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Abstract
Path planning is a widespread problem
ranging from robotics to biochemistry.
One of the recent breakthroughs in this
field is a solution using random sampling.
This work focuses on using random trees
in the motion planning problem with con-
straints, where regular space sampling al-
gorithms fail. A simple parametrization
is proposed, further simplifying the prob-
lem formulation for a wide range of prob-
lems. A state-of-the-art algorithm, At-
lasRRT, is thoroughly analyzed and im-
plemented in Julia. An improvement is
proposed that addresses missing details
in the original paper and leads to bet-
ter overall performance. The implemen-
tation is benchmarked on multiple tasks
from robotics. Visualizations and com-
parisons with other contemporary algo-
rithms are provided.

Keywords: path planning, planning
under constraints, random trees, atlas

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.

Abstrakt
Plánování cesty je rozšířený problém sa-
hající od robotiky po biochemii. Jed-
ním z nedávných průlomů v této oblasti
je řešení pomocí náhodného vzorkování.
Tato práce se zabývá použitím náhod-
ných stromů v úloze plánování pohybu
s omezeními, kde běžné vzorkovací algo-
ritmy selhávají. Součástí je návrh jedno-
duché parametrizace, která zjednodušuje
zadání úlohy pro široké spektrum použití.
Efektivní algoritmus AtlasRRT je v této
práci důkladně zanalyzován a implemen-
tován v Julii. Dále navrhujeme zlepšení
algoritmu řešící detaily, které v původ-
ním článku zcela chybí a přispějí k cel-
kovému zrychlení běhu algoritmu. Imple-
mentace je dále testována na různých úlo-
hách z oblasti robotiky. Přiloženy jsou
vizualizace a porovnání s dalšími součas-
nými algoritmy.

Klíčová slova: plánování cesty,
plánování s omezeními, náhodné stromy,
atlas

Překlad názvu: Vzorkovací metody
plánování pohybu s omezeními
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Chapter 1

Introduction

In this work, we will be solving the path planning problem. Path planning
is an essential tool in robotics and has many applications. Examples in-
clude automatic vacuum cleaner navigation [1], CNC drill control [2], drone
formation guidance [3], and many more.

Path planning is the first part of motion planning. A start and a goal are
given, and the algorithm must find a feasible way between them while ac-
counting for obstacles and constraints along the way. The resulting path can
be later optimized, smoothed, and used as a reference trajectory for motion
control.

The methods used in this work are helpful in robotic manipulator planning,
which will be our main concern. However, the application of motion planning
is much broader, thanks to the straightforward task specification we will
present.

Planning a path for a multi-body robot around obstacles (also known as the
generalized mover’s problem) is a well-studied topic known to be PSPACE-
hard [4]. Many algorithms can solve a path planning problem, such as
RRT [5], which can bee seen in the Figure 1.1.

We will be concerned with a more challenging problem of planning under
constraints, where only a handful of algorithms exist. We will show the
importance of constraint-based planning in manipulator planning and study
one of the state-of-the-art algorithms — AtlasRRT [6]. Our contribution will
consist of solving implementation details regarding the manifold covering.

The original AtlasRRT implementation relies on the transition between neigh-
boring charts, but the corresponding paper does not mention how to do so.
Naïve implementation of such an algorithm would not work due to disparities
between neighboring charts. This work analyzes the problem and proposes
multiple solutions to ensure no point falls into a hole while keeping a minimal
overhead on the total solve time.

5



1. Introduction .........................................

Figure 1.1: The RRT algorithm searches through the free space around the
obstacle (red) and builds a tree of states (blue) starting from the bottom left.

To ensure that the implementation is correct, we tested it on a variety of prob-
lems: geometric shape traversal (Figure 1.2a), planning on algebraic surfaces
(Figure 1.2b), planar robotic manipulator (Figure 1.2c), and a 3D manipu-
lator (Figure 1.2d). Exhaustive testing in both low- and high-dimensional
state spaces found no projection issues, which confirms the theoretical expec-
tations.

The Open Motion Planning Library (OMPL) is the de facto standard for
benchmarking and comparing motion planning algorithms [7]. Since OMPL
supports atlas-based planning [8] we were able to run a comparison bench-
mark against multiple algorithms from OMPL. We achieved similar perfor-
mance to SBL [9] and BKPIECE1 [10] planners while being faster than
OMPL RRT implementation over the atlas projection space.

6



......................................... 1. Introduction

(a) : Navigating around obsta-
cles while staying on the surface
of a torus. The found path is
in blue.

(b) : Path planning on a part of a cu-
bic curve known as the Möbius strip.
A path is found around the obsta-
cle.

(c) : Cross-section of planar manipu-
lator state space with many sampled
states (green).

(d) : Path planning for a robotic
manipulator (orange) with obstacles
(red) and constraints (blue).

Figure 1.2: Four examples of motion planning problems we will be solving
in this work.
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Chapter 2

Task formulation

2.1 Configuration space

Our description of the path planning task consists of configuration param-
eters. These numbers reflect the current configuration of the system. For
example, a robotic arm manipulator can be described using the current an-
gle orientation of its joints. The vector of all the configuration parameters
is called the configuration. All configurations form a configuration space C.
There are two notable points in the configuration space, the start configura-
tion xs, and the goal configuration xg. There might be physical obstacles in
the configuration space, which render some configurations infeasible.

Another possible description of the same robotic arm is using the Cartesian
coordinates of its joints and the end effector (also called the task space).
These two formulations both describe the state of the same system but with
different parameters. It might sometimes be more effective to work with
one or the other. The parametrizations are linked together via kinematic
equations. Forward kinematics compute the task coordinates from the joint
parameters. Inverse kinematics computes the joint parameters from the task
coordinates.

