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Abstrakt: Semi-supervised metody se snaží vyřešit problém dostupnosti výstupů pro data v aplika-
cích strojového učení. Modely jsou navrženy tak, aby se učily z dat se známou i neznámou třídou
současně, a to s využitím metrického učení, generativního modelování a samoučení. Modely jsou
aplikovány na standardní formáty dat, jako jsou vektory, obrázky nebo text. Tato práce rozšiřuje
a zkoumá zavedené metody pro složitější datové struktury, jako jsou skupinová data a JSON sou-
bory, pomocí nového balíčku HMill. Navržené modely jsou vyhodnoceny na třech různých dato-
vých sadách z domén víceinstančního učení, shluků bodů a kybernetické bezpečnosti. Vylepšené
semi-supervised modely vykazují slibné zlepšení oproti standardním metodám učení s učitelem,
ale generativní semi-supervised modely nedosahují dostatečně dobrých výsledků a vyžadují další
prozkoumání.
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Abstract: Semi-supervised learning tries to solve the problem of label availability for data in ma-
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Introduction

Machine learning and AI are the go-to buzzwords in today’s data-driven world. Researchers are
constantly coming up with new ways to model data and the resources for model training are ex-
panding. However, most use cases still rely on supervised learning and standard data structures.
This thesis breaks the pattern and goes on a journey into less explored areas of semi-supervised
learning and hierarchical structured data.

Semi-supervised learning is a means to close the gap between large amounts of data avail-
able and the scarcity of correct labels accompanying them. The first chapter gives an overview of
semi-supervised learning, the assumptions, and experimental practices for evaluation. The list of
models discussed contains self-supervised classifiers, semi-supervised generative models and meth-
ods based on clustering in the input space. There is a challenge with clustering non-numerical data,
since a similarity metric might not be available. Metric learning is introduced as a method for learn-
ing the similarity function on data that is not composed of standard vectors of values in R, such
as images. This is followed by a section describing clustering methods, which can be used on the
embedding learned by metric learning.

Most research in the domain of semi-supervised learning assumes that data come in well-
known and well-researched formats: numbers, images, or text. This thesis focuses on hierarchical
data, and the second chapter dives into the format of group data, multi-instance problems, and
JSON file structure. A novel framework, HMill, is introduced as an automatic processing and learn-
ing library for heterogeneous hierarchical data.

Chapter three stands as the core of this thesis. The ideas of semi-supervised learning are
connected with the data paradigm from the second chapter. The standard semi-supervised models
are extended to work on group data and a generative model is designed for a specific dataset of
JSON files. The models described are implemented in the Julia language to provide a comparative
study of the algorithms on various datasets.

The experimental setup is outlined in chapter four. Three datasets are introduced, a multi-
instance learning dataset, point cloud MNIST dataset, and dataset of JSON files from the security
domain provided by Avast. The experiments are designed to evaluate both the classification accu-
racy and the quality of the learned embedding space in terms of clustering accuracy. Supervised and
semi-supervised methods are compared for varying numbers of known labels provided for training.

The main objective is clear: Experimentally verify whether semi-supervised models work on
more complex data structures and if they bring any advantages over standard supervised ap-
proaches. An accompanying objective is to explore the latent space of models and try to use meth-
ods to improve the discriminability of classes in the embedding.

The results show that semi-supervised approaches can boost the performance compared to
simple classifiers, especially when only a few labeled samples are available. When triplet loss
is added as a regularization to a classifier, the accuracy improves and the latent space becomes
more separable. A self-supervised classifier and a self-supervised metric learning model both show
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promising properties and, in most cases, were able to compete with the triplet-regularized classifier.
The semi-supervised generative models fall short of expectations, with the exception of the semi-
supervised M2 model on the multi-instance dataset. More work needs to be done in this area to
design more powerful models that leverage the structure of the whole sample (group, JSON file)
in training to truly unveil the potential of unlabeled data in training.



Chapter 1

Theoretical background

Machine learning and the use of AI has seen an unprecedented rise of popularity in the 2010’s
and continues to grow rapidly. Complex deep learning models are able to approximate incredibly
complicated functions through large amounts of data and drive intelligent solutions in fields of
anomaly detection (fraud, malware detection), image classification, object recognition, planning,
robotics, and many other domains.

Most machine learning algorithms are supervised; that is, there are both datapoints and labels
available as pairs (x, y) on which the model can be trained. Unfortunately, the cost of obtaining
the correct data and labels can be significant in areas such as computer vision. This problem led
to a whole new field of new data labeling and collection companies, and just in 2020, this market
size was valued at 1.3 billion dollars and is expected to grow even further [1].

Sometimes, there might be a large amount of data available and only a limited budget for
labeling the data. However, it would not make sense to throw out all the data that cannot be
labeled, since even data with unknown labels can help the model in learning if we are able to
develop an algorithm that use them. Such an approach is called semi-supervised learning, and the
first chapter of this thesis is used to introduce that area of machine learning, describe state-of-the-
art methods, and build the foundation for extending known algorithms to a new data paradigm.

1.1 Semi-supervised learning

Semi-supervised learning is one category of machine learning, lying between completely supervised
and unsupervised learning. Nowadays, semi-supervised learning is gaining traction due to a simple
challenge that arises in many machine learning tasks – the scarcity of correct labels. This might be
due to the lack of labeled data in general or because of a significant cost of obtaining the labels,
which frequently happens in areas like image recognition or speech annotation. Semi-supervised
learning tries to solve this problem and design algorithms which are able to leverage information
in both labeled and unlabeled data.

Problem definition

The assumption of semi-supervised learning is that the available dataset D is composed of two
parts: (correctly) labeled data DL = {(xi, yi)}ni=1 and unlabeled data DU = {xi}mi=n+1. The aim
is to train a model, for example, a classifier, by using not only the data with known labels, but also
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the data with unknown labels. The hope is that by utilizing the general assumptions discussed in
the following paragraphs, the models will be able to learn from a larger data pool.

Assumptions of semisupervised learning

First, the assumptions of semi-supervised learning need to be discussed. The survey [2] provides a
good overview of both the assumptions and evaluation methods.

For the classification task, it is always assumed that the data x come from an underlying
distribution p(x) which contains information about the posterior distribution p(y | x), otherwise
it would not be possible to construct a meaningful classifier. This assumption is closely followed
by another condition that the data with known and unknown labels come from approximately the
same data distributions: pL(x) ≈ pU (x).

Other assumptions include

• smoothness assumption: when two samples x1,x2 are close in the input space, their corre-
sponding labels y1, y2 should be the same,

• low-density assumption: the decision boundary between classes should not go through
high-density areas of the input space,

• manifold assumption: samples on the same low-dimensional manifold should have the same
label.

Good practices of semi-supervised learning

When it comes to supervised learning, there are established methods for the evaluation of novel
algorithms and their comparison with state-of-the-art methods. The data set is divided into train,
validation, and test subdatasets, where the model is trained only on the training data, and the
validation set is used to spot signs of overfitting or finding the best combination of hyperparameters.
Test data are not seen in training or validation phases and are only used in the end to calculate the
real performance metrics of the model, such as its accuracy.

In semi-supervised learning, the training, validation and testing phase are not that straight-
forward. First, the data need to be partitioned into labeled and unlabeled sets. The ratio of data
with known vs. unknown labels is, without question, an important parameter and should be varied
to show the differences. For example, a researcher’s aim might be to create a model that can use
as few labels as possible and can work with only 1 % of labeled data. However, the performance
of the model should be evaluated for higher percentage of known labels to show how the model
behaves in different scenarios.

Second, the evaluation might be measured in two ways: either measure performance on the
unlabeled data used for training, or measure performance on a disjoint test set. This work focuses
on the latter, since the aim is to leverage the information in unlabeled data and boost performance
of standard supervised methods.

The field of semi-supervised learning is rich and it is beyond the scope of this thesis to review
all the methods available. Therefore, only a handful of algorithms are chosen with the intent of
modifying them in the later chapters to allow for semi-supervised learning on more complicated
data structures such as group data or JSON files.
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1.1.1 Self-training

The first and probably best known methods for semi-supervised classification are the self-training
methods. The first usage dates back to 1995, when it was used for the disambiguation of the
meaning of words based on context [3]. Since then, many techniques have been developed, [4]
provides a comparative study of self-training algorithms.

The general procedure is to iterate between training a classifier and obtaining labels for cur-
rently unclassified points. The name self-training is used because the model used for training and
classification of unknown data is the same.

One iteration of the algorithm has two steps: training and pseudo-labeling. The first step
is trivial and does not need further discussion. However, there are multiple design choices to be
made for the pseudo-labeling procedure. Generally, only unlabeled data classified by the trained
classifier should be pseudo-labeled and sent through to the next iteration. The question is: How
confident does the prediction need to be and how much does it influence the outcome? A classifier
usually returns a probability distribution of the target classes, leaving the researcher to choose a
confidence threshold such as 95 %.

Note that the higher the confidence threshold, the less helpful the new data would be for
further training of the classifier, since the classification loss stays low. Consequently, the classifier
needs to be retrained from scratch in every iteration of this particular semi-supervised method.
This method might also significantly skew the distribution of the number of samples from each
class in the training data. For example, recognizing digit 1 in the MNIST dataset is probably easier
than distinguishing digit 6, resulting in the classifier being more likely to label and add 1’s rather
than 6’. In the next iteration, we might have hundreds of new digits 1, but only a handful of 6’s and
other digits. This problem can be resolved by either sampling a balanced minibatch when training,
or balancing the classes in the pseudo-labeling step.

The self-training algorithm can be modified to use multiple classifiers, such an approach is
named co-training. In this setting, each classifier is used to pseudo-label data which are used as an
input to a different classifier in the ensemble.

1.1.2 Methods using generative models

Kingma et. al. [5] came up with the idea to use generative models for semi-supervised learning.
The proposed model extends the ideas of a variational autoencoder [6] to include a classification
network. Two models, M1 and M2, are presented. It is also possible to use a combination of both
(M1+M2).

M1 model

The first model presented is a latent-feature discriminative model. The idea is to train a variational
autoencoder as an unsupervised model on both labeled and unlabeled data, leveraging the power
of the latent space created in the process. Samples of the same class are expected to lie close to each
other in the latent space, since they share the same underlying representation and are therefore
projected into a dense area in the latent space.

The variational autoencoder [6] is a probabilistic extension of classical autoencoders. Suppose
that a vector x comes from some unknown distribution p(x). It might be an incredibly challenging
task to learn p(x) if it is not a simple distribution such as a Gaussian or a mixture of Gaussians. The
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idea behind VAEs is to use the Bayes rule and write the distribution as

p(x) =

∫
p(x|z)p(z)dz, (1.1)

where the latent variable z is supposed to carry information about x and p(z) is supposed to be
a simpler distribution than p(x). Usually, the latent variable distribution is chosen to be isotropic
Gaussian N (0, I). The task is to learn two mappings: encoder p(z|x) : X 7→ Z and decoder
p(x|z) : Z 7→ X . As this is usually an intractable task, the distribution p(z|x) is approximated by
variational inference as q(z|x) = N (µ(x),Σ(x)) and is forced with the Kullback-Leibler divergence
to encode x values to z ∼ p(z) = N (0, I).

The decoding mapping p(x|z) can be another Gaussian, usually a distribution in the form
p(x|z) = N (f(z), σ). Learning the mapping function f(z) is done via ELBO optimization. ELBO
stands for evidence lower bound and it is indeed the lower bound of the likelihood p(x). Variational
inference is needed, since direct optimization is intractable. Finally, the VAE model is trained by
minimizing the negative ELBO in the form of

L = Eε∼N (0,I)

[
log p

(
x | z = µ(x) + ε · Σ1/2(x)

)
−DKL (q(z | x) || p(z))

]
, (1.2)

making use of the reparametrization trick to ensure the equation is differentiable.
Variational autoencoders are powerful models because they make it possible to sample from

the distribution p(x) by first sampling z ∼ p(z) = N (0, I) and then simply using the trained
transformation function to get x = f(z).

When VAE is trained, all datapoints in the training data can be mapped to the latent space
as samples from the approximate posterior q(z | x) and used as input features for a standard
supervised classifier. The learned features are expected to be more clearly separable and also can
significantly reduce the dimension of the problem, since the dimension of a VAE latent space is
usually smaller than the dimension of the input space.

M2 model

The secondmodel is a generative semi-supervisedmodel, designed to use the available labels during
training of the generative part of the model. The generative process is described with distributions

p(y) = Cat(y | π); p(z) = N (z | 0, I); pθ(x | y, z) = f(x; y, z,θ). (1.3)

The label distribution is the multinomial distribution parameterized with π. If y is not available, it
is treated as a latent variable. The variables z are latent variables of the samples. The function f is
a likelihood function of a chosen probability distribution, such as Gaussian as before, or Bernoulli.

Simply put, the M2 model is composed of a VAE (M1 model) and a classifier, with the change
that a label y is also used as input for the generative model. The inferred posterior distribution
pθ(y | x) serves as the classification model.

M1+M2

The combination of M1 and M2models is obtained by first learning a latent representation z1 using
the generative model M1, then learning the M2 model using z1 as an input feature instead of the
input vector x.
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The resulting joint distribution becomes

pθ (x, y, z1, z2) = p(y)p (z2) pθ (z1 | y, z2) pθ (x | z1) ,

the prior distributions p(y) and p (z2) do not change, pθ (z1 | y, z2) and pθ (x | z1) are parametrized
with neural networks.

Variational inference

Calculating the exact posterior distribution is intractable in both models presented, therefore vari-
ational inference is used to find approximate distributions q. The inference networks chosen are
Gaussian distributions for both M1 and M2 models. For the M2 model, it is assumed that the ap-
proximate distribution is factorized as qϕ(z, y | x) = qϕ(z | x, y)qϕ(y | x). The approximates are
parametrized with µ,σ,π as neural networks

M1: qϕ(z | x) = N
(
z | µϕ(x), diag

(
σ2
ϕ(x)

))
,

M2: qϕ(z | y,x) = N
(
z | µϕ(y,x), diag

(
σ2
ϕ(x)

))
; qϕ(y | x) = Cat (y | πϕ(x)) .

