
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Motion Planning for Disentanglement of
Puzzles

Vojtěch Volprecht

Supervisor: Ing. Vojtěch Vonásek, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491976Personal ID number:Volprecht VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Motion Planning for Disentanglement of Puzzles

Bachelor’s thesis title in Czech:

Metody plánování pohybu pro rozkládání hlavolamů

Guidelines:

1. Get familiar with robotic motion planning, particularly with sampling-based methods, e.g. RRT and PRM [1]. Get familiar
with the narrow passage problem and basic techniques to handle it [2].
2. Implement algorithm for puzzle disassembly inspired by [3].
3. Design an alternative way to detect ‘notches’ (definition in [3]) in a 3D triangle mesh.
4. Design a modification of the blooming process of [3] to enable multiple connections between the individual trees. Further,
extend the blooming process using different type of random trees, e.g. [5].
5. Experimentally verify all implemented methods on the dataset of 3D objects (will be provided by the advisor), compare
with suitable methods from the OMPL benchmark [4].

Bibliography / sources:

[1] LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.
[2] J. Denny, R. Sandström, A. Bregger, and N. M. Amato. Dynamic region-biased rapidly-exploring random trees. In
Twelfth International Workshop on the Algorithmic Founda-tions of Robotics (WAFR), 2016.
[3] Xinya Zhang, Robert Belfer, Paul G. Kry, and Etienne Vouga. 2020. C-Space tunnel discovery for puzzle path planning.
ACM Trans. Graph. 39, 4, Article 104 (July 2020), 14 p. https://doi.org/10.1145/3386569.3392468
[4] Mark Moll, Ioan A. Șucan, Lydia E. Kavraki, Benchmarking Motion Planning Algorithms: An Extensible Infrastructure
for Analysis and Visualization, IEEE Robotics & Automation Magazine, 22(3):96–102, September
2015. doi: 10.1109/MRA.2015.2448276.
[5] V.Vonásek and R. Pěnička, "Space-filling forest for multi-goal path planning," 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1587-1590, doi: 10.1109/ETFA.2019.8869521.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 24.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

Most of all I would like to thank my su-
pervisor Ing. Vojtěch Vonásek, Ph.D. for
his generous help and assistance. And last
but not least, I would also like to thank
my family who supported me during my
studies and brought a critical insight into
my thesis.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 20 May 2022

Vojtěch Volprecht

v

Abstract

Path planning, also known as motion plan-
ning, is one of the most fundamental prob-
lems in robotics. This work combines both
the algorithmic part of planning and the
use of geometric properties of the envi-
ronment. Geometric properties include
those that help us solve the puzzle faster.
We used heuristics to do that. After all,
we configured our Rapidly-exploring ran-
dom dense tree to find the path. The
results show that the algorithm that uses
even the slightest knowledge about the
environment is better and faster than the
algorithm itself without any external in-
formation.

Keywords: Euclidean-Geodesic ratio,
Medial Axis, Local planners, Path
planning, Planning algorithms,
Probabilistic roadmaps, Puzzle path
planning, Puzzle solving,
Rapidly-exploring dense tree,
Rapidly-exploring random tree,
Skeletonization, 3D geometry

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.

Abstrakt

Plánování cesty, známé také jako pláno-
vání pohybu, je jedním z nejzákladněj-
ších problémů robotiky. Tato práce kom-
binuje jak algoritmickou část plánování,
tak využití geometrických vlastností pro-
středí. Mezi geometrické vlastnosti patří
ty, které nám pomáhají řešit hlavolam
rychleji. K tomu jsme použili heuristiku.
Nakonec jsme nakonfigurovali RDT algo-
ritmus k nalezení cesty. Výsledky ukazují,
že algoritmus, který využívá i ty nejmenší
znalosti o prostředí, je lepší a rychlejší
než samotný algoritmus bez jakýchkoli
vnějších informací.

Klíčová slova: Euclidovsko-Geodesické
měřítko, Hledání cesty hlavolamu,
Lokální plánování, Mediální osy,
Plánovací algoritmy, Plánování cesty,
PRM, RDT, RRT, Řešení hlavolamů,
Skeletonizace, 3D geometrie

Překlad názvu: Metody plánování
pohybu pro rozkládání hlavolamů

vi

Contents

1 Introduction 1

1.1 Insight Into The Issue 2

1.2 The Challenge 4

2 Related Work 7

2.1 Planning algorithms 9

3 Geometric features 11

3.1 Gaps Detection 11

3.2 Notches Detection 14

4 Approach 21

4.1 Configuration processing 21

4.2 Planner Selection 23

4.2.1 Implementation 25

4.3 Further Insight 27

4.4 Parallelization 29

5 Summary 31

5.1 Testing with OMPL 31

5.2 Results . 32

5.2.1 General Results 34

5.2.2 Comparison Parallel vs
Sequential . 38

5.2.3 Comparison of Configuration
Processing . 38

5.2.4 Comparison with SFF
modification 39

6 Conclusion 43

6.1 Ideas of improvements 43

Bibliography 45

vii

Figures

1.1 Example of the Alpha puzzle.
Green lines mark the positions of our
important narrow tunnels. 1

1.2 Example of the Duet puzzle. Green
lines mark the positions of our
important narrow tunnels. The green
line in the grid of the Duet puzzle is
inside the puzzle, focused in the
picture on the right. 2

1.3 2D puzzle with a blue Robot that
needs to be moved forward to the red
spot. Cfree represents all white free
space and Cobst represents every
static brown wall. 3

1.4 The blue object representing Robot
with translation over x or y axis and
with opportunity to rotate over α
angle (left). The same representing
but in 3D with the addition of one
axis and two angles (right). 4

1.5 Pipeline of our implemented
procedure simplified to 2D space.
Initialize Start and Goal, find all
configurations (A,B), run a planner,
find path. A and B represent the
important narrow tunnels we ought
to find. 5

2.1 Example of the tunnel detection in
haloalkane dehalogenase. Image
taken from the article [17]. 8

2.2 Humanoids upper body system:
Justin. Image taken from the
article [2]. 8

2.3 PRM planner: After sampled the
whole C-space (left), we try to
connect every single point to each
other within a particular distance
(right). 9

2.4 RRT planner: wrong sample
because of collision on the trajectory
(left), right expansion to the direction
of a sample within the distance of a
single unit (right). 10

3.1 The red dot marks the midpoint of
the found gap. It will also be paired
against the other piece of alpha
puzzle to construct a key
configuration. Green pairs are
minimized from EGR equation to
construct particular red dot. Image
taken from the article [23]. 12

3.2 Red line represents Geodesic
distance from A to B while blue line
represents Euclidean distance. 12

3.3 Duet puzzle (left), focus on the
notch and knot (right). 14

3.5 All plane points without those on
the edges. The small red cubes
represent the vertices on the
triangulated mesh. 15

3.6 Centers of the planes. 16

3.7 Detailed centers of the planes. . . 17

viii

3.8 Filtered projections of each center
onto the parallel plane. 17

3.9 Final configuration points. 18

3.4 A simplified side view of the Duet
puzzle, (a) focused on the notch. All
parallel planes (u, v, w, x, y) are
marked as a dashed line. It describes
the procedure of finding the
configuration points inside the notch.
The procedure starts in the upper left
picture as follows. Find all the
parallel planes. Create their
bounding box symbolizing the red
trace (b). We find their centers (c),
which we then project from each
plane onto their parallel planes (d).
Finally, the configuration points lie in
the middle of each projection, on the
positions of blue crosses (e). 19

4.1 Illustration of a simple 2D angle
sweep. Validation shows the group of
collision-free angles. 22

4.2 Gap-gap configuration focused on
maximal clearance when orthogonal
aligned. Visualization taken from the
article [23]. 23

