
Instructions

This work aims to develop a static analysis tool that will track exception propagation in a program. The

primary purpose of this tool is to help Kotlin backend developers with documenting exceptions in

their API.

Steps to cover:

1. Analyze the Kotlin language and its properties that affect exception flow.

2. Design an algorithm for the static analysis of exception flow in Kotlin.

3. Create a working prototype written in Kotlin based on that design.

4. Write acceptance tests to verify the prototype.

5. Assess the prototype usability in a production environment.

6. Propose possible future improvements.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 10 February 2022 in Prague.

Assignment of master’s thesis

Title: Exception flow analysis for Kotlin

Student: Bc. Filip Dolník

Supervisor: Ing. Jiří Hunka

Study program: Informatics

Branch / specialization: System Programming

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2022/2023

Czech Technical UniveRsity in PRague

Faculty of InfoRmation Technology

DepaRtment of TheoRetical ComputeR
Science

Master’s thesis

Exception flow analysis for Kotlin

Bc. Filip Dolník

Supervisor: Ing. Jiří Hunka

May 5, 2022

Acknowledgements

First, I want to thank my supervisor Ing. Jiří Hunka, for his guidance and the
advice he gave me. Additionally, I want to thank my friends who helped
me with the proofreading of this thesis. I want to thank the people who
have prepared and taught the System Programming specialization at FIT CTU.
The knowledge I gained from the courses was invaluable for doing this thesis.
Finally, I would like to thank my family and friends for their support during my
studies, especially while working on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60(1) of the Act.

In Prague on May 5, 2022 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Filip Dolník. All rights reserved.
This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
DOLNÍK, Filip. Exception flow analysis for Kotlin. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Ošetřování výjimek je nezbytnou součástí vývoje softwaru, je však zároveň
také jednou z nejnáročnějších. Chyby ve zpracování výjimek mohou způsobit
mnoho problémů – od špatného uživatelského rozhraní až po bezpečnostní
zranitelnosti. Tyto chyby se často vyskytují na rozhraní dvou systémů. Dů-
vodem je mimo jiné to, že API těchto systémů obvykle není správně zdokumen-
továno, zejména pokud jde o výjimky.

Ruční dokumentování výjimek v API je časově náročné, a navíc náchylné
na chyby. Tato práce navrhuje řešení v podobě automatické tvorby této do-
kumentace. Tím řešením je statická analýza propagace výjimek, která vytvoří
seznam potenciálně vyhozených výjimek z API.

Výsledkem této práce je návrh této statické analýzy, konkrétně pro pro-
gramovací jazyk Kotlin. Vytvořený návrh lze použít k implementaci nástroje
pro automatické dokumentování API. Navržená analýza je založena na abstrak-
tní interpretaci a klade důraz na vysokou přesnost. Analýza si poradí jak s ob-
jektově orientovanými, tak s funkcionálními aspekty Kotlinu. Návrh je mod-
ulární a používá dvě různé IR. Díky tomu lze snadno přidat podporu dalších
programovacích jazyků.

Součástí této práce je také implementace prototypu navržené analýzy. Vyv-
inutý prototyp interně používá kompilátor Kotlinu pro převod analyzovaného
zdrojového kódu do IR Kotlinu. Tato IR je poté převedena na jednu ze dvou
IR statické analýzy. Tento proces převodu je v práci podrobně zdokumentován
spolu s významnou částí IR Kotlinu. Vzniklá dokumentace také vysvětluje sé-
mantiku funkcí Kotlinu, zejména těch, které souvisí s propagací výjimek. Tato

dokumentace může být užitečná při implementaci zásuvných modulů pro kom-
pilátor Kotlinu nebo jiných statických analýz.

Vytvořený prototyp lze použít na experimentování s většinou vzniklého
návrhu analýzy. Jeho implementace však není úplná, takže jej nelze použít
k analýze reálných projektů. Součástí prototypu je mnoho akceptačních
testů zaměřených na propagaci výjimek. Prototyp i tyto testy lze použít při
implementaci nástroje na dokumentování API.

Klíčová slova statická analýza, tok výjimek, propagace výjimek, doménové
výjimky, dokumentace API, Kotlin, kompilátor Kotlinu, Kotlin IR

Abstract

Exception handling is one of the most challenging parts of the software
development, yet it is essential. An improper exception handling can cause
many problems – from badUX to security vulnerabilities. Mistakes in exception
handling frequently occur at the boundaries of two systems. Part of the reason
is that the API of those systems is usually not correctly documented, especially
when it comes to exceptions.

Manually documenting API exceptions is a time-consuming and error-
prone process. This thesis proposes a solution for creating the documentation
automatically. The solution is a static analysis of exception propagation.
This static analysis produces a list of potentially thrown exceptions by API
endpoints.

The result of this thesis is a design of such static analysis for the Kotlin
programming language. The created design can be used to implement a tool for
documenting APIs. The designed analysis is based on abstract interpretation,
focusing on high precision. The analysis can handle both object-oriented and
functional programming aspects of Kotlin. The design is modular and uses two
different intermediate representations. As a result, the design can be easily
extended to support other programming languages.

This thesis also includes a prototype of the proposed analysis. The prototype
internally uses the Kotlin compiler to parse the analyzed source code into the
Kotlin IR. The produced Kotlin IR is then converted to one of the intermediate
representations. The thesis describes this process in detail and, at the same
time, it documents a significant part of the Kotlin IR. The documentation

also explains the semantics of Kotlin features that the analysis handles. This
documentation can be helpful when implementing compiler plugins or other
static analyses.

The created prototype can be used to experiment with most of the analysis
design. However, it does not implement the entire design, so it cannot be used
to analyze real-world projects. The prototype contains many acceptance tests
focused on the exception propagation. Together the prototype and the tests can
be used as a starting point for implementing the tool for documenting APIs.

Keywords static analysis, exception flow, exception propagation, domain
exceptions, API documentation, Kotlin, Kotlin compiler, Kotlin IR

Contents

Introduction 1

1 Initial analysis 3
1.1 The problem of documenting exceptions 3
1.2 Exception handling example . 5
1.3 How to document exceptions . 10

1.3.1 Checked exceptions . 11
1.3.2 Typed results . 12
1.3.3 Automated acceptance tests 13
1.3.4 Dynamic analysis . 14
1.3.5 Static analysis . 14

1.4 Libraries for static analysis of Kotlin 16
1.4.1 Source code analysis . 16
1.4.2 JVM bytecode analysis 18
1.4.3 Summary . 19

1.5 Prior art . 20
1.5.1 Existing solutions for Kotlin 21
1.5.2 Existing solutions for Java 22
1.5.3 Existing solutions for other languages 23

2 Analysis of the Kotlin programming language 25
2.1 IR description . 26
2.2 Reverse engineering methods 28

CONTENTS

2.3 The Kotlin standard library . 29
2.4 Exceptions . 31

2.4.1 What is an exception . 32
2.4.2 Throwing an exception 32
2.4.3 Exception handling . 34
2.4.4 Exception propagation 36

2.5 Control flow . 37
2.5.1 Conditions . 37
2.5.2 Loops . 40
2.5.3 Jumps . 41
2.5.4 Function calls . 42

2.6 Functions . 43
2.6.1 Local variables . 43
2.6.2 Parameters . 45
2.6.3 Default arguments . 47
2.6.4 Varargs . 50
2.6.5 Return . 51
2.6.6 Methods . 52
2.6.7 Extension functions . 56
2.6.8 Overloading . 57

2.7 Properties . 58
2.7.1 Computed properties . 60
2.7.2 Member properties . 61
2.7.3 Initialization of properties 62
2.7.4 Lateinit modifier . 63
2.7.5 Extension properties . 64
2.7.6 Delegated properties . 65

2.8 Classes . 68
2.8.1 Constructors . 69
2.8.2 Interfaces . 73
2.8.3 Objects . 76
2.8.4 Enum classes . 76
2.8.5 Inner classes . 77

2.9 Functional programming . 79
2.9.1 Local functions . 81

CONTENTS

2.9.2 Lambda functions . 83
2.9.3 Function references . 84
2.9.4 Property references . 88
2.9.5 Function types with receiver 89
2.9.6 Inline functions . 91

2.10 Other . 93
2.10.1 Generics . 93
2.10.2 Coroutines . 94
2.10.3 Reflection . 95

3 Static analysis design 97
3.1 Fundamental design decisions 97

3.1.1 Requirements . 98
3.1.2 Intentional simplifications 100
3.1.3 The chosen approach . 103

3.2 Architecture . 104
3.2.1 FIR . 106
3.2.2 BIR . 107
3.2.3 Front end . 108
3.2.4 Runtime . 108
3.2.5 Back end . 109
3.2.6 Interpreter . 109
3.2.7 Analysis . 110

3.3 Abstract interpretation algorithm 111
3.3.1 Symbols . 111
3.3.2 Declarations . 112
3.3.3 Basic expressions . 113
3.3.4 Locations . 115
3.3.5 Branching . 117
3.3.6 Exceptions . 119
3.3.7 Functions calls . 120
3.3.8 Loops . 122
3.3.9 Recursion . 126
3.3.10 Type coercion . 129

3.4 Translation from FIR to BIR . 130
3.4.1 Declarations . 131

CONTENTS

3.4.2 Basic expressions . 135
3.4.3 Locations . 136
3.4.4 Control flow . 138
3.4.5 Exceptions . 139
3.4.6 Function calls . 141
3.4.7 Function references . 142
3.4.8 Environments . 145

3.5 Translation from Kotlin IR to FIR 149
3.5.1 Locations . 150
3.5.2 Control flow . 150
3.5.3 Functions . 151
3.5.4 Classes . 153
3.5.5 Function references . 154
3.5.6 Local declarations . 155

4 Implementation 157
4.1 The implementation procedure 157

4.1.1 Project management . 157
4.1.2 Software development 159

4.2 Testing . 161
4.3 Challenges and mistakes . 165

4.3.1 Incorrectly tested exception flow 165
4.3.2 Null pointer dereferences 166
4.3.3 Implementation of Any 168
4.3.4 Implementation of garbage collection 169
4.3.5 Virtual and dynamic dispatch 170
4.3.6 Changes in FIR and BIR 170

5 Evaluation 173
5.1 Assessment of the prototype . 173
5.2 Suggestions for future improvements 176

5.2.1 Usability . 176
5.2.2 Maintainability . 178
5.2.3 Performance . 179
5.2.4 Precision . 181

CONTENTS

Conclusion 183

Bibliography 185

A Acronyms 189

B Glossary 191

C Contents of the enclosed CD 193

List of Listings

1.1 Domain exceptions . 6
1.2 BookingController . 6
1.3 BaseController . 7
1.4 BookingApplicationService . 7
1.5 BookingAuthorizationService . 8
1.6 RoomRepository . 8
1.7 BookingRepository . 9
1.8 Booking entity . 10

