

NψI
)]−1

we derive more
compact shape of updates equations showed in Eq. (2.30):

µθ,(t+1) = µθ,(t) − β(t)

[
N

(
Sθ,(t+1) +

1
N
ψI

)]−1 [
N g(θ(t)) + ψµθ,(t)

]
= µθ,(t) − β(t)

[(
Sθ,(t+1) +

1
N
ψI

)]−1 [
g(θ(t)) +

1
N
ψµθ,(t)

]
,

(A.8)

Σ−1
θ,(t+1) = (1 − β(t))Σ−1

θ,(t) + β(t)
[
NH(θ(t)) + ψI

]
N
N

(
Σ−1
θ,(t+1) − ψI + ψI

)
= (1 − β(t))

[
N

(
Sθ,(t) +

1
N
ψI

)]
+ β(t)

(
NH(θ(t)) + ψI

)
N

(
1
N

(
Σ−1
θ,(t+1) + ψI

)
+
ψI
N

)
= (1 − β(t))

[
N

(
Sθ,(t) +

1
N
ψI

)]
+ β(t)

(
NH(θ(t)) + ψI

)
Sθ,(t+1) +

ψI
N
= (1 − β(t))

(
Sθ,(t) +

1
N
ψI

)
+ β(t)

(
H(θ(t)) +

ψI
N

)
Sθ,(t+1) = (1 − β(t))

(
Sθ,(t) +

1
N
ψI

)
+ β(t)

(
H(θ(t)) +

ψI
N

)
−
ψI
N

Sθ,(t+1) = (1 − β(t))Sθ,(t) + β(t)H(θ(t)).

(A.9)

And in case of mean-field variant of the VON method in Eq. (2.31):

µθ,(t+1) = µθ(t)
− β(t)

[(
sθ,(t+1) +

ψ

N

)]−1 [
g(θ(t)) +

ψ

N
µθ,(t)

]
= µθ,(t) − β(t)

 g(θ(t)) +
ψ
Nµθ,(t)

sθ,(t+1) +
ψ
N

sθ,(t+1) = (1 − β(t))sθ,(t) + β(t) diag

(
H(θ(t))

)
.

(A.10)

Reparameterization Trick in Hessian

The use of the reparameterization trick in Eq. (2.33) is properly derived as follows

Eq
[
∇2
θθ f (θ)

]
= 2∇σ2

θ
Eq

[
f (θ)

]
= 2∇σ2

θ
EN(e|0,I)

[
f (µθ + σθ ◦ e)

]
= 2 EN(e|0,I)

[
∇σ2

θ
f (µθ + σθ ◦ e)

]
= 2 EN(e|0,I)

[
∇σ2

θ
f (µθ +

√
σθ ◦ σθ ◦ e)

]
= 2 EN(e|0,I)

[
∇θ f (θ) ·

1
2

e
σθ

]
= EN(e|0,I)

[
∇θ f (θ)

e
σθ

]
≈ ĝ(θ)

e
σθ
,

(A.11)

where e ∼ N(e|0, I) and θ = µ + σθ ◦ e.

62

Bibliography

[1] AGARAP A. F. Deep learning using recitifed linear units (relu). arXiv preprint arXiv :1803.08375,
2018.

[2] BANERJEE M. Lp spaces, metrics on spaces of probabilites, and connections to estimation. [on-
line]. [cit. 2022-12-03]. University of Michigan. 2006. Available from: http://dept.stat.lsa.
umich.edu/~moulib/stat612-notes-0.pdf.

[3] BHATTACHARYA A., et al. Bayesian shrinkage. arXiv preprint arXiv:1212.6088, 2012.

[4] BISHOP Ch. M., NASRABADI N. M. Pattern recognition and machine learning. New York:
springer, 2006.

[5] BLEI D. M., KUCUKELBIR A., MCAULIFFE J. D. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 2017, 112.518: 859-877.

[6] BLUNDELL Ch., et al. Weight uncertainty in neural network. In: ‘International conference on ma-
chine learning’. PMLR, 2015. p. 1613-1622.

