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Abstrakt

Ćılem práce je prozkoumat nové zp̊usoby evaluace doporučovaćıch systémů,
předevš́ım za pomoci vizualizačńıch nástroj̊u. V současném výzkumu je při
vyhodnocováńı úspěšnosti modelu kladen d̊uraz předevš́ım na přesnost do-
poručeńı, méně už však na daľśı d̊uležité metriky, jako je rozmanitost do-
poručovaných věćı, rozsah pokryt́ı katalogu nebo možnost objevováńı nových
věćı na úkor bestseller̊u. Výsledky evaluaćı jsou nav́ıc typicky prezentovány
pouze ve formě agregovaných hodnot a neńı dále zkoumána jejich distribuce
přes validačńı množinu uživatel̊u, což je d̊uležité pro odhaleńı neférovosti
modelu a chyb r̊uzného druhu. Práce proto nab́ıźı sadu nových př́ıstup̊u,
které kombinuj́ı techniky vizualizace se stávaj́ıćımi metodami o�ine evalu-
ace, a které jsou implementovány jako součást frameworku zpř́ıstupněného
pod open-source licenćı daľśım výzkumńık̊um.

Kĺıčová slova doporučovaćı systém, vizualiazace, evaluace, framework
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Abstract

The thesis aims to explore new ways of evaluating recommender systems,
mainly with the help of visualization tools. In the current research, when
evaluating the success of a model, the emphasis is mainly on the accuracy of
recommendations but less on other important metrics, such as the diversity
of recommended items, the extent of catalog coverage, or the opportunity of
discovering novel items at the expense of bestsellers. Moreover, evaluation
results are typically presented only in the form of aggregated values, and their
distribution through the validation set of users is not further investigated,
which is essential for revealing the unfairness of the model and discovering
various biases. Therefore, the thesis o�ers a set of new approaches that com-
bine visualization techniques with existing o�ine evaluation methods and are
implemented as part of a framework made available under an open-source
license to other researchers.

Keywords recommender system, visualization, evaluation, framework
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Introduction

With the enormous popularity of recommender systems in recent years, hun-
dreds of new approaches and methods have emerged, primarily aimed at im-
proving the accuracy of predictions over previous solutions. Such e�ort cre-
ates an endless race to get the best average metric value, which says very little
about the actual quality of the recommender system. The real quality judges
are the individual users working with the system, whose complex and var-
ied needs and interests cannot be overlooked. For this reason, it is necessary
to look at other aspects, such as the diversity and novelty of recommenda-
tions from the users’ point of view or catalog coverage and promotion of niche
products from the vendors’ point of view.

Several recommender frameworks have been published to simplify access
to the beyond-accuracy metrics and metrics for revealing the unfairness of
models or di�erent types of biases. Although these frameworks contain many
evaluation mechanisms and a rich set of integrated models, they do not bring
anything progressive into the array of evaluation procedures.

The Repsys framework proposed in this work is unique because it comes
with a new approach to presenting the results through an interactive web
application. The measured metrics are displayed to analyze their distribu-
tion, which, combined with the projection of users into two-dimensional space,
brings a novel technique to various biases detection. The previous works also
do not o�er the possibility of dataset analysis by taking users and items vi-
sualizations and uncovering possible clusters. Furthermore, the lack of a sim-
ulation environment makes other frameworks relatively static. On the other
hand, in Repsys, one can simulate user behavior by interacting with the cat-
alog of items and then observe how the recommendations change.

In this work, the first chapter will summarize basic recommendation ap-
proaches, characterize typical biases, then describe o�ine evaluation mech-
anisms together with di�erent metrics, whether focused on the accuracy or
other aspects of system behavior. The chapter will conclude with an overview
of visualization techniques and current solutions of recommender frameworks.
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Introduction

The second chapter will present the Repsys framework, first highlighting its
main benefits and features, then showing its interface with the description of
the SDK library. This chapter will also describe how the framework performs
preprocessing of the dataset, its visualization, and subsequent evaluation of
implemented models. The last section will show previews of the web applica-
tion and possibilities of its use in examining the gathered results.

The third and fourth chapters are then focused on verifying the basic
functionalities of the framework on a set of experiments using two di�erent
datasets and three recommender models. At the end of the work, further plans
for expanding the framework are presented.

This thesis’s goal is not to provide a comprehensive analysis of a wide
range of models on various datasets to describe their biases or unfairness but
to create an easy-to-use environment that other authors can employ in their
research and motivate them to study more aspects of recommender systems
than just the isolated accuracy.
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Chapter 1
Related work

1.1 Task definition
Recommender System (RS) task is to select from many items available the
ones that will potentially be most interesting to users [9, 10, 11]. To perform
this, RS typically has several data sources on which to make predictions:

Item Attributes Data Items are characterized by attributes that can take
on di�erent types, such as numbers, categories, tags, or unstructured
text. Specific attributes vary by the RS domain and may, for example,
include a product’s name, price, description, or set of images [9].

User Attributes Data Like items, users also have various attributes, which
can be, for example, a user’s location, age, or gender [9]. However, this
data is often not available due to privacy reasons [12].

Interaction Data The most crucial information for RS are historical data
of interactions between users and items. These can be, for example,
viewing product detail, adding him to a cart, buying it, marking him
as liked/disliked, or giving him the number of stars from 1 to 5, where
the last two are examples of explicit interactions, while the others are
examples of implicit. The data are commonly transformed into an inter-
action (or rating/ranking) matrix where each row is a user, each item is
a column, and corresponding explicit ratings (or implicit feedback) are
at the position of the user-item pair [9, 10].

The application of RS can be understood in di�erent ways depending on the
specific employment. Common dividing from the perspective of later models
evaluation is the rating prediction and ranking task [13]. The rating prediction
consists of predicting the rating a user could give an item, where the rating is
typically a numeric value from a given range. The ranking task comes from
the Information Retrieval (IR) domain and involves ranking the items so that

3



1. Related work

the larger the value, the more likely the item will be attractive to the user.
This approach is widely used for evaluation nowadays as it better reflects the
way items are presented to the user. This task is typically related to the top-N
recommendation, of which all the items rated, only the top ones are chosen,
which are typically the first to be seen by the user and have the best chance
of catching the user’s eye [14, 9].

1.2 Recommendation approaches

Di�erent classifications of the RS approaches can be found in the literature,
but the prevalent divides them into three main categories: content-based fil-
tering, collaborative filtering, and hybrid techniques [9, 15, 16].

1.2.1 Content-based filtering

Content-based filtering comes from the domain of IR systems and therefore
uses similar techniques and approaches [17]. The main principle is a recom-
mendation based on a previous analysis of the items the user interacted with
and positively rated. This analysis aims to build a user’s profile that char-
acterizes his preferences and is used when recommending new items. A wide
range of information describing the characteristics of each item can be encoded
into a feature vector that is compared to the user profile, and the items that
are most similar to the profile are searched for [11, 18, 17].

The advantage of this approach is that it is easy to explain why a particular
item was recommended, and it is possible to add new items to the catalog
easily without having to wait for a su�cient number of ratings, as is the
case with collaborative filtering [18]. On the other hand, it su�ers from over-
specialization when the system repeatedly recommends items similar to a user
profile [11, 18, 17].

1.2.2 Collaborative filtering

Collaborative Filtering (CF) is a group of methods that uses an interaction
matrix to create a recommendation model [9]. Unlike content-based filtering,
it relies not only on the active user but also on all users in the system [11].
The basic idea behind this approach is that if someone shares preferences for
a particular group of items with other users, they are likely to share them
for other items. [10]. CF algorithms are divided into two groups: memory-
based, which uses the user database directly to create predictions, and model-
based algorithms, which use the user database to learn a predictive model by
which recommendations are then made [19]. The prevailing memory-based
algorithms are neighborhood-based methods, further divided into user-based
and item-based [16, 11].

4



1.2. Recommendation approaches

The user-based CF, also known as user-based k-nearest neighbors CF or user-
user CF, was the first method used for automatic collaborative filtering, and
it was introduced in the GroupLens Usenet articles recommender [20]. This
method finds a group of users whose preferences are closest to the active user
and combines their ratings to recommend new items, as shown in figure 1.1.
There are di�erent metrics for measuring similarity between individual users.
The most famous are Pearson correlation, which calculates the statistical cor-
relation between commonly rated items, and cosine similarity, where users
are represented as vectors, and their distance in space is calculated. The rat-
ings are combined by computing the average, unweighted or weighted, where
similarities between the users may be used as weights [10, 11, 16, 9].

Figure 1.1: Schema of the user-based CF [1].

The item-based CF, also known as the item-based k-nearest-neighbor CF or
item-item CF, was developed to solve the problem of the scalability of the
user-based approach. There are many more users than items in a typical RS,
so more computational resources are needed to find the closest users over time
as the database grows. The item-based CF was first described in an article
by Sarwar et al. [1], while Amazon [21] also implemented it at a parallel
time. Instead of looking for similar users, the method looks for similar items
to those the user has already rated before. Two items are considered similar if
users have rated them in the same way, and thus these users also have similar
preferences for similar items, as shown in figure 1.2. Measuring the distance of
adjacent items and then aggregating the results coincides with the procedures
described in the user-based CF. The advantage of this method is that it is
easily scalable, as it calculates similarities over a limited number of items that
usually do not change as quickly as users in the system. Moreover, if a user’s
preferences change, it does not a�ect the representation of items as much as
it is only one of many interactions characterizing the item [10, 11].

The memory-based methods have several advantages. They are straight-
forward to implement and often have fewer hyperparameters. Their predic-
tions can be explained to the user retrospectively, which increases confidence in
the recommendation system. Another essential advantage is scalability since
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1. Related work

Figure 1.2: Schema of the item-based CF [1].

neighbor-based methods do not need to be wholly retrained when adding new
users or items to the system. Although the prediction process has greater
computational complexity than the model-based methods, they do not usu-
ally need initial time to train themselves, and the prediction can be accelerated
by o�ine precomputing the similarity matrix [11].

The model-based methods work on machine learning principles, where a
model is first trained on training data and then makes predictions capable of
covering complex non-linear patterns in the unknown data [16]. This group
includes several approaches, such as Bayesian networks working with a prob-
ability model, clustering methods performing clustering of similar users and
classification into these classes, and rule-based methods that look for asso-
ciative rules between interactions [1]. However, the most prominent methods
are latent factor models, which have achieved state-of-the-art results in recent
years. They work on the principle of factorizing the rating matrix to user and
item factors, representing the characteristics of users and items in the latent
space [22], as shown in figure 1.3.

Matrix Factorization (MF) is, generally speaking, the expression of the
original matrix by the product of two or more matrices. There are several
techniques for MF, such as QR decomposition, LU decomposition, or Singular
Value Decomposition (SVD) [23], where the latter has been used already in
the IR domain for obtaining latent factors. The SVD method gained the most
attention in the RS area in 2006 during the Netflix Prize competition, where Si-
mon Funk proposed an iterative approximative approach for calculating SVD
factorization by gradient descent procedure, which allowed its application to
large datasets [24]. This approach minimizes approximation error when look-
ing for such low-rank matrices, whose product returns the matrix as close to
the original one and allows for predicting unknown user-item pairs values and
thus producing recommendations [23].
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1.2. Recommendation approaches

Figure 1.3: Schema of the matrix factorization [2].

It is advantageous for a real-world application of RS if the model can make
recommendations for new users without re-learning the predictive model or
making additional reparametrization of the model. That is why methods
inspired by the neighborhood-based approach have been developed, which can
represent users as a combination of item features without solving user-specific
parametrization [25, 26].

Since the task of RS can be seen as the ranking problem, which does not
predict specific values, Cremonesi et al. [26] proposed the PureSVD algo-
rithm, where unknown user-item pairs are replaced by zero, thus allowing the
application of fast SVD algorithms to the decomposition of sparse matrices,
as they do not lack any missing values. The ranking prediction for the new
user can thus be calculated as a dot product of the user’s rating vector and
the matrix of similarity of items obtained during the SVD factorization.

With the increasing success of Deep Learning (DL) in past decades, it has
also started to be applied in the field of RS. These methods have achieved
state-of-the-art results in many di�erent areas, as they can cover complex
non-linear relationships in data and thus provide a new perspective on rec-
ommendation problem-solving. In the field of RS, various techniques of DL
methods are applied, such as autoencoders, convolutional neural networks,
attention models, or recurrent neural networks. The latter one has achieved
great results in modeling sequential data, so it has started to be applied in
combination with others in session-based recommender algorithms [27].