The objective of the M1 model is to maximize the likelihood function, which can be approx-
imated with the evidence lower bound as mentioned before. For M1, the loss is simply a negative
ELBO in the form of

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x | z)]−KL [qϕ(z | x) || pθ(z)] = −J (x). (1.4)

Since no labels are needed, both labeled and unlabeled samples are used interchangeably
during training.

The objective of the M2 model needs to be divided into two parts: for cases where the label
is present and for those where it is not. For the observed label, the variational lower bound extends
(1.4) to

log pθ(x, y) ≥ Eqϕ(z|x,y) [log pθ(x | y, z) + log pθ(y) + log p(z)− log qϕ(z | x, y)] =
= Eqϕ(z|x,y) [log pθ(x | y, z)] + log pθ(y)−DKL [qϕ(z | x, y) || p(z)] =
= −L(x, y)

(1.5)

and for a sample without a label becomes

log pθ(x) ≥ Eqϕ(y,z|x) [log pθ(x | y, z) + log pθ(y) + log p(z)− log qϕ(y, z | x)]
= Eqϕ(y,z|x) [log pθ(x | y, z)]−DKL [qθ(z | x, y) || p(z)]−DKL [qϕ(y | x) || pθ(y)] =

=
∑
y

qϕ(y | x)(−L(x, y)) +H (qϕ(y | x)) = −U(x).

(1.6)
Both bounds (1.5) and (1.6) need to be combined to calculate the loss over the whole dataset

(or a minibatch)
J =

∑
(x,y)∼p̃l

L(x, y) +
∑
x∼p̃u

U(x). (1.7)

The distribution qϕ(y | x) acts as a discriminative model and is used during test time to predict
data labels. However, note that the dicriminator is trained only on unlabeled samples, which is not



CHAPTER 1. THEORETICAL BACKGROUND 15

a desirable property. To fix it and force the classifier to be trained on labeled samples as well, the
overall loss is extended with a supervised cross-entropy loss to

J α = J + α · Ep̃l(x,y) [− log qϕ(y | x)] , (1.8)

where α is a hyperparameter, [5] use α = 0.1 ·N in their experiments.

1.1.3 Methods based on clustering

It is possible to use unsupervised methods, such as clustering, prior to supervised learning and
combine these two approaches in a version of a semi-supervised algorithm. Let us go back to one
of the assumptions of semi-supervised learning, the smoothness assumption. It states that when
two samples are close in the input space, their corresponding labels should be the same. If this is
true, it is possible to use, for example, a clustering algorithm in the input space to obtain labels of
unlabeled samples and then use the full dataset to train a supervised model.

An illustration of this approach can be seen in Figure 1.1. The plot of the left shows two
clusters of labeled data, blue and green, and some unlabeled data. The labels of unlabeled data
can be obtained by using a simple clustering algorithm. The right plot shows the difference be-
tween a classification boundary learned in a supervised manner from only the labeled data, and
the improved boundary when all data are used in a semi-supervised approach.

Figure 1.1: Comparison of supervised and semi-supervised classification boundary using clustering
in the input space to infer unknown labels.

Unfortunately, it is not always possible to measure distances of datapoints in the input space,
for example, for image data. The next section discusses metric learning, which can help in learning
an embedding with a similarity metric, that can be later used to cluster data and design a cluster-
based semi-supervised (self-supervised) algorithms.
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1.2 Metric learning

As humans, we are quite good at understanding similarity. We can look at two images of kids
playing on a beach and conclude that the images look similar. When given an image of kids playing
in the woods, we can say that the picture is similar to the previous two in depicting playing kids
but different in the surroundings.

Computer algorithms have a much harder time on this task, since it can be demanding to
quantify similarity, especially when the similarity is conditioned on some context.

When dealing with tabular data, there are numerous metrics to use as a similarity metric. For
example, clustering in a 2D space can be done using Euclidean distance to calculate the distance
matrix. On the other hand, measuring the distance between other types of data, such as images,
audio sequences, or sets of points, can be tricky. Metric learning serves as a method for learning a
distance function, which might later serve as a similarity metric for algorithms such as k-nearest
neighbors.

Metric learning is used to learn a distance function that follows two simple principles:

1. similar objects should be close,
2. dissimilar objects should be far away from each other.

Say, a dataset is composed of labeled images, where labels can be one-dimensional (dog vs.
cat) or multi-dimensional (kids, beach vs. kids, woods). The task is to learn a distance function
that would put images of cats close to each other, images of dogs close to each other, and these two
groups farther from each other.

The metric learning domain is mainly focused on image data, but the ideas are applicable in
other domains as well. Typically, metric learning uses a combination of embedding learning and
optimizing classification loss. One of the first proposed metric is the contrastive loss [7] acting
on pairs of data. The aim is to optimize a function f parameterized as a neural network to learn
a distance metric d(x1,x2) = ||f(x1) − f(x2)||, preferably in a lower-dimensional space created
by f . It is assumed that the input point is (x1,x2, y), where y is the label of the pair, y = 0 when
x1,x2 are similar and y = 1 otherwise. The contrastive loss is then defined as

Lcontrastive(y,x1,x2) =
1

2
(1− y)||f(x1)− f(x2)||2 +

1

2
y
(
max{0,m− ||f(x1)− f(x2)||}

)
, (1.9)

where m > 0 is a margin.
What makes contrastive loss and other losses in the metric learning paradigm powerful is

the use of data augmentation. In an extreme case, no labels are needed, and the augmentations
might be sufficient to learn a similarity metric. The creation of pairs (or triplets in the case of the
triplet loss) is simple. For pairs in the same class, take an image and its augmentation. For pairs
with different labels, take two different images from the training data, possibly augmenting one
or both. The augmentations can be horizontal or vertical flip, change of color (colored, grayscale,
etc.), rotation, crop, and others.

During the years, many other losses have been proposed, and two of them will be described
in more detail: triplet loss and angular margin loss in the ArcFace architecture.

1.2.1 Triplet Loss

The aim of a triplet network [8] is to learn a useful representation of similarity using triplets of
data. Given a dataset D = {x1, . . . ,xn} and a chosen rough similarity measure r(x,x′), the task is
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to learn a similarity function S(x,x′). The objective is optimized using data in the form of triplets
x,x1,x2 where r(x,x1) > r(x,x2). The rough metric can be simply an indicator function of class
labels, therefore the triplets can be denoted x,x+,x−, and r(x,x+) = 1when x,x+ have the same
labels, and r(x,x−) = 0 if x,x− have different labels.

The focus is on finding a function f(x) such that S(x,x′) = ||f(x) − f(x′)||2 . The function
f(x) is represented as a deep neural network with trainable parameters to optimize the triplet loss
defined as

loss(d+, d−) = ||(d+, d− − 1)||22 = const. · d2+, (1.10)
where

d+ =
e||f(x)−f(x+)||2

e||f(x)−f(x+)||2 + e||f(x)−f(x−)||2

d− =
e||f(x)−f(x−)||2

e||f(x)−f(x+)||2 + e||f(x)−f(x−)||2
.

The training depends on the choice of triplets during training. Problems can arise especially
when the amount of data becomes large. The number of triplets rises cubically, and it is important to
choose triplets which carry meaningful information to learn an informative embedding. That is why
the choice – mining – of triplets is modified in subsequent literature to achieve better convergence
and learn embeddings of higher quality. For a chosen anchor point x, [9] propose to find hard
negatives, samples which look similar to x but are of different class, and hard positives, samples
from the same class as the anchor but looking differently from x.

Given a distance D (for example Euclidean, Cosine, etc.), the metric of interest is Di,j =
D (f(xi), f(xj)). In every iteration, a batch is sampled randomly, first, a random number of C
classes is chosen and N samples from each class c ∈ C are drawn and added to the batch. The
loss, called Batch Hard loss, becomes

L(X) =

C∑
c=1

N∑
i=1

[
m+ max

k=1,...,N
D
(
f(xc

i ), f(x
c
k)
)

− min
j=1,...,C
n=1,...,N

j ̸=c

D
(
f(xc

i ), f(x
j
n)
)]

+
.

(1.11)

1.2.2 ArcFace

One task in the image recognition field is face representation and recognition for classification. The
challenge can be explained with a simple example: many current smartphones come with a facial
recognition software. Its aim is to quickly learn the representation of the owners face and be able
to instantly classify whether the face the phone is seeing is the owner’s face or not. The task is
similar to few-shot learning, since the model is trying to learn a general face representation, which
can then be reused in any phone to add a new face and be able to recognize it quickly.

The goal of these models is to use convolutional neural networks and train them to extract
features that would put different images of the same face close to each other in an embedding
space. At the same time, any image of a different person should be projected as far as possible
from the target feature in this learned space. Furthermore, the ambition is to learn such a rich
feature space that yet unseen images would lie in a previously empty space and satisfy the same
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requirements that images during training must fulfill: images of the same person are close, while
images of different people are further, and these clusters should be separable.

The problem is sometimes called an open-set recognition problem, where we want to be able
to detect a new class present in the test data. To make detection possible, the class needs to be
projected into a dense cluster in the feature space.

As any other classification problem, the face recognition problem can be solved using a simple
cross-entropy loss to train a classification network. However, the dimension of the output of such
a classifier must be the same as the number of classes. When the number of classes increases, the
complexity of the network grows as well. Triplet loss is able to project classes into embeddings of a
much smaller dimension, but has difficulty with a large number of classes as well, since the increase
in the number of classes results in a combinatorial increase of the number of triplets needed for
training.

Lately, researchers have focused on an approach using an angular margin, trying to maximize
the angle between different class projections. Sphereface [10] was the first model to use the angular
margin, followed by CosFace [11]. ArcFace [12] follows the main ideas and modifies them to
efficiently beat the previous models in accuracy.

The softmax loss is defined as

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j xi+bj
, (1.12)

where the authors fix the bias to zero and use normalized weightsW and features x to transform the
logit to W T

j xi = ||Wj || · ||xi|| · cos θj . For image data, features x are outputs of a CNN architecture.
Consequently, θj is the angle between the weight and the feature. Weights are normalized to
1, features are normalized to s, where s is a hyperparameter. This setting makes the embedding
distributed on a hypersphere of radius s. The last step is to add the additive angular margin penalty
m, which should force the embedding tomake samples of the same class more compact and increase
the discrepancy between different classes.

When everything is put together, the ArcFace loss takes the form of

LAF = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j ̸=yi
es cos θj

. (1.13)

The algorithm of the ArcFace architecture follows roughly these steps:

1. Get feature x from the input sample using a feature-extraction model.
2. Normalize x to x

||x|| .
3. Normalize W to W

||W || .
4. Calculate the logit as cos θj =

WT
j xi

||W ||·||x|| .
5. Get angle θj = arccos(cos θj).
6. Add the additive angular margin penalty to transform the logit to cos(θyi +m).
7. Scale to s · cos(θyi +m).
8. Apply softmax function and use the standard cross-entropy loss in the form (1.13).

There is a possibility to add even more regularization to the model. For example, ArcFace can
be used in combination with the triplet loss. The triplet loss objective would then be optimized on
the output of the feature-extraction algorithm to add a next layer of discriminability of classes.
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1.3 Clustering

Metric learning introduced in the previous sections allows us to learn a discriminative embeding
space. When the space is found and created, it is time to use clustering methods to detect classes
in the embedding.

Clustering algorithms try to solve one of the most prominent questions in unsupervised learn-
ing – finding groups of data based on the similarity of datapoints. Such groups are called clusters.
There is no standard definition of a cluster, but in short, the goal of a clustering algorithm is to find
distinct clusters of data based on two main ideas:

1. instances in the same cluster must be similar as much as possible,
2. instances in different clusters must be different as much as possible.

The similarity and dissimilarity of instances has to be defined as a measurement, for example,
a distance between instances. Such a measure can be, for example, a Euclidean distance. For now,
let us denote the distance metric chosen as d(x) : Rn 7→ R. The distance function should satisfy
the properties of a metric:

• positivity: d(x, y) ≥ 0, ∀x, y ∈ X ,
• symmetry: d(x, y) = d(y, x), ∀x, y ∈ X ,
• triangular inequality: d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X .

A clustering task, or cluster analysis, can be divided into four basic steps [13]:

1. Feature selection or extraction: Data needs to be described by (preferably) numerical fea-
tures, and there should exist a metric in the feature space. Finding a feature space for tabular
data poses no problems, on the other hand, feature space of images, for example, needs to
be learned with feature-extraction algorithms or models such as CNNs.

2. Clustering algorithm design or selection: Usually, first, we need to find or define a similar-
ity measure in the feature space. Then we can choose the best clustering algorithm for our
task from a variety of methods.

3. Cluster validation: Every clustering algorithm returns assignments of points to clusters, but
the quality of given clustering needs to be evaluated. When assessing the quality, we can look
at evaluation methods that will be described in further sections.

4. Results interpretation: The end goal would be to interpret the results, for example, figuring
out what do the created groups of data have in common and how can this information be
used further.

1.3.1 Clustering methods

Clustering algorithms fall into categories based on the methods they use to create clusters. Three
main methods will be described: partitional, hierarchical, and distribution-based.

Partitional clustering

Partitional clustering methods directly divide data into a predefined number of groups. One of
the best-known and easiest clustering algorithms is the k-means algorithm with its modification to
k-medoids.
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K-means algorithm [14], as the name suggests, finds k clusters of data. The simplest version
of the algorithm starts by defining k random centroids ci, i ∈ 1, . . . , k in the feature space. Assume
that each centroid ci has its corresponding label yi. Two steps are performed in every iteration of
the algorithm:

1. Assign every point to its nearest centroid ci based on the distance d(ci, xj), j ∈ 1, . . . , nwhere
n is the number of datapoints. Every point is assigned a label yj ∼ argmini∈1,...,k d(ci, x

j).
2. Based on the assignments from step 1, calculate a new centroid ci as the center of mass of

the cluster for each i.

These two steps are repeated until the algorithm converges and there is no change for each
cluster.

