

DEPARTMENT OF CYBERNETICS

LOCALIZATION OF POSITION

MARKERS IN CAMERA IMAGE USING

NEURON NETWORKS

BACHELOR’S THESIS

Egor Ulianov

Open Informatics - Artificial Intelligence and

Computer Science

Supervisor: Ing. Martin Klíma, Ph.D.

May 2022

Prohlášení autora / Autor statement

Prohlašuji, že jsem předloženou práci vypracoval

samostatně a že jsem uvedl veškeré použité informační

zdroje v souladu s Metodickým pokynem o dodržování

etických principů při přípravě vysokoškolských

závěrečných prací.

V Praze dne ...

Podpis autora práce ...

I declare that the presented work was developed

independently and that I have listed all sources of

information used within at in accordance with the

methodical instructions for observing the ethical

principles in the preparation of university theses.

Prague, date ...

Signature ...

Abstrakt / Abstract

This work describes localization of position fiducial

markers through modern approaches to the object

detection problem using convolutional neural

networks on mobile devices. The most current

architectures are researched, and some samples are

trained and integrated with a step-by-step description.

Keywords: object detection, convolutional neural

network, unity, yolo, pytorch, tensorflow, qr, aruco,

fiducial markers, augmented reality

Práce popisuje moderní přistup k detekci objektů typu

„fiducial marker“ prostřednictvím konvolučních

neuronových sítí na mobilních zařízeních.

Nejmodernější typy architektur byly prozkoumané, a

některé z nich byly použité pro vytvoření vlastních

modelů, které pak byly integrované do aplikaci

s podrobným popisem jednotlivých kroků.

Klíčová slova: detekce objektů, konvoluční neuronová

sít‘, unity, yolo, pytorch, tensorflow, qr, aruco, fiducial

markery, rozšířená realita

Acknowledgement

I would like to thank my parents, Sergey and Olga, for

providing me all possible support during my studies

and for their endless hope and trust, especially when

they don’t see their son for years.

Also, I’m grateful to my supervisor, Ing. Martin Klíma,

Ph.D., whose support not only during my studies

helped me to keep the faith that even long-forgotten

childhood dreams can become a reality.

Finally, I would like to address my thanks to all the

Misterine crew, a team of dreamers and

gamechangers, as their energy keeps me in a stream.

Special thanks – to Ing. Jan Dupač, Ph. D., for his

priceless pieces of advice on computer vision topic.

Contents
1 Introduction .. 1

2 Theoretical Part .. 2

2.1 What is Object Recognition, Localization and Detection? 2

2.2 History of Object Detection .. 2

2.2.1 Viola–Jones Object Detection .. 2

2.2.2 HOG Detector ... 2

2.2.3 Deformable Part-based Model ... 3

2.2.4 Regional-based Convolutional Neural Network (RCNN) 3

2.3 State-of-the-Art .. 4

2.3.1 You Only Look Once (YOLO) ... 5

2.3.2 Single-Shot MultiBox Detector .. 7

2.3.3 EfficientDet .. 7

2.3.4 SqueezeDet ... 8

2.4 Use Case Analysis .. 9

2.4.1 Requirements .. 9

2.5 Functional Analysis .. 10

2.5.1 Features and their Importance ... 10

3 Existing Solutions for Fiducial Markers Detection 12

3.1 Examples .. 12

3.1.1 ArUco Marker Detection under Occlusion Using Convolutional

Neural Network .. 12

3.1.2 WeChat QR Code Detector .. 12

3.1.3 YOLOv3 QR Codes Detector ... 12

3.2 Summary ... 12

4 Design ... 13

4.1 Choice of a Way to Run Model in Unity .. 13

4.2 Choice of Models for Training and Deploying 14

4.3 System Architecture .. 15

4.4 Details of System Components .. 16

4.4.1 Dataset Generator ... 16

4.4.2 Training Mechanism .. 17

4.4.3 Testing Applications .. 17

5 Implementation ... 19

5.1 Dataset Generator .. 19

5.2 Training Mechanism .. 20

5.2.1 YOLOv5 .. 20

5.2.2 EfficientDet .. 20

5.3 Application .. 21

5.3.1 Unity .. 21

5.3.2 Other Applications .. 24

6 Evaluation of Tests ... 25

7 Conclusion ... 27

7.1 Achieved goals ... 27

7.2 Not achieved goals and problems ... 27

7.3 Further possible development .. 27

7.4 Recommendations .. 28

8 Attachments .. 29

8.1 Links ... 29

8.2 Data examples .. 30

8.2.1 A single QR code .. 30

8.2.2 Different QR codes of different sizes ... 31

8.2.3 A single ArUco marker .. 32

8.2.4 Different ArUco markers of a different size 33

8.2.5 ArUco markers and QR codes altogether 34

9 Bibliography ... 35

1

1 Introduction
Object Detection is present in Computer Vision for more than 20 years. With

methods of Object Detection, it is possible to search people, cars, cancer

cells and other things in an image even in real time. And it can be useful in

Augmented Reality applications, where a position of an augmentation is

needed to be defined.

Generally, some sorts of objects - markers are detected with their

orientation and position. They are called “Fiducial markers”. QR codes and

ArUco markers are widely used for this purpose, as it is possible to pass some

information through these objects, for example an index of a shown

augmentation scene, and they are designed to be easily detectable.

For this moment, deterministic methods are the most common way to

detect these markers. Deterministic methods are introduced in OpenCV

library, one of the most used libraries for computer vision.

But in the last years, neural networks methods of object detection are

becoming more and more popular. So, is there an option that a solution

using convolutional neural networks can also achieve results, which can be

applicated in real usage? It is the question, which has been raised by the

team of Misterine s.r.o., a company developing AR solutions for industry and

education.

The aim of this work is to elaborate a state-of-the-art analysis of object

detection methods on mobile devices using convolutional neural networks.

To achieve the aim, a list of tasks was defined:

• Find and process theoretical information on object detection

problem in general and with usage of convolutional neural networks

• Find existing solutions of QR codes and / or ArUco markers detection

problem

• Elaborate a learning process of some recent object detection neural

network models

• Train some models considering the run on a mobile device and

introduce them in a mobile app

• Elaborate a way of neural networks integration into Unity engine on

the request of Misterine s.r.o.