The description with task parameters is simple and practical; one can use
it to reconstruct the model of the system at any given time, it is helpful
for modeling physical obstacles which might obstruct the movement and can
be used to steer the algorithm towards the goal configuration [11]. The
configuration parameters, on the other hand, provide a straightforward way
to calculate a motion plan of all the actuators and may be used for adding
movement constraints such as joint angle limits.

9



2. Task formulation .......................................
2.2 Obstacles and constraints

When looking at the configuration space, we see that not all such points
form a valid system state. For example, a robotic manipulator cannot rotate
in so that the arm segments cross each other, the vacuuming robot cannot
find itself inside a wall, and members of drone formation must keep a con-
stant distance. We have to therefore limit the space by using obstacles and
constraints.

An obstacle is an area inside C, which consists of invalid configurations. All
obstacles form an obstacle space Cobstacle ⊆ C; the rest of the configuration
space is Cfree = C \ Cobstacle. For simplicity, we will be only concerned with
box obstacles; n-dimensional box consists of 2n inequalities, two in each di-
mension. A configuration is located inside Cobstacle iff at least one inequality
for such a box does not hold. An example of such box obstacle is in Fig-
ure 2.1a.

A constraint is specified in the form of a function f : C → R. A configu-
ration x is valid iff f(x) = 0. We will be considering only continuous and
continuously differentiable functions because we will need to calculate the
Jacobian of f . If there are multiple constraints, let F : C → Rn denote a
vector function of them. The constraints are all satisfied at a configuration
x iff F (x) = 0. For an example of a constraint see Figure 2.1b.

We have defined our constraint to be in the form of equality and to contain
a function on the left side. This kind of constraint is called holonomic con-
straint1. There are other kinds of constraints that are able to, for example,
limit the forces and momentum of the system by using differential equations.
Furthermore, we will be concerned only with functions in spatial coordinates,
not considering time as an additional dimension.

2.3 State space

Sometimes we would like to use the configuration parametrization and obsta-
cles, and sometimes it is more beneficial to use the configuration space and
joint constraints. It might be practical to calculate either forward kinematics
or the inverse kinematics. For example, there is no general closed-form solu-
tion for a manipulator with 6 degrees of freedom [13] despite that forward
kinematics are very simple to calculate. However, there is however a way to
include all of this at once in a so-called state space S.

A state space combines both the task space and the configuration space.
State parameters are simply a vector of the task space parameters followed

1More formally, a holonomic constraint can be fully integrated to the form of f(x, t) =
0 [12]. The nomenclature comes from the analytical mechanics.

10



.........................................2.3. State space

(a) : The red area inside
the box shows invalid points
Cobstacle, all the other configura-
tions shown in green are valid
Cfree.

(b) : Circle constraint, the only valid con-
figurations f(x) = 0 lie on the circle, all
the other configurations are invalid. This
constraint can be drawn in the Cartesian
space because it is holonomic.

Figure 2.1: A visualization of obstacles and constraints. Note the difference in
the validity area. While an obstacle removes a bounded area, a constraint limits
the valid configurations into a subspace of a lower dimension.

by the joint parameters. State obstacles can contain obstacles from either
space or both of them at the same time. The space occupied by the obstacles
is analogously called Sobstacle, the free space is called Sfree = S \ Sobstacle.
State constraints contain constraints from either space with the addition of
kinematic constraints, which link the two original spaces together.

The state space can be thought of as a cross-product of the coordinate and
joint configurations spaces constrained by the kinematic constraints. We can
easily see that this formulation is equivalent to the other two since we kept
all the parameters and obstacles.

The kinematic constraint allows us to simplify the constraint formulation.
The simple formulation gives us an advantage in path and motion planning
since we can immediately access both the joint and task parameters with-
out explicitly evaluating the kinematics. We can simply visualize the robot
trajectory and use the joint parameters to plan the motion step by step.

This trick is not novel [14, 15], but we think that it is not stressed enough
in the relevant literature. In the following chapters, we will be working with
several different models where state space parametrization and kinematic
constraints replace the need to calculate inverse (or forward) kinematics an-
alytically.

11



2. Task formulation .......................................
Example 1: Two segment manipulator formulation
Two dimensional robotic manipulator with segments of fixed lengths lengths
l1 and l2 is given as seen in Figure 2.2.

Joint parameters:

. θ1: angle of first joint. θ2: angle of second joint

Coordinate parameters:

. x1: X coordinate of second joint. y1: Y coordinate of second joint. x2: X coordinate of end effector. y2: Y coordinate of end effector

Forward kinematics (inputs θ1, θ2):

x1 = l1 cos θ1

y1 = l1 sin θ1

x2 = x1 + l2 cos(θ1 + θ2)
y2 = y1 + l2 sin(θ1 + θ2)

(2.1)

Inverse kinematics (inputs x1, y1, x2, y2):

θ1 = atan2(y1, x1)
θ2 = atan2(y2 − y1, x2 − x1)− θ1

(2.2)

In this example, both forward and inverse kinematics have a closed form
solution, so we can choose either one to form our constraints.

Example 2: Two segment manipulator state space
The same manipulator as in Example 1 is given, but now parameterized
using the state space.

State parameters:

. x1: X coordinate of second joint. y1: Y coordinate of second joint. x2: X coordinate of end effector

12



................................... 2.4. Dimensionality reduction

(x1, y1)

(x2, y2)

(a) : Configuration parametrization uses
joint and end-effector coordinates. Points
are constrained with segment lengths.

θ1

l1

θ2

l2

(b) : Joint parametrization uses
segment length and joint angles.
Segments length are usually fixed
and the joint rotate freely.

Figure 2.2: Two different parametrizations of the same robotic manipulator.
Note that both parametrizations consist of four parameters and two constraints,
leaving two degrees of freedom.

. y2: Y coordinate of end effector. θ1: angle of first joint. θ2: angle of second joint

Constraints:
x1 = l1 cos θ1

y1 = l1 sin θ1

x2 = x1 + l2 cos(θ1 + θ2)
y2 = y1 + l2 sin(θ1 + θ2)

(2.3)

We see that even though the formulation has six state parameters, there are
four constraints which limit the feasible space to two dimensions. This is
expected, since our robot has only two degrees of freedom.