Although k-means is easy to implement and its computational complexity ofO(nkd) is feasible
even for larger datasets, it also comes with major disadvantages. First and foremost, the final clus-
tering heavily depends on the initialization of the centroids. Generally, the solution to this problem
is to run the algorithm multiple times and choose either the best partitioning based on a criterion
(such as silhouettes values) or find a better centroid initialization values. The algorithm can also
be run for multiple subsets of the dataset. Another problem is that even though the convergence of
the algorithm is guaranteed , there is no guarantee of convergence to a global minimum. K-means
is also sensitive to outliers and noise. Outliers can be either forced to a cluster and distort its shape,
or create a cluster containing just a single datapoint and therefore may be forced to join relatively
distinct clusters in other areas of the feature space.

A variation of the k-means algorithm is called k-medoids [15]. The algorithm starts with an
arbitrary selection of k points from the data as medoids. Then, these four steps are repeated until
no change in the medoids is detected:

1. Assign each datapoint to its nearest medoid.
2. Randomly select non-medoid point x̂.
3. Calculate the total cost S of swapping the initial medoid with x̂.
4. If S < 0, swap the initial medoid with x̂.

K-medoids algorithm is a bit more costly than k-means for smaller datasets, but provides more
resistance to outliers and noise.

Hierarchical clustering

Hierarchical clustering methods can be further divided into two categories: agglomerative and
divisive methods. Both usually depict their results as a dendrogram or binary tree. The height of
the connections of points or clusters usually represents a cost or distance. Hierarchical methods
have the advantage that they do not need a predefined number of clusters to begin with. Both
build a dendrogram and the clustering itself is created by cutting the dendrogram at a certain
level. Therefore, it is possible to control the cost of cutting the dendrogram at any level.

Agglomerative clustering starts with representing each point in the dataset as a single cluster.
What follows is a merging algorithm that iteratively groups points to smaller clusters and small
clusters to bigger ones, until all points are assigned to one large data cluster. At each step, a cost
function value is calculated and its increase after every merge operation determines the height
of the dendrogram. In the end, the dendrogram can be cut either after the cost reaches a certain
threshold, or at a point where the number of clusters reaches k. Divisive clustering proceeds in the
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opposite direction – first assigns all points to one single cluster and then splits it until every point
becomes its own cluster. Divisive clustering is computationally expensive, therefore agglomerative
clustering will be used in this work.

The algorithm is simple. In the initialization step, every datapoint gets assigned to its own
cluster. A proximity matrix is calculated for the n clusters, where the (i, j)-th element of the matrix
represents the distance d(ci, cj). Therefore, the proximity matrix is square and symmetric. Two
steps are repeated until all points are merged into one cluster:

1. Calculate the proximity matrix for the current number of clusters.
2. Search the minimal distance d(ci, cj) = min1≤m,l<n,m ̸=l d(cm, cl) and merge clusters ci, cj

that are closest to each other into one.

The properties of the agglomerative clustering algorithm depends on the distance used. For
some distances, special names are used. The most common options are

• single: minimum distance between any cluster members,
• complete: maximum distance between cluster members,
• average: mean distance between cluster members,
• ward: the distance is the increase in the average squared distance of a point to its cluster

centroid after merging the two clusters.

Distribution based clustering

Distribution based clustering algorithms, DBCAs for short, can help in the case of previous methods
failing due to various problems. One common challenge in clustering is the effect of outliers and
noise on the creation of clusters. Since every point needs to be assigned to a cluster, one outlier
can skew the centroids in k-means and k-medoids algorithms and create a significant cost jump in
a hierarchical clustering dendrogram.

DBCAs can overcome some of the challenges simply thanks to the properties of the probability
density function [16]. Let us start with an example of using Gaussian mixtures for clustering.
Using the EM algorithm, we can fit a predefined number of Gaussian distributions k to the data and
evaluate the probability density value of each datapoint belonging to every Gaussian component.
Such an approach allows us to pick a threshold that a datapoint needs to surpass to be clustered,
otherwise it can be labeled as noise or an outlier.

Of course, using Gaussian Mixtures for clustering is not widespread and many more complex
algorithms have been developed, DBSCAN [17] being probably the most prominent of them all.

DBCA can be divided into categories based on the way the density is defined and calculated,
how sensitive they are to a parameter change, or by the way of computation (for example, whether
the calculation of probabilities can be parallelized). The density definition falls into three categories

1. point based: density is calculated based on the number of points in a neighborhood,
2. grid based: density is calculated on a grid and dense regions are connected to a cluster,
3. probability based: density is calculated as a true probability density function.

1.3.2 Evaluation metrics

Every algorithm needs to be provided with evaluation metrics to measure its performance. Most
metrics are used to measure the agreement between two clustering partitions, or clustering and
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true labels, if available. These evaluation methods are further divided into pair-counting based
measures and information-theory based measures. There exists another metric called silhouettes,
which stands out by measuring not a comparison of two clusterings, but the quality of one cluster-
ing’s assignments based on distances between points in the separate clusters.

In general, clustering metrics should follow some desirable properties, namely

• metric property: the metric should be a true metric and satisfy the properties of positivity,
symmetry, and triangle inequality,

• normalization: metric values should lie in a bounded interval, for example [0, 1],
• constant baseline: measure value between two independent clusterings should be constant.

First, let us introduce the notation and important terms used. The dataset is a collection of
N points, D = {x1, . . . ,xN}. The comparison is made between two clusterings (partitions) of the
data P = {P1, . . . , Pk}, Q = {Q1, . . . , Ql}. The clustering P consists of k clusters, Q is composed
of l clusters. It is possible for Q to be the true labels for the data. Naturally, a confusion matrix can
be defined for the two clusterings P,Q as

P\Q Q1 Q2 . . . Ql Sums
P1 n11 n12 . . . n1l a1
P2 n21 n22 . . . n2l a2
... ... ... . . . ... ...
Pk nk1 nk2 . . . nkl ak

Sums b1 b2 . . . bl
∑

ij nij = N

(1.14)

Pair counting based measures

Pair counting measures operate on counts derived from the confusion matrix as defined in (1.14).
Cross-tabulation is a method in which the whole confusion matrix is analyzed. It is possible to
look at the individual entries and see if there is agreement between the two clusterings, similar to
examining the diagonal of a standard n× n confusion matrix.

RandIndex [18] operates on four defined counts of data. Given a set ofN datapoints and two
clusterings P,Q, define

• N11: number of pairs of datapoints in S that are in the same subset in P and in the same
subset in Q,

• N00: number of pairs of datapoints in S that are in different subsets in P and different subsets
in Q,

• N01: number of pairs of datapoints in S that are in the same subset in P and in different
subsets in Q,

• N10: number of pairs of datapoints in S that are in different subsets in P and in the same
subset in Q.

Then, the Rand index measure RI is defined as

RI(P,Q) =
N00 +N11

N00 +N01 +N10 +N11
=

N00 +N11(
N
2

) . (1.15)

The value of RI lies in the range [0, 1], however, in practice the value lies in the range [0.5, 1].
Therefore, an adjustment to the original Rand Index has been made, called Adjusted Rand Index
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and defined as

ARI(P,Q) =
2 (N00N11 −N01N10)

(N00 +N01) (N01 +N11) + (N00 +N10) (N10 +N11)
. (1.16)

Information theoretic based measures

Information theory based measures [19] are derived from the concepts of information theory. En-
tropy, joint entropy, conditional entropy and mutual information are defined naturally as

H(P ) = −
k∑

i=1

ai
N

log
ai
N

H(P,Q) = −
k∑

i=1

l∑
j=1

nij

N
log

nij

N

H(P | Q) = −
k∑

i=1

l∑
j=1

nij

N
log

nij/N

bj/N

I(P,Q) =
k∑

i=1

l∑
j=1

nij

N
log

nij/N

aibj/N2

Mutual information measures the shared information in P,Q. Since it is upper-bounded,
it can be normalized to the interval [0, 1] such that MI = 1 for identical clusterings and 0 for
independent clusterings.

Another measure derived from information theory is called V-measure. It is defined as a
harmonic mean of homogeneity h and completeness c, combining the two in the same way as
precision and recall are sometimes combined in the F-measure. Say datapoints come from k classes
and a clustering algorithm produces l clusters. A clustering result is said to satisfy homogeneity if
all of its clusters contain only samples from the same class. On the other hand, clustering satisfies
the completeness criterion if points of a given class are members of the same cluster. Similarly to
F-measure, increasing one often results in decreasing the other, and the weights of completeness
versus homogeneity can be controlled with a weight parameter β. Mathematically, the V-measure
is defined as

Vβ = (1 + β)
h · c

β · h+ c
. (1.17)

Silhouettes

Silhouettes [20] is amethod for evaluating howwell each point lies within its cluster. The Silhouette
value for i-th datapoint is defined as

si =
bi − ai

max(ai, bi)
, (1.18)

where ai is the average distance from the i-th point to other points in the same cluster ci, and
bi = mink ̸=ci bik, where bik is the average distance from the i-th point to the points in the k-th
cluster. It can be seen that si ≤ 1 and the closer the silhouette value is to 1 the better. If we
want to measure the quality of a given clustering, we can calculate the silhouette value for each



CHAPTER 1. THEORETICAL BACKGROUND 24

datapoint xi and take the mean value, for example, as a reference measure of quality. A higher
mean silhouettes value indicates better separation of clusters w.r.t. to point distances.

We should be aware that the metric depends on the distance between a point and the center of
a cluster it does not belong to. Such a metric might be influenced by the cluster shape and would
work well for condensed clusters resembling a Gaussian distribution, but it would be worse for
clusters defined as chains of datapoints.

1.3.3 Clustering in latent space

In this thesis, the interest is in the quality of the latent space of trained machine learning models. A
model has a latent space of great quality, if it is possible to cluster test data in the latent space with
high accuracy (or other evaluation metrics). However, clustering algorithms are unsupervised by
nature, therefore there is a need to come up with a procedure of assigning a cluster to an existing
class in the data.

There are multiple possible approaches to take. One of them is to cluster both train and test
data and assign the cluster to the class that is most represented in the cluster, essentialy leveraging
a majority vote. Another one is to cluster only test data and assign a cluster to the class that is
closest to the cluster in the latent space based on the distances of the cluster centers.

1.4 Other usefull algorithms

1.4.1 k-Nearest Neighbors

The kNN algorithm [21], [22] is one of the standard supervised algorithms used in classification
and regression. The algorithm uses a chosen distance d to find k points closest to a target point
– the k nearest neighbors. In classification, the target point is assigned to the class that is most
frequent between its neighbors. For regression, the target point is assigned a value as the mean of
values of its k nearest neighbors.

The algorithm has its drawbacks, it can suffer from the curse of dimensionality, and its output
might not be reliable if the classes in the dataset are not balanced.

1.4.2 UMAP

UniformManifold Approximation and Projection [23] is an algorithm used for dimension reduction
with the option of clustering on the created embedding. In the past, many dimension reduction
techniques have been developed, such as PCA (principal component analysis) [24], or t-SNE [25].
Both t-SNE and UMAP allow for visualization of data in a 2D or 3D space. t-SNE has been a state-
of-the-art method used when trying to visualize a high-dimensional space; however, UMAP is able
to beat t-SNE both in speed and in manifold quality, and on top of it, it is based on a solid theoretic
foundation.

The UMAP computational algorithm works in two phases. In the first, a weighted k-neighbor
graph is constructed. In the second phase, the goal is to compute a low-dimensional layout of this
graph. There are also three theoretical assumptions that must be met for the algorithm to work as
intended:

1. There exists a manifold on which the data would be uniformly distributed.
2. The undelying manifold of interest is locally connected.
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3. Preserving the topological structure of this manifold is the primary goal.

The weighted k-neighbor graph can be constructed with any nearest neighbor search algorithm,
both the authors and the implementation of UMAP in Julia [26] use the nearest neighbor descent
algorithm [27].

The properties of the UMAP algorithm are controlled with four hyperparameters:

• n: number of neighbors,
• d: the dimension of the output embedding,
• min-dist: the desired gap between close points in the embedding space,
• epochs: the number of training epochs to use when optimizing the representation.

The number of neighbors n mostly affects the general structure of the embedding. A smaller n
results in smaller clusters of datapoints, where the manifold is more detailed and fragmented. On
the other hand, a larger n forces the algorithm to maintain a more global structure. The distance
min-dist affects the output directly because it controls the distance between points close to each
other. Lower values should result in more dense clusters; higher values make points spread more
and aid visual inspection.

UMAP can achieve performance superior to that of t-SNE and other dimensionality reduction
algorithms in terms of computational complexity and speed. Thanks to the use of fuzzy topological
structure, it is able to compute even higher embedding dimensions (>5) fairly quickly. UMAP scales
well with higher dimensions and the number of samples as well.

Although UMAP can be very effective, there are downsides and weaknesses when using it.
First, the interpretability is not as strong as with PCA. Second, UMAP always tries to find a manifold
representation, even if none exists in the data. For example, using UMAP on random noise with a
small number of n neighbors can result in separate clusters which carry no meaning. Furthermore,
when there is noise in the data, UMAP can try to find a manifold representing both clusters of
datapoints and the noise present.
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Heterogenous structured data and
HMill framework

The amount of data that circulate throughout the world grows bigger every day. The amount of
so-called Big Data changed numerous fields of technology and industry forever. It allowed large
deep machine learning models [28] to draw business conclusions, make life easier for people and
large companies alike through task automation, protect customers from malware, improve health-
care, and help doctors make better decisions. There is no question that it is the availability of
large datasets that made rapid advancement possible. Still, it is not just the volume of data that
researchers and engineers need to worry about: the format of the data stands at the beginning of
every new task that we aim to solve with machine learning algorithms or AI.

Most machine learning models expect the input to be a feature vector, a vector of (preferably)
real values x ∈ Rd, where d is the dimension of the feature space. A dataset is then a set of these
featuresX = {x1, . . . ,xn} and can be used for a multitude of tasks. It is assumed that the features
xi are i.i.d., independent and identically distributed. The i.i.d. assumption is of great importance
because it allows us to train a model on already collected (history) data and use it for prediction on
new data that comes in the future. These two basic assumptions – availability of numerical feature
vectors and the i.i.d. assumption – can very quickly become extremely limiting.

First, most data come in different formats: text, images, video, and audio sequences, or struc-
tured machine-generated files such as JSONs or XML files. For us to be able to perform any data
analysis on such a dataset, we first need to figure out how to transform data of different formats
to numerical features. This process is usually called feature extraction or feature engineering. In
the beginning, researchers would use expert knowledge to come up with the features themselves.
Nowadays, there are feature extraction algorithms for most types of data, such as (deep) convolu-
tional neural networks for image data or the Word2Vec model for text.

