FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of master's thesis

Title: Ahead-of-time compiler for the microC langauge
Student: Bc. Vaclav Kral

Supervisor: doc. Ing. Filip Kfikava, Ph.D.

Study program: Informatics

Branch / specialization: System Programming

Department: Department of Theoretical Computer Science
Validity: until the end of summer semester 2022/2023

Instructions

The goal of this thesis is to develop an ahead-of-time compiler for the microClanguage
thatis used in the program analysis course (NI-APR). The aim is to have a compilerinto
which we can plug the results of the various static analysis that we cover in the first half
of the course. The implementation should be easy to follow - clarity is preferred over
conciseness so thatit can be used as educational material. It should be writtenin Scala
and compatible with the rest of the microC code base (interpreter and analysis). The code
should be well tested and documented so the students can follow the code.

Electronically approved by doc. Ing. Jan Janousek, Ph.D. on 28 December 2021 in Prague.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Ahead-of-time compiler for the microC
language

Be. Vaclav Krdl

Department of Theoretical Computer Science

Supervisor: doc. Ing. Filip Kiikava, Ph.D.

April 26, 2022

Acknowledgements

First, I would like to thank my supervisor doc. Ing. Filip Ktikava, Ph.D. for
all his advice and time he dedicated to helping me with this thesis. I would
also like to thank my friends and family who helped me a lot during my studies
and provided the much needed psychological support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No.121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on April 26, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 Viéclav Kral. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kral, Vaclav. Ahead-of-time compiler for the microC language. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstrakt

Cilem této prace je implementace ahead-of-time optimalizujiciho kompilatoru
microC—jazyku, ktery se pouzivd v predmétu NI-APR (Vybrané metody
analyzy programu) na FIT CvuT pro vyuku analyz programt. Tento kom-
pildtor mé predevsim slouzit jako ucebni pomucka predmétu NI-APR, kterd
demonstruje uplatnéni a uzite¢nost vybranych statickych analyz pri kompilaci
a optimalizaci. V praci se ¢tenar seznami nejen s architekturou kompilator,
ale i s jednotlivymi statickymi analyzami, které kompilator podporuje. Déle se
prace zabyva navrhem a predevsim implementaci kompildtoru. Optimalizaéni
schopnosti implementace jsou poté demonstrovany na nékolika ukazkovych
prikladech. Zavérem prace navrhuje moznd zlepSeni a rozsifeni. Vysledkem
prace je funkéni optimalizujici kompildtor jazyku microC.

Klicova slova kompilator, optimalizace, staticka analyza kdédu, microC,
x86, Scala

vii

Abstract

The aim of this thesis is to implement an ahead-of-time optimizing compiler
for microC—language used in the NI-APR (Selected Methods for Program
Analysis) course at FIT CTU for teaching program analyses. The compiler
should primarily serve as an educational material of the course NI-APR, which
demonstrates application and usefulness of selected static analyses during com-
pilation and optimization. In this thesis, the reader will get familiar with not
only the architecture of compilers, but also with the static analyses supported
by the compiler. Further in this thesis, the design and most importantly the
implementation are discussed. The optimization capabilities of the implemen-
tation are then demonstrated on several examples. Some of the possible future
work improvements are proposed at the end of the thesis. The result of the
thesis is a working optimizing microC compiler.

Keywords compiler, optimization, static program analysis, microC, x86,
Scala

viii

Introduction

1 Background

1.1 Compiler
1.2 MicroC
1.3 x86-64
1.4 Static program analysis

2 Design

2.1 The frontend
2.2 The middleend
2.3 The backend

3 Implementation

3.1 The frontend
3.2 The middleend
3.3 Thebackend
3.4 Summary of the compiler
3.5 Testing
3.6 Documentation

4 Assessment

41 Examplel.
4.2 Example2.
43 Exampled

Conclusion
Bibliography

ix

Contents

17

.............. 17
.............. 18
.............. 26

41

.............. 42
.............. 43
.............. 48
.............. 95
.............. 56
.............. o8

61

.............. 61
.............. 64
.............. 68

71

73

g aQ @ »

Acronyms
Contents of enclosed SD card
MicroC

x86IR
D.1 Instruction set

Usage manual
E.1 Howtouse
E2 Howtorun,

Compiler output examples

75

(4

80

82
82

87
87
88

91

List of Figures

1.1 Acompiler. 3
1.2 The three stages of a compilation. 5
1.3 Typical memory layout of a running x86 program. 11
1.4 CFG of the program snippet from Listing 1.3. 13
2.1 The frontend of the microC compiler. 17
2.2 Anoptimizer. 20
2.3 An optimization process. 20
2.4 Example of dead code elimination. 23
2.5 Example of common subexpression elimination. 26
2.6 The middleend of the microC compiler. 27
2.7 A branching in x86IR represented by basic blocks. 31
2.8 Comparison of stack states before and after calling foo.. 32
2.9 A peephole optimization. 38
2.10 The backend of the microC compiler. 38
3.1 UML class diagram of the optimization implementation. 47
3.2 UML class diagram of the x86IR implementation. 50
3.3 UML class diagram of the x86 instruction implementation. 52
3.4 Generated documentation of the class Optimizer. 59

xi

1.1
1.2
1.3
2.1
3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
C.1
D1
E.1
E.2
F.1
F.2
F.3
F.4
F.5
F.6

List of Listings

Example of iterative and recursive factorial written in microC. 6
Example of an x86-64 assembly code. 10
Example of an analysed microC program snippet. 12
An optimizable program. 23
For-cycle approach to iterating over non-terminating instruc-

tions of a program. 42
Functional approach to iterating over non-terminating instruc-

tions of a program. oL 42
The class Frontend. L. 43
The trait AnalysisHandlerInterface. 44
The class Middleend. 48
Comparison of NASM and GAS syntax. 52
The trait Backend and its implementation for the x86 backend. 55
The class Compiler. 56
Example of a test suite. L. 57
Annotation of the class Optimizer. 58
The abstract syntax of microC. 80
The abstract syntax of x86IR. 82
Example implementation of AnalysisHandlerInterface. 87
Usage of the class Compiler. 88
Compiled function foo before optimizations. 92
Compiled function foo after optimizations. 93
Compiled function bar before optimizations. 94
Compiled function bar after optimizations. 95
Compiled function baz before optimizations. 96
Compiled function baz after optimizations. 97

xiii

List of Tables

2.1 The rewrite-rules for binary operations equal and greater-than. . . 25
2.2 The rewrite-rules for 2-instruction and 1-instruction sliding window. 39

3.1 Size of the compiler codebase without the NI-APR codebase. . . . 56

XV

Introduction

A typical program written by humans often contains many redundant opera-
tions [1, Chap. 9.1.1]. The origin of these redundancies may differ; some of
them are available at the source level' and some of them are the consequence of
writing the program in a high-level language. The task of an optimizing com-
piler is to transform these redundancies, as well as many other imperfections
in a program, in a way that will improve? the quality of the program—such
transformation is called an optimization. However, in order for the compiler
to be able to perform these optimizations, it needs to know various properties
of the program, such as [3, Chap 1.1]:

e Has the value of an expression already been calculated?
e Is the program statement unreachable for every possible program input?

e Does the value of some variable depend on the program input, or is it
always the same value?

To answer such questions, the compiler utilizes static program analyses,
which aim to give information about the possible behaviours of the program
without actually running it [3, Introduction]. However, as stated in Rice’s
theorem [4], these questions are undecidable for Turing-complete languages
and therefore the answers given by the analyses generally must involve ap-
prozimation. Depending on the type of approximation, we can divide these
analyses into two types [3, Chap. 5.8]:

!E.g., a programmer may find it more convenient to recalculate some result instead of
reusing the already calculated value.

2Note that the improvement does not necessarily mean a faster execution of the compiled
program [2, Chap. 8.1]. It can also mean smaller code size (which does not automatically
imply a faster execution) or lesser memory footprint of the running program.

INTRODUCTION

e May analyses, which give guarantees about what programs may do,
therefore computing an over-approximation. An example of such anal-
ysis is the live variable analysis, which gives information about what
variables may be read (i.e., are live) during the program execution.

e Must analyses, which describe information about programs that must
definitely be true, therefore computing an under-approximation. An
example of such analysis is the available expression analysis, which gives
information about what expressions must have been already computed
earlier (i.e., are available) in the program execution.

While the analyses give only approximative guarantees about the pro-
grams, they are still very useful not only for the optimization as we already
stated (which was the original purpose of the static program analyses), but
also, e.g., for finding bugs in programs.

At FIT CTU, the NI-APR course (Selected Methods for Program Analy-
sis) [5] focuses on some of the most classical program analyses. In the first half
of the course, students are implementing static analyses of programs written
in microC—a tiny C-like programming language, yet with some interesting
features such as pointers, records, or function values. The problem is that
students only implement the analyses and do not see their effects on programs
that could have been done by an optimizing compiler. Therefore, the goal of
this work is to fill this gap and create an optimizing compiler for microC. The
compiler will use the analyses developed by the NI-APR students and produce
optimized x86-64 assembly. It should serve as an educational material that
helps students to understand the usefulness and importance of the analyses
taught in the NI-APR course. With the compiler, students will be able to
closely observe the effects of static analyses on the compilation and compare
the changes and improvements in the programs produced by the compiler.
The main emphasis in the implementation is on compatibility with the course
codebase written in Scala and since the compiler will be used as an educa-
tional material, the implementation should also be easy to follow (clarity is
preferred over conciseness), documented, and well tested.

The thesis is structured into four chapters. We open the background chap-
ter with a brief overview of compiler design, followed by an introduction of
the microC language, the x86-64 assembly, and static analyses used by the
compiler. In the design chapter, we discuss the design of each part of the
compiler. Then, in the implementation chapter, we go over implementation,
testing, and documentation of the compiler. Lastly, in the assessment chapter,
we demonstrate the optimization capabilities of the compiler.

CHAPTER 1

Background

We open this chapter with a brief introduction to compiler design. Then we
introduce both source and target languages of our compiler. In the last section
of this chapter, we provide a brief overview of static program analyses we will
be utilizing in our compiler.

1.1 Compiler

Most programming languages are designed to be a human-readable way to ex-
press all sorts of computations as a sequence of operations. These operations
are then expected to be executed on computer processors. However, the ma-
chine operations that a processor implements are often at a much lower-level
of abstraction than those defined in a programming language [2, Chap. 1.1].
That’s why every programming language operation has to be translated into
(often a large number of) machine operations before it can be executed.

The tool that performs these translations is called a compiler. Simply put,
a compiler is a program that reads a program in one language (called source
language) and translates it into an equivalent program in another language®
(called target language) [1, Chap. 1.1]. This process is shown in Figure 1.1.

3Note that the language may not necessarily be a machine code—some compilers produce
a program written in another human-readable programming language.

source . target
Compiler
program program

Figure 1.1: A compiler.

1. BACKGROUND

There are many types of compilers and compilation strategies. In this
thesis, we focus on a classical ahead-of-time (AOT) compiler that compiles a
high-level programming language into a lower-level one before execution rather
than during the execution. Concretely, a compiler that compiles microC source
code into Linux native x86-64 assembly. We will properly introduce both of
these languages later in this chapter.

1.1.1 Modularization

The Figure 1.1 depicts the compiler as a some kind of “black box” that takes
the source program and produces the target program. This could incorrectly
imply that the compiler takes the source language and maps its functionality
directly to the target language, which is often not the case. In reality, the
compiler is often decoupled into three smaller “boxes” (as shown in Figure 1.2)
which represent three stages of a compilation:

o Frontend (or front end)
o Middleend (or middle end)

e Backend (or back end)

Frontend The frontend takes the input source program, parses it and veri-
fies its syntax and semantics. Any syntactic or semantic error gets reported,
typically with a source location of the error. The frontend then encodes the
input program in some structure for later use by the middleend. This inter-
mediate representation (IR) becomes the compiler’s definitive representation
for the code it is translating [2, Chap. 1.2]. The IR is usually a lower-level
representation of the program compared to the original source.

Middleend The middleend performs various analyses (we will discuss some
of them at the end of this chapter) on the IR* and based on the results of
these analyses it performs optimizations that are independent on the target
architecture. The middleend can perform multiple of these passes, since some
optimizations can enable new optimization possibilities that were not available
before. Optimized IR is then passed to the backend.

Backend The backend is responsible for mapping the IR passed by the
middleend into the target program language (this process is called a code
generation). Backend usually also performs optimizations that are dependent
on the target machine. The output of the backend is a target program.

4The IR that middleend uses can either be the one provided by the frontend or it can
be a different one, generated from the IR provided by the frontend.

4

1.2. MicroC

-

1
1
1
1
1
1
1
1

Frontend -+

source program

v

v

-

1
1
1
1

Middleend -~

1
1
1
1
v

\

Backend -

1
1
v

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

T
IR

v

IR Code Generator

Machine-Independent
Code Optimizer
T

IR

v

Code Generator

Machine-Dependent
Code Optimizer

v

target program

- Compiler

Figure 1.2: The three stages of a compilation (inspired by [1, Fig. 1.6]).

This three-stage modularization makes it possible to combine different fron-
tends and backends while sharing the same middleend optimizations. Some
examples of this modularization are the GNU Compiler Collection® (GCC) or
LLVMS, which both have multiple frontends and backends.

1.2 MicroC

The microC (stylized as ;1 C') language is a tiny programming language used in
the NI-APR course to implement various program analyses. It is based on the
TIP (tiny imperative programming language) introduced in Static Program
Analysis [3], which is used as the main course book in the NI-APR course.
For example of an iterative and recursive factorial program written in microC

see Listing 1.1.

5ht’cps ://gcc.gnu.org/
Shttps://www.1lvm.org/

https://gcc.gnu.org/
https://www.llvm.org/

1. BACKGROUND

fac(n) {
. var f;
main() { if (n==0) {
var n, f;
f=1;
n = 1input; } else {
=1 f =nx*x fac(n - 1);
while (n > @) { ieturn £
f=1f %n;) ’
n=n-1;
) main() {
var n;
return f; .
) n = 1input;
return fac(n);
}

Listing 1.1: Example of iterative and recursive factorial written in microC.

In the next few subsections, we take a look at the structure of the microC
language. The description of each language feature is taken from NI-APR [6].
Abstract syntax of the microC language is defined in Appendix C. In this
thesis, we extend the language with support for arrays, which is not yet (as
of 4. 4. 2022) officially part of the course, but planned to be added.

1.2.1 Expression

Identifier The identifier is any name that starts with an underscore or a
letter and contains letters, numbers, and underscores only. The only exception
are the following reserved keywords: alloc, else, if, input, null, output,
return, var, and while.

Number A regular 32-bit signed integer.

Algebraic operators There are four basic operators for addition, subtrac-
tion, multiplication, and division. Their semantic is defined only for numbers,
and their precedence is the same as in maths.

X
y

2 % 20 + 2;
(50 - 8) / 1;

Comparison operators There are two operators for comparison. The
equality, which allows comparing numbers and pointers, and the greater than

6

1.2. MicroC

operator, which allows comparing numbers only. Both yield 1 if the compari-
son is true, 0 otherwise.

X = 20 == 10;
y = 20 > 10;

Input Reads an integer from standard input. It converts the input into a
number or —1 in the case end-of-file (EOF) is reached.

X = input;

Function call A function call consists of one expression, which evaluates to
a function value and zero or more expressions, which are the arguments of the
function call. Calls use call-by-value semantics and support recursion.

x = foo(42);

Pointer The microC pointers can be recursive (i.e., pointer to a pointer),
but no pointer arithmetic is supported. The alloc expression allocates an
expression on the heap and returns a pointer to it. The null expression
represents an empty pointer. The dereference operator returns a value that
the pointer points to. The reference operator returns a pointer to a variable.

alloc 42;
*X;

= &x;

null;

X N < X
1

Record A record is a value that is composed of one or more fields. Once a
record type is assigned to a variable, its fields are fixed and it is not possible
to add more fields later. A field can contain any value, except for records, but
it can contain a pointer to a record. Records are stack allocated.

x={a: @0, b: 1, c: 2 };

Array An array is a sequence of fixed length that contains values of the same
type. It can contain any value, except for arrays. Arrays are stack allocated.

x=[0,1,21;

Comment The language supports C-style single line and block comments.

//single line
/*
multi
line
*/

1. BACKGROUND

1.2.2 Statement

Assignment There are five kinds of assignments in microC:
e Direct write—a write to a variable.
X =y;
¢ Indirect write—a write to a memory location referenced by a pointer.
kX =Y
e Direct field write—a write to a record field.
X.a = y;

e Indirect field write—a write into a field of a record that is referenced by
a pointer.