2.4 Dimensionality reduction

As we have seen in the previous example, the state space formulation is simple
and effective. In the next chapter we will using random trees to solve the
path planning. This means we need to sample random points in the space
effectively. This is problematic, since the state space has dimension 6, but
the feasible points all lie on a 2-dimensional manifold. Another example of
planning under constraints is in the Figure 2.3. There is no straightforward
way to directly generate valid points. The purpose of this work is to show
specialized algorithms to overcome this problem.

13



2. Task formulation .......................................

Figure 2.3: Example of a constraint. A feasible path between start and goal
states (yellow) must lie on the surface of either of the two blue spheres. Note
that despite the ambient space being 3D, the constrained state space is a 2D
surface.

14



Chapter 3

Path planning

Having the task description with the state space parametrization, we need
an algorithm to find a path between the start and goal state, such that each
point on the path is feasible.

3.1 Feasible path

Definition 1: Path
Let S ⊆ Rn be state space, Sobstacle ⊂ S be obstacle space, xs, xg ∈ Sfree

be start and goal states, and F : S → Rk be a set of k < n constraints.
Path is a continuous function p : [0; 1] → S, such that p(0) = xs and
p(1) = xg. Path p is feasible iff p(x) ∈ Sfree and F (p(x)) = 0 for all
x ∈ [0; 1].

There might be a single unique feasible path for a given problem, infinitely
many feasible paths, or none at all. Our goal will be to find any of those paths
if at least one exists. Furthermore, we are only interested in non-optimal path
planning.

3.2 Constraint relaxation

First of all, let us focus on a relaxed version of the problem with no con-
straints, only obstacles. All the feasible states lie in the vector space Rn and
outside the obstacles. Many algorithms solve the relaxed problem; here are
some examples:

.A* discretizes the space into a grid and iteratively searches neighboring
nodes using the Breadth-first search (BFS) while discounting nodes that

15



3. Path planning ........................................
are near the goal [16], see Figure 3.1a. The performance of A* depends
on choosing a suitable heuristic which might be difficult in a space with
many obstacles.

.The potential field method also discretizes the space into a grid and
moves to the neighboring cell with the lowest potential [17], see Fig-
ure 3.1b. The potential should be high near the obstacles and low near
the goal. In a space with many obstacles, the potential function creates
many local minima and is difficult to traverse.

.The visibility graph algorithm constructs a graph from obstacle vertices
that are ”visible” from existing nodes [18, 19], see Figure 3.1c. The num-
ber of visibility edges scales quadratically with respect to the number
of obstacle vertices. Computing such a graph is therefore inefficient for
spherical obstacles.

.Voronoi road map planning traverses Voronoi cell boundaries constructed
from obstacles [20, 21], see Figure 3.1d. The Voronoi diagram around n
points can be constructed in O(n logn) [22], Voronoi diagram for obsta-
cles with n vertices can be constructed in O(n log2 n) in 2D [23], O(n2)
in higher dimensions [24].

Note that all the previously mentioned algorithms can only be used to navi-
gate in the free space around obstacles, but cannot solve the path planning
problem with constraints as this would require a discretization of the con-
straint surface and effective calculation of geodesics.

3.3 Randomized search

All previously mentioned algorithms need to discretize the space that might
be computationally- or memory-expensive and give suboptimal results. It
was not until 1990 when Glavina published an algorithm that generated ran-
dom subgoals and tried to build a single roadmap incrementally[25]. In 1994
Horsch et al. succeeded in generating many random points and connecting
them with straight lines forming a random graph [26].

A similar method was developed independently by Kavraki et al. in 1996
called the Probabilistic roadmap [27]. Random points in state space are
sampled and connected by straight lines to previously sampled points where
possible. In areas with tight corridors and many obstacles, more points are
sampled to increase the chance of connecting the graph components. Finally,
the graph is traversed to find a feasible path as seen in Figure 3.2.

16



............................................3.4. RRT

(a) : A* search (b) : Potential field method

(c) : Visiblity graph algorithm (d) : Voronoi road map

Figure 3.1: Comparison of various discrete path planning algorithms.

3.4 RRT

Our primary concern will be the Rapidly-exploring Random Tree (RRT) al-
gorithm published by LaValle in 1998 [5]. This algorithm repeatedly chooses
a random point and connects it to the nearest already explored point. This
way, the tree is incrementally built and can later be traversed to find a path.

At the beginning, a tree T is initialized with the starting point xs. In each
of the K steps, a random point xrand is uniformly sampled from the state
space, and the nearest neighbor xnear is chosen among the states already
inside the tree. Then, an input u is selected from xrand in the direction
of xnear and a step of length ∆t is performed, creating a new state xnew.
This state is added to the tree together with an edge from xnear. In our
case, the input u is simply a straight motion in the direction of xrand. The
pseudocode as presented in [5] can be seen in algorithm Algorithm 3.1.

The RRT algorithm has many desirable properties [5]:

17



3. Path planning ........................................

(a) : Fully built probabilistic
roadmap in a space with obsta-
cles.

(b) : Probabilistic roadmap
with a found path, shown
in solid black.

Figure 3.2: Path planning with a probabilistic roadmap.

Algorithm 3.1: Rapidly-exploring random tree
Require: xinit ∈ Sfree, K > 0, ∆t > 0
1: procedure RRT(xinit,K,∆t)
2: T.init(xinit)
3: for k = 1 to K do
4: xrand ← RandomState()
5: xnear ← NearestNeighbor(xrand,T)
6: u← SelectInput(xrand, xnear)
7: xnew ← NewState(xnear, u,∆t)
8: T.addVertex(xnew)
9: T.addEdge(xnear, xnew, u)

return T

. It is simple to understand and fast to run.