• Make some recommendations on neural networks usage for the

company considering not only QR codes and ArUco’s as Fiducial

markers in future

2

2 Theoretical Part
In this part of the work the main theoretical concepts will be described,

including definitions, history and current methods.

2.1 What is Object Recognition, Localization and

Detection?
Shimon Ullman in his “High-Level Vision: Object Recognition and Visual

Cognition” book defines object recognition as an ability to identify an

object from a visual input. One of the most important parts of it is a possibility

of identifying invariancies of an object, e.g., on different backgrounds. [1]

Object localization, in comparison, is needed to define a position of an

instance of a class with its bounding box. And object detection is

understood as a localization of several instances of different classes. [2]

As the work considers usage of different types of markers and a possibility

of multiple markers presence on an input, the object detection problem is

elaborated in this work.

2.2 History of Object Detection
In this section main object detection methods for last 25 years are

described, from methods based on AdaBoost to first regional-based

convolutional neural networks.

2.2.1 Viola–Jones Object Detection
Viola-Jones object detection is an algorithm which was proposed by Paul

Viola and Michael Jones in 2001, Cambridge, MA. Based on a newly

introduced image representation “Integral Image”, AdaBoost method and

a new method for combining complex classifiers in a cascade, it made

possible real-time object detection, primarily face detection, in 15 frames

per second. [3]

2.2.2 HOG Detector
HOG detector is based on the histogram of oriented gradients (HOG). It was

described by Navneet Dalal and Bill Triggs in 2005, but the main concepts

had been introduced in 1986 by Robert K. McConnell of Wayland Research

Inc. The main idea behind it is that the distribution of intensity gradients and

edge directions can help to find local object appearance and shape. [4]

3

2.2.3 Deformable Part-based Model
This method was introduced by Pedro F. Felzenszwalb, Ross B. Girshick,

David McAllester and Deva Ramanan in 2010. The essential idea behind

Deformable Part-based Model algorithm is to consider objects as a

deformed version of a template, as objects on input can be in different

poses and under a wide range of angles. The model is multi-scale, aiming

at making possible an effective use of more latent information such as

grammar (hierarchal) models and models which involve latent 3D poses. It

uses a convexity of positive examples for latent-SVM, a formalism used by

authors for a reformulation of MI-SVM in terms of latent variables. [5]

2.2.4 Regional-based Convolutional Neural Network (RCNN)
A new method using convolutional neural networks, Regional-based CNN,

was introduced by a team containing Ross Girshick, Jeff Donahue, Trevor

Darrell and Jitendra Malik on UC Berkeley in 2014, as a reaction on a slow

progress in usage of minorly improved variants of successful methods and

renewed interest in convolutional neural networks for an object

classification problem. The team of UC Berkeley proposed to extract just

2000 “region proposals” which can be classified and boxed by processing

a CNN output using SVM. [6]

Figure 1. R-CNN principal scheme [6]

4

The algorithm for the selective search of

regions is the following:

1. Initial generation of sub-segments,

where many candidate regions

are generated

2. Greedy algorithm application to

recursively combine similar regions

into larger ones

3. The generated regions are used for

production of the final candidate

region proposals

Two more improved variations had been

developed (Fast RCNN and Faster

RCNN), with much faster region proposal, but the main idea behind all the

methods of object detection using convolutional networks is the same:

1. Different implementations of an effective regions search algorithm

2. Some sort of classification of those regions.

2.3 State-of-the-Art
As it was mentioned in the previous paragraph, generally there are two

steps in object detection using convolutional neural networks. And

according to those steps there can be two-stage detectors and one-stage

detectors.

As two-stage detectors these examples can be mentioned:

1. RCNN (including Fast RCNN and Faster RCNN)

2. Mask RCNN

3. Feature Pyramid Networks

4. Granulated RCNN

The main one-stage detectors are [7]:

1. You Only Look Once (in different versions)

2. Single-Shot Object Detector

3. EfficientDet [8]

4. SquezeDet

5. Pelee

6. RetinaNet

Two-stage detectors are more accurate, but also slower than one-stage

analogs. The question of speed is essential in the desired solution as the

implementation should run on mobile devices.

Figure 2. R-CNN regions analysis [6]

5

2.3.1 You Only Look Once (YOLO)
A revolutionary

method was

introduced in 2016

by Joseph

Redmon, Santosh

Divvala, Ross

Girshick and Ali

Farhadi. It is a one-

stage detector

solving single

regression problem,

predicting

bounding boxes

and class

probabilities.

Authors show that it is capable of running in 45 frames per second, the Fast

version – even in 155 frames per second on Titan X GPU [9], what is, need to

mention, still more than 7x more powerful than, for example, the latest

Apple’s mobile solution, Apple A15, in the meaning of single precision

compute power [10] [11].

The idea is following [9]:

1. Firstly, a compressed image is divided into an S x S grid. If the centre

of an object is inside the cell, this cell is responsible for detection of

this object

2. Secondly, on each cell of this greed B bounding boxes with their

confidence scores are predicted. A confidence score here is

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (IOU – Intersection Over Union). For each box 5

values are got: x and y coordinates, width and height, and

confidence. Also it contains C conditional class probabilities,

Pr(Class i | Object), for each grid cell

3. Finally, at test time the conditional class probabilities and the

individual box confidence predictions are multiplied to get class-

specific confidence scores for each box:

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ

It shows us the class probability and how well the predicted box fits

the object.

Figure 3. YOLO workflow [9]

6

Figure 4. YOLO CNN architecture [9]

The network’s model architecture contains 24 convolutional layers and 2

fully connected layers. 1 x 1 reduction layers are followed by 3 x 3

convolutional layers. A fast version of YOLO contains only 9 convolutional

layers instead of 24.