(*x).a =y;
e Array write—a write to an array element.

x[0] = y;

If conditional In the conditional, only 0 is interpreted as false, everything
else is interpreted as true. The else branch of the conditional is optional.

if () {

y = 42;
} else {

y = -42;
3

While loop Repeatedly executes its body as long as its guarding condition
evaluates to true (any non-0 value).

while (x) {
X =x-1;

Output Writes a single integer (i.e., an expression that evaluates to an
integer) into the standard output.

output 42;

Block A sequence of other statements (including other blocks) surrounded
by curly brackets.

8

1.3. x86-64

1.2.3 Function

Each function has a unique name, takes zero or more arguments, and defines
zero or more local variables. All variables are defined at the top of the function.
The function has a single return defined at the end of the function body. The
function body is a sequence of statements. Functions are also treated as first-
class citizens’, but the language does not support pointers to functions.

main() {
var f;
f = foo;

return f(42);

1.2.4 Program

A microC program is a simple collection of functions. The entry and exit point
of the program is conventionally a function named main, which is restricted
to take no arguments and return an integer.

1.3 x86-64

Intel’s 286-64 ISA® (also known as Intel 64) is a 64-bit extension of the original
x86 ISA. The x86-64 is a Complex Instruction Set Computing (CISC) CPU
design, which typically include a wide variety of instructions with varying sizes
and wide range of addressing modes [7, Chap. 1.0]. Complete instruction set
of x86-64 is available from [§].

As mentioned in the introduction of this thesis, x86-64 will be the target
language of our compiler. More specifically, the output of the compiler will be
x86-64 assembly code (see Listing 1.2 for an example) executable under any
Linux-based 64-bit OS.

1.3.1 Storage organization

From our perspective, the executing target program runs in its own address
space, in which each program value has a location. The management and
organization of this address space is shared between the compiler, operating
system, and the target machine [1, Chap. 7.1].

That’s why it’s important to get more familiar with the storage organiza-
tion of a program running on the x86 target machine. That way we can get
better understanding of, for example, where local variables are stored or how
are arguments passed to a function.

"Values or objects, that can be passed as an argument, returned from a function, and
assigned to a variable.
8Instruction Set Architecture

1. BACKGROUND

section .text
global _start
extern exit

_start:
mov rax, 10 ; store number 10
loop:
dec rax ; decrement
cmp rax, © ; compare with number 0
jne loop ; jump if not equal
done:
call exit

Listing 1.2: Example of an x86-64 assembly code.

Memory layout of a running x86 program generally consists of a lot of seg-
ments, however we will be focusing only on a few of them. Their arrangement
is shown in Figure 1.3, which is a simplified version of [9, Fig. 6-1].

Stack When a function is called, the machine allocates a chunk of stack
memory for it—this chunk is often referred to as a stack frame and it con-
tains all the local variables of the function, arguments of the function, and
temporary values. These values are accessed using addresses relative to stack
pointer’ (SP) and base pointer'? (BP) [10, Chap. 12.11]. When the function
is returning, the stack frame is deallocated and all of its local variables and
arguments become invalid. This allocation and deallocation is a responsibility
of the compiler, and it will be discussed in the following chapter.

Heap The area for dynamically allocated memory is called the heap. One
of the key differences between stack and heap memory is the responsibility
for allocation and deallocation. Heap memory is allocated explicitly by a
programmer and variables allocated on it never fall out of scope like local
variables on the stack. To allocate heap memory in C+-+ we use keyword new.
In microC, the keyword alloc is used.

Data This section stores global and static variables. It is further divided
into initialized and uninitialized data segments. Since in microC functions are
first-class citizens and they are treated like ordinary variables, this is where
they will be stored (since they are accessible from any other scope, i.e., they
are global).

9 Stack pointer is a pointer that points to the current top of the stack [7, Chap. 2.3.1.2].
9 Base pointer points to the start of a function’s stack frame [7, Chap. 2.3.1.3].

10

1.4. Static program analysis

High address

Stack
(grows downwards)

—>$ ---------

(unallocated memory)

N

Heap
(grows upwards)

alloc 42;

a+ *x + 10;

return y;

Data
}
Text L J
(program code) (_\j
Low address

Figure 1.3: Typical memory layout of a running x86 program.

Text Text segment is a memory section that contains the code that is be-
ing executed. In order to prevent a program from accidentally modifying its

instruction, this section is read-only.

1.4 Static program analysis

Static program analyses are used to reason about the behaviour of computer
programs without actually running them [3, Preface]. This is useful for many

purposes, such as:

e Program optimization—e.g., detecting unused and unreachable code
which can be deleted by the optimizer, detecting variables whose value
can be computed at compile time, deciding if two pointers point to the
same data structure, or determining bounds of an integer variable.

Program correctness—e.g., deciding if the program is typeable!'!, detect-

ing use of an undeclared variable, checking if all variables are initialized
before they are read, or determining if the program terminates on every

possible input.

Program development—supporting various tools of modern IDEs like

debugging, refactoring, code completion, type inference, or detecting
where a function can be called from.

LA program is typeable if it satisfies a collection of type constraints derived from the

program [3, Chap. 3].

11

1. BACKGROUND

var x, y;
x = 5;
y = {a: x * -103};
if (input) {

X =X+ 1;
} else {

X = x * -10;

}
y = {a: x3};

Listing 1.3: Example of an analysed microC program snippet.

In this section, we will get more familiar with some of the analyses used
for the first two listed purposes, as those will be utilized in our compiler. The
following subsections will use Listing 1.3 as an example of an analysed microC
program snippet.

1.4.1 Semantic analysis

The semantic analysis is an example of an analysis for program correctness.
The version that we will use in our compiler checks the following:

e Use of an undeclared identifier.

e Duplicate identifiers.

e Duplicate record field names.

e Assignment to a function.

e Taking an address of a function.

The output of semantic analysis is a mapping of identifiers to their decla-
ration in the program.
1.4.2 Type analysis

The type analysis is another example of an analysis for program correctness.
Its goal is to assign type to each value of a program and decide if the program
is typeable. This will prevent the compiler to even process ill-typed programs.
The output of type analysis is a mapping of variable declarations to their
respective types. Example of a type analysis output for the program from
Listing 1.3:

[x] = int

[y] = {a: int}

12

1.4. Static program analysis

y={a:x*-10}

v

[—]

Xx=x+1 x=x*-10

R
:

Figure 1.4: CFG of the program snippet from Listing 1.3.

1.4.3 Control flow graph

Each of the so far mentioned analyses works with a representation of a program
without the need to know the actual dataflow of the program. However, this
is not the case for all the analyses we will be talking about. Some of the
analyses (which are referred to as dataflow analyses) require the knowledge
of program’s dataflow. For this purpose it is more convenient to work with a
different representation of the program called control flow graph.

A control flow graph (CFG) is a directed graph, in which nodes correspond
to statements and edges represent possible flow of control [3, Chap. 2.5]. A
CFG of a microC program always has a single point of entry (denoted entry)
and a single point of exit (denoted ezit). An example of a CFG is shown in
Figure 1.4.

1.4.4 Sign analysis

The sign analysis is an example of a dataflow analysis for program optimiza-
tion. Its goal is to determine what sign (+, -, or 0) each expression has, which
the compiler can then use to simplify certain binary operations'?. The output
of sign analysis is a mapping of CFG nodes to maps from declaration to sign or
abstract values T (representing “don’t know”, i.e., the sign of the declaration

12F g, a binary operation equals to between positive and negative integer will always
evaluate to false.

13

1. BACKGROUND

is uncertain) and L (representing uninitialized values)'3. This output tells us
what are the signs of variables after the given CFG node. Example output
for the program from Listing 1.3 (the “[entry]” notion denotes a CFG node):

[entry] = {x — L,y — L}

[var x,y] ={x— L,y —» 1}
[x=5] ={z = +,y — L}
[y={a:x*-10}] = {x — +,y —> T}
[input] ={z — +,y —» T}
[x=xt1] ={z = +,y > T}
[x=x*-10] = {x — —,y — T}
[y={a:x}]={z— T,y > T}
[exit) ={z — T,y = T}

We can see from the output that after the CFG node [y={a:x}] the sign of
the variable x is uncertain, because it could be either + or —, based on which
integer the expression input evaluates to.

1.4.5 Constant propagation analysis

The constant propagation analysis is very similar to the sign analysis. The
only difference is that the goal is to determine which variables have a constant
value (0, 1, etc.). This knowledge can then be used to simplify certain expres-
sions that can be evaluated during compile time. Qutput of the analysis is a
mapping of CFG nodes to maps from declaration to constant value, T, or L.
This output tells us what are the constant values of variables after the given
CFG node. Example output for the program from Listing 1.3:

[entry] = {z — L,y — L}
[var x,y] ={z — L,y — L}

[x=5] = {z — 5,y — L}
[y={a:x*-10}] = {x = 5,y = T}
[input] ={z — 5,y —» T}
[x=x+1] ={z — 6,y — T}
[x=x*-10] = {x — =50,y — T}
Iy={a:x}]={z—> T,y —> T}

lexil] = {x — T,y — T}

13More details about these abstract values can be found in [3, Chap. 4], which covers the
Lattice Theory.

14

1.4. Static program analysis

An optimizing compiler will use this output to, for example, propagate the
value of the variable x into the CFG node [y={a:x*-10}]. The statement of
the CFG node will be optimized to y={a:5*-10}, which can then be further
optimized to y={a:-50}.

1.4.6 Live variable analysis

The live variable analysis is a dataflow analysis used for program optimiza-
tion. It calculates which variables are live at each point in the program. The
compiler can then use this knowledge to optimize variables that are dead (i.e.,
they hold a value that won’t be read before the next time they are written to),
since they don’t need to be stored. The output of the analysis is a mapping
of CFG nodes to a set of live variables. This output tells us which variables
are live before the given CFG node. Example output for the program from
Listing 1.3:

[entry] =0
[var x,y] =0
[x=5] =0

[y={a:xx-10}] = {x}
[input] = {z}
[x=xe1] = v}

[x=x*-10] = {x}

[y={a:x}] = {=}
[exzit] =0

We can see that at no point in the program is the variable y live. An
optimizing compiler will use this information to eliminate both assignments
to y, since there is no point in storing dead variables.

1.4.7 Available expression analysis

A non-trivial expression'? is available at a program point if its current value

has been computed earlier in the execution [3, Chap. 5.5]. The goal of the
available expression analysis is to determine which expressions are available at
the given program point. Output of the analysis is a mapping of CFG nodes
to sets of available expressions. This output tells us which expressions are
available after the given CFG node. Example output for the program from
Listing 1.3:

1411 microC it’s the binary operation.

15

1. BACKGROUND

[[entry]] =
[var x,y

[[

Since the value of the variable x changes in both of the branching CFG
nodes [x=x+1] and [x=x*-10], the expression (x*-10) is no longer available
after them and cannot be reused.

16

CHAPTER 2

Design

Armed with knowledge from the previous chapter, we are ready to discuss the
design of the microC compiler. Our main goal is to create a compiler, that
can be easily plugged with the results of the various static analyses covered
in the NI-APR course. These results will be utilized in various optimizations
performed by the compiler. In this chapter, we discuss the design of each part
of the compiler, mainly middleend and backend.

2.1 The frontend

As described in subsection 1.1.1, the responsibility of a compiler’s frontend is
to parse the input source program and produce an IR that will be used in the
compiler’s middleend. For this purpose, we can use the parser provided to
students in the NI-APR course, which parses the input microC program and
produces an abstract syntaz tree'®> (AST) representation of the program.

The advantage of this choice is that students of the NI-APR course will
already be familiar with the output of the parser. Since there is no need
to further modify it, we will use the AST as an output IR of the compiler’s
frontend (for illustration, see Figure 2.1).

5 Abstract syntax tree represents the hierarchical syntactic structure of the source pro-
gram [1, Chap. 2.1].

microC
program

—> Frontend ——» AST

Figure 2.1: The frontend of the microC compiler.

17

2. DESIGN

2.2 The middleend

The responsibility of our compiler’s middleend will be to utilize provided anal-
yses, use them to perform various kinds of optimizations, and then produce
IR from which will the backend generate a target program (x86 assembly).
However, this is where we run into our first dilemma—what kind of IR should
we use to perform optimizations on?

The idea of optimizing a program boils down to rewriting a program so
that it computes the same answer in a more efficient way [2, Chap. 1.3.2].
This means that the IR representing a program should be easily modifiable.
One option would be to use the IR provided by the frontend—the AST. How-
ever, this representation is not well-suited for modifications (since it was not
designed for this purpose in the first place). That is why we will go with the
second logical option—defining a new IR, that will be well-suited for modifi-
cations performed by the optimizer. We will discuss the design of such IR in
the following subsection.

2.2.1 CFG as an IR

In the subsection 1.4.3 we introduced a notion of a CFG. This representation
of a program will be used in most of the analyses that will be provided to our
compiler. Coincidentally, it is also quite suitable for performing modifications
on it. For example, removal of a program statement can be done by removing
the corresponding CFG node and reconnecting its edges. Similarly, adding a
program statement is done by simply adding a new CFG node. This makes
CFG a suitable candidate for our middleend IR.

The advantage of choosing CFG as our middleend IR is that the optimizer
will perform optimizations directly on the CFG. The modified CFG can then
be immediately used to run another round of analyses and optimizations!6,
which makes the whole process much simpler. Another advantage is that the
NI-APR course already provides a class for constructing CFG from AST called
IntraproceduralCfgFactory. This class will be used as a first component of
the middleend and its output (the CFG of a program) will be used in another
important component of the middleend—the optimizer, which we will discuss
in the following subsection.

However, to be able to use CFG in the optimizer and also as an output
of the middleend (which will backend use to generate x86 assembly), we will
have to tackle one issue that CFG has—the loss of information when it comes
to branching. Recall the example CFG from Figure 1.4—the if-statement is
represented by a branching that starts from the node input. However, the
context of this branching (which branch is then branch and which is else) is
lost. The same loss of a context applies to while-statements. To make up for
this loss, we will have to extend the CFG with a context for each of the nodes

16This “round” of analyses and optimizations is often referred to as an optimization pass.

18

2.2. The middleend

of the CFG. The goal of a CFG node context will be to provide additional
information about the given CFG node and its branching. There will be four
types of contexts in total:

e Basic Contert—context of a CFG node that is not introducing any form
of a branching.

o If Contert—context of a CFG node that is introducing branching via
if-statement (e.g., the input node from the example). It will contain
information about which branch is then and which is else.

e While Context—context of a CFG node that is introducing branching
via while-statement. It will contain information about which branch is
the body of the while-statement and which is the branch that comes
after the while-statement.

e Do-While Context'™—context of a CFG node that is the first node of
a do-while-statement body. It will contain information about which
branch is the body and which is the guard of the do-while-statement.

We will discuss implementation of CFG node contexts in detail in the
following chapter.

2.2.2 Optimizer

The optimizer is a pivotal component of the compiler’s middleend. Its purpose
is to take an IR (in our case CFQG), perform various kind of optimizations and
produce optimized IR. When designing such optimizer, we have to consider
following properties that the optimizer should have:

o interoperability with the provided analyses, and
o extensibility of the optimizer with new optimizations.

The idea is to have an optimizer that can be easily provided with analyses
and “plugged with” different kinds of optimizations. The more analyses and
optimizations will be provided, the more the optimizer will be effective in
optimization of a CFG. This idea is illustrated in Figure 2.2.

The interoperability with the provided analyses can be ensured by defining
an interface, that will be used to provide analysis with a CFG and retrieve the
result of the analysis. Since this is an implementation detail, we will discuss
this interface in the following chapter.

To ensure extensibility of the optimizer with new optimizations, we will
have to define a unified approach to performing optimizations. Each of the

Even though microC does not define do-while-statements, some optimizations will trans-
form while-statements to do-while-statements. Therefore, it is necessary to define a context
for do-while-statement.

19

2. DESIGN

CFG
| Optimization 1 |
Analyses
Analyses retrieving Optimizer
interface
| Optimization 2 |
Optimized
CFG

Figure 2.2: An optimizer.

CFG

vy

[Run analyses]

I
Results of analyses

[Run optimizations]

T L
Optimization actions Opg,?é &

[Perform optim. actions

I

Optimized
CFG

Figure 2.3: An optimization process.

optimizations we will be discussing in the following subsections can be boiled
down to a process of observing input CFG, deriving some optimization ac-
tions'®, and performing the optimization actions which will modify the input
CFG into an optimized one. The last part of this process (performing opti-
mization actions) is identical for all optimizations, therefore an optimization
can be “stripped down” to a process that takes CFG together with results of
analyses of the CFG and produces a sequence of optimization actions. This
approach simplifies addition of new optimizations, since the one who will be
designing a new optimization will not have to be concerned with how the opti-
mization actions will be performed (this will be the concern of the optimizer,
which will perform said actions). The only concern will be how to derive
those optimization actions. For better understanding of the whole process of
optimization, refer to Figure 2.3.