4.3 The black sampling box shows the
importance of its position in relation
to the blue configuration point. As
you can see from the picture (left) it
is much more likely to be sampled
into the red wall, while in the picture
(middle) to the space underneath.
Picture on the right represents the
ideal position, where the first samples
will be equally distributed. 24

4.4 Steps of our implemented
procedure. Initialize all
configurations roots, bloom everyone
till particular density, forest every
tree, find path. 25

4.5 This picture together with Figure
4.6 illustrates the problem of
checking collisions during rotation.
The blue object represents the puzzle
which stays on Origin and rotates
over 90 degrees. 28

4.6 This picture together with Figure
4.5 illustrates the problem of
checking collisions during rotation.
Puzzle stays on Origin and it is just
a rotation over α angle. It shows that
even though it stays on the same
position, it is not accurate and it will
skip the red obstacles, if we made
just two checkpoints. 29

5.1 Illustration of puzzles we tried to
solve. Puzzles taken from the
article [23]. 33

5.2 Alpha puzzle. 34

5.3 Alpha-Double puzzle. 34

5.4 Alpha-J puzzle. 35

5.5 Alpha-G puzzle. 35

5.6 Alpha-Z puzzle. 36

5.7 Duet_1x1 puzzle. 36

ix

5.8 Duet_2x1 puzzle. 37

5.9 Duet_3x2 puzzle. 37

Tables

5.1 First row includes puzzles, where
EGR is enough for constructing
configurations. The second row
contains numbers of pairs including
both from EGR and notch part. . . 33

5.2 The average success rate and
average elapsed time between parallel
and sequential RDT after 100
iterations. Constraints: 15 minutes
per Blooming and 6096 as its size.
All configurations were used. 38

5.3 The average success rate and
average elapsed time of RDT between
two different processes of handling
configurations after 100 iterations.
Constraints: 15 minutes per
Blooming and 6096 as its size. 39

5.4 The average success rate and
average elapsed time of SFF
modification after 100 iterations.
Constraints: 120 and 180 minutes per
Blooming and 6096 as its size. All
configurations were used. 40

5.5 The average success rate and
average elapsed time of SFF
modification after 100 iterations.
Constraints: 120 and 180 minutes per
Blooming and 6096 as its size. Single
configuration was used. 40

x

5.6 The average success rate of SFF
modification after 100 iterations with
various sizes of the sphere from which
we take samples during Blooming.
Constraints: 120 minutes per
Blooming and 6096 as its size. All
configurations were used. 41

xi

Chapter 1

Introduction

Motion planning is a challenge in robotics during past decades. Its funda-
mental problem is to find a sequence of valid configurations that moves the
object from one position to the other. Another way of looking at it is the
well-known Piano Mover’s Problem, which deals with moving a piano between
two rooms without crashing into a wall or other obstacles. In our case, it
means to disentangle 3D rigid bodies of puzzles without colliding. These
puzzles (Figures 1.1, 1.2) we solve are always two bodies, one of which is
moving and the other is static.1 Disentangle them involves sliding through
narrow tunnels in the puzzles configuration space, which we will call C-space.
We aim to speed up planning on these puzzles using their geometric properties
to obtain the right configurations based on the location of the important
narrow tunnels (Figures 1.1, 1.2).

Figure 1.1: Example of the Alpha puzzle. Green lines mark the positions of our
important narrow tunnels.

1Here and throughout the thesis, Robot is always considered as a moving part and Env
as a static part.

1

1. Introduction

Figure 1.2: Example of the Duet puzzle. Green lines mark the positions of our
important narrow tunnels. The green line in the grid of the Duet puzzle is inside
the puzzle, focused in the picture on the right.

We make use of the theoretical approach from the article [23] from which
we dealt with geometric heuristics such as Euclidean-Geodesic ratio (EGR)
and Notches detection, later in Chapter 3.

We also propose a variant of motion planner based on Rapidly-exploring ran-
dom tree (RRT) that builds roadmaps from each configuration and connects
each closed pair together, described in Section 2.1.

Together with geometric procedures, we let our algorithm to solve a group
of puzzles. For the overall analysis we also test our planner with the OMPL
library [14], results in Chapter 5.

1.1 Insight Into The Issue

Motion planning or path planning nowadays reaches all areas where any
mechanical movement needs to be planned. Whether it is the movement of a
robotic arm consisting of several joints, drone moving in a building or solving
a puzzle, the goal is still the same.

Before we move on, it is important to explain what C-space means and
what such a configuration contains.

Similar to description from the article [23], let’s imagine a simple 2D puzzle
from Figure 1.3. We see a blue moving object which we call Robot and a red
spot which will be our goal state. We consider the C-space as a unification

2

.................................1.1. Insight Into The Issue

Figure 1.3: 2D puzzle with a blue Robot that needs to be moved forward to the
red spot. Cfree represents all white free space and Cobst represents every static
brown wall.

of Cfree and Cobst spaces. Cfree represents all free space, including the big
region where the Robot is initially spotted, connected via narrow passage to
two chambers. That passage we call Narrow Tunnel. All this also includes
Cobst as obstacles with static brown walls.

The configuration is the setting of the position (including rotation) of the
Robot with respect to the surrounding world, i.e. Cfree and Cobst. That simply
means that we are looking for a places inside a C-space that are somehow
important for solving our puzzle. In our case, these will be the mentioned
Narrow Tunnels. Once we get them, we use them as members of our planning
algorithm to create a whole tree that includes our collision-free path.

The main aim, as recalled above, is to get the Robot on the red spot. From
our human view, it can be seen that the Robot has only one option and it is
to get through the Narrow Tunnel. Any planning algorithm has to deal with
that knowledge.

The cornerstone for path planning is the sampling of the given C-space.
For such purposes there are many variants of sampling based algorithms.
Some of the basic algorithms are Probabilistic roadmaps (PRM) and Rapidly-
exploring random tree (RRT). More about them in the next chapter.

The main problem with motion planning is dealing with the space-dimension.
If we imagine sampling 2D space, we got two axes: x and y. In addition,
we have one rotation degree. If we had a problem like in Figure 1.3 with
the Robot and the strategy like "up, down, up", it would be completely
different from "down, up, up". After few steps, the number of possibilities

3

1. Introduction

x

y

α
x

y

z

γ

β α

Figure 1.4: The blue object representing Robot with translation over x or y
axis and with opportunity to rotate over α angle (left). The same representing
but in 3D with the addition of one axis and two angles (right).

grows exponentially. Unlike to human perspective, it is unclear for planner
which samples are better than the others, so the planner has to evaluate
them all. Moreover in 3D space, we have now three axes: x, y, z and beside
that, 3 angles to care about. That is now 6-dimensional C-space problem
(Figure 1.4). Further explanation can be taken from the article [16], where
the complexity of motion planning is described as PSPACE-hard.

Even if we sample the configurations right into the tunnel(s) with proba-
bility p and the number of tunnels which the path goes through is N , then
the probability of finding a path that leads through the tunnels we found
is pN . Simply said, sampling C-space without taking the Cfree structure into
consideration will not be enough to find the proper path.

1.2 The Challenge

The goal of our bachelor thesis, as mentioned in the introduction, is to
implement theoretical approach of the article [23], focused on improvement
of the planning algorithm with heuristics using geometric properties of our
puzzles.

4

.................................... 1.2. The Challenge

Initialization

Start

Goal

Configurations

Start

Goal

B

A

Planning

Solution

Figure 1.5: Pipeline of our implemented procedure simplified to 2D space.
Initialize Start and Goal, find all configurations (A,B), run a planner, find path.
A and B represent the important narrow tunnels we ought to find.

In our work we present a procedure, illustrated in Figure 1.5, how to find
such important configurations through two geometric heuristics, which are
EGR and Notches detection. For visualization, such configuration points
in puzzles will be e.g. the center points in place of the green pipes from
Figures 1.1 and 1.2. We further process such important configurations as roots
of expanding trees, which sample our C-space. We provide the advantages
and disadvantages of using several simple planning algorithms along with the
reason why they cannot solve even the most basic puzzle. For this reason we
will present a functional modification of a simple expanding tree.