As YOLO architecture has been considered as a successful one, newer

versions and modifications were made:

• YOLOv2 (including Tiny modification, 2017) [10]

• YOLOv3 (including Tiny modification, 2018) [11]

• YOLOv4 (including Tiny modification, 2020) [12]

• YOLOv5 (including Nano, Small, Medium, Large etc. modifications,

2020) [13]

YOLOv1, v2, v3 and v4 are developed in Darknet framework, YOLOv5 – in

Pytorch.

Tiny and Nano modifications are made specially for mobile deployment,

with smaller model size and faster evaluation, but lower precision. For

example, YOLOv5-nano can be 4 MB large and can run up to 80 frames

per second on iPhone 13. In comparison, YOLOv5x is 170 MB large and runs

5 frames per second. [13]

As for the question of models’ formats and export possibilities, YOLOv2,

YOLOv3 [14] and YOLOv4 [15] are exported in Darknet format by default,

which is not widely used in mobile frameworks. There are possibilities to

export those models to PyTorch [16] and ONNX [17] formats. YOLOv5 is

developed by Ultralytics in PyTorch [13] with options to export this model to

different formats, including ONNX and different versions of TensorFlow.

7

2.3.2 Single-Shot MultiBox Detector
SSD was introduced in the end of year 2016 by Wei Liu, Dragomir Anguelov,

Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu and

Alexander C. Berg for real-time object detection. It is a one-stage family of

detectors. The first version, comparing with already introduced YOLO, was

faster and more accurate. [18]

Figure 5. SSD architecture [18]

Like in YOLO, an input image is also divided into a grid of cells, and

bounding boxes for cells are predicted. The difference is that class

probabilities are made for default sets of bounding boxes connected to

cells, not for cells themselves, and there is not the only one grid – multi-scale

feature maps are made with cells of several sizes, using small convolutional

filters applied on them. Finally, outputs from convolutional layers for each

grid are united, and non-maximum suppression is applied. [19]

Some SSD modifications and versions are made. First, versions accepting

images of different sizes on input (SSD300 for 300x300 images and SSD500

for 512x512). Also, MobileNet V2 and V3 in combination with SSDLite are

needed to be mentioned.

SSD models are exported to Caffe format. There is no officially supported

option to convert this kind of models to Tensorflow, ONNX or any other

format. But in general, it is possible, as there are some solutions on Github.

[20] [21]

2.3.3 EfficientDet
This method was developed by Brain Team of Google Research (Mingxing

Tan, Ruoming Pang, Quoc V. Le) and published in the end of July, 2020.

8

Figure 6. EfficientDet architecture [8]

Generally, it is a one-stage scalable detector, without a region proposal

stage. But this time no grid is made. The most significant specialty of this type

of detector is that it uses newly introduced Weighted Bi-directional Feature

Pyramid Network (BiFPN) between backbone EfficientNet output and

classes/boxes networks not only for multiscale feature fusion, but also to

enable learnable weights to learn the importance of different input

features. These features are used for boxes and classes prediction networks.

[8]

TensorFlow and PyTorch implementations exist, with possibilities to export

models to ONNX format. [22] [23]

2.3.4 SqueezeDet
SqueezeDet was introduced by a team from UC Berkeley and DeepScale

(Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, Kurt Keutzer) in 2019 for

autonomous driving systems with high requirements accuracy, speed,

model size and energy efficiency. [24]

The method is inspired by YOLO

architecture with some adjustments,

including [24]

• Grid with different width and

height

• ConvDet layer usage for region

proposals generation

ConvDet is a convolutional layer,

working as a sliding window, trained to

predict bounding boxes coordinates Figure 7. SqueezeDet principal scheme [24]

9

and probabilities of classes. Using ConvDet instead of 2 fully connected

layers in YOLO, it makes possible to use 460x less parameters than YOLO.

[24]

Originally this network is implemented in TensorFlow, and Keras

implementation also exists. [25] [26]

2.4 Use Case Analysis
Generally, a solution will be potentially used for detection of Fiducial

Markers in an application which shows augmented reality scenes.

2.4.1 Requirements
The requirements for explored solutions should consider the following

scenario from Misterine s.r.o.:

A neural network should run in real-time on a mobile device based on

iOS/iPad OS or Android and detect Fiducial Markers - QR Codes and ArUco

Markers, creating bounding boxes around them. Potentially the set of

Fiducial Markers will be enlarged by adding other types of pictures (for

example, pictures from Nreal library). Fiducial Markers are used for

Augmentation scenes positioning – as in Misterine App, an application for

AR manuals. It would be also useful to provide enough information

(coordinates of 4 points in case of QR code) for homography estimation, or

another variant of further usage is possible – deterministic detector

application on a bounding box.

The solution should be highly likely supported for a long term (a

development team of a large and authoritative institution or company

Figure 8. Misterine App

10

should be behind it) and should potentially accept new kinds of models as

object detection networks is a field of study with a high probability of

innovations. Ideally the solution should be appliable in Unity engine,

because Misterine App is originally developed in this game engine.

Also, the model architecture and integration way should be open source

or already bought by Misterine.

So, the following list of functional and non-functional requirements was

made.

Functional:

FC1. The detector should make bounding boxes for QR Codes,

ArUco markers and potentially some parts of QR Codes

FC2. The detector should classify objects inside bounding boxes

FC3. The model should be easily retrainable to accept new types of

Fiducial Markers

FC4. Frames per second metric should be shown and recorded

Non-functional:

NFC1. The detection should be in real-time, using video from back

camera

NFC2. The solution should run on Android 8.0 and higher and

(potentially) iOS/iPad OS 12 and higher

NFC3. Models should be able to deploy in Unity (at least theoretically,

better – with a real example)

NFC4. The solution, in general, should use open-source or already

bought technologies

2.5 Functional Analysis
For further development all needed features should be described, with

their importance and properties.

2.5.1 Features and their Importance
The described features correspond to mentioned requirements:

1. Bounding boxes and classification generation

Bounding boxes with class labels are needed for getting region-

candidates, on which a homographical algorithm can be applied.

Definition of bounding boxes with their labels makes possible a

detection of several markers of several types from only one image.