. It does not explicitly need a goal state; it simply explores the space.

. It is probabilistically complete. That means that if a solution exists, the
probability of finding it approaches one as the number of iterations goes
to infinity.

.The distribution of vertices approaches the sampling distribution. This
is a critical point as it allows us to search the space uniformly as long
as we have a uniform sampling method, which we will discuss later.

. Expansion is biased towards unexplored areas [28]. That is known as
the Voronoi bias.

18



............................................3.4. RRT

3.4.1 Voronoi bias

Definition 2: Voronoi cell
Let p1, ..., pn be points in a metric space with a distance function d. A Voronoi
cell Ri for point pi is set of points which are closer to pi than to any other
point Ri = {x | ∀j ̸= i : d(x, pi) ≤ d(x, pj)}.

Definition 3: Voronoi bias
When uniformly sampling a point, its probability being inside a certain
Voronoi cell is proportional to its size. Suppose we encounter a situation
where our randomly sampled points are all in a small area. In that case,
these points will have small Voronoi cells and the probability is high that
the next point will not fall into the same area again see Figure 3.3. The
point sampling seems to be biased toward unexplored regions; this obser-
vation is called the Voronoi bias.

Figure 3.3: Voronoi bias predicts that the top right point has the highest chance
to be expanded from since it has the largest Voronoi cell.

The same principle can also be used to observe that points with large Voronoi
cells are more likely to be extended by RRT; thus the tree will grow towards
unexplored regions [28].

3.4.2 Optimality

Even though RRT is probabilistic complete, it does not find an optimal path.
For optimality, a modified version called RRT* was developed by Karaman
et al. and proven correct [29]. After adding a new node, RRT* does not
connect it to the nearest neighbor but instead finds the shortest path from
the start, possibly rerouting some edges. This way, all paths in thee are
optimal, and an optimal solution to the goal is asymptotically found.
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Chapter 4

Planning with constraints

Even though RRT has many desirable properties, it is only as good as its
random generator. RRT node distribution is proven to approach the under-
lying sampling distribution [28]. If we want to explore the space uniformly,
we need to sample it uniformly.

Definition 4: Rejection sampling
Rejection sampling is a simple method to sample space with obstacles.
First, a random point in the space is sampled. If it lies inside an obstacle,
it is rejected, and the process is repeated until we sample a point outside
all obstacles [30]. It is sometimes more efficient to compute multiple iter-
ations of rejection sampling than to sample from an explicit distribution
function [31].

RRT does not necessarily need to sample Sfree. Nevertheless, if desired,
the sampling outside the obstacles can be easily overcome by using rejec-
tion sampling. Sampling while satisfying constraints however, is much more
difficult.

Example 3: Sampling on a circle
Let our constraint be a circle x2 +y2 = 1. We want to find a random point
on this circle. Rejection sampling will not work because the probability
of a random point in [0; 1]2 has zero probability of satisfying x2 + y2 = 1
since [0; 1]2 is a two-dimensional square, but the circle is a one-dimensional
curve.

One idea is to sample in one dimension first and then try to satisfy a con-
straint. First x is uniformly sampled from [0; 1] and then y is chosen from
{
√

1− x2;−
√

1− x2}. This is a valid distribution but not a uniform one,
since points with x ≈ ±1 will be sampled with less probability then point
with x ≈ 0 as seen in the Figure 4.1a.

This is not what we wanted. We need to sample the point uniformly along
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4. Planning with constraints ...................................
the curve, that is to approach the probability density function f(θ) = 1

2π
where θ ∈ [0; 2π) is polar angle of a sampled point. Since the circle is
a simple curve, we can use its polar parametrization x = cos θ, y = sin θ
and sample θ ∈ [0; 2π) uniformly. This distribution looks much more
natural as seen in the Figure 4.1b.

−1 0 1
−1

0

1

(a) : Sampling with a uniform x co-
ordinate.

−1 0 1
−1

0

1

(b) : Sampling with a uniform polar
angle θ.

Figure 4.1: 50 random points on a circle sampled with two different distributions.

4.1 Manifolds

In this section, we will explain several essential definitions from topology.

Definition 5: Euclidean space
The Euclidean space of dimension n is a subset of the vector space Rn. The
elements of the Euclidean space are n-tuples of real numbers and are called
points. The Euclidean space can be seen as subset of the vector space over
R with the dot product as an inner product. The induced distance function
is then d(x, y) = ||x − y|| = ⟨x − y;x − y⟩ = (x − y) · (x − y). Unit ball
centered at the point c in Euclidean space is {x ∈ Rn | ||d(x, c)|| < 1}.

Definition 6: Homeomorphism
Bijection f between two topological space is homeomorphism iff f and f−1

are both continuous. Homeomorphisms allow us to compare two topolog-
ical spaces for equality up to continuous deformation. If such a function
exists, the two spaces are said to be homeomorphic.

Example 4: Homeomorphism
Let f(θ) = (x; y) = (cos θ; sin θ) for θ ∈ [0; 2π), x2 + y2 = 1. Then
f−1(x, y) = atan2(y, x). We can easily see that both functions are contin-
uous and we have found a bijection between [0; 2π) and a unit circle. They
are therefore hemeomorfic, see Figure 4.2.
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......................................... 4.1. Manifolds

Figure 4.2: Homeomorphism between an interval and a circle.

Definition 7: Manifold
A manifold of dimension n is a topological space that locally resembles
Euclidean space. That means that a neighborhood exists around every
point that is hemeomorfic to Euclidean unit ball of the dimension n.

Definition 8: Chart
A chart on a manifold M at a point x is a homeomorphism from the
neighborhood of x to a Euclidean unit ball, see Figure 4.3. We will be
using the term chart for both the homeomorphism and the corresponding
Euclidean unit ball.

0

0

x1 = ϕ1(0)

x2 = ϕ2(0)

Figure 4.3: Example of approximating a sphere with two circle charts.