5

6

Chapter 2

Related Work

By reviewing the latest works, sampling valid configurations in important
positions of C-space, narrow tunnels, is still remaining a big challenge. No
wonder that the state-of-the-art path planners depend on the quality of
sampling. In recent years, sampling based algorithms have shown great
advantages in terms of their flexibility in higher dimensions and at the same
time their computational efficiency.

Since the geometrical structure of the environment can be very complex,
its analysis may not always be directly given. Beside robotics the problem of
narrow passages can be also dealt in molecular protein dynamics in biology [17]
as illustrated in Figure 2.1. Furthermore this problem is extended by the
movement in the time frames. That means the tunnels need to be detected
in the right order in right time. To deal with this problem, they proposed
a modification of Rapidly-exploring random tree (RRT) together with three
new features. It needs to handle false detection of sampling outside of
proteins. On the other hand it expands more new nodes in each iteration
to boost expansion of right tunnels and at last it uses modification from
Voronoi-Diagram [13] based sampling of the configuration space.

7

2. Related Work.....................................

Figure 2.1: Example of the tunnel detection in haloalkane dehalogenase. Image
taken from the article [17].

But apart from planning in a complex environment, we can look for a
path with constraints in a robot. A typical example in robotics is the path
planning under kinematic constraints [5]. The robots constraints include in
particular the limitation of its movement. Among the popular robots are
certainly humanoid robots [2] (Figure 2.2) whose main limitation are the
joints in arms, which are supposed to symbolize the most natural human
movement.

Figure 2.2: Humanoids upper body system: Justin. Image taken from the
article [2].

Thanks to the huge interest of motion planning in robotics, our planning
itself was inspired by several sources, but mostly from Steven M. Lavalle [12].
We took the inspiration especially from Chapters: Geometric Representations
and Transformations, Sampling-Based Motion Planning and The Configura-
tion Space.

8

..................................2.1. Planning algorithms

2.1 Planning algorithms

Because we are trying to find our way in motion planning without colliding into
an obstacle, we have to define some sampling based planners that efficiently
explore Cfree. Finding path can be solved with any sampling based algorithm
e.g. Probabilistic roadmaps (PRM) [10] [12] or Rapidly-exploring random
tree (RRT) [9] [12]. All sampling-based algorithms are based on constructing
a graph containing collision-free paths, but many of them differ in the way
they construct the graph.

This section will introduce a few of the sampling based algorithms, their
pros and cons in relation to our problem, but what is the most important, we
will also present derived planner from RRT called Rapidly-exploring dense
tree (RDT) [12].

The most basic planner PRM [10] is a procedure divided into two phases (see
Figure 2.3). Firstly it samples whole Cfree with points trying to connect them
to each other in a predetermined distance. That builds a roadmap constructed
as the graph. In the second phase, the start and goal configurations are
connected to the roadmap using their nearest neighbors. Then, any graph-
search method (DFS [21], BFS [20]) tries to find a path in the roadmap.
We immediately realize that the problem with this approach is that the
probability of a sampled point in a narrow passage is very low. On the other
hand, PRM performs quite well in high-dimensional spaces [10].

goalstart goalstart
point

Figure 2.3: PRM planner: After sampled the whole C-space (left), we try to
connect every single point to each other within a particular distance (right).

The most developed and researched planner is RRT [9]. Together with its
various modifications it has found a great application not only in robotics [17],
[3], [2]. This algorithm, illustrated in Figure 2.4, is based on expanding tree
as much as possible. That means we root a tree in a start position and begin
sampling the C-space. Every collision-free sample is attempted to connect
to the tree. If there exists any collision-free path between the sample and
its nearest neighbor in the tree, sample is joined to the tree. Eventually,
when sampled point is near the goal, the procedure ends. Many other similar
algorithms are based on this principle. For example, RRT-connect [11], which

9

2. Related Work.....................................
roots two trees at the beginning, one in start and the other in goal and grow
them with greedy heuristics towards each other. Or advance smoothed RRT
techniques for kinematic car-like robot trajectory planning [7].

sample

goal

A

root
sample

B

goal

A

root

Figure 2.4: RRT planner: wrong sample because of collision on the trajectory
(left), right expansion to the direction of a sample within the distance of a single
unit (right).

Like every other planner, even RRT and PRM have their own improved
variants. It is proven that both of them are not asymptotically optimal and
therefore, in order to reduce the limitation, new algorithms were proposed [8],
i.e. PRM* and RRT*. Proven to be probabilistically complete and asymptot-
ically optimal. For a planner to be asymptotically optimal, it means that the
cost of its found path converges almost to the optimum.

The RRT modification we used and was crucial for solving our puzzles is
called RDT [12], which is listed in Algorithm 1. This modification brings
one major change and that are the limitations for expanding its tree. In
particular, there are two constraints. Instead of sampling qn ∈ Cspace from
q0 till reaching qgoal, the RDT repeats sampling until it reaches G.dense of
user defined size of the tree G or exceeds the predefined expansion time. This
guarantees that the algorithm will end at some point.

Algorithm 1 Rapidly-Exploring Dense Tree
1: function EXPANSION_RDT(q0)
2: G.init(q0);
3: while !G.dense OR !time do
4: qnew ∈ Cspace
5: qn ← NEAREST(G,qnew)
6: G.add_vertex(qnew);
7: G.add_edge(qn, qnew);
8: if G.close(qn, qgoal) then break;
9: end if
10: end while
11: end function

10

Chapter 3

Geometric features

As said in the introduction, the goal is to locate narrow tunnel(s), because we
assume they are necessary for solving such a puzzle. It is not a surprise that
searching for the configurations has something to do with locating narrow
tunnels. In our thesis we focus on creating the best possible configurations
right inside the narrow tunnels. The important fact to care about is also that
narrow tunnels correspond to the alignment of geometric features. Thanks
to this we can look for connections between the geometry and the narrow
tunnels.

As said above, the source of the geometric ideas are from the article [23] from
which we present two geometric heuristics for detection of important configu-
rations, narrow tunnels. Let’s imagine our puzzles from Figures 1.1 and 1.2,
we presume that narrow tunnels are either two gaps facing each other (that
is the case of Alpha puzzle) or a gap aligned with a notch (that is the case of
Duet puzzle). We will be dealing especially with these two kinds of features
called gaps and notches.

3.1 Gaps Detection

We imagine that the gap on the puzzle is a narrow space, which is closed by
the opposite parts of the given puzzle. Illustration of the gap on the Alpha
puzzle is in Figure 3.1. We present EGR as a good candidate to detect the
gaps.

11

3. Geometric features

Figure 3.1: The red dot marks the midpoint of the found gap. It will also be
paired against the other piece of alpha puzzle to construct a key configuration.
Green pairs are minimized from EGR equation to construct particular red dot.
Image taken from the article [23].

Let’s have the surface of the puzzle formed as a triangulated meshM of
3D points. The idea of how to find gaps is that we find pairs of points on
the surface of a puzzle that form a local minimum of the EGR equation. It
combines the Euclid distance to hold the pair close in the Euclidean space,
while Geodesic ratio will also respect the shortest distance on the surface of
the puzzle, illustrated in Figure 3.2.

A B

Figure 3.2: Red line represents Geodesic distance from A to B while blue line
represents Euclidean distance.

More specifically, we will search for those pairs of point u,v ∈M , which
meet the equation

r(u,v) = e(u,v)
g(u,v) + α · e(u,v), (3.1)

where the function r represents our distance ratio we want to minimize.
The function e is the Euclidean distance and g is the Geodesic distance
(Figure 3.2). All those functions are computed above points u and v from the
puzzle’s surface meshM. In the equation is also α bias, that overestimates
the Euclidean distance. That helps to eliminate the pairs, which are close,
but do not form useful features. It is e.g. pair, each point on the other side
of the edge or corner.