2. Easily retrainable model architecture

An easy for retrain model architecture (with an easy and clear

11

training process, widely used input files format etc.) should be used

to make further development with new types of markers easy to hold.

3. Statistics generation

Frames per second statistic should be collected because the

resolution if the neural network will be integrated or not should be

made, and if yes, the most effective one should be chosen to use in

Misterine App in future.

4. Real-time detection

The detection process should run in real time as it will be potentially

used in an AR application. Latency should not be higher than 200 ms,

what corresponds to 5 FPS, on the most of target devices (iPhones,

iPads, and high-middle Android devices).

5. Unity-deploy availability

The models used in developed solution should be easy-to-deploy in

Unity, as Misterine App and other applications developed by

Misterine use Unity as an engine.

12

3 Existing Solutions for Fiducial Markers Detection
As QR Codes and ArUco Markers are quite popular, some attempts to

detect them using neural networks were made.

3.1 Examples
Three examples were found, for ArUco and for QR codes.

3.1.1 ArUco Marker Detection under Occlusion Using

Convolutional Neural Network
The solution was introduced in 2020 by a team from Sun Yat-Sen University

(Guangzhou, China). In this project ArUco markers are detected for the

autonomous drones’ position definition. Chinese scientists used several tiny

versions of YOLO models on the Nvidia GeForce GT 1030 GPU. It achieved

20% lose rate from 8 meters with latency 0.1s, from 5 meters – with 0.02s

latency. Th size of markers was 0.2m x 0.2m. The solution can detect several

ArUco markers from one frame. [27]

3.1.2 WeChat QR Code Detector
A Tencent’s solution showed in OpenCV contribution version in the end of

2021 (version 4.5.2) uses SSD architecture for QR codes detection. It can

detect only one QR code from an input image, and the run was showed

on a PC. It cannot detect ArUco codes. [28]

3.1.3 YOLOv3 QR Codes Detector
The solution from 2019 was developed by Portmann, Gabriel Bello. The

project uses a YOLOv3-tiny model trained on 1000 of 480px x 480px images.

Here no statistic is provided neither on a PC, nor on a mobile. [29]

3.2 Summary
These solutions show that detection of fiducial markers using convolutional

neural networks is possible and usable. But some issues were defined:

1. None of these solutions was demonstrated to run on a mobile phone,

only on stationary computers or on hardware components

comparable with them were demonstrated

2. No solution detecting ArUco markers and QR codes at once was

found

3. Found solutions don’t use the most recent and modern models

provided by the global community

13

4 Design
This part describes the choice of methods which will be used for the

implementation.

4.1 Choice of a Way to Run Model in Unity
There are some ways to run convolutional neural networks in applications

based on Unity Engine.

The first and the most common way is to use officially supported open-

source Unity Machine Learning Agents (ML-Agents) with the Unity Inference

Engine (codenamed Barracuda). A model in this case preferably should be

exported to ONNX format of the 9th opset version, as this version is more

covered by the package. It can be a problem, because newer versions

exist, and development continues. [30] Barracuda can run both on GPU

and CPU of a mobile device, and also supports both iOS and Android. [31]

The package is regularly updated, the last version (as for May, 2022) was

introduced in January, 2022. It is provided under the Unity Companion

License, which makes it possible to be used in a commercial product. [32]

The second way is to use PyTorch or TensorFlow API.

For PyTorch it is libtorch C++, and it enables a full functionality of PyTorch.

Also, installation with CUDA support is suggested, which makes GPU running

possible. But it might be hard to deploy, as drivers, other libraries, etc. should

match to some degree and should be controlled with the toolkit’s updates.

Also, no pre-built versions for Android and/or iOS are provided. [33] PyTorch

is an open-source solution under the Modified BSD license, so it is also can

be used in this work and in further development for Misterine. [34]

For TensorFlow and its Lite version a C++ API is officially supported. It is also

capable of running on GPU, and the team is a part of Google. TensorFlow

itself is provided under Apache License 2.0, so it is free and open-source

library. [35]

What is good, a pre-built version is provided by the community, which is

supported by Android and iOS, and licensed under MIT License. With this

project, an example of SSD-MobileNet is provided.

Another option for TensorFlow could be TensorFlowSharp, a library port for

.NET developed by community. The problem is that it is not updated for

more than a year and does not support many of new TensorFlow features.

[36]

Also, it is possible to use OpenCV for this purpose. This open-source solution

can run models in Darknet and Caffe formats and has got a Unity version

already used by Misterine. The problem is that OpenCV in Unity version

cannot run on GPU, which is important for neural networks. And potentially

14

there can be one more problem, as Misterine does not use the latest version

of this library.

 Supported

models

Unity

support

Misterine

usage

License GPU

support

Last

update

Barracuda ONNX

opset 9

version

Native No Unity

Companion

License

Yes 2022-

01-24

libtorch PyTorch Needed

to be

built for

each

platform,

no pre-

built

versions

No Modified

BSD license

Yes 2022-

03-10

TensorFlow C++

API

TensorFlow,

TensorFlow

Lite

Needed

to be

built for

each

platform,

open-

source

pre-built

versions

exist

No Apache

License 2.0,

MIT

Yes 2022-

01-31

TensorFlowSharp TensorFlow,

TensorFlow

Lite

Native No Apache

License 2.0

Yes 2021-

05-26

OpenCVForUnity Darknet

YOLO,

Caffe, old

TensorFlow

Native Yes Bought by

Misterine

No 2021-

12-30

(a

version

from

2020-

05-04 is

used)
Figure 9. Integration methods comparison table

For further development Barracuda and TensorFlow C++ API are chosen

because of Unity compatibility and relatively new versions updates, and

OpenCVForUnity is chosen, as it is already used by Misterine.

4.2 Choice of Models for Training and Deploying
There is a plenty of object detection convolutional neural network models

and their modifications, with different purposes and characteristics. The

choice of models should correspond to the following set of parameters:

• Size of a model (number of parameters)

• FLOPs as a parameter for latency

• Accuracy

15

• Ability to export to formats supported by Unity ML-Agents

(Barracuda)

• Availability of easy training mechanisms

Small models and versions for mobile solutions are chosen for comparison,

with statistics on COCO dataset (for SqueezeDet KITTI dataset statistics are

provided, as no information about COCO testing was found).