Second, most data streams are not stationary and show signs of a concept drift. Concept drift
can be defined as a change in the original data distribution over a period of time. Additionally,
completely new categories of data can appear over time, such as new malware types that antivirus
software needs to detect. The task of detecting emerging classes is called novelty detection.

Another problem can arise when the data is structured. For example, a user starts browsing an
e-commerce site and adds multiple items to their shopping cart. Say the task would be to predict
whether or not the user will actually go through with their purchase or to recommend an item to
go with the items already in the shopping cart. The data we have about the user and their shopping
cart is hierarchical in nature: there are general features regarding the user and multiple items in

26
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the shopping cart, which all have their own features. The structure, when written in a JSON-like
file, might look like

1 username: user123 ,
2 date_registered: 2020-11-30,
3 completed_orders: 3,
4 ...,
5 shopping_cart: {
6 basketball: {
7 price: 9.99,
8 quantity: 1,
9 in_stock: true ,

10 color: brown ,
11 },
12 basketball_shoes: {
13 price: 49.99,
14 quantity: 1,
15 in_stock: true ,
16 color: [white , blue],
17 size: 6.5
18 },
19 ankle_bandage: {
20 price: 3.49,
21 quantity: 5,
22 in_stock: true ,
23 color: beige
24 }
25 }

We assume that every sample for each customer would have the same structure, but there
might be variations in the number of items in the shopping cart or anywhere else. The question is,
how do we process such data and how do we define a feature vector representing it?

Looking at the example sample, there are multiple challenges to tackle:

• Varying variable type: Strings need to be encoded differently to numbers, categorical vari-
ables, or boolean values.

• Varying item size: The shopping cart can include any number of items. If we decide to
encode it with a fixed size feature vector, we might end up either having too large of a
vector for most shopping carts, or losing information when the number of items surpasses
the predefined dimension of the feature vector.

• Missing information: Some items might have more features available than others. For ex-
ample, information about shoes should include shoe size, but shoe size is not available for
most other products. Therefore, the value of shoe size would be missing for any product other
than shoes.

Overall, it is clear that the hierarchical structure of the data introduces new challenges. Since
data representation is paramount to any machine learning model’s success, there is a need to define
a model which can be trained on such data. The HMill framework presented in the next section
is designed specifically to work with data resembling the given example and is able to process
hierarchical structured data and solve the problems mentioned.
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2.1 HMill framework

The name HMill stands for Hierarchical Multi-Instance Learning Library [29] and is developed by
Pevný and Mandlík [30] as a package Mill.jl written in Julia language. The library allows users
to create trainable machine learning models that process tree-structured data, from simple sets to
JSON files. HMill, its properties and usage are well described in a thesis by Mandlík [31]. What
follows is a gentle introduction to the framework, its terminology, and composition.

First, on the terminology used. The HMill sample or just sample refers to one data sample, for
example, one JSON file. Samples in a data set are expected to have a tree-like structure that can
be described in general schema. Data inside the structure is wrapped in data nodes and modeled
with corresponding model nodes.

2.1.1 Data nodes

HMill defines three types of data nodes: Array Node, Bag Node and Product Node. Each type is
used to process and store different types of information about the data.

Array Node stores the lowest-level features. The features x should be defined in a feature
space F , where the only constraint on F is that there exists a reasonable representative mapping
h : F 7→ Rn which transforms features of any type (strings, boolean values, categorical values)
into a Euclidean space. The array node is then simply a wrapper for the extracted feature an(h(x)).
The function h can be viewed as a preprocessing function and should be defined with the nature
of the data in mind to best represent the values. For example, if x is a categorical variable, h can
be one-hot encoding.

Bag Node stands at the core of the framework. Bag node is a wrapper on a set of instances,
where the number of instances can vary and may even be zero. The set is also called a bag and
is simply b = {t1, . . . , t|b|}, where ti are instances and can be referred to as children. Bag node
is denoted as bn(b). Apart from the varying number of instances, a bag has another important
property: permutation invariance. This means that the order of instances in the bag is irrelevant
and that any permutation should lead to the same result. The instances may be array nodes or other
bag nodes, but need to be of the same type. This allows for nesting and deeper tree structures.

Product Node is the last type of data node. Product node is used to join multiple instances
like the bag node, but forces a static order on its children, making it possible to aggregate data
from different sources or of different structures.

2.1.2 HMill models

So far, we have described how to preprocess the raw low-level features and store the data. Now,
we need to define the hierarchical model that can be trained on the data.

Array model acts on the array nodes and simply applies a parametric function to the already
preprocessed feature. If x ∈ F is the low-level feature and h is the mapping to Euclidean space
Rn, the array model is a function f : Rn 7→ Rm, where f is a feedforward neural network.

The task of a Bag model is to take a bag node as input and output a vector in the Euclidean
space. The mapping of a bag model is composed of three functions, bm(fI , g, fB): instance model
fI , aggregation g, and bag mapping fB. First, the instance model fI is applied to every instance ti
in the bag node bn({ti}ki=1), resulting in a transformed bag node bn({fI(ti)}ki=1). To get a single
vector representation of the transformed bag node, the aggregation function g is applied. Such a
function needs to be permutation invariant; an example is the mean or maximum function, or their
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Figure 2.1: Illustration of the functions applied in the BagModel structure. All instances are pro-
cessed with instance network fI : R4 7→ R3, aggregated with functions g1, g2, and sent
through a bag network fB : R6 7→ R5.

combination. The aggregation results in a vector with real values x̂ = g
(
bn({fI(ti)}ki=1)

)
, x̂ ∈ Rp.

Lastly, the bag mapping fB : Rp 7→ Rq is applied to x̂. The mapping functions are feedforward
neural networks as well as for the array model. Figure 2.1 shows the flow of data through the
BagModel.

Product model pm(f1, . . . , fl, f) is basically a collection of submodels for each of the chil-
dren of the product node it acts on, followed by a last mapping function f . After applying the
submodels fj , the resulting vectors are concatenated, creating the Cartesian product of the target
spaces of f1, . . . , fl. Finally, the concatenated vector is transformed once more with the f network.
Visualization of the process can be seen in Figure 2.2.

The hierarchical structure of models makes it possible to differentiate through all the neural
networks and update the parameters to minimize a loss function, for example, cross-entropy for
classification.

2.1.3 Further details

The described properties of HMill framework are just the most important features. Mill.jl pro-
vides users with tools to model data in numerous ways. The aggregation functions implemented
include not just mean and maximum, but also bag count, sum, or parametric aggregations such as
the p-norm. HMill is also able to handle missing data. We have discussed the property of a bag,
where a bag can contain any number of instances, meaning that even zero number of instances is
possible. Mill.jl is designed to model even these cases, as well as missing parts of JSON files etc.
These nuances in the framework implementation make it versatile, powerful and customizable.
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Figure 2.2: Illustration of the functions applied in the ProductModel structure. Each input is pro-
cessed with its own function fi to a vector representation in Euclidean space. These
output vectors are concatenated and go through a final network f .

2.2 Examples of different data structures and their properties

Now that we have introduced both the concept of hierarchical structured data and a framework to
use for those data, we can go a little deeper and look at the three types of data used in this thesis
in the experimental sections. First, two variations of group data are described: multi-instance
problems and point cloud datasets. The other type of data discussed are JSON files.

2.2.1 Multi-instance learning and point clouds

Multi-instance learning datasets and point clouds can also be called group datasets. Both data
structures are only one level deep, a sampleX is a set of pointsX = {x1, . . . ,xn}, where n ∈ N can
vary for different sets. The dataset is thenmade up of setsD = {X1, . . . ,Xd}. It is important to note
that the order of instances xi in the set is irrelevant. Therefore, the joint probability distribution
of instances must satisfy a permutation invariance condition

p(x1, . . . ,xn) = p(xπ(1), . . . ,xπ(n)). (2.1)

for n! permutations π. When modeling these data, a permutation invariant function should be
used to ensure this requirement [32]. Such functions include, for example, mean or max. This idea
coincides with the usage of an aggregation function g in the HMill framework.

Permutation invariance introduces a responsibility problem, as described in [33]. The illustra-
tion is clear on problems such as generating point clouds. A point cloud is a set of points, usually
coordinates in 2D or 3D space. An example of a set of such points are MNIST digits in Figure
2.3. Since the points in the cloud are independent and their order does not influence the outcome,
the question is: Which neurons in the neural network should be responsible for generating which
points? Using the standard mean square error for training a neural network becomes impossible
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Figure 2.3: Examples of digits from the point cloud MNIST dataset.

due to the permutation invariance. This problem can be solved using different loss functions, for
example, the Chamfer distance [34]. For two sets X,Y with samples xi,yi, i ∈ {1, . . . , n}, the
Chamfer distance is computed as follows:

LCH(X,Y) =
∑
i

min
j

||xi − yi||2 +
∑
j

min
i

||xi − yj ||2 . (2.2)

The loss is permutation invariant and calculates the distance between the closest points. It is
also possible to use this loss to calculate the distance between sets of various sizes. Chamfer loss
can be used for training or evaluation of generative models such as the PointFlow model [35] on
point cloud datasets. Chamfer distance remains popular in point cloud modeling thanks to its
quick computation compared to other commonly used point cloud loss functions such as the Earth
mover’s distance.

Even though the underlying data structure is the same, multi-instance datasets have a different
interpretation and are usually used as an anomaly detection problem. The definition of multi-
instance learning dates back to 1997. One of the first illustrations of the problem is:

Imagine there are multiple people with keys on a keychain. There is a door and only one key opens
this door. We can gather information about which person can open the door with their keychain, but
we do not have information about which key on the keychain is the one. The task is to find the key.

This gives rise to the standard MI problem: A bag is negative if all instances in the bag are
negative, and positive if at least one instance is positive. This setting comes from one of the first
multiple-instance problems – drug activity prediction. A molecule of the drug can take multiple
shapes (which will be the instances in a bag). If it can take a shape that binds to a target protein
– also known as lock-key pair – the binding will be successful. Otherwise, the drug will not be
effective. This problem is described in detail in [36].

Nowadays, MI problems are approached similarly to group anomaly detection. The object of
importance is a set, a bag of instances. The task is to train a model such that it learns the best
representation of the normal class and can detect anomalous bags which do not share the same
feature distribution as normal samples. For the purposes of this thesis, a multi-instance dataset is
used for multi-class classification.

2.2.2 JSON files

JSON stands for JavaScript Object Notation and acts as a native format for data in JavaScript
applications [37]. JSON eventually became the go to data interchange format [38], surpassing the
previously popular XML format, especially thanks to its simplicity and compact semantics.
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The JSON object is built on two basic structures [39]:
• a collection of key-value pairs,
• an ordered list of values.

Since these structures are universal accross modern programming languages, JSON files can be
easily shared and processed. For example, JSONs are used for sharing information through APIs
(application programming interface). An example of a real JSON file (with some keys deleted to
shorten it) is in code 2.1.

Every JSON file can be defined by its structure and this is leveraged in HMill with the use of
schemata. A schema allows for extraction of data from raw JSON files and building the data in
the format of product nodes and bag nodes. For each value in the JSON file, a data type is either
inferred with heuristic rules, or defined by users. Either way, the HMill model gets the information
that a value in the key-value pair "name": "John Doe" is a String and would be consequently
modeled with n-grams.

The inferred schema of the JSON file 2.1 can be seen in the code block 2.2. The function
schema from JsonGrinder.jl [40] is able to infer the type of value, mostly Strings, but Integer for key
"total_tracks" or Boolean value for key "is_local". The next step is to differentiate nuances
in the data, for example, defining when a String is a string, and when it should be treated as
categorical variable.

1 {
2 "album": {
3 "album_type ": "album",
4 "artists ": [
5 {
6 "id": "7 xTcuBOIAAIGDOSvwYFPzk",
7 "name": "Daniel Powter",
8 "type": "artist",
9 }

10 ],
11 "id": "4 zhigAhPwqp43XVHBiVeQI",
12 "name": "Daniel Powter",
13 "release_date ": "2005 -02 -22" ,
14 "total_tracks ": 10,
15 "type": "album",
16 },
17 "artists ": [
18 {
19 "id": "7 xTcuBOIAAIGDOSvwYFPzk",
20 "name": "Daniel Powter",
21 "type": "artist",
22 }
23 ],
24 "disc_number ": 1,
25 "duration_ms ": 233640 ,
26 "explicit ": false ,
27 "id": "0 mUyMawtxj1CJ76kn9gIZK",
28 "is_local ": false ,
29 "name": "Bad Day",
30 "popularity ": 75,
31 "track_number ": 3,
32 "type": "track"
33 }

Code 2.1: Example of a real JSON file from the Spotify API [41].
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1 [Dict]
2 |---- explicit: [Scalar - Bool],
3 |-------- album: [Dict]
4 | |---------------------- id: [Scalar - String],
5 | |-------------------- type: [Scalar - String],
6 | |-------------------- name: [Scalar - String],
7 | |-------------- album_type: [Scalar - String],
8 | |------------ total_tracks: [Scalar - Int64],
9 | |------------ release_date: [Scalar - String],

10 | |----------------- artists: [List]
11 | |-- [Dict]
12 | |---- id: [Scalar - String],
13 | |-- type: [Scalar - String],
14 | |-- name: [Scalar - String],
15 |-- duration_ms: [Scalar - Int64],
16 |-- disc_number: [Scalar - Int64],
17 |----- is_local: [Scalar - Bool],
18 |- track_number: [Scalar - Int64],
19 |------ artists: [List]
20 | |-- [Dict]
21 | |---- id: [Scalar - String],
22 | |-- type: [Scalar - String],
23 | |-- name: [Scalar - String],
24 |--------- name: [Scalar - String],
25 |--- popularity: [Scalar - Int64],
26 |----------- id: [Scalar - String],
27 |--------- type: [Scalar - String],

Code 2.2: Inferred schema from JSON file shown in code 2.1.

2.3 Model training with HMill

The HMill model serves as a tool for learning features of hierarchical data in a way similar to
how convolutional neural networks extract features from images. Therefore, the HMill model can
be used as a preprocessing network, and its output becomes an input to any other network, for
example, a standard classifier.