[7] BORSBOOM D., MELLENBERGH G. J., VAN HEERDEN J. The theoretical status of latent vari-
ables. Psychological review, 2003, 110.2:203.

[8] BOTTOU L., CURTIS F., NOCEDAL J. Optimization methods for large-scale machine learning.
Siam Review, 2018, 60.2: 223-311.

[9] CARVALHO C. M., POLSON N. G., SCOTT J. G. Handling sparsity via the horseshoe. In: ‘Artifi-
cial Intelligence and Statistics’. PLMR, 2009. p. 73-80.

[10] DRUILHET P., POMMERET D. Invariant conjugate analysis for exponential families. Bayesian
Analysis, 2012, 7.4: 903-916.

[11] ENGELHARDT B., HE X., PAN J., RAZEEN A., SRISTAVA A. STA651: Probabilistic machine
learning - Gaussian Models. Princeton University. Department of Computer Science. [online]. [cit.
2022-05-03]. Available from: https://www.cs.princeton.edu/~bee/courses/scribe/lec_
09_09_2013.pdf.

[12] FINK D. A compendium of conjugate priors. Montana State University. Department of Biology.
[online]. [cit. 2022-14-04]. Available from: https://web.archive.org/web/20090529203101/
http://www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf.

[13] GODOY D. Understanding binary cross-entropy/log loss: a visual explanation.
[online]. [cit. 2022-06-04]. Available from: https://towardsdatascience.com/
understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a.

63

http://dept.stat.lsa.umich.edu/~moulib/stat612-notes-0.pdf
http://dept.stat.lsa.umich.edu/~moulib/stat612-notes-0.pdf
https://www.cs.princeton.edu/~bee/courses/scribe/lec_09_09_2013.pdf
https://www.cs.princeton.edu/~bee/courses/scribe/lec_09_09_2013.pdf
https://web.archive.org/web/20090529203101/http://www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf
https://web.archive.org/web/20090529203101/http://www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

[14] HANS Ch. Bayesian lasso regression. Biometrika, 2009, 96.4: 835-845.

[15] HANSEN P., O’LEARY D The use of the L-curve in the regularization of discrete ill-posed prob-
lems. SIAM journal on scientific computing, 1993, 14.6: 1487-1503.

[16] HOBZA T. Zobecněné lineární modely – vysokoškolské skriptum. 2021. Praha. Fakulta jaderná a
fyzikálně inženýrká, ČVUT v Praze.

[17] HOFFMAN M. D., et al. Stochastic variational inference. Journal of Machine Learning Research,
2013.

[18] HOFFMAN M. D., JOHNSON M. J. Elbo surgery: yet another way to carve up the variational
evidence lower bound. In: ‘Workshop in Advances in Approximate Bayesian Inference’, NIPS. 2016.

[19] GOLDBERGER J., et al. An efficient image similarity measure based on approximations on KL-
divergence between two gaussian mixtures. In: ‘ICCV’. 2003. p. 487-493.

[20] JOSPIN L. V., et al. Hands-on Bayesian Neural networks–a tutorial for deep learning users. IEEE
Computational Intelligence Magazine, 2022, 17.2: 29-48.

[21] JORDAN M. I. The exponential family: Conjugate priors. [online]. [cit. 2022-06-03].
Available from: https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/
other-readings/chapter9.pdf.

[22] KHAN M., et al. Fast and scalable bayesian deep learning by weight-perturbation in Adam. In:
‘International Conference on Machine Learning’, PMLR, 2018, p. 2611-2620.

[23] KHAN M., et al. Variational adaptive-Newton method for explorative learning. arXiv preprint
arXiv: 1711.05560, 2017.

[24] KINGMA D. P., BA J. Adam: A method for stochastic optimization. arXiv preprint arXiv:
1412.6980, 2014.

[25] KINGMA D. P., WELLING M. Stochastic gradient VB and the variational auto-encoder. In: ‘Sec-
ond International Conference on Learning Representations’, ICLR. 2014. p. 121.

[26] KRBÁLEK M. Rovnice matematické fyziky. Nakladatelství ČVUT v Praze. 2012.