 Model size,

millions of

parameters

FLOPs Integration

method support

Training

mechanism

Accuracy,

in %

EfficientDet-

D0 [8]

3.9M 2.54B Through TensorFlow Google

Colab is

provided

34.6

SSDLite +

MobileNet

[37]

5.8M 2.32B Exported to older

version of

TensorFlow

Google

Colab is

provided

67.0

SqueezeDet

[24]

7.9M 9.7B Through TensorFlow Script on

Github is

provided

76.7

YOLOv4 Tiny

[38]

6.1M 6.93B Through

OpenCVForUnity

Google

Colab is

provided

40.2

YOLOv5n

[13]

1.9M 4.5B Through

Barracuda,

TensorFlow

Provided by

Ultralytics

45.7

Figure 10. Models’ architecture comparison table

Based on integration availability, model sizes, easiness of training and FLOPS

number, EfficientDet-D0 and YOLOv5n were chosen for further training and

integration attempts.

4.3 System Architecture
The system, in general, should contain three main parts:

1. Dataset generator

2. Training mechanism

3. Applications for smartphones and tablets with trained models

Firstly, a set of data is generated. It should contain images and an

information on bounding boxes with their labels for each image. After that,

these data are passed to a training module, where a new neural network

model is created. The next step is deploying this model to a smartphone

with an application capable of running neural networks on its camera input.

16

The application shows neural network outputs and collects statistics on the

solution’s FPS rate.

4.4 Details of System Components
Here the components listed above are described, with the technologies

used for the implementation and principal connections.

4.4.1 Dataset Generator
This part should automatically generate a set of pictures with bounding

boxes and their labels. It should have got a set of backgrounds, objects

instances, ability to change objects’ brightness and position in space. Also,

an automatic convertor to different data formats and manual labels-

mapper can be used.

For the further development,

it was decided that the

dataset generator will be

created in Unity, as it is the

simplest way for the author to

operate with objects

transformation. It will have

got a set of backgrounds

collected from Google, and

also a set of objects’ pictures

(QR and ArUco). The application should generate a given number of

pictures with labeled bounding boxes in one of common formats. In this

solution simple YOLO Darknet TXT labeling format is chosen because it is

easy to convert it to other types of formats.

Roboflow, not

mandatory

Training

EfficientDet

Google Colab

Mobile

App

Export model to

different formats

Unity

Barracuda App

Ultralytics

Demo App

TensorFlow Lite

Demo App
TensorFlow Lite

Demo App

YOLOv5

Google Colab

Roboflow

Dataset

Generator

Unity project

Figure 11. A principal scheme of the solution's architecture

Markers

images

Background

images

Random

combination

Random rotation

and light

Output

Figure 12. Dataset generator

17

After the dataset is generated, QR codes angles can be added manually

by one of open-source dataset editors. For this work Roboflow is used, as it

is free for personal and scholar use. [39]

4.4.2 Training Mechanism
For different types of models individual training mechanisms are made.

Public Google Colab sheets are often provided by research teams. The

point of using Google Colab is that it is possible to use efficient hardware

(for example, Tesla K80 GPU) freely, what is important for training, as it is a

demanding process.

For YOLOv5 an open-source solution with a Colab sheet under GPL-3.0

License [40] is made, with a possibility to import data directly from YOLO

Darknet TXT format with some folders structure adjustments, described in

[41]. This solution also makes export to different formats possible (ONNX,

TensorFlow Lite, PyTorch, etc.)

For EfficientDet there is a free-to-use [42] solution from Roboflow team,

which is also a Google Colab sheet. Although, Roboflow itself is free-to use

only for personal projects and class

assignments [39], so it can be used in

this work, but for Misterine purposes

datasets will be uploaded manually

into Google Colab.

In each case, a training based on a

pre-trained model is possible, so a

training time should be smaller.

In general, for each Colab all

required libraries are loaded and

installed, a dataset is loaded, and

after that the training itself starts.

After it is finished, the result graph

can be downloaded, with a possibility to export a model to different

formats.

4.4.3 Testing Applications
Ideally, a Unity solution should be provided for each type of model. But, as

time is limited, and the research is made for elaborating the state of the art,

Google Colab

Training

Dataset Libraries

Output (graph)

Format 1 Format 2 Format 3

Figure 13. Training mechanism

18

native TensorFlow solutions are

possible, because it is shown that

TensorFlow C++ API can be used in

Unity.

A custom Unity application for

YOLOv5 integration will be created,

where a model will be applied to a

part of the input texture from a

camera. It should be able to run on

Android and detect objects within a

defined frame. Different object

types will be defined by colors

(green for ArUco, blue for QR codes,

red for their angles). Also, it should

provide information about current FPS rate on a screen and to Unity debug

to collect the statistics. The statistics will be got from Android Logcat

package after the device is connected to a PC.

Also, Ultralytics team provides its own application for models testing, using

PyTorch version of your own model. This application exists for Android and

for iOS as well.

For the EfficientDet detector an application from TensorFlow public

examples will be used. It is a classical Android application written in Java. It

shows bounding boxes, their labels and current inference time. But one

adjustment will be made – it should be able to print FPS statistics to debug

output, accessible through Android Logcat.

But there is a potential problem in the case of TensorFlow and PyTorch, as

Unity runs on Mono – the question of scheduling within a Mono solution

calling an external neural network library is not documented or explored

enough, so in the case of further development using this combination the

usage of hardware should be learned in practice.

Camera output

Worker handling CNN

model

Ar

Uco

Bounding boxes, labels Refresh:

FPS

Figure 14. Detector

19

5 Implementation

5.1 Dataset Generator
For the development of the dataset generator Unity 2020.3.33f1 Personal

has been used. The generator is a Unity desktop application made for PC,

containing four folders:

• Resources

• Scenes

• Scripts

In the Resources folder there are special folders for ArUco markers, QR

codes and backgrounds. All the pictures are imported as Sprites (2D and

UI), as Unity requires it to use them as source images for Game Objects.