The implementation makes model creation easy. The Julia package Mill.jl [29] contains a
function reflectinmodelwhich takes the input data, and optionally other arguments, and returns
a HMill model. For example, the code 2.3 takes training data and infers the type of model. The
second argument tells the function to create a model with a dense layer, 64 neurons in hidden
dimension, and ReLU activation function. Lastly, the aggregation function used in the BagModel is
the concatenation of the mean and maximum functions.

1 mill_model = reflectinmodel(
2 Xtrain ,
3 d -> Dense(d, 64, relu),
4 SegmentedMeanMax
5 )

Code 2.3: Example of usage of the function reflectinmodel.

The created mill_model is just a means to learn features of data. Say the aim is to classify a
MNIST point cloud dataset with c classes. What we need to do is define a classifier on top of the
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features of the HMill model. Flux.jl [42] in Julia implements a simple function to chain multiple
functions together. To create a classifier, we simply need to add code 2.4.

1 classifier = Chain(
2 mill_model ,
3 Mill.data ,
4 Dense(64, 64, relu), Dense (64, c)
5 )

Code 2.4: Code to build a classifier with HMill.

The code chains the predefined mill_model, Mill.data function, which only changes the
type of input from a specific ArrayNode type to a matrix of floating numbers, and two dense layers.
The classifier therefore returns a vector of the same length as the number of classes. In the end,
the only thing needed is a loss function, for example, a simple cross-entropy on a softmax of the
model’s output.

To train the model, only four more lines of code in 2.5 are needed. The first function defines
a multiclass cross-entropy loss in a more stable manner, without needing to apply softmax directly.
In the second line, all the parameters of our classifier are collected and in the third line the ADAM
optimizer is initialized with the learning rate η = 0.001. The last line brings everything together
and optimizes the model to minimize the loss function. It should be noted that all parameters are
updated in one training phase, learning both the embedding of the HMill model and the classifier
on top of it simultaneously.

1 loss(x, yonehot) = Flux.logitcrossentropy(classifier(x), yonehot)
2 ps = Flux.params(classifier)
3 opt = ADAM (0.001)
4 Flux.train !(loss , ps, data , opt)

Code 2.5: Training a model with Flux.jl.



Chapter 3

Semi-supervised learning for group and
hierarchical data

The core of this thesis is the extension of methods used for vector data or images described in
Chapter 1 to the hierarchichal paradigm introduced in Chapter 2. The list of models starts with
discussion about a straightforward usage of self-supervised learning for structured data in section
3.1, extends the classification networks with ideas from metric learning domain in section 3.2 and
finally, generative models for one-level hierarchical data are build in sections 3.3 and 3.4.

3.1 Self-supervised models

Two self-supervised models will be discussed in this section. The first one is a self-supervised
classifier, which directly copies the algorithm described in section self-training in Chapter 1. A
HMill classifier is initialized, trained and used to pseudo-label unlabeled data. All data classified
with probability higher than given threshold are supplied to the classifier as labeled data for the
next iteration of the algorithm. The threshold is approached as a hyperparameter of the model.

The second self-supervised model combines the ideas of metric learning and self-training. The
model is designed as a HMill model with subsequent layers and serves as a feature extraction
algorithm. The algorithmmimics the ArcFace model, where instead of a CNN, the feature extraction
algorithm is the HMill model. The training procedure stays the same.

Pseudo-labeling is done on the learned feature space with kNN algorithm, where k is a hyper-
parameter. After every training iteration of the HMill ArcFace model, all unlabeled data is pseudo-
labeled with the kNN algorithm and mean distance from the k neighbors is calculated for every
unlabeled point. The distances are sorted and a distance threshold is picked based on a chosen
quantile q ∈ (0, 1) (q is also a hyperparameter). Only the points whose distances lie below the
threshold are used as labeled data in the next iteration of the algorithm. With this approach, q % of
unlabeled data are pseudo-labeled and added to the training data in the next iteration. The HMill
ArcFace model is retrained in every iteration just like the self-supervised classifier.

Further improvement of the ArcFace self-supervised model can be achieved with added regu-
larization. It is possible to use a triplet loss, for example, on the features outputted by the feature
extraction HMill model and force a more discriminative features before maximizing the angular
margin between classes.

35
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3.2 Metric learning and clustering

In section 1.1.3 we have introduced the idea of using clustering in the input space to add labels to
unlabeled data in the training dataset. However, clustering on the input space of hierarchical data
is a complicated, if not impossible, task. How do we define a similarity metric to measure closeness
in input space for JSON files or group data? In the one-level case with numerical features such
as MIL or point cloud datasets, it is possible to use a metric for sets such as the Chamfer distance
(2.2) for calculation of the distance matrix, and use it as input for a clustering algorithm or kNN.
But what about more complicated structures? And what about simple group datasets where the
Chamfer distance does not correspond with the nature of the data as well as it does with point
cloud datasets?

The possible solution to our problem has been mentioned previously when describing the M1
model as an unsupervised preprocessing algorithm for feature extraction (and possibly dimension-
ality reduction). HMill models naturally act as feature extraction algorithms, since they are used to
project a set or a JSON file to a Euclidean embedding space. The only question is, what objective
to optimize to learn a discriminative embedding of the data?

It is possible to train a discriminative model, an HMill classifier, as before, and look at the
embedding space learned by the HMill model in terms of cluster quality. The disadvantage of
such approach is that there is no condition on the properties of the embedding space. The only
property needed is the separation of classes, but no margin is forced to be within the classes to
better distinguish them. That is when metric learning comes in.

Metric learning can be used in combination with the HMill models. Triplet loss is used in this
thesis, but the same ideas would apply to other losses in the metric learning domain. There are
two approaches to classification that can be taken

1. use supervised learning with triplet loss and kNN (or any clustering algorithm) to obtain
labels based on distances in the embedding space, or

2. add triplet loss minimization as a regularization to a standard classifier.

The first approach is very similar to the ArcFace self-supervised model discussed in the previous
section. The second one coincides with one of the objectives of this thesis, which is to improve the
latent space created by standardmodels. Therefore, one of the questions posed for the experimental
part of this work becomes: Does triplet loss regularization improve the accuracy of a classifier, and
does it create an embedding space of higher quality?

A classifier with triplet regularization is designed to try and optimize two objectives si-
multaneously: multi-class cross-etropy for standard classification and triplet loss calculated on the
encoding of the HMill component of the classifier. For a batch of n samples, the input data sample
Xi (a bag, JSON, etc.) is processed with the HMill model with parameters ϕ to the embedding
vector ξi and the loss is calculated as

L(θ, ϕ) = − 1

n

n∑
i=1

∑
y∈C

[I{y = yi} log qθ(c | ξi)] + Ltriplet({ξ1, . . . , ξn}), (3.1)

where the classifier qθ is parameterized as a neural network and both the classifier and HMill model
are trained simultaneously.
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3.3 Generative model for sets of instances

The M2 model for semi-supervised learning and classification described in section 1.1 assumes
that there exists both a classification and a generative model for the input data. Unfortunately, we
have yet to design a generative model for hierarchical structured data such as JSON files, however,
there are existing methods for generative modeling of sets of instances. Multiple approaches can
be used. First, we will discuss a direct extension of the M2 model to sets, then introduce the Neural
Statistician generative model for group data.

3.3.1 Extension of the M2 model

A set is a collection of instances b = {xi}|b|i=1, with one label per set y. If the instances are iid, they
can be modeled with an instance generative model such as VAE. Modifying the M2 model is fairly
straightforward. The prior distribution p(z) remains the same with the only change that for each
bag b there are |b| latent variables zi for each instance xi ∈ b. The distribution pθ(x | y, z) is modi-
fied in the same way and becomes pθ(xi | y, zi), where the bag label y is copied |b| times for each
xi. The approximate distribution qϕ(z | y,x) changes accordingly with the previous distributions.
To get the likelihood, we simply use the rule for the joint probability distribution of iid random
variables, where p(x1, . . . , xn) =

∏n
i=1 p(xi) and log p(x1, . . . , xn) =

∑n
i=1 log p(xi).

The most significant change occurs with the classification distribution qϕ(y | x), since the
neural network πϕ needs to be an HMill model to extract useful information about the entire bag
b into a one-vector representation that is then sent to a classifier as before. The distribution is
conditioned on b, q(y | b).

As a result of the changes, the objectives of the M2 model for sets become

log p(b, y) =
∑
xi∈b

log pθ(xi, y) ≥

≥
∑
xi∈b

Eqϕ(zi|xi,y)

[
log pθ(xi | y, zi) + log pθ(y) + log p(zi)− log qϕ(zi | xi, y)

]
=

=
∑
xi∈b

(
Eqϕ(zi|xi,y) [log pθ(xi | y, zi)] + log pθ(y)−DKL [qϕ(zi | xi, y) || p(zi)]

)
=

= −L(b, y)
(3.2)

for a labeled bag and

log p(b) =
∑
xi∈b

log pθ(xi) ≥

≥
∑
xi∈b

Eqϕ(y,zi|xi)

[
log pθ(xi | y, zi) + log pθ(y) + log p(zi)− log qϕ(y, zi | xi)

]
=

=
∑
xi∈b

(
Eqϕ(y,zi|xi) [log pθ(xi | y, zi)]−DKL [qθ(zi | xi) || p(zi)]−DKL [qϕ(y | xi) || pθ(y)]

)
=

=
∑
xi∈b

(∑
y

qϕ(y | b)(−L(xi, y)) +H (qϕ(y | b))

)
= −U(b)

(3.3)
for a bag without a label.
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Another question is how to modify the hyperparameter α. In the base version of the M2model,
α = 0.1 ·N , where N is the number of datapoints with labels. Through experimental evaluation,
it seems that for the bag model, this hyperparameter value still applies with a slight change, where
N is not the number of bags with known labels, but the number of instances in bags with known
labels.

The model described does have its limitations, namely that the instances are modeled inde-
pendently and the only thing distinguishing them is the label, which is inferred as the label of
the bag it belongs in. It is possible to extend the information given to the encoding distribution
q(xi | zi, y) with the information about the bag. First, the bag b is projected with an HMill model
to a one vector feature h, and the encoder is modified to q(xi | zi, y, h), meaning the input to the
encoder is a vertical concatenation of instance xi, one-hot encoded label y and bag projection h.

3.3.2 Neural Statistician

A Neural Statician model [43] presented back in 2016 acts as a direct extension of the variational
autoencoder. The assumption is that each set Xi consists of iid instances x generated from distri-
bution pi and there exists a generative process p such that pi(x) = p(x | ci). The vector ci is called
context and should contain information about the entire set Xi. It is assumed that ci comes from
its own distribution p(c).

Following the configuration of VAE, the likelihood of a set X is given by

p(X) =

∫
p(c)

[∏
x∈X

∫
p(x | z)p(z | c)dz

]
dc. (3.4)

With the usage of approximate inference networks, an ELBO approximation is derived, similarly to
the ELBO for the variational autoencoder, as

L = Eq(c|X)

[∑
x∈X

Eq(z|x,c) [log p(x | z)]−DKL

(
q(z | x, c) || p(z | c)

)]
−DKL

(
q(c | X) || p(c)

)
.

(3.5)
The KL divergence at the end of the equation makes the posterior q(c|X) map to the isotropic
Gaussian p(c) = N (0, I) and encode information about the whole setX. The KL divergence within
Eq(c|X) is an error term that is supposed to map latent variables z so that they are tied to context
c. All distributions except p(c) are chosen to be Gaussian with diagonal covariance matrix and are
parameterized by trainable neural networks.

It is possible to extend the Neural Statistician model to become the generative model in the
M2 model structure. The distributions are modified to be conditioned on the label of a sample, both
in the context and latent space distributions, resulting in q(c | X, y), q(z | x, c, y), p(z | c, y). The
classifier network is the same as for the bag M2 model and the optimization objective is modified
accordingly.

3.4 Generative model for specific JSON data

Building on the knowledge of HMill framework and semi-supervised generative models, the last
objective of this thesis is to design a prototype of a generative model for JSON-like structured data.
The task is not trivial, as the hierarchical nature of the data would require a nested generative
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submodel for every branch of the file. Therefore, the decision is to study only one special case of
an important JSON structure.

The chosen special case is a subset of JSON files from the GVMA dataset kindly provided by
Avast. The schema of each JSON file Xf in this dataset is a two-level tree structure. There are
three key-value pairs at the top level, and only one of them, behavior_summary, is chosen to be
modeled. Consequently, the input sample is X = Xf[:behavior_summary]. The sample X is further
composed of 18 leaves x, where each leaf is indexed with a subkey, for example, x = X[:files].

The leaf values are strings, which are preprocessed to be either n-gram matrices or one-hot
matrices based on the schema provided with the data. The advantage is that both n-grams and one-
hot matrices can be modeled and generated as matrices of numbers in R. Therefore, the task has
been simplified from generating full JSON files to generating multiple bags of numerical features.
As a result, the M2 model paradigm described in section 3.3.1 can be used for semi-supervised
learning on this simplified JSON dataset.

The classification network for the M2 bag model is defined as a standard HMill classifier on
the input sample X. The prior distribution of class labels p(y) remains unchanged and is optimized
during training as well.

Each leaf x = X[:subkey] in sample X is modeled with a single generative submodel that is
chosen to be the generative component of the M2 bag model. This model needs to be constructed
separately for each leaf because each leaf can have a different input dimension and different prop-
erties. For this particular example, 18 generative submodels must be created. The submodels are
designed to have the same hyperparameters (activation and aggregation functions, number of neu-
rons, layers, etc.) for simplicity. Every submodel is trained to optimize the objectives of the M2 bag
model (3.2), (3.3) for labeled and unlabeled data, respectively. The complete generative model
is a collection of generative submodels; therefore, the objectives of the submodels need to be ag-
gregated. The natural choice for aggregation is the sum of single log-likelihoods, assuming the
generative submodels are independent.

Figure 3.1 shows a simple diagram to visualize the flow of data through the M2 model ar-
chitecture. Both the generative models and the classifier are trained only on data from the key
:behavior_summary in the input JSON file.