Definition 9: Atlas
An atlas of a manifold M is a set of charts centered at some points on M ,
see Figure 4.4.

Since a manifold is homeomorphic to the Euclidean space at every point, it
can be locally approximated by an atlas. This is an important feature we
will use later.
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4. Planning with constraints ...................................

Figure 4.4: Example of an atlas covering the surface of a sphere. Each color
represents a different chart.

Definition 10: Smooth manifold
A manifold is smooth if a differential calculus is defined on every chart
of the manifold, see Figure 4.5.

Figure 4.5: Example of a smooth manifold, where standard the 3D calculus
works.

Definition 11: Tangent space
Suppose thatM is an n-dimensional smooth manifold and x ∈M is a point
on the manifold. Let ϕ : (−1; 1) → Rn be a differentiable curve such that
ϕ(0) = x. Then the vector ϕ′(0) is said to be tangent to the manifold at
the point x. Set of all such functions ϕ defines a vector space of tangent
vectors at point x, denoted TxM , see Figure 4.6.

Definition 12: Riemannian manifold
The Riemannian manifold is a smooth manifold with a smooth inner prod-
uct defined on its tangent space. That means that an inner product is
defined in each tangent space and this inner product varies smoothly from
point to point along the manifold.

We will be concerned with the Riemannian manifolds since they naturally
allow us to work with the tangent spaces. Many of the usual manifolds
are Riemannian, such as circles, spheres, ellipsoids, parabolas, and other
polynomial surfaces.
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x ϕ′

TxM

Figure 4.6: Sphere with curve ϕ passing through its pole and calculated deriva-
tive vector. Drawing more curves would yield more derivatives creating the
whole tangent vector space TxM (yellow).

Our definition of the state space S will be the manifold satisfying F (x) = 0
for some smooth differentiable function F : X → Rk. The space tangent to
the manifold at x is then the nullspace of its Jacobian Jx = 0. In case of k
independent constraints in Rn, the dimension of the constrained state space
will be Rn−k and the dimension of the tangent space Rn−k.

Example 5: Torus constraint
Let us consider a constraint in shape of a torus surface. The ambient
space has dimension n = 3, but the k = 1 constraints limit the space to
the surface of a torus, which is a subset of Rn−k = R2, see Figure 4.7a.
Charts tangent to the space are balls (circles) of the dimension n− k = 2,
see Figure 4.7b.

(a) : Many green points are sampled
on the surface of the torus satisfying
the constraint.

(b) : Purple circles are the charts
forming an atlas approximating the
torus surface.

Figure 4.7: Torus constraint in a 3D space.
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4. Planning with constraints ...................................
4.2 Sampling on manifold

As we have seen previously, sampling a random point uniformly on the man-
ifold might not be easy. Since an atlas of charts can be locally approximate
the manifold, we can sample on the atlas instead. This idea inspired many
algorithms [32]; we will be mainly concerned with AtlasRRT by Jaillet et.
al.

Paper titled Path Planning with Loop Closure Constraints using an Atlas-
based RRT [6] contains a simple description of the AtlasRRT algorithm. This
algorithm takes the start and goal states and finds a path that is feasible
under the set of constraints F (x) = 0, which form a manifold.

Pseudocodes taken from the original paper are listed below.

The algorithm begins with initializing an RRT tree and an atlas with charts
at xs and xg. AtlasRRT keeps the simple loop of RRT as seen in the Al-
gorithm 4.1. A random point xr is sampled on the atlas, and the tree is
extended towards this point. A bidirectional search was used in the paper to
speed up computation. The first tree is extended toward the random point
xr by a step of size δ, the second tree is extended towards the newly added
point, and then the two trees are swapped, which ensures that both trees
expand by the same speed. Eventually, the two trees meet closer than δ and
form one graph containing an approximate path from xs to xg.

Algorithm 4.1: AtlasRRT
Require: xs, xg ∈ Sfree, F : S → Rn, F (xs) = F (xg) = 0
Ensure: valid path between xs and xg is returned
1: procedure AtlasRRT(xs, xg, F )
2: Ts ← InitRRT(xs)
3: Tg ← InitRRT(xg)
4: A ← InitAtlas(F, xs, xg) ▷ Prepare initial charts
5: Done ← False
6: while not Done do
7: xr ← SampleOnAtlas(A)
8: nr ← NearestNode(Ts, xr)
9: xl ← ExtendTree(Ts,A, nr, xr)

10: nl ← NearestNode(Tg, xl)
11: x′

l ← ExtendTree(Tg,A, nl, xl)
12: if ||xl − x′

l|| < δ then ▷ Until the trees meet
13: Done ← True
14: else
15: Swap(Ts, Tg)
16: return Path(Ts, xl, Tg, x

′
l)
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.................................... 4.2. Sampling on manifold

The hardest part of the original problem is the random sampling on the
manifold. As seen in the Algorithm 4.2 the sampling is simple on the atlas.
A random chart is chosen from the atlas, and a random point in a radius
of R from chart origin is sampled and converted to the ambient coordinates.

Algorithm 4.2: Sampling on an atlas
Require: atlas A, constraints F , R > 0
Ensure: random point on the explored part of atlas is returned
1: procedure SampleOnAtlas(A)
2: repeat
3: r ← RandomChartIndex(A)
4: ur ← RandomOnBall(R)
5: until ur ∈ Fr

6: return ϕr(ur)

In the last part, the tree must be extended towards the random point xr.
This was straightforward in basic RRT, but the random point is no longer
feasible, because we sampled on a chart, not on the manifold itself. Since the
chart locally approximates the manifold, the sampled point is expected to lie
near the manifold. It can be projected onto the manifold using ψi : Rn → Rn

as seen in the Algorithm 4.3. To speed up the computation, the extension
in the same direction is repeated as long as the new points remain feasible
and their projections are not far away from each other (which sets an implicit
bound on the chart deviation, more on this in the next section).