18 g., deleting a CFG node, replacing a CFG node with another, introducing a new
variable declaration, etc.

20

2.2. The middleend

So far, we have used the term optimization action without giving proper
examples and explanations. In the next few paragraphs, we will try to make up
for it by covering each of the optimization actions supported by the optimizer.

Deletion of a node The node is removed from the CFG while keeping all
of its edges. Edges from predecessors of the deleted node are reconnected to
successors of the node. Similarly, edges to successors of the deleted node are
reconnected to predecessors of the node.

Connection of nodes A new directed edge is created between two nodes.

Disconnection of a node The node is removed from the CFG together
with all of its edges.

Replacement of a node The node is replaced with a different node.

Prependition of a node The node is prepended with a new node. The
new node becomes the only predecessor of the node, and all of its previous
predecessors are reconnected to the new node.

Addition of a declaration A new declaration of a variable is added.
Deletion of a declaration Declaration of a variable is removed.
Change of a context Context of the node is changed to a different one.

With examples of optimization actions out of the way, we will now move on
to the introduction of optimizations used by the optimizer.

2.2.3 Dead statement elimination

The first optimization that will our optimizer use is the dead statement elim-
ination. This optimization utilizes the result of the live variable analysis to
determine which statements (or, to be precise, which assignments) can be
removed without affecting the program results.

Recall the CFG example from Figure 1.4—the variable y is assigned to in
the node y = {a: x x -10}, but the value is never read and is overwritten
in the node y = {a: x}. Therefore, since the first assignment does not
introduce any side-effect and has no effect on the program, we can safely get
rid of it. This constraint is very important, statements that contain side-effect
inducing expressions (like input or call of a function that contains input or
output) cannot be eliminated, since that would change observable behaviour
of the program. In case the Rhs of the assignment contains side-effect inducing

21

2. DESIGN

expressions, we will replace the whole assignment with its Rhs. This way we
get rid of the assignment while also not changing the observable behaviour of
the program.

The live variable analysis tells us which variables are live before the given
CFG node (cf. subsection 1.4.6). To decide whether the assignment can be
eliminated, we have to check if the variable that is being assigned to is dead
before every successor of the assignment node. If it is, the node containing
the assignment can be safely deleted (or replaced if the assigned expression
contains a side-effect).

2.2.4 Dead code elimination

The goal of our version of the dead code elimination will be eliminating dead
branches of while, do-while, and if statements. The branch is dead if it will
never be executed for every possible input of the program. There are 4 cases
where this happens:

1. If-statement where the guard is a non-zero integer. In this case, the else
branch together with the guard can be safely eliminated.

2. If-statement where the guard is an integer 0. Here, the then branch and
the guard can be eliminated.

3. While-statement where the guard is an integer 0. In this case, the body
of the while-loop and the guard can be eliminated.

4. Do-while-statement where the guard is an integer 0. Since the body of
the loop will be executed only once, the guard can be eliminated and the
branch is transformed into a simple sequence of nodes with one entry
and one exit.

At first glance it may seem unnecessary to eliminate code that would have
never been executed in the first place, however by doing so we are shrinking
program size (which is an optimization), but most importantly, this elimina-
tion can enable further optimizations. Take the program from Figure 2.4 as an
example—Dby eliminating the else branch, we got rid of all reads of the variable
y, which then enables the dead statement elimination that will eliminate the
assignment y = 5.

To perform this optimization we will simply scan the CFG for guards of
if, while, and do-while statements that evaluate to true or false and then
perform the described eliminations by disconnecting entry and exit nodes of
the eliminated branch. No analysis is required for this optimization.

22

2.2. The middleend

@ > varxy
v
y=5 @ > varxy
v v
true false
1
f 3

X=42

L return x return x

(a) Before. (b) After.

sl

Figure 2.4: Example of dead code elimination.

2.2.5 Constant-based dead code elimination

Previous optimization is a simple optimization that does not require any anal-
ysis. However, it can be improved by providing more information about the
optimized program, e.g., by providing a result of the constant propagation
analysis. Take the program from Listing 2.1 as an example—after the first
if-statement, the variable x will always evaluate to true (since both 5 and 10
are interpreted as true), therefore both the else branch and the guard of the
second if-statement can be safely eliminated.

if (input) { x = 5; } else { x = 10; }
if (x) { output 1; } else { output 0; }

Listing 2.1: An optimizable program.

The constant-based dead code elimination is an improved version of the
dead code elimination. It utilizes a result of the constant propagation analysis
to decide which guards of if, while, and do-while evaluate to true or false
and then performs eliminations described in subsection 2.2.4. In addition, it
also performs optimization in the case where the guard of while-statement
evaluates to true during the first evaluation of the guard. This means that
the body of the loop will get executed at least once. In this case, the while-
statement can be transformed into a do-while-statement with the same guard

and body.

23

2. DESIGN

2.2.6 Sign-based dead code elimination

The sign-based dead code elimination is another example of an improved dead
code elimination. It performs the same kind of optimizations as the constant-
based dead code elimination, but it utilizes a result of the sign analysis instead.

2.2.7 Unused variable elimination

Any declaration of a variable that is never used in the function it was declared
in can be safely eliminated. By doing so, we are shrinking the space allocated
for local variables on a stack frame (recall storage organization of an x86
target machine discussed in subsection 1.3.1). This optimization is called
unused variable elimination.

To decide whether a variable is unused, we will scan the CFG for usages
of the variable. If no usages are found, we will remove the declaration of the
variable. No analysis is required for this scan.

2.2.8 Constant folding

The constant folding optimization is used to optimize binary operations using
a set of rewrite-rules which consist of application of algebraic identities and
evaluation of constant expressions. The rules we will be using are listed below
(algebraic identities are taken from [1, Chap. 8.5.4]):

0 + Expr — Expr
Expr + @ — Expr
Expr - @ — Expr

Id - Id— 0
Id x 0 —0
0 x Id— 0

Expr * 1 — Expr
1 * Expr — Expr
Expr / 1 — Expr
Int op Int — eval(Int op Int)

It may seem like some rules for division (e.g., @ / Expr — @) are missing,
however those cannot be eliminated because of possible division by zero. By
rewriting such division, we would change observable behaviour of the program.
The same applies to rules such as @ * Expr — 0, since the Expr itself can
contain division by zero.

We will perform this optimization by scanning the CFG for nodes con-
taining binary operations which match the listed rewrite-rules. The nodes are
then replaced based on the given rewrite-rules.

24

2.2. The middleend

= «+ e [-] [« [e [- |
+ - false | false + - true | true
0 false | true | false 0 || false | false | true
- false | false - - || false | false -

Table 2.1: The rewrite-rules for binary operations equal and greater-than.
Rows and columns represent Lhs and Rhs operands, respectively.

2.2.9 Sign folding

The sign folding is very similar to constant folding, the only difference is that
the rewrite-rules of sign folding utilize the result of the sign analysis. The
optimization is applied on binary operations equal and greater-than, and the
rewrite-rules for each of them are listed in Table 2.1. Note that in microC
true and false are represented by 1 and 0, respectively. Optimization is also
applied to identifiers with a sign @, which are replaced with a constant 0.
Similarly to constant folding, the optimization is performed by scanning
the CFG for nodes containing binary operations and using the result of sign
analysis to determine signs of operands of the binary operation. If signs match
the listed rewrite-rules, the node is then replaced based on the given rule.

2.2.10 Constant propagation

The goal of the constant propagation is to substitute variables with constant
values (assuming that the constant values are known at compile time) using
the result of the constant propagation analysis. This leads to a more opti-
mal program while also possibly enabling further optimizations like constant
folding. Recall the CFG example from Figure 1.4—if we use the result of a
constant propagation analysis from subsection 1.4.5, we can safely replace the
variable x in the node y={a:x*-10} with a constant value 5.

The constant propagation analysis tells us constant values of variables after
the given CFG node (recall subsection 1.4.5). To decide whether a variable
in a CFG node can be replaced, we have to check if the variable has constant
value in the predecessors of the node. If it has, we can replace every occurrence
of the variable in the node with that constant value.

2.2.11 Common subexpression elimination

The common subexpression elimination gets rid of non-trivial expressions that
have been already calculated by the time the flow control reaches them. Re-
sults of such expressions are stored in temporary variables, which are then
used instead of the redundant expressions [1, Chap. 9.5.1]. This is done by
utilizing the result of an available expression analysis. Take the program from
Figure 2.5 as an example—expression x / 5 is already available at the return

25

2. DESIGN

@ > varxytl
v
@ > varxy x = input
v v
X =input t1=x/5
v v
y=x/5 y=t1
v v
returny +x/5 returny + t1
é $
(a) Before. (b) After.

Figure 2.5: Example of common subexpression elimination.

node, therefore we can introduce a new variable t1 in which we will store this
expression and eliminate its every other occurrence.

We will perform this optimization by finding an available expression that
is used in the program more than once. Then we will create a new CFG node
that stores this expression in a temporary variable and prepend the node to a
node that contains the first occurrence of the expression. Every occurrence of
the expression (except for the newly created node) can then be replaced with
the new temporary variable (assuming that the expression is available at the
given point).

2.2.12 Summary of the middleend

In this section, we have covered design of every component of the middleend.
If we put the components together (as illustrated in Figure 2.6), we will get
a middleend that takes an AST from a frontend, constructs a CFG from it,
performs various optimizations on the CFG, and produces an optimized CFG
together with results of CFG analyses. These results will be further utilized
in the backend (e.g., result of type analysis is required for code generation of
x86IR, which we will discuss in the following section).

2.3 The backend

The responsibility of our compiler’s backend will be to use the CFG provided
by the middleend to generate an x86 program, which may be further optimized
by machine-dependent optimizations. These optimizations typically exploit

26

2.3. The backend

Analyses
CFG Analyses
results
:' """""""""""""""""""" 1
: CFG : cre
AST——>»| CFGfactory ——» Optimizer > 5.
' ' results
1 1
! Middleend !

Figure 2.6: The middleend of the microC compiler.

peculiarities of the target architecture [11, Chap. 1.0] (in our case, the x86-64
architecture). In the following subsection, we introduce yet another IR to help
us map CFG IR to x86-64 instruction set.

2.3.1 x86IR

The subsection 2.2.1 covered CFG IR, which was conveniently designed for
various types of analysis and optimizations. One of the nice properties of the
CFG IR was the independence from any particular source or target language.
However, precisely this independence makes the CFG IR not well suited for
a direct compilation into our target language, x86-64 assembly. To tackle
this issue, we will have to introduce a lower level IR that will serve as an
intermediate step between CFG IR and x86-64 assembly. We will refer to this
IR as an z861R.

Generally, an assembly-language program is a form of a linear code. It
consists of instructions that execute in their order of appearance [2, Chap.
5.3]. The x86IR is a linear IR that resembles this structure as much as possible.
Abstract syntax of the x86IR is defined in Listing D.1.

Instruction The x86IR instruction set takes inspiration from the LLVM
instruction set [12, Instruction Reference] and consists of a total of 17 instruc-
tions (see section D.1 for a detailed overview of the instruction set). These
instructions can be divided into 4 categories:

o Terminator instructions—these instructions typically yield no value and
their sole purpose is to produce control flow at the end of a basic block.
Examples: Return, CondJump, and Jump.

e Memory instructions—these instructions allow not only to allocate, read
and write memory, but also to retrieve or calculate memory addresses

27

2. DESIGN

of values. Examples: Alloc, FunAlloc, HeapAlloc, ArgAddr, GetAddr,
GetAddrOffset, Load, and Store.

o I/0 instructions—instructions that handle I/O operations. Examples:
LoadInput and Print.

e Other instructions—instructions that don’t fit in any of the previous
categories. Examples: LoadImm, LoadComposed, BinOp, and Call.

Even though every instruction has different properties and operands, each of
them shares common fundamental properties—Ilocation and type.

The location of an instruction is information about its origin in a microC
source code (line and column). It is used in error reports to direct the user to
the source of the error.

The type of instruction is important information that will come handy for
a compilation from x86IR to x86 assembly. It will tell us how to handle the
result of an instruction (e.g., how to store it in registers or memory) or the
byte-size of the result, which will be used to calculate the total byte-size of a
stack frame. There are 4 types in total:

o VoidType—type of an instruction that yields no value, therefore the
byte-size of the instruction’s result is 0.

o SimpleType—type of an instruction that returns a non-composed simple
value, like an integer or a function. Byte-size of the type is 8 bytes!?
(equal to the size of an x86-64 register).

o ComposedType—type of an instruction that returns a value that is com-
posed of one or more values (e.g., Record). Its byte-size is a sum of all
types of which it consists.

e PointType—type of an instruction that returns an address of some value
(equivalent to a pointer in the C programming language). Byte-size of
the type is equal to the size of an address (8 bytes).

Basic block A basic block is a named sequence of instructions that has
single entry and single exit point. The exit point (i.e., the last instruction)
of a basic block is a terminator instruction (such as jump or function return).
Each basic block contains exactly one terminator instruction.

Function Program functions consists of a name of the function, number of
parameters, and most importantly a sequence of basic blocks. A function has
a single entry point—the first basic block in the basic block sequence.

9Even though we will be using 32-bit integers, their size on the stack will be 64 bits,
since the x86-64 instructions push and pop allow only 64-bit operands [7, Chap. 9.2][13].

28

2.3. The backend

The x86IR program Finally, the program in x86IR is represented by a
simple list of one or more functions. One of these function is designated as
an entry function (usually the one with the name main), which means the
function serves as the starting point for program execution.

2.3.2 Code generation of x86IR

Now that we are familiar with the x86IR, we can move on to designing a
first component of the backend—CFG Compiler, which will transform CFG
IR into x86IR. MicroC program is in CFG represented as a set of smaller
function CFGs. We will try to map each of these function CFGs into an x86IR
function by compiling each of its nodes. Since the CFG introduced in the NI-
APR course defines 3 types of nodes (CfgFunEntryNode, CfgFunExitNode, and
CfgStmtNode), in the next few paragraphs we will cover how to compile each
of these types.

CfgFunEntryNode As the name suggest, this node represents a function
entry. We will initialize a new function with an empty basic block. Then we
will emit ArgAddr instruction for every parameter of the compiled function.
Then we continue by compiling the next successor of the node (there is always
only one successor).

CfgFunExitNode Once again, the name is self-explanatory—the node rep-
resents a function exit. We will finalize the function we initialized in the
CfgFunEntryNode and since this is the last node of the function CFG, the
compilation of the function ends here and we move to the next function.

CfgStmtNode This node represents a program statement. The way we will
compile this node depends on its context (recall subsection 2.2.1), which can
be one of the following 4 types: Basic Context, If Context, While Context, and
Do-While Context.

The most straight-forward is a node with Basic Context. Since this node
does not introduce any branching, we will simply compile the program state-
ment and then continue by compiling the next successor of the node.

Nodes with If Context are a little more complicated, since they introduce
branching. First, we will compile the guard of the if-statement. Then we
will create 3 empty basic blocks which we will refer to as then, else, and
finally. After that we will emit CondJump instruction which will based on the
evaluated value of the guard jump either to then or else block. Now we will
“enter” the then block, compile the entire then-branch, and lastly emit Jump
instruction that will jump to the finally block. The same process is repeated
for the else block and else-branch. Finally, we will enter the block finally
and continue with a compilation of a node, that comes first after the whole
if-statement. For an illustration of a result of this process, see Figure 2.7a.

29

2. DESIGN

Another type of node is a node with While Context, which also introduces
branching. Similarly to the previous context, we will create 3 empty basic
blocks which we will refer to as guard, body, and finally. First we will emit
Jump instruction that will jump to the guard block, then enter the guard
block, compile the guard of the while-statement, and lastly emit CondJump
instruction which will based on the evaluated value of the guard jump either
to body or finally block. Then we will enter the body block, compile the entire
body-branch of the while-statement, and lastly emit Jump instruction that will
jump back to the guard block. As a last step, we will enter the block finally
and continue with a compilation of a node, that comes first after the whole
while-statement. For an illustration of a result of this process, see Figure 2.7b.

The last type of node is a node with Do-While Context. Again, we will
create 3 empty basic blocks which we will refer to as body, guard, and finally.
First we will emit Jump instruction that will jump to the body block, then
enter the body block, compile the body of the do-while-statement, and lastly
emit Jump instruction that will jump to the guard block. Then we enter the
guard block, compile the guard of the do-while-statement, and lastly emit the
CondJump instruction which will based on the evaluated value of the guard
jump either to body or finally block. As a last step, we enter the block finally
and continue with the compilation of a node, that comes first after the whole
do-while-statement.