The generative models are tied to the classification network through the loss for data with
unknown labels (3.3). Let us denote inputX = X and individual samples marked by subkey xk, k ∈
{1, . . . , 18}. Revisiting M2 model equations (1.7), (1.8), the loss function becomes

J =
∑
xk∈X

 ∑
(xk,y)∼p̃l

Lk(xk, y) +
∑

xk∼p̃u

Uk(xk)

+ Ep̃l(X,y) [− log qϕ(y | X)] , (3.6)

where the loss for known and unknown labels is computed for each submodel k based on the sample
xk and summed. The important part that ties the individual generators with the classifier is∑

y

qϕ(y | X) · Lk(xk, y). (3.7)

The equation (3.7) leverages two joint conditions for parameter optimization. It is expected that a
sample x would be best reconstructed with the generative model, if it is supplied with the correct
label y, and the reconstruction loss would be higher for incorrect labels. Therefore, the classification
network is optimized to give higher probabilities to labels that result in smaller reconstruction error.
This should also work the other way around, since if a classifier gives a high probability to class y,
the generative model tries to minimize the corresponding reconstruction loss accordingly.
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Xf X = Xf[:behavior_summary]

X[:key2]

X[:key3]

:subkey1

:subkey2

...

:subkey18

submodel[:subkey1]

submodel[:subkey2]

...

submodel[:subkey18]

classifier
provides class probabilities pi = q(yi | X)

Figure 3.1: A simplified schema for visualization of M2 model for a JSON sample. The JSON file
is Xf, BagNode X = Xf[:behavior_summary] is the input into the M2 model. A sub-
model is created for each subkey of X. The classifier acts on the input and provides class
probabilities into loss functions for unlabeled data of the submodels.



Chapter 4

Experimental setup

In the previous chapters, we have defined methods for semi-supervised learning and clustering on
embedding space of group data (MI problems and point clouds) and hierarchical structured data.
This chapter discusses the setup of experiments to evaluate the methods described and compare
them against each other.

4.1 Data

For experimental evaluation, three datasets from different domains were chosen: multi-instance
dataset, MNIST point cloud, and JSON data.

4.1.1 MI problems

Multi-instance learning datasets have one disadvantage, the number of bags is quite low. Therefore,
three MIL datasets, Elephant, Fox and Tiger [44], were taken and merged to create a multiclass
dataset Animals with three classes. The dataset has 300 bags in total, 100 bags per class. The
input dimension is 230 features. The chosen ratios of interest are 5, 10, 15, and 20 % of data
from the training dataset labeled. The data used can be found at https://github.com/pevnak/
MIProblems.

4.1.2 MNIST point cloud dataset

Well-known MNIST dataset [45] can be easily converted into a point cloud dataset. The features
extracted are the position in a 2D space (x and y coordinates) and the pixel value at this position
v. Only datapoints with non-zero pixel values are used.

Point clouds expose a specific problem because the coordinates in 2D or 3D space might be
discrete values. Generative models such as VAE describe datapoints as densities and approach
them as samples from a continuous distribution (e. g. a Gaussian). However, image data is usually
stored in integers and therefore discrete. A simple solution is to add uniform noise u ∼ U(0, 1)
and dequantize the data [46]. Dequantization is applied to remove the problem of training on
discrete data. Each set then consists of datapoints (x, y, v) and the number of points in each set
varies between 34 and 351. The dataset contains 70k samples in total.
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Two instances of the dataset are examined: a smaller version of only four digits (0, 1, 3, and
4) and the full version of all 10 digits. The ratios chosen are 0.2, 1, 5, and 10 % of samples labeled.
This corresponds with 14, 70, 350, and 700 bags with known labels for each class, respectively.

4.1.3 JSON malware dataset

The last dataset was kindly provided by Avast. The dataset is a small experimental subsample of
8000 JSON files with 9 malware classes and one class representing clean samples. The classes are
balanced, meaning there are 800 samples from each class.

The data structure is two-level. The sample has three main branches, where the first branch
contains 18 BagNodes of inferred type either n-grams or one-hot matrices, the second branch con-
tains three BagNodes of two one-hot matrices and a simple array, and the third branch contains
only one BagNode.

The chosen ratios for experimentation are 1, 2, 5, 10, and 20 % of labels provided to the
model.

4.2 Training and model selection

To ensure a fair comparison of the models, standard procedures have been used for running exper-
iments.

Data is always split to train, validation, and test dataset, where the training data consists of
labeled and unlabeled data. First, the data set is divided according to the given ratio r, where
r controls the percentage of data with labels. The ratio of labeled, unlabeled and test data is
(r, 0.5− r, 0.5), meaning that test data is always 50 % of all data. Labeled training data is sampled
so that classes are balanced. Validation data is randomly sampled from training data with unknown
labels so that the number of labeled samples and validation samples is the same.

Each model has its own training loop designed. Both training and validation loss are checked
during training, and for some models early stopping is used when the validation loss stops decreas-
ing. Training is done over multiple splits of data (15 for the MI animals dataset, 5 for MNIST and
6 for malware dataset) with the same hyperparameter combination. The data split is controlled
with a random seed to ensure that all models are trained on the same data splits. Optimization is
done using the ADAM optimizer [47] with a standard learning rate η = 0.001.

Hyperparameter tuning is done with random search. For eachmodel, a random combination of
hyperparameters is sampled from predefined possible values. The best hyperparameters are chosen
after training based on validation accuracy. Experiments are repeated for 50 random combinations
of hyperparameters. Test accuracy and other metrics are reported as results.

4.2.1 Model details

Themodels presented in this thesis vary greatly in complexity. This makes it hard to give eachmodel
a fair chance of learning the best representation of the data. In general, models were trained with
regard to their architecture to ensure that each model has enough time and resources to train.

A simple classifier, as a well as classifier with triplet regularization, generally got shorter train-
ing times, and early stopping was used to stop training when the accuracy on validation data
stopped improving. These two models took the shortest training time due to their simplicity.
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Self-supervised models were trained in five train/pseudo-label iterations in total. After every
iteration, the trained model was saved. Validation accuracy was reported for each of the five trained
models, and the best model was chosen to represent the particular run. This setting ensured that
a bad pseudo-labeling in later iteration would not completely destroy the model’s performance.

Generative semi-supervisedmodels were allocatedmore training time to ensure that the model
is given the opportunity to learn both the classification network and the generative model. Valida-
tion accuracy was calculated during training epochs and used to save the best model and reduce
overfitting. All Gaussian distributions are parameterized with neural networks dependent on input
µ(x), σ(x), and the variance is diagonal.

The generative model for the JSON malware dataset proved to be the most complex. In the
end, the model was not composed of 18 models, but only 12, because the number of bags for certain
keys was 0 or small enough to ignore it. Still, the model remains very complex and needs to be
provided with the longest training time and the most allocated memory.

Neural Statistician has been used in the initial stage of experiments as the generative part
of M2 model. However, the model did not improve the M2 model compared to the generative
component as described in 3.3.1 and, as a consequence, the model is not used in the comparison.

One more model has been added to the list, later called the Chamfer kNN model. The model
is simple; a distance matrix between bags is calculated with the Chamfer distance (2.2) and the
kNN algorithm is used to predict the labels. The best k is chosen on the validation data and used
for kNN on the test dataset. Chamfer kNN is only used on Animals MI dataset due to its infeasible
computational complexity on larger datasets.

4.3 Evaluation

The evaluation of models in this thesis is two-fold. The first step is to calculate the accuracy of
model predictions. The models are ranked on the basis of reported test accuracy, but train and
validation accuracies are presented as well.

In the second part of evaluation, the focus is on the embedding learned through the HMill
models in terms of clustering quality. The best models chosen in step one are used to project data
into an embedding space and create a latent encoding of the data. Clustering is performed on
the latent encoding and its UMAP representation. UMAP makes it possible to calculate a UMAP
model on one subset of data, and use this model to project a second subset of data into the same
embedding. This feature is used in two ways:

• calculate UMAP embedding on train data and use the model to project test data into the same
embedding,

• calculate UMAP embedding on test data and use the model to project train data into the same
embedding.

Both options have different properties and leverage different information. The second approach
generally uses more data and can leverage the overall structure in an unsupervised manner. Pro-
jection in a 2D embedding space is used in all experiments.

Three clustering algorithms are compared: k-means, k-medoids, and hierarchical clustering
with average linkage. The number of clusters is chosen to be multiples of the true number of classes:
if there are 3 classes of data, clustering is calculated for k = 3, 6, 9. Clusters are assigned labels
based on the distance of the cluster to training data. A centre of mass is calculated for each class in
the training data and a cluster is assigned to the closest class centre. kNN is also used to infer labels
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of test data in both the latent space and its UMAP projections. The best k is chosen on validation
data.

The metrics described in 1.3.2 have been calculated for the clustering results. However, the
metrics are sensitive to the number of clusters created and number of classes in the data. All metrics
are generally lower for higher number of clusters, even though more but better separable clusters
can be the aim of the researcher. For this reason, only accuracy of infered labels based on the
process described in the previous paragraph is reported. The curious can later skip to Appendix A
to see the full result tables for clustering algorithms (k-means, k-medoids, hierarchical) with the
rand index and mutual information provided, as well as the number of clusters created.

4.4 Implementation

All experiments were run and evaluated using Julia Language [48]. Julia is an open-source pro-
gramming language designed specifically for scientific computing and comes with numerous pack-
ages for machine learning, deep learning, or automatic differentiation.

The code used to carry out the experiments in this thesis is available as a repository on Github
at www.github.com/masenka31/master_thesis. All models discussed have been implemented by
the author with the use of core Julia libraries. The project is available as a package that can be
installed and experiments can be run, if data are provided.

The most notable Julia libraries used are

• Mill.jl [29] – implementation of HMill models,
• JsonGrinder.jl [40] – processing of JSON files,
• Flux.jl [42] – deep learning library with Zygote.jl [49] for automatic differentiation,
• DrWatson.jl [50] – system for writing reproducible experimental code,
• BSON.jl, JLD2.jl – tools for data saving.

Experiments were run on a HPC cluster without GPU acceleration.

www.github.com/masenka31/master_thesis


Chapter 5

Results

This chapter presents results obtained for implemented models on three datasets. Every section
describes experimental results for one dataset in two parts – the first is used to discuss prediction
accuracy of trained models, the second shows results for clustering on learned latent space. All
results are collected in a table and plotted in a graph to provide a visual comparison.

What follows is a complete list of models used in experiments with a brief description and
reference to the corresponding sections of the thesis, where these models are described in more
detail. Some models are also provided with a shortened version of their names.
List of models:

• classifier = standard supervised HMill classifier as described in Section 2.3,
• classifier + triplet = classifier with triplet regularization as presented in Section 3.2,
• self-classifier = self-supervised classifier and
• self-ArcFace = self-supervised ArcFace model (both presented in Section 1.1.3),
• M2 model = M2 model designed in Section 3.3.1,
• M2 + warm-up = the same M2 model, but first trained on labeled data, and only after a

given number of epochs, unlabeled data are added to training,
• Chamfer kNN = a kNN performed on a distance matrix calculated with Chamfer distance.

Four clustering methods are used to cluster the embedding space of trained models:

• k-means,
• k-medoids,
• hierarchical with average linkage,
• k-nearest neighbors.

Clustering results for each dataset and model are calculated on three types of embedding:

• encoding – the real output of an HMill model,
• train embedding – 2D UMAP projection calculated on train data,
• test embedding – 2D UMAP projection calculated on test data.

45



CHAPTER 5. RESULTS 46

(a) Classification accuracy for each model. (b) Accuracy of infered labels from clustering on
embedding space of given models.

Figure 5.1: Visualizations of accuracy on the Animals MI dataset based on the percentage of known
labels.

5.1 Animals MI

Classification

Six models were examined for the Animals multi-instance problem. The results are presented in
Table 5.1 and plotted in Figure 5.1a.

Self-supervised ArcFace model ended up with the highest accuracy for the lower percentages
of labels (5, 10), followed by M2 model and a classifier with triplet regularization. The regularized
classifier shows the best accuracy for higher percentages of known labels. Unfortunately, due to
the small number of bags in the dataset, the comparison of accuracies lies at the boundary of
significance.

Interestingly enough, we can see some signs of over-fitting on the data, especially for small
percentages of labeled data. There are significant differences in validation and test accuracies
for classifiers, kNN on Chamfer distance and self-supervised models. The gap between the two
accuracies seems to be smaller for the generative M2 model, which becomes second best for 5 % of
labeled data due to this property, even though the model is otherwise fourth in validation accuracy.

The confusion matrix of the predictions was also calculated. The class predicted with the
highest accuracy inbetween models, seeds, and varying ratios, was Elephant with mostly 100%
precision, followed by Tiger and Fox.
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model % train
accuracy

validation
accuracy

test
accuracy

classifier 5 1.0 0.938 0.904
classifier + triplet 5 1.0 0.978 0.938
M2 model 5 1.0 0.96 0.952
Chamfer kNN 5 1.0 0.858 0.804
self-classifier 5 1.0 0.991 0.934
self-ArcFace 5 1.0 0.987 0.957

classifier 10 1.0 0.958 0.942
classifier + triplet 10 1.0 0.982 0.965
M2 model 10 1.0 0.96 0.967
Chamfer kNN 10 1.0 0.967 0.94
self-classifier 10 1.0 0.989 0.938
self-ArcFace 10 1.0 0.996 0.971

classifier 15 1.0 0.966 0.941
classifier + triplet 15 1.0 0.984 0.971
M2 model 15 1.0 0.961 0.95
Chamfer kNN 15 1.0 0.963 0.94
self-classifier 15 1.0 0.99 0.959
self-ArcFace 15 1.0 0.99 0.965
classifier 20 1.0 0.968 0.959
classifier + triplet 20 1.0 0.984 0.97
M2 model 20 1.0 0.98 0.967
Chamfer kNN 20 1.0 0.987 0.962
self-classifier 20 1.0 0.99 0.956
self-ArcFace 20 1.0 0.979 0.958

Table 5.1: Classification accuracy for models trained on the Animals MI dataset based on the per-
centage of known labels.