2.1 Boolean . 30
2.2 String concatenation . 31
2.3 Throw . 33
2.4 Not-null assertion . 34
2.5 Try-catch . 35
2.6 Try-finally . 36
2.7 When . 38
2.8 If . 39
2.9 Elvis operator . 39
2.10 While . 40
2.11 For . 41
2.12 Break . 42
2.13 Function declaration . 43
2.14 Function call . 44
2.15 Local variable declaration . 44

CONTENTS

2.16 Local variable access . 45
2.17 Local variable shadowing . 46
2.18 Declaration of function with parameters 47
2.19 Function call with arguments . 47
2.20 Function call with named arguments 48
2.21 Declaration of function with default arguments 48
2.22 Function call with default arguments 49
2.23 Implementation of default arguments 49
2.24 Declaration of function with vararg parameter 50
2.25 Function call with vararg . 50
2.26 Spread operator . 51
2.27 Return . 52
2.28 Method declaration . 53
2.29 This keyword . 53
2.30 Method overriding . 54
2.31 Method call . 55
2.32 Super call . 55
2.33 Declaration of extension function 56
2.34 Extension function call . 57
2.35 Qualified this . 57
2.36 Property declaration . 59
2.37 Property read . 59
2.38 IR of default property setter . 60
2.39 Property with a custom getter and a backing field 60
2.40 Computed property . 61
2.41 Member property . 62
2.42 Lateinit property . 64
2.43 Extension property . 65
2.44 Delegated property implementation 65
2.45 IR of delegated property . 66
2.46 Local delegated property . 67
2.47 Property delegate provider . 67
2.48 Class declaration . 68
2.49 IR of fake override method . 69
2.50 IR of default constructor . 70

CONTENTS

2.51 Class with a member property initialized in the primary constructor 71
2.52 Secondary constructor . 71
2.53 Anonymous initializer . 72
2.54 Constructor call . 73
2.55 Interface declaration . 73
2.56 Overriding the same method from multiple interfaces 74
2.57 Qualified super call . 75
2.58 Default arguments with multiple base methods 75
2.59 Object declaration . 76
2.60 Object access . 77
2.61 Enum declaration . 78
2.62 IR of synthetic enum methods . 79
2.63 Enum access . 79
2.64 Inner class declaration . 80
2.65 Inner class calling a method from its enclosing class 80
2.66 Higher-order function calling invoke 81
2.67 Local function declaration . 82
2.68 Local function call . 82
2.69 Writing to a captured local variable 83
2.70 Lambda function . 84
2.71 Anonymous function . 84
2.72 Function reference . 85
2.73 Virtual method reference . 86
2.74 Method reference without capturing receiver 86
2.75 Calling a method reference without captured receiver 87
2.76 Method reference with captured receiver 87
2.77 Extension function reference with captured receiver 88
2.78 Property reference . 89
2.79 Declaration of a higher-order function with function type with

receiver . 90
2.80 Calling a higher-order function with function type with receiver . . 91
2.81 Calling function value with receiver 92
2.82 Non-local return from inlined lambda 93
2.83 Local return from inlined lambda 94

3.1 FIR and BIR symbols . 112

CONTENTS

3.2 BIR Program declaration . 112
3.3 BIR Function declaration . 113
3.4 BIR Class declaration . 114
3.5 BIR basic expressions . 114
3.6 BIR Block expression . 115
3.7 BIR This expression . 115
3.8 BIR location access expressions . 116
3.9 BIR When expression . 117
3.10 An example of When expression evaluation 118
3.11 BIR Throw expression . 119
3.12 BIR Try expression . 120
3.13 BIR function call expressions . 121
3.14 BIR Return expression . 122
3.15 Loop related BIR expressions . 123
3.16 An example of problem with object unification in the overwrite mode 126
3.17 An example of a problematic recursion 127
3.18 FIR DeclarationBlock . 131
3.19 FIR variable declarations . 132
3.20 FIR Function declaration . 133
3.21 FIR Class declaration . 133
3.22 An example of acceptance test that utilizes class modality 134
3.23 FIR Init declaration . 134
3.24 FIR basic expressions . 135
3.25 FIR constant expressions . 136
3.26 FIR local variable and field accessors 137
3.27 FIR global variables accessors . 137
3.28 FIR dynamic field accessors . 137
3.29 FIR control flow expressions . 139
3.30 FIR exception handling expressions 140
3.31 Conversion of finally block . 141
3.32 FIR StaticCall and VirtualCall expressions 142
3.33 FIR DynamicCall expression . 143
3.34 FIR function reference expressions 143
3.35 Conversion of dynamic call . 144
3.36 FIR ExtendEnvironment expression 146

CONTENTS

3.37 FIR This expression . 147
3.38 FIR Environment expression . 147

4.1 An example of an acceptance test 162
4.2 An example of a front end integration test 163
4.3 An example of a back end unit test 164
4.4 An example of an interpreter unit test 164
4.5 Simplified syntax of interpreter unit tests 165
4.6 Acceptance test that was broken by the exchange of interpreter

implementations . 166
4.7 A test that is not analyzed properly without execution path termi-

nation after null pointer dereference 167

Introduction

I have been working as a mobile and later back-end software developer for the
past several years. During that time, I have participated in designing back-end
APIs, and architectures for both mobile and back ends on multiple projects.
These projects were in different technologies and domains, yet the team always
ran into the same problem. The problem always has been to design, implement
and document anAPI such that all domain exception paths are handled properly
and cleanly.

Domain exception (or domain exception path) is a different concept from
ordinary programming exceptions/errors. Domain exceptions mostly come
from incorrect user input. An example of such a situation is a user trying
to log in with an incorrect password. A domain exception must be explicitly
accounted for and handled by the code. In contrast, programming errors
that come from the developer’s mistakes are unintentional and should not
be directly handled. Null pointer dereference, or division by zero are some
examples of such errors.

In my experience, a design of an exception handling has a significant impact
on the code quality and the application’s UX. Incorrect exception handling can
have catastrophic consequences. On the back end, it can cause data corruption
or security vulnerabilities. The consequences are usually less severe on the
front end, but they are still significant. If the exception is suppressed, the
functionality will do nothing, and the app will not tell the user what happened.
If the exception is not suppressed, the app will crash. Both situations lead to
confused users and bad UX at best.

1

IntRoduction

A promising solution is to use the programming language built-in excep-
tions with a separate class for each domain exception. Using these single-
purpose exceptions has several advantages. They can carry precise information
to the user and therefore allow for good UX. They also clearly communicate
their domain meaning, making the code more readable. Moreover, they do not
significantly interfere with the production code; thus, they do not impact main-
tainability. However, using single-purpose exceptions is not practical because
documentation of these exceptions involves too much manual work.

The primary goal of this thesis is to design a static analysis that tracks
exception propagation in Kotlin programs. The static analysis will help
developers document domain exceptions thrown by their API. Since the
documentation process will be automatic, it will make the use of single-purpose
exceptions feasible.

The secondary goal is to implement a prototype of the analysis. The
prototype will include automated acceptance tests to verify its correctness.
The created prototype’s usability will be assessed based on the experience
gained during its development. An additional goal is to analyze the Kotlin
semantics that affect exception flow. This step is necessary to correctly design
the static analysis. The remaining goal then is to propose solutions for future
development.

This document is structured into five chapters. The first chapter explains
the problem of documenting exceptions in API and contains an example code
that uses single-purpose exceptions. The chapter also presents some strategies
for documenting exceptions and libraries for implementing static analysis in
Kotlin. The end of the chapter describes the current state of the art in the area
of static analysis with a focus on exception flow.

The following chapter is about Kotlin and its features related to exception
analysis. The chapter also includes a high-level explanation of how the Kotlin
compiler implements the features. Chapter three describes the final design
of the static analysis created in this thesis. The fourth chapter captures the
static analysis development process and the challenges that had to be overcome.
It also contains some interesting implementation details. The final chapter
assesses the prototype’s usability in a production setting and proposes future
improvements.

2

ChapteR 1
Initial analysis

This chapter describes my first steps when working on this project. First, I have
defined the problem I am trying to solve in this thesis. A good understanding
of the target use case was crucial because designing a static analysis is all about
making the right tradeoffs. Once I had a good idea of what I wanted to achieve,
I assessed options for solving the problem. There were more things to consider
than just a static analysis.

After I knew that a static analysis was the right choice, I looked into some
options for analyzing a program written in Kotlin. This decision was critical
as it dictated the whole direction of the implementation and would not be
possible to take back. Furthermore, I have researched existing static analysis
solutions and algorithms. Finally, I was able to start with the actual static
analysis design and implementation. These two steps are covered in (3) and (4).

1.1 The problem of documenting exceptions
A proper domain exception handling is complex and affects the whole project
architecture. The exception handling requires a well-thought-out solution not
to impact the codebase negatively. The complexity is primarily caused by the
inherent non-locality of any possible implementation. A domain exception
is typically thrown by domain logic deep in the back-end code. The back end
must inform the front end (mobile or web app) about the exception via the
API. The information must be therefore propagated through all the back-end
architecture layers. After receiving the information, the front end must also

3

1. Initial analysis

propagate it throughout its domain logic to the user interface. Moreover, the
user interface must understand the domain meaning of the exception path.
Only then it can correctly inform the user about the problem.

Additionally, there is usually a large number of different domain exceptions.
Each happy path (or functionality) typically has several associated exception
paths. Therefore, a project has many more exception paths than actual features.
Each exception path needs some code that handles it, which can lead to many if
statements in the code. Combined with the non-locality, these ifs can be spread
throughout all code and across all platforms. This inevitably has an impact on
code maintainability.

Exceptions always carry some information, and the front end uses that
information to communicate with the user. For example, a user tried to sign-
up with an already taken username. In this example, the back end responded
with an exception, and the front end decoded it into one of the following error
messages:

• Username already exists.

• Failed to create an account.

• Something went wrong.

In the first example, the front end can present a proper error message
and maybe highlight the username field in red. On the other hand, the two
remaining messages are examples of bad UX. The second message at least
gives the user some information, but it can still hide a different problem like
a too weak password. For this reason, the front end must be able to extract
necessary information from the exception, and that process must be part of the
API. The more relevant information the exception carries, the better the UX
can be.

The non-locality makes it challenging to ensure that the front end correctly
handles every exception. The front-end developers need to know precisely
what exceptions each API endpoint throws and how to present them to the user.
Having an API documentation is necessary; otherwise, the developers must
rely on reverse engineering and guessing. It is almost impossible to correctly
implement the front end of any larger app without its API documentation.