The most crucial part of AtlasRRT is the atlas building. After the tree is
extended by one step, the validity of the new point is tested. If the point falls
outside the chart validity area Vc, a new chart is created at the new point and
added to the atlas. This way, the atlas is slowly growing towards unexplored
areas. Each time a new chart is added, an inequality bound should be added
between overlapping charts, further decreasing the validity area to Fc. If the
new point is outside Fc, it is moved to the neighboring chart. We will define
both of these terms properly in the following section. A visualization of an
atlas can be seen in the Figure 4.8.

There are multiple extensions of RRT other than AtlasRRT, which can also
be used on a manifold, such as

. CBiRRT uses RRT in the ambient space and projects onto the manifold
in every step [33]. HC-planner incrementally builds chart at each point to simplify sam-
pling [34].TB-RRT builds the tree fully on the atlas and resizes charts according
to the local curvature [35]
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4. Planning with constraints ...................................
Algorithm 4.3: Adding a branch to the AtlasRRT
Require: tree T , atlas A, index of the nearest node in tree n, random

sample xr

Ensure: xn is a valid node on the manifold if an extension was performed
1: procedure ExtendTree(Ts,A, n, xr)
2: c← ChartIndex(n) ▷ Find a chart containing a node n
3: ur ← ψ−1

c (xr)
4: xr ← ϕc(ur)
5: Blocked ← False
6: while not Blocked and ||un − ur|| > δ do ▷ Extend until blocked
7: uj ← (ur − un)δ/||ur − un|| ▷ Calculate a step
8: xj ← ψc(uj)
9: if ||xj − xn|| > 2δ or Collision(xj) then ▷ Check curvature

10: Blocked ← True
11: else
12: New ← False
13: if uj /∈ Vc then
14: c← NewChart(A, xn)
15: New ← True
16: else
17: if uj /∈ Fc then ▷ Is there a chart nearby
18: c←MoveToChart(xn, uj)
19: New ← True
20: if New then
21: uj ← ψ−1

c (xj)
22: ur ← ψ−1

c (xr)
23: xr ← ϕc(ur)
24: n← AddNode(T,A, c, xj)
25: return xn

AtlasRRT sits somewhere in between these algorithms. It uses atlas for
sampling, but projects the points onto the manifold in each step. The main
goal is to minimize the number of charts and maximize their coverage along
the manifold.

4.3 Implementation details

4.3.1 Projection

The implementation of AtlasRRT relies heavily on the ability to project
points from a tangent chart onto the manifold itself. Thus we need to find
the mapping ψi(xi

j) = uj , which maps a point xi
j from the chart Ci to the

point uj on the manifold. Such mapping must map the origin to the chart-
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.................................... 4.3. Implementation details

Figure 4.8: Atlas of charts (purple) built by our implementation of AtlasRRT
in the Torus benchmark. The feasible states are on the surface of the blue torus.
Narrow passage can be seen in the red constraint which the path planner must
find in order to connect the start and goal states (yellow).

manifold tangency point ψj(0) = xi. Orthogonal matrix Φi is a basis of the
tangent space if it is orthogonal to the Jacobian of the manifold J evaluated
at the desired point of tangency xi

[
Jxi

Φ⊤
i

]
Φi =

[
0
I

]
. (4.1)

Given the basis Φi, points in the chart Ci can be easily sampled since Ci is
nothing more than a Euclidean ball. The point ui

j can be transformed into
the ambient space

xi
j = ϕi(ui

j) = xi + Φiu
i
j (4.2)

and then orthogonally projected onto the manifold to obtain xj . This is
equivalent to solving the system of equations

[
F (xj)

Φ⊤
i (xj − xi

j)

]
=

[
0
0

]
(4.3)

which the paper suggests to solve iteratively by Newton’s method.

[
Jxj

Φ⊤
i

]
∆xj = −

[
F (xj)

Φ⊤
i (x− xi

j)

]
(4.4)
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4. Planning with constraints ...................................
In our implementation, a step of Newton’s method requires calculating the
QR decomposition of the left-hand side matrix in the Equation 4.4 and in-
ternally uses LAPACK [36]. We have found experimentally that for high-
dimensional problems, the projection dominates the time complexity of the
whole problem.

4.3.2 Chart validity

The paper defines validity area Vi as the area from chart Ci as the set of points
ui

j such that

||ui
j || ≤ βR,

||ψi(ui
j)− ϕi(ui

j)|| ≤ ε
(4.5)

hold for some 0 < β < 1 and ε≪ R. The first equation is necessary to make
the validity area smaller than the sampled radius and potentially explore
new areas. The second limits the distance of the chart from the manifold.

Furthermore, if during the branch extension a point falls outside Vi, a new
chart is constructed. An additional constraint is introduced to prevent the
construction of a new chart in the same area repeatedly. The list of con-
straints Fi for chart Ci contains the equation

2u⊤ψ−1
i (xj) ≤ ||ψ−1

i (xj)||2 (4.6)

for every neighboring chart Cj with the center xj . This inequality orthog-
onally bisects the projection of the neighboring center to the chart. Our
ultimate goal should be to construct an approximate bijection between the
manifold and the atlas. This is however, not possible using the Equation 4.6,
because neighboring charts’ borders do not form a pair of complementary
half-spaces.

The original paper [6] states the following:

“When a given chart Ci is fully surrounded by neighboring charts,
the intersection of the half-spaces defined by the inequalities in Fi

conform a polytope that conservatively bounds the actual validity
area for the chart, taking into account the presence of neighboring
charts.”

This quote is generally not true, as seen in the Figure 4.9. When imposing
a constraint between the neighboring charts, holes are formed, and it is
possible that a sampled point cannot be projected onto the manifold. The
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greater the angle between the charts the smaller the valid area. This must
be accounted for in the algorithm, otherwise an infinite loop is created in the
MoveToChart procedure. There are several approaches to the problem.