[27] LEEMIS L. Exponential_Rayleigh. College of William & Mary. Department of Mathematics.
[online]. [cit. 2021-06-08]. Available from: http://www.math.wm.edu/~leemis/chart/UDR/
PDFs/ExponentialRayleigh.pdf.

[28] LIN W., KHAN M. E., SCHMIDT M. Fast and simple natural-gradient variational inference with
mixture of exponential-family approximations. In ‘International Conference on Machine Learning’,
PMLR. 2019, 3992-4002.

[29] LOUZADA F., RAMOS P. L., NASCIMENTO D. The inverse Nakagami-m distribution: A novel
approach in reliability. IEEE Transactions on Reliability, 2018, 67.3: 1030-1042.

[30] NALISNICK E., HERNÁNDEZ-LOBATO J. M., SMYTH P. Dropout as a structured shrinkage
prior. In: ‘International Conference on Machine Learning’, PMLR. 2019. p: 4712-4722.

[31] NWANKPA Ch., et al. Activation functions: Comparison of trends in practise and reasearch for
deep learning. arXiv preprint arXiv: 1811.03378, 2018.

64

https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter9.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter9.pdf
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/ExponentialRayleigh.pdf
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/ExponentialRayleigh.pdf

[32] MALSINER-WALLI G., WAGNER H. Comparing spike and slab priors for Bayesian variable
selection. arXiv preprint arXiv: 1810.07259, 2018.

[33] MANDLÍK Š. Mapping the Internet - Modelling Entity Interactions in Complex Heterogenous
Networks. Prague. 2020. Master’s Thesis. CTU in Prague, Faculty of Electrical Engineering.

[34] MARTENS J. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

[35] OPPER M., ARCHAMBEAU C. The variational Gaussian approximation revisited. Neural Com-
putation, 2009, 21.3: 786-792.

[36] PAIRMAN E. Tables of the digamma and trigamma functions. Cambridge University Press.
Chicago, 1919.

[37] PEVNÝ T., MANDLÍK Š. Mill.jl framework: a flexible library for (hierarchical) multi-instance
learning. [online]. [cit. 2022-23-04]. Available from: https://github.com/CTUAvastLab/
Mill.jl.

[38] PEVNÝ T., SOMOP P. Discriminative models for multi-instance problems with tree structure. In:
‘Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security’. 2016. p. 83-91.

[39] PEVNÝ T., SOMOL P. Using neural network formalism to solve multiple-instance problems. In:
‘International Symposium on Neural Networks’. Springer, Cham. 2017. p. 135-142.

[40] Plotting graph for IRIS Dataset Using Seaborn and Matplotlib. [on-
line]. [cit-2022-28-04]. Available from: https://www.geeksforgeeks.org/
plotting-graph-for-iris-dataset-using-seaborn-and-matplotlib/.

[41] POLYANSKIY Y. f-divergences. Massachusetts Institute of Technology, MIT. [online]. [cit. 2022-
09-03]. Available from: http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf.

[42] POPKENS A., et al. Interpretable outcome prediction with sparse Bayesian neural networks in
intensive care. arXiv preprint arXiv: 1905.02599, 2019, 29.34: 107.

[43] MUKKAMALA M. Ch., HEIN. M. Variants of RMSprop and adagrad with logarithmic regret
bounds. In ‘International Conference on Machine Learning’, PMLR, 2017. p: 2545-2553.

[44] ROBERT Ch. P., CHOPIN N., ROUSSEAU J. Harold Jeffreys’s theory of probability revisited.
Statistical Science, 2009, 24.2: 141-172.

[45] SHAH A. Understand Bayes Rule, Likelihood, Prior and Posterior. [on-
line]. [cit. 2022-14-04]. Available from: https://towardsdatascience.com/
understand-bayes-rule-likelihood-prior-and-posterior-34eae0f378c5.

[46] SHAIKH R. Cross Validation Explained: Evaluating estimator performance. [on-
line]. [cit. 2022-07-04]. Available from: https://towardsdatascience.com/
cross-validation-explained-evaluating-estimator-performance-e51e5430ff85.