4

1.2. Exception handling example

The exact documentation form is not that important. It can be, for
example, written in a plain text or defined using classes and annotations. What
is important is that there is an accurate list of exceptions associated with each
endpoint.

Maintaining such a list is challenging as the project grows in size. Every
time a new exception is added/changed/removed, it is necessary to update the
documentation of all the affected endpoints. Maintaining the documentation
can be a lot of work, as I will demonstrate in the following section.†

1.2 Exception handling example
I have prepared a simplified example to demonstrate why it can be challenging
to document all the exceptions properly. For the demonstration, I will use a part
of a fictional back end written in Spring [33]. The back-end design is based
on an Onion architecture [30] and DDD [6]. To keep the example shorter,
I intentionally omitted code unrelated to domain exception handling. I am
also presenting the code as if it was kept together in a few files. However,
these classes would be in separate files spread across multiple modules in a real
project.

The example showcases an implementation of a single endpoint that allows
the user to book a room. In order for the booking to be successful, the following
pre-conditions must be satisfied:

• The user must be logged in.

• The user must be an admin.

• The booked room must exist.

• The booked room must not be already booked.

• The user cannot create a booking in the past.

There is a significant disproportion in the features and exception path count,
even in this simple use case. There are already five exception paths, and it would
not be that hard to come up with more.

†Also, the front-end code must be updated to reflect the change, but that is a concern for
an API versioning strategy.

5

1. Initial analysis

The example starts in the listing (1.1), which shows the declarations of
used exceptions. The code uses the single-purpose exceptions strategy, so each
exception corresponds to a single exception path. Therefore the front end can
easily decode the meaning of each exception. These exceptions could also carry
additional information such as entity IDs or debug information.

class NotAuthenticated: DomainException()
class NotAuthorizedToCreateBooking: DomainException()
class RoomNotFound: DomainException()
class RoomIsAlreadyBooked: DomainException()
class BookingInPast: DomainException()

Listing 1.1: Domain exceptions

TheAPI endpoint is declared in a BookingController from listing (1.2). The
controller maps domain objects to and from DTOs and calls the appropriate
method from an ApplicationService. The example assumes the presence of
a special exception handler that catches all thrown exceptions and maps them
accordingly.

@Controller
@RequestMapping("/booking")
class BookingController(

val bookingApplicationService: BookingApplicationService,
): BaseController() {

@PostMapping
fun createBooking(dto: NewBookingDto): BookingDto {

val booking = bookingApplicationService.createBooking(
user = authenticatedUser,
roomId = dto.roomId,
date = dto.date,

)

return booking.toDto()
}

fun Booking.toDto(): BookingDto = ...
}

Listing 1.2: BookingController

In this case, the BookingController calls the authenticatedUser property
declared in the BaseController that is shown in the listing (1.3). This property

6

1.2. Exception handling example

checks the first requirement (if the user is logged in) and throws an exception
if not.

abstract class BaseController {
protected val authenticatedUser: User

get() {
val isAuthenticationValid = ...
if (!isAuthenticationValid) {

throw NotAuthenticated()
}
...

}
}

Listing 1.3: BaseController

Listing (1.4) then shows BookingApplicationService that wires together
all the domain logic. It does not directly throw any exception, but it calls
multiple methods that do.

@ApplicationService
class BookingApplicationService(

val bookingAuthorizationService: BookingAuthorizationService,
val bookingRepository: BookingRepository,
val roomRepository: RoomRepository,

) {
fun createBooking(user: User, roomId: Room.Id, date: LocalDate):

Booking {↪→
bookingAuthorizationService.verifyUserCanCreateBooking(user)

val room = roomRepository.get(roomId)

val booking = Booking.new(user, room, date)

bookingRepository.add(booking)

return booking
}

}

Listing 1.4: BookingApplicationService

7

1. Initial analysis

BookingAuthorizationService from listing (1.5) checks if the user is an
admin (the second rule) and throws an exception otherwise. More complex ser-
vicesmight need direct access to repositoriesmaking the exception propagation
even more complicated.

@Service
class BookingAuthorizationService {

fun verifyUserCanCreateBooking(user: User) {
val canCreateBooking = user.role == User.Role.Admin
if (!canCreateBooking) {

throw NotAuthorizedToCreateBooking()
}

}
}

Listing 1.5: BookingAuthorizationService

Then there is RoomRepository and DatabaseRoomRepository. Both are
shown in the listing (1.6). Even though they are presented together, the
interface and the implementing class are often located in different modules.
According to the architecture, the interface belongs to the domain module,
while its implementation should be in the infrastructure module. Repositories
work directly with the database and typically produce many domain exceptions
like NotFound or AlreadyExists. In this case, the repository checks the
requirement that the booked room must exist.

@Repository
interface RoomRepository {

fun get(id: Room.Id): Room
}

class DatabaseRoomRepository: RoomRepository {
override fun get(id: Room.Id): Room =

find(id) ?: throw RoomNotFound()

fun find(id: Room.Id): Room? = ...
}

Listing 1.6: RoomRepository

8

1.2. Exception handling example

The second repository is shown in the listing (1.7). It contains an example
of a more complicated domain rule / database query – the requirement that the
room is not already booked.

@Repository
interface BookingRepository {

fun add(booking: Booking)
}

class DatabaseBookingRepository: BookingRepository {
override fun add(booking: Booking) {

if (isRoomBooked(booking.roomId, booking.date)) {
throw RoomIsAlreadyBooked()

}

...
}

fun isRoomBooked(roomId: Room.Id, date: LocalDate): Boolean =
...↪→

}

Listing 1.7: BookingRepository

The last condition is checked during instantiation of the Booking entity
(listing (1.8)). The check is intentionally not performed in the primary con-
structor. Doing so would prevent the back end from retrieving past bookings,
which is not prohibited by the domain.

The problem with documentation maintenance is that a single code change
often influences the behavior of multiple endpoints/features. If that happens,
all transitively affected methods must be checked. Adding documentation for
new features is also not trivial since it is common practice to reuse existing code
(especially repositories and entities).

For example, there is a new domain requirement that the room cannot be
booked on weekends. I would personally put this check in the Booking entity
below the check for no past booking requirement. There is only one endpoint
in this case, so it is not that hard to remember to update its documentation.
However, if the new method is called from multiple places, it becomes much
more difficult.

Keeping track of all the possible exceptions for each endpoint is equivalent
to keeping track of all the methods they call internally. Doing this entirely

9

1. Initial analysis

@Entity
class Booking internal constructor(

val id: Id,
val userId: User.Id,
var roomId: Room.Id,
var date: LocalDate,

) {
companion object {

fun new(user: User, room: Room, date: LocalDate): Booking {
val isInPast = date.isBefore(LocalDate.now())
if (isInPast) {

throw BookingInPast()
}

return Booking(Id(UUID.randomUUID()), user.id, room.id,
date)↪→

}
}

data class Id(val value: UUID)
}

Listing 1.8: Booking entity

manually is doable on a small scale, but not if there are dozens or hundreds of
endpoints.

1.3 How to document exceptions
This section introduces several strategies for maintaining domain exception
documentation. I will focus on those that can help developers with the problem
presented in the previous two sections. The strategies can be categorized by an
agent that makes sure the documentation is correct. It can be manual – done
by a human, or automatic with some potential manual intervention.

Maintaining the documentation just manually is not practical, as I have
explained in the previous section. The upside is that the developer can make
sure the documentation is accurate. The previous statement is, however, valid
only in theory. In practice, humans make mistakes.

Automatic solutions usually rely on some form of static or dynamic analysis.
Making the process automatic allows the developers to focus on more exciting
tasks or tasks that cannot be automated. For this reason, automatic solutions

10

1.3. How to document exceptions

tend to scale much better with the project size. Computers also do not make the
same kind of mistakes as humans. Nonetheless, they have a different problem:
Rice’s theorem [31] puts a fundamental limit on the accuracy of any automatic
analysis. No algorithmwill correctly analyze any non-trivial property for every
possible program. However, it is possible to design an analysis that will only
make a specific type of error. What type of error the analysis makes is related
to the concept of soundness and completeness.

Soundness typically means that the analysis catches all errors. Complete-
ness is the dual opposite, and it means that the analysis catches only actual
errors (does not produce false warnings). Both terms have slightly subjective
meaning that depends on the analysis goal. Typically, the notion of soundness
is defined such that its absence has more severe consequences than the absence
of completeness.

For the purpose of documenting API exceptions, the analysis is sound if it
reports all possible exceptions each endpoint can throw. Complementary, it
is complete if it reports only possible exceptions. If the analysis is not sound,
then it may miss some exceptions. Those missed exceptions might not get
handled by the front end and cause problems.

If the analysis is incomplete, it may report more exceptions than necessary.
As a result, the developer would likely implement unnecessary code to handle
those impossible exceptions. However, the application would still work – only
the unnecessary code would never be executed.

Because of Rice’s theorem, no analysis can be sound and complete simultan-
eously. Only one of those properties can be fully satisfied. Given the definition,
soundness is usually preferred over completeness. So the analysis can produce
false warnings. The precision of the analysis then states how many false warn-
ings it produces. It might make sense to sacrifice some soundness in exchange
for higher precision, at least in some situations.†

1.3.1 Checked exceptions
The idea of checked exceptions is to allow the compiler to check if all the
thrown exceptions are correctly documented. Each method that directly or

†This and the previous two paragraphs are based on the article “Soundness and Complete-
ness: With Precision” [24]. I have only touched the surface of this topic, so I recommend
reading the article for more information.

11

1. Initial analysis

indirectly throws a checked exception must state that fact as part of its
signature. The information about thrown exceptions is transitively propagated
to the Controller and can be used for the API documentation. This approach
is generally sound but not complete since methods can declare they throw some
exception when they actually do not. Also, even if a method can throw an
exception in some situations, it does not mean it will never happen.

Checked exceptions have the advantage of being sound, but they also have
some significant downsides. First, they interfere with the whole codebase
as every method needs to be aware of them. Because of that, it may be
difficult to change the exception logic of code used in multiple places. Adding
an exception is fine since the compiler enforces the update of all the calling
methods. What causes a problem is when the method no longer throws some
exception. The compiler does not check this in all cases, so the developer must
manually track down all the affected methods and adjust their signature.

Nevertheless, this is not the primary problem. The primary problem is that
checked exceptions are from Java, and have not been adopted by Kotlin. There
are good reasons for their absence, as explained in the article “Kotlin and
Exceptions” [5]. The primary one is that they do not work well with functional
programming.