1.2.3 Hybrid techiques

Hybrid techniques can incorporate several di�erent approaches for higher per-
formance and lower impact of their weaknesses [15, 28]. The most common
combination is CF with some other technique, for example, to solve the prob-
lem of cold-start users [28]. There are several strategies [28] for combining the
predictions of two or more recommender systems, such as the following.
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1. Related work

Weighted The results of all available systems are weighted together.

Switching The systems are being switched between based on specific criteria.

Mixed Results of each system are presented simultaneously.

Cascade The following system uses the results of the previous system.

1.2.4 Session-based recommendation

The session-based recommendation is a domain that has become more in-
tensively addressed in recent years. Historically, public datasets contained
complete user profiles covering their long-term activity within the system.
However, this information is not typically available as many users access the
website anonymously (without logging into the system), and therefore RS has
only a short-term history of interactions on which to respond as the user’s
session is ongoing. Various approaches to solve this issue were introduced,
and the proper evaluation setup was also examined [29, 30].

1.3 Biases in recommender systems
The importance of biases examination in RS is steadily growing, as shown
by the number of publications written in the last years [31], and it has even
expanded into many areas like the psychology field. Melchiorre et al. [32],
for example, examined the di�erent success rates of the recommendation al-
gorithm for users with di�erent personality traits, which were obtained based
on music preferences.

Similar research by Wang and Chen [33] has also explored user biases
combined with personality traits, but this time from the perspective of beyond-
accuracy metrics like diversity, novelty, or serendipity. The authors discovered
di�erent metrics values for users with di�erent characteristics, which showed
the unfairness of selected recommender models.

The coverage of such a complex topic is outside this work’s scope; nev-
ertheless, some excellent works like [31] o�er a comprehensive overview of
definitions, characteristics, and debiasing methods for interested readers.

1.3.1 Feedback loop

To understand the e�ects of each type of bias at di�erent points of the recom-
mendation process, it is necessary to specify an event loop that describes the
relations between a user and model. This loop shown in figure 1.4 is called
a feedback loop and is constructed as follows: the user creates data through
his interactions, which are used to train the model, making predictions for the
user and influencing him in his future decisions [31].

8
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Figure 1.4: Feedback loop in the recommender system [3].

Some papers deal with the potential e�ects of feedback loops, such as [3],
where it was shown that the decision-making process must consider the long-
term e�ect, as one-step analysis cannot fully understand the system’s dynamic
behavior. Furthermore, another experiment has shown that the feedback loop
leads to the homogenization of user behavior, both at the global level of all
users and groups of similar users [34]. It was also shown that the feedback
loop amplifies existing biases in the recommender systems [35, 31].

1.3.2 Biases in data
This group of biases typically comes from the data collection process, when
the gathered interactions are only a snapshot of the real-world data influenced
by many factors. Such selection arises in the deviation of training data from
the test data, leading to the recommender model’s suboptimal solution [31].

One of the biases, called selection bias, says that collected ratings do not
form a representative sample, as the user is free to determine which items will
rate mainly based on individual preferences. The free choice results in the
hypothesis that the data is not missing at random [31, 36].

Exposure bias is based on the nature of implicit interactions. Unlike ex-
plicit ones, they only provide partial information about the user’s behavior,
and since the user is only exposed to a fraction of items, it is unclear whether
they are missing because the users did not see them or did not like them [31].

The last-mentioned here is position bias, which derives from the items’
position in the list of recommendations, as users tend to interact with those in
higher places, even if this does not truly reflect their actual preferences [37].

1.3.3 Popularity bias
One long-standing problem with collaborative filtering algorithms is that they
mainly focus on popular items with many ratings but less on unpopular and
less well-known ones. This e�ect, called popularity bias [38, 39, 40], harms
both users, who repeatedly receive only popular products and items where
popular ones become more and more popular, and the others become ignored
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over time [39, 41]. It has also been shown that when recommending less
rated items, the accuracy of the model decreases, which is called the long tail
recommendation problem [38].

The long-tail expression comes from the book by Anderson [42] describing
the phenomenon where niche product sales can eventually grow into a signif-
icant portion of all sales. In addition, the sale of long-tail products leads to
higher profits because the less popular ones can be sold at a lower price with
a higher margin than the popular items [41]. For example, it was discovered
that 30-40% of books sold by Amazon are books that are not ordinarily avail-
able in mainstream brick-and-mortar stores, and at the time of the study, they
had a revenue of $1 billion per year [43].

Such an approach is related to the Pareto Principle (also called the 80/20
rules), which says that a small portion of products (typically 20%) produces
a large portion of profits (typically 80%). This principle is typically applied
to analyze rating distribution in RS. While the long-tail items have the least
number of ratings (in terms of frequency distribution), they generate 20% of
total interactions. The rest, 80% of the distribution, is called short-head [41].
Figure 1.5 shows this principle on the MovieLens dataset, where it is apparent
that a small portion of top-rated items (the short-head) contains much more
ratings than the rest (the long-tail) [4].

Figure 1.5: Rating frequency distribution in the MovieLens dataset [4].

Abdollahpouri et al. [40] debate that the recommendation from the long-
tail is crucial for the success of RS, as most users know popular items while
picking from the less popular ones determines whether the system is capable of
producing personalized predictions. Their work also shows one of the possible
approaches for finding a balance between the coverage of the long-tail items
and the model accuracy while solving the multi-objective task. In the article
of the same team of authors [44], an interesting relation was found between
the number of ratings and the distribution of popular items in the user profile,
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which says that the larger the user’s profile, the more unpopular items there
appear over time. They also stated that users interested in less popular items
are more active in terms of contributions of ratings than other users, which
means their experience with RS should be considered as they can be viewed
as stakeholders of the system.

1.3.4 Unfairness
The definition of unfairness is that a computer system systematically and un-
fairly discriminates against some individuals or groups of individuals in favor
of others. Unfair discrimination then means restraining the opportunity of
individuals or groups in favor of others based on unreasonable or unfounded
grounds. The authors stress that if discrimination is carried out not system-
atically but as an e�ect of error, or if some form of discrimination occurs for
well-founded reasons not on unreasonable bases such as race or gender, it is
not necessarily an expression of unfairness [45].

One of the possible causes of unfairness is the data imbalance in represent-
ing di�erent groups based on attributes like race, age, gender, education level,
and others. Such data used during training causes the model to learn from
more represented groups, resulting in discrimination when the predictions do
not correspond to the actual preferences of disadvantaged groups [46].

Unfairness can also be observed at the level of personal preferences. In the
article by Abdollahpouri et al. [44], a di�erent propagation of the popularity
bias was observed for di�erent users, divided based on the degree of interest in
popular items. From the example given in their work, if a user positively rates
70 popular and 30 long-tail items, he should get recommendations correspond-
ing to this distribution, which a set of experiments refuted for several models.
The authors referenced the definition of calibration fairness [47], which says
that the recommendations should reflect various interests of the users based
on what they have interacted with in the past.

As fairness becomes a more and more studied topic, di�erent definitions
and variants emerge, so in the survey of Chen et al. [31], they were summed
up into the following groups.

Fairness Through Unawareness The model is fair if it has no access to
any sensitive attributes about users used during the training.

Individual Fairness A model is fair if it produces similar recommendations
for similar users. Such similarity can be measured in di�erent ways.

Group Fairness Predictions produced by a model are similar for the group
of users sharing similar attributes. This type of fairness includes demo-
graphic parity, predictive quality, or equality of opportunity.

Counterfactual Fairness The distribution of predicted values stays intact
in a world where the user’s sensitive attributes di�er casually.
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1.4 Evaluation process

The evaluation process is an essential step in verifying the quality and ability
of RS, and many excellent works have been written on this topic, describing
various techniques for recommender systems comparison and the pitfalls they
can bring [14, 48, 49, 50]. The following section summarizes the primary
steps, such as dataset selection and splitting, choosing suitable metrics, and
aggregating the measured results.

1.4.1 Online vs. o�ine

The evaluation can take place online or o�ine. Online evaluation o�ers the
possibility of comparing RS in real-life conditions and can determine whether
the system is as good as in the test environment. In A/B testing, a small
group of users is usually redirected to a new system, and a change in their
behavior is observed. Such change is manifested, for example, by the user
starting to follow recommended items more often, resulting in being put in
the basket and purchased, while for another system, these suggestions may be
avoided. The test group of users should be selected at random to maintain
fairness when comparing the two systems. Although online evaluations are
robust, they are costly and take a long to collect enough data [49, 14].

For this reason, recommendation algorithms are first preselected using of-
fline evaluation, which consists of calculating a set of metrics utilizing histori-
cal data with user interactions captured over a certain period. When selecting
a sample of data, it is necessary to avoid various types of data biases that may
arise. When establishing an o�ine evaluation protocol, it is essential to set a
process that reflects as much as possible the conditions in production [49].

1.4.2 Data selection

The first step of the o�ine evaluation is data preprocessing, and it may involve
filtering and pruning, removing ratings too much in the past, or converting
explicit interactions to implicit ones.

Pruning aims to reduce data size or improve prediction accuracy [51].
Beel and Brunel [5] showed that many researchers either employ some form
of pruning or operate with datasets already pruned. In the recent variants of
the MovieLens dataset, the authors removed all users who had less than 20
ratings because researchers typically need enough ratings per user for accurate
evaluation and because of the influence of the previous RS on new users, which
led to an untrue representation of their preferences. Figure 1.6 shows that 16%
of users rated less than ten movies, and 26% rated between 10 and 19 movies.
The pruning is also applied for items, where a minimum number of interactions
must be performed with an item to be kept [52, 53, 54].
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Figure 1.6: Distribution of ratings in the MovieLens dataset [5].

Another type of data pruning is addressed in [51], where di�erent algorithms
concerning the timestamp of the interaction were tested. The article argues
that many methods for CF do not take time into account and ignore the
phenomenon of shifting interest, which has a considerable influence on the
user’s behavior over time. It has been shown that, despite the removal of a
large number of older interactions, the accuracy of predictions has either been
improved or at least maintained, with still maximum catalog coverage and a
considerable reduction in data size.

Some CF methods work better or only with implicit interactions, so pro-
cedures for converting explicit ratings into implicit ones are involved. This
approach can more precisely capture user preferences as only high ratings
given to an item express genuine interest. For datasets like MovieLens or Net-
flix Prize, it is typical to keep only ratings of four and higher, as they range
between one and five stars [52, 53, 54, 13].

The final thing to consider when working with large datasets is whether
the user-item ratings are missing at random. The false illusion can be found
in many CF-oriented papers and can result in biased parameter estimation
for methods using clustering, matrix factorization, or probability models [36].
Little and Rubin’s theory of missing data [55] implies that ratings are missing
not at random (MNAR), as users choose which items to rate and which not
to rate based on their preferences. It is always good practice to incorporate
some of the missing data mechanisms. Marlin and Zemel [36] proposed that
evaluation should be done against randomly selected items of held-out data
instead of items a user chose to rate because it more reflects a goal of RS,
which is recommending new items not seen before.
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1.4.3 Data splitting

Before model evaluation, the dataset must be split into a training, validation,
and test set. Several splitting strategies were developed for this purpose, an
overview of which based on their occurrences in the literature is summed in
Meng et al.’s [6] article. Both validation and test sets will be viewed as a single
one for further simplification, as they are created on the same bases.

Leave One Last The last interaction from the user’s history is used for the
test and the previous ones for training. The advantage of this approach
is that as much of the data is kept for training. On the other hand, it
does not adequately capture users’ behavior at di�erent time points. In
addition, due to the inconsistent determination of the period for the last
interaction, information only available in the future may appear during
the training [6].

Temporal User/Global Split Instead of using one interaction, this strat-
egy performs a split into two parts in a specific ratio. There are two
variants of how to do this. The first one, called temporal user, uses a
portion of the last interactions separately for each user, and the second
one, called temporal global, specifies a single global time boundary ap-
plied to all users, above which all interactions are used for the test. The
advantage of the second variant is that data only available in the future
can no longer appear during the training. However, using a global time
point may result in no test interactions or very few training interactions
available for some users [6]. A comparison of both is shown in figure 1.7.