This concludes compilation of a CFG node into x86IR. The compilation
of statements and expressions in those nodes is, for the most part, straight-
forward—first we will compile operands of a statement/expression and then
we compile the statement/expression itself. Therefore, it won’t be discussed
further. The only exception to this is compilation of a field access, which we
will cover in the next and last part of this subsection.

Field access In a microC code, fields of a record are accessed using field
names. However, the x86IR was designed to be more low-level and closer to
the x86-64 assembly, therefore it has no concept of “field names”. In memory,
a record is stored as a sequence of members (similarly to a struct type in
C language [14] or structure type in LLVM [12, Structure Type]), so it only
makes sense to access the members of a record by an offset (of bytes) from
the address of the record (which will be the first member of the record). The
size of the offset depends on the types (and their byte-sizes) of the record’s
members, which can be inferred by utilizing the result of a type analysis.
Take record {a:0, b:{c:1, d:2}} as an example?’—+to access the field .b,
we will use an offset of 8 bytes from the address of the record (since size of the
field .a containing an integer is 8 bytes). To access the field .b.c, we will use

20Officially, the microC language does not support nested records [6, Records], however
in case this changes in the future, our compiler will support nested fields.

30

2.3. The backend

(instructions before the if-statement) (instructions before the while-statement)
CondJump "then" "else" Jump "guard”

(instructions of the then-branch) (instructions of the guard)

then guard
Jump "finally" CondJump "body" "finally"

(instructions of the else-branch) (instructions of the body-branch)

else body
Jump "finally" Jump "guard"

(instructions after the if-statement) finaIIy (instructions after the while-statement) finaIIy
(a) An if-statement in x86IR. (b) A while-statement in x86IR.

Figure 2.7: A branching in x86IR represented by basic blocks.

an offset of 0 bytes from the address of the record stored in .b. For the purpose
of addressing by offsets, we will use the x86IR instruction GetAddrOffset (see
section D.1), which is a simplified version of the instruction getelementptr
from the LLVM instruction set [12, getelementptr Instruction].

2.3.3 Stack frame and calling conventions

As mentioned in subsection 1.3.1, allocation and deallocation of a stack frame
is a responsibility of the compiler. Before we move onto the generation of
x86 assembly code, we will have to design how the allocation and deallocation
will work in our compiler. For the design, we will be using a model situation,
where function main calls function foo. The state of the stack before the call
is shown in Figure 2.8a.

When foo is being called, main has to somehow pass function call argu-
ments to foo. Some calling conventions may use registers to pass the arguments
[10, Chap. 7], however we will be using stack. By doing so, we will implic-
itly have dedicated space for arguments on stack in case they will have to be
spilled?! from a register during the register allocation. Therefore, main has
to push all arguments of the call onto the stack. After that, main pushes
an instruction pointer?? (IP) onto the stack. It will be used to decide which
instruction to execute next after foo returns from its call. Finally, foo is called
and the control flow is transferred to it.

21 Spilling occurs when the register allocator cannot assign some virtual register to a
physical one [2, Chap. 7.2.3] (e.g., when all of physical registers are occupied)—value of one
of the physical registers gets spilled to stack, thus freeing up the physical register.

22 Instruction pointer is a pointer that points to the next instruction that will be executed.

31

2. DESIGN

Base High address High address
pointer N R
main local variable 1 main local variable 1
main local variable 2 >_Stack frame main local variable 2
of main
main temp value 1 main temp value 1
Stack frame
Stack :) — A
R —» main temp value 2 main temp value 2
pointer P Low address P of main
foo parameter 1
foo parameter 2
return address
Base .
pointer main BP
foo local variable 1
>_Stack frame
of foo
foo local variable 2
Stack
" —» foo temp value 1
pointer P Low address
(a) Before the call of foo. (b) After the call of foo.

Figure 2.8: Comparison of stack states before and after calling foo.

Function foo is now in control of the flow and before it executes any of its
basic blocks, it has to persist BP of main by pushing it onto the stack. Then,
foo has to set BP to point to the start of the foo’s stack frame—this is done
by copying SP into BP. Finally, foo allocates enough space on the stack for
local variables and temporary values of foo (this is done by moving the SP
downwards) and starts executing its basic blocks. The state of the stack after
these actions is shown in Figure 2.8b.

When foo reaches a return statement, it has to somehow pass the return
value to the stack frame of main. Our convention will be to use the register
RAX. After the return value is stored, SP is copied into BP and previously
saved BP of main’s stack frame is loaded back from the stack. Finally, foo
transfers control flow back to main using the IP that was stored by main on the
stack. At this point, the stack frame of foo has been completely deallocated.

Before main executes its next instruction, previously pushed arguments of
the call are removed from the stack by moving SP upwards. After that, main
continues to execute its instructions. The state of the stack is now the same
as it was before the call (see Figure 2.8a).

2.3.4 Code generation of x86 assembly

With better understanding of allocation and deallocation of a stack frame, we
can move on to the second component of the backend—az86IR Compiler. Its
goal will be to transform x86IR into x86 assembly.

32

2.3. The backend

Before we start compiling each function of the x86IR, we have to define
the initial x86 program entry point with the label _start?®. Then we will
have to assign an address to each function of the program (since functions can
be referenced and dereferenced in microC). The microC program is then run
using the call instruction, which will call the entry function of the microC
program (usually the one called main). After that, the program is terminated
by calling exit (from libc**). The other option would be to use sys_exit
syscall, however since we will use other libc functions like printf or scanf, we
will keep things consistent and use libc exit. We then continue by compiling
each function of the program.

Function Entry point of a function will be a label with name of the function,
which is followed by instructions that take care of updating BP and allocating
enough space on the stack for local variables and temporary values (recall
subsection 2.3.3 where we discussed what happens, when a function is given
control of the flow). After that, we will compile each basic block of the function.

Basic block Similarly to a function, the entry point of a basic block will
be a label with its name. Then we will compile each instruction of the basic
block (their compilation will be discussed in the following paragraphs). After
each compiled x86IR instruction we will have to make sure that registers only
contain live values—since we only have a finite number of registers, we do not
want to keep having registers cluttered with dead values (e.g., operands of
an instruction that has been already executed). To decide which values are
dead, we will be using a live instruction analysis, which will be covered in the
following subsection.

Alloc The Alloc instruction allocates memory on the stack for a local vari-
able. The size of the allocated memory depends on the type of the instruction.
Since local variables are addressed using a negative offset from BP (recall Fig-
ure 2.8), we will assign a new offset to this variable. The negative offset from
BP will be the address of the variable.

ArgAddr The ArgAddr instruction is very similar to Alloc, the only dif-
ference is that the memory is allocated for the function’s argument and the
assigned offset is positive. The positive offset from BP will be the address of
the function’s argument.

HeapAlloc The HeapAlloc instruction allocates memory on the heap. To
do this, we will have to call the function malloc (from libc), which takes care

23 This particular label name is recognized by the standard system linkers [7, Chap. 4.6].
https://man7.org/linux/man-pages/man7/libc.7.html

33

https://man7.org/linux/man-pages/man7/libc.7.html

2. DESIGN

of the allocation and returns the address of the allocated memory. The call
consists of these steps:

1. Save caller saved registers by pushing them onto the stack—these regis-
ters are not preserved across a function call. The caller saved registers
are: rax (since it will contain the return value), rcx, rdx, rsi, rdi, r8,
r9, r19, and r11 [7, Chap. 12.8.3].

2. Align stack to 16 bytes—before every call, the stack has to be aligned
to 16 bytes [8, Chap 6.2.2].

3. Load the first argument of malloc (size of the allocated memory)—
following the Linux calling convention, the first argument of a function
is stored in the register rdi [7, 12.8.1].

4. Finally, call the function.

After the call, the address of the memory will be stored in rax. Now we will
dealign stack and restore caller saved registers. Lastly, we will initialize the
address with the value specified by the HeapAlloc instruction.

Store The Store instruction represents a write to memory, and its arguments
are the value to store and the address at which to store it. If the value is a
composed type (e.g., arecord), the value is actually an address of the composed
value we will be storing (its contents are typically stored on stack or heap).
We will use this address to access each part of the composed value and move
it to the destination address. Any other type is simply moved from a register
to the destination address.

LoadImm The LoadImm instruction loads an immediate value (signed inte-
ger). We will do this by simply moving the value into a register. Since microC
uses 32-bit integers, we will use only the lowest 32-bits of the 64-bit register?”.

LoadComposed The LoadComposed instruction loads a composed value
(e.g., a record). Since composed types consist of multiple values, we cannot
move them into a register as we did with an immediate value. Instead, we will
allocate space on the stack and move each part of the composed type there.
Then we will move the address of its first member into a register—this address
will represent the “value” of the composed type.

Load The Load instruction loads a value from a memory address. We will
do this by accessing the address and moving its content into a register.

?5This is done by, e.g., accessing the register rax as eax [7, Chap. 2.3.1.1].

34

2.3. The backend

GetAddr The GetAddr instruction returns the address of a variable. Since
the address of a variable is offset from BP, which was assigned to the variable
by instruction Alloc or ArgAddr, we will simply find the assigned offset and
load the address into a register.

GetAddrOffset The GetAddrOffset instruction returns the address of a
subelement of a composed type. Arguments of this instruction are an address
of the composed type and an offset, therefore we will simply add the offset to
the address and load the result of this addition into a register.

BinOp The BinOp instruction performs a binary operation and returns its
result. The most simple are the operations addition, subtraction, and multi-
plication, which we will perform by emitting x86 instructions add, sub, and
imul, respectively.

Division is a little more complicated, since the first operand (dividend)
of the x86 instruction idiv spans over two registers—rdx (high bits) and rax
(low bits) [8, Page 3-487]. We will move dividend into rax and set register
rdx to 0. After executing idiv, the result of the operation will be stored in
the register rax.

In case of equal and greater-than, we will compare their operands. If the
comparison is true, we will load a value 1 into a register. Otherwise, we will
load value 0.

LoadInput The LoadInput instruction loads an integer from a standard
input. Similarly to HeapAlloc, we will have to use extern function scanf
(from [libc), which scans the input using the provided format string. The call
of the function consists of these steps:

1. Save caller saved registers by pushing them onto the stack.

2. Align stack to 16 bytes.

3. Load the first argument of scanf into the register rdi—format string,
which defines layout of the scanned input. Since we are loading a 32-bit

signed integer, we will use the format string %1d (long integer).

4. Load the second argument into the register rsi?®—address of the mem-
ory, where the scanned integer will be stored.

5. Finally, call the function.

26The register rsi is used for the second argument of a function in the Linux calling
convention [7, 12.8.1].

35

2. DESIGN

Right after the call, we will dealign stack. If the return value of the call®”
(stored in rax) is 1, we will then move the loaded integer from the address
which we provided to scanf into a register. Otherwise, EOF was reached and
we will load —1 instead. Lastly, we will restore caller saved registers.

Print The Print instruction writes an integer to a standard output. Once
again, we will have to rely on extern function printf (from libc), which writes
an output using the provided format string. The call of the function consists
of these steps:

1. Save caller saved registers by pushing them onto the stack.
2. Align stack to 16 bytes.

3. Load the first argument of printf into a register rdi—format string,
which defines layout of the printed output. We will use the same format
string as we did for LoadInput—%1d (long integer).

4. Load the second argument into a register rsi—the value to be printed.
5. Finally, call the function.

After the call, we will just dealign stack and restore caller saved registers.

Call The Call instruction transfers the control flow to the called function.
The call consists of these steps:

1. Save current state of registers by pushing them onto the stack.
2. Align stack to 16 bytes.
3. Load the function that will be called.

4. Load all arguments of the function call—our calling convention is to pass
function call arguments using the stack, therefore we will push them in
order onto the stack.

5. Call the function using x86 instruction call.
6. Clear arguments from the stack.
7. Dealign the stack.

8. Restore previous state of registers from the stack.

2"The function scanf returns the number of successfully matched input items [15].

36

2.3. The backend

After these steps, the return value will be stored in the register rax. In case
the return value is a composed type, the value stored in the register rax is
just its address pointing to a deallocated frame stack of the called function.
Therefore, we will have to use this address to move each part of the composed
type into the current stack frame.

Return The Return instruction stores the return value and returns the con-
trol flow to the caller of the current function. Since our calling convention is
to use register rax as the register for return values, we will move the return
value into it. Then we will reset SP by overwriting it with BP and restore BP
of the caller function by loading it from the stack. Lastly, we will emit x86
instruction ret.

CondJump The CondJump instruction transfers the control flow to a dif-
ferent basic block based on the value of the condition. We will compare the
value of the condition with 0 and then emit x86 instruction je, which will
jump to “false-branch” basic block if the compared values are equal. Then we
will emit jmp which will jump to “true-branch” basic block.

Jump The Jump instruction transfers the control flow to a different basic
block. We will do this by simply emitting x86 instruction jmp.

2.3.5 Live instruction analysis

As mentioned earlier, the x86 target machine has only a finite number of
registers. Keeping dead values in them will result in a faster congestion of
registers, which leads to more spilling (and therefore less efficient code). To
decide which values are no longer required to keep in registers, we will be
using a live instruction analysis.

The scope of the analysis will be a single basic block B, which can be
viewed as a sequence of n instructions Iy, I, ..., I,. The result of the analysis
will be sets of instructions (for each instruction I; € B), whose result is live
after the execution of the instruction I;, which we will denote as LIV E(1;).
The result of the analysis can be defined by the following recurrence relation,
where op(1;) denotes operands of an instruction I;:

LIVE(I,) =0 (2.1)

LIVE(I; 1) = (LIVE(L) Uop(L)) \ {1} (2.2)

No value is live after the last instruction of basic block (relation 2.1). Only
values that are yet to be used as operands of some instruction (that has not

been executed yet) are live (relation 2.2).

37

2. DESIGN

mov rbx, [rbp]

mov rbx, [rbp]
mov rax, rbx
mov rbx. rax |::> mov rax, rbx
. add rbx, 5

add rbx, 5

Figure 2.9: A peephole optimization.

CFG
—>» CFG Compiler » x86IR Compiler » Peepholer [——» %

assembly

¥
Analyses
results

Figure 2.10: The backend of the microC compiler.

2.3.6 Peephole optimizations

The last component of the backend will be Peepholer. Its goal will be to take
assembly produced by z86IR Compiler, perform peephole optimizations, and
produce optimized assembly.

The basic premise of peephole optimization is to examine short sequences
of adjacent operations and find local improvements. This is done by having a
sliding window which at each step observes a small number of operations, look-
ing for a specific pattern that can be improved [2, Chap. 11.5.1]. See Figure 2.9
for an example of a sliding window that has the size of two instructions—the
first observed instruction copies the content of rbx to rax. The following in-
struction then copies the content of rax back to rbx, which is in this case a
redundant operation that can be safely eliminated.

Our peepholer uses sliding window that has size of one and two instruc-
tions. The l-instruction improvements mostly consist of deletion of useless
operations, usage of algebraic laws, or usage of instructions designed for spe-
cial operand cases. The 2-instruction improvements consist of combining of
several algebraic operations into one equivalent and eliminating redundant
move operations. The overview of all rewrite-rules we will be using is shown
in Table 2.2.

2.3.7 Summary of the backend

This concludes design of every component of the backend. By putting them
all together (as illustrated in Figure 2.10), we get a backend that takes a CFG
from a middleend, transforms it into an x86 assembly, performs peephole
optimizations on the assembly, and produces an optimized x86 assembly.

38

2.3. The backend

2-instruction sliding window

Pattern l Replace with 1-instruction sliding window
jmp 11 11 Pattern ‘ Replace with
11: ’ add o1, @
add o1, i1 . . add o1, 1 inc ol
add ol iz | dd ol ev(il+1d2) | ogqmoy T dec o
add o1, il . . add o1, ol shl o1, 1
sub o1, i2 add of, ev(il —i2) sub o1, @
sub o1, il . . sub o1, 1 dec ol
sub o1, i2 sub o1, ev(s1+42) sub o1, -1 inc ol
sub o1, il . . sub o1, ol mov ol, @
add o1, i2 sub o1, ev(il —12) imul o1, @ mov o1, @
tmuloT, 111501 o1, ew(il-q2) | |imul ol T
imul o1, i2 imul o1, i1 .
- P shl o1, ev(logz(i1))
shl o1, i1 shl of, ev(il +i2) if i1 is power of 2
shl o1, i2 ’ shl o1, @
h 1, i1 . .
sar-of, 1 shr o1, ev(il +12) shr of, ©
shr o1, i2 mov ol, ol
mov o1, o2 mov o1, @ xor o1, ol
mov ol, o2
mov 02, oI mov [01+0], 02 mov [o01], o2
mov m1, ri mov m1, ri mov o1, [02+0] mov o1, [02]
mov r2, ml mov r2, ri
Notes:
1—label r—register

o—instruction operand
i—constant integer

m—memory access
ev—evaluation of a binary operation

Table 2.2: The rewrite-rules for 2-instruction and 1-instruction sliding window.

