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Abstrakt / Abstract 

 

This work describes localization of position fiducial 

markers through modern approaches to the object 

detection problem using convolutional neural 

networks on mobile devices. The most current 

architectures are researched, and some samples are 

trained and integrated with a step-by-step description. 

Keywords: object detection, convolutional neural 

network, unity, yolo, pytorch, tensorflow, qr, aruco, 

fiducial markers, augmented reality 

 

Práce popisuje moderní přistup k detekci objektů typu 

„fiducial marker“ prostřednictvím konvolučních 

neuronových sítí na mobilních zařízeních. 

Nejmodernější typy architektur byly prozkoumané, a 

některé z nich byly použité pro vytvoření vlastních 

modelů, které pak byly integrované do aplikaci 

s podrobným popisem jednotlivých kroků. 

Klíčová slova: detekce objektů, konvoluční neuronová 

sít‘, unity, yolo, pytorch, tensorflow, qr, aruco, fiducial 

markery, rozšířená realita 
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1 Introduction 
Object Detection is present in Computer Vision for more than 20 years. With 

methods of Object Detection, it is possible to search people, cars, cancer 

cells and other things in an image even in real time.  And it can be useful in 

Augmented Reality applications, where a position of an augmentation is 

needed to be defined.  

Generally, some sorts of objects - markers are detected with their 

orientation and position. They are called “Fiducial markers”. QR codes and 

ArUco markers are widely used for this purpose, as it is possible to pass some 

information through these objects, for example an index of a shown 

augmentation scene, and they are designed to be easily detectable. 

For this moment, deterministic methods are the most common way to 

detect these markers. Deterministic methods are introduced in OpenCV 

library, one of the most used libraries for computer vision. 

But in the last years, neural networks methods of object detection are 

becoming more and more popular. So, is there an option that a solution 

using convolutional neural networks can also achieve results, which can be 

applicated in real usage? It is the question, which has been raised by the 

team of Misterine s.r.o., a company developing AR solutions for industry and 

education.  

The aim of this work is to elaborate a state-of-the-art analysis of object 

detection methods on mobile devices using convolutional neural networks.  

To achieve the aim, a list of tasks was defined: 

• Find and process theoretical information on object detection 

problem in general and with usage of convolutional neural networks 

• Find existing solutions of QR codes and / or ArUco markers detection 

problem 

• Elaborate a learning process of some recent object detection neural 

network models 

• Train some models considering the run on a mobile device and 

introduce them in a mobile app 

• Elaborate a way of neural networks integration into Unity engine on 

the request of Misterine s.r.o. 

• Make some recommendations on neural networks usage for the 

company considering not only QR codes and ArUco’s as Fiducial 

markers in future 
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2 Theoretical Part 
In this part of the work the main theoretical concepts will be described, 

including definitions, history and current methods. 

2.1 What is Object Recognition, Localization and 

Detection? 
Shimon Ullman in his “High-Level Vision: Object Recognition and Visual 

Cognition” book defines object recognition as an ability to identify an 

object from a visual input. One of the most important parts of it is a possibility 

of identifying invariancies of an object, e.g., on different backgrounds. [1] 

Object localization, in comparison, is needed to define a position of an 

instance of a class with its bounding box. And object detection is 

understood as a localization of several instances of different classes. [2] 

As the work considers usage of different types of markers and a possibility 

of multiple markers presence on an input, the object detection problem is 

elaborated in this work. 

 

2.2 History of Object Detection 
In this section main object detection methods for last 25 years are 

described, from methods based on AdaBoost to first regional-based 

convolutional neural networks.  

 

2.2.1 Viola–Jones Object Detection  
Viola-Jones object detection is an algorithm which was proposed by Paul 

Viola and Michael Jones in 2001, Cambridge, MA. Based on a newly 

introduced image representation “Integral Image”, AdaBoost method and 

a new method for combining complex classifiers in a cascade, it made 

possible real-time object detection, primarily face detection, in 15 frames 

per second. [3] 

 

2.2.2 HOG Detector  
HOG detector is based on the histogram of oriented gradients (HOG). It was 

described by Navneet Dalal and Bill Triggs in 2005, but the main concepts 

had been introduced in 1986 by Robert K. McConnell of Wayland Research 

Inc. The main idea behind it is that the distribution of intensity gradients and 

edge directions can help to find local object appearance and shape. [4] 
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2.2.3 Deformable Part-based Model 
This method was introduced by Pedro F. Felzenszwalb, Ross B. Girshick, 

David McAllester and Deva Ramanan in 2010. The essential idea behind 

Deformable Part-based Model algorithm is to consider objects as a 

deformed version of a template, as objects on input can be in different 

poses and under a wide range of angles. The model is multi-scale, aiming 

at making possible an effective use of more latent information such as 

grammar (hierarchal) models and models which involve latent 3D poses. It 

uses a convexity of positive examples for latent-SVM, a formalism used by 

authors for a reformulation of MI-SVM in terms of latent variables. [5] 

 