Implementation. We followed the procedure from the article [23], see
Algorithms 2 and 3. We initially select a random vertex u and a random

12

................................... 3.1. Gaps Detection

vertex v fromM. They should not be neighbors, because rest of the procedure
would not make sense. We need to minimize the function r so we iteratively
improve (M.improve()) our selection by moving each either u or v to adjacent
vertex until it lowers its value. We do this procedure for user-defined number
N of pairs. We then reject (FILTER()) duplicate pairs and the pairs that
include neighbouring vertices. What can also occur is that the pair consists
of vertices whose line intersects with the puzzle. Those we need to get rid of
as well.

We found out that it helps if we run the algorithm described above three
times, to get three independent groups and find the intersection points among
them (INTERSECT ()). We say two pairs are the same if the position
difference between them is lower than h, where h is a user-defined constant
(we used 1 as a normalized unit of the surrounding world). The intersected
pairs are used as a source for the configuration points, which are constructed
as midpoints of each pair as illustrated in Figure 3.1.

Algorithm 2 EGR
1: function GET_GAPS(M) .M represents puzzle’s mesh of points
2: G = ∅;
3: for k ← 1 to 3 do
4: G.insert(GET_PAIRS(M));
5: end for
6: G ← INTERSECT(G))
7: return G.midpoints(); . midpoints represent the configurations
8: end function

Algorithm 3 EGR
1: function GET_PAIRS(M)
2: P = ∅;
3: for k ← 1 to N do
4: u, v ←M.random()
5: u, v ←M.improve(u, r) . r represents our Equation 3.1
6: P.insert(u, v);
7: end for
8: FILTER(M,P)) . rejection of unused pairs
9: return P;

10: end function

What we also tried, and it is also suggested in the article [23], is to select
the second point at the beginning locally not globally. This means that we
choose the first point for the pair randomly, but the second one within a
predefined Euclidean distance. This will minimize the function r just in
the selected area. This, together with α bias, creates a great opportunity
for experimentation. From our experience we mainly chose 0.5 for α bias,
when we did global search and clear zero for local search. Both tries created

13

3. Geometric features
moreover the same configuration points. We came to the conclusion that it
eventually depends on the quality of the random selection.

3.2 Notches Detection

The second feature we dealt with were the mentioned notches. However, EGR
does not find notches so reliably so we cannot completely rely on it. The
article [23] mentions a better idea how to detect these notches through medial
skeleton [19]. The procedure is as follows. We find a medial skeleton of the
puzzle through computing its medial axis [18]. We look for the points on the
skeleton, which have the smallest radius to their neighbors on the surface.
We hope that when we find such a point, it will indicate a notch in that area.

We also tried this approach. To find the skeleton and the medial axis we
used the CGAL library [15]. Unfortunately from our own testing, the skeleton
was just an approximation and the results were worse than we had expected
and could work with. We believe that the skeleton approximation was not
good enough because of the irregular distribution of the vertices of the mesh
of the given puzzle.

Figure 3.3: Duet puzzle (left), focus on the notch and knot (right).

We had to come up with our own solution, Algorithm 4. We mainly dealt
with finding notches on the grid of the Duet puzzle (Figure 3.3), where we
took advantage of the properties that this puzzle is mostly regular.1 Mainly
because the notches are planar and therefore have a certain surface area. As
it was said before, a notch is aligned with a gap. So if we take advantage
from the previous knowledge about gaps, it is clear that we are going to look
for the gaps on the knot and the notches on the grid. Our assumption from
the geometry idea is that such a notch is located between two parallel planes
(Figure 3.4). The configuration points will be then in the middle of these
planes (Figure 3.9).

1To be clear from illustrated Figure 3.3, knot represents the part that looks like banana
and grid the one with notch.

14

.................................. 3.2. Notches Detection

Implementation. Similarly to the gaps detection, let’s have the surface of
the puzzle formed as a triangulated mesh of points. To construct the planes
we need to select the points from the mesh, which are not on the edges as
illustrated in Figure 3.5. Because we know that points lying on the edge
always belong to two or more planes. We will not continue to work with
these points. Without these points we can easily create our desired planes.
Specifically we create a plane from three adjacent vertices and then we mark
every other adjacent vertex as lying on our plane if its distance to the plane
did not exceed a certain threshold. Simply, a vertex whose neighbors do not
lie on the same plane can be marked as one lying on the edge. It is important
to note that this can only be done if the whole mesh is structured as a graph.
Means, that every vertex is connected to its neighbors.

Figure 3.5: All plane points without those on the edges. The small red cubes
represent the vertices on the triangulated mesh.

Algorithm 4 Notches detection
1: function GET_NOTCHES(M) .M represent the puzzle’s

triangulated mesh
2: M,P, C, Pairs = ∅;
3: M.filter_edges() . we reject vertices lying on the edges
4: P ← GET_PLANES(M)
5: C = P.centers(); . centers of each plane
6: Pairs← PROJECT(C, P) . each plane projects it’s center onto each

parallel plane
7: return Pairs.midpoints(); . midpoints represent configurations
8: end function

Once we have such planes, we are able to determine their mutual dependence.
Because we can simply compute normal vectors from the vertices of our planes,
we can say that two planes are equal if one normal vector is a multiple of the
other. Specifically, we have two normal vectors a and b of two planes. We say
that they are equal if the ratio of these normal vectors along the coordinates
is equal as well, following the Equation 3.2.

a1
b1

= a2
b2

= a3
b3
. (3.2)

15

3. Geometric features
We cannot be completely precise with our equation, because there can be

situations such as one vector being (0.001, 1, -0.001) and the other (0, 1, 0)
although we want them to be exact. We did this calculation by rounding r
the normal vectors to two decimal places and at the same time we weighted
the division by the threshold, following the Equation 3.3.

∣∣∣∣r(a1)
r(b1) −

r(a2)
r(b2)

∣∣∣∣ ≤ threshold∣∣∣∣r(a1)
r(b1) −

r(a3)
r(b3)

∣∣∣∣ ≤ threshold. (3.3)

Thanks to the fact that notch is a kind of a cutout in the body of the
puzzle, it has its own plane. Lets have an arbitrary plane parallel to that
notch plane. When constructing such a plane we have all the points lying on
this plane at our disposal. Let us construct a bounding box in the shape of
a rectangle, which will minimize the space containing all these points. The
center of that bounding box should be approximately in the same place as the
center of its plane (Figures 3.6 and 3.7). These centers are very important for
us, because they form one part of pairs, that will be necessary for creation of
our configurations.

Figure 3.6: Centers of the planes.

16

.................................. 3.2. Notches Detection

Figure 3.7: Detailed centers of the planes.

We need to project each one of the centers onto all it’s parallel planes and
obtain their projections (Figure 3.8). If we remember the configuration points
from the EGR ratio, Section 3.1, we took the centers of the gaps. Here again
we take the centers, but of our projections (Figure 3.9).

Figure 3.8: Filtered projections of each center onto the parallel plane.

17

3. Geometric features

Figure 3.9: Final configuration points.

However, it immediately occurs that we create far more points than we are
interested in when we make projections between all parallel planes. Neverthe-
less, we don’t mind such points, because we are mainly interested in having
the points there at all. It is important to have the center inside the cutout.
The only disadvantage is an increase in time effort. On the other hand, we
can help ourselves a little here by filtering out the projections whose centers
are outside the body. Because from the assumption that notch is aligned
with a gap the configuration points must always be inside the body.

