
,QVWUXFWLRQV

7KH�PDLQ�JRDO�RI�WKLV�WKHVLV�LV�WR�PHDVXUH�WKH�WUDIILF�GHQVLW\�IURP�VWDWLRQDU\�FDPHUDV��

7KH�DSSOLFDWLRQ�FRXQWV�YHKLFOHV�WKDW�SDVV�WKH�VHOHFWHG�DUHD�DQG�WKH�WLPH�WKH\�VSHQG�WKHUH��0HDVXUHG�

YDOXHV�DUH�DFFHVVLEOH�DV�VWDWLVWLFV�DERXW�WKH�WUDIILF�LQ�WLPH��

7KH�VWXGHQW�ZLOO�VWXG\�WKH�VWDWH�RI�WKH�DUW�PHWKRGV�IRU�PXOWLREMHFW�WUDFNLQJ��FRPSDUH�WKHP�XVLQJ�UHDO�

GDWD�DQG�GHVLJQ�DQ�DUFKLWHFWXUH�WKDW�ILWV�WKH�DSSOLFDWLRQ
V�QHHGV��

7KH�ILQDO�DSSOLFDWLRQ�ZLOO�EH�HYDOXDWHG�DJDLQVW�WKH�KXPDQ�DQQRWDWHG�GDWD�

(OHFWURQLFDOO\�DSSURYHG�E\�,QJ��.DUHO�.ORXGD��3K�'��RQ����$XJXVW������LQ�3UDJXH�

$VVLJQPHQW�RI�PDVWHUªV�WKHVLV

7LWOH� 6\VWHP�IRU�WUDIILF�VXUYH\V�DXWRPDWLRQ

6WXGHQW� %F��2QGUHM�3XGL�

6XSHUYLVRU� ,QJ��0DUHN�6X�LFN}

6WXG\�SURJUDP� ,QIRUPDWLFV

%UDQFK���VSHFLDOL]DWLRQ� .QRZOHGJH�(QJLQHHULQJ

'HSDUWPHQW� 'HSDUWPHQW�RI�$SSOLHG�0DWKHPDWLFV

9DOLGLW\� XQWLO�WKH�HQG�RI�ZLQWHU�VHPHVWHU����������

Master’s thesis

SYSTEM FOR TRAFFIC
SURVEYS AUTOMATION

Bc. Ondrej Pudiš

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Marek Sušický
May 3, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Bc. Ondrej Pudiš. All rights reserved..
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Pudiš Ondrej. System for traffic surveys automation. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Glossary x

Acronyms xi

1 Introduction 1
1.1 Goals . 2
1.2 Traffic surveys . 2

1.2.1 Road traffic history . 2
1.2.2 A traffic survey . 4

1.3 Commercial products . 4
1.3.1 Hardware producers . 4
1.3.2 Traffic engineers . 5
1.3.3 Deep learning-based software . 5

2 Theory 9
2.1 Deep learning . 9

2.1.1 Convolution . 10
2.1.2 Convolutional layer . 10
2.1.3 Pooling . 11

2.2 Object detection . 11
2.2.1 Anchor-based detectors . 12
2.2.2 Anchor-free detectors . 13
2.2.3 EfficientDet . 14
2.2.4 Non-max suppression . 15

2.3 Kalman filter . 18
2.3.1 Prediction step . 18
2.3.2 Correction step . 18
2.3.3 Summary . 19

2.4 2D Rectangular Assignment . 19
2.5 Multi-object tracking . 20

3 Related work 23
3.1 Simple Online and Realtime Tracking . 24
3.2 Deep Associations Online and Realtime Tracking 24
3.3 FairMOT . 25
3.4 Vehicle counting framework . 26

iii

iv Contents

4 Analysis 27
4.1 Problem . 27
4.2 Requirements . 28

4.2.1 Functional requirements . 28
4.2.2 Non-functional requirements . 29

4.3 Solution . 30
4.3.1 Backend . 30
4.3.2 Frontend . 32

5 Proposed framework 33
5.1 Read video frames . 33
5.2 Detect vehicles . 34
5.3 Track vehicles . 34

5.3.1 Tracker . 35
5.3.2 Association methods . 36

5.4 Store tracklets . 36
5.5 Visualise . 37
5.6 Count . 38

6 Implementation 41
6.1 Packages . 41
6.2 Models . 42
6.3 Backend . 43

6.3.1 API . 44
6.3.2 Worker . 44

6.4 Frontend . 45
6.5 Build and run . 45

7 Experiments 47
7.1 Data . 47
7.2 Environment . 49
7.3 Monitoring . 50
7.4 Evaluation . 52

7.4.1 Accuracy metric . 52
7.4.2 Visualisations . 52
7.4.3 Results . 53

7.5 Future improvements . 57
7.5.1 Framework . 57
7.5.2 Statistics in time . 58
7.5.3 Usability . 58

8 Conclusion 59

A Repository structure 61

B Parameters 63

C User guide 65

D AI City Challenge Data Licence 67

Bibliography 69

Contents of enclosed CD 75

List of Figures

1.1 European vehicle statistics since 1993 . 3
1.2 RoadPod VT4 . 5
1.3 Traffic impact study in Indiana . 6
1.4 GoodVision Video Insight Tool . 7
1.5 Data from Sky Viewer . 8

2.1 Visualized of general object detection . 11
2.2 Generated anchors on an image of size 256× 256 12
2.3 R-CNN object detection architecture . 13
2.4 FCOS center-based detection . 14
2.5 EfficientNet architecture . 15
2.6 BiFPN block architecture . 16
2.7 NMS effect on object detection . 17
2.8 Multiple vehicles movement tracking . 21

3.1 FairMOT architecture . 25
3.2 Vehicle counting framework visualisation . 26

4.1 Application architecture diagram . 30
4.2 Database schema . 31

5.1 Detection on 4 sequential frames . 34
5.2 Tracking on 4 sequential frames . 35
5.3 An analysis visualisation . 39
5.4 Crossroad visualisation . 40

6.1 Screenshots of the frontend . 45

7.1 AIC dataset . 48
7.2 Czech roads dataset . 49
7.3 Average framework runtime . 51
7.4 Average batch processing time . 51
7.5 Average hardware resources usage . 52
7.6 Vehicle curves visualizations . 53
7.7 Vehicle segmentation in videos . 53

v

List of Tables

5.1 An example result of counting . 38

7.1 Results for the road at Rohan Embankment in Prague 54
7.2 Results for a Czech highway . 54
7.3 Results for a US highway at dawn . 54
7.4 Results for a crossroad on the Czech outskirts . 55
7.5 Results for a US highway during rain . 55
7.6 Results for a Czech town crossroad . 56
7.7 Results for a US town road . 56
7.8 Results for a US semaphored crossroad . 57

List of code listings

1 A shortened analysis output . 37
2 Export an EfficientDet checkpoint . 43
3 Contents of params.yaml . 43
4 Video dataset generator . 44
5 sbatch configuration file . 50

vi

I thank my supervisor Ing. Marek Sušický and his colleagues Mgr.
Tomáš Karella and Mgr. Adam Szabó for their help, thoughtful
notes and suggestions about my work.
I express gratitude to Ing. Bc. Petr Kumpošt, Ph.D. and his team at
the Mobile Laboratory of Traffic Surveys for sharing their knowledge,
experience and video data to be used in my work.
I acknowledge the AI City Challenge organizers and contributors
for creating a video recording dataset that I used for the proposed
framework’s evaluation in my work.
I acknowledge the support of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Infor-
matics” which provided the resources to run all the experiments.
Finally, I thank my family, my colleagues and my friends for their
never-ending support, belief and understanding throughout the years
of my studies.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6) of
the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including
any and all computer programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only,
in any way that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on May 3, 2022 .

viii

Abstrakt

V posledných rokoch sme svedkami masívneho rozvoja cestnej dopravy, ktorá spôsobuje niekoľko
problémov, najmä v mestských oblastiach. Miestne samosprávy a vlády preto investujú nemalé
prostriedky do dopravných prieskumov, ktoré umožňujú získať predstavu o úzkych hrdlách súčas-
nej infraštruktúry. Súbežne dosahujú vedci významný posun v oblasti hlbokého strojového uče-
nia, ktorý prináša automatizované, presné a výkonné riešenia v oblasti strojového videnia. V našej
práci sa venujeme vývoju otvoreného softvéru, ktorý umožní automatizáciu dopravných priesku-
mov. Na začiatku diskutujeme a objavujeme rôzne prístupy k sledovaniu viacerých objektov vo
videu súčasne. Následne navrhneme modul, ktorý analyzuje nahrávku zo stacionárnej kamery a
spočíta dopravné prostriedky prechádzajúce cez oblasti záujmu definované používateľom. Kval-
itu nášho modulu ohodnotíme na niekoľkých videách, popíšeme metriky a využitie hardvéru.
Nakoniec zhrnieme presnosť, naše požiadavky na zdrojové videá a navrhneme niekoľko vylepšení.
Zistíme, že modul funguje dobre a vrámci prípustnej chyby, pokiaľ vo výhľade neprekáža do-
pravné značenie alebo iné automobily.

Kľúčové slová rozpoznávanie objektov, sledovanie viacerých objektov, rozpoznávanie a sle-
dovanie vozidiel, počítanie vozidiel, dopravný prieskum

Abstract

In recent years, we have witnessed an expansion of road traffic that causes several problems, es-
pecially in urban areas. Local authorities and governments invest a lot into traffic surveys to keep
track of infrastructure bottlenecks. At the same time, researchers have made significant progress
in deep learning, allowing for automated, accurate and performant solutions for computer vision
tasks. In our work, we aim to create an open-source software tool that enables the automation
of traffic surveys. We investigate approaches to multi-object tracking and suggest a framework
that analyses a stationary camera recording of road traffic and counts the vehicles that move
through the user-defined regions of interest. We evaluate the performance of our framework on a
couple of datasets, comment on metrics and hardware usage, and report accuracies. We conclude
with findings and requirements placed on the source videos; we suggest a few improvements to
the framework. We identify that the framework works well and within the boundaries of allowed
error if there are no or just a few traffic signs or automobiles blocking the view.

Keywords object detection, multi-object tracking, vehicle detection and tracking, vehicle
counting, traffic survey

ix

Glossary

CRUD Create, read, update and delete operations on a set of objects.

CUDA NVIDIA’s platform for GPU-accelerated parallel general purpose computing.

Docker A tool that enables shipping software as containers and run them using operating system
virtualisation.

GitHub An online code repository with GIT version control support.

OpenAPI A specification, originally called Swagger, of how to describe, produce, consume and
visualise RESTful web services.

x

Acronyms

API application programming interface.

ASGI asynchronous server gateway interface.

BiFPN weighted bi-directional feature pyramid network.

CLI command-line interface.

CNN convolutional neural network.

CTU Czech Technical University in Prague.

DDL data definition language.

Deep-SORT Deep Associations Online and Realtime Tracking.

DL deep learning.

DSN data source name.

FPS frames per second.

FTS CTU Faculty of Transportation Sciences of the Czech Technical University in Prague.

GDPR General Data Protection Regulation.

GPU graphics processing unit.

GUI graphical user interface.

HD high-definition video (720p).

HPC high-performance computing.

HTML hyper-text markup language.

IoU intersection over union.

ML machine learning.

MOT multi-object tracking.

MOTA multi object tracking accuracy.

NMS non-max suppression.

OOM out-of-memory.

xi

xii Acronyms

RAM random access memory.

ReLU rectified linear unit.

SORT Simple Online and Realtime Tracking.

UUID universal unique identifier.

Chapter 1

Introduction

With millions of new cars arriving on the roads every year and increasing mobility in urban
areas, new challenges in traffic management start arising. Everyday traffic jams on arterial
routes, serious collisions, and high volumes of greenhouse gasses emitted into the atmosphere are
problems that need immediate attention from the responsible authorities.

Having quality statistics about the volume of vehicles that move around roads is essential for
finding reasonable and sustainable solutions to various traffic-related problems.

Nowadays, manual and automated surveys are two main approaches to collecting traffic data.
While in manual surveys, people are standing next to roads and counting vehicles passing by,
either by writing on paper or using dedicated counting devices, automated surveys use machines
like radars or event loggers to do the job.

Both private companies and universities help local authorities and governments with traffic
research. Even at the Faculty of Transportation Sciences of the Czech Technical University in
Prague (FTS CTU), there is Mobile traffic analysis laboratory which actively helps cities across
the Czech Republic to collect and process traffic data.

Nevertheless, modern and innovative alternatives keep appearing. Advancements in machine
learning allow researchers to apply deep learning methods to the problem of traffic surveys as well.
The resulting models accept live or recorded video input, apply object recognition, classification,
object tracking techniques, and output various statistics about traffic.

Utilising such approaches for traffic surveys can save much time for people who would have
to spend it on producing statistics. Moreover, they can result in widely available real-time traffic
analysis. Regular people could benefit from such an application because it would enable them
to plan their travels and avoid heavily utilised roads.

In this thesis, we aim to discover object detection and tracking models and create a deep-
learning-driven application that estimates the traffic volume by analysing camera recordings. To
be more precise, it outputs counts of vehicles crossing any of the given lines.

We organise this thesis into eight chapters. This chapter introduces the topic of traffic surveys,
analyses the evolution of road traffic, and describes a few institutions that provide traffic survey-
related products, both physical and software.

We dedicate the second and the third chapter to the theoretical background and study of the
related work. We introduce deep learning, object detection, object tracking and the algorithms
that we use across our work.

Next, we analyse the requirements of the application based on a couple of interviews [1, 2]
that we had at FTS CTU. It is followed by proposing the whole framework in chapter five. We
describe the pipeline, how the video data flows in the system, what object detection and object
tracking algorithms we use, how the framework stores partial results and creates the final results.

Chapter six presents the implementation: what machine learning packages we use, how the

1

2 Introduction

technological stack of both backend and frontend looks like, how components communicate and
how to start and use the software.

Finally, we test the proposed framework on real videos from the Czech Republic and the
USA with the counts of vehicles gathered manually, conclude our findings, commenting on the
performance of the presented models and suggesting further steps that could be taken to make
the framework better in terms of accuracy and usability.

1.1 Goals
The main goals of this thesis are to discover machine learning approaches in traffic analysis
and to build a deep-learning-driven application for performing an analysis of traffic recordings.
We focus on building a pipeline from gathering and preprocessing the data through analysing
it to presenting the data to users. Moreover, we provide our software as open-source, so even
institutions without an extensive budget could perform a baseline traffic survey analysis using
our tools.

The theoretical part introduces traffic surveys and commercial products available in this in-
dustry. Next, we describe the problem of object detection, multi-object tracking, and we comment
on the existing approaches and methods that researchers propose and use in their work related
to multi-object tracking, not necessarily limited to vehicles.

In the practical part, we suggest a framework based on the theoretical part’s findings, imple-
ment it, and create a functional application that performs a simplified traffic survey. The job
includes choosing the right technologies for working with the source video, building the prediction
model, storing the results, computing the statistics, and presenting them to users.

1.2 Traffic surveys
In this introductory section, we take a brief look at the history of road traffic, introduce the con-
cept of a traffic survey, explain its benefits, and enumerate a few traditional methods for carrying
out such surveys.

1.2.1 Road traffic history
Humankind’s need for moving goods or themselves between places has existed since the dawn
of civilisation. Initially, people travel on foot, carrying goods on their backs or heads. The first
non-trivial means of transport appear in the Upper Paleolithic era when they utilise animals like
donkeys or craft the first rafts for moving on rivers.

Mesopotamians make a significant leap forward by inventing a wheel 3000 years BCE, using
it for pottery, and later building carts and chariots, which simplify the transport of goods.

During the Middle Ages, carriages and coaches with four wheels, drawn by horses, allow
people to travel more comfortably and faster, even for long distances. These become popular
mainly with wealthy aristocrats and businesspeople.

The golden era for transportation comes in the 19th century. Many new means of trans-
port are invented, notably steam-powered locomotives, steamboats, bicycles, trams, motorbikes
and railways. These new machines, especially trains, allow for a safe and fast movement of
commodities and contribute to massive public transport usage.

Personal transport develops only after the invention of internal combustion engines. Mass
production of affordable and reliable cars allows people to move freely and independently. Travel-
ling requires less time than ever before, and far-away destinations are reachable within hours. [3]

Now, let us fast-forward to the beginning of the 21th century. There are a million new
cars registered across the European Union each month, every second citizen owns a passenger

Traffic surveys 3

1995 2000 2005 2010 2015 2020
year

1

2

3

4

5

6

in

 m
illi

on
s

1e6
country

AT
CZ
HU
SK

(a) Passenger cars in Central Europe [4]

1995 2000 2005 2010 2015 2020
year

50

100

150

200

250

m

ile
s i

n
bi

llio
ns

Cars and Taxis
Light Commercial Vehicles
Heavy Goods Vehicles

(b) Driven vehicle miles in the UK [6]

Figure 1.1 European vehicle statistics since 1993

car [4], and transport accounts for almost 30% of CO2 production [5], we suddenly face challenges
that were unimaginable only a 100 years ago. Figure 1.1a shows how the number of registered
passenger cars developed in the last twenty-eight years.

Since 1949, the traffic in the United Kingdom, represented in vehicle miles, was increasing
fast, mainly in the private transport segment (Figure 1.1b), with almost 2000% increase over
the last seventy years. The data from 2020 show that the global pandemic of Covid-19 had a
significant impact on both private and public transportation. In fact, people drove 24% fewer
miles than in 2019; lorry traffic experienced only a slight decrease of approximately 5%. On the
other hand, the number of miles ridden on bikes increased by more than 45%.

We can expect that once governments withdraw restrictions, the traffic volume will return to
the pre-pandemic state. It might be even worse because people will be afraid to travel by public
transport and prefer to use their cars to feel safer. [6]

Despite the slight drop in traffic during the Covid-19 crisis, the high numbers of vehicles
moving across streets, roads and highways cause a number of issues. Let us mention just a few
of them:

air pollution,

significant emission of greenhouse gasses,

congestions,

collisions.