Random Split This strategy divides the interactions randomly into a train-
ing and a test set while the time sequence is not considered. The dis-
advantage of this strategy is the di�culty of reproducibility and the
problem of future data leakage during training [6].

User Split Instead of splitting the interactions, users are split into training
and a test set [6]. While previous strategies only measure the model’s
generalization to unrated items of the same users (weak generalization),
this strategy measures the model’s generalization to utterly new user
profiles (strong generalization). The evaluation process is as follows:
first, the model is trained using all interactions of the training users.
Then, the interactions of the test users are divided into an observed
and held-out part, where the first is shown to the model to learn user
preferences. Finally, the predictions are compared to the held-out part to
compute the metrics [56]. The disadvantage is that many CF methods do
not support predicting for new users [6]. On the other hand, this strategy
is viewed as more realistic because it corresponds to the production usage
of RS, and it was used, for example, in [52, 54, 53].
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Even though publicly available datasets contain millions of interactions, some
datasets may be significantly smaller a do not have enough data for the proper
evaluation. For this case, the cross-validation method is used [56]. The most
common form is k-fold cross-validation, where the data is evenly divided into k
parts (folds), which are repeatedly selected so that one fold is used for testing
and the other k ≠ 1 folds for training. In this way, each data point appears at
least once in the evaluation [57].

Figure 1.7: Comparasion of di�erent splitting strategies [6].

1.4.4 Accuracy metrics
When selecting metrics for the model evaluation, it is distinguished between
ranking and rating prediction tasks [13]. In the first case, the accuracy of the
predicted value is measured against the rating user gave to an item. Vari-
ous metrics come from machine learning or statistics literature, but the most
common is the Root Mean Square Error (RMSE), which is specific as it pe-
nalizes more significant deviations than the other metrics. The less commonly
used is the Mean Square Error (MSE) or the Normalized Mean Average Error
(NMAE), which normalizes the predicted values in order to be able to com-
pare results across di�erent datasets [49]. Usage of the Mean Absolute Error
(MAE) in some older papers is also possible to find [1]. The RMSE metric is
defined as 1.1, where R̂ is a list of predictions for a user-item pair r̂ui and rui

is the correct rating value.

RMSE =
ı̂ıÙ

1---R̂
---

ÿ

ruiœR̂

(rui ≠ r̂ui) (1.1)

The second set of metrics suitable for evaluating a rating task is based on the
IR theory. A user typically enters a query to the system, which returns a set
of documents sorted according to their similarity to the that query [58]. Many
metrics have been designed for measuring the quality of results, but only the
most used ones in the RS domain will be presented here.
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The first metric is Precision@N, which expresses the ratio of relevant items
between top-N recommendations versus the number of recommended items N .
This metric makes little sense in absolute terms, as only a small fraction of
relevant items are observed and therefore usually has a low value. The reason
is related to the MNAR phenomenon when it is not possible to tell only from
the data whether non-rated items are irrelevant to the user or he has just
chosen not to rate them [13]. In definition 1.2, reli represents a function that
returns 1 if there is a match at a position i, else zero.

Precision@N =
qN

i=1 reli
N

(1.2)

The second metric is Recall@N, which expresses the ratio of relevant items
between top-N recommendations and the number of relevant items. It has the
advantage over the previous metric that if we assume that relevant items are
missing at random (while other items may be missing not at random), this
metric can be calculated without the MNAR bias e�ect [13]. In definition 1.3,
Iu is a list of relevant items rated by a user.

Recall@N =
qN

i=1 reli
min (N, |Iu|) (1.3)

The last one is Normalized Discounted Cumulative Gain (NDCG@N) [59],
which compares the order of top-N items among the ideal order of the same
items. Unlike the precision and recall, NDCG is top-weighted, so incorrect
predictions at higher positions are more penalized as they have more impact
on the user. The relative penalties come from the definition 1.4 of Discounted
Cumulative Gain (DCG). Also, the ranking from a user perspective is needed
to calculate the maximal possible DCG and use it for normalization [14].

DCG@N =
Nÿ

i=1

2reli ≠ 1
log2 (i + 1) (1.4)

It is usual for most metrics to be calculated only for the top-N recommenda-
tions, denoted by the symbol @N. This cut-o� approach best represents the
natural usage of RS, where the user typically sees only a few items from the
many available [14].

1.4.5 Beyond-accuracy metrics

The quality of RS can be viewed in various ways, but based on definitions from
the service industry domain, the real judge of quality are the users interacting
with the system, which can be both customers or vendors, and the expectations
of both groups should be met [60]. Although the accuracy of recommendations
is a significant indicator of the quality, it is far from the only one and should
be used in combination with other equally important. Instead of looking at
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recommendations as on the individual items, it is necessary to see the whole list
as the user sees it. Users do not need precise recommendations but meaningful
and pleasant ones that meet their expectations. When selecting between two
algorithms, it is necessary to compare both from other aspects than just the
accuracy because even if two algorithms are equally accurate, they can di�er
significantly in other factors that the user discovers very quickly and can have
a positive but also a very negative impact on him [61].

Over the past decade, many articles have been devoted to the beyond-
accuracy metrics. However, as these are still relatively new concepts, their
definitions vary on how the authors perceive the nature of each. Covering
these perspectives is beyond the scope of this work. However, several high-
quality papers have been produced for this purpose [48, 62, 63], which provide
a comprehensive overview of the definitions alongside the approaches for rec-
ommender algorithms adjustments.

The first two metrics are novelty and diversity. In comparison, novelty is
the di�erence between the present and the prior experience, while diversity
stands for the di�erence between the current set of items. For example, if a
user is recommended a song that he has never heard, it can be said that this
is the expression of a novelty; on the contrary, the recommendation is diverse
if it contains songs of di�erent genres instead of di�erent songs of the same
genre. It should be borne in mind that the two concepts described are very
close and influence each other. Although there are other metrics from the
beyond-accuracy category, these two are considered the most important. As
it is very complicated to model user preferences that are complex and change
over time, using diversity as a complementary metric to accuracy makes it
possible to increase the chance that if RS does not hit the user’s preferences
exactly, at least something will appear in the list of recommended items that
will please or surprise him [63].

The most common definition of diversity is an average intra-list diversity
or an average distance between items within a list of recommendations [64].
This definition can be expressed as 1.5, where R is a list of top-N predictions,
and dist(i, j) is a function returning the distance of items i and j. The dis-
tance metric varies in the literature, and it can be the complement of Jaccard
similarity, cosine similarity, or Hamming distance if the items are represented
in the form of rating vectors [48].

Diveristy@N =
q

iœR
q

jœR\{j} dist (i, j)
|R| (|R| ≠ 1) (1.5)

Novelty is often defined as the opposite of popularity, implying that an item
is novel if very few people know it. Popularity, in this case, is described as the
probability that a random user knows the item, which is additionally scaled
using an inverse logarithm to achieve a decreasing function giving more mean-
ing to the rare items. In definition 1.6, R is a list of top-N recommendations,
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and pi is the popularity of an item expressed as the ratio of users who have
interacted with the item at least once [63].

Novelty@N =
q

iœR ≠ log2 pi

|R| (1.6)

Diversity and novelty can sometimes be seen as objectives opposite to ac-
curacy, where it is necessary to find their optimal trade-o� while solving
the multi-objective problem. If the system starts recommending novel items,
higher diversity also appears both from the perspective of users and the system
as a whole [65]. Although experiments showed that more diverse recommen-
dations might reduce accuracy, users still preferred getting various items [61].

A metric often confused with novelty is serendipity. While novel items
may not be necessarily surprising to the user, serendipitous recommendations
are the ones a user would not expect, and they can be surprising as he would
not usually discover them by himself [60, 50]. The metric is expressed as 1.7,
where Runexp is a subset of top-N recommendations R containing unexpected
items, and Ruseful is a subset of items useful to the user. The unexpectedness
is measured using primitive prediction models, which are assumed to produce
obvious items without any surprise. Such unexpected items are obtained by
subtracting R from the items recommended by the primitive model [60].

Serendipity@N = |Runexp fl Ruseful|
|R| (1.7)

Another essential metric is coverage, which most often occurs in the form
of item coverage as the ability of RS to cover the catalog of items [60, 50].
Moreover, it is distinguished between prediction coverage, which determines
the coverage without any cut-o�s, and the second, catalog coverage, limited
only to top-N predictions, thus more approximating the typical usage of RS.
As coverage decreases for smaller values of N , it is often practical to find a
threshold for which the coverage rate stabilizes [60]. In definition 1.8, Ru is a
list of top-N recommendations for user u, and I is a catalog of available items.

Coverage@N =
--t

uœUt
Ru

--

|I| (1.8)

Within the CF algorithms, RS is more accurate the more ratings of the users
it has access to. As popular items have much more interactions than others,
a system with the aim of the highest accuracy will recommend the short-head
items, which goes against trying to cover as much of the catalog as possible.
Another finding is that increased coverage does not necessarily lead to higher
serendipity; on the contrary, higher serendipity leads to higher coverage over
time. Thus, if serendipity needs to be increased, it is also necessary to extend
the catalog coverage to rare and less popular items [60].
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1.4.6 Long-tail metrics

As discussed before, popularity bias is an often problem. Therefore, several
metrics have been described in the literature to measure how well the RS rec-
ommends from the class of long-tail items. The first is the Average Percentage
of Long-tail Items (APL), which measures the ratio of long-tail items in each
user’s list of recommendations [4]. In definition 1.9, R is a list of the top-N
recommended items for a user, and � is a set of the long-tail items.

APL@N = |{i, i œ (R fl �)}|
|R| (1.9)

The second metric is the Long Tail Catalog Coverage (LCC), which measures
the same ratio but within all recommendations over the entire catalog of items.
This metric is beneficial because it may happen that RS will recommend the
same subset of long-tail items for each user so that the APL metric will be
very high, but the rare items will be very little covered [4]. The definition 1.10
is similar to the definition of classic coverage, but it contains an intersection
with the set of long-tail items �.

LCC@N =
--!t

uœUt
Ru

"
fl �

--

|�| (1.10)

1.4.7 Metrics aggregation

Most metrics are calculated for each user, resulting in an array of values in
which aggregation has to be applied to express the final value. Such aggrega-
tion may be a simple average, median, or geometric mean [14]. The weighted
average was also employed, where the weight was determined as the number
of items a user rated, so the evaluation took more accent on active users [13].

Ekstrand et al. [66] emphasize the benefit of distributions over the point
estimation of metric values, as only in this way critical aspects of RS e�-
ciency can be captured between individual user groups. They propose using a
marginal distribution for each stakeholder group separately and across them,
monitoring distribution changes at di�erent periods, and comparing shifts in
distribution to the current system or against the ideal target.

1.4.8 Evaluation protocols

As Said et al. [67] demonstrated, many factors can influence the final value
of metrics, even if they are calculated on the same datasets. These factors
include various pruning and splitting strategies, specific implementations of
recommender algorithms, hyperparameters settings, the strategy for selecting
candidate items, or the exact procedure for measuring model performance. As
there is no unified system for RS evaluation, comparing two models under dif-
ferent conditions is meaningless. It was also debated that a single evaluation
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system such as the one used in the Netflix Prize competition led to a signif-
icant shift in the area of RS because it was possible to compare algorithms
fairly. Therefore, it is essential to precisely report all steps taken during the
experiments to reproduce the results by others later.

The importance of a detailed evaluation protocol is also underlined in the
work by Meng et al. [6], which sets out several steps that need to be fulfilled
when publishing the results. It is necessary to describe a specific strategy for
splitting the dataset with details about data pruning; splitting parts of the
data should be publicly released, and standardized tools for model evaluation
should be used. The authors also recommend employing the temporal global
splitting strategy as being the most realistic.

1.5 Visualization techniques

Visualization techniques help understand the results obtained during the ex-
periments, as they bring a new perspective on a problem and allow looking for
hidden patterns or anomalies that are not obvious when examining raw data.

One of the methods is a projection of latent space using dimension reduc-
tion (DR) tools, which embeds a high-dimensional representation of an item
into a space with a dimension of two or three [7]. Although it is possible to
set any output dimension in DR methods, not all of them are intended for
visualization purposes [68]. It must be kept in mind that usage of DR for
visualization can often be misleading if the hyperparameters are wrongly se-
lected. Methods can create clusters not present in the original data or display
similar pairs far apart and vice versa [68].