2.2.4 Regional-based Convolutional Neural Network (RCNN) 
A new method using convolutional neural networks, Regional-based CNN, 

was introduced by a team containing Ross Girshick, Jeff Donahue, Trevor 

Darrell and Jitendra Malik on UC Berkeley in 2014, as a reaction on a slow 

progress in usage of minorly improved variants of successful methods and 

renewed interest in convolutional neural networks for an object 

classification problem. The team of UC Berkeley proposed to extract just 

2000 “region proposals” which can be classified and boxed by processing 

a CNN output using SVM. [6]  

 

Figure 1. R-CNN principal scheme [6] 
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The algorithm for the selective search of 

regions is the following: 

1. Initial generation of sub-segments, 

where many candidate regions 

are generated 

2. Greedy algorithm application to 

recursively combine similar regions 

into larger ones  

3. The generated regions are used for 

production of the final candidate 

region proposals    

Two more improved variations had been 

developed (Fast RCNN and Faster 

RCNN), with much faster region proposal, but the main idea behind all the 

methods of object detection using convolutional networks is the same: 

1. Different implementations of an effective regions search algorithm 

2. Some sort of classification of those regions.  

 

2.3 State-of-the-Art 
As it was mentioned in the previous paragraph, generally there are two 

steps in object detection using convolutional neural networks. And 

according to those steps there can be two-stage detectors and one-stage 

detectors.  

As two-stage detectors these examples can be mentioned: 

1. RCNN (including Fast RCNN and Faster RCNN) 

2. Mask RCNN 

3. Feature Pyramid Networks 

4. Granulated RCNN 

The main one-stage detectors are [7]: 

1. You Only Look Once (in different versions) 

2. Single-Shot Object Detector 

3. EfficientDet [8] 

4. SquezeDet 

5. Pelee 

6. RetinaNet 

Two-stage detectors are more accurate, but also slower than one-stage 

analogs. The question of speed is essential in the desired solution as the 

implementation should run on mobile devices. 

Figure 2. R-CNN regions analysis [6] 
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2.3.1 You Only Look Once (YOLO) 
A revolutionary 

method was 

introduced in 2016 

by Joseph 

Redmon, Santosh 

Divvala, Ross 

Girshick and Ali 

Farhadi. It is a one-

stage detector 

solving single 

regression problem, 

predicting 

bounding boxes 

and class 

probabilities. 

Authors show that it is capable of running in 45 frames per second, the Fast 

version – even in 155 frames per second on Titan X GPU [9], what is, need to 

mention, still more than 7x more powerful than, for example, the latest 

Apple’s mobile solution, Apple A15, in the meaning of single precision 

compute power [10] [11].  

The idea is following [9]: 

1. Firstly, a compressed image is divided into an S x S grid. If the centre 

of an object is inside the cell, this cell is responsible for detection of 

this object 

2. Secondly, on each cell of this greed B bounding boxes with their 

confidence scores are predicted. A confidence score here is 

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡)  ∗  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (IOU – Intersection Over Union). For each box 5 

values are got: x and y coordinates, width and height, and 

confidence. Also it contains C conditional class probabilities,  

Pr(Class i | Object), for each grid cell 

3. Finally, at test time the conditional class probabilities and the 

individual box confidence predictions are multiplied to get class-

specific confidence scores for each box: 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡)  ∗  𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡)  ∗  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ  =  𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖)  ∗   𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ 

It shows us the class probability and how well the predicted box fits 

the object. 

Figure 3. YOLO workflow [9] 
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Figure 4. YOLO CNN architecture [9] 

The network’s model architecture contains 24 convolutional layers and 2 

fully connected layers. 1 x 1 reduction layers are followed by 3 x 3 

convolutional layers. A fast version of YOLO contains only 9 convolutional 

layers instead of 24. 

As YOLO architecture has been considered as a successful one, newer 

versions and modifications were made: 

• YOLOv2 (including Tiny modification, 2017) [10] 

• YOLOv3 (including Tiny modification, 2018) [11] 

• YOLOv4 (including Tiny modification, 2020) [12] 

• YOLOv5 (including Nano, Small, Medium, Large etc. modifications, 

2020) [13] 

YOLOv1, v2, v3 and v4 are developed in Darknet framework, YOLOv5 – in 

Pytorch.  

Tiny and Nano modifications are made specially for mobile deployment, 

with smaller model size and faster evaluation, but lower precision. For 

example, YOLOv5-nano can be 4 MB large and can run up to 80 frames 

per second on iPhone 13. In comparison, YOLOv5x is 170 MB large and runs 

5 frames per second. [13] 

As for the question of models’ formats and export possibilities, YOLOv2, 

YOLOv3 [14] and YOLOv4 [15] are exported in Darknet format by default, 

which is not widely used in mobile frameworks. There are possibilities to 

export those models to PyTorch [16] and ONNX [17] formats. YOLOv5 is 

developed by Ultralytics in PyTorch [13] with options to export this model to 

different formats, including ONNX and different versions of TensorFlow. 
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2.3.2 Single-Shot MultiBox Detector 
SSD was introduced in the end of year 2016 by Wei Liu, Dragomir Anguelov, 

Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu and 

Alexander C. Berg for real-time object detection. It is a one-stage family of 

detectors. The first version, comparing with already introduced YOLO, was 

faster and more accurate. [18] 

 

Figure 5. SSD architecture [18] 

Like in YOLO, an input image is also divided into a grid of cells, and 

bounding boxes for cells are predicted. The difference is that class 

probabilities are made for default sets of bounding boxes connected to 

cells, not for cells themselves, and there is not the only one grid – multi-scale 

feature maps are made with cells of several sizes, using small convolutional 

filters applied on them. Finally, outputs from convolutional layers for each 

grid are united, and non-maximum suppression is applied.  [19] 

Some SSD modifications and versions are made. First, versions accepting 

images of different sizes on input (SSD300 for 300x300 images and SSD500 

for 512x512). Also, MobileNet V2 and V3 in combination with SSDLite are 

needed to be mentioned.  

SSD models are exported to Caffe format. There is no officially supported 

option to convert this kind of models to Tensorflow, ONNX or any other 

format. But in general, it is possible, as there are some solutions on Github. 

[20] [21] 

2.3.3 EfficientDet 
This method was developed by Brain Team of Google Research (Mingxing 

Tan, Ruoming Pang, Quoc V. Le) and published in the end of July, 2020.  
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Figure 6. EfficientDet architecture [8] 

  

Generally, it is a one-stage scalable detector, without a region proposal 

stage. But this time no grid is made. The most significant specialty of this type 

of detector is that it uses newly introduced Weighted Bi-directional Feature 

Pyramid Network (BiFPN) between backbone EfficientNet output and 

classes/boxes networks not only for multiscale feature fusion, but also to 

enable learnable weights to learn the importance of different input 

features. These features are used for boxes and classes prediction networks. 

[8] 

TensorFlow and PyTorch implementations exist, with possibilities to export 

models to ONNX format. [22] [23] 

 

2.3.4 SqueezeDet 
SqueezeDet was introduced by a team from UC Berkeley and DeepScale 

(Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, Kurt Keutzer) in 2019 for 

autonomous driving systems with high requirements accuracy, speed, 

model size and energy efficiency. [24] 

The method is inspired by YOLO 

architecture with some adjustments, 

including [24] 

• Grid with different width and 

height  

• ConvDet layer usage for region 

proposals generation 

ConvDet is a convolutional layer, 

working as a sliding window, trained to 

predict bounding boxes coordinates Figure 7. SqueezeDet principal scheme [24] 
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and probabilities of classes. Using ConvDet instead of 2 fully connected 

layers in YOLO, it makes possible to use 460x less parameters than YOLO. 

[24] 

Originally this network is implemented in TensorFlow, and Keras 

implementation also exists. [25] [26] 

 

2.4 Use Case Analysis 
Generally, a solution will be potentially used for detection of Fiducial 

Markers in an application which shows augmented reality scenes.  

 

2.4.1 Requirements 
The requirements for explored solutions should consider the following 

scenario from Misterine s.r.o.: 

A neural network should run in real-time on a mobile device based on 

iOS/iPad OS or Android and detect Fiducial Markers - QR Codes and ArUco 

Markers, creating bounding boxes around them. Potentially the set of 

Fiducial Markers will be enlarged by adding other types of pictures (for 

example, pictures from Nreal library). Fiducial Markers are used for 

Augmentation scenes positioning – as in Misterine App, an application for 

AR manuals. It would be also useful to provide enough information 

(coordinates of 4 points in case of QR code) for homography estimation, or 

another variant of further usage is possible – deterministic detector 

application on a bounding box.  

The solution should be highly likely supported for a long term (a 

development team of a large and authoritative institution or company 

Figure 8. Misterine App 
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should be behind it) and should potentially accept new kinds of models as 

object detection networks is a field of study with a high probability of 

innovations. Ideally the solution should be appliable in Unity engine, 

because Misterine App is originally developed in this game engine. 

Also, the model architecture and integration way should be open source 

or already bought by Misterine.  

So, the following list of functional and non-functional requirements was 

made. 

Functional: 

FC1. The detector should make bounding boxes for QR Codes, 

ArUco markers and potentially some parts of QR Codes 

FC2. The detector should classify objects inside bounding boxes 

FC3. The model should be easily retrainable to accept new types of 

Fiducial Markers 

FC4. Frames per second metric should be shown and recorded 

Non-functional: 

NFC1. The detection should be in real-time, using video from back 

camera 

NFC2. The solution should run on Android 8.0 and higher and 

(potentially) iOS/iPad OS 12 and higher 

NFC3. Models should be able to deploy in Unity (at least theoretically, 

better – with a real example)  

NFC4. The solution, in general, should use open-source or already 

bought technologies 

 

2.5 Functional Analysis 
For further development all needed features should be described, with 

their importance and properties. 

2.5.1 Features and their Importance 
The described features correspond to mentioned requirements: 

1. Bounding boxes and classification generation 

Bounding boxes with class labels are needed for getting region-

candidates, on which a homographical algorithm can be applied. 