39

CHAPTER 3

Implementation

With the design of the microC compiler out of the way, we can move on to its
implementation. In the first part of this chapter we discuss the implementation
of each part of the compiler (frontend, middleend, and backend), located in
the folder microc-compiler/src/main/scala/microc. In the second part, we
cover tests and documentation of the implementation.

As stated in the introduction of this thesis, the implementation of the
compiler should be easy to read and follow, since it will be used as an educa-
tional material for students of the NI-APR course. General ways to achieve
that are, e.g., proper commenting and documentation, consistent indentation,
following DRY (Don’t Repeat Yourself) principle, or using meaningful names
for variables and functions. In addition to these principles, we will also take
advantage of some useful Scala features; e.g., since Scala is not only an object-
oriented programming language, but also a functional programming language
[16, Chap. 1.2], we can avoid deep level of nesting (which are often harder to
follow) by writing code in a more functional style. Take Listing 3.1 and List-
ing 3.2 as an example, which are two ways of iterating over non-terminating
instructions of an x86IR program—the first one is an imperative for-cycle ap-
proach and the second one is a functional approach. The latter one is much
easier to follow, since it does not introduce multiple levels of nesting.

On the other hand, there are some Scala features that we will be avoiding
for the sake of code clarity. The most notable example of such feature are
implicit conversions®®, which are considered (even by the author of Scala,
Martin Odersky [17]) “evil”, since they make it hard to see what goes on in
the code (e.g., side-effects or complex computations), because they are applied
by the Scala compiler on the background.

28 Implicit conversions allow the Scala compiler to convert one type to another by utilizing
implicit classes or methods defined by the programmer [16, 21.1].

41

3. IMPLEMENTATION

//functions of a program
for (fun <- program.funs) {
//basic blocks of a function
for (bb <- fun.bbs) {
//instructions of a basic block
for (i <- bb.instructions) {
//filter non-terminating instructions
if (!i.isInstanceOf[Terminator]) {
println(i.name)

Listing 3.1: For-cycle approach to iterating over non-terminating instructions
of a program.

//functions of a program

program.funs
//basic blocks of a function
.flatMap(_.bbs)
//instructions of a basic block
.flatMap(_.instructions)
//filter non-terminating instructions

.filter {
case _: Terminator => false
case _ => true
3

.foreach(i => println(i.name))

Listing 3.2: Functional approach to iterating over non-terminating instruc-
tions of a program.

3.1 The frontend

We implement the frontend of the microC compiler as an object with sin-
gle method parse which takes a microC program string and produces an
AST program (represented by a case class Program) by utilizing the class
PCParser from NI-APR course (as stated in section 2.1). The interface of the
object Frontend is shown in Listing 3.3 and the implementation is located in
frontend/Frontend.scala.

42

3.2. The middleend

object Frontend {
def parse(code: String): Program = {...}
}

Listing 3.3: The class Frontend.

3.2 The middleend

In this section, we go over the implementation of CFG node contexts and
the interface between our compiler and the codebase for performing analy-
ses. Next, we discuss the implementation details of the optimizer and the
optimization process. Finally, we conclude this section with the introduction
of class Middleend, which will encapsulate each component of the middleend.
The whole codebase of the middleend is located in the folder middleend/.

3.2.1 CFG node context

To preserve the context of branching in CFG, we introduced in subsection 2.2.1
CFG node contexts. In this subsection, we go over the program representation
of such contexts and their assignment to CFG nodes.

Context representation To be able to pattern match contexts, we will rep-
resent them with a sealed trait CfgNodeContext extended by four case classes
(for each type of the node context): BasicContext, IfContext, WhileContext,
and DoWhileContext. In the latter three, we will represent a branch with a sin-
gle CFG node (entry of the branch) and set of CFG nodes (exit of the branch).
Each of these representations is located in cfg/CfgNodeContext.scala.

Context assignment We will need to find a way how to extend the CFG
codebase (located in cfg/Cfg.scala) provided by the NI-APR course with
contexts without changing its interface?®. One way to achieve this is to
add a map that maps CFG nodes to their contexts as an implicit parame-
ter to the class FragmentCfg3°. By doing so, the non-implicit parameter list of
FragmentCfg will remain the same and the CFG will contain contexts for each
of its nodes. The last change is in the class IntraproceduralCfgFactory which
constructs the CFG of a program. In the method fromAstNode which converts
AST nodes to CFG nodes, we will need to assign correct contexts at each point

where an instance of FragmentCfg is created. In the case of AST nodes IfStmt

29Gince the CFG codebase is used in the course NI-APR, it has to stay compatible with
other codebases used in the course.

30A class which represents a fragment of a CFG, which can be a single node, function, or
a complete CFG of a program.

43

3. IMPLEMENTATION

and WhileStmt we will assign IfContext and WhileContext, respectively. In
all other cases, we will assign BasicContext. This small modification will not
affect the interface of IntraproceduralCfgFactory.

3.2.2 Analyses and optimizer interoperability

In the subsection 2.2.2 we discussed a desire to have a compiler that is in-
teroperable with analyses provided to the compiler. This interoperability can
be achieved with an interface between our compiler and the codebase for per-
forming analyses. The goal of this interface will be to mediate the process of
retrieving the results of analyses.

We introduce trait AnalysisHandlerInterface (see Listing 3.4) which de-
fines methods for retrieving the results of each of the analyses we introduced
in section 1.4. Analyses will be provided to the compiler by extending the
trait and implementing its methods. The only mandatory analyses which will
have to be provided are the type analysis and the semantic analysis (those
are required by the backend), every other analysis is not required and purely
optional. The trait is located in analysis/AnalysisHandlerInterface.scala.

trait AnalysisHandlerInterface {
def getTypes(program: Program): Types

def getDeclarations(program: Program): Declarations

def getSigns(cfg: ProgramCfg) (implicit declarations: Declarations):
— Option[Signs] = None

def getConstants(cfg: ProgramCfg) (implicit declarations:
— Declarations): Option[Constants] = None

def getLiveVars(cfg: ProgramCfg) (implicit declarations: Declarations):
— Option[LiveVars] = None

def getAvailableExps(cfg: ProgramCfg) (implicit declarations:
< Declarations): Option[AvailableExps] = None

Listing 3.4: The trait AnalysisHandlerInterface.

44

3.2. The middleend

3.2.3 Optimizer

With implementation of CFG node contexts and interface for retrieving the
results of analyses out of the way, we can finally move on to implementing the
pivotal component of the middleend—the optimizer. In Figure 2.3 from the
previous chapter, we depicted optimization as a 3-step process that repeats
itself until a fixed point is reached. In this subsection, we go over the imple-
mentation of each step of this process. The implementation is located in the
folder optimization/.

Run analyses By providing AnalysisHandlerInterface we can easily run
and retrieve results of the analyses. The results are then stored in a structure
called AnalysesDb which is a simple case class wrapper that contains each type
of analysis result.

Run optimizations We will perform each defined optimization in order un-
til of them derives at least one optimization action. In this case, the optimizer
performs the derived optimization actions and repeats the whole optimization
process from the first step again. If no action was derived, it means that the
CFG cannot be further optimized (i.e., the fixed point has been reached). In
that case, the whole optimization process ends.

However, there is a small problem we have to address. Since the whole
optimization process can repeat itself many times, resulting in too long compi-
lation time, we have to somehow limit the number of repeats of the optimiza-
tion process. A good compiler must pay attention to compile time costs—this
can be achieved by defining a budget for how much time the compiler should
spend on its various tasks [2, Chap. 1.3].

We implement this budget by assigning a cost (positive integer) to each
of the optimizations and defining a starting budget of the optimizer. Each
time an optimization is run, we deduct its cost from the budget. If the budget
reaches zero, no more optimizations are run and the optimization process ends.

Perform optimization actions First we need to define how to represent
these actions. As usual, we define a sealed trait OptimizationAction extended
by the following case classes representing each of the action types that we
introduced in subsection 2.2.2:

o DeleteNode with argument CfgStmtNode (the deleted node).

o ConnectNodes with two CfgStmtNode arguments (the source and desti-
nation nodes of the new edge).

o DisconnectNode with argument CfgStmtNode (the disconnected node).

45

3. IMPLEMENTATION

o ReplaceNode with arguments AstNode (the replaced AST node in the
CFG node), AstNode (the expression replacing the previous one), and
CfgStmtNode (the node with the replaced expression).

o PrependNode with arguments CfgStmtNode (the location of the newly
created node), CfgStmtNode (the new node), and CfgNodeContext (the
context of the new node).

o AddDeclaration with arguments IdentifierDeclaration (the declara-
tion of the new variable), List[Identifier] (a list of all usages of the
new variable), Type (the type of the new variable), and CfgStmtNode
(the node with declarations of all the variables of a function).

o DeleteDeclaration with arguments IdentifierDeclaration (the de-
leted declaration) and CfgStmtNode (the node with the declaration).

o ChangeContext with arguments CfgNodeContext (the new context) and
CfgStmtNode (the affected node).

When an optimization returns a list of optimization actions, the optimizer
will pattern match each of the actions and perform corresponding modifica-
tions on the CFG.

We encapsulate these three steps into one class Optimizer. Its arguments
are the CFG that will be optimized, an interface for retrieving the results of
analyses, and the budget of the optimizer. The optimizations are performed
directly on the provided CFG using the method run, which then returns an
instance of AnalysesDb.

3.2.4 Optimizations

To provide a unified interface for performing optimizations, we introduce a
trait Optimization (see Figure 3.1). It consists of method run which takes
a CFG as an input and produces a list of optimization actions, method
isRunnable which returns true if the all necessary analysis required by the
optimization are provided, and value cost which defines the cost of the opti-
mization. Each optimization we introduced in section 2.2 will be implemented
as a class that extends this trait.

Thanks to this unified interface, the optimizer is easily extensible with new
optimizations. A new optimization is added to the optimizer by extending the
trait Optimization and adding it to the list of available optimization in the
class Optimizer (method optimizationPlan).

46

3.2. The middleend

«trait»
Optimization

+ cost : Int

+ isRunnable() : Boolean

+ run(ProgramCfg) : List[OptimizationAction]

DeadCodeElimination ConstantFolding SignFolding

Figure 3.1: UML class diagram of the optimization implementation.

3.2.5 Summary of the middleend

In this section, we covered implementation of every component of the mid-
dleend. Now we encapsulate these components into a single class Middleend
(see Listing 3.5) with arguments AnalysisHandlerInterface and Language.
The second argument specifies the used microC language subset:

e microCVar: basic microC constructs with no control flow
e microCIf: microCVar with if-statements

e microCWhile: microCIf with while-statements

e microCFun: microCWhile with function calls

e microCRec: microCFun with records

e microCArr: microCRec with arrays

e microC: entire microC language

The class has a single public method astToCfg which scans the input AST
and throws an exception, if the AST contains constructs that are not part
of the used microC subset. Then the AST is transformed into a CFG and
optimized by the optimizer. The used budget of the optimizer depends on the
argument optimize—if it is set to true, the budget is 500. Otherwise, the
budget is 0 (meaning no optimization will be performed). The output of the
method is a CFG and an instance of AnalysesDb.

47

3. IMPLEMENTATION

class Middleend(
handler: AnalysisHandlerInterface,
lang: Language = Language.microC
) |
def astToCfg(
program: Program,
optimize: Boolean = false
): (ProgramCfg, AnalysesDb) = {...}

Listing 3.5: The class Middleend.

3.3 The backend

The last part of the compiler we will be implementing is the backend. As
stated in subsection 2.3.7, our backend consists of 3 main components: CFG
Compiler, x86IR Compiler, and Peepholer (which will be sub-component of
the z86IR Compiler). In this section, we go over implementation of each of
these components (and their subcomponents). The whole codebase of the
backend is located in the folder backend/.

3.3.1 x86IR

The first part of z86IR Compiler is x86IR itself, therefore in this subsec-
tion we go over its implementation. The implementation consists of the IR
itself and builders of the IR, which are located in x86IR/X86IR.scala and
x86IR/X86IRBuilder.scala, respectively.

Type of instruction The only common property of all instruction types
is the byte-size, therefore we can model instruction type with a sealed trait
IRType that defines single method size. The trait is then extended by:

e VoidType—case object with size 0.

e PointType—case class with size 8 and argument pointsTo which defines
the type it points to.

e SimpleType—case object with size 8.

e ComposedType—case class with size defined by the argument of the class.

Instruction As mentioned in subsection 2.3.1, the common properties of
all instructions are location and type. For the location we can reuse the
class Loc defined in the codebase of AST and as for the type, we will use

48

3.3. The backend

IRType defined earlier. For convenience purposes, we will also define common
property operators, which will be used to retrieve operands of the instruction
in the live instruction analysis. We will model these properties with a sealed
trait Instruction.

To distinguish terminating instructions from the non-terminating ones,
we introduce yet another sealed trait called Terminator, which will extend
Instruction. This trait will have a default type VoidType (since terminator
instructions yield no value) and instructions Return, CondJump, and Jump will
extend it. Every other instruction will extend the trait Instruction directly.

FEach concrete instruction that directly or indirectly extends the trait
Instruction is implemented as a case class. By doing so, we will be able
to later implement their compilation using a pattern matching mechanism.

Basic block A basic block is a named sequence of instructions, which can
be represented by a string (name of the basic block) and list of instructions.
A basic block should also contain information about the origin of each of its
instructions (the source CFG nodes). This information could be useful if,
e.g., we wanted to reuse a result of some analysis provided by the middleend
(which often maps properties of the program to CFG nodes). For this, we
need an association between an instruction and its source CFG node, which
can be defined as a map from Instruction to CfgNode. We model each of
these properties with a case class BasicBlock.

Since the basic block is created step by step by adding instructions to it, we
will use a builder pattern®! to create it. We define a class X86BbBuilder which
will have methods for adding instructions and building a basic block from the
accumulated instructions. The builder will also prevent invalid actions like
adding an instruction to a terminated basic block or building a non-terminated
basic block by throwing an exception.

Function A function has a similar structure to a basic block, it can be
represented by name, list of basic blocks, and number of parameters. Once
again, these properties can be defined by a case class Function, which will also
have methods for extracting local variables and arguments of the function.
When creating a function, we should keep track of already defined vari-
ables, so we can assign the correct memory address (represented by Alloc
instruction) to each reference of a variable. This will be the responsibility of
a builder class X86FunctionBuilder, which will also have methods for adding
basic blocks and building a function from the accumulated basic blocks.

The x86IR program Finally, an x86IR program is a simple list of func-
tions, modelled by a case class ProgramX86IR which also defines a method

31 Builder pattern is used to simplify (often) multistep object creation by defining a class
whose purpose is to build instances of another class [18, Chap. 1].

49

3. IMPLEMENTATION

Function

+ name : String
ProgramX86IR

+ functions : List[Function] <>—

+ mainFunction() : Function

+ paramCnt : Int

+ bbs : List[BasicBlock]

+ getParams() : List[Alloc]

+ getArgs() : List[Alloc]
BasicBlock «sealed trait»
+ name: String Instruction
+ instructions : List[Instruction] <> +1tp : IRType
+ sourceCfgNodes : Map[Instruction, CfgNode] +loc: Loc
+ instructionSrc(Instruction) : CfgNode + operands() : Iterable[Instruction]
Q IA
«sealed trait»
IRTvpe ot HE Tttt
P Alloc | | Load «sealed trait»
+size() : Int Terminator
VoidType | |SimpleType| [PointType| [ComposedType T
Jump

Figure 3.2: UML class diagram of the x86IR implementation.

that returns the entry function of the program. The UML class diagram of
the x86IR implementation is shown in Figure 3.2.

We define yet another builder class X86IRBuilder which will serve as the
main point for building an x86IR program. It will utilize the two builders for
building basic blocks and functions we defined earlier on the background. Its
main responsibility will be to switch contexts between the basic blocks and
functions being built, while also making sure that each name of the created

basic blocks is unique and there is no conflict with the names of functions??.

3.3.2 Code generation of x86IR

With an implementation of the x86IR out of the way, we can finally introduce
the class CfgCompiler (located in x86IR/CfgCompiler.scala). The arguments
of the class are CFG of the program and results of type and semantic analysis
(both of these are used to derive data types of expressions).

32This would result in incorrect behaviour of jump instructions.

20

3.3. The backend

The class has a single public method compile which follows the compilation
rules for each type of the CFG node we defined in subsection 2.3.2 and builds
an x86IR program by utilizing the builder class X86IRBuilder we defined in
the previous subsection. Since the nodes are represented with case classes, we
can simply use pattern matching for applying these rules.