Figure 15.Dataset generator program screenshot

The Scenes folder contains only the main Generator scene. It is the main

and only scene of the project, where a canvas with a background, an

object and an obscuring panel are located. On the same level with the

canvas the Controller is present. It handles a special script which controls

changing of background and objects images, rotation of the object and

the color of the obscuring panel. It also generates files in YOLO Darknet TXT

format.

The C# script ImageChanger.cs itself is located in a special folder Scripts. It

contains the public class ImageChanger derived from Unity’s

MonoBehaviour base class. As it is a MonoBehaviour, it provides two public

methods: Start() and Update(). On the Start images for objects and

backgrounds are loaded from the Resources and the initial state is set up.

20

On each Update a method for image update is called, where the

background, the object and its rotation and obscuration are chosen

randomly. After that, labels and boxes are generated and written into a

defined folder. Images are saved to another folder. Number of updates is

defined within the Unity.

In order to make the dataset closer to real sub-optimal scenarios, not only

clear QR codes and ArUco markers samples can be used, but also

unfocused or noised ones, made manually through one of graphical editors

(GIMP or Paint.NET for example) out of clear samples or found on the net.

As the result, images with bounding boxes files are created.

Next, files are loaded to Roboflow, where other bounding boxes can be

added (for example, for QR codes angles).

5.2 Training Mechanism
For the chosen model architectures, YOLOv5 and EfficientDet, training

mechanism is described in this part.

5.2.1 YOLOv5
For YOLOv5 the training mechanism is provided by Ultralytics team, and it is

quite simple. The steps are following:

1. Upload a dataset in a specified format

2. Choose a base model (YOLOv5n in this case)

3. Start the training

4. After the training is done, download the model in a requested format

(ONNX, TensorFlow, PyTorch, etc.)

5.2.2 EfficientDet
For the EfficientDet-D0 a Google Colab sheet is provided. [43]

Firstly, all data and packages are loaded. Next, the file system structure is

modified for different folders.

The next important thing is setting up of training preferences. Here it can be

done manually, for example the learning rate, the batch size and the image

size can be modified. After this step the training can be started with a given

number of epochs.

After the training is completed, the model can be exported to TensorFlow

Lite format.

21

5.3 Application
Three applications are implemented or adapted – a custom Unity

Barracuda application, TensorFlowLite demo and Ultralytics demo.

5.3.1 Unity
The Unity application is made in version 2020.3.33f1 and contains only one

scene – Detector. It has got a set of GameObjects, the most important of

them are:

• Main Camera

Here the Unity’s Camera is located. Also, the Phone Camera Script is

attached here, which handles input from the device camera and

output from YOLOv5n Detector, which is located in another

GameObject

• Canvas

o Background

Here the Texture from the device camera is saved and shown

o FPS

This component shows current FPS

• Detector

The Detector itself, which works with the loaded neural network

model, is located here

Figure 16. Unity detector screenshot

The C# project associated with the Unity project contains four files:

1. Detector.cs

interface Detector with two provided methods,

22

void Start(),

a standard Unity method,
IEnumerator Detect (Color32[] picture, int

requestedWidth, SystemAction<IList<BoundingBox>>

 callback),

which detects the objects from aa picture represented as an array of

Color32.

class BoundingBoxDimensions

with size and coordinates properties

class BoundingBox

with the following properties:
BoundingBoxDimensions Dimensions,

string Label,

float Confidence,

Rect Rect

The reason of this file existence is that in future other kind of detector

can be explored.

2. GraphicsWorker.cs

Provides an only one static method
IWorker GetWorker (Model model),

which returns an instance of IWorker depending on a current

platform and GPU availability

3. PhoneCamera.cs

Contains
class PhoneCamera: MonoBehaviour

which gets all needed inputs from Unity, including box colors,

background, detector, a prefab for box, a text field for FPS, and

provides the following methods:
void Start(),

in which the texture from a camera is got and ratio for detecting

frame is set,
void Update(),

where the input from camera is provided to the Detector, and the

detection starts on each frame. Also, bounding boxes are redrawn

here, and FPS is counted

23

4. Yolov5Detector.cs

Contains
class Yolov5Detector: MonoBehaviour, Detector,

in which the detector’s parameters are handled, such as image size,

number of classes, number of the model’s output rows, minimal

confidence rate, limit of detectable objects, neural network model

file and labels file.

It provides the following methods:
void Start (),

in which labels, a model and a worker are loaded,
IEnumerator Detect (Color32[] picture, int

requestedWidth, SystemAction<IList<BoundingBox>>

callback),

as described in the base Detect class

Figure 17. Unity detector run on Android

Figure 18. Screenshot from Unity solution

24

5.3.2 Other Applications
As for Ultralytics and TensorFlow Demo, no significant implementation

details can be provided, as the only thig made manually is the change of

the model.

Ultralytics App can run both on Android and iOS, with a possibility to log in

and get a model from a user’s account from

which it was trained. It shows bounding boxes

with labels and confidence and provides FPS

on the main screen.

TensorFlow Demo

is provided via

the official

GitHub and can

be built from

Android Studio

after exchanging

the model’s file

and labels file. In

this demo a

number of

threads can be

chosen, and for

the EfficientDet

only CPU run is

possible. It also

provides

information on

the refresh rate as

a latency in ms.

Figure 20. TensorFlow Lite Demo

Figure 19. Ultralytics demo

application

25

6 Evaluation of Tests
For testing purposes, Samsung Galaxy Note 9 128 GB was chosen, as it is

already disposed, even if it is not the best solution on the market now. It runs

under Android 10 with CPU Samsung Exynos 9810 (Octa-core, 4 x 2.9 GHz, 4

x 1.9 GHz), 6 GB of

RAM and Mali G72

MP1 GPU.