[47] SCHRAUDOLPH N., YU J., GÜNTER S. A stochastic quasi-Newton method for online convex
optimization. In: ‘Artificial intelligence and statistics’. PMLR, 2007. p. 436-443.

[48] SIKKA K., GIRI R., BARTLETT M. S. Joint Clustering and Classification for Multiple Instance
Learning. In: ‘BMVC’. 2015. p. 71.1-71.12.

65

https://github.com/CTUAvastLab/Mill.jl
https://github.com/CTUAvastLab/Mill.jl
https://www.geeksforgeeks.org/plotting-graph-for-iris-dataset-using-seaborn-and-matplotlib/
https://www.geeksforgeeks.org/plotting-graph-for-iris-dataset-using-seaborn-and-matplotlib/
http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
https://towardsdatascience.com/understand-bayes-rule-likelihood-prior-and-posterior-34eae0f378c5
https://towardsdatascience.com/understand-bayes-rule-likelihood-prior-and-posterior-34eae0f378c5
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85

[49] SYVERSVEEN A. R. Noninformative bayesian priors: interpretation and problems with construc-
tion and applications. Preprint statistics, 1998, 3.3: 1-11.

[50] ŠMÍDL V. Hierarchical Bayesian Models – Linear Regression. [cit. 2021-05-08]. Available from:
http://staff.utia.cz/smidl/files/hbm/prezentace04.pdf.

[51] UCI MACHINE LEARNING REPOSITORY Iris Data Set. [online]. [cit. 2022-06-04]. Available
from: https://archive.ics.uci.edu/ml/datasets/iris.

[52] UCI MACHINE LEARNING REPOSITORY Musk Data Set. [online]. [cit. 2022-22-04]. Available
from: https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1).

[53] VAN ERP S., OBERSKI D. L., MULDER J. Shrinkage priors for Bayesian penalized regression.
Journal of Mathematical Psychology, 2019, 89: 31-50.

[54] WANG S., et al. Variational HyperAdam: A meta-learning Approach to Network Training. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[55] WIPF D., NAGARAJAN S. A new view of automatic relevance determination. Advances in neural
information processing systems, 2007, 20.

[56] WRIGHT S., et al. Numerical optimization. Springer Science, 1999, 35.67-68: 7.

66

http://staff.utia.cz/smidl/files/hbm/prezentace04.pdf
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

	Introduction
	Theoretical Background
	Exponential Family
	Conjugate Exponential Family Priors
	Non-informative Priors
	Shrinkage Priors
	Automatic Relevance Determination

	Variational Bayesian Framework
	Setup and Goal of Variational Bayes
	KL Divergence and Evidence Lower Bound

	Bayesian Neural Networks
	Activation Functions
	Point Estimates
	Posterior Distribution

	Bayesian Ridge Regression
	Hyperparameter Prior
	ARD in Bayesian Ridge Regression

	Bayesian Logistic Regression
	Likelihood Function and Formation of Posterior

	Multi-Instance Learning
	Embedded-Space Paradigm

	Variational Optimization
	Natural-Gradient Variational Inference
	Implementation

	Mean-Field Variational Inference
	Natural-Gradient Updates for Model Parameters
	Natural-Gradient Updates for Hyperparameters

	Variational Online-Newton
	Mean-Field Variant of Variational Online Newton
	Reparameterization Trick in Hessian

	Variational Online Gauss-Newton
	Variational RMSprop
	Variational ADAM
	Variational ADAM with ARD Prior

	Experiments
	Sparse Linear Regression
	Model Architecture
	Maximum Likelihood Estimation in Linear Regression
	L1 Penalization in Linear Regression
	Variational ADAM in Linear Regression
	VADAM with ARD Prior in Linear Regression
	Evaluation of Methods

	Sparse Logistic Regression
	Model Architecture
	Maximum Likelihood Estimation in Logistic Regression
	L1 Penalization in Logistic Regression
	Variational ADAM with ARD Prior in Logistic Regression
	Evaluation of Methods

	Sparse MIL
	Model Architecture
	L1 Penalization in MIL
	Variational ADAM with ARD Prior in MIL
	Evaluation of Methods

	Conclusion
	Appendix A
	Bibliography