These phenomena harm the environment, economics, and human emotions. [7]
According to an article by Afrin and Yodo [8], congestions usually appear when a traffic flow

is interrupted by unexpected incidents or by a high density of vehicles, usually at the morning
and afternoon peaks. They are an extensive problem, especially in urban areas. Moreover, they
can be the root cause of the other listed issues.

While vehicles stay still, their engines keep running, producing a significant amount of fumes
that concentrate in the same place. Furthermore, congestions have a noticeable impact on the
economy due to lost productivity, estimated to $87 billion. [8]

Governments, local authorities, researchers, and public and private institutions must contin-
uously monitor and gather data about traffic conditions to avoid socio-economic-environmental
issues. This activity allows for better planning of future infrastructure development and opti-
mising the traffic flow. [8]

4 Introduction

1.2.2 A traffic survey
McClintock’s article [9] describes a traffic survey as an elementary step for achieving control,
ensuring safety and convenience in traffic movement. It provides a rational basis for making
decisions about traffic control systems, assessing the quality of infrastructure and data-supported
prioritisation of new road construction. The author believes that such studies need to be realised
regularly, hence keeping local authorities up to date. He also strongly emphasises the importance
of the role of pedestrians in traffic surveys.

Others relate a traffic survey to a set of activities designed to gather data about a particular
area’s real traffic situation. Their primary purpose is to improve the quality of transport. The
gathered data can be:

numbers of vehicles on-road,

journey information like speed or delay,

directions of traffic,

accidents statistics and

origins and destinations identified by licence plates or by interviewing drives. [9] [10]

A traffic survey data is usually gathered either manually or automatically. Manual counting
requires people to stand next to a road and record their observations on paper. Alternatively,
they can create a video recording and count later in an office. The results are subjected to an
observer’s judgement, mainly when the survey includes vehicle classification. In their article,
Pengjun and McDonad [11] claim that the total vehicle count error is usually around 1%, while
the classification error is remarkably higher – between 4% to 5%. Another disadvantage of
manual counting is considerable time consumption.

On the contrary, automatic surveys utilise a radar device placed next to a road so that it does
not affect regular traffic flow and does not require much human interaction. Other automatic
devices require a pair of cables placed on a road.

Paľo et al. [10] state that such devices record accurate, straightforward and unbiased data.
They provide vehicle counts, but they also capture speed, vehicle length, and direction. However,
some limitations and prerequisites need to be met to hit a certain level of accuracy and consis-
tency. For example, a good monitoring location, sufficient mounting height, distance between
multiple devices, and absence of metal constructions. The authors conclude their study with a
2% - 3% difference between manual and automatic counting. They believe there is a long-term
traffic counting use case for automatic counters.

1.3 Commercial products
In this section, let us mention companies that run their businesses in the domain of traffic
analysis. Some firms produce physical equipment that helps collect traffic data, provide end-to-
end service according to customers’ needs and targets, or create deep learning tools which help
annotate raw video data.

1.3.1 Hardware producers
MetroCount (https://metrocount.com) is an Australian company that provides hardware ca-
pable of gathering traffic data and classifying vehicles. Their monitors collect information about
speed, direction, vehicle volumes and gaps. The device is composed of a box placed on the side
of a road and two to four pneumatic tubes taped to the surface of the road (Figure 1.2). [12]

https://metrocount.com

Commercial products 5

Figure 1.2 RoadPod VT4 [12]

The company claims that its monitors are the most reliable ones currently available on the
market, with an accuracy of counting exceeding 95%.

In 2018, MetroCount’s bike monitoring technology was used to survey traffic on bike roads in
Amsterdam. Based on the collected average speeds and percentage of bikers and scooter riders,
the municipality decided to ban the second group from bike roads, which resulted in a remarkable
decrease in accidents involving scooters. [13]

1.3.2 Traffic engineers
Companies worldwide focus on providing an end-to-end traffic-related service tailored to cus-
tomers’ needs. They plan all the experiments, gather required data, analyse, and deliver reports
to the customer.

TCS (https://tcsforsurveys.com.au) offers a wide variety of services, not only traffic,
intersection and pedestrian surveys, but also origin-destination or travel time surveys. [14]

Yarger Engineering (http://www.yargerengineering.com) focuses mostly on providing gen-
eral traffic impact (Figure 1.3), parking and operation studies in the USA. Moreover, they can
deliver forecasts, speed limit studies, and suggest safe routes to schools. [15]

A usual customer of traffic engineering companies is a city or a state authority, developers,
and architects who need to understand how specific infrastructure changes impact the traffic flow
and safety on-road.

Ordering a study from a well-established and experienced company that possesses all the nec-
essary equipment and has people capable of correctly interpreting data and making conclusions
is often much cheaper and more reliable than trying to perform the job on one’s own.

1.3.3 Deep learning-based software
Exploration of new deep learning techniques is extremely popular these days. Countless research
teams at universities and private companies invest a lot of time and money to develop deep
learning models for solving real-world problems. Traffic video analysis is no exception.

In this subsection, we introduce three companies established in the Czech Republic which
build software solutions for managing traffic in smart cities, namely, GoodVision, Data from sky
and Certicon.

While the first two focus solely on traffic analysis, Certicon’s tooling for image analysis
(https://www.certiconvis.cz) can be customised to analyse a shopping centre’s visitors’ move-
ment, count the number of free parking spots at a parking lot or increase security at an airport.
A major downside of this solution is the required interaction with a customer to understand their
needs and tailor the product accordingly. [16]

https://tcsforsurveys.com.au
http://www.yargerengineering.com
https://www.certiconvis.cz

6 Introduction

Figure 1.3 Traffic impact study in Indiana [15]

On the other hand, GoodVision offers a cloud-based solution entirely concentrated on traffic.
This robust tool is called Video Insight and it is available at https://my.goodvisionlive.com/
en/login. Figure 1.4 shows a preview of the service’s user interface and functionality. This
complex tool allows users to perform the following jobs:

to upload video recordings or connect live cameras,

to describe a traffic scene by drawing lines and areas directly on the video,

to analyse and perform counting,

to classify objects into eight classes.

Video recordings can come from fixed cameras, time-lapse, and even drone views. They claim
that data extraction usually takes up to an hour, and the results are 95% to 100% accurate.

The company expects users to use their cloud-deployed version, but they also offer the pos-
sibility to run the platform on a client’s hardware. Clients can pay monthly (or yearly) sub-
scriptions or buy credits and use those for running an analysis if they rarely utilise the platform.
Prices start at e15 per credit and e199 for a monthly Traffic Surveyor subscription plan. [17]

Finally, Data from sky provides a tool named Flow which they refer to as a traffic framework,
the ultimate tool for traffic analysis (https://datafromsky.com/flow). They mention many
different use cases for their technology such as:

adaptive traffic control,

dangerous situations monitoring,

smart parking and

pedestrian and cyclist safety.

https://my.goodvisionlive.com/en/login
https://my.goodvisionlive.com/en/login
https://datafromsky.com/flow

Commercial products 7

(a) Describe the scene and define scenarios

(b) Analyse data and see statistics

Figure 1.4 GoodVision Video Insight Tool

8 Introduction

Figure 1.5 Data from Sky Viewer

Flow is also a visual programming language that allows setting up various scenarios and
triggering actions in the streets. The company targets their products on municipalities, aspiring
to turn them into smart cities. Moreover, the company produces their own camera hardware,
which they equipped with all the processing power required for on-device deep-learning video
analysis. This decreases data transfer as only extracted data is sent to a server node.

The company also offers a light-weight online tool Data from Sky Light, available at https:
//ai.datafromsky.com/light, which analyses an uploaded video and lets the user download
the results and see them in a Windows-only tool Data from Sky Viewer (Figure 1.5).

While the pricing of the Flow framework solution is not public, the Light version has credit-
based pricing where processing one hour of footage costs one credit. The credit’s price differs
based on the purchased quantity. The cheapest we can get is e2.90 per credit when buying 5000
of them. On the contrary, when purchasing just a single credit, its price is e4.20. [18]

According to researchers from FTS CTU, the significant problems of the platforms are a
restricted possibility of vehicle categorisation and higher error rates for footage where vehicles
hide behind obstacles or disappear from the scene for a while. [1]

In this thesis, it is not our intention to compete or compare with the companies mentioned
above whatsoever. They invest a lot of resources into the research, have significant experience
in the field, and own high-quality private datasets used for training and evaluation.

https://ai.datafromsky.com/light
https://ai.datafromsky.com/light

Chapter 2

Theory

In this chapter, first, we make a brief introduction to deep learning while focusing on the image
processing applications.

Second, we introduce the problem of object detection, various approaches and architectures
of models that address it.

Third, we move to the field of statistical theory and introduce Kalman filter, followed by
Hungarian algorithm. Both of these algorithms are a vital part of the object tracking methods.

Finally, we comment on multi-object tracking (MOT) which is the problem that our thesis
focuses on finding a solution for.

2.1 Deep learning
The term deep learning refers to a subset of machine learning models called deep artificial neural
networks. They are networks composed of a single input layer, at least two hidden layers and
an output layer, while each layer consists of multiple units. A neural network with just a single
hidden layer is usually considered a shallow neural network.

A single unit, perceptron, performs a weighted sum of its inputs, applies an activation function
and outputs this single number. Popular choices of activation are sigmoid, rectified linear or
softmax functions.

Let us assume an output y(i,j) of a j-th perceptron on a i-th hidden layer that has n inputs:

y(i,j) = ϕ
(
b(i,j) +

n∑
k=1

w
(i,j)
k xk

)
(2.1)

where ϕ is an activation function, x is a input vector, b(i,j) is a trainable bias and w(i,j) are
trainable weights.

A neural network training process comprises two phases. The first one is a forward pass,
which evaluates the outputs for a given input and compares the result to the ground truth. The
error is then passed back to the network in the backpropagation phase, which updates the weights
of the units to minimise the error. This procedure is called supervised learning.

Even though this thesis’s goal is not to make an extensive introduction to deep learning,
we dedicate the rest of this subchapter to a brief explanation of those types of neural networks
extensively used in our work. For a more thorough understanding of the topic, we refer to other
literature, for example, Introduction to Deep Learning by S. Skanosi [19], [20] or Deep Learning
by I. Goodfellow [21].

9

10 Theory

Convolutional neural networks (CNNs), initially introduced by Lecun et al. [22], is usually
used when a strong grid-like topology of input data is observed. They are a massive success,
especially in the field of image processing.

Instead of connecting each input unit to an output unit as fully-connected layers do, convo-
lutional layers repeatedly apply a convolution operation over small neighbourhoods, extracting
local features such as corners, endpoints or edges. This approach has its foundations in biology
because, as it was discovered in the 1960s, this is how animals’ visual receptive field works [23].

2.1.1 Convolution
Convolution, in general, as described by Goodfellow [21], is a mathematical operation on two
real-valued functions f and g, often noted as (f ∗ g) and defined as:

(f ∗ g)(x) =
∫

f(a)g(x− a) da. (2.2)

If we restrict the range of x to take on just integer numbers, we can define discrete convolution
as:

(f ∗ g)(n) =
∞∑

a=−∞
f(a)g(n− a). (2.3)

In machine learning, f is referred to as input, g is a kernel and the output of the convolution is
a feature map.

If we consider the input a 2D image, the kernel is also 2-dimensional. The infinite sum shrinks
only to the image size because the value is 0 everywhere else. Moreover, because of convolution’s
commutative property, we can define 2D convolution as:

(K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.4)

2.1.2 Convolutional layer
It is common for a convolutional layer to perform multiple convolutions at once and output a
feature map that contains more channels than the original input image. Skansi [20] suggests that
this increases the chance for the kernels to learn good representations of local features, which
can result in better overall performance.

Let us give an example. We have a grey-scaled image of size 100×100, and we pass it through
a single 2D convolutional layer with 9 filters and a 3 × 3 kernel. The output of such a layer is
a feature map 98× 98× 9 while the number of trainable parameters is 90 (9× 9 multiplication
weights, 9 biases).

On the other hand, if we wanted to pass the same image through a fully-connected layer,
we would first need to flatten the 2D vector, effectively removing local connections. Secondly,
we would define the output size of the fully-connected layer on which the number of parameters
would depend. If there were only a single neuron on the output, there would be 10 001 parameters,
500 output neurons would mean more than 5 millions of parameters to train.

Convolutional layers, therefore, bring additional benefits and improvements to both the train-
ing process and resulting quality scores:

input data size is not strictly given by the size of the input layer,

sparse connections between units allow for a significant decrease in the number of trained
weights,

local correlations of input data are taken into account. [22]
Goodfellow et al. [21] further argue that both sparse connections and parameter sharing

contribute to decreased computational complexity and low memory requirements.

Object detection 11

Figure 2.1 An example of visualized general object detection [24]

2.1.3 Pooling
Two additional steps typically follow convolution. The first one is applying a non-linear activation
function, and the second one is pooling. More complicated architectures might add additional
steps like batch normalisation, residual connections or dropout for regularisation.

The most common choice of the activation function with convolutional layers is rectified linear
unit (ReLU):

ρ(x) = max (0, x). (2.5)

A pooling function replaces all values from a small neighbourhood defined by the pool size
with a single value that can be either a maximum, a minimum, an average, or other statistical
operation [21].

According to Skansi [20], the motivation behind pooling is that it drops useless information,
which adjacent pixels often include. A pooling layer of size 2× 2 decreases the dimension of the
feature map to a half but keeps the number of channels untouched. Skansi refers to this step as
decreasing the resolution of the original image.

If we applied pooling to the example as mentioned earlier image, we would get a feature map
with dimension 49× 49× 9.

2.2 Object detection
Object detection is a fundamental computer vision task that aims at localising and classifying
objects in an image, often providing confidence in the detection. Localisation outputs coordinates
of boxes that bound the objects while classification assigns the objects a class they belong to.
Figure 2.1 shows an example of how the detections look when drawn in the original picture.

12 Theory

Figure 2.2 Generated anchors on an image of size 256× 256

Object detection has become increasingly popular because it helps with world-class prob-
lems such as human pose estimation, autonomous driving, traffic control, security and medicine.
Nonetheless, it is also a controversial topic as it can be easily misused for tracking people or
analysing their behaviour. [25]

2.2.1 Anchor-based detectors
Models which belong to this category generate thousands of rectangular regions of interest called
anchors. They are of various sizes and shapes to cover as many objects in the image as possible,
often overlaying one another. Figure 2.2 shows an example of how anchors can be distributed
across an image.

Convolutional architecture is crucial as it extracts a feature map of the image. Researches
often utilise already existing and pre-trained models such as ResNet or EfficientNet. This measure
saves a lot of effort and computational resources.

Next, the anchors are used to build feature vectors. Then, one sub-net assigns the feature
vectors a probability of how likely the areas are background or belong to predicted classes.
Another sub-net generates the final bounding boxes coordinates. [25]

Since anchor-based models have to process large numbers of anchors, they are computationally
expensive. On the other hand, they yield better results than anchor-free detectors. [26]

2.2.1.1 Single-stage
Such models consist only of a single place where anchors are generated. They usually follow the
same distribution. Popular models are Single Shot MultiBox Detector (SSD) [27], RetinaNet [28]
or YOLOv2 [29].

This approach allows for faster inference. On the other hand, it introduces a considerable
class imbalance into training which means that most training samples belong to the background
and do not contribute any helpful input to the training process.

RetinaNet [28] tackles the class imbalance problem by introducing a new focal loss and com-
bines it with feature pyramid network architecture [30]. Outputs are provided by a classification

Object detection 13

Figure 2.3 R-CNN object detection architecture [31]

and bounding box sub-nets. The former provides a classification vector for each of the anchors,
while the latter computes the relative position of the bounding box to the original anchor.

2.2.1.2 Two-stage
These models add one additional step at the beginning of the whole pipeline. Instead of gener-
ating anchors from the whole picture, they first propose a set of candidate regions covering all
the objects. The rest of the image is filtered out and labelled as a background.

Figure 2.3 shows an architecture of the R-CNN (Regions with CNN) model, which was
a breakthrough in the field of object detection back in 2014 [31].

It was followed by other models like Fast R-CNN [32] and Faster R-CNN [33]. The second one
further improved performance by introducing new ways of how region proposals are computed
or taking advantage of the feature pyramid networks already mentioned in 2.2.1.1.

Zhao et al. [25] claim that this approach somewhat imitates the behaviour of the human
brain, which scans the scene first and then focuses only on identified regions of interest.

2.2.2 Anchor-free detectors
In contrast with anchor-based detectors, anchor-free ones locate objects in an image without
predetermined anchors. Consequently, it removes all the anchor-related hyperparameters. There
are two main categories of anchor-free models: keypoint-based and center-based. [26]

Tian et al. [34] further point out that anchor-based models require careful, heuristic tuning
of some of the hyperparameters, like intersection over union (IoU) to get good performance.

2.2.2.1 Center-based
You only look once (YOLOv1) [35] split an image into a S × S grid and generate bounding box
proposals of various sizes and aspect ratios per each grid cell while keeping the centre of the box
in the cell itself. As stated by the authors themselves, the model suffers from issues with small
objects’ detection and failures to generalise on unobserved aspect ratios of known objects.

In Fully Convolutional One-stage Object Detection (FCOS) [34] authors suggest an approach
where each (x, y) location on a feature map is considered as an object center point. A 4D
(l∗, t∗, r∗, b∗) vector is regressed for the center points that contain objects. These vectors define
the bounding boxes positions (Figure 2.4).

The authors further identify a flaw of numerous bounding boxes being far away from actual
object centres. They decided to address it by introducing a metric they call centreness applied
to the final detection score.

14 Theory

Figure 2.4 FCOS center-based detection [34]

2.2.2.2 Keypoint-based
Keypoint-based models utilise either predefined or self-learnt sets of keypoints for defining the
bounding boxes.