1.3.2 Typed results
The previous article [5] suggests typed results as a replacement for checked
exceptions. Result pattern is a fundamentally different strategy of exception
handling that does not rely on built-in exceptions. Each function that uses this
pattern returns a Result object that holds either the originally returned value
or some exception. The information about exceptions is therefore propagated
using a function return value.

Both results and built-in exceptions can achieve the same effect. The pri-
mary difference is that results are more explicit than built-in exceptions. The
explicitness makes results safer (at least in theory), at the cost of more code to
be written. How much the pattern interferes with the codebase depends on the
used library.

There are two different types of results: typed and untyped. A typed result
specifies which exceptions it can hold using the language type system. Untyped

12

1.3. How to document exceptions

results can contain any exception and, for that reason, are not a suitable
replacement for the checked exceptions.

Typed results and checked exceptions are similar concepts because both
rely on the compiler to verify their correct usage. They also share the same
properties in terms of soundness, completeness, and maintainability. The
advantage of typed results is that they work with functional programming.
However, in my opinion, they are also not a suitable solution to the problem
as they require the developer to write too much boilerplate code. I have yet
to see an implementation that would have overhead at most that of checked
exceptions.†

1.3.3 Automated acceptance tests
Both previous strategies have issues with detecting the removal of an exception.
They also introduce a lot of boilerplate to the production code. Automated
acceptance tests‡ do not have any of those problems. They fall somewhere
betweenmanual and automatic approaches since the developer still has to write
the tests.

Acceptance tests can verify the implementation of both the happy paths
and the exception paths. Therefore, they can verify that some exception really
occurs. At the same time, they provide an example of the situation in which
the exception occurs. Furthermore, they ensure that the exception path is still
present as the project evolves.

If the automated tests are written in a readable way, they can serve
as implicit API documentation. A front-end developer can look at the acce-
ptance tests and see all the possible exceptions and scenarios in which they
happen. Alternatively, it is possible to write some script that will automatically
update the documentation based on the code in the tests.

Automated tests used in this way are an example of a complete but not
sound analysis. If an exception path test passes, it proves that there is a scenario
in which the exception occurs (assuming test correctness). On the other hand
absence of an exception path test does not mean the path does not exist. So this

†The situation could be significantly improved if Kotlin eventually adds support for union
types.

‡Acceptance tests do not have a uniform definition. For this text, I assume they test the
back end in production-like settings by calling the endpoints the same way as the front end.

13

1. Initial analysis

strategy is not a complete solution to the documentation problem, but it can
be used to complement another strategy. Such a combination can achieve
soundness, have high precision, and be maintainable.

1.3.4 Dynamic analysis
Automatic acceptance tests have the weakness of not being able to help the
developer with finding all the possible exceptions. Dynamic analysis can be
used together with the tests to provide additional assistance. Dynamic analysis,
in general, looks for some properties of the program during the program’s
execution. It requires the program to be actually running with real inputs and
in a real environment. One possibility to achieve that is to use the acceptance
tests and run the analysis during their execution.

In this case, the analysis can look for exceptions that the tests miss. It builds
on the following idea: If a method throws an exception when called from one
endpoint, then it likely throws the same exception when called from all other
endpoints. So if an exception is observed during the testing of only part of the
endpoints that call the method, it is probably a mistake.

The analysis as presented above is neither sound nor complete. It is not
sound as it may miss code inside possible execution paths not visited by any
test. This problem can be partially mitigated by extending the analysis to check
code coverage. The analysis is not complete for a similar reason as in the case of
checked exceptions: For some endpoints, it may be impossible to call a method
such that it throws an exception, even if other endpoints can achieve that.

The absence of both properties is not necessarily a deal-breaker. The
analysis potentially improves the precision of automated testing, and it comes
at almost no cost. However, it is not a perfect solution as the analysis quality
entirely depends on the quality of the tests.

1.3.5 Static analysis
Static analysis is similar to dynamic analysis in that it also tries to decide
some program properties. The difference is that static analysis does so without
running the program, so it does not need the acceptance tests. Static analysis
can eliminate most problems of dynamic analysis. It is at the cost of introducing
new ones, however less significant, as I will explain below.

14

1.3. How to document exceptions

The checked exceptions presented earlier are in some sense implemented
as a static analysis done by the compiler. Their implementation is relatively
primitive, so it relies on the developer to provide enough information. The
limitation of not being interoperable with a functional programming style
comes from this reliance. However, this is not a fundamental problem. If
the compiler could automatically infer all the method signatures, the checked
exceptions would work well even with features such as high-order functions.

So the simplified idea of the static analysis is to implement checked
exceptions but fully automatic. The analysis will produce a list of potentially
thrown checked exceptions for each method in the program. The analysis
output can be limited to the methods representing the API endpoints which
effectively creates the required API documentation.

The static analysis has several key advantages over all previouslymentioned
strategies:

• It can be sound (at the cost of completeness).

• It does not theoretically interfere with the production code.

• Little to no work is required from the developer.

• Its precision can be incrementally improved.

Depending on the specific implementation, a static analysis has to make
a tradeoff between precision, performance, and implementation difficulty. For
the use-case of API documentation, high precision is the most desirable
property. In fact, it may be desirable to sacrifice some soundness in documented
edge case scenarios to achieve higher precision. The reason is that false alarms
would lower the analysis usability and perceived reliability, hurting its adoption
by the developers.

Performance and implementation difficulties are not that important. The
implementation of the analysis is a problem for its author, not for the developer
who uses it. As for performance, the acceptance tests presented previously can
run for several hours on a sufficiently large project. So it does not matter that
much if the analysis is slow. Although fast execution would be advantageous,
allowing the developer to run the analysis on their local machine. It just cannot
be at the cost of the analysis precision.

15

1. Initial analysis

1.4 Libraries for static analysis of Kotlin
Static analysis works by examining the program’s code similarly to how the
compiler does it. It is possible to inspect either the source code or the
already compiled native code. Each option offers different advantages and
brings unique challenges. Implementing the analysis from scratch is possible
regardless of the chosen approach, but that involves much unnecessary work.†

For that reason using a library is a preferred approach.
There are multiple options for the native code inspection because Kotlin

supports multiple platforms: JVM, JavaScript, and native. The native target
then supports multiple different architectures and operating systems. The
native target uses an LLVM compiler internally, so it can also produce an LLVM
bytecode. Any one of the produced representations is viable to use for the
analysis. I will consider only the JVM bytecode inspection option since the
analysis’ primary target is back-end code.

This section will cover the options/libraries I was choosing from for both
source code and JVM bytecode analysis. I will also present the advantages
and disadvantages that I was considering. At the end of the section, I will
summarize and present my choice and its reasoning.

1.4.1 Source code analysis
Kotlin is a young language, and as a result, it does not have that many libraries
for static analysis yet. There are essentially only two options to choose from.
One possibility is to use the Kotlin compiler [20] itself – which is open-source,
and its code can be reused for the analysis. The alternative is to use the KSP
library [9].

The KSP library creates a Kotlin compiler plugin that usually generates
some additional code during compilation. However, the plugin does not have
to generate any new code. Instead, it can just analyze the original code. The
problem is that the library is designed only for inspecting class and function
level declarations. Since any meaningful exception flow analysis must analyze
individual expressions, this library is unsuitable for this project.

†Especially in the case of the source code analysis, where it involves the reimplementation
of a significant part of the compiler front end.

16

1.4. Libraries for static analysis of Kotlin

In summary, the Kotlin compiler is the only option. The compiler has built-
in support for plugins that can inspect and modify the program’s IR. The plugin
is called approximately in the middle of the compilation process. A plugin can
specify the time it will be called, but there are some limitations. It always has
to be sometime after the front end has already processed the source code, but
before the back end compiles it to the native code.

Source code analysis has some significant advantages over compiled code
analysis. Source code (or IR in this case) contains more information than the
compiled code. The static analysis can use this information to achieve better
precision.

For a human, it is generally easier to work with the source code than with
the native code. The IR, though less readable than source code, is still signi-
ficantly better in this regard than bytecode. Better readability of the analyzed
code can simplify the analysis development, especially during debugging and
testing.

The final mentioned advantage is related to the Kotlin multiplatform
support. Because the analysis works with the source code, it is not necessarily
bound to a single platform. Even though this thesis focuses only on the JVM
target, being able to support Kotlin multiplatform in the future would be an
advantage.

However, basing the analysis on the source code comeswith a few problems.
Some of them are inherent to this approach, and some are related to the
necessity of using a compiler plugin. The primary inherent limitation is that any
already compiled code cannot be analyzed. The same is true for code written
in other languages. For this reason, source code analysis makes it impossible
to support closed source libraries. The issue is amplified in Kotlin JVM since
many libraries are still written in Java.†

As for the compiler, its main problem is a lack of official documentation. The
internet also does not contain that much information. The only way to obtain
the necessary knowledge is by reverse engineering or contacting someone with
the required expertise.

Another problem is caused by the way modules work in Kotlin. By design,
the compiler compiles each module independently. So the compiler plugin can

†Even the Kotlin standard library makes many calls to the Java standard library.

17

1. Initial analysis

analyze only one module at a time. Depending on the analysis requirements,
this might need to be somehow addressed.

Since a compiler plugin runs before the compiler back end, it does have dir-
ect access to the semantics of many advanced Kotlin features. Working directly
with the more abstract features of Kotlin is an advantage and disadvantage at
the same time. The analysis can extract more information from the IR. How-
ever, it comes at the cost of writing considerably more code to implement all
those features.

1.4.2 JVM bytecode analysis
As the JVM ecosystem is more established (compared to Kotlin), it offers more
libraries. Since I later decided not to use this approach, I have not done
extensive research on all of those libraries. Instead, I have picked one and used
it as a reference point. The sample library is ASM [29] which is widely used and
has extensive documentation. It supports everything necessary to implement
the static analysis, and it even has an API for some common analysis tasks.

The JVM platform is standardized and has a public specification [26].
A considerable advantage is that bytecode (and the whole JVM) evolves slower
than the internals of the Kotlin compiler and its IR. So from a maintainable
standpoint, it might be easier to keep the analysis up-to-date if it depended on
the bytecode instead of the IR.

All the disadvantages of bytecode analysis are fundamentally caused by
information loss. The source of the information loss is the difference between
the abstraction levels of the programming language and the compilation target.
The larger the difference is, the more information is lost during the compilation.
Bytecode is not as low-level as ordinary native code, but Kotlin is an unusually
high-level language, so the difference in abstraction levels is still significant.
Less information makes it harder for the analysis to understand the code
semantics. As a result, the analysis will be either less precise or harder to
implement.