18

.................................. 3.2. Notches Detection

u v w

x

z

(a)
u v w

x

z

(b)

u v w

x

z

(c)
u v w

x

z

(d)

u v w

x

z

(e)

Figure 3.4: A simplified side view of the Duet puzzle, (a) focused on the notch.
All parallel planes (u, v, w, x, y) are marked as a dashed line. It describes the
procedure of finding the configuration points inside the notch. The procedure
starts in the upper left picture as follows. Find all the parallel planes. Create
their bounding box symbolizing the red trace (b). We find their centers (c),
which we then project from each plane onto their parallel planes (d). Finally,
the configuration points lie in the middle of each projection, on the positions of
blue crosses (e).

19

20

Chapter 4

Approach

4.1 Configuration processing

With the knowledge about gaps, notches and planners, we can move on the
algorithmic part. So let’s assume we have the configuration points from the
EGR ratio and the notch part. From these points we want to make key
configurations including the rotations. As was said in Section 3, we presume
that the narrow tunnels are either two gaps facing each other or a gap aligned
with a notch. So the easiest way how to align such features is to take Robot
part of the puzzle and translate it so they both with Env overlap in their
configuration points. It is clear that once we move the Robot onto right place,
we have to look for a collision-free rotations. Once we find such a state, we can
declare this setting as a valid configuration. As a reminder, the configuration
consists of a position and rotation which need to be collision-free.

It is likely that during the angle sweep we will find more correct rotations,
see Figure 4.1. Here the question arises whether it is better to have less
or more points. We can safely say that the more the points fill the angle
sweep, the better the new sample points are connected. But for such a tree
and finding the nearest neighbors, a lot of points might be too much time
consuming. Therefore, we implemented and tested the following two ideas.

Let’s have all possible rotations for one configuration point. In the de-
scription from our Figure 4.1, it means to take all angles marked as green
free. Our aim is to connect all collision-free rotations together. This gives

21

4. Approach

x

y

α

x

y

α

x

y

α

x

y

α

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Validation

α angle in degrees

free
invalid

Figure 4.1: Illustration of a simple 2D angle sweep. Validation shows the group
of collision-free angles.

us several independent regions full of rotations. The first (a) idea is to use
K-means algorithm [22] to take only one point from each region that can be
connected to as many points in the region as possible, or (b) to construct a
tree from all points in the region. The procedure is then either to take as few
points as possible, one point per region, or the number of trees per number of
regions. Nevertheless, at the end of the procedure, we have either trees with
one node each or trees with multiple nodes. Node is always considered as our
key configuration. It is important to note here that for some configurations
the angle sweep is very bulky and thus the tree size is very huge. For this
reason we are testing both options, see results in Table 5.3.

Improvement. Suggestion from the article [23] says that gap-gap alignment
has the maximum clearance between two pieces of puzzle when they are

22

...................................4.2. Planner Selection

Figure 4.2: Gap-gap configuration focused on maximal clearance when orthogo-
nal aligned. Visualization taken from the article [23].

orthogonal, illustration in Figure 4.2. On the other hand for alignment gap-
notch when parallel. Therefore, during angle sweep, we can manually set up
those static axis in advance. Because we use gap-notch alignment mainly
on duet puzzles, we can set one angle right away either to 0, 90, 180 or 270
degrees. In order not to have to go through 3603 possible angles during angle
sweep.

4.2 Planner Selection

In the previous chapter we discussed puzzle’s geometric features together
with their implementation. We also already have knowledge about planning
algorithms, so the last thing is to put it all together.

The best option will be to use some fast sampling algorithm which will
connect the configurations that we obtain from our detection. The first
option might be the Probabilistic roadmaps with sampling the whole C-
space. But it’s disadvantage here limits it very much. As already mentioned
in Section 2.1, the probability of sampling the narrow passage is almost
negligible.

The second possibility becomes Rapidly-exploring random tree that starts
at one place and grows a tree until it finds a goal state. It is questionable
how to use it. If we let RRT grow from each configuration, we will not know
when to stop. One can say that it could stop when it hits other tree, but
we have no guarantee and our experience has convinced us that we will not
always find such a tree.

But that leads us to modification and that is the Rapidly-exploring dense tree.

23

4. Approach
As in the article [23] and described in Section 2.1, we also used this algorithm
but with the following constraints. It stops growing the tree if the time of
exploration exceeds user defined minutes or if the tree exceeds a maximum
user-defined size. We have tried all the options that are recorded in the
graphs in Subsection 5.2.1.

Because RDT algorithm is based on sampling and to avoid sampling from
an infinite world, we create an imaginary box around each configuration,
which corresponded to the longest side of the moving part of the puzzle in
every direction. Each sample is just randomized right from this box. From
our experience, this is very essential and important for a good sampling.
Let’s look more precisely on the sampling. When we sample from such a
box, the probability of expanding a configuration tree is proportional to the
size of its Voronoi region [13]. That means that the tree expands more often
towards large areas, as illustrated in Figure 4.3. Therefore each root of tree
is midpoint of such a box. This will leave an even distribution in the first
iterations of RDT.

Figure 4.3: The black sampling box shows the importance of its position in
relation to the blue configuration point. As you can see from the picture (left) it
is much more likely to be sampled into the red wall, while in the picture (middle)
to the space underneath. Picture on the right represents the ideal position, where
the first samples will be equally distributed.

24

...................................4.2. Planner Selection

4.2.1 Implementation

Initialization

Start

Goal

B

A

Blooming Foresting

Foresting Foresting Solution

Figure 4.4: Steps of our implemented procedure. Initialize all configurations
roots, bloom everyone till particular density, forest every tree, find path.

Let’s have our configurations from both heuristics. Each of them constructed
as roots of its own tree. We use a procedure described in Figure 4.4, followed
in Algorithm 5, similar to the one in that article [23] divided into two steps.
First one is called Blooming, where we mainly use the RDT planner. We
iterate over those trees, trying to sample new point in C-space, that would be
collision-free to its nearest neighbor. The aim is to make as many as possible
within the user-defined time limit. We assume, that each new sampled point
is normalized to the nearest neighbor to the distance of the surrounding world.
That simply means, the distance between sample and nearest neighbor is one
unit. The second one is called Foresting. We are still working with these
large trees and trying to merge those trees together. We take every single tree

25

4. Approach
and iterate over its vertices and other trees looking for K-nearest neighbors.
For the whole experiment, we used 8 closest neighbors. When we have these
neighbors we look whether there is at least one collision-free route with that
vertex. It there is, we merge that tree into the first one. We simply transfer
all information and data from that tree into the first one. Important fact,
each tree has to remember some identification, whether it contains nothing,
goal or start root, because when we merge trees, the resulting tree has to get
the higher priority identification. We say, such identification could be, for
example, an enumeration type with values in order: nothing, start/goal and
both, where the highest both has to be only in situations when tree contains
both start and goal. So for situation, for example, when we merge nothing
tree with goal tree, it has to results in goal tree.

After merging one tree with another tree, we delete nodes from the first
one and move them to the other and leave just the unified one. We repeat
this procedure till we merge all the trees or just trees including goal and start.
It is important to realize that we do not have to merge all the trees in order
to connect the goal and start. Eventually we find in that tree the path from
start to goal.

When we iterate over every single vertex trying to connect to the other
tree. We are able to simultaneously compare the distances of the connections
of these two trees. In other words, we are able to guarantee the shortest
connection between these two trees.