CornerNet [36] detects an object as a pair of top-left and bottom-right corners coordinates.
The authors argue that corners are easier and more efficient to learn than centres or anchors.

2.2.3 EfficientDet
EfficientDet [37] is a family of single-stage, anchor-based models which aims at scalability, effi-
ciency and accuracy.

Increased accuracy while keeping complexity rational is achieved by combining the Efficient-
Net backbone, which is responsible for feature map extraction with the proposed weighted bi-
directional feature pyramid network (BiFPN).

They achieve scalability by introducing compound scaling to the BiFPN. This method is
originally presented in the article about EfficientNets [38] and reused in EfficientDets. It allows
for efficient scale-up when more resources are available.

The authors present 8 different versions of the architecture denoted as D0, D1, . . . , D7
(similarly to EfficientNet’s B0, B1, . . . , B7). The higher the number, the better the accuracy,
nonetheless, more parameters and higher computational complexity.

2.2.3.1 EfficientNet
The breakthrough that EfficientNet brings is the compound model scaling method. It uniformly
scales the network in width, depth and resolution. The paper argues that all of these dimensions
must be balanced in order to get improvement in both accuracy and efficiency. Usually, networks
are scaled only in one of the parameters, trading performance for the accuracy or vice versa.

The authors define a baseline B0 architecture composed of multiple convolutional and in-
verted residual blocks [39] of various kernel sizes and channel dimensions, outputting features at

Object detection 15

&
RQ

Y�
�[

� ��

0
%
&
RQ

Y�
��
[�

��
0
%
&
RQ

Y�
��
[�

&
RQ

Y�
�[

�

0
%
&
RQ

Y�
��
[�

��
�0

%
&
RQ

Y�
��
[�

��
0
%
&
RQ

Y�
��
[�

��
0
%
&
RQ

Y�
��
[�

��
0
%
&
RQ

Y�
��
[�

3R
RO
LQ
J�
	
�)
XO
O\

&
RQ

QH
FW
HG�� �� �� ��
� ��
� ��
�

��
��

3� 3� 3� 3� 3�

Figure 2.5 EfficientNet B0 architecture, based on [38]. An image flows through convolutional and
inverted residual blocks of 3 or 5 kernel sizes, always half in size, but multiplied in depth.

several levels Pi. Figure 2.5 shows the architecture, highlighting the feature map levels taken as
an input to the feature pyramid.

This architecture scales according to a parameter ϕ and forms the whole EfficientNet family.
The scaling methodology enables for usage of EfficientNet models on both mobile and GPU-heavy
devices.

2.2.3.2 BiFPN
Weighted bi-directional feature pyramid network (BiFPN) is a representative of multi-scale fea-
ture fusion methods which aggregates feature maps at different resolution levels.

Such methods usually use the output at level P3 to P7 and aggregates in different manners,
including top-down (feature pyramid networks [30]), top-down and bottom-up (PANet [40]) or
cross-scale which connect different feature levels.

BiFPN is a cross-scale method with several new ideas, such as the removal of nodes with
just a single input or connecting input with output nodes on the same layer. The cross-scale
connections require resizing of features coming from the other layers before summing them up
since their dimension is different. The authors propose a fast normalized fusion. It features
a trainable parameter on each level that allows the network to learn which features are important
during the sum-up:

P out
5 = Conv

(ŵ1P
in
5 + ŵ2P

middle
5 + ŵ3Resize(P out

4)

ŵ1 + ŵ2 + ŵ3 + ϵ

)
(2.6)

Figure 2.6 shows the architecture of a single BiFPN block, which can be repeated multiple
times in the actual network. The outputs of the last BiFPN block are connected to two networks
that predict object classes and the bounding boxes.

Further details, including the scaling configurations for the EfficientDet family, are available
in the original paper by Tan et al. [37].

2.2.4 Non-max suppression
Anchor-based object detection models generate thousands of proposed bounding boxes. Hence,
it easily happens that the same object is detected multiple times, as shown in Figure 2.7a.

Non-max suppression (NMS) is a greedy algorithm that removes duplicate detections based
on intersection over union and confidence rule. If two or more bounding boxes significantly
overlap (IoU is greater or equal to a given threshold), only the bounding box with the highest
confidence score is kept; the rest is suppressed.

Bounding boxes that do not score over a given confidence score get suppressed as well in
order to decrease the number of falsely detected objects.

In our implementation, we use an improved version of the algorithm called Soft-NMS which
improves the original technique by introducing a confidence score decaying function based on
IoU, instead of directly comparing the IoUs. [41]

16 Theory

P3

P4

P5

P6

P7

Figure 2.6 A single BiFPN block architecture, based on [37]. The arrows indicate the directions how
information gets to the nodes. The cross-level connections apply a resizing function to get the values
from different levels to the same dimension.

Object detection 17

(a) No non-max suppression applied

(b) Non-max suppression with minimum 0.1 confidence score and maximum 0.75 IoU

Figure 2.7 NMS effect on object detection

18 Theory

2.3 Kalman filter
Let us now diverge from the topic of deep learning to statistics and talk over the Kalman filter,
which is of the essence for algorithms introduced in section 2.5.

The Kalman filter, originally introduced and proved by R. E. Kalman in 1960 [42], is a sta-
tistical method that solves the problem of estimation.

Say, we receive values y(t) that come from a measurement device that tracks a signal x(t).
Because the device does not measure perfectly we need to account for a noise: y(t) = x(t)+n(t)
[42].

In other words, the Kalman filter approximates the unobservable state of a system by ob-
served, often noisy, data. It assumes that the measurements, the hidden state, and the noise are
coming from a Gaussian distribution, and the system is dynamic and continuous.

Representation of the system’s state depends on the given use case, but in general, it is
a vector of numbers. For example, a single unit like height, weight or price, (x, y, z) coordinates
or a combination of position and velocity of an object.

The Kalman filter is just one of the methods belonging to the Bayesian filters family. It
can be applied in robotics, radar tracking or signal processing for data-smoothing, filtering or
predicting the next state. [43]

It consists of two steps, namely, a prediction and a correction steps. While the first one
estimates the next state st+1 using the state transition equation, the second one amends the
estimate based on the provided measurement. The correction step is skipped if no measurement
is available at t+ 1.

2.3.1 Prediction step
The prediction step applies a linear state transition equation to extrapolate the next state of the
system based on the current one:

st+1 = Fst +Gut + wt, (2.7)

where F is a state transition matrix, G is a control matrix, ut is a control input and wt is
Gaussian noise [44].

The state is a Gaussian distribution parameterised by mean st and covariance matrix Pt

where Pt represents the uncertainty of the current state. It has to be updated alongside the
state:

Pt+1 = FPtF
T +Q, (2.8)

where Q is a process noise matrix.

2.3.2 Correction step
After the prediction step concludes and we receive a new measurement yt, we can use it to correct
the current state st through the state update equation:

st+1 = st +Kt+1(yt+1 −Hst), (2.9)

where H is a measurement matrix that transforms the state st to the same dimension as the
measurement; Kt is the Kalman gain.

Introducing the gain is, according to [43], the most valuable contribution of Kalman’s original
work:

Kt+1 = PtH
T (HPtH

T +R)−1, (2.10)
where R is a measurement uncertainty. The intuition behind Kt is that during the update it gives
more importance to the measurement or the prediction based on current uncertainty covariance
matrix. For the definition of uncertainty update equation we refer to [44].

2D Rectangular Assignment 19

2.3.3 Summary
When formulating a task as the Kalman filter problem, we need to define the spaces, the constants
and the initial values required by the algorithm. Below we list all of them, including their
dimensions in brackets. First, the space sizes:

the measurement space y (dy × 1),

the state space s (ds × 1),

the control space u (du × 1).

Then, the constant matrices:

the measurement matrix H (dy × ds),

the state transition matrix F (ds × ds),

the control matrix G (ds × du),

the process noise matrix Q (ds × ds),

the measurement uncertainty matrix R (dy × dy),

the gain matrix Kt (ds × dy).

Finally, the initial values for the mean s0 (ds × 1) and covariance P0 (ds × ds). [44]

2.4 2D Rectangular Assignment
The 2D assignment problem is a combinatorial optimization problem, also known as a linear sum
assignment, defined on a matrix of costs C of dimension (NR ×NC), NC ≥ NR.

The result is a matrix X of assignments which picks exactly one column for each row in a
way that the sum of costs is minimized or maximized. Written mathematically [45]:

X = argmin
x

NR∑
i=1

NC∑
j=1

Ci,jxi,j

subject to
NC∑
j=1

xi,j = 1 ∀i,

NR∑
i=1

xi,j ≤ 1 ∀j,

xi,j ∈ {0, 1} ∀i, j.

Many algorithms solve the problem, including a popular, so called Hungarian method. These
algorithms are based on linear programming, maximum flow or shortest path methods. While
the older methods offered a O(n4) complexity, the newer approaches reached O(n3).

Jonker-Volgenant algorithm [45] is one of the popular choices. They take the existing shortest
augmenting paths-based algorithms and suggest changes to the initialisation and augmentation
steps of the algorithm.

The disadvantage of the original paper and implementation is that it works just with squared
cost matrices. Castanón et al. [46] introduced a modified version of the algorithm that generalised
for rectangular matrices. Hence, the currently used implementation is referred to as Jonker-
Volgenant-Castanón algorithm.

20 Theory

2.5 Multi-object tracking
Multi-object tracking (MOT) or multi-target tracking is another task of computer vision. In
a sense, it is an extension of object detection, explained in section 2.2, that maintains identity
of the objects across multiple frames.

Given a series of video frames, MOT algorithm extracts a set of trajectories of objects, usually
pedestrians, vehicles, animals or players on a pitch.

In their literature review, Luo et al. [47] define the task as a maximum a posteriori estimation
from a distribution of sequential states S1:t of objects in scenes given observations O1:t.

There are several challenges and obstacles related to MOT, notably:
occlusion (one object blocks a view on other ones),

initialisation and termination of a single trajectory,

distinction of similarly looking objects and

the choice of similarity measurement between objects.
The most commonly used approach to the problem is detection-based tracking or a so-called

“tracking-by-detection”. It consists of two steps. First, a detection backbone generates proposals
of objects it can see in each frame. Second, the tracking algorithm assigns identifiers to the
objects and merges them into trajectories.

The two-staged approach benefits from the automatic discovery of new objects to track and
destroying the ones that have left the scene. The main drawback is decreased performance caused
by the usage of the detection backbone. Moreover, pre-training of the backbone restricts its usage
across various scenes.

An alternative to the above is a detection-free method that removes the requirement for the
detection model. Nonetheless, it takes a manual input of initial objects to track in the subsequent
frames. The number of trajectories remains constant for the whole video.

The MOT models work either in online or offline mode. The first ones use only the informa-
tion from the past and the current frames to determine the next states. They process the video
sequentially. On the contrary, offline models utilise information from a batch of frames both in
the past and future to estimate the final states.

Next, the choice of an optimisation method used to solve the MAP formulation mentioned
above divides the models into probabilistic and deterministic. While probabilistic models apply
a portion of randomness into the process, deterministic ones return constant output to the same
input data. [47]

A MOT model is composed of multiple optional components. They contribute to the ability
of computing similarity between objects, address occlusion and re-identify existing objects.

Luo et al. [47] identify six main components: appearance, motion, interaction, exclusion,
occlusion and inference. Usually, and also in our work, appearance, motion and inference com-
ponents are compulsory. The rest of them is rather scenario-specific. For instance, crowded
scenes would need an occlusion component incorporated in order to handle them with a high
success rate.

The appearance component addresses a visual representation of the object and its region. It
can be a pixel representation, histogram or CNN-based feature representation.

The motion component aims at capturing the movement dynamics of an object. This is
important for reducing the space where the tracked object can appear in future frames.

The inference component takes care of determining the final trajectories. The probabilistic
approach, usually an online method, estimates a distribution of the next states. Kalman filter
(section 2.3) is a good example of such approach with predict–update cycle in place. The deter-
ministic approach takes advantage of optimisation algorithms to find the best-suited trajectories
in a batch of frames.

More information on the topic can be found in Luo et al.’s comprehensive review [47].

Multi-object tracking 21

Figure 2.8 An example of multiple vehicles movement tracking. The same vehicle is bordered with
the same color.

22 Theory

Chapter 3

Related work

In the following sections, we aim to describe how other teams of researchers approach the prob-
lem of multi-object tracking and vehicle detection, tracking and counting. We commence the
chapter with early vehicle tracking methods and general MOT techniques. Next, we follow with
an example of an end-to-end deep-learning-based method and end with techniques tailored for
vehicle counting.

In fact, we have already commented on existing commercial products, both physical devices
and software products in section 1.3. Instead, this chapter focuses on academic papers suggesting
various methods and procedures that tackle the problem.

On-roadway vehicle tracking problem was prevalent even in the late ’90s and the early ’00s.
Back then, neural network approaches were not popular due to insufficient computational perfor-
mance. Therefore, researchers widely used algorithms of computer vision, probabilistic methods
and direct examination of images’ properties.

Betke et al. [48] come up with a real-time vehicle detector that acts as a control system
capable of monitoring the environment and taking actions in dangerous situations. Their camera
is placed inside the vehicle, just behind the windshield, covering a wide range in front and on
the sides.

When a vehicle is close to ours, it covers a considerable part of the image, which causes
a noteworthy difference in brightness. Thus, looking for changes in brightness over a couple of
frames allows the authors to detect vehicles approaching from behind or getting close in the
opposite direction.

The team notices that this is not good enough for distant vehicles’ recognition; hence, they
introduce another method that evaluates vertical and horizontal edges in the frames.

Other works, similarly to us, focus on tracking cars from a stationary camera placed high
above a road to cover as much of the driving area as possible. Koller and Malik [49] introduce
a method based on motion segmentation, contour representation and affine motion model of the
tracked objects. They split the estimation process into two parts - two Kalman filters. First, to
estimate the affine motion parameters, and second, to approximate the contour’s control points,
represented as a closed cubic spline.

Finally, open-source projects are available that implement the well-known and widely-used
models and methods in a single repository. This can save a substantial amount of time needed to
develop a new MOT model. To give an example, MMTracking [50] implements a few video-object
and multi-object tracking methods.

23

24 Related work

3.1 Simple Online and Realtime Tracking
Bewley et al. [51] suggest an algorithm called “Simple Online and Realtime Tracking (SORT)”,
a simple yet effective and fast framework for the tracking-by-detection problem, building on top
of CNN-based detection. According to their findings, the detection accuracy significantly impacts
the tracking quality. This is a noteworthy discovery for our work, suggesting to use a detection
model that gives precise and confident information.

In their work, Bewley et al. focus on applying the suggested procedure to pedestrian tracking.
Nonetheless, the detection model is easily replaceable, allowing for generalisation to different
objects.

The contribution of their work is experimenting with CNNs, founding the tracker on Kalman
filter (motion component) and Hungarian algorithm (inference component) and open sourcing
their code to the public.

The pipeline of the framework is straightforward. First, a frame at time t passes through the
detection model, which outputs a list of detected objects’ bounding boxes Dt. Detection models
usually output bounding boxes as a list of top-left and bottom-right coordinates.

Second, Kalman filter prediction step (section 2.3) is utilized to estimate the positions Et of
objects at t based on the state at t− 1.

Bewley et al. design a linear constant velocity model:

x(t) = x0 + v0t. (3.1)

A single state is represented as:

s = [cx, cy, a, r, ĉx, ĉy, â], (3.2)

where cx, cy are coordinates of the centre of a bounding box, a is the area of the bounding box,
and r is an aspect ratio. ĉx, ĉy and â are the velocity components solved by the Kalman filter.

Third, they form a matrix of intersection over unions between Et and Dt, called association
matrix, which describes how much the estimated and actual bounding boxes overlap. Hungarian
algorithm (section 2.4) provides a solution to this described assignment problem.

Finally, there are three possible outcomes and actions taken:

1. dti gets linked to eti: estimate is corrected according to dti,

2. dti stays separate: it is a new detection; a new tracker is initialized and marked as active if
it is detected for Tnew consecutive frames,

3. eti stays detached: the tracker is followed for Tlost frames and destroyed afterwards if no
correction appears.

The actions described above prevent the algorithm from growing the number of tracks to infinity
or starting to track false detections.

3.2 Deep Associations Online and Realtime Tracking
The work by Wojke et al. [52] builds on top of SORT introduced in the section above and
presents Deep Associations Online and Realtime Tracking (Deep-SORT). They propose a couple
of changes with the intention of decreasing the number of identity switches caused mainly by
occlusion. They claim to have achieved this goal by cutting the undesired switches down to a
half of what Simple Online and Realtime Tracking (SORT) would produce.

This enhancement is achieved through replacing the original IoU association matrix with a
cost matrix C that combines both motion and appearance information:

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j), (3.3)

FairMOT 25

where d(1) is the motion measurement and d(2) is the appearance measurement. λ is a hyper-
parameter that specifies which of the two measurements is given more preference.

Moreover, they slightly alter the state space representation while still sticking to the linear
constant velocity model. The area of a bounding box is replaced with its height:

s = [cx, cy, r, h, ĉx, ĉy, r̂, ĥ]. (3.4)

The motion information is accounted for though a Mahalanobis distance between each state’s
normal distribution parameters projected into measurement space, denoted as (µi,Σi), and a
new detection dj :

d(1)(i, j) = (dj − µi)Σ
−1
i (dj − µi). (3.5)

The distance indicates how far dj is from the tracker’s position. Additionally, it excludes highly
unlikely associations by thresholding the distance value on a 95% confidence interval.

The appearance information is generated from pixel representation of the bounding boxes.
Each di is passed through a standalone CNN which generates a unit-length embedding – appear-
ance descriptor ri. Architecture of the network is described in [52].

The framework keeps a gallery of seen descriptors Gi and computes a cosine distance between
each descriptor in the gallery and new detection’s descriptor rj .

d(2)(i, j) = min (1− rTk rj | rk ∈ Gi). (3.6)

It achieves better overall tracking accuracy while keeping the inference fast to operate in
real-time.