In the literature, two categories of methods for visualization using DR
are distinguished: local methods, which try to preserve the local structure of
high-dimensional data, and global methods, which try to preserve the global
structure of the data. Examples of global methods are principal component
analysis (PCA) [69] and multidimensional scaling (MDS) [70], but these can-
not capture the complex non-linear structure in the data [68] and will not be
further discussed. On the other hand, more novel local methods exist, such
as t-distributed stochastic neighbor embedding (t-SNE) [71], uniform mani-
fold approximation and projection (UMAP) [72], and the minimum-distortion
embedding (MDE) framework [7].

The t-SNE method constructs probability distributions between two points
in a high-dimensional space and tries to find such an embedding representa-
tion in a low-dimensional space to minimize the Kullback-Leibler divergence
between the previous and current distribution. The main hyperparameter of
this method is perplexity, which sets the e�ective number of neighbors, and the
larger the value, the more uniform the distribution of probabilities becomes.
By contrast, a low value forces the algorithm to focus the probabilities only on
the nearest points. From the predecessor, the SNE method, it di�ers mainly
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by using the Student-t distribution instead of the Gaussian distribution to
measure the similarities of two points in a low-dimensional space [71].

The UMAP method was inspired by t-SNE, and its algorithm consists of
two phases. First, a weighted graph of the closest neighbors is assembled,
where the probability distribution represents individual weights. The second
optimization phase performs moving points of this graph in a low-dimensional
space so that it gives together points that are close to each other in the high-
dimensional space and, conversely, it pushes points away that are far apart
in the high-dimensional space. Unlike the t-SNE method, UMAP better pre-
serves global structures and has significantly better time performance. In
addition to the dimension, this algorithm accepts two other influential hyper-
parameters. The first is the number of neighbors, and the higher this value is,
the more large structures are captured, but at the expense of averaging the
smaller detailed structures during the local approximation. Thus, the lower
value splits the manifold into many small connected components. The sec-
ond hyperparameter is min-dist, which determines the distance to the nearest
neighbor to maintain local connectivity. The smaller this value is, the more
dense each region will be; the larger it is, the more points will be spread apart.
The spreading solves the overlapping of points but reduces the faithfulness of
the manifold structure representation [72]. Di�erent visualizations of UMAP
and t-SNE can be seen in figure 1.8.

Figure 1.8: UMAP (left) and t-SNE (right) on the MNIST dataset [7].

The MDE framework generalizes the concept of measuring similarities be-
tween two points using weights or distances. A distortion function of the
Euclidian distance between the high-dimensional vectors is introduced for a
pair of points, and the goal is to find such embeddings that minimize the to-
tal distortion. Searching for these embeddings can be influenced by various
constraints, such as centering them at mean zero, fixing the positions of some
existing embeddings when adding new ones, or a standardization constraint
that requires embeddings to be centered while having an identity covariance.
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The quality of embeddings depends on the specific implementation of the dis-
tortion function, which gets a weight of two points, and it should return a
low value for similar (attractive forces) and a high value for dissimilar pairs
(repulsive forces). A comparison of results for di�erent distortion functions
is shown in figure 1.9. As with UMAP, the optimization phase is preceded
by building a neighborhood graph, where the edges are ranked based on the
similarity of two items, and the number of nearest neighbors to be preserved
can be set as a hyperparameter. An advantage of this method is the high scal-
ability to large datasets while keeping a superior computational time, among
others, thanks to GPU acceleration. In addition, both t-SNE and UMAP can
be implemented using the MDE framework by setting the appropriate distor-
tion functions, which makes this method the most versatile [7]. Unlike t-SNE,
UMAP and MDE may be used not only for visualization but also generally
for DR in machine learning [72, 7].

Figure 1.9: Distortion functions 1 (left) and 2 (right) of MDE [7].

The projection into the two-dimensional space can often be found in the rec-
ommender systems domain. Some works, for example, focus on developing
models that involve user interactions and visual representations of items such
as clothing [8, 73] or artwork [74] to construct the predictions. They encoded
the products images into features vectors using various machine learning tech-
niques, and the representations thus learned were then displayed using the
t-SNE method, as illustrated in figure 1.10, which shows that similar types of
clothing are close to each other while di�erent ones are far away.

A similar approach was proposed by Shen et al. [75] in their system for vi-
sual exploration of the latent music space, where music files were used instead
of images. The files were first converted to a spectrogram and then processed
using DL models to create latent representations reflecting a characteristic of
each musical composition. Finally, the projection with t-SNE combined with
other visualization tools allowed them to discover insights about the data.
Gil et al. [76] introduced the VisualRS framework for rendering a tree struc-
ture of relationships between items or users. These relationships were distin-
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Figure 1.10: Visualization of the clothing style space with t-SNE [8].

guished graphically using di�erent colors and node sizes to highlight essential
similarities between two elements. It is also possible to choose from di�erent
tree charts depending on which is most suitable for the current problem.

Visualizations are not only advantageous for researchers. There are also
tools designed for the end-users of RS and for whom some form of visualization
can help understand the reasons behind the recommendations they received,
which increases confidence in the system. Also, it leads to growing user in-
terest in RS, higher acceptance of further recommendations, and education
on how the system operates [77]. Some works like [78] o�er, in addition to
the explanation, the possibility to influence the weights of data sources used
for the prediction and see how these weights impact the results. A similar
interactive tool was proposed by O’Donovan et al. [79], in which the recom-
mendations were explained through a graph representation of the closest users
with a possibility to modify the neighborhood size and observe the changes in
the list of predicted items.

1.6 Recommender frameworks
Over the last decade, many recommendation frameworks have been developed,
most of which were motivated by the need for reproducibility and fair com-
parability of results obtained during experiments. The earliest frameworks
consisted mainly of fine-tuned implementations of the most well-known rec-
ommender models and essential tools for o�ine evaluation. Some of these are
LensKit [80], RankSys [81], or LibRec [82], and thanks to them, easy-to-use
software for the development and testing of recommender systems was made
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available to both existing researchers and new entrants. Over time, other
frameworks such as DeepRec [83] extended implemented models to include
state-of-the-art solutions, including deep learning models.

The increased interest in reproducibility of experimental results led to
frameworks oriented toward comprehensive evaluation mechanisms, such as
various dataset filtering and splitting techniques, tools for hyperparameters
tuning, beyond-accuracy metrics, and metrics for biases and unfairness detec-
tion. Sun et al. [84] analyzed 85 papers and summarized the fundamental
factors influencing the evaluation process of RS. Then they proposed a stan-
dardized evaluation procedure based on this analysis, which they wrapped in
the DaisyRec library. On the other hand, Anelli et al. [85] analyzed the most
prominent recommender frameworks, and due to some of these shortcomings,
they designed and created the most extensive framework called Elliot. It con-
tains over a dozen splitting methods, around 50 strategies for hyperparameter
optimization, and over 30 di�erent evaluation metrics. The third one men-
tioned is the Librec-auto tool of Sonboli et al. [86], which acts as a wrapper
around the original LibRec framework and aims to automate the experimen-
tal process, emphasizing the analysis of diversity and fairness in combination
with the integration of re-ranking algorithms.

In addition to the issue of consistent evaluation protocols, there is a de-
mand for recommender systems explainability, which was recently covered in
the new framework called recoXplainer [87]. It o�ers an extendable library for
developing explainable recommender systems, including multiple model-based
and post-hoc explanatory techniques.

When reviewing current solutions, it is notable that some new perspective
on model evaluation is missing. The metrics are often presented in plain tables
having values aggregated over the users. In addition, most frameworks lack
implementation of the highly discussed beyond-accuracy and long-tail-oriented
metrics. The previous works also do not o�er the possibility of dataset analysis
by projecting users into the two-dimensional space using their interactions and
discovering possible clusters based on their behavior. Furthermore, the lack
of a simulation environment where one could test the RS in real-time makes
other frameworks relatively static without any interactive element.
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Chapter 2
Repsys framework

Although the most recent frameworks include a variety of evaluation mecha-
nisms and a rich set of integrated models, they do not add anything unique
to the array of evaluation procedures. The Repsys framework is distinct in
that it employs a novel approach to presenting results in a highly interactive
format. The key features and objectives are as follows.

Easy Usage The interface for integrating models and datasets is intuitive.
The Python SDK library has been created for this purpose, o�ering two
basic classes where it just needs to implement a few basic methods, and
the framework will take care of everything else. The system also looks at
the models as black-box algorithms and thus does not require any specific
modifications in model implementation beyond the primary interface.
The core component is a performance-optimized web application that
serves as a gateway when working with the framework, and its design is
strongly focused on clarity and user-friendliness.

Simple Control Command-line utility has been created to operate with the
framework e�ciently. It can be used to run all the integrated tools,
such as dataset splitting, creating visualizations, training models, and
running the evaluation process. In addition, all these steps can be con-
trolled using a configuration file to adapt the framework to a specific
project fully.

Visual Exploration The measured metrics are examined for their distribu-
tion instead of aggregating the values across all users and displaying a
single number. This approach allows locating user groups treated dif-
ferently by the RS than others. In addition, these distributions are not
only presented in histogram form but are also mapped into the 2D user
space, bringing an additional level of bias analysis. In addition, all visu-
alizations are interactive and, thanks to the rendering library used, o�er
a range of tools to customize them.
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Beyond Accuracy Evaluating models solely on recommendation accuracy
is no longer su�cient to create a system capable of production use.
Therefore, the framework provides a set of beyond-accuracy metrics such
as diversity, novelty, or coverage, along with metrics aimed at detecting
the popularity of bias, making it possible to analyze catalog coverage
and the extent of recommending long-tail items.

Authentic Simulation The researcher’s perspective on designing a new rec-
ommender model may be diametrically opposed to how the end-user per-
ceives it. One way to verify the functionality of a model other than by
using evaluation metrics is to try working directly with the system as if
it were an actual production deployment. For this purpose, it is possible
to build a unique dashboard containing panels with real-time updated
predictions combined with di�erent settings or models and track changes
during interaction with currently recommended items.

The aim is not to create another benchmarking system with many recom-
mender models but a simple and easy-to-use environment that o�ers a new
perspective on model evaluation. The framework is currently oriented only
on the top-N recommendation tasks, and although the sequence-aware RS are
not supported yet, they will be in the near future.

This chapter will first demonstrate integrating models and the datasets
into the framework using the SDK library, the command-line utility, and the
configuration file. Then there will be described the mechanisms of prepro-
cessing the dataset, such as filtering and splitting, followed by an overview of
implemented tools for projecting users and items into two-dimensional space.
Finally, the main features of the integrated web application will be presented.

2.1 Basic usage
Working with the framework is straightforward. Create files with the models
and dataset source code using the SDK library, add a configuration file with
specific project settings, and run the commands from the command line utility.

The SDK library contains interfaces for importing data from any custom
dataset and for the integration of any recommender model. Starting with the
dataset, Repsys comes with a set of internal data types for labeling the input
data, which helps the framework understand the meaning of the individual
attributes. These data types are UserID (unique identifier of a user), ItemID
(unique identifier of an item), Interaction (numerical value of interaction like
user’s rating), Title (name of an item or product), String (textual attribute),
Number (numerical attribute), Category (categorical attribute with a single
value), or Tag (categorical attribute with multiple values). In order to add
a new dataset, an instance of the Dataset class must be created, and the
following methods implemented.
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item cols() returns a dictionary with the item attribute names as keys and
the framework data types as values.

interaction cols() returns a dictionary with the interaction data columns as
keys and the framework data types as values.

load items() returns a data frame with a catalog of items. If there is a need
for data preparation or feature extraction, it should be done here.

load interactions() returns a data frame with all user-item interaction pairs.
The preliminary preprocessing of interactions like converting explicit
feedback to implicit should be deployed here.

class MovieLens(Dataset):
def item_cols(self):

return {"movieId": ItemID(), "title": Title(),
"genres": Tag(sep=","), "year": Number()}

def interaction_cols(self):
return {"movieId": ItemID(), "userId": UserID()}

def load_items(self):
df = pd.read_csv("./ml-20m/movies.csv")
df["year"] = df["title"].str.extract(r"\((\d+)\)")
return df

def load_interactions(self):
df = pd.read_csv("./ml-20m/ratings.csv")
return df[df["rating"] > 3.5]

Listing 1: Integration of the ML dataset into the framework.