For example, Kotlin supports a feature called default arguments. This feature
is compiled to the bytecode (will be shown in (2.6.3)) in a way that makes it hard
to analyze directly. In order to support this feature, the analysis would probably
have to implement some form of function inlining and constant propagation.

18

1.4. Libraries for static analysis of Kotlin

Another example of the information loss problems is related to the differ-
ence in the control flow representation. JVM bytecode does not have structured
control flow statements like loops and if-else blocks. Instead, it uses conditional
and unconditional jump instructions to implement all branching. The presence
of jumps does not matter for flow-insensitive analysis, but it may matter for
some flow-sensitive analyses. Flow-sensitive analyses may leverage the restric-
tions of structured control flow.† Implementation of an analysis that requires
structured control flow is still possible even in the presence of jumps (be it at
the cost of additional work). The most straightforward solution is to convert
the jumps back to structured control flow statements.‡

1.4.3 Summary
In the end, I have decided to implement the analysis as a compiler plugin and
therefore opted for the source code analysis option. There are many reasons
for that decision. The primary one is that my focus is on making the analysis
as precise as possible. In my opinion, directly analyzing the source code will
make that task easier. The secondary reason is that I am keeping the possibility
to add support for Kotlin multiplatform in the future. By supporting the Kotlin
multiplatform, it would be possible to use the analysis during mobile app
development.

Then there are some partially subjective reasons. I have more experience
with the Kotlin compiler and its IR than bytecode. Also, I want to implement the
analysis prototype in Kotlin. TheKotlin compiler is written in Kotlin, whichwill
make the implementation more pleasant. Not that it is impossible to call Java
(in which the ASM library is written) from Kotlin, it is just slightly cumbersome.
Furthermore, I want to use this opportunity to learn more about the compiler.

The choice comeswith all the problemsmentioned in (1.4.1). However, upon
closer examination, I was able to come up with solutions for all those problems.
Not all of them are perfect, and some will require additional work to implement.
Implementation of some of those solutions is beyond the scope of this thesis,
but the important fact is that it is possible to solve.

†In fact, the analysis proposed in this thesis does rely on the structured control flow.
‡When analyzing this option, I used the algorithm from the article “Solving the structured

control flow problem once and for all” [12] as a reference point.

19

1. Initial analysis

1.5 Prior art
Static analysis for exceptions is a well-known and well-researched problem
with many existing approaches and solutions. However, none of the existing
solutions is directly applicable in the context of this thesis – the reasons
are explained later in this section. Therefore, the analysis proposed in this
thesis cannot be based on a single existing solution. Instead, I have created
a custom design utilizing general static analysis concepts and some ideas from
the existing solutions.

This section presents the pre-existing work that influenced this thesis. The
goal here is to give an overview, not a detailed explanation of each method.
I will highlight the core ideas of those methods and how they influenced this
thesis.

All the presented articles in this section assume that their reader is familiar
with general concepts of static analysis and its terminology. As such, it
is impossible to understand them without prior knowledge. I have gained
this necessary knowledge from several courses at FIT CTU, especially: NI-APR
(Selected Methods for Program Analysis), NI-MPJ (Modelling of Programming
Languages), and NI-RUN (Runtime Systems). I have also read the book “Static
Program Analysis”[25]. This general knowledge helped me understand the
articles, but more importantly, it was essential for me while designing the
custom analysis.

I have used the article “A review on exception analysis” [3] as a starting
point ofmy research of existingmethods. The article contains an overview of all
existing relevant research on this topic – at least, it includes everything relevant
its authors could find at that time. The article is from 2016, so it might miss
some more recent development. However, I could not find anything relevant
not already covered by this article.

The article presents a total of 87 methods, but this number gets quickly
reduced as most of the methods focus on different problems. The article also
contains duplicates because many of those methods are just improvements of
the previous methods. So sometimes, the same underlining concepts are listed
multiple times.

Only 59 of the listed methods are about static analysis (the rest is about
dynamic analysis). The static analysis methods are split by their target use case

20

1.5. Prior art

and language. This split narrows the search even further. For example, only 7
static analyses for Java (including duplications) target the correct use case.

Methods that focus on different use cases are generally not usable. They
can make simplifications that might render them useless for different purposes.
The article splits the methods by the following use cases:

Exception usage analysis These methods produce statistics about the usage
of exception handling constructs. They do not analyze exception pro-
pagation, which means they are not suitable for this project.

Exceptional control flow analysis These analyses aim to construct a CFG
that accounts for exception handling. The constructed CFG could be
theoretically used as a basis of the analysis. However, the CFG must
preserve the types of propagated exceptions. This is generally not
necessary for the intended purpose, therefore, not done.

Uncaught exception analysis This use case utilizes the analysis to detect un-
caught exceptions that can terminate the program. This use case can
be easily modified for documenting API endpoints. Each endpoint can
be considered a small separate program, and the thrown exceptions are
precisely those that need to be documented.

Analysis working with different languages may or may not be usable. It
depends on the similarities and differences between the two languages and
also on the analysis approach. Typically, an analysis will not support features
that do not exist in a given language. So the question becomes if it is possible
to extend it to support the non-overlapping features of the second language.
However, this question tends to be hard to answer before actually trying. For
example, even if the missing features could be added, the approach may not
support them well enough – resulting in low precision. For this reason, the
rest of this section is divided by the analysis target language.

1.5.1 Existing solutions for Kotlin
Kotlin was first officially released in 2016 [21]. The article mentioned above
was written before this release. Therefore, the article does not mention Kotlin,
and I could not find any other research in this area. So the situation is the same
as with the absence of libraries for the static analysis.

21

1. Initial analysis

The only related work on this topic (that I am aware of) is a term work [4]
for the course NI-APR done by Václav Málek and me. This work aimed to
solve the same problem as this thesis and, in fact, was an inspiration for me
to choose this topic. The developed analysis was always meant as a term work
and not something that could be later used in practice. The analysis supported
only a carefully selected subset of features to make its implementation doable
as a term work.

The work uses a constraint system capable of analyzing the object-oriented
feature of Kotlin. The constraints rely on type information provided by the
compiler’s type analysis. The limitation of this approach is that it cannot
precisely analyze higher-order functions and, in general, any imprecisely typed
expression. The analysis cannot determine which exact function is passed as an
argument; it knows only its type/signature. Therefore, calling a function value
is approximated as a call to any function with the matching signature. This
approximation is too coarse for practical use, and it cannot be easily improved.

In summary, this term work can be seen as a proof of concept for this thesis,
but other than that, it is not helpful. I have not reused any code from this
work as I had to use a completely different approach. However, I have used the
knowledge and experience gained while working on the term work.

1.5.2 Existing solutions for Java
A significant part of the overview article focuses on Java. Java is one of the
closest languages to Kotlin in terms of semantics. So, in theory, an analysis
for Java might be possible to modify for Kotlin. The problem is that this
is true only for Java version 8 (and newer) because this was the version when
lambdas were introduced [28]. Java 8 was released in 2014 [27]. Since most
of the research was published before, these analyses generally do not support
functional programming.

Without proper support for higher-order functions, any analysis will have
the same problem as the term work. Even though the research is outdated, it
still has some value. It shows how this type of analysis can be implemented for
an object-oriented language.

The first example comes from the paper “An uncaught exception analysis
for Java” [22] from 2002. The analysis was implemented for Java 1.3, so it
supports only the language’s core features (from today’s point of view). The

22

1.5. Prior art

goal of this analysis was to improve the precision of checked exceptions in Java.
The primary improvement was to make the analysis inter-procedural instead
of intra-procedural (which is how checked exceptions work). This analysis
is similar to the term work as it also uses constraints. It also depends on the
type information, so it has similar limitations. However, it directly supports
assignment operation using unification – which the term work did not.

The second showcased paper, “Automatic documentation inference for
exceptions” [2], is more intriguing. It deals with the same target use case as this
thesis – documenting exceptions. The solution proposed in this paper goes
even farther in this regard compared to this thesis. It not only analyzes the
types of exceptions but also documents the conditions under which they can
happen. The analysis first identifies throw statements from where exceptions
can propagate unhandled by propagating the exceptions. In the second step,
the analysis goes back to each throw statement and symbolically executes
paths leading to these throws. In this way, the analysis creates the conditions
describing when each exception is thrown.

Using symbolic execution for this purpose is interesting but, in my opinion,
not necessary to document single-purpose exceptions. Their whole idea is that
there is only a single reason for each exception. Therefore, it should not be hard
to document this reason manually.

1.5.3 Existing solutions for other languages
Scala is another language semantically close to Kotlin, but like with Kotlin,
there is no published research – neither the authors of the overview article
nor I have found any. There is some research for C++ and Ada, but these
languages significantly differ from Kotlin. However, I was able to find some
valuable research for ML.

ML is a functional language, so a good exception analysis for ML must
deal with higher-order functions. On the other hand, ML does not support
object-oriented programming. Since Kotlin is an object-oriented language, the
analysis would have to be extended to cover these features. I have found several
papers that correctly handle higher-order functions, and I will present those
that I have considered in more detail.

The first one is “Type-based analysis of uncaught exceptions” [23]. Initially,
this analysis was based on a CFG analysis that tracked the flow of functional

23

1. Initial analysis

values between function calls. The authors were not satisfied with the per-
formance of that solution and implemented another one based on type analy-
sis.† The type analysis works by defining a custom type system that includes
information about propagated exceptions. Additionally, the analysis uses
a special type inference algorithm. The inferred type of each function then
contains the propagated exceptions, which is a result of the analysis.

The type analysis is really complex (at least for me). I have decided not to
use this approach because I was not sure if I could adapt it to support features
in Kotlin. Adapting it could be potentially very hard because Kotlin does not
have the same type system as ML.

The second paper is named “An abstract interpretation for estimating
uncaught exceptions in Standard ML programs” [34]. As the name suggests,
it uses a method called abstract interpretation. An interesting property of
this analysis is that it uses a custom intermediate language instead of directly
analyzing ML code.

Conceptually, abstract interpretation analyzes the program by directly
running it. It is a static analysis because it uses an abstract representation of
the program state instead of exact values. The use of the abstract state is what
causes the approximation. By choosing the right abstract state, it is possible to
achieve a high level of precision.

The analysis implementation is similar to an interpreter (hence the name).
It keeps track of possible values at each location (for example, variable). The
possible states are represented in the form of a finite lattice. A new assignment
to a location is implemented using unification which means that the old values
are always preserved. With a proper unification and correctly chosen state,
the lattice has a fixed point. The presence of a fixed point ensures that the
analysis terminates because, at that point, the program state cannot change
any further. When that happens, the analysis can return an answer because it
has safe approximations for values in all locations.