3.3 FairMOT
Traditionally, MOT frameworks have been using two independent models for detection and sub-
sequent re-identification. The authors of FairMOT [53] introduce a single model with a common
encoder-decoder backbone followed by two separate detection and re-identification branches.

The two-model approaches, such as SORT or Deep-SORT (section 3.1 and section 3.2, re-
spectively), get slower when many objects appear in scenes as each bounding box is re-identified
separately.

The authors identify three reasons why early single-network trackers suffer from a significant
drop in tracking accuracy:

heatmap head

box size head

box offset head

Detection branch

conv2D, 128
extract features

Re-identification branch

Detection

Re-identification

encoder-decoder feature
extractor

Figure 3.1 FairMOT model architecture, based on [53]

26 Related work

extracting re-identification features from anchors which they find unsuitable,

sharing features between detection and re-identification, which are opposite tasks - the first
one finds common characteristics while the other distinguishes between instances of the same
class,

insufficient feature dimension for re-identification.

Zhang et al. [53] solve these issues by proposing two heads that treat the tasks fairly. First, an
image is processed by a common ResNet-like encoder-decoder architecture, which extracts high-
level features. Next, these features are passed to both detection and re-identification branches.
We visualise the architecture in Figure 3.1.

The detection branch is an anchor-free (subsection 2.2.2) CenterNet architecture composed
of three heads. One for estimating centres of objects (heatmap head), another for proposing the
bounding box sizes (size head) and the last for more precise localisation (box offset head).

The re-identification branch uses just a single convolutional layer with 128 channels to gen-
erate features for distinguishing objects. Only features at the centres of actual objects are
cherry-picked in a later stage of the algorithm.

The final association of tracklets and detections follows the very same process as Deep-SORT.
Both Mahalanobis distance and the cosine distance of the appearance descriptors are taken into
account. The descriptors are extracted from the re-identification branch.

According to the authors, the framework ranked first place in the MOT challenge benchmarks
in 2021 while still running fast on a single GPU. The algorithm’s speed owes to the fact that
both detections and appearance descriptors are generated together.

3.4 Vehicle counting framework
Dai et al. [54] propose a framework that counts vehicles based on a video recording. They split
the problem into three stages: object detection, object tracking and trajectory processing.

The first two stages follow the algorithms that we presented in the sections above. The last
one merges the tracklets into trajectories, infers the directions and classifies the vehicles into
three categories: car, bus and truck.

The framework’s output is a matrix with counts of vehicles that pass in specific directions
grouped by the class they belong to, as shown in Figure 3.2. It is achieved by clustering the
trajectories’ start and end points together with their directions. The sizes of the clusters are
considered to be the results. However, the team fails to provide detailed information on how
they identify the number of clusters or find out which cluster represents the final categories.

They report achieving 87.6% accuracy on their custom dataset using YOLOv3 and a simple
Kalman filter-like tracking method.

10 8 7
0 1 2
3 0 0

12
14

3
0

0
0

0
8

0

0432
110
001

4
5

6
0

0
1

0
0

0

Detection

Tracking

Trajectory processing

Figure 3.2 Vehicle counting framework visualisation, based on [54]

Chapter 4

Analysis

One of the main deliverables of our work is proof-of-concept software. In this chapter, we clarify
the problem we are trying to solve. Next, we list the functional and non-functional requirements
the application needs to meet. Finally, we propose our software solution and give motivations for
our decisions during the design. The details of the pipeline that transforms a video into numbers
and the implementation are presented in chapter 5 and chapter 6 respectively.

4.1 Problem
As already mentioned in chapter 1, this thesis automates the evaluation phase of traffic surveys.

It is the phase when a person needs to go through a pre-recorded traffic video and manually
or semi-manually, taking advantage of specialised software, count the vehicles while categorising
them. The expected output reports the number of vehicles that pass the scene, aggregated per
hour. This process usually takes three to seven days to complete [2], depending on the length of
the video.

Typically, it is 24 or 48 hours long, 20-25 FPS, recorded in HD. This configuration is a good
trade-off between saving storage and battery life of cameras while keeping the quality high enough
for people and machines to recognise objects in the scenes.

The human-counting approach of a pre-recorded video has the advantage of a low error rate,
usually around 3− 5%, whereas performing the counts directly on the roads increases the error
to 10%. The automatic tools such as those mentioned in section 1.3 can be up to 30% off the
correct number. [2]

Classification of the vehicles is a delicate problem on its own. It seems to be quite a simple
task at first glance, but traffic researchers know there are multiple classification standards and
guidelines to follow. Let us list just a couple of them:

5-category classification is the most common classification of wheeled vehicles: bicycle, mo-
torbike, passenger car, truck and bus [2].

United Nations ECE standard introduces categories L, M, N, O, T, R, S, G that represent
vehicles from motor-bikes to off-road vehicles. These are split into several subcategories based
on their maximum weight, engine capacity, number of wheels, speed, etc. [55]

EU vehicle categorisation defines four primary categories: a light-duty vehicle, a heavy-duty
vehicle, a agricultural or forestry tractor and 2-3-wheel vehicles. These are divided into
subcategories based on how many axles they have. Trucks are additionally branched to
non-trailer and trailer. [56]

27

28 Analysis

Czech Technical Norm (ČSN) introduces the types of road vehicles and their classification
valid in the Czech Republic [57].

The differences between vehicle types are sometimes so difficult to tell apart in a video
recording that both people and machines make many mistakes, especially with trucks. Therefore,
a two-category classification to passenger and slow vehicles is popular in traffic modelling. [2]

4.2 Requirements
Now that we have defined the problem, we look at various functional and non-functional require-
ments which we need to meet to make our application usable.

4.2.1 Functional requirements
FR1 Analyse a traffic video
The main goal of traffic survey automation is an automated analysis of a video recording. Such
an analysis is a complex process and requires a substantial amount of hardware resources, mainly
RAM and GPU.

In this context, running an analysis means applying a selected pre-trained deep learning
model to the recording’s frames to extract information about vehicles in the scenes.

However, user machines are usually not capable of delivering enough performance to finish
this task in a reasonable time.

FR1a: Run the analysis on a dedicated remote server.

FR1b: Schedule the tasks using a queue.

FR1c: Offer multiple deep learning models.

FR2 Choose a video from a library
Because a remote server performs the computations, a user needs to get the video to the server
first. The upload itself can take a significant amount of time, depending on the Internet connec-
tion quality.

In order to keep our initial implementation of the application simple, we decided to leave
this requirement up to the user and let them upload videos to the server on their own, using
commands like scp or kubectl cp.

Once a video is uploaded to the server, the application needs to discover it and allow the user
to pick it up for processing.

FR3 Store the analysis persistently
The results of the analysis need to be stored for later repeated usage. The data is stored as a
JSON file to allow the user easily download and work with the raw data. The file includes an
identification of the objects and their tracked paths.

FR4 Identify the regions of interest
The user can define regions of interest. These are lines that determine places where the vehicle
counting happens. Each vehicle crossing that line adds one to the total sum.

To allow the user to provide these regions, we show them the paths that the vehicles usually
take. This is achieved by drawing smooth and aggregated lines formed from the centres of the
bounding boxes.

FR4a: The application is capable of working with multiple lines.

FR4b: To avoid confusion, each line can be assigned a name.

Requirements 29

FR4c: More sets of lines can be specified for a single analysis.

FR5 Present the final data
Results of the analysis are offered as either video, raw or aggregated data. The user can pivot
between these output formats without re-analysing the original video.

Video shows a recording similar to the original one but with lower FPS and coloured bounding
boxes of tracked vehicles. The original video is required.

Raw JSON data can be downloaded for future custom use.

Aggregated CSV-formatted table which contains sums of vehicles that pass the regions of in-
terest. If there are multiple, the table is a matrix that shows data for each two of the lines
(similarly to Figure 3.2).

This thesis assignment requires the aggregated traffic statistics to be presented “in time”. We
find this statement ambiguous so let us clarify how we understand it. The original idea was to
present the aggregated counts on a timeline – per a time unit (a couple of minutes, an hour, etc.).
On top of that, we would be able to provide the average time the vehicles spend in a camera’s
view.

After discussing the topic with traffic researchers, we identified these two functionalities as
irrelevant for the initial implementation and evaluation. The primary reason for the decision is
a lack of long enough videos where the feature would bring any benefit. Moreover, we do not
have any reference data that we could compare the output of these two features with.

We refer to section 5.4 and section 7.5 where we provide more information about storing the
analytic data and propose the way of implementation of the “in time” feature in future.

4.2.2 Non-functional requirements
NFR1 Web user-interface
We intend the app to be useful for a broader audience. Therefore, a friendly and usable user
interface is necessary. Alongside the web UI, the app offers a palette of CLI tools that support
an additional complex task of exporting an analysis into a video output.
NFR2 Asynchronous interactions
All the performed operations are time-consuming, so they are executed in a way that does not
block the user. Moreover, the application provides feedback about the status of the performed
jobs.
NFR3 Reasonable processing time
In section 4.1, we stated that it could take more than three days for a human being to process a
video. So, time is not of high priority, yet we believe the analysis of a recording does not exceed
two times the length.

The processing time is affected by the available hardware. An expectation of processing a
video in almost real-time without proper hardware is unachievable.
NFR4 Reasonable accuracy
For the model to be applied in practice, the error rate cannot diverge much from the average
values that human-performed counting yields. According to our discussion, an error rate of
around 10% is acceptable [2].

Still, the position of a camera and the quality of the recording influence the resulting accuracy
prominently.
NFR5 Hardware requirements
The model is built with a GPU support to run faster. Single CUDA-supported device is sufficient.
The amount of available graphical unit’s memory affects the maximum possible batch size. We
have tested that 32GB of GPU memory is enough for a batch of 32 frames.

30 Analysis

Backend

schedule a task

API Persistent
database

Frontend application

+ list existing videos
+ discover new videos
+ create new analysis
+ list existing analysis
+ draw regions of interest
+ export analysis

change the state
of processing

Analysis worker

pick up a task

store analysis results
as a JSON

File storage

Figure 4.1 Application architecture diagram

4.3 Solution
Based on the problem statement and the requirements defined in the sections above, we propose
a software solution in this section.

We split our application into a backend and frontend part. While the frontend is responsible
only for serving information to a client and interacting with them, the backend does all the heavy
lifting, including communication with clients, scheduling the analysis jobs, performing counting
operations, and storing information in a database. Figure 4.1 shows a simplified architecture
and communication of the app’s components.

4.3.1 Backend
The backend runs as a standalone application that provides an API for communication with
clients. It allows the following operations:

list existing video source files,

discover new source files by indexing the source videos folder,

schedule an analysis with the possibility to choose the combination of models and their initial
parameters,

browse through existing analyses,

download raw or video version of an analysis,

see a visualisation of an analysis,

create a new set of regions of interest,

to count the vehicles crossing the regions of interest.

In our work we follow the tracking-by-detection paradigm (section 2.5). Detection is per-
formed by the EfficientDet model family, precisely D5 or D6 architecture which we identify as
a good trade-off for performance and accuracy given the assumption of HD videos.

For tracking, we utilize the Kalman filter-based SORT and Deep-SORT algorithms defined
in chapter 3. To improve their abilities, we decided to replace the constant velocity model with
a constant acceleration model; refer to subsection 5.3.1 for more details.

Solution 31

lines

PK id integer NOT NULL

lines json DEFAULT '{}'::json NOT NULL

source_files

PK id integer NOT NULL

name text NOT NULL

path text NOT NULL

status source_file_status DEFAULT 'new'::source_file_status NOT NULL

tasks

PK id integer NOT NULL

name text NOT NULL

models text[] NOT NULL

output_path text NOT NULL

parameters json DEFAULT '{}'::json NOT NULL

status task_status DEFAULT 'created'::task_status NOT NULL

source_file_status

new
processing
processed
deleted

task_status

created
processing
completed
failed

Figure 4.2 Database schema

In the initial version of the application, we pay no attention to the classification of the detected
objects.

4.3.1.1 Worker
In order not to overload the app that handles the API, we keep a separate worker that accepts
scheduled analysis tasks from a queue and runs them one by one.

This allows for more manageable scaling in future. If we ever decide to process more tasks at
once, we only need to spin up more workers, but add the same number of new GPUs and map
them correctly so that each worker uses its own GPU.

When a task starts, the worker, changes the state of the source video and the task to
processing. Once finished, it translates the states accordingly to indicate a success or a failure.
Yet, the transition does not happen in the case when the operating system suddenly kills the
process because of a fatal event.

Having an independent set of workers processing the analyses queue allows the user to override
the default configuration variables of an analysis. Namely:

video properties like output frame rate or maximum number of frames to process,

detection model parameters like IoU and score threshold,

tracking model parameters, for example, the minimum number of consequent detections to
start tracking,

visualisation parameters such as a smoothing polynomial function’s degree.

4.3.1.2 Database
To comply with the requirements, we have to store data about the source videos, the performed
analyses and the drawn regions of interest, together with their states and references to video and
JSON files.

A relational database is a perfect candidate for the job. The decision has several reasons.
There are evident connections between the entities; we do not require a high-performance dis-
tributed solution, nor do we store a huge amount of unstructured data.

Figure 4.2 shows the schema of our database model, including their required presence and
the data type. We point out that source_file_status and task_status are enumeration data
types used in source_files and tasks tables to ensure consistency of the status values.

Backend satisfies the following requirements: FR 1, FR 3, NFR 3, NFR 4 and NFR 5.

32 Analysis

4.3.2 Frontend
The frontend is a single page application that runs in a web browser in JavaScript. It provides
a graphical interface for the user to interact with the application.

It is a small piece of software that lacks many fundamental features expected of a production
version, including authentication and permissions management to ensure that others cannot
access one user’s video and analysis data.

One of the main reasons to provide the GUI is to allow the user to quickly draw lines into a
visualisation of an analysis and provide the regions of interest for the final task of counting the
vehicles.

The other important action the user does is creating a new analysis task. It is done via
a form where the user chooses the detection and tracking models to use, together with a list
of parameters and hyper-parameters that impact the models’ behaviour. These parameters are
task-specific and cannot be quickly transferred to another task.

Frontend satisfies the requirements FR 2, FR 4, FR 5, NFR 1 and NFR 2. Nonetheless,
not all of the export formats defined in FR 5 are available in the initial implementation of the
frontend application. Some require usage of a CLI command.

Chapter 5

Proposed framework

Now that we have defined all the necessary terminology, discovered how others approach the
problem of MOT and highlighted expectations of our solution, we can explain our framework for
automated traffic survey analysis.

The pipeline consists of six theoretical steps which map to four implemented functions. This
chapter focuses on enumerating and providing details about the theoretical steps. For implemen-
tation details, please see chapter 6.
1. read video frames,

2. detect vehicles,

3. track vehicles,

4. store tracklets,

5. visualise tracklets as trajectories,

6. count vehicles based on regions of interest.
In the text below, we refer to a list of constants, parameters and hyper-parameters that

are listed and explained in Appendix B. As we previously mentioned, all the parameters are
user-customizable.

5.1 Read video frames
We open the requested source video and find its original frame rate Fi. The desired output
frame rate Fo is represented by VIDEO_FRAME_RATE. Value f specifies that only each f -th frame
is accepted and the rest of them is truncated.

f =

{
Fi

Fo
, if Fo < Fi

1, otherwise

In order to keep the pipeline efficient, we form batches of frames with size ED_BATCH_SIZE
denoted as b in the following text. The next stages of the pipeline process such batches.

If VIDEO_MAX_FRAMES is specified, then only this number of frames are read from the video
and passed to the following stages of processing. This parameter effectively cuts the video and
is helpful, especially for testing purposes, as it dramatically decreases the processing time. It
should not be used in production analyses.

This step produces a structure of shape b × W × H × C where the capital letters represent
width, height and channels of the frames.

33

34 Proposed framework

Figure 5.1 Detection on 4 sequential frames

5.2 Detect vehicles
The opening step is to pass the input batch of frames through the model’s prediction step. The
model is either the D5 or the D6 architecture of EfficientDet (subsection 2.2.3). Both the
models are pre-trained on the COCO dataset (section 6.2).

The output of the prediction step is a tuple of bounding boxes, class predictions and scores
indicating confidence in the prediction. Let us assume that there are N = [N0, N1, . . . , Nb−1]
objects in the frames. Then, the shapes of the outputs are N× 4, N× 1 and N× 1 respectively.

Because the models are trained on the COCO dataset, which contains more objects than just
vehicles, they also discover people, animals, food, sports equipment, etc. We are not interested in
these additional categories. For this reason, the second step of our detection pipeline is to drop
the non-vehicle-like objects. We achieve it by assigning a score of 0 to all the detected objects
that do not fit into our predefined vehicle classes.

The vehicles recognised by both models are bicycles, cars, motorcycles, aeroplanes, buses,
trains, trucks and boats. The numbers of the classes are 2 to 9. Since we analyse the on-road
traffic, only the set of 2, 3, 4, 6, 8 is allowed.

Object detection models often capture the same object in multiple bounding boxes. To get rid
of the duplicates we use non-max suppression (NMS) (subsection 2.2.4). The effect of the algo-
rithm is parameterised using several variables like ED_SCORE_THRESHOLD and ED_IOU_THRESHOLD.
It outputs the same triplet of bounding boxes, classes, and scores, yet the number of detections
in the frame dramatically decreases.

Finally, to comply with the rest of our framework, we switch the order of bounding boxes’
top-left and bottom-right corner coordinates from [y1, x1, y2, x2] to [x1, y1, x2, y2].

Figure 5.1 show an example visualisation of all the detections in four sequential frames.

5.3 Track vehicles
The tracking algorithm takes only the batch of bounding boxes as an input parameter. Let us
now consider only bounding boxes Ni of i-th frame in the batch.