Listing 1 shows an example of the MovieLens [88] dataset implementation.
Each attribute is assigned one of the data types, such as ItemID (movie iden-
tifier), Title (movie title), Tag (list of genres separated by a comma), and
Number (shooting year). At the same time, the interactions are labeled with
UserID and ItemID (pairs of users and movies). Because the rating value is
omitted, the framework will automatically create a binary interaction matrix.
The preprocessing of extracting the year from the movie title and filtering
only interactions with a rating higher than four is also made.

When adding a new model, an instance of the Model class must be cre-
ated, and the following methods must be implemented. The first three are
mandatory, and the remaining two are optional.
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fit() runs the model training or loads its latest checkpoint if it already has
been trained. This method is called during the training process, before
the model evaluation, or before the web application startup.

predict() gets an interaction matrix and returns a prediction for each user-
item pair. This method is used for the recommendation previews inside
the web application or during the model evaluation process.

web params() returns a dictionary with parameter names as keys and the
framework’s UI components as values. These parameters then appear as
input fields in the web application, where it is possible to set any value,
which is later postponed to the prediction method.

compute embeddings() gets an interaction matrix and returns a tuple of
user and item embeddings. This method is used for the data visualiza-
tion if the DR algorithm is set to a custom type.

class PureSVD(Model):
def __init__(self, n_factors=50):

self.n_factors = n_factors
self.item_sim = None

def fit(self, training=False):
X = self.dataset.get_train_data()
U, sigma, VT = randomized_svd(X, self.n_factors)
self.item_sim = VT.T.dot(VT)

def predict(self, X, **kwargs):
X_predict = X.dot(self.item_sim)
X_predict[X.nonzero()] = 0
return X_predict

Listing 2: Integration of the PureSVD model into the framework.

Listing 2 shows an example of the PureSVD [26] model implementation. The
training method includes matrix factorization, while the prediction method
uses learned latent representations to evaluate all items based on input user
interactions. The predictions can be modified before returning, such as re-
moving ratings for items with which the user has already interacted. The
framework will later take care of cutting top-N predictions according to the
application settings or evaluation mechanism.
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2.1.1 Command-line utility

The framework command-line utility makes it easy to operate with the imple-
mented tools. A basic overview of the commands is in the following list.

repsys dataset split splits the interactions into the training, validation, and
test set. It also stores a mapping of user/item indices to their IDs.

repsys dataset eval runs the dataset visualization, creating an item and
user 2D embeddings based on the selected algorithm. The algorithm can
be one of the following: MDE [7], t-SNE [71], UMAP [72], or custom.

repsys model train calls the training method of implemented models. The
model has access to the training data through dataset reference.

repsys model eval runs an evaluation process of the models using the vali-
dation set as input to the prediction method.

repsys server runs the web application, where the results of the visualiza-
tions, model evaluations, and recommendation previews can be observed.

2.1.2 Configuration file

The configuration file contains options for the dataset splitting and pruning,
settings of the evaluation mechanism and visualization algorithms, or server
setup. Listing 3 shows a sample of such a file with the training split portion
and the minimum number of user interaction parameters, the cut-o� for the
diversity and coverage metrics, and the number of neighbors for the MDE
method at the end of the file.

[dataset]
train_split_prop = 0.9
min_user_interacts = 10

[evaluation]
diversity_k = 10
coverage_k = 15,30

[visualization]
pymde_neighbors = 10

Listing 3: Example of the configuration file.
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2.2 Framework pipeline

After implementing the dataset with the SDK library, the framework takes
all the necessary steps to load the data correctly, create visualizations of the
user/item space and evaluate the models across various metrics. All the out-
puts produced within each step of the framework pipeline are combined to
create di�erent views on RS analysis, as shown in Figure 2.1.
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Figure 2.1: Schema of the framework pipeline.

2.2.1 Dataset preprocessing

There are two types of data loaded through the SDK: interactions data and
items catalog. The interactions must take the form of user-item ID pairs, and
they may include any additional information, such as the value of user rating
or the amount of product purchased. During the validation, it is checked that
all interacted items are also included in the catalog to preserve consistency.

Then, the data are pruned by two conditions: a minimum number of
interactions made by a user and a minimum number of interactions with an
item. Both thresholds can be specified in the configuration file, and they are
both set to zero by default. Usually, the interactions are filtered out by other
conditions like the minimal value of a rating, but this procedure is kept to the
developer’s responsibility before the data are handed over to the framework
for the most versatile usage.

After that, the interactions are divided into multiple sets using the user
split strategy, which is currently the only strategy available. It was selected
as the best simulation of the RS production usage because it allows measuring
the model’s generalization to the completely new user profiles. The splitting
process is shown in Figure 2.2, and it takes the following steps.

Firstly, the users are randomly divided into training, validation, and test
set, while the portion of training users can be defined in the configuration file,
and by default, it is set to 85%. The rest of the users are divided equally
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Figure 2.2: Schema of the splitting strategy.

into the validation and test sets. Then, some validation and test interactions
are filtered out if they are related to an item not seen by any training user.
After that, the pruning process is repeated because the data may change due
to the previous steps, and some users with less than a minimum number of
interactions could appear. Also, to keep the consistency of the catalog, only
items interacted by the training users are kept.

Next, for each user in the validation and test set, the interaction history is
split with the random split strategy by defined portion into the observed and
held-out subsets, making 80% and 20% by default. This strategy can not take
time to consider, but more realistic strategies like the global temporal split will
be added in the future. All three sets and their subsets (in case of validation
and test data) are converted into sparse matrices, where each row represents
a user, and each column represents an item. When no additional information
about the user-item interaction is provided, the corresponding positions are
filled with number one; otherwise, the value, like the user’s rating, is used.
At the end of the splitting process, there are five matrices. The first is for
the training, and two pairs of matrices are for the evaluation, where each pair
contains one with observed and one with held-out interactions.

For the items catalog data, the ID and name of an item must be at least
provided. The data are then processed depending on each attribute’s data
type, like precomputing distributions of numerical values or storing unique
values of categorical and label attributes. The catalog is paired with the inter-
action data to provide various explanation details during the dataset analysis
or model evaluation analysis. The catalog data are also used when previewing
recommendations to simulate the production experience of the RS.

In order to keep the mapping between the user’s or item’s index in the
interaction matrix and their original ID, an optimized bidirectional dictionary
is created, which is stored alongside the split results. Thanks to this, it is easy
to retrieve the ID of an item at some index in the prediction vector and use
this ID to fetch additional information from the catalog and vice versa.
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2.2.2 Models evaluation

The evaluation process aims to verify the accuracy of predictions and deter-
mine how diversified or new recommendations are and whether they cover
the whole catalog of items equally. The framework is designed not only to
measure the model’s overall performance in aggregated form but also to make
it possible to identify which groups of users are preferred by the model or
exhibit di�erent behaviors compared to others. Therefore, along with averag-
ing measured values across all users, metrics are stored as an array of values
computed individually for each user. This procedure later allows the results
to be viewed as a random variable distribution, which sheds more light on how
the model behaves towards di�erent subjects. A significant advantage of this
approach is that the individual metrics can be paired with the user’s position
in the two-dimensional space, bringing other details about various biases, such
as the model’s fairness within a group of users sharing similar interests.

As shown in Figure 2.3, the evaluation is directly related to the process of
the dataset splitting, as described in the previous section. The model is first
trained on the interactions of the training users. Subsequently, the observed
interactions of the validation users are submitted to the model’s input, which
returns the rankings predictions for all items in the catalog. In some cases, it
is usual to remove from the predictions those items that the user has already
interacted with, as the model should recommend new ones that the user does
not yet know. The predictions are then compared with interactions that the
model has not seen (held-out data), based on which the individual metrics
are calculated. Using a user split strategy and a strong generalization, the
model never sees the validation users during the training process. As the
implementation of the recommender model changes over time, it is helpful to
know how changes a�ect evaluation results. For this reason, the framework
stores all the results and allows a comparison of aggregated metrics values for
the current and the previous evaluation performed.
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Figure 2.3: Schema of the evaluation process.
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The overview of implemented metrics is summarized in Table 2.1. By default,
some metrics are computed using di�erent cut-o�s selected based on the reg-
ular usage in the research papers. No cut-o�s were applied to the rating
prediction metrics as it makes no sense by their nature. Along with aggre-
gated values, the distribution of metrics across validation users is available
for all metrics except the coverage and long-tail catalog coverage, which are
computed as a ratio of the items catalog.

Category Metric Cut-o�s Distributed

Rating accuracy
RMSE None Yes
MSE None Yes
MAE None Yes

Ranking accuracy
Recall 20, 50 Yes
Precision 20, 50 Yes
NDCG 100 Yes

Beyond-accuracy
Diversity 20 Yes
Novelty 20 Yes
Coverage 20 No

Long-tail metrics APL 20 Yes
LCC 20 No

Table 2.1: Overview of the implemented metrics.

The metrics are divided into four groups: accuracy of the rating prediction
task, accuracy of the ranking task, beyond-accuracy metrics, and metrics
oriented on the long-tail items analysis. The first group measures an error
between the predicted rating and the user’s actual rating, and they are im-
plemented only for completeness, as they have been a standard method of
evaluation in the past. These metrics are Mean Absolute Error (MAE), Mean
Square Error (MSE), and Root Mean Square Error (RMSE). The second group
of metrics is much more suitable for measuring the model’s accuracy as they
are more consistent with how users work with RS. Into this group belongs
recall, precision, and Normalized Discounted Cumulative Gain (NDCG).

Three beyond-accuracy metrics belong to the third group: diversity, nov-
elty, and item coverage. For the diversity metric, which measures the average
distance between the items within a list of recommendations, the cosine sim-
ilarity is used for the distance computation, and the ratings given to an item
are used to construct the feature vectors.

The last group is added for the popularity bias detection, as the items
from the short-head are recommended much more than the long-tail items.
The first metric is the Average Percentage of Long-tail Items (APL), and the
second is the Long Tail Catalog Coverage (LCC). The short-head is computed
as 20% of the most popular items in terms of cumulative rating frequency
distribution, while the long-tail is the rest 80% of items.
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One of the framework’s goals is a good performance on multiple levels, in-
cluding the evaluation process. A usual issue spotted in several solutions is
repetitive operations, like sorting the predictions by ranks constantly from
the beginning to compute the metric at di�erent cut-o�s. For this reason,
only the highest cut-o� value is used for which the ranks are sorted to avoid
unnecessary calculations. In the same way, pair-wise distances of items or
distribution of long-tail items are calculated at the beginning of the process.
Although it does not make the framework extremely modular, merging the
computational processes for similar metrics brings a significant acceleration.

2.2.3 Dataset visualization
The framework provides tools for visualizing data in two-dimensional space to
understand the latent structure of users and items. The process is performed
by reducing the dimensionality of the interaction matrix vectors, and the em-
beddings are created separately for the user space and item space to explore
these two groups individually, as shown in Figure 2.4. This approach is built
on the assumption that rated items characterize users, and the items are char-
acterized by users who interact with them. It is also possible to provide any
other representation, such as user/item attributes or some lower-dimensional
embedding vector obtained as an intermediate of the recommender model.
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Figure 2.4: Schema of the dataset visualization.

Visualization of users is done separately for the training and test data to
maintain consistency with the evaluation process. The projection of training
users into the latent space helps understand the character of the dataset before
any model is deployed. At the same time, the projection of test users plays
a strong role when studying model evaluation results because it o�ers a new
perspective on the distribution of the metrics. The user’s position in the 2D
space is paired with the metric value, allowing the detection of various biases,
such as popularity bias or unfairness of the model.
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The first integrated method for the visualization is t-SNE [71], whose im-
plementation in the scikit-learn [89] library is selected. The documentation
advice is followed, which says that if the input data dimension is too large, it
is necessary to use another tool to reduce the dimensionality to an acceptable
value. Thus, if the dimension is higher than 50, the PCA [69] method first
performs the reduction. Compared to the default setting, the initialization is
set to random, and the cosine metric is set for measuring distances. The per-
plexity is kept unchanged, but it is possible to adjust it for the specific dataset
using the configuration file. The second method is UMAP [72], for which the
implementation from the umap-learn [90] library is used. Again, the distance
metric is changed to the cosine similarity from the default setting. The latest
method integrated is the MDE [7] framework. The implementation from the
PyMDE [91] library is employed, where initialization is set to random to speed
up the calculation, while the number of iterations, memory size, and residual
norm boundaries are increased to get more stable results. For both UMAP
and MDE methods, the number of neighbors is kept unchanged, and it is con-
figurable to be adjusted for the specific problem. Among the three methods
implemented in the framework, MDE is chosen as the default one because it
is highly configurable while creating competitive embeddings capturing both
local and global data structures. Moreover, it is scalable to large datasets and
supports GPU acceleration for fast computation.