Algorithm 5 Solve Puzzle
1: function GET_PATH(M) .M represent the puzzle’s triangulated

mesh
2: G,N , T = ∅;
3: G ← GET_GAPS(M) . configuration points from EGR
4: N ← GET_NOTCHES(M) . configuration points from Notches
5: T = M.process(G,N); . configuration processing (Section 4.1)
6: BLOOMING(T)
7: if FORESTING(T) then . True if merged start and goal trees
8: P ∈ Cspace; . P represent 3D points from C-space
9: P = FIND_PATH(T); . graph search method [21], [20]
10: return P;
11: end if
12: return ∅;
13: end function

Resources. During the planning phase, we also have to check collisions and
memorize the whole tree structure. We had two libraries at our disposal. The
first one was Rapid aka "Robust and Accurate Polygon Interference Detection"
library version 2.01 [4] and it was used for collision detection. Basically each

26

....................................4.3. Further Insight

part of the puzzle was constructed as RAPID_model on which collisions
where detected. And the second one was MPNN aka "The Nearest Neighbor
Library for Motion Planning" [1] which helped us constructing kd-tree and
its findings.

Comparison. In order to have two functional procedures that we can
eventually compare with each other, we also implemented the idea from
the article [6] the Space-filling forest (SFF), but with modification to our
RDT. Mainly we used its expansion for our Blooming part. Specifically, we
randomly select a point from our tree, which we try to expand. Then, we
sample a few new points in a unit sphere area and take the first one that meets
following condition. If the new sample is closer to some other point in the
tree than the one we have selected, we do not expand. This will ensure that
we always expand towards unexplored area. This idea serves as an attempt to
maximize the searched space as possible, but with fewer points. Eventually
we have several modification we can test, see results in Tables 5.4, 5.5 and 5.6.
Together with modifications from configuration processing (Section 4.1) we
compare each different methods of searching the state space.

Improvements. Along with what we described in Section 2.1, the idea
of improvement for our RDT might be to explore our configuration trees
with some heuristics. It is therefore proposed to extend the basic RRT to
RRT* [9]. For an illustration, a simple description. RRT* comes with two
improvements. First, RRT* stores the knowledge about the distance from
root to each vertex referred as the cost. This cost is recompute every time
a new sample is joined to the closest neighbors. There comes the second
difference, that RRT* rewires the vertices each time a vertex has been joined
to the cheapest neighbor. That means neighbors are checked whether rewiring
helps to decrease their cost. This feature makes the path more smooth and
eventually even more optimal. This whole modification could be done on our
RDT implementation as well.

4.3 Further Insight

Our implementation was done using the C++ programming language. All
source code is included in the attachments of this thesis. In the course of our
implementation we have encountered with several important findings that
should be shared and described.

In the MPNN library, we used for constructing kd-tree and its search for

27

4. Approach
k-nearest neighbors, we came across the necessity to define the right amount
of maximum points number for allocating the kd-tree. Together with the
results generated with particular parameters, we came to conclusion that 400
thousands points for one tree is enough for both less demanding (Alpha) and
more demanding (Duet) puzzles.

Particularly in header file multiann.h,
#i f n d e f MAXPOINTS
#de f i n e MAXPOINTS 400000
#end i f

Collisions. In our implementation we solve collision checking as follows.
We assume that the puzzle is in a certain position (from) and our goal is to
get it to the next position (to). We define a set P = {p0, ..., pn} of uniform
checkpoints in the trajectory, where we want to perform the collision check.
There a problem arose, when we had points from and to close to each other,
but their rotation angles where too different. It caused that we basically
skipped the spot where they collided and declared them as free, illustrated in
Figures 4.5 and 4.6.

x

y

α

Origin from

to

t

d

Figure 4.5: This picture together with Figure 4.6 illustrates the problem of
checking collisions during rotation. The blue object represents the puzzle which
stays on Origin and rotates over 90 degrees.

We came up with the solution, that determines how many checkpoints
are we going to make. We always move the puzzle in a normalized distance
(1 unit according to the surrounding world) and the puzzle itself has some
thickness t. For our calculation we consider t as thickness in the thinnest
place. We do not need to make any checkpoints at all when the distance
of trajectory is smaller than the thickness. But there is still the rotation
problem. We will determine the amount of checkpoints n by our equation:

n = max(1,
α

360 · 2π · d
t

). (4.1)

28

.................................... 4.4. Parallelization

from

to

p0

p1

Origin

α

Figure 4.6: This picture together with Figure 4.5 illustrates the problem of
checking collisions during rotation. Puzzle stays on Origin and it is just a rotation
over α angle. It shows that even though it stays on the same position, it is not
accurate and it will skip the red obstacles, if we made just two checkpoints.

It actually says how many times we can fit the thickness t of the puzzle
into the rotation of α angle (in degrees). We declare that the distance d is
the maximal length of puzzle from the origin of rotation into each direction.
Thanks to this mechanism we are able to approach each rotation with a
different number of collisions without having to generalize at all. As a result
we are able to save a lot of checkpoints and at the same time we are sure that
we do not miss any collision.

4.4 Parallelization

An essential part of programming is also the question whether the program
can be parallelized. Here are several possibilities too. Among them we used
the parallel calculation of the EGR ratio where both parts of the puzzle were
computed separately, because these calculations do not depend on each other.
But the biggest improvement could be done in Blooming part, where each tree
can grow separately. We tried this approach as well, but because of the shared
structures in the individual libraries Rapid [4] and MPNN [1], we had to use
critical sections, which caused two things. The first is that they allowed us
to process all trees concurrently, but we expanded far fewer points compared
to the sequential solution. This means that the possibility is definitely there,
but with the usage of different libraries. In our implementation both options
are available, together with the results in Table 5.2.

29

30

Chapter 5

Summary

5.1 Testing with OMPL

Before we present our results within several particular parameters, we also
had to test our implementation against other path planning algorithms. For
this purpose we used the OMPL library [14] and its built-in planners. OMPL
is a powerful interface, that provides high-level abstraction to make it easier
to integrate your own planning system, whether you want to benchmark it
with other high-level planners or develop one of your own.

In our case, we wanted to make a benchmark to be able to test it against
other optimized planners including PRM, RRT, RRT-Connect, RRT*, EST,
BIT and others. In order to leave the conditions as identical as possible
for the other planners, we have handed over our collision checking library,
RAPID [4], to OMPL to make the time spent on collisions as symmetric as
possible. The same with the time constraints from our RDT, where we tried
limitations on Blooming for 15, 20 and 25 minutes. But unfortunately none
of them were able to solve even the basic Alpha puzzle, Figure 1.1.

31

5. Summary
5.2 Results

In this section we provide our results for testing several puzzles (Figure 5.1)
taken from the article [23]. Among the results are described the individual
input parameters within the solution and also the elapsed time of each
procedure.

Before we go any further, we need to specify some of the parameters we
talked about in the thesis. Firstly in gaps detection, Section 3.1, we did
our procedure for user-defined number N = 20. During notches detection,
Section 3.2, we talked about weighting the division in our equation by the
threshold. In our implementation we chose 0.3 as the threshold. And
eventually, when we described sampling from the sphere in SFF modification
in Section 4.2.1, we chose 20 random samples.

Thanks to the possibility of testing on distributed machines, we were able
to do several of these tests. For the comparison with SFF modification we
used a 16-core machine with 4GB of RAM and for the rest of calculations an
8-core machine with the same memory. The following values in the graphs
correspond to the average results after 100 iterations. Animations of solving
these puzzles are included together with source code in the attachments of
our thesis.

Unfortunately, due to zero success rates, we left out the most difficult Duet
puzzle (Duet_3x3) together with Claw and Key, which were not solved by
our heuristics due to their complex geometric shape.

For the most accurate results, we share puzzles configurations from heuris-
tics in each run. That means one puzzle has the same configurations in each
run, therefore we calculate the configurations via our heuristics in advance.
This will help us to better define the quality of our planner. It is clear that
for the Alpha puzzle and puzzles derived from it there is no need to compute
notch configurations. In Table 5.1 are presented all configuration pairs1.

1Pair, because for implementation purposes we need whole pair. Simply the main
configuration point lies every time in the middle of this pair.