Definition of bounding boxes with their labels makes possible a 

detection of several markers of several types from only one image. 

2. Easily retrainable model architecture 

An easy for retrain model architecture (with an easy and clear 
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training process, widely used input files format etc.) should be used 

to make further development with new types of markers easy to hold. 

3. Statistics generation 

Frames per second statistic should be collected because the 

resolution if the neural network will be integrated or not should be 

made, and if yes, the most effective one should be chosen to use in 

Misterine App in future. 

4. Real-time detection 

The detection process should run in real time as it will be potentially 

used in an AR application. Latency should not be higher than 200 ms, 

what corresponds to 5 FPS, on the most of target devices (iPhones, 

iPads, and high-middle Android devices). 

5. Unity-deploy availability 

The models used in developed solution should be easy-to-deploy in 

Unity, as Misterine App and other applications developed by 

Misterine use Unity as an engine. 
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3 Existing Solutions for Fiducial Markers Detection 
As QR Codes and ArUco Markers are quite popular, some attempts to 

detect them using neural networks were made. 

3.1 Examples 
Three examples were found, for ArUco and for QR codes. 

3.1.1 ArUco Marker Detection under Occlusion Using 

Convolutional Neural Network 
The solution was introduced in 2020 by a team from Sun Yat-Sen University 

(Guangzhou, China). In this project ArUco markers are detected for the 

autonomous drones’ position definition. Chinese scientists used several tiny 

versions of YOLO models on the Nvidia GeForce GT 1030 GPU. It achieved 

20% lose rate from 8 meters with latency 0.1s, from 5 meters – with 0.02s 

latency. Th size of markers was 0.2m x 0.2m. The solution can detect several 

ArUco markers from one frame. [27] 

3.1.2 WeChat QR Code Detector  
A Tencent’s solution showed in OpenCV contribution version in the end of 

2021 (version 4.5.2) uses SSD architecture for QR codes detection. It can 

detect only one QR code from an input image, and the run was showed 

on a PC. It cannot detect ArUco codes. [28] 

3.1.3 YOLOv3 QR Codes Detector 
The solution from 2019 was developed by Portmann, Gabriel Bello. The 

project uses a YOLOv3-tiny model trained on 1000 of 480px x 480px images. 

Here no statistic is provided neither on a PC, nor on a mobile. [29]  

3.2 Summary 
These solutions show that detection of fiducial markers using convolutional 

neural networks is possible and usable. But some issues were defined: 

1. None of these solutions was demonstrated to run on a mobile phone, 

only on stationary computers or on hardware components 

comparable with them were demonstrated 

2. No solution detecting ArUco markers and QR codes at once was 

found 

3. Found solutions don’t use the most recent and modern models 

provided by the global community 



13 

4 Design 
This part describes the choice of methods which will be used for the 

implementation. 

4.1 Choice of a Way to Run Model in Unity 
There are some ways to run convolutional neural networks in applications 

based on Unity Engine. 

The first and the most common way is to use officially supported open-

source Unity Machine Learning Agents (ML-Agents) with the Unity Inference 

Engine (codenamed Barracuda). A model in this case preferably should be 

exported to ONNX format of the 9th opset version, as this version is more 

covered by the package. It can be a problem, because newer versions 

exist, and development continues. [30] Barracuda can run both on GPU 

and CPU of a mobile device, and also supports both iOS and Android. [31] 

The package is regularly updated, the last version (as for May, 2022) was 

introduced in January, 2022. It is provided under the Unity Companion 

License, which makes it possible to be used in a commercial product. [32] 

The second way is to use PyTorch or TensorFlow API.  

For PyTorch it is libtorch C++, and it enables a full functionality of PyTorch. 

Also, installation with CUDA support is suggested, which makes GPU running 

possible. But it might be hard to deploy, as drivers, other libraries, etc. should 

match to some degree and should be controlled with the toolkit’s updates. 

Also, no pre-built versions for Android and/or iOS are provided. [33] PyTorch 

is an open-source solution under the Modified BSD license, so it is also can 

be used in this work and in further development for Misterine. [34] 

For TensorFlow and its Lite version a C++ API is officially supported. It is also 

capable of running on GPU, and the team is a part of Google. TensorFlow 

itself is provided under Apache License 2.0, so it is free and open-source 

library. [35] 

What is good, a pre-built version is provided by the community, which is 

supported by Android and iOS, and licensed under MIT License. With this 

project, an example of SSD-MobileNet is provided. 

Another option for TensorFlow could be TensorFlowSharp, a library port for 

.NET developed by community. The problem is that it is not updated for 

more than a year and does not support many of new TensorFlow features. 

[36] 

Also, it is possible to use OpenCV for this purpose. This open-source solution 

can run models in Darknet and Caffe formats and has got a Unity version 

already used by Misterine. The problem is that OpenCV in Unity version 

cannot run on GPU, which is important for neural networks. And potentially 
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there can be one more problem, as Misterine does not use the latest version 

of this library. 