Suppose the integrated algorithms are insu�cient, or there is a need for
creating embeddings not based on the interaction data. It is possible to imple-
ment a custom method, which can be used directly as a visualization technique
returning two-dimensional embeddings, or as an intermediate DR algorithm.
If the output dimension from the custom method is higher than two, the MDE
framework is additionally applied to calculate the final reduction.

2.3 Results exploration

A user-friendly interactive web application has been created to explore the
evaluations and visualizations made by the framework. It consists of three
main components: the analysis of user and item latent space created based
on the training data, analysis of the results obtained during the evaluation
process, and simulation environment with previews of recommendations made
by a model for existing or synthetic users.

2.3.1 Dataset analysis

Understanding the input data is a fundamental prerequisite for developing
a successful solution for any machine learning problem. The framework al-
lows exploring the dataset using the visualizations created using one of the
algorithms for dimensionality reduction.
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The first is a visualization of items in the form of a scatter plot, where each
point represents one item and whose title can be displayed after the mouse
hover. Individual items can be filtered based on the attributes, automatically
loaded through the SDK library. For categorical and tag attributes, the filter
can be picked from the set of their unique values. For the numerical attributes,
all values are first divided into several bins, of which ranges are then used for
the filtering. Additionally, the lasso tool enables selecting a group of points to
analyze di�erent clusters of items. The distributions of individual attribute
values are calculated and then displayed in the side panel for such a cluster to
provide distinctive details. An example of the various options when working
with the items is shown in Figure 2.5.

Figure 2.5: Example of the item embeddings visualization.

Similarly, the analysis of the users is performed, whose visualization is shown
in the second scatter plot. Points representing individual users can also be
filtered, but this time based on the attributes of the items with which these
users interacted. Unlike filtering items, it is necessary to specify the minimum
number of interactions the users made with a given item. It is also possible
to select a group of points to analyze a cluster of users. The characteristic
details are shown as a list of the most interacted items by these users, along
with the attribute values distributions. Because the short-head items have
much more ratings than the others, they would appear in almost every list.
The TF-IDF weighting is employed to avoid this problem, where users and
items replace the documents and words. An example of the described tools
and visualization of the user embeddings is shown in Figure 2.6.
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Figure 2.6: Example of the user embeddings visualization.

2.3.2 Evaluation analysis

The following fundamental component of the web application is the dashboard
with model evaluation results. The first panel includes aggregated metric
values divided into several tabs based on the implemented models. If there
is a previous evaluation for a given model, each indicator also displays how
much the model has improved or worsened from the last result. There is also
a bar chart to quickly compare the results across the models. An example of
the metrics summary is shown in Figure 2.7.

Figure 2.7: Example of the model evaluation summary.
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The second panel is a histogram with the distribution of metric values cal-
culated for all validation users. It is possible to choose any combination of
the model and metric whose distribution should be displayed. Also, there is
an option to select any part of the distribution representing a group of users
and view more detailed information about them. Besides the most frequently
rated items and the distributions of item attributes, the users are projected
into the two-dimensional space, and their position is visualized in the scatter
plot. An example of this selection is in Figure 2.8.

Figure 2.8: Example of the metric distribution analysis.

The final panel also shows the distribution of metric values but projected into
the space of user embeddings. Each point represents one validation user and
is colored according to the metric value, as shown in Figure 2.9. Furthermore,
di�erent color ranges and point sizes for better visibility can be set. To bet-
ter understand the di�erences between data clusters, it is possible to select
the group of points using the lasso tool and display additional details as in
the last panel. Both last two visualizations allow locating a group of users
discriminated by the model or exhibiting di�erent characteristics.

2.3.3 Simulation environment
Once the models are evaluated, it is helpful to test their functionality on some
users, for which purpose, there is a simulation environment. The simulator has
two modes: build mode and preview mode. In the build mode, it is possible to
create a custom dashboard as a list of panels, where each of them represents
one recommender. These panels have a title, an associated model, and a set of
parameters specific to the model implementation. As mentioned in the SDK
library interface, one of the methods may return a list of web parameters,
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Figure 2.9: Example of the metric values projection.

which then appear here, and they can be set to any value, which is later
passed to the prediction method. For example, adding a parameter with a set
of movie genres creates a selection field, and based on the chosen genre, the
predicted items are filtered out. The number of visible items with the number
of total fetched items can be set to enable another level of customization. An
example of the simulator in the build mode is shown in Figure 2.10.

Figure 2.10: Example of the simulator in the build mode.
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In the preview mode, the created panels are transformed into lists of recom-
mendations. The response to various input interactions can be tracked by
selecting an existing user from a validation set or creating a synthetic user by
assigning a list of implicit feedback on items from a catalog. Items can be
searched by their title, and the searching mechanism is optimized for datasets
even with thousands of products. Once a user is selected, its previous interac-
tions are displayed on the right side, and recommendations returned by models
individually for each recommender panel appear on the left side. Each panel
consists of card components, the specific form of which can be customized by
mapping the attributes of items to specific fields. To create the most realistic
simulation of RS, one can switch to interactive mode, during which he con-
trols the user’s subsequent behavior by clicking on the recommended items
and watching how the prediction changes. Figure 2.11 shows an example of
the simulator in the preview mode.

Figure 2.11: Example of the simulator in the preview mode.
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Chapter 3
Experiments setup

A set of experiments are conducted to test all the basic framework’s func-
tionalities, such as splitting the dataset, training several selected models, per-
forming their evaluation, and creating data visualizations. The results are
being compared for individual models, and di�erences for individual groups
of metrics are described. The distribution of metrics values and the relation
to users’ location in two-dimensional space are also explored. In addition, the
simulation dashboard is created with recommendation previews.

3.1 Datasets
For testing purposes, two datasets from the domain of the recommender sys-
tems are chosen. The experiments mainly focus on the first one, while the
second one supplements some of the examples and shows the versatile usage
of the framework and ability to adapt to other datasets.

The first one, the MovieLens (ML) [88] dataset, is probably the best known
and most widely used in the recommendation system community, as it serves
as a stable benchmark in the development of new models and techniques. The
20M variant contains 20,000,263 explicit interactions made by 138,493 users
who gave ratings to 27,278 di�erent movies, where the rating takes the form
of stars from 0.5 to 5.0, with a step of 0.5 stars. The preprocessing follows the
procedure described in [54, 53], where explicit interactions are converted to
implicit by keeping only those with a rating higher than 3.5 and leaving out
those users who have made less than five interactions and items with less than
five ratings. The dataset contains a catalog of movies with three attributes:
ID, title, and a list of genres. Also, a year of shooting is extracted from the
title, and poster images are scrapped to extend the attributes.

The second dataset is the Book-Crossing (BX) [92] dataset, containing 1.1
million ratings given by 100,000 users to 340,000 books. This data comes
from the online book rating community between the years 2001 and 2004.
The interactions are given on a scale from 0 to 10, where values 1-10 represent
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3. Experiments setup

explicit ratings and the zero value implicit feedback. The subset of implicit
interactions is selected here following the procedure proposed in [93], and the
pruning is performed in the same way as with the ML dataset. The catalog
of books has four attributes: book title, year of publication, author’s name,
publisher, and the book’s cover image. Some entries in rating history data
include books with no catalog record, so these are removed.

Both datasets are split into a training, validation, and test set with the
following setting: 85% of the users are used for the training, and the rest
are divided equally into validation and test set. Then, 80% of the test user
interactions are given the model to produce the predictions, and metrics are
calculated against the remaining 20%.

Visualizations of items and users are created using the MDE algorithm by
reducing the dimensionality of the interaction matrix. The parameter with
the number of neighbors is set to 10 to obtain smaller interconnected clusters.

3.2 Models
Four models are in total implemented for the experiments, where one is a
representative of the memory-based CF (User-KNN [11]), one of the model-
based CF (PureSVD [26]), and two elementary models from the category of
non-personalized algorithms (RAND [4] and TopPop [26]).

The User-KNN model is implemented using the neighbor search algorithm.
The cosine similarity is selected to measure the distances to nearest neighbors,
which are expressed by a feature vector of implicit feedback with a size of a
total number of items. Feature vectors of the neighbors are weighted by their
distance and summed up to get ratings for all items.

The PureSVD model is trained by performing SVD factorization of the in-
teraction matrix, creating a latent representation of users and items according
to the size of the factor determined during the initialization. The latent rep-
resentation of items is then turned into a similarity matrix of each item-item
pair, multiplied by the interactions of an unknown user to get the predictions.

The hyperparameters of the User-KNN and PureSVD model are chosen
based on the grid search algorithm taking the values with the highest accuracy.
For User-KNN, the number of neighbors k, and for PureSVD, the size of the
latent factor f was selected as follows.

User-KNN k = 50 (ML), k = 100 (BX)

PureSVD f = 30 (ML), f = 50 (BX)

The RAND model recommends items by randomly selecting the ranks from
the uniform distribution. The TopPop model sums up the number of implicit
feedback for each item in the training data and always recommends only the
most popular items. Only the predictions for items a user has not interacted
with are kept for all the above models.
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Chapter 4
Experiments results

4.1 Dataset exploration

The first part of the experiments focuses on analyzing both datasets using
visualization of embeddings obtained from the interaction matrix. Figure 4.1
shows the movie space within the ML dataset, where the distribution of genres
is displayed for groups of items selected as part of separate clusters. The figure
reveals that the location of movies in the latent space computed from the user
interactions correlates with the genre attribute. Comedies and actions occur
in the left part of the space, and in contrast, the right part of the space
contains more dramas and romantic movies. This assumption can be verified
by filtering only action movies highlighted in the upper left part of the space.
The shooting year also corresponds with user interactions as movies from 1959
to 1969 are located in the right area of the space. The movies from 2000 to
2010 are spread across the space, but the higher concentration is in the areas
of action and comedy movies, which were typically shot in later years.

Similarly, the analysis of the user space is performed. Figure 4.2 shows
the distribution of genres for the 100 most interacted movies by this group of
users for each cluster. The position of users corresponds to their preferences,
as on the left and bottom side, users with a taste for adventure and action
movies can be seen in the middle for dramas and at the top for comedies.
When selecting only users with at least 20 interactions with adventure movies
or movies from 2000 to 2010, these groups have a similar position in the space,
as the adventures were shot in later years.

When analyzing the book space of the BX dataset, it is apparent that
individual clusters were created based on the similarity of the interactions
and authors of the books. As shown in Figure 4.3, an increased number of
books by the same author can be observed in the selected clusters, which seems
to be related to users reading more of their favorite author’s literary works.
As for the shape of the space, compared to the ML dataset, individual clusters
of items are much better separated, and there are considerably more. After
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filtering out users with at least 20 interactions with books from 1989–1993
and 2000–2003, it can be observed that older works are located mainly in the
upper and middle parts of the space, while newer works are in the peripheral
parts mainly on the left and right. This result can be attributed to when the
authors mainly published their books.

(a) Distribution of genres for selected clusters of movies.

(b) Selection of movies from 1959–1969 (left) and movies from 2000–2010 (right).

Figure 4.1: Analysis of item embeddings (ML).

44



4.1. Dataset exploration

(a) Genres distribution of the most interacted movies for selected clusters of users.

(b) Users rated at least 20 adventure movies (left) and movies from 2000–2010 (right).

Figure 4.2: Analysis of user embeddings (ML).
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(a) Distribution of authors for selected clusters of books.

(b) Users rated at least 20 books from 1989–1993 (left) and 2000–2003 (right).