P

xi xj

ψ−1
j (xi) ψ−1

i (xj)

Figure 4.9: Two neighboring charts (black) approximate a circular manifold
(blue). A constraint is added according to the Equation 4.6 (dashed). This
however creates a hole in the approximation (red). If a point P is sampled just
outside the constraint, it cannot be moved to the neighboring chart because
it’s outside of the neighbor’s constraint as well. This happens due to the fact
that constraints bisect a chord of the Thales’s circle and every chord (except for
parallel charts) is shorter than the diameter.

4.3.3 Chart disparity reduction

The first approach originates from Micheal Henderson [37] who states that
the manifold approximation is accurate as long as

||Φ⊤
i Φj || ≤ 1− ε (4.7)

hold for any neighboring charts Ci, Cj , in a later paper [38] expressed as

||Φ⊤
i Φj || ≥ cosα. (4.8)

The authors of the AtlasRRT paper are aware of this fact and hope that the
issue will not arise at all with sufficiently low chart deviation. This, however
is overlooking the issue, not solving it.

The second approach is rather simple. Move the constraint plane further
from the chart center slightly. More formally it add a factor k > 1 to
the Equation 4.6 to obtain

31



4. Planning with constraints ...................................
2u⊤ψ−1

i (xj) ≤ k · ||ψ−1
i (xj)||2. (4.9)

In practice, k = 1.1 was found to be a reasonable value reducing the chance
of landing in a hole to a minimum. It still does not guarantee the issue will be
solved but it is simple to implement and was experimentally verified to speed
up the overall solution. For a geometric demonstration see the Figure 4.10.

P

xi xj

ψ−1
j (xi) ψ−1

i (xj)

Figure 4.10: The same setting as in Figure 4.9, but now the Equation 4.9 is
used to calculate chart constraints with k = 1.2. We see that there is no hole
anymore and the point P can be projected onto the manifold.

The third approach is the only one to solve the problem completely. When
MoveToChart is called, an algorithm is used to detect cycles. Once a point
is moved to the same chart for the second time, the process is stopped and
a new chart is formed centered at this point. This way, the point can be
assigned to a chart and most of the hole is covered by the new chart. This
adds complexity to MoveToChart and increases the number of charts but
guarantees to solve the issue. There will be as many charts as the points
sampled in the worst case. Experiments have shown that this is usually not
the case.

In practice, we recommend combining all three approaches. Choose a smaller
chart size to reduce deviation, move chart constraint by a factor k, and
employ a cycle detection algorithm to add a new chart if necessary.
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Chapter 5

Results

5.1 Chart disparity

One of the goals of this work is to improve chart creation. The solutions
proposed in the previous chapter allow us to choose a larger chart radius
R, effectively detect if a particular area of the manifold already has a chart
in the atlas, and create new charts only when necessary, leading to a reduction
of the chart count.

The chart creation was benchmarked on the Torus benchmark. The state
space has dimension n = 3 and contains a k = 1 constraint

F (x) = (x2
1 + x2

2 + x2
3 + 2002 − 302)2 − 4 ∗ 2002 ∗ (x2

1 + x2
2) (5.1)

The start and goal states are separated by two obstacles, one blocks the path,
the other contains a narrow passage in the middle. The difference between
the original and the improved version with inequality growth by k = 1.1 can
be seen in the Figure 5.1.

Across 50 runs, the average count of charts was (2252± 251) for the original
implementation and (839±109) in our improved version. The average runtime
was (41±2) s compared to (20±10) s In 27 test cases (54%) of the unimproved
version, a point was sampled outside between two charts and could not be
projected to either of them.

5.2 Comparison with OMPL

The Open Motion Planning Library (OMPL [7]) is the de facto standard for
benchmarking path planning algorithms. OMPL tries to abstract various
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5. Results ...........................................

(a) : Path found by AtlasRRT im-
plemented according to the original
paper.

(b) : Path found by our improved
implementation of AtlasRRT with
much less charts used.

Figure 5.1: Comparison of the original and improved AtlasRRT. The number
of charts (purple) is greatly reduced, speeding up the algorithm run and finding
the path much quicker.

parts of the planning problems to allow algorithm substitution. Planning un-
der constraints is possible in OMPL, despite having no constrained planning
algorithms. Instead, a regular space planner is used, and the underlying
space itself is automatically projected onto the manifold using one of the
projection methods [8].

For our purposes we selected a collection of non-optimizing path planners:
RRT [5], RRTConnect [39], LazyRRT [5, 40], EST [41], BiEST [41], SBL [9],
KPIECE1 [10], BKPIECE1 [10], LBKPIECE1 [10, 40] and STRIDE [42].
All the planners were initialized with their default configuration which ad-
justs sampling parameters according to the goal distance. An atlas-based
projection from the OMPL suite was used [8].

Our planner program is written in Julia [43] as an implementation of the
ompl::base::Planner interface. Start and goal configurations are trans-
ferred from C++ to Julia via a native interop. Due to the nature of Julia
just-in-time (JIT) compilation, a dummy preheat run on an unrelated prob-
lem was executed before each set of benchmarks.

5.2.1 Torus

Algebraic surfaces are easy to visualize and provide a good starting point to
test the implementation. Here we used a toroidal constraint in a 3D ambient
space, the same as in the previous section.

All of the benchmarked algorithms were able to find a feasible path in most
runs under 10 seconds. Our implementation of AtlasRRT had 100% success
rate. On average, our implementation was twice as fast as OMPL RRT over
the atlas projection space and equally performant as EST, KPIECE1, and
STRIDE. Several OMPL algorithms, such as SBL and BKPIECE1 performed
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better in this benchmark at the cost of not solving all the instances in the
specified timeout. See the full comparison in the Figure 5.2.
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Figure 5.2: Comparison of various OMPL solvers using Atlas projection on the
torus benchmark versus our implementation of AtlasRRT. Average solve time is
plotted along with a standard deviation interval. A count of successfully solved
instances out of 50 runs is listed above the chart. The timeout was 10 seconds.