In the last part of subsection 2.3.2 we decided to implement field access
using an offset from the address of the record. Since the size of this offset
depends on the type of record’s members, we have to somehow derive their
types. For this purpose we define a helper class TypeAnalyzer (located in
x86IR/TypeAnalyzer.scala) which by utilizing the results of type and seman-
tic analysis will derive the correct IRType of expressions.

3.3.3 x86 assembly

To be able to compile x86IR, to x86 assembly, we need to define a program rep-
resentation of the assembly. The representation should be easily serializable
while also allowing to perform peephole optimizations by applying the rewrite
rules defined in Table 2.2. In this subsection, we go over such representa-
tion. Its implementation, formatter, and builder are located in x86/helper/,
x86/X86Formatter, and x86/X86Builder.scala, respectively.

Instruction representation When it comes to the shape of the instruc-
tions we will be using, we can divide them into 3 types:

1. Zero operand instructions: name (e.g., ret)
2. One operand instructions: name op1 (e.g., inc or dec)

3. Two operand instructions: name op1, op2 (e.g., mov or add)

The only common property of these types is the name of the instruction,
therefore we will represent an x86 instruction with a sealed trait Instruction
extended by 3 sealed traits representing each of the shape types, as shown
in Figure 3.3. Thanks to this representation, the formatter (which will han-
dle the serialization) will not have to define serialization for each instruction
separately, but only for these 3 traits. For convenience purposes, the trait
Instruction will also allow to optionally assign a comment to an instruction.

To be able to use pattern matching for applying rewrite rules on instruc-
tions in the peepholer, we define each concrete instruction as a case class.
Similarly, the operands of the instructions (registers, memory accesses, labels,
and immediate values) will be represented with case objects and case classes,
extending a sealed trait Operand.

51

3. IMPLEMENTATION

«sealed trait»
Instruction

+ name : String

+ comment : Option[String]

«sealed trait» «sealed trait» «sealed trait»
ZeroOperand OneOperand TwoOperand
+ op : Operand + dest : Operand

A X + src : Operand

Figure 3.3: UML class diagram of the x86 instruction implementation.

Formatter The serialization of the instruction depends on the used syn-
tax of x86 assembly, which often differs in order or format of the instruction
operands. An example of these differences is shown in Listing 3.6, which
compares NASM?33 syntax and GAS?* syntax.

global _start .global _start

section .text .text

_start: _Start:
mov rax, 5 mov $5, %rax
add rax, 10 add $10, %rax
ret ret

Listing 3.6: Comparison of NASM (on the left) and GAS (on the right) syntax.

To ensure extensibility of supported syntaxes, it is better to define a sep-
arate class (or in our case, a trait) for instruction formatting and serializa-
tion. Therefore, we introduce a trait X86Formatter, which defines methods
for formatting instructions and their operands. We also introduce an ob-
ject NasmFormatter which extends the trait and implements formatting of the
NASM syntax. The support for another syntaxes is simply added by extending
the trait.

33Netwide Assembler: https://www.nasm.us/
34GNU Assembler: https://www.gnu.org/software/binutils/

02

https://www.nasm.us/
https://www.gnu.org/software/binutils/

3.3. The backend

Builder We will produce x86 assembly using the builder class X86Builder,
which accumulates instructions into a list until build method is called. Then
the builder may apply peephole optimizations to the instruction list by using
the Peepholer class, which we will discuss in the following subsection. Finally,
each instruction is serialized using the formatter which we defined earlier.

3.3.4 Peepholer

We implement peepholer as a stateless object Peepholer with a single public
method optimize that repeatedly applies peephole optimizations on a list
of instructions until a fixed point is reached. The sliding window can be
implemented by a recursive function that observes one or two instructions at
a time and applies rewrite-rules from Table 2.2 using a pattern matching?®.
The output of the peepholer will be an optimized list of instructions. The
implementation is located in x86/Peepholer.scala.

3.3.5 Live instruction analysis

The goal of the live instruction analysis is to decide which values are live after
execution of the given instruction (recall subsection 2.3.5). We define a class
LiveInstructionAnalysis which performs the analysis, stores the result, and
gives access to the result. The class is located in folder x86/.

The class will perform the analysis upon its creation by analysing each
basic block of the x86 program. Since the recurrence relation of the analysis
(see subsection 2.3.5) is defined from the last instruction of the basic block,
we will do this by iterating over the list of instruction in reverse and applying
the relation rules. The result of the analysis will be a map that maps each
instruction of the basic block to a set of instructions whose value is live.
Access to this result will be provided by a method liveAfterInstr, which for
the given basic block and instruction returns a set of instructions whose value
is live after the given instruction.

In addition, the class will also store the order in which the results of in-
structions will be used as operands of some other instruction. This will be
useful information for the register allocation we will be discussing in the fol-
lowing subsection. Access to this order is provided by the method usageOrder.

3.3.6 Compiler memory

To be able to map x86IR to x86 assembly, we will need to somehow simulate
the memory of the x86 target machine, since the compiler needs to keep track
of which instruction results are assigned to which registers or which memory

35This is where the representation of instructions and their operands as case objects
and case classes comes in handy, since they come with syntactic conveniences for pattern
matching generated by the compiler [16, Chap. 15].

93

3. IMPLEMENTATION

offsets are assigned to which local variables. Another responsibility of the
compiler will be to decide which values should reside in registers and which in
memory (this process is called a register allocation [2, Chap. 11.2]). Therefore,
we introduce a class CompilerMemory (located in x86/CompilerMemory.scala)
which will simulate the x86 machine memory and perform a register allocation.

Memory representation The function frame stack is represented by two
member variables. The first one, variables, represents the part of the stack
that contains local variables and arguments of the function. It is a map that
maps these values to offsets which have been assigned to them by the methods
addLocal and addArg. The second one, temps, represents the part of the stack
that contains temporary values (e.g., fields of a record). It is a map that maps
these values to their offsets assigned by the method allocateTempOnStack.

Registers of the x86 machine are represented by the variable registers,
which maps the registers to values they contain (an instance of Option3°).
The values are assigned to registers via the method allocReg, which performs
the register allocation process.

Register allocation The method allocReg performs the register allocation
for a value by finding an empty register. If no register is empty, it selects a
register with a value that will be used furthest in the future and spills it
onto the stack. To decide which value will be used furthest in the future, the
method uses the class LiveInstructionAnalysis, which gives access to the
order in which the results of instructions are used.

The method load is used to return the register in which the given value is
stored. If the value is stored on the stack, it is moved from the stack into an
empty register. If no register is empty, the method performs the same spilling
process as the method allocReg.

3.3.7 Code generation of x86 assembly

The last component implementation we will be discussing in this section is
the class X86IRCompiler (located in x86/X86IRCompiler.scala). The argu-
ments of the class are x86IR program, syntax of the output x86 assembly,
and a boolean which determines whether the peephole optimizations should
be applied.

The generation of x86 assembly is performed by the method compile,
which utilizes the classes we discussed earlier (X86Builder, CompilerMemory,
and LiveInstructionAnalysis). Since the x86IR is modelled with the usage
of case classes, the compilation process we described in subsection 2.3.4 is
implemented by using a pattern matching (similarly as in the code generation
of x86IR).

36The class Option is a container for zero or one element of a given type. Instances of
Option are either Some (single element) or None (no element) [19].

o4

3.4. Summary of the compiler

3.3.8 Summary of the backend

The last step of backend implementation will be to encapsulate both com-
ponents CfgCompiler and X86IRCompiler into a single class representing the
backend of the microC compiler. However, before we do that, we will first
define a general interface of the microC backend, since in the future more
types of backend can be implemented (e.g., a backend that compiles CFG into
JVM37 bytecode). This interface is modelled by a trait Backend with a sin-
gle public method compile, which takes ProgramCfg (CFG of the program),
AnalysesDb (results of analyses of the program), boolean optimize (deter-
mining if the backend should perform optimizations) and returns the target
language program representation.

Finally, this interface is implemented by the class X86Backend, which puts
together and encapsulates both components CfgCompiler and X86IRCompiler
The class X86Backend is shown in Listing 3.7 together with the trait Backend.

trait Backend[+0] {
def compile(
cfg: ProgramCfg,
analyses: AnalysesDb,
optimize: Boolean
): 0

class X86Backend(syntax: X86Syntax) extends Backend[String] {
def compile(
cfg: ProgramCfg,
analyses: AnalysesDb,
optimize: Boolean
): String = {...}

Listing 3.7: The trait Backend and its implementation for the x86 backend.

3.4 Summary of the compiler

The obvious last step of the compiler implementation is to put all three “pieces
of the puzzle” (frontend, middleend, and backend) together. This is done by
the class Compiler (see Listing 3.8) which encapsulates the whole codebase of
the microC compiler. Its usage is described in detail in section E.1.

37 Java Virtual Machine

95

3. IMPLEMENTATION

class Compiler(analysisHandler: AnalysisHandlerInterface, lang:
— Language, x86Syntax: X86Syntax) {
def compile(code: String, optimize: Boolean = false): String =

- {...}

Listing 3.8: The class Compiler.

This concludes implementation of the microC compiler. The size of the
compiler codebase and each of its parts is shown in Table 3.1. Part of the code-
base are also example implementations of each analysis covered in section 1.4.
For a detailed manual how to use the compiler or how to run programs pro-
duced by the compiler, see Appendix E.

Number of code lines (without | Number of classes,
empty lines and comments) traits, and objects
Frontend 7 1
Middleend 1509 54
Backend 1540 116
Whole codebase || 3101 175

Table 3.1: Size of the compiler codebase without the NI-APR codebase.

3.5 Testing

The project uses two types of tests—unit tests and black-box tests. We will
discuss each of these tests in the next two subsections. Both of these tests are
also part of a continuous integration managed by GitLab (where the project’s
codebase is hosted). With each push or merge request, GitLab runs a pipeline
of scripts that will build the project and run both of the mentioned tests. The
pipeline is defined in a file .gitlab-ci.yml located in the root of the project.

3.5.1 Unit tests

Unit testing involves testing software code at its smallest functional point,
which is typically a single class [20, Chap. 3.4.5]. The project contains
over 90 unit tests (with over 2000 lines of code) which cover every major
class discussed in the previous sections of this chapter. Tests are located in
microc-compiler/src/test/scala/microc and use a library called uTest?®.
Library uTest provides a simplistic codebase and functionality for defining
test suites and running tests. A test suite is defined by extending abstract

38nttps://github.com/com-1ihaoyi/utest

o6

https://github.com/com-lihaoyi/utest

3.5. Testing

class TestSuite as shown in Listing 3.9, which is an example of a test suite
for the class Peepholer. Tests can be run from the folder microc-compiler
via command sbt test.

object PeepholerTest extends TestSuite {
val tests: Tests = Tests {
test("Peepholer test 1") {
//input
val instructions = List(
AddRegImm(RDI(X86RegMode.M64), Imm(1)),
Jmp(LabelOp("bb1")),
AddRegImm(RAX (X86RegMode.M64), Imm(5)),
SubRegImm(RAX(X86RegMode.M64), Imm(8)),
AddRegImm(RAX(X86RegMode.M64), Imm(3)),
MovRegReg (RBX(X86RegMode .M64), RBX(X86RegMode.M64)),
Label ("bb1"),

//assert

Peepholer.optimize(instructions) ==> List(
Inc(RDI(X86RegMode.M64)),
Label("bb1"),

Listing 3.9: Example of a test suite.

3.5.2 Black-box tests

Unlike the unit testing, the black-box testing involves testing of a software
code where the inner program structure of the code is not pertinent. The
test design is based strictly on the expected program functionality [20, Chap.
8.2.2] (in our case, what output should be produced by the input microC
program compiled by our compiler).

The tests are run from the folder test via script ./test.sh. The script
compiles and runs every microC program in the folder test/in (there are
over 30 test programs) and compares their outputs with the reference out-
puts located in the folder test/ref. For each program, both optimized and
unoptimized versions are run.

o7

3. IMPLEMENTATION

VEXS

%

Compiler for microC that produces x86 assembly

@param analysisHandler interface that defines methods ...
@param lang defines language of the compiler

@param x86Syntax syntax of the output assembly

*

A

*

*x/
class Compiler(analysisHandler: AnalysisHandlerInterface, lang:
— Language, x86Syntax: X86Syntax) {

/**

* Compiles given code and returns x86 assembly as a string

* @param code code to be compiled

* @param optimize if true,compiler will perform optimizations
* @return x86 assembly

*/

def compile(code: String, optimize: Boolean = false): String

Listing 3.10: Annotation of the class Optimizer.

3.6 Documentation

Since this project should serve as an educational material, it is important
to provide a proper documentation of the project’s code-base. The project
uses the system Scaladoc®, which is the most common document generation
system for Scala source codes. Scaladoc reads specially formatted comments
called annotations in Scala source code (see Listing 3.10 for an annotated
source code example) and generates compiled HTML documentation. Scaladoc
annotations are also recognized by most of the popular IDEs like IntelliJ IDEA,
Visual Studio Code, or Eclipse which offer tools like auto-complete, detection
of non-matching annotations, etc.

Documentation can be generated from the folder microc-compiler via
command sbt doc. After running the command, the documentation can be
typically found in a folder microc-compiler/target/scala-X.XX/api, where
“X.XX” depends on the version of Scala. For an example of a generated
documentation of the class Compiler, see Figure 3.4.

39https://docs.scala-lang.org/style/scaladoc.html

o8

https://docs.scala-lang.org/style/scaladoc.html

3.6. Documentation

microc
Compiler
class Compiler extends AnyRef

Compiler for microC that produces x86 assembly

Linear Supertypes

Filter all members

Instance Constructors

new Compiler{analysisHandler: AnalysisHandlerInterface, lang: Language, xB6Syntax: X&86Syntax)

analysisHandlerinterface that defines methods for retrieving results of analyses

lang defines language of the compiler; compiling code that contains constructs not present in the language
will result in exception

xB65Syntax syntax of the cutput assembly
Value Members

def compile(cade: String, optimize: Boolean = false): String

Compiles given code and returns x86 assembly as a string

code code to be compiled
optimize if true, compiler will perform optimizations

returns X85 assembly

Figure 3.4: Generated documentation of the class Optimizer.

99

© 0 N O Ot W N =

=
= o

CHAPTER 4

Assessment

In this chapter, we demonstrate the effects of optimizations performed by our
compiler by going over the optimization process of three example programs
(or, to be precise, functions), step-by-step and compare the produced assembly
code before and after optimizations. In the last example, we will also compare
the produced assembly code with the one produced by GCC by compiling an
equivalent program written in C.

4.1 Example 1

Let us consider following function:

foo(in) {
var x, y, z;
X = 60 x 24;

y = X * in;
if (x > 1400) {

z =y + 10;
} else {

z =y - 10;
}
return z;

Assembly code generated by compiling this function without any optimiza-
tion is shown in Listing F.1. At first glance, it is obvious, that this function
can be optimized. Without any analysis provided, the compiler will perform
the constant folding optimization on the binary operation on line 3:

61

© 0 N O Ut kW N =

10
11

© 0 N O Ut ke W N =

10
11

4. ASSESSMENT

foo(in) {
var x, y, z;
X = 1440;
y = X * in;
if (x > 1400) {
z =y + 10;
} else {
z =y - 10;
}
return z;
}

At this point, no further optimization can be performed by the compiler
without providing more information about the function. One way to do that
is to provide the constant propagation analysis to the compiler. The result of
this analysis for function foo looks like this:

[entry) ={z —- L,y —> L,z — L,in - T}

[var x, vy, z]={z—>Ly—> L,z— Lin—> T}
[x = 1440] = {x — 1440,y — L,z — L ,in — T}
[y = x * in] ={x — 1440,y —» T,z — L,in — T}
[x > 1400] = {x — 1440,y - T,z — L,in — T}
[z=y +10]={z— 1440,y - T,z — T,in — T}
[z=y-10]={z— 1440,y - T,z — T,in — T}
[return z] = {z — 1440,y —» T,z — T,in — T}
[exit] = {x — 1440,y — T,z — T,in — T}

With this knowledge, the compiler can now replace variable x on lines 4 and
5 with a constant 1440 by performing the constant propagation optimization:

foo(in) {
var x, y, z;
X = 1440;
y = 1440 * in;
if (1440 > 1400) {
z =y + 10;
} else {
z =y - 10;
}
return z;
}

62

=

© 0w N O O s W N

11

—

N O Ot ok W N

4.1. Example 1

This optimization enables once again the constant folding optimization,
which folds the comparison operator on line 5:

foo(in) {

var x, y, z;
X = 1440;
y = 1440 *x in;
if (1) {

z =y + 10;
} else {

z =y - 10;
}

return z;

The next optimization the compiler will perform here is obvious—since
the guard of the if-statement on line 5 always evaluates to true, the compiler
will eliminate the whole if-statement and replace it with the then branch by
performing the dead code elimination:

foo(in) {
var x, y, z;
X = 1440;
y = 1440 * in;
z =y +10;
return z;

3

Once again, the compiler reaches the point where it cannot perform any
optimization, not even with the constant propagation analysis, since no vari-
able can be propagated anymore. However, in this situation, the compiler
could benefit from a result of the live variable analysis, which gives informa-
tion about live variables at each point of the program. In case of the function
foo, the result of the analysis looks like this:

[entry] = {in}

[var x, y, z] = {in}

[x = 1440] = {in}

[y = 1440 * in] = {in}

[z =y +10]={y}

[return z] = {z}
lezit] = 0

63

=W N

t

Ot W N

t

© 0 N O

10
11
12
13

4. ASSESSMENT

As we can see, at no point in the function foo is the variable x live. The
compiler will use this information to eliminate the assignment on line 3 by
performing the dead statement elimination:

foo(in) {
var x, y, z;
y = 1440 * in;
z =y +10;
return z;

}

Since the variable x is no longer used anywhere in the function foo, the
compiler will perform the unused variable elimination and remove the decla-
ration of variable x:

foo(in) {
var y, z;
y = 1440 * in;
z =y + 10;
return z;

3

At this point, the compiler can no longer perform any optimization. As-
sembly code generated by compiling the function and performing peephole
optimizations is shown in Listing F.2. Compared to the previous assembly
code, the number of instructions has been reduced from 40 to 17 and the size
of the stack frame has been reduced from 32 to 16 bytes.