Track vehicles 35

Figure 5.2 Tracking on 4 sequential frames. Detected vehicles are bordered with white while tracking
predictions are black. We can notice a couple of false detections at the top (a bush). Since they are not
located on the road they do not cause problems to the vehicle counting.

Each bounding box corresponds to an object, and every object is assigned its own tracker
that predicts the following states and corrects it later based on associated detection.

First, we get a prediction for each of the existing objects. It returns us an array of m locations
that are assigned to at most one of the Ni detections using an association mechanism.

Some of the locations and detections stay without its counterpart. Those are either new
detections or locations for objects that temporarily or permanently disappeared from the scene.
We set up a new tracker for new detections and delete it for old locations – no correction
happened in the last MAX_AGE iterations.

In the end, the algorithm returns a concatenated list of detections and predictions, and their
identifiers. The upper limit for size of both the lists is Ni +m, typically Ni + o where o < m.

5.3.1 Tracker
A tracker maintains its own Kalman filter (section 2.3) to represent a vehicle motion, represented
by movement of a bounding box. In our implementation we assume constant acceleration model:

x(t) = x0 + v0t+
1

2
at2. (5.1)

We define a four-dimensional measurement space, ten-dimensional state space and no control
space. This follows the suggestion in section 3.2, extends it by the acceleration variables:

d = [cx, cy, r, h],

s = [cx, cy, r, h, ĉx, ĉy, r̂, ĥ, c̃x, c̃y],

where (cx, cy) is a center coordinate, r is a ratio, h is a height of a bounding box, ĉx, ĉy, r̂ and ĥ
are the velocity variables, and c̃x, c̃y are the acceleration variables. This extension improves the
model’s tracking quality because it accounts for vehicles’ speed changes while in view, especially
for traffic lights-controlled recordings.

36 Proposed framework

Based on Equation 5.1 and the spaces, we define measurement matrix H, measurement noise
covariance R, transition matrix F and process noise covariance Q. As we do not use the control
space, control matrix is not required. We follow the equations listed in [44]:

H =

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0

 R =

σ2
m 0 0 0
0 σ2

m 0 0
0 0 σ2

n 0
0 0 0 σ2

n

F =

1 0 0 0 ∆t 0 0 0 ∆t2

2 0

0 1 0 0 0 ∆t 0 0 0 ∆t2

2
0 0 1 0 0 0 ∆t 0 0 0
0 0 0 1 0 0 0 ∆t 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Q =

∆t4

4 0 0 0 ∆t3

2 0 0 0 ∆t2

2 0

0 ∆t4

4 0 0 0 ∆t3

2 0 0 0 ∆t2

2

0 0 ∆t4

4 0 0 0 ∆t3

2 0 0 0

0 0 0 ∆t4

4 0 0 0 ∆t3

2 0 0
∆t3

2 0 0 0 ∆t2 0 0 0 ∆t 0

0 ∆t3

2 0 0 0 ∆t2 0 0 0 ∆t

0 0 ∆t3

2 0 0 0 ∆t2 0 0 0

0 0 0 ∆t3

2 0 0 0 ∆t2 0 0
∆t2

2 0 0 0 ∆t 0 0 0 1 0

0 ∆t2

2 0 0 0 ∆t 0 0 0 1

σ2
a,

where ∆t is a difference between two successive measurements and σ2
a is variance in acceleration.

5.3.2 Association methods
When SORT is picked as the tracking algorithm, just a simple association using the Hungarian
algorithm (section 2.4) on a matrix of IoUs is employed.

Deep-SORT adds a few more layers. First, it generates feature embeddings for the bounding
boxes pixels, then uses Mahalanobis distance and cosine distance to form the matrix used during
association.

Figure 5.2 shows an example of how the tracking algorithm estimates the movement of the
bounding boxes. The tracker’s estimated position is drawn in black while the correct detected
position is white.

5.4 Store tracklets
Once tracking is complete, we store the tracklets in a JSON-formatted file. To support visuali-
sations and vehicle counting, we have to store the list of tracks. Video export is available only
when the source video is still present in the source files folder.

Visualise 37

[
{

"identifier": "ef490615-e9d6-4a41-9715-02647addb38a",
"class": 3,
"score": 0.4988304376602173,
"frames": [4, 5, 6, 7, 8, 9, 10, 11],
"path": [

[
996.8204345703125, 396.7250671386719,
0.9125178456306458, 110.7529296875

],
[

1000.4480590820312, 394.2456359863281,
0.920068621635437, 106.69781494140625

],
"..."

]
},
{

"identifier": "40161aa5-0efc-46f0-a8ac-698c6690dc77",
"class": 8,
"score": 0.06900424510240555,
"frames": [70, 71, 72, 73, 74, 75, 76, 77],
"path": [

[
497.4085998535156, 564.85986328125,
2.6691994667053223, 310.2802429199219

],
"..."

]
}

]

Code listing 1 A shortened analysis output

The list mentioned above contains dictionaries with an identifying UUID, class, average score,
frames the vehicle appears in, the path and bounding box size stored as a ratio and a height.
Listing 1 shows a shortened example of the stored data.

We store the numbers of frames the vehicle appears in to support the following use cases our
application already supports or is supposed to support in future:

video-file export,

“statistics in time”,

average time vehicles spend in the view or between regions of interest.

5.5 Visualise
Visualisation is vital for the user since they base the selection of regions of interest on it. It
provides a perception of how vehicles move in the recording allowing for a feasible choice of the

38 Proposed framework

Line 1 Line 2 Line 3 Line 4 Unknown
Line 1 - 7 4 2 0
Line 2 7 - 1 0 0
Line 3 5 0 - 3 2
Line 4 0 0 1 - 2

Table 5.1 An example result of counting. The numbers do not match the visualisation in Figure 5.4.

counting lines. Without visualisation, the user could easily draw the lines in places where no
vehicles are detected. Alternatively, the curves might be moved to unexpected positions, for
instance, on pavements or edges of the roads.

The visualisation process starts with a transformation of the unconnected path points of
a tracklet into a single smooth polynomial curve. Actually, we form a least-squares spline of
INTERPOLATION_POLYNOMIAL_DEGREE degree that approximates the path points, at the same
time squashes noises.

The difference that smoothing makes is visible in Figure 5.3. We notice that some of the curves
are not straight but move up and down, caused by sudden changes in the vehicles’ bounding box.
This usually happens when another vehicle partially fills the view in front of the original vehicle.
The effect of smoothing is more profound at crossroads with a closer camera view.

Next, we filter out insignificant curves that would only produce confusion. It is the ones that
are shorter than VISUALIZATION_MIN_PATH_LENGTH parameter. This is followed by separating
them into VISUALIZATION_N_CLUSTERS clusters according to the starting and ending points to
provide a visual hint of the general movements.

Lastly, all of the curves are drawn as polynomial lines into the first frame of the video using
a colour determined by the cluster it belongs to. The restricted colour range allows for better
orientation in the image and understanding of which vehicles share similar behaviour.

5.6 Count
The final step of our framework is to perform counting and form a matrix of movement that
specifies how many vehicles passed from one region of interest to another.

Let us imagine a cross-road, such as the one in Figure 5.4, where we draw four lines on
its entries. The result is a matrix of shape 4 × 5 (Table 5.1). Four lines and four columns
for the combinations of crossings and one additional column for those vehicles which source or
destination line is unknown.

The prerequisite of the counting step is a set of regions of interest represented by a set of
lines that the user draws in the visualisation from the previous step (section 5.5).

We iterate over all the tracks, the result of the analysis, and use their curve representation
to find intersections with the regions of interest. If no such crossing exists, the track is skipped.
Provided that there is an intersection with precisely one of the lines i, 1 is added in the last
column of i-th line’s index. It indicates that a vehicle crossed the line i; however, we do not
know where it has come from or where it is heading.

In the case of multiple intersections, we add 1 at the proper indices of the matrix, marking
the vehicle’s way through the lines. To give an example, let us assume that a track has n
intersection points i1, i2, . . . , in in this order. This means that the vehicle moved from place
i1 to i2, from i2 to i3 and so on until it crossed in. We count the vehicle at all the positions
[i1, i2], [i2, i3], . . . , [in−1, in].

Nevertheless, we do not know the exact order of the intersection points ij a priori as the order
of the regions of interest is not informative at all. On top of that, the perpendicularly closest
point is not necessarily the first one because of turn-like curves, road obstacles, positions of the

Count 39

(a) No smoothing applied. We can notice that the curves are “bumpy”.

(b) Smoothed using least squares spline interpolation with cubic polynomials.

Figure 5.3 An analysis visualisation

40 Proposed framework

Figure 5.4 Crossroad visualisation

regions of interest or the camera location and its properties. Given a vehicle’s curve and all the
intersections for the curve, we address the issue the following way:

1. computing the distance along the curve between its start and each of the intersection points,

2. sorting the distances in the ascending order,

3. returning the pairs of indices of the subsequent region of interest.

Chapter 6

Implementation

The following chapter gives details of the technological stack and libraries that we use in our work;
it explains how we exported the deep learning models and how data flows inside the framework.
Finally, it shows how to build and start the application locally or from Docker images.

As we already discussed in chapter 4 we implement backend and frontend parts of the ap-
plication to provide a complete user experience and publish it under the GNU GPL-v3 licence.
The source code of our application is publicly available on GitHub, at https://github.com/
opendatalabcz/traffic-surveys-automation/tree/v1.0

6.1 Packages
Our backend solution is written in Python, version 3.9. One of the advantages of this program-
ming language is the countless number of packages and libraries one can use for their profit. On
the other hand, it is slow on its own; therefore, many libraries provide an underlying C imple-
mentation, intending to make the code run faster.

We also use quite a few such external dependencies throughout the work. This section
introduces only a subset of them that we believe are somewhat interesting to write about.

All of the packages are available under a licence that allows commercial use, distribution,
modification and private use. The most common licences are BSD, Apache and MIT. Addition-
ally, there are packages with less typical licences as HPND, ISCL and MLP 2.0. These three are
requirements-wise the same as those licences mentioned sooner.

Except for the packages installed using a dependency manager, we follow the implementation
of SORT [51] and Deep-SORT [52]. We copy and adjust their code to meet our project’s needs,
standards and structure. Those parts of our code are explicitly marked. The two packages are
published under the GNU GPL-v3. This licence requires us to publish our work under the same
licence and explicitly include the licences of the packages in our code.

konfetti is a configuration management library. It helps us with setting up the parameters
of models and algorithms. It supports loading configuration variables from the environment,
Python objects or JSON files. It gives a possibility to override the default variables during
runtime easily.

numpy offers powerful tools for fast mathematical operations, especially with matrices. We
use the package for working with matrices of video frames and bounding boxes, randomly
generating colours or computing the IoU.

OpenCV provides optimized APIs for computer vision tasks. The package is capable of a lot

41

https://github.com/opendatalabcz/traffic-surveys-automation/tree/v1.0
https://github.com/opendatalabcz/traffic-surveys-automation/tree/v1.0

42 Implementation

more than what we use it for - reading frames from video files as numpy arrays, writing arrays
MP4-formatted videos and processing Kalman filter steps.

TensorFlow is a library for machine learning (ML). It features comprehensive tools for build-
ing, testing and deploying ML models. It comes with CUDA optimised computations, which
means that they are capable of running fast on CUDA GPUs. We chose TensorFlow over
PyTorch, the other profound ML library, because of the experience we have gathered through-
out the years, which would be hard to obtain with PyTorch.

Shapely is a package of functions and classes that help with representing and making operations
with planar objects like lines and polygons. We use it to represent curves and lines, find
intersections between them and sort the intersection points.

simplejson is an extension of the standard library json package. It is capable of dumping and
loading more data types than the standard package, for example, datetime and Decimal
objects.

Scipy supplies optimized scientific tooling and implementations of various optimization, in-
terpolation or linear algebra algorithms. We use its implementation of linear assignment
problem (section 2.4) solver in scipy.optimize.linear_sum_assignment.

6.2 Models
Our work requires two types of deep learning models:

EfficientDet D5 and D6 for object detection,

any object classification model like EfficientNet, RestNet or VGG16.

We take advantage of pre-trained models to avoid complicated, resource-demanding and time-
consuming training. One of the sources of pre-trained models is TensorFlowHub which provides
an extensive library not only of object detection models but also language processing, video
classification and many others.

Nonetheless, it has a considerable disadvantage – the models do not support batching. Pro-
cessing the frames one by one is inefficient and slow, taking no advantage of the available hardware
optimisations.

Instead, we create our own versions based on Google’s AutoML [58]. They provide checkpoints
of all the EfficientDet architectures, trained on COCO dataset. The D6 architecture is a vanilla
version. The D5 is fine-tuned using a data augmentation technique [59] to address corruptions,
blur and adversarial changes of images.

The authors give us the possibility to alter the original checkpoints using a command-line
utility; see Listing 2 for details. We do this for the following reasons:

to allow batching,

to suppress the effect of their NMS which is also a part of the checkpoint and

to set proper model parameters like expected image size (see Listing 3).

Moreover, we adjust the code in efficientdet/tf2/postprocess.py, line 186, to allow
customizing the value of IoU threshold which controls dropping of overlapping bounding boxes:

iou_thresh = nms_configs['iou_thresh'] or 1.0

Our checkpoints of the models are available on CESNET’s OwnCloud and on the enclosed
medium:

https://tfhub.dev/tensorflow/collections/object_detection/1

Backend 43

python efficientdet/model_inspect.py
--runmode=saved_model
--model_name=MODEL_NAME
--ckpt_path=PATH_TO_ORIGINAL_CHECKPOINT
--saved_model_dir=PATH_TO_NEW_CHECKPOINT
--batch_size=0
--hparams=params.yaml
--max_boxes_to_draw=512
--min_score_thresh=0.05
--nms_method=gaussian

Code listing 2 Export an EfficientDet checkpoint

image_size: "1280x720"
nms_configs:

sigma: 0.6
iou_thresh: 0.97

Code listing 3 Contents of params.yaml

EfficientDet D5 https://owncloud.cesnet.cz/index.php/s/IUnmEK9iFol9NaF,

EfficientDet D6 https://owncloud.cesnet.cz/index.php/s/KPeGv4rl3cJKLDj.

They have to be downloaded, unzipped and stored in a specified path where the application can
find and read them.

We choose VGG16 as the object classification model, mainly because of the smaller embedding
layer size – the one that precedes the classification layer. While the other models are 1024 values
large on the embedding layer, VGG16 has 512 which saves a significant amount of memory. We
use the values on this layer as feature vectors required for Deep-SORT (section 3.2).

The low memory requirement is essential. We store a short history of feature vectors for
each detected vehicle. Hence, having a large feature vector can consume a significant amount of
memory, even causing the whole pipeline to fail on out-of-memory error.

Yet again, we use the pre-trained version of VGG16, this time it is a checkpoint implemented
in tensorflow and initialized as follows:

tf.keras.applications.vgg16.VGG16(
input_shape=(160, 160, 3),
include_top=False,
pooling="max",
weights="imagenet",

)

6.3 Backend
Our backend application consists of two parts. The first one is an API that communicates with
clients and schedules video analysis tasks. The other part is a set of asynchronous workers that
process video analyses – steps one through four of our proposed framework (chapter 5). The
structure of the backend repository folder is described in Appendix A.

https://owncloud.cesnet.cz/index.php/s/IUnmEK9iFol9NaF
https://owncloud.cesnet.cz/index.php/s/KPeGv4rl3cJKLDj

44 Implementation

6.3.1 API
The API runs as an ASGI server with underlying FastAPI framework. In our implementation,
we take advantage of async support, even though we do not expect high volumes of requests
and do not perform many blocking operations.

FastAPI has many benefits. It easily integrates with packages that define the API’s endpoints,
schemas, and various database frameworks. It generates an OpenAPI schema and a Swagger UI
automatically from the code.

We choose PostgreSQL as the relational database management system for our application.
We choose it because of our deep knowledge of the system, the possibility to store JSON objects
in a column, and define custom enumeration data types.

Our application uses asyncpg driver to connect to the database. The driver itself is quite
inconvenient to work with, so we employ SQLAlchemy and databases frameworks to simplify the
database layer management and code. We define the tables structure using SQLAlchemy’s core
DDL tools. The database migrations are generated and applied using alembic.

We use pydantic package to represent the database objects on the business logic level. The
pydantic models’ definitions come in handy on the API level as well, since they define the API
schemas for FastAPI.

The frameworks mentioned above form a simple yet powerful stack that handles all the user
requests. On top of providing basic CRUD operations, the API handles steps 5 and 6 of the
framework.

6.3.2 Worker
Upon a new task creation, it is queued by the API to be processed later by a worker. We
use celery package, distributed task queue, to cover this functionality. Celery workers are
standalone processes that pick up tasks from the queue, run the analysis and store results.

We work with redis in-memory key-value database as a Celery backend broker that or-
chestrates the communication between workers. Alternatives to redis such as RabbitMQ or
a relational database exist, yet, we find those sledgehammers to crack a nut. Our choice fits the
use case sufficiently.

Videos are large files; loading them into memory at once is infeasible. Therefore, we load the
batches on-demand, process and delete them. We achieve this behaviour by implementing each
of the steps of the framework as Python generators. The batches are formed using tensorflow’s
Dataset object as shown in Listing 4.

The object detection model iterates over the dataset, yielding each batch of the frames and
bounding boxes to be tracked and stored. Object detection proceeds to a new batch only after the

def as_tf_dataset(self, batch_size: int) -> tf.data.Dataset:
dataset = tf.data.Dataset.from_generator(

lambda: self.frames,
output_signature=tf.TensorSpec(

(None, None, 3), dtype=tf.uint8
),

)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
dataset = dataset.batch(batch_size)
return dataset

Code listing 4 Video dataset generator

Frontend 45

(a) List of the source files (b) Create a new analysis task

(c) Visualisation and line drawer (d) Vehicle counts

Figure 6.1 Screenshots of the frontend

current batch is saved. This strategy keeps memory consumption at reasonable levels. Moreover,
usage of tf.data.Dataset’s prefetching functionality ensures that new data is loaded into the
memory sooner, decreasing the time wasted for blocking input-output operations.