Clustering

Clusterings were calculated in accordance with the process described in Section 4.3. For all models,
except the Chamfer kNN model, the clustering quality of their latent space was examined. The
Chamfer kNN model was not used, since the model is deterministic, not trainable, and does not
learn an embedding. The best models chosen based on validation accuracy in the previous section
were used to perform clustering on their learned embedding. The results are shown in Table 5.2
as well as in Figure 5.1b. The results are on par with the classification accuracy, sometimes the
clustering accuracy achieves slightly better results.

There does not seem to be any visible trend for any clustering method or the type of latent
space used (encoding vs UMAP representation), although the k-means and k-medoids algorithms
seem to be best suited for this dataset.
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model method type accuracy %

classifier k-means encoding 0.92 5
classifier + triplet k-means encoding 0.94 5
M2 model hierarchical encoding 0.952 5
self-supervised classifier k-means test embedding 0.941 5
self-supervised ArcFace k-means test embedding 0.959 5
classifier hierarchical test embedding 0.952 10
classifier + triplet hierarchical test embedding 0.97 10
M2 model hierarchical encoding 0.967 10
self-supervised classifier k-means test embedding 0.955 10
self-supervised ArcFace k-means train embedding 0.972 10
classifier k-means test embedding 0.948 15
classifier + triplet k-means test embedding 0.98 15
M2 model k-means train embedding 0.957 15
self-supervised classifier k-medoids encoding 0.958 15
self-supervised ArcFace k-medoids encoding 0.967 15
classifier k-medoids encoding 0.966 20
classifier + triplet k-means test embedding 0.975 20
M2 model kNN encoding 0.969 20
self-supervised classifier kNN test embedding 0.953 20
self-supervised ArcFace k-means train embedding 0.958 20

Table 5.2: Clustering results for models on Animals MI dataset. Columns method and type mark
the setting of the best clustering algorithm.

5.2 MNIST

Classification

Six models have been trained on the MNIST point cloud datasets in two settings: a downsampled
dataset of 4 digits (0,1,3,4) and the full 10-digit dataset. Table 5.3 shows the final accuracies of
the best models chosen based on validation accuracy. The results are also visualized in Figure 5.2.

It is clear that the smaller dataset is much easier to learn and the accuracies are significantly
higher for all models. There is a rising trend with more labels available for the model to train on.
The classifier with triplet regularization proved to be the best model out of the models tested for
both MNIST datasets.

Unfortunately, the generative semi-supervised M2 model could not compete with supervised
classifiers and their self-supervised counterparts. A possible explanation is that for the model to
work well, the reconstruction loss of the generative component needs to be dependent on the
provided label. However, the generative model is able to learn reconstruction simply given the
context and the latent variables, and probably learns to ignore the label given. One of the solutions
that could help would be to make the generative model more dependent on a given label and
remove the instance latent space to force the model to generalize better and create a good one-
vector representation of the sample. It could also help to swap the generative component with
a more powerful model such as SetVAE [51].
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4 digits 10 digits

model train
accuracy

val
accuracy

test
accuracy % train

accuracy
val

accuracy
test

accuracy

classifier 1.0 0.9 0.883 0.2 1.0 0.721 0.703
classifier + triplet 1.0 0.943 0.91 0.2 1.0 0.769 0.743
M2 0.971 0.864 0.815 0.2 0.851 0.636 0.589
M2 + warm-up 1.0 0.836 0.808 0.2 0.991 0.659 0.63
self-classifier 0.993 0.954 0.891 0.2 0.94 0.786 0.716
self-ArcFace 0.986 0.946 0.907 0.2 0.84 0.664 0.671
classifier 1.0 0.965 0.953 1 0.991 0.87 0.855
classifier + triplet 1.0 0.983 0.972 1 1.0 0.88 0.877
M2 0.99 0.92 0.901 1 0.897 0.764 0.745
M2 + warm-up 0.982 0.924 0.902 1 0.875 0.757 0.738
self-classifier 0.993 0.982 0.962 1 0.939 0.886 0.871
self-ArcFace 0.985 0.987 0.967 1 0.803 0.72 0.729
classifier 0.998 0.983 0.979 5 1.0 0.92 0.92
classifier + triplet 1.0 0.987 0.984 5 0.997 0.932 0.93
M2 0.952 0.932 0.932 5 0.779 0.755 0.763
M2 + warm-up 0.97 0.946 0.941 5 0.791 0.766 0.772
self-classifier 0.996 0.989 0.984 5 0.954 0.917 0.915
self-ArcFace 0.993 0.98 0.981 5 0.653 0.611 0.623
classifier 0.999 0.989 0.985 10 0.988 0.938 0.934
classifier + triplet 0.999 0.991 0.988 10 0.972 0.943 0.94
M2 0.961 0.952 0.946 10 0.73 0.723 0.729
M2 + warm-up 0.959 0.95 0.945 10 0.768 0.76 0.764
self-classifier 0.994 0.99 0.985 10 0.948 0.928 0.926
self-ArcFace 0.997 0.989 0.986 10 0.798 0.65 0.659

Table 5.3: Classification accuracies for MNIST point cloud dataset in two settings (4 and 10 digits)
for six models and four percentages of available labeled data.

The self-supervised ArcFacemodel failed on the full MNIST dataset. There aremultiple reasons
for the low accuracy. The most probable explanation is that the higher number of classes makes it
harder to create a discrete embedding of the data using ArcFace. Therefore, in every iteration of
the model, a lot of wrongfully labeled samples might be added to training data and the distribution
does not coincide with the true data distribution p(x | y) anymore. One solution might be to use
better mining techniques to use better batches of data during training, another would be to be
more careful when adding unlabeled samples to train data and use a more strict rule for labeling
unlabeled samples.
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Figure 5.2: Comparison of classification accuracy for six models in two settings of the dataset given
the percentage of data with known labels.
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4 digits 10 digits
model method type accuracy % method type accuracy

classifier hierarchical test emb. 0.912 0.2 kNN encoding 0.647
classifier + triplet k-medoids test emb. 0.941 0.2 kNN test emb. 0.765
M2 model kNN test emb. 0.835 0.2 kNN encoding 0.569
M2 model + warm-up kNN test emb. 0.841 0.2 kNN encoding 0.608
self-classifier hierarchical test emb. 0.925 0.2 kNN test emb. 0.707
self-ArcFace kNN test emb. 0.908 0.2 kNN encoding 0.678
classifier kNN test emb. 0.96 1 kNN encoding 0.807
classifier + triplet k-means test emb. 0.976 1 kNN test emb. 0.877
M2 model kNN test emb. 0.907 1 kNN encoding 0.712
M2 model + warm-up kNN test emb. 0.911 1 kNN encoding 0.712
self-classifier k-means test emb. 0.968 1 kNN test emb. 0.851
self-ArcFace kNN encoding 0.967 1 kNN encoding 0.725
classifier kNN test emb. 0.976 5 kNN encoding 0.891
classifier + triplet kNN test emb. 0.986 5 kNN encoding 0.928
M2 model kNN encoding 0.932 5 kNN encoding 0.753
M2 model + warm-up kNN encoding 0.938 5 kNN encoding 0.765
self-classifier kNN test emb. 0.982 5 kNN encoding 0.894
self-ArcFace kNN encoding 0.98 5 kNN encoding 0.636
classifier kNN encoding 0.982 0.1 kNN encoding 0.913
classifier + triplet kNN encoding 0.988 0.1 kNN encoding 0.932
M2 model kNN encoding 0.946 0.1 kNN encoding 0.746
M2 model + warm-up kNN encoding 0.945 0.1 kNN encoding 0.758
self-classifier kNN test emb. 0.984 0.1 kNN encoding 0.908
self-ArcFace kNN test emb. 0.986 0.1 kNN encoding 0.664

Table 5.4: Clustering accuracy on learned embedding for MNIST dataset (4 and 10 digits).
Columns method and type mark the setting of the best clustering algorithm.

Clustering

The clustering accuracy was calculated for the best model chosen previously and every clustering
algorithm was applied with varying number of clusters, or choosing the best k on validation data
for the case of kNN.

It is clearly seen in Table 5.4 and Figure 5.3 that the best method for labeling test data in
the learned embedding space is the k-nearest neighbors algorithm. For the downsampled dataset,
the best encoding seemed to be the UMAP embedding calculated on test data, where the UMAP
algorithm is able to create a good representation of the high-dimensional embedding. On the full
dataset, the test embedding was chosen as the best only in four cases. The higher number of
classes are better distinguishable by using the high-dimensional embedding (encoding) created by
the HMill models.

The best model based on the quality of learned embedding is the classifier with triplet loss reg-
ularization. Regularization proved to greatly improve the results compared to a simple supervised
classifier.
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Figure 5.3: Comparison of clustering accuracy for six models in two settings of the dataset given
the percentage of data with known labels.



CHAPTER 5. RESULTS 53

model % train
accuracy

validation
accuracy

test
accuracy

classifier 1 1.0 0.879 0.863
triplet classifier 1 1.0 0.892 0.866
self-supervised classifier 1 0.992 0.902 0.866
self-supervised ArcFace 1 0.99 0.869 0.848
M2 model 1 1.0 0.883 0.838
classifier 2 0.999 0.917 0.904
triplet classifier 2 1.0 0.923 0.902
self-supervised classifier 2 0.992 0.938 0.915
self-supervised ArcFace 2 0.994 0.914 0.898
M2 model 2 0.998 0.909 0.89
classifier 5 0.999 0.949 0.952
triplet classifier 5 1.0 0.954 0.952
self-supervised classifier 5 0.985 0.96 0.955
self-supervised ArcFace 5 0.991 0.948 0.955
M2 model 5 1.0 0.944 0.942
classifier 10 0.999 0.97 0.966
triplet classifier 10 0.998 0.97 0.968
self-supervised classifier 10 0.999 0.973 0.969
self-supervised ArcFace 10 0.997 0.973 0.969
M2 model 10 0.996 0.96 0.959
classifier 20 0.998 0.982 0.978
triplet classifier 20 1.0 0.982 0.978
self-supervised classifier 20 0.998 0.986 0.981
self-supervised ArcFace 20 0.999 0.981 0.977
M2 model 20 0.987 0.973 0.968

Table 5.5: Results for JSON malware dataset for five models and five percentages of known labels.

5.3 JSON malware dataset

Classification

The models for the JSON malware dataset were run for 5 percentages of available labels. The
classification results can be seen in Figure 5.4 and Table 5.5.

The test accuracies are mostly the same for all models, except the generative M2 model. There
is a clear rising trend for growing number of labels, as expected. For 20 % of known labels, the
models are able to achieve 10 % higher accuracy than for 1 % of labels provided.

The self-supervised models seem to have an edge over the classifier and classifier with triplet
regularization. The self-supervised classifier achieves the best accuracy for small percentages of
known labels and stays high even for more labels available.

The generative M2 model was not able to beat any other model. However, we should keep in
mind, that the model is trained on only one key in the JSON structure and therefore misses some
information. It is not clear if this is the reason for the model to be suboptimal, but further research
is needed and a more powerfull model needs to be designed.
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Figure 5.4: Comparison of classification accuracy for five models on the JSON malware dataset.
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model method type accuracy %

classifier k-means encoding 0.86 1
classifier + triplet kNN encoding 0.862 1
self-supervised classifier kNN encoding 0.868 1
self-supervised ArcFace kNN encoding 0.851 1
M2 model kNN encoding 0.833 1
classifier k-medoids encoding 0.905 2
classifier + triplet kNN encoding 0.899 2
self-supervised classifier kNN encoding 0.913 2
self-supervised ArcFace kNN encoding 0.899 2
M2 model kNN encoding 0.893 2
classifier kNN encoding 0.951 5
classifier + triplet k-means train embedding 0.951 5
self-supervised classifier kNN encoding 0.953 5
self-supervised ArcFace kNN encoding 0.957 5
M2 model kNN encoding 0.938 5
classifier kNN encoding 0.967 10
classifier + triplet kNN encoding 0.966 10
self-supervised classifier kNN encoding 0.971 10
self-supervised ArcFace kNN encoding 0.97 10
M2 model kNN encoding 0.96 10
classifier kNN encoding 0.977 20
classifier + triplet kNN encoding 0.976 20
self-supervised classifier kNN encoding 0.981 20
self-supervised ArcFace kNN train embedding 0.977 20
M2 model kNN encoding 0.972 20

Table 5.6: Clustering accuracies for models on the JSON malware dataset. Columns method and
type mark the setting of the best clustering algorithm.

Clustering

The clustering accuracies summarized in Table 5.6 improve with higher number of labels available,
as expected. The differences between various models are not large. The M2 model ended with the
lowest accuracy, but otherwise there is no clear ranking of the models. The self-supervised classifier
takes the first spot for four percentages of labels, but usually by only a small margin.

The best method for classifying data based on the embedding space is by far the k-nearest
neighbor algorithm, which shows that the closest neighbors are better for classification on the
learned embedding than standard clustering methods, since generally the number of neighbors k
chosen on the validation set is lower (mainly 1-5) and does not need a full cluster structure.
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5.4 Summary

In summary, the aim of this thesis was to answer two main questions:

1. Are semi-supervised methods better than supervised for small number of labels available
during training?

2. Does regularization of the latent space improve classification accuracy?

The answer to the first question is somewhat complicated. Yes, simple semi-supervised models
(self-supervised classifier and self-supervised ArcFace model) were able to achieve good results
but did not show considerable improvement over supervised classifiers. On the other hand, semi-
supervised generative models failed to show any improvement and generally, with the exception
of the Animals MI dataset, returned much lower accuracies than all other models. The generative
part of the M2 model might be at fault, since the modeling of sets still relies on latent space of
instances, and the label provided to the model might not be used well in the generative process.
There is definitely room for improvement and further testing.

The answer to the second question is clear. Yes, the results show that regularization of the
embedding helps the model in training, and a classifier with triplet regularization is able to achieve
both higher classification accuracy and accuracy of clustering in the embedding space. The results
pose a question, if a combination of triplet regularization and semi-supervised methods can bring
even better accuracies. The answer to that question remains for the future.

One of the main takeaways from clustering results is that kNN works best for MNIST point
cloud and JSON malware dataset. It shows that the learned embedding space is not discriminative
enough to be easily clustered with standard algorithms such as k-means/medoids or hierarchical
clustering, but is able to represent point similarity to allow for good k-nearest neighbor classifica-
tion.