†The CFG algorithm had theoretical quadratic time complexity, and the authors deemed it
impractical for large programs. Based on their data, I do not think this type of performance
would be a problem for this project. Each endpoint usually calls only a small portion of the
whole program. Also, hardware got significantly better since 2000, when this analysis was
published.

24

ChapteR 2
Analysis of the Kotlin

programming language

This chapter will present my analysis of the Kotlin programing language.
I will focus on topics that influenced this thesis, mainly the semantics of
features that impact the static analysis design. Furthermore, I will describe
how these features are implemented in the Kotlin compiler, specifically in the
Kotlin IR. Knowing these implementation details is essential to understanding
the static analysis design described later in chapter (3). My goal is also to
highlight the language complexity I had to deal with during the static analysis
implementation.

Kotlin is an extensive language with many advanced features. Therefore,
it is impossible to cover everything precisely without writing a new language
specification. For this reason, I will intentionally omit some details, skip less
interesting features, and make some simplifications.

All the information in this chapter represents my most up-to-date know-
ledge of the language. I gained that knowledge incrementally while working
on the analysis, and the chapter does not reflect this process. The development
and learning process will be described later in chapter (4), together with some
of my mistakes.

This entire work is based on Kotlin version 1.6.10. While Kotlin is a relat-
ively stable language, it is in active development, and new features are added
with each release. New versions are mostly backward compatible, but incom-
patible changes are allowed in some specific situations [17]. On the other hand,

25

2. Analysis of the Kotlin pRogRamming language

the compiler code has no backward compatibility guarantee. The IR is naturally
more stable since a significant amount of code in the compiler depends on it.
However, even the IR usually has some differences between major versions. To
summarize: anything in this chapter may become outdated, especially things
related to the compiler implementation.

Some information in this chapter is based on the official Kotlin document-
ation [16] and the language specification[1]. Nevertheless, I frequently had to
rely on my experience with the Kotlin ecosystem and a lot of reverse engineer-
ing. The reason is that the Kotlin compiler is undocumented, and the language
documentation does not cover everything.

The following section describes the Kotlin IR general properties. The second
section presents examples of the reverse engineering methods that I have used
while working on this project. The section after that contains information about
the Kotlin standard library. All the remaining sections in this chapter are about
analyzing individual Kotlin features.

2.1 IR description
The Kotlin IR has a relatively high-level abstraction. That brings it much closer
to the source code than to the native code. The IR has direct support for most
Kotlin features and therefore is quite complex.

The remaining features (mostly syntax sugar) are lowered by the front end
to the features supported by IR. An example of such a feature is a destructuring
declaration that the front end transforms into multiple individual assignments.
This chapter skips description of most of those features as the static analysis
does not directly implement them. Here is a list of the most notable features
not covered for this reason:

• value classes

• sealed classes/interfaces

• data classes

• companion objects

• anonymous classes

26

2.1. IR description

• functional interfaces

• type aliases

• class delegation

• annotations

• operator functions

• infix function

The IR is implemented as a hierarchy of classes and interfaces in the
package org.jetbrains.kotlin.ir of the Kotlin compiler [20]. At the top
of the hierarchy is the interface IrElement. Every IR member/element (like
a declaration or an expression) implements this interface.

The IR has a form of a graph with a structure similar to an AST. How-
ever, compared to an AST, the IR additionally contains semantic information
obtained during the semantic analysis done by the front end. For example, all
symbols and types are already analyzed and resolved. Also, in contrast to an
AST, the IR graph is not a formal tree since the resolved symbols have back-
references to their declarations. There is still a tree at the core of the IR in some
sense, as there is a strong parent-child relation between elements. This tree can
be traversed using a visitor pattern [8].† Thevisitor pattern can be implemented
by inheriting IrElementVisitor.

While working with the IR, it is helpful to represent it in a human-readable
form. Since the IR contains cycles, it cannot be directly serialized or printed.
However, the visitor pattern can be used to print the IR structure while
replacing the back-references with the declarations symbol name. This is what
a dump method of the IrElement does.

I will use the dump output through the rest of this chapter to explain how
the Kotlin features are represented in the IR. To explain the implementation of
each feature, I will present some code and its equivalent IR dump. Even though
the dump is technically human-readable, it still becomes quickly overwhelming
for larger code segments. For this reason, I will always showcase only the
interesting piece of the IR, omitting the rest.

†It is also possible to transform the IR using IrElementTransformer visitor, but this will
probably not be required for the static analysis.

27

2. Analysis of the Kotlin pRogRamming language

The IR dump does not always match the class structure, especially in terms
of names. I will be describing the element classes and their properties as they
are declared in the code. So there will be a slight mismatch between the
examples and their descriptions, but it should be clear how to match them
together.

To keep this chapter shorter, I will leave out an explanation of some IR
elements that are not that relevant for the static analysis. The omitted elements
include, for example, classes IrFile or IrBlock. Also, I will not describe the
elements and their dump in full detail – again, skipping things that are not that
important to this thesis.

2.2 Reverse engineering methods
I have used several reverse engineering methods to learn more about Kotlin and
the implementation details of its compiler. It is important to know that I have
used these methods in combination with my prior experience and information
from the documentation. Just relying on reverse engineering is not a good
idea as it is easy to miss some crucial details or edge cases. The presented
methods are not necessarily overlapping each other. In fact, I have often used
a combination of these methods.

The simplest method I have used was to write some code, run it and observe
the result. This approach is suitable for analyzing unexpected semantics of
nontrivial constructs. It is also helpful for testing if the compiler even supports
such constructs. For example, this way, I have discovered that Kotlin does not
support getters and setters for local properties.

To analyze how the compiler implements some functionality, I first down-
loaded the compiler sources from the GitHub repository [20]. In the case of
simpler features, it was enough for me to just look through the compiler code.
The main classes to inspect are those related to the IR. A good place to start
is the IrElementVisitor since it lists all the base IR elements.

To get a sense of more complicated features, I had to inspect the IR
dynamically. For that, I have used a standard JVMdebugger.† There aremultiple
ways to attach a debugger to the compiler. My preferred approach for this
particular use case is to use a library called Kotlin compile testing [32]. This

†Kotlin compiler is written in Kotlin JVM.

28

2.3. The Kotlin standard library

library is used for testing compiler plugins, and as such, it can call the compiler
from Kotlin code. After getting that library, I created an empty plugin with
a simple test. Then I set up the library as if I wanted to test the plugin. That
way, I could attach a debugger to my code and put a break-point into any part
of the compiler.

The debugger makes it possible to traverse and inspect the IR hierarchy.
Debugging is a valid technique to understand the IR structure, but it is time-
consuming. It is better to dump the IR into the readable form for a quicker
high-level overview. To make this process even faster, I have created a special
compiler plugin whose only purpose is to print the IR dump representation.
I have also used this plugin to create all the IR examples in this chapter.

Another helpful approach is to analyze what the compiler produces as an
output, which is the JVM bytecode in the case of Kotlin JVM. As was mentioned
previously, Kotlin supports additional targets like JavaScript or the LLVM
bytecode. Each platform supports a (different) limited set of basic features.
Therefore the compiler musts convert the more complex features into simpler
ones, and it does so in a slightly different way on each platform. Knowing
how some of these conversions work was essential for me, especially when
designing the analysis. Default arguments (described later in (2.6.3)) are
a great example of a feature where I have used JVM bytecode decompilation.

One way to learn how these conversions work is to inspect the compiled
code (either directly or by decompiling it). However, there is a better approach.
Kotlin puts a strong emphasis on having great bi-directional interoperability
with Java [18]. There must be some mapping between Kotlin and Java features
for the interoperability to work. So in the case of Kotlin JVM, most of these
conversions are indirectly documented by this mapping. The documentation
can be found in the Java interoperability guide [13]. Using this method, it is, for
example, possible to learn that properties are internally handled as methods.

2.3 The Kotlin standard library
Every project written in Kotlin must include the standard library. Without it, it
is impossible to write any meaningful program. The standard library contains
implementation for the most fundamental things like numbers, strings, or

29

2. Analysis of the Kotlin pRogRamming language

arrays. On the other hand, it also has many high-level concepts like collections
and functions for collection transformations like map or filter.

The standard library is mainly implemented in Kotlin and compiled by the
Kotlin compiler. The rest of the implementation is in native code and, therefore
platform dependent.† It has a special handling from the compiler as some things
would not be possible to implement in regular Kotlin code. The standard library
delegates some parts of its implementation to existing libraries for the specific
platform. For example, on the JVM target, the Kotlin standard library delegates
many things to the standard library of Java. This native code in the standard
library presents the same problem as all the other native code or closed-source
libraries.

All basic types in Kotlin are objects. This is true even for types usually
considered as primitives like Int, Double, Char, or Boolean. Compared to Java,
Kotlin does not expose these types as true primitives. Instead, it performs
necessary autoboxing and unboxing (as Java does in some cases).

All primitive types can be represented as constants if their value is known
during compilation. The simplest example is a literal expression like 1 or false.
Another important constant is the null expression. IR stores these constants
in a class IrConst that holds the constant type and value. Example dump
representing a true constant is shown in the listing (2.1).

/*
* CONST Boolean type=kotlin.Boolean value=true
*/
true

Listing 2.1: Boolean

Because numbers are objects, all the basic arithmetic operations are imple-
mented asmethods of those objects. For that reason, the Kotlin IR does not have
any particular constructs to represent these basic operations. Instead, they are
represented as function calls. Some of these calls are then substituted for native
instructions by the back end as they cannot be implemented in the library.

Arrays are another important group of classes implemented in the standard
library. There is a special array type for each primitive type, for example,

†The native code can be implemented in another language, such as Java (on the JVM
platform).

30

2.4. Exceptions

IntArray or DoubleArray. Then there is also a generic array class Array
that can hold objects of the specified generic type. The IR does not have any
direct operations related to Arrays, and the standard library handles everything.
However, similarly to the primitive types, some things must be implemented
natively.

The last special class that is mentioned here is String. Strings can also
appear in the form of literals, in which case they are represented as other
constants via the IrConst class. Strings support a join operation called
interpolation. This operation is used to create a new string by joining several
string literals and other objects in one expression. Objects that are not strings
are first converted to String by calling their toStringmethod, but the IR does
not explicitly do that.