32

....................................... 5.2. Results

(a) : Alpha puzzle (b) : Alpha-J puzzle (c) : Alpha-G puzzle

(d) : Alpha-Z puzzle (e) : Alpha-Double
puzzle

(f) : Claw puzzle

(g) : Duet_1x1 puzzle (h) : Duet_2x1 puzzle (i) : Duet_3x2 puzzle

(j) : Duet_3x3 puzzle (k) : Key puzzle

Figure 5.1: Illustration of puzzles we tried to solve. Puzzles taken from the
article [23].

Alpha Alpha-Double Alpha-J Alpha-G Alpha-Z
Configurations 5 pairs 4 pairs 5 pairs 2 pairs 4 pairs

Claw Key Duet_1x1 Duet_2x1 Duet_3x2 Duet_3x3 Duet_3x3a
Configurations 9 pairs 2 pairs 11 pairs 6 pairs 42 pairs 143 pairs 144 pairs

Table 5.1: First row includes puzzles, where EGR is enough for constructing
configurations. The second row contains numbers of pairs including both from
EGR and notch part.

33

5. Summary
5.2.1 General Results

The following Graphs 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 represent general
success rate and average elapsed time of solving each puzzle based on particular
size of the Blooming tree with set constraint time. We used our implementation
of RDT planner with parallelization. All configurations were used all the
time (corresponding (b) idea from Section 4.1).

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

3:16

5:19

9:07

14:20

15:59

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.2: Alpha puzzle.

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

12:20

20:21

32:42

45:12

49:38

Size

R
un

tim
e
[m

:s]
15 minutes
20 minutes
25 minutes

Figure 5.3: Alpha-Double puzzle.

34

....................................... 5.2. Results

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

21:10

29:25

30:53

35:56

37:06

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.4: Alpha-J puzzle.

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

14:21

16:59

19:56

26:55

24:07

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.5: Alpha-G puzzle.

35

5. Summary

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

6:54

10:04

16:28

18:19

26:59

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.6: Alpha-Z puzzle.

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

5:46

7:11

11:37

11:46

16:55

Size

R
un

tim
e
[m

:s]
15 minutes
20 minutes
25 minutes

Figure 5.7: Duet_1x1 puzzle.

36

....................................... 5.2. Results

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

15:07

15:11

20:11

25:09

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.8: Duet_2x1 puzzle.

4048 6096 8192

0

20

40

60

80

100

Size

Su
cc
es
s
ra
te

[%
]

4048 6096 8192

76:35

94:10

101:01

119:05

130:17

Size

R
un

tim
e
[m

:s]

15 minutes
20 minutes
25 minutes

Figure 5.9: Duet_3x2 puzzle.

The results more or less show that the more points we provide for expanding
and at the same time the longer we leave the possibility for expanding
configuration trees, the better results we get. Of course, because we have the
results after a hundred iterations, the trend can vary, e.g. for Duet_2x1 we
even got a percent worse results for bigger size, but it has almost no effect on
the average solution.

37

5. Summary
5.2.2 Comparison Parallel vs Sequential

Due to the mentioned problems with critical sections in the parallelized
RDT implementation (Section 4.4), we have performed tests with sequential
solution as well. The next table shows the differences with following settings.
Both runs were made with 15 minutes per Blooming phase and 6096 size its
trees. All configurations were used (corresponding (b) idea from Section 4.1).

Parallel Sequential
Puzzle Success rate Runtime [m:s] Success rate Runtime [m:s]
Alpha 94% 9:15 90% 10:43

Alpha-Double 10% 32:19 11% 68:27
Alpha-J 58% 26:58 66% 66:17
Alpha-G 100% 16:01 99% 21:25
Alpha-Z 97% 18:12 93% 19:14
Duet_1x1 100% 11:46 100% 15:22
Duet_2x1 97% 15:08 100% 44:56
Duet_3x2 15% 80:34 36% 139:38

Table 5.2: The average success rate and average elapsed time between parallel
and sequential RDT after 100 iterations. Constraints: 15 minutes per Blooming
and 6096 as its size. All configurations were used.

From the table we can clearly see that the differences are very small
and therefore the difference between sequential and parallel solutions is
insignificant. On the other hand, if we want to save some time, a parallel
version will certainly help us. In some cases more (e.g. Duet_2x1), in some
cases less (e.g. Alpha).

5.2.3 Comparison of Configuration Processing

In Section 4.1, we described two ideas how to work with found configurations.
We have mentioned that it is possible to use as many as possible or just
particular ones. In the following table we present results of parallelized RDT
with 15 minutes per Blooming and 6096 size its trees together with both
options of handling configurations. The idea (a) is considered to be SINGLE
and (b) as taken ALL.

38

....................................... 5.2. Results

ALL SINGLE
Puzzle Success rate Runtime [m:s] Success rate Runtime [m:s]
Alpha 94% 9:15 93% 10:34

Alpha-Double 10% 32:19 11% 21:39
Alpha-J 58% 26:58 78% 34:19
Alpha-G 100% 16:01 100% 14:27
Alpha-Z 97% 18:12 99% 13:05
Duet_1x1 100% 11:46 100% 7:09
Duet_2x1 97% 15:08 98% 15:11
Duet_3x2 15% 80:34 35% 94:10

Table 5.3: The average success rate and average elapsed time of RDT between
two different processes of handling configurations after 100 iterations. Constraints:
15 minutes per Blooming and 6096 as its size.

Although the differences in the results are small, it can be seen that if we
take a few points, which are arranged in a good position by the K-means
method, they lead to better results. Puzzles like Alpha-J and Duet_3x2
particularly. Unfortunately, we cannot say anything about the elapsed time,
because our runtime differs in all cases.

5.2.4 Comparison with SFF modification

As we mentioned in Subsection 4.2.1, we also implemented the SFF modifi-
cation into our RDT planner to compare two approaches of expanding our
configuration trees. Unfortunately this modification needs considerably more
time to grow the tree. Our experience is that if we limit the Blooming in
RDT planner to 15 minutes, which in most cases is enough to fill 6096 points,
the SFF modification will expand only a few tens of points in that time. For
this possibility we have made a test with a limit of 120 and 180 minutes,
which already gives better results. The following tables show success rate of
SFF modification with both time limits and 6096 as size of its trees. The
first table represents the processing of all (b) configurations, as described in
Section 4.1, the second table otherwise (a).

39

5. Summary
120 minutes 180 minutes

Puzzle Success rate Runtime [m:s] Success rate Runtime [m:s]
Alpha 35% 24:50 40% 34:21

Alpha-Double 5% 44:00 6% 59:25
Alpha-J 0% 28:35 0% 42:34
Alpha-G 15% 24:24 25% 36:29
Alpha-Z 0% 27:44 9% 40:19
Duet_1x1 100% 15:03 100% 16:10
Duet_2x1 90% 24:01 97% 35:59
Duet_3x2 0% 54:30 0% 78:46

Table 5.4: The average success rate and average elapsed time of SFF modification
after 100 iterations. Constraints: 120 and 180 minutes per Blooming and 6096
as its size. All configurations were used.

120 minutes 180 minutes
Puzzle Success rate Runtime [m:s] Success rate Runtime [m:s]
Alpha 5% 37:57 25% 45:01

Alpha-Double 0% 45:15 0% 51:48
Alpha-J 0% 60:53 0% 89:52
Alpha-G 10% 24:25 18% 36:29
Alpha-Z 10% 25:43 20% 25:58
Duet_1x1 100% 14:43 100% 18:02
Duet_2x1 80% 24:05 96% 36:04
Duet_3x2 0% 66:43 0% 88:22

Table 5.5: The average success rate and average elapsed time of SFF modification
after 100 iterations. Constraints: 120 and 180 minutes per Blooming and 6096
as its size. Single configuration was used.