6.4 Frontend
The frontend is a simple web application written in typescript, on top of the ReactJS framework
and the bootstrap toolkit. It’s repository structure is described in Appendix A.

The frontend reads data about source files, analyses and results from the API and displays
it to the user in table views.

Except for that, it allows the user to draw regions of interest inside a visualisation, give them
names and download a report of counted vehicles. Figure 6.1 shows a few screenshots of the user
interface.

The most difficult part of the frontend implementation is a custom component that handles
drawing straight lines in the visualisations. It places an HTML canvas element on top of the
visualization image. Both the elements are scaled properly to fit the window. An onMouseDown
event is registered, and a black line is drawn according to the coordinates of the mouse.

6.5 Build and run
This section describes how to run the application directly from code or to use the Docker tech-
nology. For the purposes of this section, we expect that the reader is familiar with the technology
and knows how to pull and run Docker images.

A set of environment variables has to be defined before starting the application. They provide
paths and URLs of resources which are inevitable for the application to work.

46 Implementation

CELERY_BROKER is a data source name (DSN) to the redis cache which stores information about
scheduled tasks.

DATABASE_NAME is the name of the database.

DATABASE_URL is a part of the PostgreSQL database DSN. It has the following form:

username:password@address:port

The connection type prefix postgresql+asyncpg:// is added automatically on the code
level.

MODELS_PATH is a path to the object detection models.

NEPTUNE_API_KEY is an optional key that connects to neptune.ai’s service and enables moni-
toring of the analysis.

NEPTUNE_PROJECT is an optional name of the project where to send the monitoring statistics.

OUTPUT_FILES_PATH is a path where to store the output analyses files.

PYTHON_PATH variable points at the backend dictionary, otherwise some commands might not
be properly recognized.

SOURCE_FILES_PATH is a path to the source videos. The application discovers the content of
this folder.

Once the environment variables have been set, it is possible to run the application locally.
The step-by-step user guide is available in Appendix C.

As an alternative to running the application locally described above, we offer pre-built Docker
images to be downloaded and used right away, either locally or as server deployments. They are
available as a part of our GitHub repository:

backend ghcr.io/opendatalabcz/traffic-surveys-automation-be:latest

frontend ghcr.io/opendatalabcz/traffic-surveys-automation-fe:latest

The backend image is based on tensorflow/tensorflow:2.7.0-gpu that contains all the essen-
tial packages and libraries to run on CUDA-supported GPUs. The frontend image is based on
node:alpine that builds the project and nginx:stable-alpine that servers the static content
to the user.

On top of the images, we provide a docker-compose orchestration of both the application
images together with a database and redis instances. The composed version takes care of all
the setup; the user needs:

to download the object detection models and store them at the MODELS_PATH location,

to create the folders that mount to the containers, namely, source files, output analyses,
models and PostgreSQL data,

to place source videos into the source files folder.

If orchestration is not used, the user has to additionally provide a connection to a PostgreSQL
database, a redis instance, the backend API URL, and also manually run the database migra-
tions alembic upgrade head from inside the backend folder.

Chapter 7

Experiments

In the following chapter, we present the results of how our proposed framework performs on real
video data. To do that, we first need to introduce the video data itself, including its origin and
quality. Second, we describe our computational environment where we run the analysis tasks
and how we monitor them in the sense of time and resources.

Only then do we compare the results of our framework with human-counted numbers of
vehicles and explain issues. Finally, we propose improvements that can be implemented in
future to make the framework better and more accurate.

7.1 Data
We have two sources of videos at hand. Because we do not need any of them for training, they
are both available during evaluation.

It was unachievable for us to get such data from local authorities or find them online. We
believe this has several reasons. First, creating and annotating the datasets is complicated and
expensive, so institutions keep them closed. Second, publishing video recordings is problematic
due to privacy protection acts like GDPR. Therefore, we used sources available to researchers
and asked for help at our home university, CTU, and we got a set of video recordings from roads
in the Czech republic. On top of that, we created one video on our own, capturing the traffic
at the Rohan Embankment in Prague, making sure that people and licence plates are hardly
visible.

The first dataset is a collection of urban intersection and highway recordings provided by the
AI City Challenge [60]. It consists of approximately 30 short videos filmed in various weather
conditions and from different angles, including front-view (Figure 7.1c), side-view (Figure 7.1d)
and fish-eye (Figure 7.1a). All the videos are filmed in 960 or 720 height pixels at 10 FPS.

The dataset has the downside of missing the actual counts of vehicles moving in specific
directions. To compare, we have to count the number of vehicles ourselves. As these values are
not re-validated, the reader must understand that there might be a slight error in those counts.
In addition, to decrease the amount of work, we select only a subset of 6 of these videos for our
experiments, keeping them as diverse as possible.

The second dataset is a selection of 3 longer videos provided by the Mobile Laboratory of
Traffic Analysis at FTS CTU [61]. These videos have a quality of 720p and a higher frame rate
than the first dataset.

However, the positioning of the cameras is more challenging (see Figure 7.2) for the framework
because it often happens that the vehicles are occluded by each other or by traffic signs leaving
the tracking algorithm with less information.

47

48 Experiments

(a) Fish-eye view (b) Highway

(c) Front camera view (d) Side camera view

Figure 7.1 AIC dataset

Environment 49

Figure 7.2 Czech roads dataset

This dataset also comes with expected counts of vehicles moving in different directions.
We have high confidence in these numbers as they were re-evaluated and validated a couple
of times with high precision.

The AI City Challenge dataset is provided to us under the conditions of the licence agreement
listed in Appendix D. According to it, we can neither distribute the dataset on the enclosed
medium nor publish it on GitHub. However, we can use a minimum portion of the data as a part
of our thesis.

It is the same case with the recordings by [61]. The spoken agreement allows only using the
videos from their private dataset for evaluation purposes and reporting the results in our work,
not distributing them as a part of it.

The video recorded by us in Prague in the Czech Republic is also not disclosed because of
the privacy protection rights. The only video included on the enclosed medium is an eighty
seconds long recording from Jackson Hole in the USA, available as a live stream on YouTube
(https://www.youtube.com/watch?v=1EiC9bvVGnk). We use frames from both the videos in
the thesis.

7.2 Environment
We run our experiments on a cluster dedicated for high-performance computing (HPC) called
RCI [62], located at CTU. It provides resources for processing complex algorithms, AI and ML
tasks. It features Intel and AMD processor nodes with hundreds of gigabytes of RAM. The
cluster is also equipped with NVIDIA Tesla V100 and A100 GPUs that come with up to 40GB
of graphical memory.

It is usually cumbersome to get a project with lots of dependencies up and running on such
a machine. Conveniently, RCI supports running the computations inside containers. This func-
tionality is provided by singularity – a tool that brings virtualisation to scientific computing.
Moreover, it works well with Docker images. Not only does it transform Docker images into its
own sif format by running a

singularity pull -F <docker-image>

command, it also feature a similar CLI for intuitive usage.
RCI comes with a workload management system. It means that we are not allowed to run

long tasks interactively. We rather schedule them for execution using sbatch command and wait
for the system to execute it, depending on various prioritisation factors.

To run our analysis tasks in this non-interactive way, the celery worker that is running on
RCI is not executing the analysis directly. Instead, it generates and stores a configuration file
on disk and executes the sbatch command, passing it a reference to the configuration file. An
example of such a file is provided in Listing 5.

https://www.youtube.com/watch?v=1EiC9bvVGnk

50 Experiments

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --cpus-per-task=1
#SBATCH --partition=gpu
#SBATCH --gpus=1
#SBATCH --job-name=tsa
#SBATCH --error=logs/tsa.err
#SBATCH --output=logs/tsa.out

singularity exec --bind ~/models:/app/models --nv
--env MODELS_PATH=/app/models,

DATABASE_NAME='tsa',
DATABASE_URL='localhost'

traffic-surveys-automation_master.sif python /app/cli/analyse.py
-f input_video/video.mp4
-o output_analysis/analysis.json
-d efficientdet_d5_adv_prop
-t deep_sort
-i 8 24
-c task_configs/config.json

Code listing 5 sbatch configuration file

7.3 Monitoring
We use an online platform neptune.ai to monitor the performance of our framework. The service
offers a Python client called neptune-client that is effortlessly usable in storing ML-related
metadata, particularly when training models. As our framework does not realise the training
activity, we utilise neptune to observe the following metrics:

total runtime,

hardware resources usage,

count of detections,

number of processed frames and

time spent on detection and tracking part of the framework.

All of our experiments and their metrics are available online at https://app.neptune.ai/
ondrejpudis/traffic-survey-automation/experiments and as a CSV file on the enclosed
medium.

Figure 7.3a shows that longer videos, quite intuitively, take longer time to process. We can
further identify some exceptions in the graph. Those are related to videos with sparse detections,
especially for videos recorded during non-peak hours.

Figure 7.3b confirms the expectations of time complexity of our implemented object detection
models. EfficientDet D6 is more expensive than D5 as it is a bigger architecture, similarly,
Deep-SORT requires more time than SORT as it computes the feature embeddings of detected
objects.

Figure 7.4 compares the average time spent on evaluating detection and tracking models on
multiple 5-minute long videos. Batch size is configurable by ED_BATCH_SIZE parameter. It is set

https://app.neptune.ai/ondrejpudis/traffic-survey-automation/experiments
https://app.neptune.ai/ondrejpudis/traffic-survey-automation/experiments

Monitoring 51

0 10000 20000 30000 40000 50000 60000
of frames

2000

4000

6000

8000

pr
oc

es
sin

g
tim

e
[s

]

(a) Video length

0 1000 2000 3000 4000 5000
processing time [s]

(efficientdet_d5_adv_prop, deep_sort)

(efficientdet_d5_adv_prop, simple_sort)

(efficientdet_d6, deep_sort)

(efficientdet_d6, simple_sort)

m
od

el
s c

om
bi

na
tio

n

(b) Models combinations

Figure 7.3 Average framework runtime

0 20 40 60 80
of batch

2

4

6

8

10

12

14

16

18

ba
tc

h
pr

oc
es

sin
g

tim
e

[s
]

EfficientDet-D6
EfficientDet-D5-Adv-Prop

(a) Detection models

0 20 40 60 80
of batch

0

1

2

3

4

5

6

ba
tc

h
pr

oc
es

sin
g

tim
e

[s
]

SORT
Deep-SORT

(b) Tracking models

Figure 7.4 Average batch processing time

to 32 for all of our experiments since bigger batches (64 and 48) tended to cause OOM issues on
the GPU.

We notice that both the detection models take a significant amount of time during the first
iteration and decrease afterwards. That happens because tensorflow loads the model from a
stored checkpoint. After the initialisation, it keeps a stable 2-3 seconds per batch performance.
If we keep video frame rate below 16 FPS then the framework is processing nearly real-time as
a batch of 32 frames which equals to 2 seconds of video are processed in 2 seconds.

SORT needs only a few milliseconds to process a batch of frames. On the other hand, Deep-
SORT takes 3-5 seconds to compute the feature embeddings, Mahalanobis and cosine distances.
The time varies based on the number of detections delivered from the detection model.

We compare the hardware resources usage (Figure 7.5) on a subset of our experiments that
are 3000 frames long.

It is evident that the framework takes considerable advantage of GPU. It is utilised heavily
through the runtime. Real GPU memory usage is not available because tensorflow allocates
all of it and manages its contents on its own.

On the contrary, CPU utilisation stays low. The memory consumption grows across time,
especially Deep-SORT tasks that require more memory to store the feature vectors’ history. We
keep it in between 20 to 30 vectors per detection in our experiments to avoid frequent task
failures because of OOM.

52 Experiments

0 20 40 60 80
of step

0

20

40

60

80

100
GP

U
us

ag
e

[%
]

0

20

40

60

80

100

GP
U

m
em

or
y

us
ag

e
[G

B]

(a) GPU resources

0 20 40 60 80
of step

8

9

10

11

12

13

14

CP
U

us
ag

e
[%

]

0

50

100

150

200

250

300

350

CP
U

m
em

or
y

us
ag

e
[G

B]

(b) CPU resources

Figure 7.5 Average hardware resources usage. Neptune snapshots the state of processing units uti-
lization and memory consumption every 10 seconds.

7.4 Evaluation
We evaluate the accuracy of our framework on eight datasets. Three of them come with calibrated
and validated numbers; we manually screen another five videos. Both have the counts split by
direction.

7.4.1 Accuracy metric
Our goal is to understand how accurate the framework is in estimating the total number of
vehicles passing through the regions of interest. We base our metric on multi object tracking
accuracy (MOTA) [63]. Since, we have only aggregated data for the whole video, we simplify
the accuracy equation as follows:

ACC = 1− |y − ŷ|
y

, (7.1)

where y is the ground truth value and ŷ is the output of our framework. This equation accounts
for both missed and false tracked values, always keeping the accuracy ≤ 1. Nonetheless, there
is a catch. The value can be smaller than 0 when the model produces a lot of false positives,
mathematically speaking, when ŷ > 2y.

We calculate the accuracy score for each direction separately and then average it to get the
total score of the whole video. The goal is to keep the accuracy ≥ 90% (NFR 4).

7.4.2 Visualisations
First, we present visualisations of some of our datasets in Figure 7.6. Only vehicle curves longer
than VISUALISATION_MIN_PATH_LENGTH appear in the frame.

We identify that the quality of the visualisation and the resulting counting is highly depen-
dent on the model’s configuration. The correct calibration of the parameters requires a deep
understanding of the parameters, the input video and the conditions it was captured in.

For instance, a recording of a highway, rated at 12 FPS, where vehicles move fast, requires
lower values of tracking algorithm’s IOU_THRESHOLD to accommodate the fast-moving bounding
boxes. Contrariwise, vehicles move slowly in intersections and often overlap one another. A low
IOU_THRESHOLD value would cause the vehicles bounding boxes to absorb each other.

The NMS score threshold is debatable as well. Decreased value of around 0.1 might be
necessary for detecting faraway vehicles or during bad weather conditions. Nevertheless, this can

Evaluation 53

Figure 7.6 Vehicle curves visualizations

Figure 7.7 Vehicle segmentation in videos, each of the identified vehicles is bounded in a coloured
box.

potentially lead to many false positives. Therefore, we run the framework over our evaluation
dataset multiple times, combining the models with different sets of parameters.

Once the analysis is completed, we inspect the visualisations to determine where the vehicles
were mainly recognised. Seeing the curves of vehicles’ movements prevents the cases when the
user draws the region-of-interest lines outside of our framework’s recognition area.

According to our experience, it is better to draw the lines approximately in the middle of the
road tracks. On the other hand, it is better to draw the regions of interest closer to the camera on
parallel, low-above-the-surface views because the model could have trouble recognising distant
objects, especially if a high score threshold is set.

In our experiments, if we have multiple analyses on the same video, we share the regions of
interest to achieve comparability across the experiments. Moving the lines and drawing them at
different angles can result in different final counts.

7.4.3 Results
Tables 7.1 through 7.8 present our measured vehicle counts (estimated), compare them to the
real values and report accuracy as defined in Equation 7.1. Moreover, we provide a labeled
visualization of the regions of interest in each of the visualizations so that the reader is aware
of the locations. Each table contains a reference to the ID of the experiment which yielded the
results.

54 Experiments

1 2
real 244 257

estimated 241 258
accuracy 0.988 0.996

Table 7.1 The road at Rohan Embankement features two tracks in both directions. The section is
semaphored so the traffic is sudden and traffic jams are expected. Average accuracy is 0.992 (experiment
#26).

1 2
real 476 630

estimated 417 635
accuracy 0.876 0.992

Table 7.2 The Czech highway with two narrowed tracks in both directions. The video quality is
decreased due to low bit-rate. Moreover, because of the camera position, objects are often occluded.
Despite the issues, average accuracy is 0.934 (experiment #37). Yet, it requires a closer inspection of
the visualization, since the tracks often end sooner because of loosing sight of the vehicles.

1 2 3 4
real 74 63 20 7

estimated 68 44 18 7
accuracy 0.92 0.7 0.9 1.0

Table 7.3 A US highway features two main tracks in both directions, the exit and the entry ramp.
Recorded at dawn with altered brightness conditions and decreased amount of vehicles on-road. Average
accuracy is 0.879 (experiment #11).

Evaluation 55

1 2 3 4
y ŷ y ŷ y ŷ y ŷ unknown

1 value - - 114 89 35 21 19 9 128
accuracy - 0.78 0.6 0.474

2 value 75 47 - - 298 294 43 44 270
accuracy 0.627 - 0.987 0.977

3 value 27 36 452 344 - - 43 17 400
accuracy 0.667 0.761 - 0.4

4 value 21 18 84 40 51 45 - - 116
accuracy 0.857 0.476 0.882 -

Table 7.4 A complicated, four-directional, semaphored crossroad. The table shows movement from
one of the regions to the other, real values as y, estimated as ŷ. Vehicles which source or destination
cannot be determined is denoted as unknown. Overall accuracy, while ignoring the unknowns, is roughly
0.7 (experiment #41). We identify a higher amount of occlusion and traffic signs blocking the view as
the main issues. We can notice that the lines closer to the camera achieve better accuracies.

1 2 3
real 71 79 14

estimated 63 64 7
accuracy 0.887 0.81 0.5

Table 7.5 A US highway with two main tracks in both directions and the entry ramp. The side-
road at the top is ignored. The average accuracy is 0.732 (experiment #36). The recognition ability
is considerably affected by the rain which distorts the video, especially on the entry ramp, causing less
accurate results.