The interpolation is represented as IrStringConcatenation class on the
IR level. This class has a property arguments, which is a list of expressions.
Example IR of some interpolation is shown in the listing (2.2). The line starting
with GET_VAR is a read from a local variable, which will be explained later
in (2.6.1). The important thing in the listing is the absence of any explicit
conversion to String even though the variable has a type Int.

val i = 1

/*
* STRING_CONCATENATION type=kotlin.String

* CONST String type=kotlin.String value="i: "

* GET_VAR 'val i: kotlin.Int ...' type=kotlin.Int origin=null

* CONST String type=kotlin.String value="\n"
*/
"i: $i\n"

Listing 2.2: String concatenation

2.4 Exceptions
Exceptions are the primary focus of this project and, as such, will be explained
first. Exceptions are an excellent example of a feature that Kotlin almost

31

2. Analysis of the Kotlin pRogRamming language

entirely took over from Java.† There are several key concepts to know about
exceptions:

• what is an exception,

• what action results in an exception,

• how to handle an exception,

• and how do exceptions propagate through the program.

2.4.1 What is an exception
An exception is a regular class instance that inherits from kotlin.Throwable.
Any object that is not an instance of Throwable cannot be used as an exception.
Apart from this difference, an exception is just a regular object. It supports
all the usual operations. For example, it can have methods or be stored in
a variable.

Even though using an object of type Throwable is valid, more common is to
use an object of a different class that only inherits from Throwable. There are
many other exception classes in the standard library. Developers can also define
custom exceptions by inheriting any of those classes.

Each exception contains a stack trace, a description, and an optional cause
(in the form of another exception). The exception/class name is usually chosen
to describe what has happened. Using the exception name in this way is the
whole idea behind the single-purpose domain exceptions. Therefore, the
exception type is the only thing the static analysis needs to track to fulfill its
use case. The rest of the exception content is not of interest.

2.4.2 Throwing an exception
Exceptions can be thrown either explicitly, using the keyword throw, or
implicitly by another action. The throw keyword takes an expression that
represents the thrown exception. In the IR throw has a dedicated class IrThrow
(example in the listing (2.3)). It is one of the simplest IR elements since it only
contains a single child expression and has no other significant properties.

†With the notable absence of checked exceptions.

32

2.4. Exceptions

/*
* THROW type=kotlin.Nothing
* CONSTRUCTOR_CALL 'public constructor <init> () declared in

kotlin.Throwable' type=kotlin.Throwable origin=null↪→
*/
throw Throwable()

Listing 2.3: Throw

Exceptions are thrown implicitly if the program performs some illegal
operation. Here are some examples of such operations:†

• Dereferencing a null pointer

• Using a negative number as an array index

• Allocating more memory than available

Each of these exceptions represents a whole category of exceptions. This
distinction impacts the analysis as each category must be handled differently.
Dereferencing a nullable pointer is an explicit operation since Kotlin has a null
safety built into its type system. The Kotlin compiler generates guards around
potentially unsafe dereferences. The generated guard then throws the null
pointer exception explicitly. Listing (2.4) shows the guard in decompiled Java
bytecode.

The guard call is represented in the IR as a regular function call to a special
function kotlin.internal.ir.CHECK_NOT_NULL. I will skip what a call in IR
looks like for now, as it will be covered in (2.6). During compilation, the back
end replaces this special function call with a call to a standard library function
kotlin.jvm.internal.Intrinsics.checkNotNull.

ArrayIndexOutOfBoundsException represents exceptions thrown directly
by the JVM because of some instruction other than throw. This specific
exception can occur only when accessing an array, so there is a specific set
of instructions that can cause it. Another example of such an exception
is ArithmeticException. These exceptions are theoretically possible to analyze
using static analysis as they depend only on the program semantics.

†The presented exceptions are taken from the JVM. Other targets generally use equivalent
exceptions from the kotlin package.

33

2. Analysis of the Kotlin pRogRamming language

// Source code
fun add1(i: Int?) = i!! + 1

// Decompiled code (Java)
public static final int add1(@Nullable Integer i) {

Intrinsics.checkNotNull(i);
return i + 1;

}

// kotlin.jvm.internal.Intrinsics (Java)
public static void checkNotNull(Object value) {

if (value == null) {
throwJavaNpe();

}
}

Listing 2.4: Not-null assertion

On the other hand, the OutOfMemoryError is very hard to analyze using
static analysis.† The analysis of this exception is problematic because it depends
on the execution environment and runtime implementation. IOException
is a similar case.

2.4.3 Exception handling
A thrown exception can be caught using a try-catch expression. More speci-
fically, exceptions thrown in a try block can be handled by code in a catch block
(handler). It is possible to have multiple handlers in one try-catch expression,
but each exception can be handled only by a single handler. The handlers handle
only exceptions thrown from the current try block.

Each handler specifies a variable and its type. This type is used to determine
which exception can be handled by the handler. It handles only exceptions that
are instance of this type.‡ If multiple handlers could be selected, then the first
one is prioritized.

A handler can throw a new exception. For example, it can use the caught
exception to cause the new exception. Exceptions thrown in a handler are not

†Not counting the trivial case when the analysis predicts any allocation can throw this
exception.

‡This implicitly means that the exception type can also be a subtype of the specified type.

34

2.4. Exceptions

handled by the other handlers of the same try-catch expression. A handler can
also rethrow the handled exception.

An example of the try-catch IR is shown in the listing (2.5). The IR represents
this whole expression as a single class IrTry. The class has properties
tryResult, catches and finallyExpression. tryResult is an expression
representing the try body. The property catches is a list of IrCatch, which are
the handlers. The IrCatch contains a property catchParameter (the variable
including its type) and a property result (the handler body). There are also
two integer constants as a placeholder for the content of both bodies.

/*
* TRY type=kotlin.Int
* try: BLOCK type=kotlin.Int origin=null
* CONST Int type=kotlin.Int value=1
* CATCH parameter=val e: kotlin.Throwable [val] ...
* VAR CATCH_PARAMETER name:e type:kotlin.Throwable [val]
* BLOCK type=kotlin.Int origin=null
* CONST Int type=kotlin.Int value=2
*/
try {

1
} catch (e: Throwable) {

2
}

Listing 2.5: Try-catch

The property finallyExpression represents a finally block that is option-
ally a part of the try-catch. Finally block is always called after all code from
the rest of the try-catch. Finally is called even if an unhandled exception
is being propagated. In such a case, the finally block gets evaluated, and then
the exception continues its propagation. The finally block cannot interact
with this exception. It can, however, throw another exception. If that happens,
the exception from finally has a priority over the previously thrown excep-
tion. The previous exception is therefore discarded. The dump of IrTry with
a finally block is shown in the listing (2.6).

A try-catch being an expression is a significant difference from other
languages like Java. To understand how this feature works, it is first necessary
to understand the evaluation of blocks. In general, expression blocks evaluate
to their last statement if it is an expression. If the last statement is not an

35

2. Analysis of the Kotlin pRogRamming language

/*
* TRY type=kotlin.Int
* try: BLOCK type=kotlin.Int origin=null
* CONST Int type=kotlin.Int value=1
* finally: BLOCK type=kotlin.Unit origin=null
* CONST Int type=kotlin.Int value=2
*/
try {

1
} finally {

2
}

Listing 2.6: Try-finally

expression (or the block is empty), then the block technically evaluates to
kotlin.Unit. However, from a practical point of view, it does not have value
since it can no longer be used as an expression. Also, if the block throws an
exception, the result does not effectively exist and cannot be accessed.

In the case of the try-catch, there are multiple blocks. The rule is that the
expression evaluates to the block that is evaluated to its end. If the try block
does not throw an exception, its value is used. Alternatively, the value comes
from the handler that handles the exception thrown in try. The content of
a finally block does not affect this rule, and a finally block never produces
a value.

2.4.4 Exception propagation
How exception propagation works can be described using an imaginary data
structure called a handler stack.† Thehandler stack is a data structure that holds
all the try-catch expressions that can eventually handle exceptions. The stack
structure makes it so the handlers can be later accessed in the correct order.

Every time the program enters a try block, its try-catch expression is added
to the handler stack. Once the program leaves a try block, the handler stack
is popped – restoring the state before entering the try block. If an exception
is thrown, the execution is paused, and the runtime starts popping the handler

†Actual runtime implementation is platform-specific.

36

2.5. Control flow

stack. The runtime continues popping the handler stack until it finds a try-
catch with a matching handler. If the popped try-catch has a finally block,
this block is executed before another try-catch is popped from the stack. If
there is a correct handler, the execution continues from the handler block,
and the runtime stops popping the handler stack. If the stack is empty and
the exception is still not handled, then the program is terminated with that
exception as a result.

2.5 Control flow
Control flow dictates which program instruction is executed next. Kotlin has
multiple constructs that affect the control flow. These are conditions, loops,
jumps, and function calls.

2.5.1 Conditions
Conditions are used to create branches in the control flow. Only one of the
branches can be executed in one pass (if any). Which one is executed depends
on the condition construct semantics. There are three different condition
constructs in Kotlin:

• if + else keywords

• when keyword

• Elvis operator

From the IR perspective, all these constructs are represented as IrWhen. The
IrWhen has a list of branches (IrBranch). Each branch contains an if expression
(condition) and a then expression (body). Condition determines which branch
body gets executed. It is the first branch in the list whose condition evaluates
to true. Subsequent evaluation of all remaining branches (including their
conditions) is skipped. The branches are in the same order as in the source
code.

An else branch is an ordinary branch with the condition set to true. The else
branch is not always required, and in fact, it is possible to have only a single
branch. If else branch is present, it is always in the last position.

37

2. Analysis of the Kotlin pRogRamming language

Example of a primitive when is shown in the listing (2.7). Each branch in
this listing has a special TYPE_OP expression wrapping the constant. Static
analysis can safely ignore this expression as it only tells the compiler that it
should discard the result of the expression it wraps.

/*
* WHEN type=kotlin.Unit origin=WHEN

* BRANCH
* if: CONST Boolean type=kotlin.Boolean value=true
* then: BLOCK type=kotlin.Unit origin=null
* TYPE_OP type=kotlin.Unit origin=IMPLICIT_COERCION_TO_UNIT

typeOperand=kotlin.Unit↪→
* CONST Int type=kotlin.Int value=0

* BRANCH
* if: CONST Boolean type=kotlin.Boolean value=false
* then: BLOCK type=kotlin.Unit origin=null
* TYPE_OP ...
* CONST Int type=kotlin.Int value=1

* BRANCH
* if: CONST Boolean type=kotlin.Boolean value=true
* then: BLOCK type=kotlin.Unit origin=null
* TYPE_OP ...
* CONST Int type=kotlin.Int value=2
*/
when {

true -> 0
false -> 1
else -> 2

}

Listing 2.7: When

The compiler converts all types of conditions to the same representation
used for when. The listing (2.8) shows a semantically equivalent if to the when
from listing (2.7). The if IR is practically the same as the when IR, except origin
is IF instead of WHEN. However, the origin is insignificant for the static analysis.