When we were describing the tree expansion in Subsection 4.2.1, we also
mentioned taking 20 random points from the unit sphere. To enrich our
results further, we performed a simple test on a selection of three particular
puzzles with different sizes of that sphere. More precisely, we examined the
sizes of half unit, two units and three units. One unit was selected by default
and also tested in the previous results. Same constraints were retained and
thus the 120 minutes per Blooming and 6096 as its trees size.

40

....................................... 5.2. Results

Success rate
Puzzle Half unit One unit Two units Three units
Alpha 0% 35% 10% 25%

Duet_1x1 100% 100% 100% 100%
Duet_3x2 0% 0% 0% 0%

Table 5.6: The average success rate of SFF modification after 100 iterations
with various sizes of the sphere from which we take samples during Blooming.
Constraints: 120 minutes per Blooming and 6096 as its size. All configurations
were used.

From the previous tables it can be seen that for most of the puzzles the
longer the SFF modification runs the better results it gives. On the other
hand, compared to our RDT planner, the SFF modification lags far behind
in both success rate and time consumption.

We also cannot draw any conclusion from the size of the sphere from which
we sample, because it looks like the success rate does not depend on the size.
However, it is obvious from the geometrical properties of the narrow passages
that the size of the sampling sphere will not be clearly given. Simply put,
if such a tunnel will have 2 units in the thickest place, we certainly cannot
use a sphere of 3 units, etc. It basically depends on the construction of the
puzzle. From our experience 1 unit is sufficient in our puzzles.

41

42

Chapter 6

Conclusion

This thesis presents a new perspective on how to use the geometric properties
of the puzzles, based on narrow tunnels. For motion planning itself it is
a challenging task. It was clear that from human view, we can see such a
feature in a second, but not so far for a complex algorithm. The key features
we dealt with were gaps and notches that predicted where the tunnels might
be located. From those observations we simply created the configurations
we used in the planning tree. We discussed advantages and disadvantages of
simple planners and showed that even slightly enhanced sampling might be far
better. We introduced the new RDT planner, which we then compared with
the state-of-the-art planners from the OMPL library. None of the built-in
planners from OMPL could not solve even the Alpha puzzle. Eventually, we
presented a lot of results with several possible input parameters together with
modification of introduced SFF planner. The results undoubtedly show that
without any knowledge about environment it is very hard to solve even an
easy puzzle.

6.1 Ideas of improvements

Throughout our thesis, we spoke about ideas of improvement and how to
deliver better view on such problem. We still have to keep in mind that we
have only dealt with puzzles consisting of pairs of two rigid moving pieces.
Nonetheless, many other puzzles do not look like this and have to be handled
differently. There is certainly room for improvement in the usage of geometric
properties. As mentioned in Section 3.2 an approach through medial axis is

43

6. Conclusion......................................
another option to search for configurations but it must be better than just an
approximation. What we should not forget and it is very popular nowadays
is the use of neural networks. In the article [23], they mentioned their own
way how to find them in use.

Last but not least, one of the improvements that is quite crucial in the
puzzle solving is how we know that the puzzle is solved. Specifically, when
we say that one body is disantangled out of the other. One of the simplest
solutions would be to create a box around both pieces of the puzzle and say
that they are resolved precisely when these boxes do not overlap. We probably
would not need the goal state, so we would be minus one configuration together
with its tree simpler.

44

Bibliography

[1] Atramentov, A., and LaValle, S. Efficient nearest neighbor search-
ing for motion planning. In Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat. No.02CH37292) (2002), vol. 1,
pp. 632–637 vol.1.

[2] Borst, C., Ott, C., Wimbock, T., Brunner, B., Zacharias, F.,
Bauml, B., Hillenbrand, U., Haddadin, S., Albu-Schaffer, A.,
and Hirzinger, G. A humanoid upper body system for two-handed
manipulation. In Proceedings 2007 IEEE International Conference on
Robotics and Automation (2007), pp. 2766–2767.

[3] Denny, J., Sandström, R., Bregger, A., and Amato, N. M.
Dynamic Region-biased Rapidly-exploring Random Trees. Springer Inter-
national Publishing, Cham, 2020, pp. 640–655.

[4] Gottschalk, S., Lin, M. C., and Manocha, D. Obbtree: A
hierarchical structure for rapid interference detection. In Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques (1996), pp. 171–180.

[5] Jaillet, L., and Porta, J. M. Path planning under kinematic con-
straints by rapidly exploring manifolds. IEEE Transactions on Robotics
29, 1 (2013), 105–117.

[6] Janoš, J., Vonásek, V., and Pěnička, R. Multi-goal path planning
using multiple random trees. IEEE Robotics and Automation Letters 6,
2 (2021), 4201–4208.

[7] Jayasree, K. R., Jayasree, P. R., and Vivek, A. Smoothed rrt
techniques for trajectory planning. In 2017 International Conference

45

6. Conclusion......................................
on Technological Advancements in Power and Energy (TAP Energy)
(2017), pp. 1–8.

[8] Karaman, S., and Frazzoli, E. Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics Research
30, 7 (2011), 846–894.

[9] Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and
Teller, S. Anytime motion planning using the rrt*. In 2011 IEEE
International Conference on Robotics and Automation (2011), pp. 1478–
1483.

[10] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M.
Probabilistic roadmaps for path planning in high-dimensional configu-
ration spaces. IEEE Transactions on Robotics and Automation 12, 4
(1996), 566–580.

[11] Kuffner, J., and LaValle, S. Rrt-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065) (2000), vol. 2, pp. 995–1001
vol.2.

[12] LaValle, S. M. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[13] Lindemann, S., and LaValle, S. Incrementally reducing dispersion
by increasing voronoi bias in rrts. In IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 (2004),
vol. 4, pp. 3251–3257 Vol.4.

[14] Şucan, I. A., Moll, M., and Kavraki, L. E. The Open Motion Plan-
ning Library. IEEE Robotics & Automation Magazine 19, 4 (December
2012), 72–82. https://ompl.kavrakilab.org.

[15] The CGAL Project. CGAL User and Reference Manual, 5.3 ed.
CGAL Editorial Board, 2021.

[16] Vega-Brown, W., and Roy, N. Task and motion planning is pspace-
complete. Proceedings of the AAAI Conference on Artificial Intelligence
34 (04 2020), 10385–10392.

[17] Vonásek, V., and Kozlíková, B. Tunnel detection in protein struc-
tures using sampling-based motion planning. In 2017 11th International
Workshop on Robot Motion and Control (RoMoCo) (2017), pp. 185–192.

[18] Wikipedia contributors. Medial axis — Wikipedia, the free encyclo-
pedia, 2021. [Online; accessed 20-November-2021].

[19] Wikipedia contributors. Straight skeleton — Wikipedia, the free
encyclopedia, 2021. [Online; accessed 20-November-2021].

46

https://ompl.kavrakilab.org

................................ 6.1. Ideas of improvements

[20] Wikipedia contributors. Breadth-first search — Wikipedia, the free
encyclopedia, 2022. [Online; accessed 4-May-2022].

[21] Wikipedia contributors. Depth-first search — Wikipedia, the free
encyclopedia, 2022. [Online; accessed 4-May-2022].

[22] Wikipedia contributors. K-means clustering — Wikipedia, the free
encyclopedia, 2022. [Online; accessed 10-May-2022].

[23] Zhang, X., Belfer, R., Kry, P., and Vouga, E. C-space tunnel
discovery for puzzle path planning. ACM transactions on graphics 39, 4
(2020), 104:1–104:14.

47

	Introduction
	Insight Into The Issue
	The Challenge

	Related Work
	Planning algorithms

	Geometric features
	Gaps Detection
	Notches Detection

	Approach
	Configuration processing
	Planner Selection
	Implementation

	Further Insight
	Parallelization

	Summary
	Testing with OMPL
	Results
	General Results
	Comparison Parallel vs Sequential
	Comparison of Configuration Processing
	Comparison with SFF modification

	Conclusion
	Ideas of improvements

	Bibliography