56 Experiments

1 2 3 4
y ŷ y ŷ y ŷ y ŷ unknown

1 value - - 109 5 142 20 394 76 396
accuracy - 0.046 0.141 0.192

2 value 45 5 - - 153 9 70 4 184
accuracy 0.111 - 0.059 0.057

3 value 54 11 181 30 - - 61 21 355
accuracy | 0.204 0.166 - 0.344

4 value 278 85 124 32 79 56 - - 728
accuracy 0.306 0.258 0.709 -

Table 7.6 A four-directional crossroad at a distance from the camera. The table notation is the same
as for Table 7.4. Average accuracy with unknowns ignored scores 0.2 (experiment #40) which we believe
is mostly caused by the location of the crossroad too far from the camera, making it hard for the model
to recognise and follow the objects without track interruptions.

1 2
real 30 12

estimated 30 12
accuracy 1.0 1.0

Table 7.7 A side view of an in-town road. The position of the camera is fine as it provides a clear with
of both tracks without notable overlaps of vehicles. This results in an average 1.0 accuracy (experiment
#3).

Future improvements 57

1 2 3 4 5 6
real 64 49 3 8 3 5

estimated 64 48 3 5 3 2
accuracy 1.0 0.98 1.0 0.625 1.0 0.4

Table 7.8 A large semaphored crossroad in the USA contains two tracks down and up, vehicles are
also turning left, right or going straight. The position of the camera hides a part of the crossing. Average
accuracy is 0.834 (experiment #31) which is mostly affected by inability to track the vehicles turning
left (crossing the position 6).

Based on the results of our evaluation, we conclude that our framework works well as far as
the source video meets certain conditions:

the view is not distorted by weather conditions like rain, snow or fog,

no static objects are blocking the vehicle view for a longer time,

the position of the camera does not cause vehicles to hide behind one another and

the quality of the recording is satisfying.

Yet, we did not succeed in providing a tool general enough that would work fine under circum-
stances such as:

the regions of interest are far away from the camera (Table 7.6),

vehicles occlude and hide behind other objects (Table 7.4),

poor recording quality due to weather conditions (Table 7.5).

Our solution meets or even exceeds the expectations of NFR 4 when the positioning of the
camera gives a good view of the road and the weather does not affect the camera’s properties.
However, there are cases where it performs worse. As we found out during the evaluation,
achieving satisfying results in general conditions is a difficult task, therefore, the positioning of
the camera should be chosen carefully as it can make significant difference.

7.5 Future improvements
The above-presented results show that the framework’s accuracy can improve, particularly when
cameras are placed low above the roads or with multiple occlusions and identity cuts. Addition-
ally, we suggest a couple of user-interface changes that we identified to make the application
more usable.

7.5.1 Framework
In section 3.3 or the related work chapter, we presented a model called FairMOT. It covers both
detection and tracking end-to-end by generating not only the proposed bounding boxes, classes
and scores but also feature vectors of the objects, allowing for more precise re-identification.

Implementing this, or a similar, more sophisticated model, and comparing its performance to
the baseline that we have set in our work would be one of the possible future steps and a possible
improvement of tracking.

58 Experiments

Transformers were recently found to be suitable for computer vision use-cases. Liu et al. [64]
propose the Swin transformer architecture to solve the object detection task without utilizing
traditional CNN-based approaches. While writing this thesis, the Swin transformer ranks high
in object detection challenges. Nonetheless, the transformer only addresses the detection part of
the framework.

From the work of Bewley et al. [51] we know that the accuracy of the detection model is vital
for the whole framework to work correctly. Even though the object detection checkpoints and
the embedding model are well pre-trained on the COCO and the ImageNet datasets, we can still
fine-tune all of them on a vehicles-only dataset. It can bring more attention to these objects in
the models.

When exporting some of the evaluation recordings to videos with tracking in them, we noticed
that even Deep-SORT was not able to recover the identities of vehicles after hiding behind static
objects or other vehicles. This resulted in tracklets ending and re-starting again a few meters
away with a different identity.

Consequently, we have seen many of the vehicles counted in the unknown column and possibly
duplicated a couple of times. Results presented in both Table 7.4 and Table 7.6 suffer from this
issue. To mitigate the problem, we have two options:

1. to further improve the existing tracking algorithms so they are not seriously affected when
the bounding boxes disappear behind an object through a few sequential frames,

2. to introduce an additional step in the tracking algorithm that joins originally separated curves
that end and restart somewhere “not close” to the corners of the frame, and they share the
common direction.

7.5.2 Statistics in time
The assignment of the thesis required us to provide the statistics about traffic “in time”. As we
discussed in FR 5, it was identified as unnecessary for the initial version due to a lack of long
enough videos and rather a desire for aggregated values.

Enabling the feature takes altering the final counting steps of the framework. It just needs
to consider the already stored information about the frames in which a vehicle appears.

1. Turn the frame numbers into timestamps. Knowledge of the processing frame rate is needed.

2. Group the timestamps to buckets. Each bucket can be as small as one minute, large as an
hour or a day, depending on the length of the video itself.

3. Count only vehicles which appear in the scene in a timestamp that belong to a bucket.

7.5.3 Usability
Analysing a more extended sequence takes an extensive amount of time which can become
impractical in the long term. Slicing the recording into several pieces and processing them in
parallel would speed up processing. Nevertheless, it would require additional hardware resources.

The first version of the user interface is simple but, in certain situations, hard to work with.
The actions that we identified as problematic are the ones that required the user to repeat the
same actions multiple times:

creating new analyses tasks with the same parameters for different videos,

using the same regions of interest in multiple visualisations.

These actions are currently not available; the user has to draw new regions and change the
parameters every time manually. Applying the changes would save a lot of time and frustration.

Chapter 8

Conclusion

The goal of our work was to create an open-source application that automates traffic survey
evaluation. The software achieves the target by analysing videos from stationary cameras and
counting the number of vehicles crossing handpicked regions of interest.

In the theoretical part of our work, we provided an insight into the problem of object detec-
tion as a computer vision task and how deep learning models can fulfil it, presenting common
architectures in this area. Next, we discussed the multi-object tracking problem and introduced
algorithms that tackle it.

Based on the related work, we proposed a framework that is a set of steps that transforms a
video recording into vehicle counts that pass the proposed regions, represented as lines that the
vehicles traverse.

Our decisions regarding the implementation and use-cases were driven by discussions with
researchers at the Mobile Laboratory of Traffic Analyses at the FTS CTU. We identified that the
most valuable output is an automatically generated matrix of movements between the regions of
interest.

The analysis step captures two pieces of information for each vehicle: its trajectory across
the scene and the number of frames it stays in the video. This enables computation of the period
vehicles spend in the view and the “in time” statistics. Nonetheless, this information was not
provided to the user because it had been identified as unnecessary for the specialists in the area
of traffic analyses. Furthermore, we did not have any ground truth data to compare the accuracy
of these two outputs with. Therefore, we rather provided the output as absolute counts per the
whole video sequence.

In the practical part, we implemented our framework as a Python backend service that exposes
a set of API endpoints to communicate with the framework. Moreover, we provided a frontend
in ReactJS to create tasks, draw the regions of interest and see the results of counting.

Our solution also provided a set of tools for customising the analysis parameters, choosing
the deep learning models, and further working with the final analysis. The application was
designed in a way that it is easily extensible by other detection and tracking models. It took
advantage of tensorflow’s APIs to run detection and embedding-related operations on GPU.
The application’s performance was observed through neptune.ai, a machine learning meta-data
registry. We provided the application’s backend and frontend as separate Docker containers that
can run independently of each other and are built automatically during the run of a continuous
integration pipeline. On top of that, we created a docker-compose.yaml orchestration file which
starts the application just with a single command.

Finally, we ran a couple of experiments on our evaluation data and compared the estimated
vehicle counts to human-annotated data that come from two sources – one is a precisely counted
dataset provided by the Mobile Laboratory of Traffic Analyses, second is the AI City Challenge

59

60 Conclusion

videos screened by us. The results show that our framework works well when a camera has a
clear and close view of the road, without strong occlusion, distortion or objects blocking the
view. In such cases, the framework achieved a very good accuracy of 80% and more. It does not
perform that well on the challenging datasets, leaving the numbers just a rough estimate of the
actual traffic. From our experience, the difficult recordings are complicated for humans to count
correctly. The sight is unclear, and it is easy to miss the vehicles, especially when they are small.

Despite the issues with the more challenging datasets, we believe that we managed to build
a helpful tool and fulfilled the requirements and the assignment.

Appendix A

Repository structure

Backend
backend/

cli/... command-line utilities
migrations/...database migrations
test/...a few unit and integration tests
tsa/...the backend application code

app/..the API implementation
config/....................the default configuration parameters and konfetti setup
cv2/..wrappers of OpenCV tools
dataclasses/.......class representation of objects used in the framework’s processes
models/...detection and tracking models
processes/................................... the framework’s steps implementation
storage/.......................................methods for saving the analysis data

alembic.ini.......................database migration management tool’s configuration
poetry.lock...................................locked versions of installed dependencies
pyproject.toml.......................project definition, dependencies and CLI utilities

Frontend
frontend/

public/..static content served to the user
src/..source code of the application

api/............................HTTP clients that connect to the backend endpoints
components/ a set of functions that compose the application’s content

.env.example.....................an example version of runtime environment variables
package.json.......................................project definition and dependencies
package-lock.json............................locked versions of installed dependencies
tsconfig.json..typescript compiler configuration

61

62 Repository structure

Appendix B

Parameters

This appendix section contains a list of parameters and hyper-parameters used in our code.
Each of them contains a prefix which specifies to which module they belong. First, let us list the
prefixes, then the parameters themselves.

ED EfficientDet,

DEEP_SORT Deep-SORT,

SORT SORT,

VIDEO parameters related to the video input or output properties,

VISUALIZATION parameters that specify how an analysis visualization looks like.

ED_BATCH_SIZE size of a single batch of frames to process (32).

ED_IOU_THRESHOLD minimum IoU to consider two bounding boxes the same in NMS (0.75).

ED_MAX_OUTPUTS maximum number of detections that NMS outputs (100).

ED_NSM_SIGMA softening parameter that decays score (0.6).

ED_SCORE_THRESHOLD minimum score of a detection to accept it (0.3).

DEEP_SORT_IOU_THRESHOLD minimum IoU to consider two bounding boxes to belong to the same
object (0.7).

DEEP_SORT_MAX_AGE maximum number of predictions without update, after exceeding this num-
ber, the tracker is deleted (16).

DEEP_SORT_MAX_COSINE_DISTANCE maximum cosine distance to still consider two feature vectors
to belong to the same object (0.4).

DEEP_SORT_MAX_MEMORY_SIZE maximum number of feature vectors to remember for a single
tracker (100).

DEEP_SORT_MIN_UPDATES minimum consecutive updates to consider a tracker active (3).

INTERPOLATION_POLYNOMIAL_DEGREE degree of an interpolating polynomial when smoothing the
tracklets for visualization (3).

SORT_IOU_THRESHOLD see DEEP_SORT_IOU_THRESHOLD (0.7).

63

64 Parameters

SORT_MAX_AGE see DEEP_SORT_MAX_AGE (3).

SORT_MIN_UPDATES see DEEP_SORT_MIN_UPDATES (3).

VIDEO_FRAME_RATE FPS to use during analysis and in output video (15).

VIDEO_MAX_FRAMES maximum number of frames to process, this effectively cuts the video, default
is None, processing the whole video.

VIDEO_SHOW_CLASS show class and score in video output.

VISUALIZATION_MIN_PATH_LENGTH minimum path length of a tracklet to consider it a valid one
(150.0).

VISUALIZATION_N_CLUSTERS number of clusters to use when visualizing (12).

Appendix C

User guide

This appendix chapter lists the user’s steps to run our application on their local or server machine.
Running the backend application locally requires either Python 3.8 or Python 3.9 installed

on the machine alongside the poetry dependency manager.
To run the frontend locally, node and npm have to be installed. We tested that all works fine

on node’s version 17.5.0 and npm’s version 8.4.1.

Backend
1. Run

poetry install

inside of the backend folder, let the dependency manager create a new virtual environment
and install all the necessary dependencies.

2. Download, unzip and place the object detection models in a dedicated directory, section 6.2
lists the location of these files.

3. Set the necessary environment variables mentioned in section 6.5.

4. Optionally, set up the neptune.ai monitoring configuration by providing a project’s name
and API key.

5. Activate the virtual environment through

poetry shell

6. Apply migrations if it has not been done already.

alembic upgrade head

Now, it is possible to use the CLI tools from the backend/cli package, run the API through

uvicorn --port 8000 tsa.app.app:fast_app

or run the celery worker

65

66 User guide

celery -A tsa.app.celery.celery_app worker

Alternatively, we provide a set of poe-the-poet commands:

poe black apply formatting to the code,

poe sort sort the imports,

poe test run the few unit and integration test that we have created,

poe run starts serving the application at the default port,

poe worker starts a single celery worker.

We believe three additional commands for performing formatting and code quality checks are
not essential to list here.

Frontend
1. Create a copy of .env.example and name it .env. Set the API_URL to the address where the

backend is located.

2. Run

npm install

3. Run

npm start

to run the frontend app on port 4000.

Appendix D

AI City Challenge Data Licence

NVIDIA is making a data set (“Data”) available to participants of the Challenge. The Data
include:

1. Urban Intersection and Highway Data – Close to 12 hours of traffic videos synchronously
captured from multiple vantage points at various urban intersections and along highways.
Videos are 960p or better and most have been captured at 10 frames per second.

2. Iowa State University Data – More than 62 hours of video data captured on highways in
Iowa.

3. Metadata about the collected videos including GPS locations of cameras, natural language
descriptions for vehicle tracks, camera calibration information and other derived data from
videos.

4. VehicleX: A synthetic vehicle dataset (third party data made available at https://github.
com/yorkeyao/VehicleX and may be subject to additional license)

Access to and use of the Data are limited to participants and conditioned upon acceptance
of the following terms:

During the duration of the Challenge, the Data may be used solely for Challenge-related
purposes, including but not limited to reading and learning from the Data, analyzing the Data,
modifying the Data and generally preparing your Submission and any underlying models.

Participants agree to use suitable measures to prevent persons who have not formally agreed
to these rules from gaining access to the Data and agree not to transmit, duplicate, publish,
redistribute or otherwise provide or make available the Data to any party not participating
in the Challenge.

Participants agree that participation in the Challenge shall not be construed as having or
being granted a license (expressly, by implication, estoppel, or otherwise) under, or any right
of ownership in, any of the Data.

During the course of the challenge the participants will generate metadata. Any metadata
submitted to the Challenge may be used by NVIDIA for any purpose, including distribution
to other participants in the Challenge as part of the Data, or for any other commercial or
non- commercial purpose.

Upon the conclusion of the Challenge, participants may use the Data, including models
trained on the Data, for non-commercial, academic purposes only. Participants may not dis-
tribute the Data, in whole or in part; a minimal portion of the Data may be reproduced as part

67

https://github.com/yorkeyao/VehicleX
https://github.com/yorkeyao/VehicleX

68 AI City Challenge Data Licence

of research papers, as appropriate, provided that any such use of the Data is accompanied by
the appropriate acknowledgement(s) and no unredacted faces or license plates are reproduced
or otherwise displayed. Phrasing for acknowledgements will be provided prior to the submission
deadline for publications to the Challenge workshop.

Bibliography

1. KUMPOŠT, Petr; PUDIŠ, Ondrej; SUŠICKÝ, Marek; KARELLA, Tomáš. Introduction to
the traffic surveys. 2021.

2. KUMPOŠT, Petr; PUDIŠ, Ondrej. Understanding the problems of traffic surveys. 2021.
3. KOBASA, Paul A.; DAVIES, Brad. Transportation. World Book Inc., 2009. Inventions and

Discoveries. isbn 978-0-7166-0381-8. Available also from: https://www.proquest.com/
legacydocview/EBC/5994249.

4. EUROSTAT. Passenger cars in the EU [online]. 2020 [visited on 2021-09-22]. issn 2443-
8219. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.
php?title=Passenger_cars_in_the_EU.

5. KEIM, Martin; CERNY, Philipp. European Mobility Atlas. 2021. isbn 978-9-46400743-
5. Available also from: https : / / eu . boell . org / sites / default / files / 2021 - 07 /
EUMobilityatlas2021_2ndedition_FINAL_WEB.pdf.

6. HEYWORTH, Anna; DEPARTMENT FOR TRANSPORT. Road traffic estimates in Great
Britain: 2020 [online]. 2021 [visited on 2021-09-25]. Available from: https://www.gov.uk/
government/statistics/road-traffic-estimates-in-great-britain-2020.

7. CABRERA-ARNAU, Carmen; BISHOP, Steven R. Urban population size and road traffic
collisions in Europe. Public Library of Science. 2021, vol. 16, no. 8, pp. 1–13. Available from
doi: 10.1371/journal.pone.0256485.

8. AFRIN, Tanzina; YODO, Nita. A Survey of Road Traffic Congestion Measures towards a
Sustainable and Resilient Transportation System. Sustainability. 2020, vol. 12, no. 4660.
issn 2071-1050. Available from doi: 10.3390/su12114660.

9. MCCLINTOCK, Miller. The Traffic Survey. The ANNALS of the American Academy of
Political and Social Science. 1927, vol. 133, no. 1, pp. 8–18. Available from doi: 10.1177/
000271622713300103.

10. PAĽO, J.; CABAN, J.; KIKTOVÁ, M.; ČERNICKÝ, Ľ. The comparison of automatic
traffic counting and manual traffic counting. IOP Conference Series: Materials Science
and Engineering. 2019, vol. 710. issn 1757-899X. Available from doi: 10 . 1088 / 1757 -
899X/710/1/012041.

11. PENGJUN, Zheng; MCDONAD, Mike. An Investigation on the Manual Traffic Count Ac-
curacy. Procedia - Social and Behavioral Sciences. 2012, vol. 43. issn 18770428. Available
from doi: 10.1016/j.sbspro.2012.04.095.

12. METROCOUNT LTD. Traffic Counters and Classifier [online]. 2021 [visited on 2021-10-
08]. Available from: https://metrocount.com/products.