Figure 4.3: Analysis of item embeddings (BX).
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4.2. Models evaluation

4.2 Models evaluation

The results of evaluations of the implemented models are shown for both
datasets in Figure 4.4. These are the aggregated values of metrics averaged
across the whole set of validation users. The ML dataset shows very simi-
lar metric values for User-KNN and PureSVD models, which di�er only in
the proportion of long-tail items (APL@20 metric), where PureSVD has a
higher value. The TopPop model also achieves decent prediction accuracy
values, but it fails to cover the catalog of items (Coverage@20 metric) and
the coverage of long-tail items (LCC@20 metric). As expected, the RAND
has the worst accuracy results. However, it achieves 100% in diversity, nov-
elty, or coverage, which indicates the need for a balance between accuracy and
beyond-accuracy metrics. While all three other models show high popularity
bias visible mainly on LCC@20, Coverage@20, and Novelty@20 metrics, the
RAND model’s predictions are spread over the catalog as they are not de-
pendent on the popularity of items. The results also show how the ratio of
long-tail items measured by the APL@20 metric alone is not enough to reveal
the popularity of bias. As the LCC@20 metric shows, both User-KNN and
PureSVD models repeatedly recommend the same set of less popular items.

With the evaluation results for the BX dataset, it is interesting that the
di�erences between the User-KNN, PureSVD, and TopPop models are sig-
nificantly compared through all metrics. Regarding accuracy, the TopPop
model is only slightly worse, which may be because the data characteristics
are mainly helping to recommendations based on popular items. The signifi-
cant popularity bias can be found in all models, except RAND, which again
dominates in the diversity of predictions. Compared to the ML dataset, the
RAND model has a worse coverage because there are many times fewer vali-
dation users through which it would be possible to cover the catalog.

Although some models may exhibit similar behavior based on aggregated
metrics, it is impossible to determine whether they behave similarly to the
same user groups. For this reason, it is also essential to examine the distri-
bution of metrics, as shown in Figure 4.5.. From this, it can be seen that the
User-KNN and PureSVD models are very similar, as their distributions have
the same shape. When looking at the distributions of the Recall metric, the
values 0, 0.5, and 1 are prominent, indicating a high imbalance in prediction
accuracy. The Diversity@20 and Novelty@20 metrics distributions are then
very pointed and concentrated around the mean, which is di�erent from the
APL@20 metric, where the proportion of long-tail items is widely dispersed.
The TopPop model then shows only absolute values for the beyond-accuracy
metrics, as it recommends the same items to all validation users.

A visual comparison of metrics value distributions helps determine the
correlation between them. Figure 4.6 shows projections of three metrics for the
User-KNN model and the ML dataset. The first one references the accuracy of
the predictions (Recall@50) and two other characteristics of the recommended
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movies (Diversity@20 and APL@20). At first glance, it is evident that the
positions with the prevalence of well-predicted users correspond to the users
who were recommended di�erent items. However, this di�erence is not based
on their attributes but their distinctive groups of interactions. So it is not
so much about delivering di�erent genres as it is about recommending movies
through di�erent user preferences. The APL@20 metric even more closely
corresponds to the areas with high accuracy. It can be assumed that a higher
proportion of long-tail items leads to a higher prediction success rate, as users
want to discover less popular but exciting new movies. The specific locations
of users with high beyond-accuracy metrics are also pointed out in Figure 4.6,
where only users with a metric above a specific threshold are highlighted.

A closer analysis of the distribution of recall metric values for the User-
KNN model in the space of validation users reveals a correlation between
prediction accuracy and user preferences. Figure 4.8 shows 3 clusters, two at
the top left and the middle bottom with a high metric value (around 0.8–1)
and one at the top right with a significantly lower metric value (around 0.3–
0.5). Although there is little di�erence between clusters in the distribution of
genres for the most frequently interacted films, there is a visible di�erence in
the distribution of the movie shooting year. A cluster with hard-to-predict
users is characterized by a high proportion of movies from 1995 to 2005, while
well-predicted users are fond of movies made before 1995.

Although it is not a specific feature of the framework, it can also be used
to analyze hyperparameter tuning. As shown in Figure 4.9, the results of
the evaluations for the PureSVD model change as the size of the latent space
factor increases. When comparing two evaluations, one made with a factor of
30 and subsequently with a factor of 150, a significant decrease in accuracy
(Recall@50 metric) can be observed. On the other hand, a significant increase
in the ratio of long-tail items for each recommendation list (APL@20 metric).
This shift is also visible in the distributions of these two metrics, where the
captured evolution is with the increasing factor size. While the ratio of cor-
rectly predicted users decreases for the Recall@50 metric, there is a clear shift
towards higher values for the APL@20 metric, which significantly changes the
skew of the distribution. Based on this short analysis, it would be possible to
find an appropriate balance between accuracy and the ratio of niche products
so that the prediction ability would not be too damaged, but the user could
discover less popular items.
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(a) Results for the ML dataset.

(b) Results for the BX dataset.

Figure 4.4: Metrics values averaged across the validation users.
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(a) Distributions of Recall@50

(b) Distributions of Diversity@20

(c) Distributions of Novelty@20

(d) Distributions of APL@20

Figure 4.5: Distributions of metrics values for User-KNN (left), PureSVD
(middle), and TopPop (right) models (ML).

(a) Recall@50 (b) Diversity@20 (c) APL@20

Figure 4.6: Projection of metrics values for User-KNN (ML).
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(a) Distribution of Diversity@20 (values > 0.75)

(b) Distribution of Novelty@20 (values > 0.2)

(c) Distribution of APL@20 (values > 0.55)

Figure 4.7: Relation between the distribution of metrics values and position
of users in 2D space for User-KNN (ML).
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Figure 4.8: Clusters of users within the Recall@50 metric for User-KNN (ML).

4.3 Prediction previews

The simulation environment is used to create recommendation preview dash-
boards for both datasets, each with three panels for one model, as figure 4.10
shows. Based on manually entered input interactions (right panel), the User-
KNN (top row), PureSVD (middle row), and TopPop (bottom row) models
return a list of the top four predictions.

Seven action and adventure movies are selected for the ML dataset on the
input. From the prediction previews, it can be observed that the User-KNN
model does not provide very diverse recommendations, as 3 out of 4 places are
taken by di�erent Lord of the Rings episodes. On the other hand, PureSVD
does not recommend additional episodes, and even it returns movies of similar
genres, these are di�erent movies giving the user more options. The example
also shows that the TopPop model does not respond to input interactions, and
it just recommends only the most popular movies. With the RAND model,
which is not listed here, we would find random recommendations through the
whole catalog, which might not fit into the user’s preferences, but on the other
hand, they could make him discover something unexpected and appealing.
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4.3. Prediction previews

(a) Shift of average metrics values between factor sizes f = 30 and f = 150.

(b) Distributions of the Recall@50 metric.

(c) Distributions of the APL@20 metric.

Figure 4.9: Shift of metrics for di�erent latent factor sizes f = 30 (left), f = 70
(middle), f = 150 (right) of the PureSVD model (ML).

The same problem with User-KNN as in the previous case can also be observed
for the BX dataset. Although there is only one volume between the interac-
tions, 3 out of 4 places are taken by di�erent Harry Potter books, which does
not give the user much choice at first glance. What is notable about these
three models is a similarity with the TopPop model, as they agree on at least
one prediction. This finding corresponds to the evaluation results, where all
three models achieved comparable diversity, novelty, and accuracy.
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(a) Movies recommendations for the ML dataset.

(b) Books recommendations for the BX dataset.

Figure 4.10: Recommendation previews of User-KNN (top), PureSVD (mid-
dle), and TopPop (bottom) models based on the input interactions (right).
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Conclusion

In the thesis, recommendation approaches were first summarized, including
types of biases, evaluation mechanisms, visualization techniques, and existing
solutions of recommender frameworks. In the next part, the Repsys frame-
work was introduced, which brings a new perspective on the analysis of rec-
ommender systems. Its methods for dataset processing, dataset visualization,
and evaluation of the quality of the recommender model were described. Also,
the interactive web application for the analysis of the results was presented.
In the last part, a set of experiments on two datasets was performed, which
verified the functionality and usability of the framework.

The work fulfills the assignment, as the designed and implemented frame-
work allows the development and testing of recommender systems. The so-
lution includes an SDK library to implement custom models and datasets.
The set of dashboards for both recommendation previews and exploring the
visualization of latent space of users and items is incorporated within the web
application. Also, the dashboard for analyzing measured metrics is not miss-
ing, which, combined with correctly selected visualization tools, allows the
detection of several types of biases.

The framework’s source code was published under the GNU license and
thus o�ers the involvement of the broader community in expanding function-
alities. Plans for further expansion of the framework mainly include support
of sequential models, the possibility of integrating user attributes, and the
option of comparing the shapes of distributions between di�erent evaluations.
In addition, a paper based on this thesis will be submitted to the demo track
of the RecSys 2022 conference.
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SD kartě. Available from: https://courses.fit.cvut.cz/NI-ADM/
lectures/files/MI-ADM-11-en-handout.pdf

[24] Amatriain, X. Big & personal. Proceedings of the 2nd International

Workshop on Big Data, Streams and Heterogeneous Source Mining Al-

gorithms, Systems, Programming Models and Applications - BigMine

’13, 2013: pp. 1–6, doi:10.1145/2501221.2501222. Available from: http:
//dl.acm.org/citation.cfm?doid=2501221.2501222

[25] Koren, Y. Factorization meets the neighborhood. Proceeding of

the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD 08, 2008: pp. 426–434,
doi:10.1145/1401890.1401944. Available from: http://dl.acm.org/
citation.cfm?doid=1401890.1401944

[26] Cremonesi, P.; Koren, Y.; et al. Performance of recommender algo-
rithms on top-n recommendation tasks. Proceedings of the fourth ACM

conference on Recommender systems - RecSys ’10, 2010: pp. 39–46,
doi:10.1145/1864708.1864721. Available from: http://portal.acm.org/
citation.cfm?doid=1864708.1864721

59

http://link.springer.com/10.1007/978-0-387-85820-3_3
http://link.springer.com/10.1007/978-0-387-85820-3_3
https://dl.acm.org/doi/10.1145/245108.245126
https://dl.acm.org/doi/10.1145/245108.245126
http://ieeexplore.ieee.org/document/1167344/
http://ieeexplore.ieee.org/document/1167344/
http://ieeexplore.ieee.org/document/6137254/
https://courses.fit.cvut.cz/NI-ADM/lectures/files/MI-ADM-11-en-handout.pdf
https://courses.fit.cvut.cz/NI-ADM/lectures/files/MI-ADM-11-en-handout.pdf
http://dl.acm.org/citation.cfm?doid=2501221.2501222
http://dl.acm.org/citation.cfm?doid=2501221.2501222
http://dl.acm.org/citation.cfm?doid=1401890.1401944
http://dl.acm.org/citation.cfm?doid=1401890.1401944
http://portal.acm.org/citation.cfm?doid=1864708.1864721
http://portal.acm.org/citation.cfm?doid=1864708.1864721


Bibliography

[27] Zhang, S.; Yao, L.; et al. Deep Learning Based Recommender System.
ACM Computing Surveys, volume 52, no. 1, 2020-01-31: pp. 1–38, ISSN
0360-0300, doi:10.1145/3285029. Available from: https://dl.acm.org/
doi/10.1145/3285029

[28] Burke, R. Hybrid Recommender Systems. User Modeling and User-

Adapted Interaction, volume 12, no. 4, 2002: pp. 331–370, ISSN
09241868, doi:10.1023/A:1021240730564. Available from: http://
link.springer.com/10.1023/A:1021240730564

[29] Ludewig, M.; Jannach, D. Evaluation of session-based recommendation
algorithms. User Modeling and User-Adapted Interaction, volume 28, no.
4-5, 2018: pp. 331–390, ISSN 0924-1868, doi:10.1007/s11257-018-9209-
6. Available from: http://link.springer.com/10.1007/s11257-018-
9209-6

[30] Quadrana, M.; Cremonesi, P.; et al. Sequence-Aware Recommender Sys-
tems. ACM Computing Surveys, volume 51, no. 4, 2019-07-31: pp.
1–36, ISSN 0360-0300, doi:10.1145/3190616. Available from: https:
//dl.acm.org/doi/10.1145/3190616

[31] Chen, J.; Dong, H.; et al. Bias and debias in recommender system. ArXiv

preprint arXiv:2010.03240, 2020.