 Supported 

models 

Unity 

support 

Misterine 

usage 

License  GPU 

support 

Last 

update 

Barracuda ONNX 

opset 9 

version 

Native No Unity 

Companion 

License 

Yes 2022-

01-24 

libtorch PyTorch Needed 

to be 

built for 

each 

platform, 

no pre-

built 

versions 

No Modified 

BSD license 

Yes 2022-

03-10 

TensorFlow C++ 

API 

TensorFlow, 

TensorFlow 

Lite 

Needed 

to be 

built for 

each 

platform, 

open-

source 

pre-built 

versions 

exist 

No Apache 

License 2.0, 

MIT 

Yes 2022-

01-31 

TensorFlowSharp TensorFlow, 

TensorFlow 

Lite 

Native No Apache 

License 2.0 

Yes 2021-

05-26 

OpenCVForUnity Darknet 

YOLO, 

Caffe, old 

TensorFlow 

Native Yes Bought by 

Misterine 

No 2021-

12-30 

(a 

version 

from 

2020-

05-04 is 

used) 
Figure 9. Integration methods comparison table 

For further development Barracuda and TensorFlow C++ API are chosen 

because of Unity compatibility and relatively new versions updates, and 

OpenCVForUnity is chosen, as it is already used by Misterine. 

4.2 Choice of Models for Training and Deploying 
There is a plenty of object detection convolutional neural network models 

and their modifications, with different purposes and characteristics. The 

choice of models should correspond to the following set of parameters: 

• Size of a model (number of parameters) 

• FLOPs as a parameter for latency 

• Accuracy 
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• Ability to export to formats supported by Unity ML-Agents 

(Barracuda) 

• Availability of easy training mechanisms 

Small models and versions for mobile solutions are chosen for comparison, 

with statistics on COCO dataset (for SqueezeDet KITTI dataset statistics are 

provided, as no information about COCO testing was found). 

 Model size, 

millions of 

parameters 

FLOPs Integration 

method support 

Training 

mechanism 

Accuracy, 

in % 

EfficientDet-

D0 [8] 

3.9M 2.54B Through TensorFlow Google 

Colab is 

provided 

34.6 

SSDLite + 

MobileNet 

[37] 

 

5.8M 2.32B Exported to older 

version of 

TensorFlow 

Google 

Colab is 

provided 

67.0 

SqueezeDet 

[24] 

 

7.9M 9.7B Through TensorFlow Script on 

Github is 

provided 

76.7 

YOLOv4 Tiny 

[38] 

6.1M 6.93B Through 

OpenCVForUnity 

Google 

Colab is 

provided 

40.2 

YOLOv5n 

[13] 

1.9M 4.5B Through 

Barracuda, 

TensorFlow 

Provided by 

Ultralytics 

45.7 

Figure 10. Models’ architecture comparison table 

Based on integration availability, model sizes, easiness of training and FLOPS 

number, EfficientDet-D0 and YOLOv5n were chosen for further training and 

integration attempts. 

 

4.3 System Architecture 
The system, in general, should contain three main parts: 

1. Dataset generator 

2. Training mechanism 

3. Applications for smartphones and tablets with trained models 

Firstly, a set of data is generated. It should contain images and an 

information on bounding boxes with their labels for each image. After that, 

these data are passed to a training module, where a new neural network 

model is created. The next step is deploying this model to a smartphone 

with an application capable of running neural networks on its camera input. 
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The application shows neural network outputs and collects statistics on the 

solution’s FPS rate. 

4.4 Details of System Components 
Here the components listed above are described, with the technologies 

used for the implementation and principal connections. 

4.4.1 Dataset Generator 
This part should automatically generate a set of pictures with bounding 

boxes and their labels. It should have got a set of backgrounds, objects 

instances, ability to change objects’ brightness and position in space. Also, 

an automatic convertor to different data formats and manual labels-

mapper can be used. 

For the further development, 

it was decided that the 

dataset generator will be 

created in Unity, as it is the 

simplest way for the author to 

operate with objects 

transformation. It will have 

got a set of backgrounds 

collected from Google, and 

also a set of objects’ pictures 

(QR and ArUco). The application should generate a given number of 

pictures with labeled bounding boxes in one of common formats. In this 

solution simple YOLO Darknet TXT labeling format is chosen because it is 

easy to convert it to other types of formats. 

Roboflow, not 

mandatory 

Training 

 

 

 

EfficientDet 

Google Colab 

Mobile 

App 

 

 

 

Export model to 

different formats 

Unity 

Barracuda App 

Ultralytics 

Demo App 

TensorFlow Lite 

Demo App 
TensorFlow Lite 

Demo App 

 

YOLOv5 

Google Colab 

Roboflow 

Dataset 

Generator 

 

 

Unity project  

Figure 11. A principal scheme of the solution's architecture 

Markers 

images 

Background 

images 

Random 

combination 

 

 

Random rotation 

and light 

 

 

Output 

Figure 12. Dataset generator 
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After the dataset is generated, QR codes angles can be added manually 

by one of open-source dataset editors. For this work Roboflow is used, as it 

is free for personal and scholar use. [39] 

4.4.2 Training Mechanism 
For different types of models individual training mechanisms are made. 

Public Google Colab sheets are often provided by research teams. The 

point of using Google Colab is that it is possible to use efficient hardware 

(for example, Tesla K80 GPU) freely, what is important for training, as it is a 

demanding process. 