69

https://www.proquest.com/legacydocview/EBC/5994249
https://www.proquest.com/legacydocview/EBC/5994249
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Passenger_cars_in_the_EU
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Passenger_cars_in_the_EU
https://eu.boell.org/sites/default/files/2021-07/EUMobilityatlas2021_2ndedition_FINAL_WEB.pdf
https://eu.boell.org/sites/default/files/2021-07/EUMobilityatlas2021_2ndedition_FINAL_WEB.pdf
https://www.gov.uk/government/statistics/road-traffic-estimates-in-great-britain-2020
https://www.gov.uk/government/statistics/road-traffic-estimates-in-great-britain-2020
https://doi.org/10.1371/journal.pone.0256485
https://doi.org/10.3390/su12114660
https://doi.org/10.1177/000271622713300103
https://doi.org/10.1177/000271622713300103
https://doi.org/10.1088/1757-899X/710/1/012041
https://doi.org/10.1088/1757-899X/710/1/012041
https://doi.org/10.1016/j.sbspro.2012.04.095
https://metrocount.com/products

70 Bibliography

13. METROCOUNT LTD. The Traffic Survey That Led Amsterdam to Ban Mopeds from Bike
Paths [online]. 2020 [visited on 2021-10-08]. Available from: https://metrocount.com/
ban_mopeds_from_bike_paths_amsterdam.

14. TCS INC. TCS For Surveys [online]. 2021 [visited on 2021-10-08]. Available from: https:
//tcsforsurveys.com.au.

15. YARGER ENGINEERING INC. Traffic Study Project Descriptions [online]. 2021 [vis-
ited on 2021-10-08]. Available from: http://www.yargerengineering.com/project_
descriptions_studies.html.

16. CERTICON A.S. CertiConVis [online]. 2021 [visited on 2021-10-15]. Available from: https:
//www.certiconvis.cz.

17. GOODVISION LTD. GoodVision Solutions [online]. 2021 [visited on 2021-10-15]. Available
from: https://goodvisionlive.com/solutions.

18. RCE SYSTEMS S.R.O. Data from sky - traffic framework [online]. 2021 [visited on 2021-
10-15]. Available from: https://datafromsky.com.

19. SKANSI, Sandro. Feedforward Neural Networks. In: Introduction to Deep Learning: From
Logical Calculus to Artificial Intelligence. Springer International Publishing, 2018, pp. 79–
105. Undergraduate Topics in Computer Science. isbn 978-3-319-73004-2. Available also
from: https://doi.org/10.1007/978-3-319-73004-2_4.

20. SKANSI, Sandro. Convolutional Neural Networks. In: Introduction to Deep Learning: From
Logical Calculus to Artificial Intelligence. Springer International Publishing, 2018, pp. 121–
133. Undergraduate Topics in Computer Science. isbn 978-3-319-73004-2. Available also
from: https://doi.org/10.1007/978-3-319-73004-2_6.

21. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. MIT Press,
2016. isbn 978-0-262-33737-3.

22. LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied
to document recognition. Proceedings of the IEEE. 1998, vol. 86, no. 11, pp. 2278–2324.
issn 1558-2256. Available from doi: 10.1109/5.726791.

23. HUBEL, D. H.; WIESEL, T. N. Receptive fields and functional architecture of monkey
striate cortex. The Journal of Physiology. 1968, vol. 195, no. 1, pp. 215–243. issn 0022-
3751. Available from doi: 10.1113/jphysiol.1968.sp008455.

24. TENSORFLOW. Object detection example [online]. 2022 [visited on 2022-03-05]. Available
from: https://tfhub.dev/tensorflow/efficientdet/d5/1.

25. ZHAO, Zhong-Qiu; ZHENG, Peng; XU, Shou-tao; WU, Xindong. Object Detection with
Deep Learning: A Review. 2019. Available from doi: 10.48550/arXiv.1807.05511.

26. ZHANG, Shifeng; CHI, Cheng; YAO, Yongqiang; LEI, Zhen, et al. Bridging the Gap Be-
tween Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Seattle, WA, USA: IEEE, 2020, pp. 9756–9765. isbn 978-1-72817-168-5. Available from doi:
10.1109/CVPR42600.2020.00978.

27. LIU, Wei; ANGUELOV, Dragomir; ERHAN, Dumitru; SZEGEDY, Christian, et al. SSD:
Single Shot MultiBox Detector. In: LEIBE, Bastian; MATAS, Jiri; SEBE, Nicu; WELLING,
Max (eds.). Computer Vision – ECCV 2016. Springer International Publishing, 2016,
pp. 21–37. Lecture Notes in Computer Science. isbn 978-3-319-46448-0. Available from
doi: 10.1007/978-3-319-46448-0_2.

28. LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming, et al. Focal Loss for Dense
Object Detection. 2018. Available from doi: 10.48550/arXiv.1708.02002.

29. REDMON, Joseph; FARHADI, Ali. YOLO9000: Better, Faster, Stronger. 2016. Available
from doi: 10.48550/arXiv.1612.08242.

https://metrocount.com/ban_mopeds_from_bike_paths_amsterdam
https://metrocount.com/ban_mopeds_from_bike_paths_amsterdam
https://tcsforsurveys.com.au
https://tcsforsurveys.com.au
http://www.yargerengineering.com/project_descriptions_studies.html
http://www.yargerengineering.com/project_descriptions_studies.html
https://www.certiconvis.cz
https://www.certiconvis.cz
https://goodvisionlive.com/solutions
https://datafromsky.com
https://doi.org/10.1007/978-3-319-73004-2_4
https://doi.org/10.1007/978-3-319-73004-2_6
https://doi.org/10.1109/5.726791
https://doi.org/10.1113/jphysiol.1968.sp008455
https://tfhub.dev/tensorflow/efficientdet/d5/1
https://doi.org/10.48550/arXiv.1807.05511
https://doi.org/10.1109/CVPR42600.2020.00978
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.1612.08242

Bibliography 71

30. LIN, Tsung-Yi; DOLLAR, Piotr; GIRSHICK, Ross; HE, Kaiming, et al. Feature Pyramid
Networks for Object Detection. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Honolulu, HI: IEEE, 2017, pp. 936–944. isbn 978-1-5386-0457-1.
Available from doi: 10.1109/CVPR.2017.106.

31. GIRSHICK, Ross; DONAHUE, Jeff; DARRELL, Trevor; MALIK, Jitendra. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. Conference on Computer
Vision and Pattern Recognition. 2014. Available from doi: 10.48550/arXiv.1311.2524.

32. GIRSHICK, Ross. Fast R-CNN. 2015. Available from doi: 10.48550/arXiv.1504.08083.
33. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. 2016. Available from doi: 10.
48550/arXiv.1506.01497.

34. TIAN, Zhi; SHEN, Chunhua; CHEN, Hao; HE, Tong. FCOS: Fully Convolutional One-Stage
Object Detection. International Conference on Computer Vision. 2019, p. 13. Available from
doi: 10.48550/arXiv.1904.01355.

35. REDMON, Joseph; DIVVALA, Santosh; GIRSHICK, Ross; FARHADI, Ali. You Only Look
Once: Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016, pp. 779–788. isbn 978-
1-4673-8851-1. Available from doi: 10.1109/CVPR.2016.91.

36. LAW, Hei; DENG, Jia. CornerNet: Detecting Objects as Paired Keypoints. [N.d.], no. 2,
p. 17. Available from doi: 10.48550/arXiv.1808.01244.

37. TAN, Mingxing; PANG, Ruoming; LE, Quoc V. EfficientDet: Scalable and Efficient Object
Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2020, no. 7. Available from doi: 10.48550/arXiv.1911.09070.

38. TAN, Mingxing; LE, Quoc V. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. International Conference on Machine Learning. 2020, no. 5. Available
from doi: 10.48550/arXiv.1905.11946. arXiv: 1905.11946.

39. SANDLER, Mark; HOWARD, Andrew; ZHU, Menglong; ZHMOGINOV, Andrey, et al.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Conference on Computer Vision
and Pattern Recognition. 2018, pp. 4510–4520. Available from doi: 10.48550/arXiv.1801.
04381.

40. LIU, Shu; QI, Lu; QIN, Haifang; SHI, Jianping, et al. Path Aggregation Network for Instance
Segmentation. Conference on Computer Vision and Pattern Recognition. 2018. Available
from doi: 10.48550/arXiv.1803.01534.

41. BODLA, Navaneeth; SINGH, Bharat; CHELLAPPA, Rama; DAVIS, Larry S. Soft-NMS –
Improving Object Detection With One Line of Code. 2017. Available from doi: 10.48550/
arXiv.1704.04503.

42. KALMAN, R. E. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering. 1960, vol. 82, no. 1, pp. 35–45. issn 0021-9223. Available from doi:
10.1115/1.3662552.

43. MONTELLA, Corey. The Kalman Filter and Related Algorithms: A Literature Review.
2011. Available also from: https://www.researchgate.net/publication/236897001_
The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review.

44. BECKER, Alex. Introduction to Kalman Filter [online]. 2022 [visited on 2022-03-13]. Avail-
able from: https://www.kalmanfilter.net/multiSummary.html.

45. JONKER, R; VOLGENANT, A. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing. 1987, vol. 38, pp. 325–340. Available from
doi: 10.1007/BF02278710.

https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.48550/arXiv.1311.2524
https://doi.org/10.48550/arXiv.1504.08083
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1904.01355
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1808.01244
https://doi.org/10.48550/arXiv.1911.09070
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.48550/arXiv.1803.01534
https://doi.org/10.48550/arXiv.1704.04503
https://doi.org/10.48550/arXiv.1704.04503
https://doi.org/10.1115/1.3662552
https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review
https://www.researchgate.net/publication/236897001_The_Kalman_Filter_and_Related_Algorithms_A_Literature_Review
https://www.kalmanfilter.net/multiSummary.html
https://doi.org/10.1007/BF02278710

72 Bibliography

46. CASTANÓN, David A.; DRUMMOND, O. E.; BELLOVIN, M. S. Comparison of 2-D as-
signment algorithms for sparse, rectangular, floating point, cost matrices. Proceedings of
the SDI Panels on Tracking. 1990, vol. 4, pp. 4–81.

47. LUO, Wenhan; XING, Junliang; MILAN, Anton; ZHANG, Xiaoqin, et al. Multiple Ob-
ject Tracking: A Literature Review. Artificial Intelligence. 2021, vol. 293, p. 103448. issn
00043702. Available from doi: 10.1016/j.artint.2020.103448.

48. BETKE, Margrit; HARITAOGLU, Esin; DAVIS, Larry S. Real-time multiple vehicle detec-
tion and tracking from a moving vehicle. Machine Vision and Applications. 2000, vol. 12, no.
2, pp. 69–83. issn 0932-8092, issn 1432-1769. Available from doi: 10.1007/s001380050126.

49. KOLLER, Dieter; WEBER, Joseph; MALIK, Jitendra. Robust Multiple Car Tracking with
Occlusion Reasoning. 1996.

50. CONTRIBUTORS, MMTracking. MMTracking: OpenMMLab video perception toolbox and
benchmark. 2020. Available also from: https://github.com/open-mmlab/mmtracking.

51. BEWLEY, Alex; GE, Zongyuan; OTT, Lionel; RAMOS, Fabio, et al. Simple Online and
Realtime Tracking. 2016 IEEE International Conference on Image Processing (ICIP). 2016,
pp. 3464–3468. Available from doi: 10.1109/ICIP.2016.7533003.

52. WOJKE, Nicolai; BEWLEY, Alex; PAULUS, Dietrich. Simple Online and Realtime Track-
ing with a Deep Association Metric. 2017, p. 5. Available from doi: 10.48550/arXiv.1703.
07402.

53. ZHANG, Yifu; WANG, Chunyu; WANG, Xinggang; ZENG, Wenjun, et al. FairMOT: On
the Fairness of Detection and Re-Identification in Multiple Object Tracking. International
Journal of Computer Vision. 2021, vol. 129, no. 11, pp. 3069–3087. issn 0920-5691, issn
1573-1405. Available from doi: 10.48550/arXiv.2004.01888.

54. DAI, Zhe; SONG, Huansheng; WANG, Xuan; FANG, Yong, et al. Video-Based Vehicle
Counting Framework. IEEE Access. 2019, vol. 7, pp. 64460–64470. issn 2169-3536. Available
from doi: 10.1109/ACCESS.2019.2914254.

55. ECONOMIC AND SOCIAL COUNCIL OF THE UNITED NATIONS. Consolidated Res-
olution on the Construction of Vehicles. World Forum for Harmonization of Vehicle Regu-
lations [online]. 2017, no. 6 [visited on 2022-05-03]. Available from: https://unece.org/
fileadmin/DAM/trans/main/wp29/wp29resolutions/ECE-TRANS-WP.29-78r6e.pdf.

56. EUROPEAN COMMISSION. Vehicle categories [online]. 2022 [visited on 2022-05-03]. Avail-
able from: https://ec.europa.eu/growth/sectors/automotive-industry/vehicle-
categories_en.

57. ČESKÝ NORMALIZAČNÍ INSTITUT. Základní automobilové názvosloví. Druhy silničních
vozidel. Definice základních pojmů. In: Česká technická norma. 1983. No. ČSN 30 0024.
Available also from: http://www.normy.cz/Detailnormy.aspx?k=23165.

58. MINGXING, Tan. Brain AutoML EfficientDet. Google Research, 2021. Available also from:
https://github.com/google/automl/tree/1.2/efficientdet.

59. CHEN, Xiangning; XIE, Cihang; TAN, Mingxing; ZHANG, Li, et al. Robust and Accurate
Object Detection via Adversarial Learning. Conference on Computer Vision and Pattern
Recognition. 2021. Available from doi: 10.48550/arXiv.2103.13886.

60. NAPHADE, Milind; WANG, Shuo; ANASTASIU, David C.; TANG, Zheng, et al. The 5th
AI City Challenge. 2021. Available from doi: 10.48550/arXiv.2104.12233.

61. KUMPOŠT, Petr; MOBILE LABORATORY OF TRAFFIC ANALYSIS. Czech road video
recordings. Faculty of Transporation, CTU in Prague, 2022.

62. CZECH TECHNICAL UNIVERSITY. Research Center for Informatics. 2022. Available
also from: http://rci.cvut.cz/.

https://doi.org/10.1016/j.artint.2020.103448
https://doi.org/10.1007/s001380050126
https://github.com/open-mmlab/mmtracking
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.48550/arXiv.1703.07402
https://doi.org/10.48550/arXiv.1703.07402
https://doi.org/10.48550/arXiv.2004.01888
https://doi.org/10.1109/ACCESS.2019.2914254
https://unece.org/fileadmin/DAM/trans/main/wp29/wp29resolutions/ECE-TRANS-WP.29-78r6e.pdf
https://unece.org/fileadmin/DAM/trans/main/wp29/wp29resolutions/ECE-TRANS-WP.29-78r6e.pdf
https://ec.europa.eu/growth/sectors/automotive-industry/vehicle-categories_en
https://ec.europa.eu/growth/sectors/automotive-industry/vehicle-categories_en
http://www.normy.cz/Detailnormy.aspx?k=23165
https://github.com/google/automl/tree/1.2/efficientdet
https://doi.org/10.48550/arXiv.2103.13886
https://doi.org/10.48550/arXiv.2104.12233
http://rci.cvut.cz/

Bibliography 73

63. BERNARDIN, Keni; ELBS, Alexander; STIEFELHAGEN, Rainer. Multiple Object Track-
ing Performance Metrics and Evaluation in a Smart Room Environment. Proceedings of
IEEE International Workshop on Visual Surveillance. 2006, p. 8.

64. LIU, Ze; LIN, Yutong; CAO, Yue; HU, Han, et al. Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows. 2021. Available from doi: 10.48550/arXiv.2103.
14030.

https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/10.48550/arXiv.2103.14030

74 Bibliography

Contents of enclosed CD

/
code/ .. the source code of our application

.github/ .. GitHub actions configuration
backend/ .. the code of the backend service
frontend/...the code of the frontend service
docker-compose.yaml....................all the services orchestrating configuration
README.md

evaluation_exports/.................CSV exports of our vehicle counting experiments
input_video/ .. source recordings folder
jupyter/ jupyter notebooks with tries and exports of graphics
models/..object detection models checkpoints

efficientdet-d5-advprop-aa/
efficientdet-d6/

output_analysis/ folder to store results of our analyses
text/... the source code of the thesis text
video_export/................................video exports of some of our experiments
database_state.sql.....................................a PostgreSQL database dump
neptune_experiments.csv................................experiments monitoring data

75

	Acknowledgments
	Declaration
	Abstract
	Glossary
	Acronyms
	Introduction
	Goals
	Traffic surveys
	Road traffic history
	A traffic survey

	Commercial products
	Hardware producers
	Traffic engineers
	Deep learning-based software

	Theory
	Deep learning
	Convolution
	Convolutional layer
	Pooling

	Object detection
	Anchor-based detectors
	Anchor-free detectors
	EfficientDet
	Non-max suppression

	Kalman filter
	Prediction step
	Correction step
	Summary

	2D Rectangular Assignment
	Multi-object tracking

	Related work
	Simple Online and Realtime Tracking
	Deep Associations Online and Realtime Tracking
	FairMOT
	Vehicle counting framework

	Analysis
	Problem
	Requirements
	Functional requirements
	Non-functional requirements

	Solution
	Backend
	Frontend

	Proposed framework
	Read video frames
	Detect vehicles
	Track vehicles
	Tracker
	Association methods

	Store tracklets
	Visualise
	Count

	Implementation
	Packages
	Models
	Backend
	API
	Worker

	Frontend
	Build and run

	Experiments
	Data
	Environment
	Monitoring
	Evaluation
	Accuracy metric
	Visualisations
	Results

	Future improvements
	Framework
	Statistics in time
	Usability

	Conclusion
	Repository structure
	Parameters
	User guide
	AI City Challenge Data Licence
	Bibliography
	Contents of enclosed CD