The reader is also encouraged to go through the Appendix for more detailed results. The
Appendix A shows the best clustering methods when kNN is not used for label inference in the
embedding space. Appendix B includes a nice visualization of the comparison between the cluster-
ing accuracy of a simple classifier and the classifier with triplet regularization on the MNIST point
cloud dataset.



Conclusion

The thesis demonstrated the usage of semi-supervised learning, metric learning, and generative
modeling in a new data paradigm of heterogenous structured data such as JSON files.

The first chapter presented the theoretical foundations of semi-supervised learning, reviewed
assumptions, and described standard methods for vector data. Since not all data come in the form
of numbers in the real space, metric learning provided methods for learning a similarity function
for more complex data structures with contrastive loss, triplet loss, or the ArcFace architecture.
A similarity metric can serve as a distance function that allows for clustering on the learned em-
bedding. For this reason, an overview of clustering algorithms is presented with the addition of
k-nearest neighbor algorithm and the UMAP algorithm for manifold approximation.

The second chapter described the challenges of modeling complex real-world data and ex-
plained the motivation for a general and flexible framework to process such data and design the
corresponding machine learning models. The HMill framework is presented as a library that is able
to process data in the form of bags, or tree-like structures such as JSON files.

The first two chapters were joined in the third chapter, where the standard models are ex-
tended to work in the HMill ecosystem. The models described include self-trained classifiers, self-
trained ArcFace model, and extension of a generative semi-supervised model to group data. The
last piece of the puzzle is a generative model for a specific JSON dataset. The model is designed to
be a collection of generative submodels for leafs in the JSON structure and joined with a classifier
to create a hierarchical version of the semi-supervised M2 model.

Experiments were set up in the fourth chapter. The three datasets used in the comparative
study are presented there. The emphasis is placed on a fair comparison of models. Standard
procedures for train, validation, and test splits are followed, hyperparameters are optimized with
a random search and the best combination is chosen based on validation accuracy. Each model is
trained over multiple splits of data and average accuracies are reported.

The results chapter presented experimental comparison of supervised, self-supervised, and
semi-supervised methods for classification. The general take-away is that semi-supervised learning
has the potential of improvement over standard supervised classifier, if properly trained and set
up. The self-supervised models – classifier and ArcFace model – were able to compete with other
models, with the exception of the self-supervised ArcFace model on the full MNIST dataset with 10
digits.

Unfortunately, the M2 generative semi-supervised model fell short of expectations. The model
was only able to achieve the highest accuracy for the Animals multi-instance dataset, where the
number of bags was relatively small (300). For MNIST and JSON malware dataset, the model’s
performance was significantly lower than that of other models. The problem might be that the gen-
erative model learns an instance embedding and can reconstruct the data well even when ignoring
the label provided with them.

The embedding space of trained models has been analyzed as well. The clustering results
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from the two larger datasets, MNIST point cloud and JSON data, give important insights about
the data and model’s embedding properties. kNN worked best on these datasets, implying that
the space created is good at representing similarity with nearest neighbors having the same class,
but not discriminative enough to create distinct cluster that would be detected with k-means or
other clustering algorithms. The classifier with triplet regularization reported the highest clustering
accuracy, showing that regularization does indeed create a higher-quality embedding space.

Further research should focus on designing a better generative model for data, as well as exten-
sion to multi-level tree-structured data to allow generation of whole JSON files. The reconstruction
needs to be better tied to the provided label to ensure that the reconstruction quality is highest
for a true label given. Such improvements should result in an improvement in the semi-supervised
setting, since the models should be able to better represent data with unknown labels.

Another area of research in this domain can also focus on designing and testing possible data
augmentations. Image augmentation helps tremendously in the field of computer vision to create
and train robust models of high quality, and the ideas should be transferable to the domain of
heterogenous structured data as well.
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Appendix A

Clustering results

The kNN algorithm proved to be the best way to infer labels of test data for the MNIST point
cloud dataset and JSON malware dataset. Unfortunately, that meant that the other algorithms
performance got lost as only the best combination of method-embedding type was presented.

This supplementary material presents the best clustering algorithm chosen for each dataset
and a given percentage of known labels provided, when kNN is excluded. Complementary to
clustering accuracy, rand index (RI) andmutual information (MI)metrics are provided in the results
tables as well. The number k represents the number of clusters the embedding was divided into
prior to assigning clusters to true classes.

The results for the Animals MI dataset are presented in Table A.1. There are no surprising
entries, the best results are mostly on UMAP embedding calculated on test data. A higher number
of clusters created by the clustering algorithm also seems to generate better accuracy.

MNIST dataset presents interesting results especially for the full dataset with 10 digits. The
results for 4 digits can be seen in Table A.2, the results for 10 digits in Table A.3. Both show
substantial differences in accuracy between the standard classifier and the classifier with triplet
regularization. The regularized classifier can achieve 10% higher accuracy, sometimes even more.

Finally, Table A.4 presents clustering results without kNN for the JSON malware dataset. The
accuracies of different models are quite close, sometimes the standard classifier achieved higher
accuracy than the regularized version.
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model method type accuracy RI MI k %

classifier k-medoids test embedding 0.922 0.815 0.607 6 5
classifier + triplet k-means test embedding 0.939 0.77 0.572 9 5
M2 model hierarchical encoding 0.952 0.905 0.753 9 5
self-supervised classifier k-medoids test embedding 0.936 0.829 0.638 6 5
self-supervised ArcFace k-means test embedding 0.96 0.834 0.676 6 5
classifier hierarchical test embedding 0.952 0.772 0.593 9 10
classifier + triplet k-medoids test embedding 0.969 0.843 0.703 6 10
M2 model k-medoids encoding 0.968 0.835 0.681 9 10
self-supervised classifier k-means test embedding 0.953 0.837 0.67 6 10
self-supervised ArcFace k-means test embedding 0.973 0.965 0.891 3 10
classifier k-means test embedding 0.946 0.931 0.804 3 15
classifier + triplet k-means test embedding 0.98 0.974 0.919 3 15
M2 model k-means train embedding 0.957 0.945 0.838 3 15
self-supervised classifier k-means test embedding 0.959 0.948 0.843 3 15
self-supervised ArcFace k-medoids encoding 0.966 0.85 0.693 9 15
classifier k-medoids encoding 0.964 0.954 0.86 3 20
classifier + triplet k-means test embedding 0.975 0.967 0.904 3 20
M2 model k-medoids encoding 0.969 0.904 0.781 6 20
self-supervised classifier hierarchical test embedding 0.938 0.773 0.589 9 20
self-supervised ArcFace k-means train embedding 0.958 0.946 0.843 3 20

Table A.1: Clustering results without kNN for the Animals MI dataset. Columns method, type and
k mark the setting of the best clustering algorithm.

model method type accuracy RI MI k %

classifier hierarchical test embedding 0.912 0.823 0.584 12 0.2
classifier + triplet k-medoids test embedding 0.941 0.862 0.67 8 0.2
self-supervised classifier hierarchical test embedding 0.925 0.858 0.642 8 0.2
M2 model hierarchical test embedding 0.805 0.798 0.47 12 0.2
M2 model + warm-up k-means test embedding 0.787 0.799 0.47 12 0.2
classifier k-means test embedding 0.913 0.87 0.692 8 1
classifier + triplet k-means test embedding 0.976 0.976 0.904 4 1
self-supervised classifier k-means test embedding 0.968 0.969 0.879 4 1
M2 model k-medoids test embedding 0.87 0.843 0.586 8 1
M2 model + warm-up k-medoids encoding 0.839 0.821 0.529 8 1
classifier hierarchical test embedding 0.975 0.976 0.904 4 5
classifier + triplet k-means test embedding 0.983 0.983 0.933 4 5
self-supervised classifier k-means test embedding 0.981 0.981 0.922 4 5
M2 model hierarchical train embedding 0.917 0.923 0.754 4 5
M2 model + warm-up hierarchical test embedding 0.875 0.929 0.781 4 5
classifier hierarchical train embedding 0.978 0.978 0.912 4 10
classifier + triplet hierarchical test embedding 0.986 0.986 0.941 4 10
self-supervised classifier hierarchical test embedding 0.981 0.981 0.925 4 10
M2 model k-means test embedding 0.936 0.94 0.8 4 10
M2 model + warm-up hierarchical train embedding 0.929 0.934 0.786 4 10

Table A.2: Clustering results without kNN for MNIST with 4 digits. Columns method, type and k
mark the setting of the best clustering algorithm.
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model method type accuracy RI MI k %

classifier k-medoids encoding 0.513 0.895 0.391 30 0.2
classifier + triplet hierarchical test embedding 0.732 0.923 0.601 20 0.2
self-supervised classifier k-means test embedding 0.602 0.908 0.508 30 0.2
M2 model k-medoids encoding 0.461 0.892 0.367 30 0.2
M2 model + warm-up k-medoids encoding 0.501 0.895 0.378 30 0.2
classifier k-medoids encoding 0.604 0.901 0.453 30 1
classifier + triplet hierarchical train embedding 0.822 0.948 0.726 20 1
self-supervised classifier k-medoids encoding 0.734 0.911 0.535 30 1
M2 model k-medoids encoding 0.554 0.898 0.409 30 1
M2 model + warm-up k-medoids encoding 0.593 0.899 0.43 30 1
classifier k-medoids encoding 0.631 0.899 0.482 20 5
classifier + triplet hierarchical test embedding 0.882 0.968 0.826 10 5
self-supervised classifier k-medoids test embedding 0.712 0.918 0.726 10 5
M2 model k-means encoding 0.525 0.891 0.408 20 5
M2 model + warm-up k-medoids encoding 0.597 0.902 0.458 30 5
classifier k-medoids encoding 0.712 0.91 0.531 30 10
classifier + triplet hierarchical test embedding 0.862 0.965 0.82 10 10
self-supervised classifier k-medoids encoding 0.682 0.909 0.525 30 10
M2 model k-medoids encoding 0.541 0.892 0.422 20 10
M2 model + warm-up k-medoids encoding 0.548 0.898 0.418 30 10

Table A.3: Clustering results without kNN for MNIST with 10 digits. Columns method, type and k
mark the setting of the best clustering algorithm.
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model method type accuracy randindex MI k %

classifier k-means encoding 0.86 0.952 0.797 20 1
classifier + triplet k-medoids encoding 0.858 0.951 0.774 30 1
self-supervised classifier k-means encoding 0.857 0.953 0.786 30 1
self-supervised ArcFace k-medoids encoding 0.851 0.946 0.762 30 1
M2 model k-medoids encoding 0.825 0.944 0.757 30 1
classifier k-medoids encoding 0.905 0.948 0.778 30 2
classifier + triplet k-medoids train embedding 0.898 0.929 0.718 30 2
self-supervised classifier k-means encoding 0.893 0.953 0.792 30 2
self-supervised ArcFace k-medoids train embedding 0.892 0.928 0.718 30 2
M2 model k-medoids encoding 0.856 0.941 0.762 30 2
classifier hierarchical train embedding 0.94 0.962 0.852 20 5
classifier + triplet k-means train embedding 0.951 0.939 0.778 30 5
self-supervised classifier k-means encoding 0.932 0.955 0.812 30 5
self-supervised ArcFace hierarchical encoding 0.956 0.984 0.928 10 5
M2 model hierarchical train embedding 0.926 0.944 0.781 30 5
classifier k-medoids encoding 0.964 0.951 0.812 30 10
classifier + triplet hierarchical encoding 0.966 0.986 0.931 30 10
self-supervised classifier k-medoids encoding 0.968 0.966 0.863 20 10
self-supervised ArcFace hierarchical encoding 0.967 0.986 0.933 20 10
M2 model k-means encoding 0.903 0.952 0.811 30 10
classifier hierarchical encoding 0.97 0.983 0.924 20 20
classifier + triplet k-medoids encoding 0.974 0.967 0.855 30 20
self-supervised classifier hierarchical encoding 0.976 0.984 0.926 20 20
self-supervised ArcFace k-medoids encoding 0.975 0.961 0.842 30 20
M2 model k-medoids encoding 0.874 0.952 0.827 20 20

Table A.4: Clustering result for JSON malware dataset. Columns method, type and k mark the
setting of the best clustering algorithm.



Appendix B

Comparison of classifiers on MNIST

The results presented in Chapter 5 showed that triplet regularization was able to aid a classifier
and result in improvement of both classification and clustering accuracy. The results presented
only showed the best clustering algorithm, but the details and comparison of the two models are
interesting enough to be presented in this supplementary material. The clustering properties for
different algorithms as well as different numbers of clusters created are presented here for the
MNIST dataset.

The following pictures show the comparison of accuracies of label inference for k-means, k-
medoids, hierarchical clustering with average linkage, and kNN algorithm on two versions of the
MNIST point cloud dataset.

Figures B.1, B.2, B.3, and B.4 clearly show that the triplet regularization improves the results
across different clustering algorithms and embeddings. It also seems that the accuracy rises with the
number of clusters created for encoding space, but tends to decrease on the UMAP embeddings. The
superior performance of kNN is clearly visible in the case of the standard classifier, where sometimes
the margin between kNN and the best accuracy of other clustering algorithms can exceed 10 %.
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(a) Comparison for 0.2 % of labeled data, 4 MNIST digits.

(b) Comparison for 0.2 % of labeled data, 10 MNIST digits.

Figure B.1: Comparison of clustering accuracy on latent space of classifiers with and without triplet
regularization; 0.2 % of data labeled.
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(a) Comparison for 1 % of labeled data, 4 MNIST digits.

(b) Comparison for 1 % of labeled data, 10 MNIST digits.

Figure B.2: Comparison of clustering accuracy on latent space of classifiers with and without triplet
regularization; 1 % of data labeled.
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(a) Comparison for 5 % of labeled data, 4 MNIST digits.

(b) Comparison for 5 % of labeled data, 10 MNIST digits.

Figure B.3: Comparison of clustering accuracy on latent space of classifiers with and without triplet
regularization; 5 % of data labeled.
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(a) Comparison for 10 % of labeled data, 4 MNIST digits.

(b) Comparison for 10 % of labeled data, 10 MNIST digits.

Figure B.4: Comparison of clustering accuracy on latent space of classifiers with and without triplet
regularization; 10 % of data labeled.
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