4.2 Example 2

Let us consider another function:

bar(in) {
var x, y;
X = 42;
while (x) {
if (in) {
y = 5;
} else {
y = 10;
}
Xx=0/y;
}

return y;

64

© 0 N O oA W NN =

e e =
w N o= O

4.2. Example 2

Assembly code generated by compiling this function without any optimiza-
tion is shown in Listing F.3. Without any provided analysis, the compiler
cannot perform any optimization on this function. Here, the compiler would
benefit from a result of the sign analysis, which in case of the function bar
looks like this:

entryl =1 — L,y — L,in —
L 1,4 T
[var x, yJ={z— L,y — L,in— T}
[x =42] ={z = +,y — L,in —> T}
X =12 — 1,y —>+,mn—
Xl ={z— T,y n— T}
[[1n]]—{m—>T,y—>+,in—>T}
={r—>T,y—>+,in - T}

= 5]
[[=10)={z— T,y > +,in - T}
[x /y]={z— 0,y > +,in — T}
vl =
f]

[[return ={z—>T,y—=+,in—> T}

[exit] = {z — T,y = +,in — T}

From this, we can see that during the first evaluation of the loop guard,
the variable x is always going to be a positive number. And since positive
numbers always evaluate to true, this means that the while-statement will
always execute its body at least once. Therefore, the compiler will utilize the
result of the sign analysis to perform the sign-based dead code elimination
and transform the while-statement to do-while-statement:

bar(in) {
var x, y;
= 42;
do {
if (in) {
y =5;
} else {
= 10;

=0/y;
} while (x);
return y;

}

65

© 0 N O U ke W N =

e e T =
w N o= O

© 0 N O U kW N =

=
=}

4. ASSESSMENT

Another place where the compiler can utilize the result of the sign analysis
is the line 10. As follows from the result of the analysis, at that point the
variable y is always a positive number. Here, the compiler will perform the sign
folding optimization, since zero divided by positive number always evaluates
to zero:

bar(in) {
var x, y;
X = 42;
do {
if (in) {
y = 5;
} else {
y = 10;
}
X = 0;
} while (x);
return y;

3

The next optimization is obvious—the compiler will use the sign analysis
to determine that the guard of do-while-statement always evaluates to zero
(i.e., to false). Therefore, the compiler will perform the sign-based dead code
elimination once again and replace the loop with a body of the loop:

bar(in) {
var x, y;
X = 42;
if (in) {
y = 5;
} else {
y = 10;
}
X = 0;
return y;

At this point, the compiler cannot perform any optimization, even with
the sign analysis provided. This changes if the compiler is provided with a
result of the live variable analysis, which for the function bar looks like this:

66

© 0w N O O R W N =

© 0 N O Ul oA W N =

4.2. Example 2

Since the variable x is not live at any point of the function bar, the compiler
will perform the dead statement elimination and eliminate both assignments

to the variable x on lines 3 and 9:

bar(in) {
var x, y;
if (in) {
y =5;
} else {
y = 10;
3

return y;

3

The variable x is no longer used anywhere in the function bar, therefore
the compiler will remove its declaration by performing the unused variable

elimination:

bar(in) {
var y;
if (in) {
y = 5;
} else {
y = 10;
}

return y;

}

This is the last optimization that the compiler can perform. Assembly code
generated by compiling the function and performing peephole optimizations is
shown in Listing F.4. Thanks to the optimizations, the number of instruction

has been reduced from 35 down to 15.

67

© 0 N O Ut kW N =

N e e e
[N e

4. ASSESSMENT

4.3 Example 3

Let us consider the last example function:

baz(in) {
var x;
if (in * 60) {
X = 42;
} else {
x = 10;
}
if (%) {
X =x +1;
} else {
in = in + x;
}

return 60 * in - x;

Assembly code generated by compiling this function without performing
any optimizations is shown in Listing F.5. There are several analyses that can

the compiler utilize to improve the function and one of them is the constant

propagation analysis®’:

[entry] = {x — L,in — T}

[var x] ={z — L,in - T}

[in * 60] = {z — L,in — T}

[x = 42] = {z - 42,in — T}

[x = 10] = {z — 10,in — T}

x| ={z— T,in—> T}
[x=x+1]={z—T,in—> T}
[in=in+x]={z—>T,in—>T}

[return 60 x in - x| ={xz — T,in — T}
[exit] = {x — T,in — T}

We can see that the value of the variable x after the first if-statement
can be either 42 or 10. Both of these values will evaluate on line 8 to true,
therefore the compiler will perform constant-based dead code elimination and
replace the whole second if-statement with its then branch:

49The other is, e.g., the sign-based dead code elimination which would result into a similar
optimization to the one we will be discussing.

68

© 0 N O Ul oA W N e

4.3. Example 3

baz(in) {
var x;
if (in * 60) {
X = 42;
} else {
x = 10;
}
X =x +1;
return 60 * in - x;

That last optimization that the compiler can perform requires the available
expression analysis:

[entry] =0
[var x] =10
[in = 60] = {(in * 60)}
[x = 42] = {(in * 60)}
[x = 10] = {(in * 60)}
[x = x + 1] ={(in * 60)}
[return 60 * in - x] = {(in * 60), (6@ * in), ((6@ * in) - x)}

[exit] = {(in * 60), (60 * in),((60 * in) - x)}

Since the expression (in * 60) is available at line 9, and it does not
introduce any side-effects, it can be reused. This is done by performing the
common subexpression elimination, which will introduce a new variable, that
stores the result of (in x 60). Every occurrence of this expression is then
replaced by the new variable:

baz(in) {
var x, to,
td0 = in * 60;
if (to) {
X = 42;
} else {
x = 10;
}
X =x +1;
return to - x;

69

4. ASSESSMENT

At this point, the compiler can no longer perform any further optimization.
Assembly code generated by compiling the function and performing peephole
optimizations is shown in Listing F.6. The number of generated instructions
has been reduced from 43 down to 29. Since the size of the stack frame is
aligned to 16 bytes, the newly introduced variable does not affect it (therefore
the size remains 16 bytes).

In the case of this example, it is interesting to compare the output of our
compiler with the output of the GCC, which takes a different, more advanced
optimization approach. By compiling an equivalent program written in C
using GCC with optimization flag -02, we get the following assembly code:

baz:
cmp edi, 1
sbb edx, edx
imul eax, edi, 60
and edx, -32
add edx, 43
sub eax, edx
ret

First thing we can notice is that the assembly code does not use the stack.
This is because the baz function uses only one local variable and there are
enough registers to hold all the temporary values during the execution of the
program without the need to spill their values to the stack. However, the more
interesting thing is that there is no branching. Instead of using conditional
jumps like our compiler does, the GCC utilizes a combination of logical and
arithmetic operations.

The first instruction compares the parameter in with 1, which sets the
carry flag*! (CF) to 1 if the parameter in is equal to zero, otherwise to 0.
The following instruction stores the negative of CF into register edx. Then,
the instruction imul multiplies the parameter in with 60 and stores the result
into register eax. Since the value of register edx is either —1 or 0, the following
instruction and will evaluate either to —32 or 0, respectively. In other words, if
the parameter in is zero, the value of register edx is —32, otherwise it is 0. This
number represents the difference between the possible values of the variable x
(recall the first if-statement of the baz function before optimizations). The rest
of the assembly code is straight forward—by adding 43, the value of register
edx now corresponds to the value of variable x. The last instruction subtracts
the variable x from the result of the previous multiplication.

If we compare the assembly code produced by GCC with the one produced
by our compiler, it is obvious that there is still a lot of room for improvement
in our compiler, such as more advanced instruction selection, or better stack
frame allocation.

4! Carry flag indicates if the previous operation resulted in a carry [7, Chap. 2.3.1.5].

70

Conclusion

The goal of this thesis was to develop an AOT optimizing compiler for the
microC language that can be plugged with the results of analyses covered
in the NI-APR course. This was successfully fulfilled. Not only does the
implementation support all features of the language, it also supports arrays,
which are (as of 4. 4. 2022) yet to be officially added. The implementation
is designed to make it easy to add support for new optimizations or new
backends of the compiler. Since the main purpose of the compiler is to serve
as an educational material, great emphasis was on clear and easy to follow
code, which is also thoroughly documented and well tested.

This work, including the thesis and the codebase, is uploaded on the at-
tached SD card. The work is also available from faculty GitLab in repository:
https://gitlab.fit.cvut.cz/kralval@/microc-optimizing-compiler

Future work

Since compiler construction is a complex task, there are many ways in which
our work could be further improved.

Analyses In our work, we utilized most of the main analyses taught in the
NI-APR course. However, there are many more analyses our compiler could
utilize and benefit from.

One of such analyses is the pointer analysis, which tells us which pointers
are aliases (can point to the same location) [1, Chap. 12.2.2]. With this infor-
mation, the compiler can determine what variables are affected by a certain
statement and therefore perform more effective register allocation (e.g., by
keeping variables in register as long as possible, if they are not affected by any
of the program statements).

Another analysis our compiler could utilize is an analysis that detects
undefined behaviour in a program. Such behaviour can then be reported to
the user during the compilation. For example, the compiler GCC can detect

71

https://gitlab.fit.cvut.cz/kralva10/microc-optimizing-compiler

CONCLUSION

and report undefined behaviour such as usage of undefined identifier (flag
-Wundef) or dereference of a null pointer (flag -Wnull-dereference) when
compiling a program with the corresponding flags [21].

Optimizations The most obvious future work improvement is a support of
more program optimizations. Their addition should be fairly easy thanks to
the unified optimization interface defined in the previous chapter.

One of the most notable classes of optimizations that our compiler could
be improved with are the loop optimizations, which focus on improving the
execution speed and the memory performance of loops. Examples of such
optimization are: loop unrolling, loop-invariant code motion, or loop fusion.

Optimizations like function inlining or tail-call optimization could be used
to improve the memory costs of function execution.

Backends Thanks to the modularization of the compiler codebase, our work
can be quite easily extended with support of more than one backend. For
example, the work could be extended with a new backend that compiles the
CFG to JVM bytecode by extending the trait Backend.

72

Bibliography

Aho, A. V.; Lam, M. S.; et al. Compilers: Principles, Techniques, and
Tools. USA: Addison-Wesley Longman Publishing Co., Inc., second edi-
tion, 2006, ISBN 0321486811.

Torczon, L.; Cooper, K. Engineering A Compiler. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., second edition, 2007, ISBN
012088478X.

Mgller, A.; Schwartzbach, M. 1. Static Program Analysis. Department of
Computer Science, Aarhus University, November 2020. Available from:
https://cs.au.dk/~amoeller/spa/

Rice, H. G. Classes of Recursively Enumerable Sets and Their Deci-
sion Problems. Transactions of the American Mathematical Society, vol-
ume 74, no. 2, 1953: pp. 358-366, ISSN 00029947.

NI-APR. Selected Methods for Program Analysis [online|. [visited on
2022-04-23]. Available from: https://courses.fit.cvut.cz/NI-APR/

NI-APR. The microC Programming Language [online]. [visited on
2022-02-25]. Available from: https://courses.fit.cvut.cz/NI-APR/
microc.html

Jorgensen, E. £86-64 Assembly Language Programming with Ubuntu. Ed
Jorgensen, January 2020. Available from: http://www.egr.unlv.edu/~ed/
assembly64.pdf

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual [on-
line]. [visited on 2022-02-18]. Available from: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html

Kerrisk, M. The Linux Programming Interface: A Linuz and UNIX Sys-
tem Programming Handbook. USA: No Starch Press, first edition, 2010,
ISBN 1593272200.

73

https://cs.au.dk/~amoeller/spa/
https://courses.fit.cvut.cz/NI-APR/
https://courses.fit.cvut.cz/NI-APR/microc.html
https://courses.fit.cvut.cz/NI-APR/microc.html
http://www.egr.unlv.edu/~ed/assembly64.pdf
http://www.egr.unlv.edu/~ed/assembly64.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

BIBLIOGRAPHY

[10]

[11]

74

Fog, A. Calling conventions for different C++ compilers and operating
systems. Technical University of Denmark, February 2010. Available from:
https://www.agner.org/optimize/calling_conventions.pdf

Seidl, H.; Wilhelm, R.; et al. Compiler Design: Analysis and Trans-
formation. Springer Publishing Company, Incorporated, 2016, ISBN
3662507161.

LLVM. LLVM Language Reference Manual [online|. [visited on 2022-02-
03]. Available from: https://11lvm.org/docs/LangRef.html

Stack Overflow. 64-bit mode does not support 32-bit PUSH and POP
instructions [online]. [visited on 2022-03-24]. Available from: https://
stackoverflow.com/a/43435819

cppreference. Struct declaration [online]. [visited on 2022-02-25]. Available
from: https://en.cppreference.com/w/c/language/struct

Kerrisk, M. scanf(3) — Linux manual page [online]. [visited on
2022-03-14]. Available from: https://man7.org/linux/man-pages/man3/
scanf.3.html

Odersky, M.; Spoon, L.; et al. Programming in Scala: A Comprehensive
Step-by-step Guide. Sunnyvale, CA, USA: Artima Incorporation, first edi-
tion, 2008, ISBN 0981531601.

Scala Contributors. Can We Wean Scala Off Implicit Con-
versions? [online]. [visited on 2022-04-11]. Available from:
https://contributors.scala-lang.org/t/can-we-wean-scala-off-
implicit-conversions/4388

Stelting, S. A.; Leeuwen, O. M.-V. Applied Java Patterns. Prentice Hall
Professional Technical Reference, 2001, ISBN 0130935387.

Scala Standard Library. Option [online]. [visited on 2022-03-27]. Available
from: https://www.scala-lang.org/api/current/scala/Option.html

Huizinga, D.; Kolawa, A. Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Pr, first edition,
2007, ISBN 0470042125.