5.2.2 Planar manipulator

A planar 2D manipulator with two revolute joints (also known as SCARA [44])
is well known in the industry. The inverse kinematics of this robot can be
calculated in a closed form, but it still requires a selection from two solutions
so as not to cross the links. Here we instead parametrize the configuration
with two coordinates of the end effector and the angles of both joints. By
solving this problem, we obtain a feasible path in both the effector and joint
coordinates. The state space has dimension n = 4 and is restricted by k = 2
constraints. There are multiple obstacles in the end effector configuration
space. Joint angle limits are checked.

Our implementation had a 100% success rate and was on average faster than
all of the OMPL-based algorithms. Render of a found path in the state space
can be seen in the Figure 5.3.

5.2.3 3D manipulator

Robotic manipulators operating in a 3D task space are successfully used
in many industrial applications. Many such as assembling or welding robots
require constructions with many degrees of freedom (DOF) [45, 46]. There
is still no known closed-form solution to the inverse kinematics of a general

35



5. Results ...........................................

Figure 5.3: 3D cross section of the 4D state space in the planar manipulator
benchmark. The horizontal axes are the spatial coordinates of the end effector,
the vertical axis is the angle of the first joint.

6 DOF manipulator [13]. Unique construction designs are often used to
simplify calculations.

We will use a four-link manipulator with three ball joints. The manipula-
tor’s end effector is constrained to a spherical constraint, and there are two
obstacles between start and goal configurations. This construction resembles
a closed kinematic chain. The configuration parameters are the coordinates
of the three intermediate joints and the end effector. State space has n = 12
dimension and k = 5 constraints.

Both OMPL and our implementation instantly found a path through the
12-dimensional ambient space when ignoring obstacles. With the presence
of obstacles some of the OMPL algorithms’ performance dropped, and our
AtlasRRT implementation was unable to progress beyond the first obsta-
cle even after five minutes. See a visualization of the OMPL-found path
in the Figure 5.5 and an overview of sampled states of our implementation
in the Figure 5.6. See the algorithm comparison in the Figure 5.7.

This benchmark demonstrates that pure AtlasRRT can effectively sample
a constrained state space but does not perform well in spaces with many
obstacles and narrow passages.

36



................................... 5.2. Comparison with OMPL

RR
T

RR
TC

on
nec

t

La
zyR

RT ES
T
BiE

ST SB
L

KP
IE
CE
1

BK
PI
EC
E1

LB
KP

IE
CE
1

ST
RI
DE

At
las
RR
T

0

2

4

6

T
im

e
to

so
lv
e
[s]

88% 100%100%100% 88% 98% 66% 92% 76% 98% 100%Solved

Figure 5.4: Comparison of various OMPL solvers using Atlas projection on the
planar manipulator benchmark versus our implementation of AtlasRRT. The
timeout was 10 seconds. Our implementation solved all test instances almost
instantly.

(a) : Start state (b) : Frame 151 (c) : Frame 276

(d) : Frame 376 (e) : Frame 476 (f) : Frame 651

(g) : Frame 826 (h) : Frame 1126 (i) : Goal state

Figure 5.5: Sequence of states found by OMPL RRT planner in the 3D ma-
nipulator benchmark. Robotic arm (orange) performs motion around obstacles
(red) while the end-effector (green) is constrained to keep contact with a sphere
(blue). Rendered with the OMPL visualization script for blender [47].
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Figure 5.6: An attempt to solve the 3D manipulator benchmark. Our implemen-
tation generated thousands of feasible states (green) but still failed to navigate
itself around the obstacles (red) and timed out. Top-down view.
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Figure 5.7: Comparison of various OMPL solvers using Atlas projection on the
3D manipulator benchmark. Our implementation did not succeed to find a path
around the obstacles in the 60 second timeout in any of the 50 test runs.
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Chapter 6

Conclusion

6.1 Conslusion

This work addressed the path planning problem. This task arises in many
fields, including robotic manipulators, transport, and biochemistry. We for-
mulated the path planning problem with obstacles and holonomic constraints.
First, we covered solving a relaxed version of the problem using graph al-
gorithms and a sampling-based planner. Next, we studied the AtlasRRT
algorithm and successfully implemented it.

The main goal of this work was to complete and improve the AtlasRRT
implementation. We proposed a novel approach to reduce the chart disparity
with probabilistic and deterministic approaches. In the last chapter, we used
our implementation to solve several different problems from robotics. The
algorithm was found to run correctly, find a feasible path, and not crash due
to the chart disparities.

Our implementation is comparable to several state-of-the-art algorithms from
the OMPL test suite and is faster than a plain RRT over an atlas projection
space. This makes the AtlasRRT algorithm and our proposed improvements
suitable for a wide range of problems, which we demonstrated on a series
of benchmarks, including planar and multi-DOF manipulators.

6.2 Future work

Despite being suitable for problems in high dimensions, the bottleneck of the
AtlasRRT is the QR decomposition inside the projection routine. We ex-
perimented with problems having hundreds of parameters and constraints,
and the tree extension performance dropped significantly. For those prob-
lems, TB-RRT [35] might be more suitable since it does not need projection
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6. Conclusion..........................................
in every step. Using a different algorithm would potentially allow efficient
planning for rigid cloths and protein folding, see Figure 6.1.

Figure 6.1: Experimental deformation of a rigid mesh. The mesh is
reparametrised according to [48] to increase the number of DOF, the goal is
to minimize a sum of vertices distances to the center. The runtime of this
simulations is in the order of minutes. The mesh consists of 50 triangles, 150
parameters and 100 constraints.
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Appendix A

List of attachements

. images.zip A collection of visualization images from this work in both
SD and 4K resolution.. sourcecode.zip Complete source code for all experiments presented
here and visualization scripts.
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