[32] Melchiorre, A. B.; Zangerle, E.; et al. Personality Bias of Music Recom-
mendation Algorithms. Fourteenth ACM Conference on Recommender

Systems, 2020-09-22: pp. 533–538, doi:10.1145/3383313.3412223. Avail-
able from: https://dl.acm.org/doi/10.1145/3383313.3412223

[33] Wang, N.; Chen, L. User Bias in Beyond-Accuracy Measurement of Rec-
ommendation Algorithms. Fifteenth ACM Conference on Recommender

Systems, 2021-09-13: pp. 133–142, doi:10.1145/3460231.3474244. Avail-
able from: https://dl.acm.org/doi/10.1145/3460231.3474244

[34] D’Amour, A.; Srinivasan, H.; et al. Fairness is not static. Proceedings

of the 2020 Conference on Fairness, Accountability, and Transparency,
2020-01-27: pp. 525–534, doi:10.1145/3351095.3372878. Available from:
https://dl.acm.org/doi/10.1145/3351095.3372878

[35] Mansoury, M.; Abdollahpouri, H.; et al. Feedback Loop and Bias
Amplification in Recommender Systems. In Proceedings of the 29th

ACM international conference on information & knowledge manage-

ment, New York, NY, USA: ACM, 2020-10-19, ISBN 9781450368599,
pp. 2145–2148, doi:10.1145/3340531.3412152. Available from: https:
//dl.acm.org/doi/10.1145/3340531.3412152

60

https://dl.acm.org/doi/10.1145/3285029
https://dl.acm.org/doi/10.1145/3285029
http://link.springer.com/10.1023/A:1021240730564
http://link.springer.com/10.1023/A:1021240730564
http://link.springer.com/10.1007/s11257-018-9209-6
http://link.springer.com/10.1007/s11257-018-9209-6
https://dl.acm.org/doi/10.1145/3190616
https://dl.acm.org/doi/10.1145/3190616
https://dl.acm.org/doi/10.1145/3383313.3412223
https://dl.acm.org/doi/10.1145/3460231.3474244
https://dl.acm.org/doi/10.1145/3351095.3372878
https://dl.acm.org/doi/10.1145/3340531.3412152
https://dl.acm.org/doi/10.1145/3340531.3412152


Bibliography

[36] Marlin, B. M.; Zemel, R. S. Collaborative prediction and ranking
with non-random missing data. Proceedings of the third ACM con-

ference on Recommender systems - RecSys ’09, 2009: pp. 5–12, doi:
10.1145/1639714.1639717. Available from: http://portal.acm.org/
citation.cfm?doid=1639714.1639717

[37] Collins, A.; Tkaczyk, D.; et al. A Study of Position Bias in Digital
Library Recommender Systems. ArXiv preprint arXiv:1802.06565, 2018.

[38] Park, Y. J.; Tuzhilin, A. The long tail of recommender systems
and how to leverage it. Proceedings of the 2008 ACM conference

on Recommender systems - RecSys ’08, 2008: pp. 11–18, doi:
10.1145/1454008.1454012. Available from: http://portal.acm.org/
citation.cfm?doid=1454008.1454012

[39] Zhu, Z.; He, Y.; et al. Popularity Bias in Dynamic Recommendation. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-

covery & Data Mining, New York, NY, USA: ACM, 2021-08-14, ISBN
9781450383325, pp. 2439–2449, doi:10.1145/3447548.3467376. Available
from: https://dl.acm.org/doi/10.1145/3447548.3467376

[40] Abdollahpouri, H.; Burke, R.; et al. Controlling Popularity Bias in
Learning-to-Rank Recommendation. Proceedings of the Eleventh ACM

Conference on Recommender Systems, 2017-08-27: pp. 42–46, doi:
10.1145/3109859.3109912. Available from: https://dl.acm.org/doi/
10.1145/3109859.3109912

[41] Yin, H.; Cui, B.; et al. Challenging the long tail recommendation. Pro-

ceedings of the VLDB Endowment, volume 5, no. 9, 2012: pp. 896–
907, ISSN 2150-8097, doi:10.14778/2311906.2311916. Available from:
https://dl.acm.org/doi/10.14778/2311906.2311916

[42] Anderson, C. The long tail. Hachette UK, 2006.

[43] Brynjolfsson, E.; Hu, Y. J.; et al. From niches to riches. Sloan manage-

ment review, 2006: pp. 67–71.

[44] Abdollahpouri, H.; Mansoury, M.; et al. The Unfairness of Popu-
larity Bias in Recommendation. RecSys Workshop on Recommenda-

tion in Multistakeholder Environments (RMSE), 2019. Available from:
https://arxiv.org/pdf/1907.13286

[45] Friedman, B.; Nissenbaum, H. Bias in computer systems. ACM Trans-

actions on Information Systems, volume 14, no. 3, 1996: pp. 330–347,
ISSN 1046-8188, doi:10.1145/230538.230561. Available from: https:
//dl.acm.org/doi/10.1145/230538.230561

61

http://portal.acm.org/citation.cfm?doid=1639714.1639717
http://portal.acm.org/citation.cfm?doid=1639714.1639717
http://portal.acm.org/citation.cfm?doid=1454008.1454012
http://portal.acm.org/citation.cfm?doid=1454008.1454012
https://dl.acm.org/doi/10.1145/3447548.3467376
https://dl.acm.org/doi/10.1145/3109859.3109912
https://dl.acm.org/doi/10.1145/3109859.3109912
https://dl.acm.org/doi/10.14778/2311906.2311916
https://arxiv.org/pdf/1907.13286
https://dl.acm.org/doi/10.1145/230538.230561
https://dl.acm.org/doi/10.1145/230538.230561


Bibliography

[46] Lin, K.; Sonboli, N.; et al. Crank up the volume. ArXiv preprint

arXiv:1909.06362, 2019.

[47] Steck, H. Calibrated recommendations. Proceedings of the 12th ACM

Conference on Recommender Systems, 2018-09-27: pp. 154–162, doi:
10.1145/3240323.3240372. Available from: https://dl.acm.org/doi/
10.1145/3240323.3240372

[48] Kaminskas, M.; Bridge, D. Diversity, Serendipity, Novelty, and Cover-
age. ACM Transactions on Interactive Intelligent Systems, volume 7,
no. 1, 2017: pp. 1–42, ISSN 2160-6455, doi:10.1145/2926720. Available
from: https://dl.acm.org/doi/10.1145/2926720

[49] Gunawardana, A.; Shani, G. A Survey of Accuracy Evaluation Metrics
of Recommendation Tasks. The Journal of Machine Learning Research,
volume 10, no. 1, 2009: p. 2935–2962, ISSN 1532-4435. Available from:
https://dl.acm.org/doi/10.1145/963770.963772

[50] Herlocker, J. L.; Konstan, J. A.; et al. Evaluating collaborative fil-
tering recommender systems. ACM Transactions on Information Sys-

tems, volume 22, no. 1, 2004: pp. 5–53, ISSN 1046-8188, doi:10.1145/
963770.963772. Available from: https://dl.acm.org/doi/10.1145/
963770.963772

[51] Margaris, D.; Vassilakis, C. Improving collaborative filtering’s rat-
ing prediction quality in dense datasets, by pruning old ratings. 2017

IEEE Symposium on Computers and Communications (ISCC), 2017:
pp. 1168–1174, doi:10.1109/ISCC.2017.8024683. Available from: http:
//ieeexplore.ieee.org/document/8024683/

[52] Steck, H. Embarrassingly Shallow Autoencoders for Sparse Data. The

World Wide Web Conference on - WWW ’19, 2019: pp. 3251–3257,
doi:10.1145/3308558.3313710. Available from: http://dl.acm.org/
citation.cfm?doid=3308558.3313710
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Appendix A
Acronyms

RS Recommender System

CF Collaborative Filtering

DR Dimension Reduction

IR Information Retrieval

ML MovieLens

BX Book-Crossing

MF Matrix Factorization

SDK Software Development Kit
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
DP Safarik Jan 2022.pdf................the thesis text in PDF format
repsys ................................... the directory of source codes
thesis.................the directory of LATEX source codes of the thesis
experiments ........... the directory of source codes of the experiments
bibliography..............the directory of copies of referenced lectures

MI-ADM-09-en-handout.pdf
MI-ADM-10-en-handout.pdf
MI-ADM-11-en-handout.pdf
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Appendix C
Implementation details

C.1 Architecture overview

The framework’s core is responsible for loading models and dataset instances
through the SDK alongside the configuration file overriding the default set-
tings for the current project. The core functionality includes dataset pruning
and splitting, models training and evaluation, and data visualization while
connecting all the main components. Most of the features are available from
the command-line utility or the REST API interface, which provides access
for the web application to fetch the necessary data, as shown in Figure C.1.

Both framework and the SDK are written in Python because of the possible
usage inside the Jupyter notebooks and the wide range of data-oriented and
scientific libraries, while the core functionality is built around three of them:
Pandas [94], SciPy [95], and scikit-learn [89]. The Sanic [96] library is used
for the REST API interface implementation because of its small size and high
performance. The command-line utility is created using the Click [97] library,
which simplifies handling various types of commands. Many other tools and
libraries are used for the development, but the above are the main ones.

The web application is implemented as a stand-alone JavaScript project
using the React [98] library, and the Material UI [99] library as it o�ers a broad
set of pre-built components. It communicates with the framework using the
REST API interface, which it connects to after loading the page. This way, it
gets information about implemented models, evaluation results, a list of users
and their interactions, a catalog of items, and much more. The React Redux
[100] library and its RTK Query tool have been used to quickly implement
the API interface and manage the application’s state. Configuration of the
recommendations preview dashboard and mapping of item attributes to the
view component are stored in the browser memory, where they remain after
closing the browser until the next application launch. All visualizations like
scatter plots, bar charts, or histograms are implemented with the Plotly.js [101]
library, able to render a large amount of data thanks to WebGL support.
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C. Implementation details

C.2 Server endpoints
In order to maximize the modularity of the framework and separate the pre-
sentation layer from the business logic layer, the REST API was created for
communication between the core functionality and web application. After
the server service is launched, several API endpoints are available, the basic
overview of which is described in the following list.

GET /dataset returns information about the dataset with a list of item
attributes. For categories or tags, it returns all unique values found in
the catalog, and for the numeric type, it returns a list of bins computed
from the distribution of the values.

GET /models returns a list of implemented models.

GET /models/metrics returns a summary of each model’s current and pre-
vious evaluation results.

POST /models/[model]/predict receives the model’s name and user’s ID
and returns a list of the top items recommended by the model. Instead
of the user’s ID, a list of interacted items can be provided on the input.

GET /models/[model]/metrics/[users, items] returns complete evalua-
tion results of each metric for the given model across the whole distri-
bution of users or items.

GET /users returns a list of user IDs from the specified dataset split.

GET /users/[id] returns the interaction history for a given user.

GET /items returns all items from the catalog filtered by an input query,
while the search is done against the item’s attribute marked as a title.

POST /[users, items]/search receives an attribute name with a value, and
it returns a list of items that match the query or a list of users that inter-
acted with items matching the query. A minimum number of interactions
with such items must be provided in the case of users.

POST /[users, items]/describe receives a list of users, and it returns the
top items they interacted with along the distribution of attribute values
for these items. If a list of items is provided, it directly returns the
distribution of attribute values.

GET /[users, items]/embeddings returns an array of computed 2D em-
beddings for each user or item.
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C.2. Server endpoints

Figure C.1: Overview of the Repsys framework architecture.

75


	Introduction
	Related work
	Task definition
	Recommendation approaches
	Content-based filtering
	Collaborative filtering
	Hybrid techiques
	Session-based recommendation

	Biases in recommender systems
	Feedback loop
	Biases in data
	Popularity bias
	Unfairness

	Evaluation process
	Online vs. offline
	Data selection
	Data splitting
	Accuracy metrics
	Beyond-accuracy metrics
	Long-tail metrics
	Metrics aggregation
	Evaluation protocols

	Visualization techniques
	Recommender frameworks

	Repsys framework
	Basic usage
	Command-line utility
	Configuration file

	Framework pipeline
	Dataset preprocessing
	Models evaluation
	Dataset visualization

	Results exploration
	Dataset analysis
	Evaluation analysis
	Simulation environment


	Experiments setup
	Datasets
	Models

	Experiments results
	Dataset exploration
	Models evaluation
	Prediction previews

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Implementation details
	Architecture overview
	Server endpoints