The tests are

considering run on

CPU and on GPU using

Vulcan API in Unity

application, Ultralytics

application and

TensorFlowLite Demo

application only on

CPU. The applications

are tested on

following criterions:

• FPS on CPU run

• FPS on GPU run

• Number of not-caught objects

• Number of misclassified objects

• Number of false-positive cases

Tests are done on a set of different QR codes and ArUco markers, single or

combined together, QR codes with QR codes, ArUco markers with ArUco

markers, QR codes with ArUco markers on different pages. Totally the set

contains:

• 8 QR codes

• 24 QR codes angles

• 9 ArUco markers

For each run (CPU or GPU) 5 papers with examples are shown. FPS is

counted as an arithmetic mean of control points on papers.

For each detector similar min. confidence was used (60%).

The data provided in the table on the next page.

Figure 21. Testing mechanism

26

 EfficientDet-D0

under

TensorFlow Lite

Demo

YOLOv5 under

Unity Barracuda

YOLOv5 under

Ultralytics Demo

(PyTorch)

CPU FPS 6.99 FPS 5.92 FPS 47,61 FPS

GPU FPS - 5.35 FPS 61,59 FPS

Not-caught

objects

14 6 39

Misclassified

objects

0 0 1

False-positive 3 2 3

Total number of

objects

41 41 x 2 41 x 2

Figure 22. Evaluation tests statistics

As can be seen, the fastest solution is Ultralytics Demo, which uses PyTorch

for neural networks running. It achieves more than 60 FPS on GPU using

Vulkan API and almost 48 FPS on CPU. But also, it is a solution with the highest

number of mistakes – more than 47% of objects were not detected, one

object was misclassified, 3 more not existing object were detected.

The most accurate solution is a custom YOLOv5 Unity Barracuda detector,

which did not catch only 6 objects out of 82 and detected 2 extra objects,

with no misclassification. It is important to say that this solution runs faster on

a CPU than on a GPU, achieving almost 6 FPS, but it is still slower than on

other solutions.

A TensorFlow Lite solution using EfficientDet-D0 appears to be faster than

YOLOv5 Barracuda with almost 7 FPS frequency on CPU. Number of

mistakes is lower than on Ultralytics demo, but still, it is much higher than on

the Barracuda solution.

27

7 Conclusion

7.1 Achieved goals
In this work the most part of goals is achieved. A current state of object

detection with CNN problem is explored and analysed.

Some of the models described in this work have been re-trained on a

custom dataset, what made them possible to detect Fiducial markers, such

as ArUco markers and QR codes. Training mechanisms’ workflows are

scrutinized, so now it is possible to add new types of markers on a request.

The ways of integration current neural network libraries and packages

(TensorFlow, PyTorch, Barracuda) to Unity are studied as well. The Barracuda

integration option is elaborated on a practical example. For other variants

demo applications were used.

Evaluation tests for three variants are provided to make a choice for a

potential integration to Misterine App.

7.2 Not achieved goals and problems
Not every one-stage model mentioned in this paper was described or re-

trained on a custom dataset, as no well-described training mechanisms

were found for some of them. Also, not every possible way of Unity

integration was elaborated practically to get more relevant data. Some of

the mentioned ways seems to be obsolete.

For some models not the most relevant statistics were collected (for

SqueezeDet, for example, because no public data on COCO dataset were

found).

Not every way of neural networks integration into Unity had not been tried

out, so no practical results were collected. It may be a problem, as Unity

Mono scheduling can cause unexpected performance results.

No post-processing was introduced to get precise coordinates and rotation

of the objects.

7.3 Further possible development
In the future, a custom model architecture can be developed. It can take

an only one grayscale component instead of 3 components in RGB, as the

most of fiducial markers have got high contrast. Theoretically, it can

increase speed and decrease energy consumption. The model can be

based on one of the models’ architectures described in this work.

Also, other ways of models’ integration can be explored practically,

especially the PyTorch’s C++ API, as it has shown a very good result in the

28

meaning of speed. But it should be counted with the issue of the Unity’s

architecture using Mono as its platform.

The other thing to mention is that usage of CoreML by Apple and NNAPI by

Google can be explored. These technologies can not only run neural

networks on GPUs, but also, they can optimize the runtime.

As no post-processing was integrated in this work, it can be done as well.

7.4 Recommendations
A solution using neural networks can be theoretically used for the detection

of fiducial markers. The speed of PyTorch solution seems to be high enough

for mobile real-time detection, but the accuracy of this solution is

unacceptably low, so a way to increase it should be found.

The field of object detectors studies is developing in time, so new solutions,

if they will be introduced, should be studied as well.

Other objects can be tried out as fiducial markers for a solution using an

object detector based on a convolutional neural network.

29

8 Attachments

8.1 Links
1. “YOLOv5-Unity” project on GitHub

https://github.com/egor-ulianov/yolov5-unity

2. Dataset generator on GitHub

https://github.com/egor-ulianov/dataset-generator-fiducial

https://github.com/egor-ulianov/yolov5-unity
https://github.com/egor-ulianov/dataset-generator-fiducial

30

8.2 Data examples

8.2.1 A single QR code

31

8.2.2 Different QR codes of different sizes

32

8.2.3 A single ArUco marker

33

8.2.4 Different ArUco markers of a different size

34

8.2.5 ArUco markers and QR codes altogether

35

9 Bibliography

[1] S. Ullman, High Level Vision, MIT Press, 1996.

[2] M. H. Q. M. M. Anthony D. Rhodes, Portland, OR: Portland State

University, 2016.

[3] M. J. Paul Viola, "Rapid Object Detection using a Boosted Cascade

of Simple," Cambridge, MA, 2001.

[4] B. T. N. Dalal, "Histograms of oriented gradients for human

detection," San Diego, CA, 2005.

[5] R. B. G. D. M. D. R. Pedro F. Felzenszwalb, Object Detection with

Discriminatively Trained Part-Based Models, 2009.

[6] J. D. T. D. J. M. Ross Girshick, Rich feature hierarchies for accurate

object detection and semantic segmentation, Berkeley, CA: UC

Berkeley, 2014.

[7] H. L. S. G. B. A. G. B. Y. W. P.-J. K. M. T. V. S. B. C. Yunyang Xiong,

MobileDets: Searching for Object Detection Architectures for

Mobile, arXiv, 2020.