For YOLOv5 an open-source solution with a Colab sheet under GPL-3.0 

License [40] is made, with a possibility to import data directly from YOLO 

Darknet TXT format with some folders structure adjustments, described in 

[41]. This solution also makes export to different formats possible (ONNX, 

TensorFlow Lite, PyTorch, etc.) 

For EfficientDet there is a free-to-use [42] solution from Roboflow team, 

which is also a Google Colab sheet. Although, Roboflow itself is free-to use 

only for personal projects and class 

assignments [39], so it can be used in 

this work, but for Misterine purposes 

datasets will be uploaded manually 

into Google Colab. 

In each case, a training based on a 

pre-trained model is possible, so a 

training time should be smaller. 

In general, for each Colab all 

required libraries are loaded and 

installed, a dataset is loaded, and 

after that the training itself starts. 

After it is finished, the result graph 

can be downloaded, with a possibility to export a model to different 

formats. 

4.4.3 Testing Applications 
Ideally, a Unity solution should be provided for each type of model. But, as 

time is limited, and the research is made for elaborating the state of the art, 

Google Colab 

 

 

Training 

Dataset Libraries 

Output (graph) 

Format 1 Format 2 Format 3 

Figure 13. Training mechanism 
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native TensorFlow solutions are 

possible, because it is shown that 

TensorFlow C++ API can be used in 

Unity. 

A custom Unity application for 

YOLOv5 integration will be created, 

where a model will be applied to a 

part of the input texture from a 

camera. It should be able to run on 

Android and detect objects within a 

defined frame. Different object 

types will be defined by colors 

(green for ArUco, blue for QR codes, 

red for their angles). Also, it should 

provide information about current FPS rate on a screen and to Unity debug 

to collect the statistics. The statistics will be got from Android Logcat 

package after the device is connected to a PC. 

Also, Ultralytics team provides its own application for models testing, using 

PyTorch version of your own model. This application exists for Android and 

for iOS as well.  

For the EfficientDet detector an application from TensorFlow public 

examples will be used. It is a classical Android application written in Java. It 

shows bounding boxes, their labels and current inference time. But one 

adjustment will be made – it should be able to print FPS statistics to debug 

output, accessible through Android Logcat.  

But there is a potential problem in the case of TensorFlow and PyTorch, as 

Unity runs on Mono – the question of scheduling within a Mono solution 

calling an external neural network library is not documented or explored 

enough, so in the case of further development using this combination the 

usage of hardware should be learned in practice. 

Camera output 

Worker handling CNN 

model 

 

 

Ar 

Uco 

Bounding boxes, labels Refresh: 

FPS 

Figure 14. Detector 
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5 Implementation 

5.1 Dataset Generator  
For the development of the dataset generator Unity 2020.3.33f1 Personal 

has been used. The generator is a Unity desktop application made for PC, 

containing four folders: 

• Resources 

• Scenes 

• Scripts 

In the Resources folder there are special folders for ArUco markers, QR 

codes and backgrounds. All the pictures are imported as Sprites (2D and 

UI), as Unity requires it to use them as source images for Game Objects. 

 

Figure 15.Dataset generator program screenshot 

The Scenes folder contains only the main Generator scene. It is the main 

and only scene of the project, where a canvas with a background, an 

object and an obscuring panel are located. On the same level with the 

canvas the Controller is present. It handles a special script which controls 

changing of background and objects images, rotation of the object and 

the color of the obscuring panel. It also generates files in YOLO Darknet TXT 

format.  

The C# script ImageChanger.cs itself is located in a special folder Scripts. It 

contains the public class ImageChanger derived from Unity’s 

MonoBehaviour base class. As it is a MonoBehaviour, it provides two public 

methods: Start() and Update(). On the Start images for objects and 

backgrounds are loaded from the Resources and the initial state is set up. 
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On each Update a method for image update is called, where the 

background, the object and its rotation and obscuration are chosen 

randomly. After that, labels and boxes are generated and written into a 

defined folder. Images are saved to another folder. Number of updates is 

defined within the Unity. 

In order to make the dataset closer to real sub-optimal scenarios, not only 

clear QR codes and ArUco markers samples can be used, but also 

unfocused or noised ones, made manually through one of graphical editors 

(GIMP or Paint.NET for example) out of clear samples or found on the net.  

As the result, images with bounding boxes files are created. 

Next, files are loaded to Roboflow, where other bounding boxes can be 

added (for example, for QR codes angles). 

 

5.2 Training Mechanism 
For the chosen model architectures, YOLOv5 and EfficientDet, training 

mechanism is described in this part. 

5.2.1 YOLOv5 
For YOLOv5 the training mechanism is provided by Ultralytics team, and it is 

quite simple. The steps are following: 

1. Upload a dataset in a specified format 

2. Choose a base model (YOLOv5n in this case) 

3. Start the training 

4. After the training is done, download the model in a requested format 

(ONNX, TensorFlow, PyTorch, etc.) 