GCC. Options to Request or Suppress Warnings [online]. [visited on 2022-
04-01]. Available from: https://gcc.gnu.org/onlinedocs/gcc/Warning-
Options.html

https://www.agner.org/optimize/calling_conventions.pdf
https://llvm.org/docs/LangRef.html
https://stackoverflow.com/a/43435819
https://stackoverflow.com/a/43435819
https://en.cppreference.com/w/c/language/struct
https://man7.org/linux/man-pages/man3/scanf.3.html
https://man7.org/linux/man-pages/man3/scanf.3.html
https://contributors.scala-lang.org/t/can-we-wean-scala-off-implicit-conversions/4388
https://contributors.scala-lang.org/t/can-we-wean-scala-off-implicit-conversions/4388
https://www.scala-lang.org/api/current/scala/Option.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

APPENDIX A

Acronyms

AOT Ahead-Of-Time

AST Abstract Syntax Tree

BP Base Pointer

CF Carry Flag

CFG Control Flow Graph

CISC Complex Instruction Set Computing
CPU Central Processing Unit

CTU Czech Technical University

DRY Don’t Repeat Yourself

EOF End-Of-File

FIT Faculty of Information Technology
GAS GNU Assembler

GCC GNU Compiler Collection

GNU GNU’s Not Unix

HTML HyperText Markup Language
IDE Integrated Development Environment
IP Instruction Pointer

IR Intermediate Representation

ISA Instruction Set Architecture

75

A. ACRONYMS

JDK Java Development Kit

JVM Java Virtual Machine

LHS Left-Hand Side

NASM Netwide Assembler

OS Operating System

PDF Portable Document Format

RHS Right-Hand Side

SD Secure Digital

SP Stack Pointer

TIP Tiny Imperative Programming language

UML Unified Modelling Language

76

APPENDIX B

Contents of enclosed SD card

JOC .o e the directory of documentation
L index.html.......covveevninn.. the index file of the documentation
microc-compiler......... ... i, the directory of source files
teSt i the directory of black-box tests
thesis.................. the directory of IATEX source codes of the thesis
| DP_Kral.vaclav_2022.pdf............... the thesis text in PDF format
.gitlab-ci.yml. ... o the gitlab CI yaml file
microc-compiler.jar............ ... oL the prebuild compiler jar file
README.MA ..\ttt ii i eeens the file with project guide

APPENDIX C

79

C. MicroC

Int
Id
Op
Exp

Stmt ::

Fun

Prog ::

80

MicroC

Exp Op Exp

(Exp)

Exp (Exp, ...)
null

alloc Exp

& Id

* Exp

{Id : Exp, ... }
[Exp, ...]
Exp.Id

Expl Exp 1

input

id = Exp;

* Exp = Exp;
Id.Id = Exp;

(*Exp).Id = Exp;
Exp[Exp 1 = Exp;
output Exp;

{ Stmt ... }

if (Exp) { Stmt } [else { Stmt }]
while (Exp) { Stmt }
Id (Id, ...) {

[var Id, ... ;]

Stmt

return Exp;

Fun ...

Listing C.1: The abstract syntax of microC.

APPENDIX D

81

D. x86IR

Int
Uint

Label ::

Loc
Op
Decl
Type

Instr ::

Block ::

Fun

x86IR ::

x80IR

011 -11]2]-2]
0111 2|

x|lylz]

Uint Uint

t = x /> ==

Label Loc

VoidType

SimpleType

ComposedType Int

PointType Type

Alloc Decl Type Loc

FunAlloc Decl Type Loc

HeapAlloc Instr Type Loc

ArgAddr Alloc Type Loc

GetAddr Instr Type Loc
GetAddroffset Instr Instr Type Loc
Load Instr Type Loc

LoadImm Int Type Loc

LoadInput Type Loc

LoadRecord Instr ... Type Loc
Store Instr Instr Type Loc

BinOp Op Instr Instr Type Loc

Call Instr Instr ... Type Loc
Print Instr Type Loc

Return Instr Type Loc

CondJump Instr Label Label Type Loc
Jump Label Type Loc

Label Instr ...

Label Int Block ...

Fun ...

Listing D.1: The abstract syntax of x86IR.

D.1 Instruction set

Alloc The Alloc instruction allocates memory on the current stack frame for
a local variable of a function and returns its address. The size of the allocated

82

D.1. Instruction set

memory slot depends on the instruction’s type. The memory is released when
the function returns to its caller, therefore accessing this memory from the
caller’s stack frame is an undefined behaviour. Operands:

o decl: AST identifier declaration of the local variable.
e type: PointType that points to the type of the local variable.

e loc: Location of the local variable’s declaration in a source code.

FunAlloc The FunAlloc instruction allocates memory in a data segment for
a function and returns its address. The address is accessible from every stack
frame. Operands:

e decl: AST function declaration of the function.

o type: PointType that points to function’s address type (PointType that
points to Simple Type).

e loc: Location of the function’s declaration in a source code.

HeapAlloc The HeapAlloc instruction allocates memory on a heap, initial-
izes it with the given value and returns its address. Operands:

e init: Instruction with an initial value of the allocated memory.
o type: PointType that points to the type of the initial value.

e loc: Location of the allocation in a source code.

ArgAddr The ArgAddr instruction returns the address of a function’s ar-
gument. Its sole purpose is to differentiate between arguments and local
variables, that are not arguments. IL.e., it acts as a wrapper for the Alloc
instruction. Operands:

e alloc: Alloc representing the allocated memory of the argument.
e type: Same type as alloc.

e loc: Location of the function’s argument declaration.

GetAddr The GetAddr instruction returns an address of its target argu-
ment (equivalent to a reference &target in C). Operands:

e target: Target Instruction whose address is returned.
o type: PointType that points to a type of the target.

e loc: Location of the reference in a source code.

83

D. x86IR

GetAddrOffset The GetAddrOffset instruction is used to get an address of
a subelement of a composed type. It returns offset address. Operands:

e addr: Instruction representing an address of a composed type.
o offset: Instruction representing an offset of the address.
o type: PointType.

e loc: Location of the address access in a source code.

Load The Load instruction loads a value from a memory address. Operands:
e src: Instruction representing an address of a value that will be loaded.
o type: Type the type of src points to.

e loc: Location of the address access in a source code.

LoadImm The LoadImm instruction loads and returns an immediate inte-
ger. Operands:

e number: Integer to be loaded.
o type: Either SimpleType (integer) or PointType (address).

e loc: Location of the number in a source code.

LoadInput The LoadInput instruction loads an integer from a standard
input and returns it. If EOF is reached, it returns —1 instead. Operands:

e type: SimpleType.

e loc: Location of the load in a source code.

LoadComposed The LoadComposed instruction loads a composed value
(e.g., a record) and returns a memory address of its first member. Operands:

o fields: List of Instruction that represent members of the composed
value.

e type: ComposedType.
e loc: Location of the composed value in a source code.

84

D.1. Instruction set

Store The Store instruction writes into a memory address. Operands:

dest: Instruction representing a destination address.
src: Instruction representing a value to store.
type: VoidType.

loc: Location of the assignment in a source code.

BinOp The BinOp instruction performs a binary operation and returns its
result. Operands:

Call

op: Operator of the binary operation. There are 6 defined types:
— Plus (Addition)

— Minus (Subtraction)
— Times (Multiplication)
— Divide (Division)
— Gt (Greater than)
— Eq (Equal to)
lhs: Instruction representing a left-hand side of the binary operation.

rhs: Instruction representing a right-hand side of the binary operation.

type: Either Simple Type (operation on integers) or PointType (opera-
tions on addresses).

loc: Location of the binary operation in a source code.

The Call instruction transfers control flow to the called function. After

the control flow is transferred back to the caller function, it returns the return
value of the function call. Operands:

fun: Instruction representing the called function.
args: List of Instruction representing arguments of the function.
type: Return type of the function.

loc: Location of the function call in a source code.

Print The Print instruction writes a value to a standard output. Operands:

target: Instruction representing the value to be printed.
type: VoidType.

loc: Location of the print call in a source code.

85

D. x86IR

Return The Return instruction stores the return value and transfers con-
trol flow back to the caller of the current function. Return is a terminator
instruction. Operands:

value: Instruction representing the return value of the function.
type: VoidType.

loc: Location of the return statement in a source code.

CondJump The CondJump instruction the transfers control flow to a dif-
ferent basic block in the current function based on the value of the condition.
CondJump is a terminator instruction. Operands:

cond: Instruction representing the condition of the jump. If the condi-
tion is evaluated to true, control flow is transferred to trueTrgt, other-
wise it’s transferred to falseTrgt.

trueTrgt: Name of the target basic block to which is control flow trans-
ferred when the condition is evaluated to true.

falseTrgt: Name of the target basic block to which is control flow
transferred when the condition is evaluated to false.

type: Void Type.

loc: Location of the control flow transfer in a source code.

Jump The Jump instruction transfers the control flow to a different basic
block in the current function. Jump is a terminator instruction. Operands:

86

target: Name of the target basic block to which is control flow trans-
ferred.

type: VoidType.

loc: Location of the control flow transfer in a source code.

APPENDIX E

Usage manual

In this appendix, we show how to use the microC compiler codebase and how
to run programs produced by the compiler.

E.1 How to use

Before running the compiler, the trait AnalysisHandlerInterface which de-
fines methods for retrieving analyses results needs to be implemented. Min-
imum required analyses are type and semantic analyses (which are essential
for the compiler), every other analysis is optional and not required. The anal-
yses are provided to the compiler by overriding corresponding methods of the
trait. An example of such implementation is shown in Listing E.1, where type,
semantic, and sign analyses are provided.

object MyAnalysisHandler extends AnalysisHandlerInterface {
override def getTypes(program: Program): Types = {
//your implementation of a type analysis (required)
new TypeAnalysis(program, NoopLogger) (getDeclarations(program)).analyze()
3
override def getDeclarations(program: Program): Declarations = {
//your implementation of a declaration analysis (required)
new DeclarationAnalysis(program).analyze()
}
override def getSigns(cfg: ProgramCfg)(implicit declarations: Declarations):
— Option[Signs] = {
//your implementation of a sign analysis
val signs = new SignAnalysis(cfg).analyze()
Some(signs)

Listing E.1: Example implementation of AnalysisHandlerInterface.

87

E. USAGE MANUAL

Finally, the compiler is run by providing this implementation to an instance
of the class Compiler and calling the method compile with the input microC
program, as shown in Listing E.2.

val code = ... //the input microC program

val compiler = new Compiler(MyAnalysisHandler, Language.microCVar,
— X86Syntax.NASM)

val assembly = compiler.compile(code, optimize = true)

Listing E.2: Usage of the class Compiler.

E.2 How to run

Prerequisites Linux OS is required, since the compiler produces Linux-
native x86-64 assembly.

o nasm*?—NASM assembler for assembling of the assembly code produced
by the compiler:

apt-get install nasm
e 1d*3—GNU linker required for linking and compiling object files:

apt-get install binutils
apt-get install binutils-x86-64-1inux-gnu

e libc**—standard C library:

apt-get install libc6-dev

Run and compile

1. To run the compiler, you can either (note that the minimum required
version of JDK* is 11):
« Use IntelliJ IDEA IDE with a Scala plugin.
e Or use the prebuild jar file located in the root of the project:

java -jar microc-compiler.jar MICROC_FILE [-o] >
< program.asm

42https ://linux.die.net/man/1/nasm
“https://man7.org/linux/man-pages/man1/1d.1.html

44https ://man7.org/linux/man-pages/man7/1libc.7.html

45 Java Development Kit
4Chttps://www.jetbrains.com/help/idea/discover-intellij-idea-for-scala.html

88

https://linux.die.net/man/1/nasm
https://man7.org/linux/man-pages/man1/ld.1.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://www.jetbrains.com/help/idea/discover-intellij-idea-for-scala.html

E.2. How to run

where MICROC_FILE is the name of file with a microC program and
-0 is an optional flag that decides whether optimizations should be
performed or not.

« Or use the building tool sbt!” by running the following command
from the folder microc-compiler/:

sbt run MICROC_FILE [-o] > program.asm
2. Assemble the assembly code produced by the compiler:
nasm -felf64 program.asm
3. Link and compile:

1d --dynamic-linker
— /1lib/x86_64-1inux-gnu/ld-1linux-x86-64.s0.2 -1lc -o
< program program.o

4. Run the program:

./program

“Thttps://www.scala-sbt.org/

89

APPENDIX F

Compiler output examples

91

F. COMPILER OUTPUT EXAMPLES

foo:

push rbp

mov rbp, rsp

sub rsp, 32
bb_1:

mov eax, 24

mov edi, 60

mov riled, edi

imul ried, eax

mov [rbp - 8], riod

mov eax, [rbp + 16]

mov edi, [rbp - 8]

mov rileod, edi

imul ri10d, eax

mov [rbp - 16], ried

mov eax, 1400

mov edi, [rbp - 8]

cmp edi, eax

jle bb_1_leq_1

mov ried, 1

jmp bb_1_afterGt_1
bb_1_leq_1:

mov riled, @
bb_1_afterGt_1:

cmp r1od, @

je else_2

jmp then_2
then_2:

mov eax, 10

mov edi, [rbp - 16]

mov riled, edi

add ried, eax

mov [rbp - 24], ried

jmp finally_2
else_2:

mov eax, 10

mov edi, [rbp - 16]

mov ried, edi

sub ri1od, eax

mov [rbp - 24], riled

jmp finally_2
finally_2:

mov eax, [rbp - 24]

mov eax, eax

mov rsp, rbp

pop rbp

ret

Listing F.1: Compiled function foo (see section 4.1) before optimizations.

92

foo:

push rbp
mov rbp, rsp
sub rsp, 16
bb_1:
mov eax, [rbp + 16]
mov edi, 1440
mov ri1od, edi

imul ried, eax

mov
mov
mov
mov
add
mov
mov
mov
pop
ret

Listing F.2: Compiled function foo (see section 4.1) after optimizations.

[rbp - 81, ried

eax, 10

edi, [rbp - 8]
ried, edi

r1ed, eax

[rbp - 161, riled
eax, ried

rsp, rbp

rbp

93

F. COMPILER OUTPUT EXAMPLES

bar:
push rbp
mov rbp, rsp
sub rsp, 16
bb_1:
mov eax, 42
mov [rbp - 8], eax
jmp guard_2
guard_2:
mov eax, [rbp - 8]
cmp eax, @
je finally_2
jmp body_2
body_2:
mov eax, [rbp + 16]
cmp eax, @
je else_3
jmp then_3
then_3:
mov eax, 5
mov [rbp - 16], eax
jmp finally_3
else_3:
mov eax, 10
mov [rbp - 16], eax
jmp finally_3
finally_3:
mov eax, [rbp - 16]
mov edi, @
mov riled, eax
push rdx
mov edx, @
mov eax, edi
idiv ri1ed
pop rdx
mov [rbp - 8], eax
jmp guard_2
finally_2:
mov eax, [rbp - 16]
mov eax, eax
mov rsp, rbp
pop rbp
ret

Listing F.3: Compiled function bar (see section 4.2) before optimizations.

94

bar:

push rbp
mov rbp, rsp
sub rsp, 16
bb_1:
mov eax, [rbp + 16]
cmp eax, O
je else_2
then_2:

mov eax, 5

mov [rbp - 8], eax

jmp finally_2
else_2:

mov eax, 10

mov [rbp - 8], eax
finally_2:

mov eax, [rbp - 8]

mov rsp, rbp

pop rbp

ret

Listing F.4: Compiled function bar (see section 4.2) after optimizations.

95

F. COMPILER OUTPUT EXAMPLES

baz:
push rbp
mov rbp, rsp
sub rsp, 16
bb_1:
mov eax, 60
mov edi, [rbp + 16]
mov ri1od, edi
imul riod, eax
cmp ried, @
je else_2
jmp then_2
then_2:
mov eax, 42
mov [rbp - 8], eax
jmp finally_2
else_2:
mov eax, 10
mov [rbp - 8], eax
jmp finally_2
finally_2:
mov eax, [rbp - 8]
cmp eax, 0
je else_3
jmp then_3
then_3:
mov eax, 1
mov edi, [rbp - 8]
mov ri1od, edi
add ri1od, eax
mov [rbp - 8], ried
jmp finally_3
else_3:
mov eax, [rbp - 8]
mov edi, [rbp + 16]
mov ri1od, edi
add ri1ed, eax
mov [rbp + 16], ried
jmp finally_3
finally_3:
mov eax, [rbp - 8]
mov edi, [rbp + 16]
mov r10d, 60
mov ri14d, ried
imul ri14d, edi
mov edi, ri14d
sub edi, eax
mov eax, edi
mov rsp, rbp
pop rbp
ret

Listing F.5: Compiled function baz (see section 4.3) before optimizations.

96

baz:

push rbp

mov rbp, rsp

sub rsp, 16
bb_1:

mov eax, 60

mov edi, [rbp + 16]

mov ri1od, edi

imul ri1ed, eax

mov [rbp - 16], ried

mov eax, ri1od

cmp eax, O

je else_2
then_2:

mov eax, 42

mov [rbp - 8], eax

jmp finally_2
else_2:

mov eax, 10

mov [rbp - 8], eax
finally_2:

mov eax, 1

mov edi, [rbp - 8]

mov ri1od, edi

add ried, eax

mov [rbp - 8], rioed

mov eax, rlod

mov edi, [rbp - 16]

mov r1od, edi

sub ried, eax

mov eax, riled

mov rsp, rbp

pop rbp

ret

Listing F.6: Compiled function baz (see section 4.3) after optimizations.

97

	Introduction
	Background
	Compiler
	MicroC
	x86-64
	Static program analysis

	Design
	The frontend
	The middleend
	The backend

	Implementation
	The frontend
	The middleend
	The backend
	Summary of the compiler
	Testing
	Documentation

	Assessment
	Example 1
	Example 2
	Example 3

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card
	MicroC
	x86IR
	Instruction set

	Usage manual
	How to use
	How to run

	Compiler output examples