[8] P. R. L. Q. V. Tan Mingxing, EfficientDet: Scalable and Efficient

Object Detection, arXiv, 2019.

[9] D. S. G. R. F. A. Redmon Joseph, You Only Look Once: Unified, Real-

Time Object Detection, arXiv, 2015.

[10] “Apple A15 (5 GPU Cores),” [Online]. Available: https://www.cpu-

monkey.com/en/igpu-apple_a15_5_gpu_cores-275.

[11] “NVIDIA GeForce GTX TITAN X GPU specs,” [Online]. Available:

https://www.gpuzoo.com/GPU-NVIDIA/GeForce_GTX_TITAN_X.html.

[12] F. A. Redmon Joseph, “YOLO: Real-Time Object Detection,” 2018.

[Online]. Available: https://pjreddie.com/darknet/yolo/.

[13] J. a. F. A. Redmon, YOLOv3: An Incremental Improvement, arXiv,

2018.

[14] W. C.-Y. L. H.-Y. M. Bochkovskiy Alexey, YOLOv4: Optimal Speed

and Accuracy of Object Detection, arXiv, 2020.

36

[15] G. Jocher, “ultralytics/yolov5,” Github, [Online]. Available:

https://github.com/ultralytics/yolov5.

[16] F. A. Redmon Joseph, “YOLO: Real-Time Object Detection,”

[Online]. Available: https://pjreddie.com/darknet/yolo/.

[17] B. A. L. H.-Y. M. Wang Chien-Yao, “AlexeyAB/darknet,” [Online].

Available: https://github.com/AlexeyAB/darknet.

[18] songzhifei, “how to convert darknet .weight to pytorch .pt file

#281,” 2020. [Online]. Available:

https://github.com/Tianxiaomo/pytorch-YOLOv4/issues/281.

[19] remc, “Darknet model to onnx,” 2020. [Online]. Available:

https://stackoverflow.com/questions/62673115/darknet-model-to-

onnx.

[20] D. A. D. E. C. S. S. R. C.-Y. F. A. C. B. Wei Liu1, SSD: Single Shot

MultiBox Detector, 2016.

[21] H. Jonathan, “SSD object detection: Single Shot MultiBox Detector

for real-time processing,” 2018. [Online]. Available:

https://jonathan-hui.medium.com/ssd-object-detection-single-shot-

multibox-detector-for-real-time-processing-9bd8deac0e06.

[22] dhaase-de. [Online]. Available: https://github.com/dhaase-

de/caffe-tensorflow-python3.

[23] ethereon. [Online]. Available: https://github.com/ethereon/caffe-

tensorflow.

[24] Roboflow, “EfficientDet-D0-D7,” [Online]. Available:

https://models.roboflow.com/object-detection/efficientdet-d0-d7.

[25] Roboflow, “EfficientDet,” [Online]. Available:

https://models.roboflow.com/object-detection/efficientdet.

[26] W. A. I. F. J. P. H. ,. K. K. Wu Bichen, “SqueezeDet: Unified, Small, Low

Power Fully Convolutional Neural Networks for Real-Time Object

Detection for Autonomous Driving,” arXiv, 2016.

[27] BichenWuUCB, “BichenWuUCB/squeezeDet,” [Online]. Available:

https://github.com/BichenWuUCB/squeezeDet.

[28] E. Christopher, “Fast object detection with SqueezeDet on Keras,”

2018. [Online]. Available: https://medium.com/omnius/fast-object-

detection-with-squeezedet-on-keras-5cdd124b46ce.

37

[29] J. W. X. T. B. W. Boxuan Li, ArUco Marker Detection under Occlusion

Using Convolutional Neural Network, Dalian: IEEE, 2020.

[30] Kukil, "WeChat QR Code Scanner in OpenCV," 23 Nov 2021.

[Online]. Available: https://learnopencv.com/wechat-qr-code-

scanner-in-opencv/?nowprocket=1.

[31] G. B. Portmann, "LOCALIZING QR CODES WITH YOLOV3," 2019.

[Online]. Available: https://www.gabriel-

bellport.com/projects/localizing-qr-codes-with-yolov3-2019.

[32] Barracuda, 2021. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/ma

nual/Exporting.html.

[33] Barracuda, 2021. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/ma

nual/FAQ.html.

[34] Barracuda, “License,” 2021. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/lice

nse/LICENSE.html.

[35] G. Nicholas, “Neural Networks in Unity using Native Libraries,” 2020.

[Online]. Available: https://www.goodai.com/neural-networks-in-

unity-using-native-libraries/.

[36] “PyTorch,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/PyTorch.

[37] “TensorFlow,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/TensorFlow.

[38] migueldeicaza, “migueldeicaza/TensorFlowSharp,” [Online].

Available: https://github.com/migueldeicaza/TensorFlowSharp.

[39] chuanqi305, “mobilenet-ssd,” 2018. [Online]. Available:

https://docs.openvino.ai/latest/omz_models_model_mobilenet_ssd.

html.

[40] david8862, “yolo-v4-tiny-tf,” 2019. [Online]. Available:

https://docs.openvino.ai/latest/omz_models_model_yolo_v4_tiny_tf.

html.

[41] Roboflow, “Roboflow Pricing and Plans,” [Online]. Available:

https://roboflow.com/pricing.

38

[42] G. Jocher, “YOLOv5 Tutorial,” 2022. [Online]. Available:

https://colab.research.google.com/github/ultralytics/yolov5/blob/

master/tutorial.ipynb.

[43] G. Jocher, “ultralytics/hub,” 2021. [Online]. Available:

https://github.com/ultralytics/hub#1-create-a-dataset.

[44] J. N. Jacob Solawetz, “Training EfficientDet Object Detection Model

with a Custom Dataset,” 2020. [Online]. Available:

https://blog.roboflow.com/training-efficientdet-object-detection-

model-with-a-custom-dataset/.

[45] “Google Colab,” [Online]. Available:

https://colab.research.google.com/drive/1ZmbeTro4SqT7h_TfW63M

LdqbrCUk_1br#scrollTo=KwDS9qqBbMQa.