5.2.2 EfficientDet 
For the EfficientDet-D0 a Google Colab sheet is provided. [43] 

Firstly, all data and packages are loaded. Next, the file system structure is 

modified for different folders.  

The next important thing is setting up of training preferences. Here it can be 

done manually, for example the learning rate, the batch size and the image 

size can be modified. After this step the training can be started with a given 

number of epochs.  

After the training is completed, the model can be exported to TensorFlow 

Lite format. 
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5.3 Application 
Three applications are implemented or adapted – a custom Unity 

Barracuda application, TensorFlowLite demo and Ultralytics demo. 

5.3.1 Unity 
The Unity application is made in version 2020.3.33f1 and contains only one 

scene – Detector. It has got a set of GameObjects, the most important of 

them are: 

• Main Camera 

Here the Unity’s Camera is located. Also, the Phone Camera Script is 

attached here, which handles input from the device camera and 

output from YOLOv5n Detector, which is located in another 

GameObject 

• Canvas 

o Background 

Here the Texture from the device camera is saved and shown 

o FPS 

This component shows current FPS 

• Detector 

The Detector itself, which works with the loaded neural network 

model, is located here 

 

Figure 16. Unity detector screenshot 

The C# project associated with the Unity project contains four files: 

1. Detector.cs 

 

interface Detector with two provided methods, 
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void Start(),  

a standard Unity method, 
IEnumerator Detect (Color32[] picture, int 

requestedWidth, SystemAction<IList<BoundingBox>>

 callback),  

which detects the objects from aa picture represented as an array of 

Color32. 

 
class BoundingBoxDimensions  

with size and coordinates  properties 

 
class BoundingBox  

with the following properties: 
BoundingBoxDimensions Dimensions, 

string Label, 

float Confidence, 

Rect Rect 

 

The reason of this file existence is that in future other kind of detector 

can be explored. 

 

2. GraphicsWorker.cs 

 

Provides an only one static method 
IWorker GetWorker (Model model), 

which returns an instance of IWorker depending on a current 

platform and GPU availability 

 

3. PhoneCamera.cs 

 

Contains 
class PhoneCamera: MonoBehaviour 

which gets all needed inputs from Unity, including box colors, 

background, detector, a prefab for box, a text field for FPS, and 

provides the following methods: 
void Start(), 

in which the texture from a camera is got and ratio for detecting 

frame is set, 
void Update(), 

where the input from camera is provided to the Detector, and the 

detection starts on each frame. Also, bounding boxes are redrawn 

here, and FPS is counted 
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4. Yolov5Detector.cs 

 

Contains 
class Yolov5Detector: MonoBehaviour, Detector, 

in which the detector’s parameters are handled, such as image size, 

number of classes, number of the model’s output rows, minimal 

confidence rate, limit of detectable objects, neural network model 

file and labels file. 

 

It provides the following methods: 
void Start (), 

in which labels, a model and a worker are loaded, 
IEnumerator Detect (Color32[] picture, int 

requestedWidth, SystemAction<IList<BoundingBox>> 

callback),  

as described in the base Detect class 

Figure 17. Unity detector run on Android 

Figure 18. Screenshot from Unity solution 
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5.3.2 Other Applications 
As for Ultralytics and TensorFlow Demo, no significant implementation 

details can be provided, as the only thig made manually is the change of 

the model.  

Ultralytics App can run both on Android and iOS, with a possibility to log in 

and get a model from a user’s account from 

which it was trained. It shows bounding boxes 

with labels and confidence and provides FPS 

on the main screen. 

TensorFlow Demo 

is provided via 

the official 

GitHub and can 

be built from 

Android Studio 

after exchanging 

the model’s file 

and labels file. In 

this demo a 

number of 

threads can be 

chosen, and for 

the EfficientDet 

only CPU run is 

possible. It also 

provides 

information on 

the refresh rate as 

a latency in ms.  

Figure 20. TensorFlow Lite Demo 

Figure 19. Ultralytics demo 

application 
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6 Evaluation of Tests 
For testing purposes, Samsung Galaxy Note 9 128 GB was chosen, as it is 

already disposed, even if it is not the best solution on the market now. It runs 

under Android 10 with CPU Samsung Exynos 9810 (Octa-core, 4 x 2.9 GHz, 4 

x 1.9 GHz), 6 GB of 

RAM and Mali G72 

MP1 GPU.  

The tests are 

considering run on 

CPU and on GPU using 

Vulcan API in Unity 

application, Ultralytics 

application and 

TensorFlowLite Demo 

application only on 

CPU. The applications 

are tested on 

following criterions: 

• FPS on CPU run 

• FPS on GPU run 

• Number of not-caught objects 

• Number of misclassified objects 

• Number of false-positive cases 

Tests are done on a set of different QR codes and ArUco markers, single or 

combined together, QR codes with QR codes, ArUco markers with ArUco 

markers, QR codes with ArUco markers on different pages. Totally the set 

contains: 

• 8 QR codes 

• 24 QR codes angles 

• 9 ArUco markers 

For each run (CPU or GPU) 5 papers with examples are shown. FPS is 

counted as an arithmetic mean of control points on papers. 

For each detector similar min. confidence was used (60%). 

The data provided in the table on the next page. 

 

 

 

Figure 21. Testing mechanism 
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 EfficientDet-D0 

under 

TensorFlow Lite 

Demo 

YOLOv5 under 

Unity Barracuda 

YOLOv5 under 

Ultralytics Demo 

(PyTorch) 

CPU FPS 6.99 FPS 5.92 FPS 47,61 FPS 

GPU FPS - 5.35 FPS 61,59 FPS 

Not-caught 

objects 

14 6 39 

Misclassified 

objects 

0 0 1 

False-positive 3 2 3 

Total number of 

objects 

41 41 x 2 41 x 2 

Figure 22. Evaluation tests statistics 

As can be seen, the fastest solution is Ultralytics Demo, which uses PyTorch 

for neural networks running. It achieves more than 60 FPS on GPU using 

Vulkan API and almost 48 FPS on CPU. But also, it is a solution with the highest 

number of mistakes – more than 47% of objects were not detected, one 

object was misclassified, 3 more not existing object were detected.  

The most accurate solution is a custom YOLOv5 Unity Barracuda detector, 

which did not catch only 6 objects out of 82 and detected 2 extra objects, 

with no misclassification. It is important to say that this solution runs faster on 

a CPU than on a GPU, achieving almost 6 FPS, but it is still slower than on 

other solutions. 

A TensorFlow Lite solution using EfficientDet-D0 appears to be faster than 

YOLOv5 Barracuda with almost 7 FPS frequency on CPU. Number of 

mistakes is lower than on Ultralytics demo, but still, it is much higher than on 

the Barracuda solution. 
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7 Conclusion 

7.1 Achieved goals 
In this work the most part of goals is achieved. A current state of object 

detection with CNN problem is explored and analysed.  

Some of the models described in this work have been re-trained on a 

custom dataset, what made them possible to detect Fiducial markers, such 

as ArUco markers and QR codes. Training mechanisms’ workflows are 

scrutinized, so now it is possible to add new types of markers on a request.  

The ways of integration current neural network libraries and packages 

(TensorFlow, PyTorch, Barracuda) to Unity are studied as well. The Barracuda 

integration option is elaborated on a practical example. For other variants 

demo applications were used. 

Evaluation tests for three variants are provided to make a choice for a 

potential integration to Misterine App. 

7.2 Not achieved goals and problems 
Not every one-stage model mentioned in this paper was described or re-

trained on a custom dataset, as no well-described training mechanisms 

were found for some of them. Also, not every possible way of Unity 

integration was elaborated practically to get more relevant data. Some of 

the mentioned ways seems to be obsolete.  

For some models not the most relevant statistics were collected (for 

SqueezeDet, for example, because no public data on COCO dataset were 

found). 

Not every way of neural networks integration into Unity had not been tried 

out, so no practical results were collected. It may be a problem, as Unity 

Mono scheduling can cause unexpected performance results. 

No post-processing was introduced to get precise coordinates and rotation 

of the objects.  

7.3 Further possible development 
In the future, a custom model architecture can be developed. It can take 

an only one grayscale component instead of 3 components in RGB, as the 

most of fiducial markers have got high contrast. Theoretically, it can 

increase speed and decrease energy consumption. The model can be 

based on one of the models’ architectures described in this work.  

Also, other ways of models’ integration can be explored practically, 

especially the PyTorch’s C++ API, as it has shown a very good result in the 
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meaning of speed. But it should be counted with the issue of the Unity’s 

architecture using Mono as its platform.  

The other thing to mention is that usage of CoreML by Apple and NNAPI by 

Google can be explored. These technologies can not only run neural 

networks on GPUs, but also, they can optimize the runtime. 

As no post-processing was integrated in this work, it can be done as well. 

 

7.4 Recommendations 
A solution using neural networks can be theoretically used for the detection 

of fiducial markers. The speed of PyTorch solution seems to be high enough 

for mobile real-time detection, but the accuracy of this solution is 

unacceptably low, so a way to increase it should be found. 

The field of object detectors studies is developing in time, so new solutions, 

if they will be introduced, should be studied as well.  

Other objects can be tried out as fiducial markers for a solution using an 

object detector based on a convolutional neural network. 
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8 Attachments  

8.1 Links 
1. “YOLOv5-Unity” project on GitHub 

https://github.com/egor-ulianov/yolov5-unity 

2. Dataset generator on GitHub 

https://github.com/egor-ulianov/dataset-generator-fiducial 

https://github.com/egor-ulianov/yolov5-unity
https://github.com/egor-ulianov/dataset-generator-fiducial
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8.2 Data examples 

8.2.1 A single QR code 
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8.2.2 Different QR codes of different sizes 
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8.2.3 A single ArUco marker 
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8.2.4 Different ArUco markers of a different size 
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8.2.5 ArUco markers and QR codes altogether  
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