Kotlin conditions can be used as expressions, but only if they are exhaust-
ive.† The condition expression is evaluated to the expression of its body. In

†Condition is exhaustive if the compiler can prove that there will always be some branch
evaluated for every possible program state.

38

2.5. Control flow

if (true) {
0

} else if (false) {
1

} else {
2

}

Listing 2.8: If

the previous listing (2.7), the result of the when is not used, so the body result
is discarded, and the condition type is Unit.

An example of a condition whose value is later used is shown in the
listing (2.9). In this case, the type of IrWhen is Int, and there is no TYPE_OP. At
the same time, the listing demonstrates how an elvis operator is transformed
into IrWhen. The elvis operator returns the alternative expression if the value
is null (the first branch). Otherwise, it returns the value itself (the else branch).
The value is stored in a temporary variable because its expression must be
evaluated only once. The EQEQ call in the first condition determines if the value
is null.†

fun example(optionalInt: Int?) =
/*
* BLOCK type=kotlin.Int origin=ELVIS

* VAR IR_TEMPORARY_VARIABLE name:tmp0_elvis_lhs ...
* GET_VAR 'optionalInt ...

* WHEN type=kotlin.Int origin=null
* BRANCH
* if: CALL 'public final fun EQEQ ...
* arg0: GET_VAR 'val tmp0_elvis_lhs ...
* arg1: CONST Null ...
* then: CONST Int type=kotlin.Int value=0
* BRANCH
* if: CONST Boolean ... value=true
* then: GET_VAR 'val tmp0_elvis_lhs ...
*/

optionalInt ?: 0

Listing 2.9: Elvis operator

†This call is a good example of how primitive operations are represented as functions.

39

2. Analysis of the Kotlin pRogRamming language

2.5.2 Loops
Loops are used to evaluate some block of code (loop body) multiple times.
The evaluation repeats as long as some condition is met. Jump instructions
(introduced later in (2.5.3)) may also interrupt the loop. There are three different
types of loops in Kotlin: while, do-while, and for.

A while and do-while loops differ only by the moment when the loop
condition is tested. Thewhile loop tests the condition before each iteration, and
do-while loop does that after each iteration. For that reason body of do-while
loop is always executed at least once.

In the IR, they are represented as two different classes: IrWhileLoop and
IrDoWhileLoop, respectively. However, these classes are practically the same
as both extend IrLoop, which defines their content. The IrLoop contains a body,
condition, and an optional label. The label is used together with break and
continue, explained later in (2.5.3).

An example of a trivial while loop is shown in the listing (2.10). The IR
of do-while loop is almost the same. There are two notable differences. One
is that WHILE is replaced with DO_WHILE in the IR dump. The second one is in
the wrapping block, which in the case of do-while, envelopes the whole loop
instead of only the body.†

/*
* WHILE label=exampleLabel origin=WHILE_LOOP
* condition: CONST Boolean type=kotlin.Boolean value=true
* body: BLOCK type=kotlin.Unit origin=null
* CONST Int type=kotlin.Int value=1
*/
exampleLabel@while (true) {

1
}

Listing 2.10: While

A for loop in Kotlin is not the same as a for loop in languages like Java.
Instead, it is more similar to a for-each loop since it loops over an iterator
(kotlin.collections.Iterator). Kotlin standard library provides multiple
functions that create these iterators. Example of such function is until. A loop

†The wrapping block limits the scope of variables declared in the loop. The difference
is because variables declared in the do-while body can be accessed in the loop condition.

40

2.5. Control flow

for (i in 0 until 10) is in this case equivalent to a more standard Java
syntax for (int i = 0; i < 10; i++).

The for loop does not have a direct representation in the IR. Instead,
it is converted to an equivalent while loop. Listing (2.11) shows how this
conversion would look if done directly in Kotlin instead of the IR. The exact
IR is intentionally not disclosed since it is fairly verbose.

for (i in 0 until 10) {
i

}

// Converted approximately to
val tmp0_iterator = (0 until 10).iterator()
while (tmp0_iterator.hasNext()) {

val i = tmp0_iterator.nextInt()
i

}

Listing 2.11: For

2.5.3 Jumps
A jump instruction transfers execution to a different part of the program. Kotlin
specifically does not have any goto instruction and supports only the following
jumps:

• break

• continue

• return

• throw

The keyword throw is related to the exception handling and was discussed
in previous section. The keyword return stops the execution of the current
function. The execution then continues after the function call that has called
the current function. The keyword return is described in more detail in (2.6.5).

The keywords break and continue are very similar to each other. They
both alter the execution of a loop. The only difference between them is that

41

2. Analysis of the Kotlin pRogRamming language

break jumps right after the whole loop, while continue jumps at the end of the
loop body. Therefore, break terminates the execution of a loop while continue
starts a new iteration if the loop condition is still met.

Since loops can be nested, there must be a way to determine which loop
should be affected by these statements. This loop resolution is implemented
by labels. Both loop and break/continue can optionally have a label. If
break/continue does not have a label, then it always belongs to the innermost
loop (regardless if the loop has a label or not). If break/continue does have
a label, then it is related to the loop with the same label. If there are multiple
loops with the same label, then the innermost one with a matching label
is selected.

In the IR, break/continue is represented as IrBreak/IrContinue respect-
ively. Both classes inherit IrBreakContinue, which contains the optional label.
An example of the IrBreak IR dump is shown in the listing (2.12).

exampleLabel@while {
/*
* BREAK label=null loop.label=exampleLabel
*/

break
}

Listing 2.12: Break

2.5.4 Function calls
A function call transfers the program execution to the beginning of the called
function body. Which function is called depends on overloading and dynamic
dispatch, which are described in (2.6.6). The function execution is terminated
in one of these scenarios:

• execution reaches the end of the function

• return instruction is executed

• exception is thrown

The execution resumes right after the function call in the first two cases. If
an exception is thrown, the control flow is decided by the exception propagation

42

2.6. Functions

rules described in (2.4.4). The called function can call any other function.
Therefore, function calls can be arbitrarily nested. To support this feature,
the runtime store location of the function call (including the local variables)
in a structure named call stack.

2.6 Functions
Functions together with classes are the fundamental building blocks of Kotlin
programs. In contrast to Java, Kotlin supports proper functions, not just
methods. From the IR perspective, both functions and methods are represented
the same way as IrSimpleFunction. IrSimpleFunction inherits most of its
properties from IrFunction.† For example, listing (2.13) shows IR of the
simplest possible function with no parameters and without a body.

/*
* FUN name:foo visibility:public modality:FINAL <> ()

returnType:kotlin.Unit↪→
* BLOCK_BODY
*/
fun foo() {
}

Listing 2.13: Function declaration

IrCall is the IR class for all function calls. The listing (2.14) contains
an example of a function call that calls the function from the previous lis-
ting. IrCall holds a symbol to the called function. The class has several
other properties related to different features of functions. These features are
explained separately in corresponding subsections, and so are the function call
properties.

2.6.1 Local variables
Variables (or local variables) can be declared almost anywhere inside a function
body. Variable values are isolated between function calls. Therefore, each

†The IrFunction is also a base class for other special functions, most notably the
IrConstructor class.

43

2. Analysis of the Kotlin pRogRamming language

/*
* CALL 'public final fun foo (): kotlin.Unit declared in <root>'

type=kotlin.Unit origin=null↪→
*/
foo()

Listing 2.14: Function call

function can access only the variables it directly declares.† Variables can be
declared and later accessed by a read or write operation. Variables can be
potentially initialized with some value at their declaration.

The IR represents variable declaration using the class IrVariable. This
class contains a symbol of the declared variable, its type, and optionally an
initialization expression. There are also some flag properties, but these are not
important. Listing (2.15) shows an example of a variable declaration. If there
is no initialization expression, the second line in the listing (2.15) is missing.

/*
* VAR name:a type:kotlin.Int [var]
* CONST Int type=kotlin.Int value=1
*/
var a = 1

Listing 2.15: Local variable declaration

Reading from a variable is represented as IrGetValue. A variable write
is represented as IrSetValue. The IR of both operations is showcased in the
listing (2.16). Both of these classes contain a symbol associated with the target
variable. IrSetValue has an additional value expression which is the value
written to the variable.

It is possible to declare multiple variables with the same name in a single
function. However, they cannot be declared in the same scope.‡ Variables with
the same name have their own separate storage and do not affect each other.

†Unless some variable is captured, for example, by a lambda expression.
‡In some regards, Kotlin scoping is similar to classical block scoping from other languages,

but it is more complicated than that. The exact details are not that important for this thesis
since the compiler resolves these collisions. The Kotlin language specification [19] describes
the scoping in detail.

44

2.6. Functions

/*
* GET_VAR 'val a: kotlin.Int [val] declared in <root>.example'

type=kotlin.Int origin=null↪→
*/
a
/*
* SET_VAR 'var a: kotlin.Int [var] declared in <root>.example'

type=kotlin.Unit origin=EQ↪→
* CONST Int type=kotlin.Int value=2
*/
a = 2

Listing 2.16: Local variable access

Only a variable from the nearest enclosing scope can be accessed by its name.
The rest is shadowed and cannot be accessed directly. An example of shadowing
is shown in the listing (2.17). The IR dump does not contain information on
which variable the GET_VAR points to. However, this information is present in
the IR as an object reference to the specific variable declaration.

2.6.2 Parameters
Function parameters are a mechanism for passing objects between functions.
A function call must provide a matching argument for each declared parameter.
Arguments are passed by copying a reference (pointer) to the object in the
argument.

Inside the function body, a parameter is conceptually like an immutable
variable. It cannot be reassigned, but it may be shadowed by a variable. This
variable then can be reassigned.

In the IR, a parameter has its dedicated class IrValueParameter. It
and IrVariable both inherit from the same base class IrValueDeclaration.
Therefore, there is some relation between parameters and variables even in the
IR. For example, parameters are also read using the same operation IrGetValue.
The primary difference is that parameters have their declaration stored in
the IrFunction directly (and not in the function body). An example of the
parameter declaration can be seen in the listing (2.18).

To support calling a function with parameters, IrCall contains a list of all
the arguments. The listing (2.19) shows an example of such a function call.

45

2. Analysis of the Kotlin pRogRamming language

/*
* VAR name:a type:kotlin.Int [val]
* CONST Int type=kotlin.Int value=1
*/
val a = 1

/*
* WHILE ...
* body: BLOCK type=kotlin.Unit origin=null
*/
while (true) {
/*
* VAR name:a type:kotlin.Int [val]
* CONST Int type=kotlin.Int value=2
*/
val a = 2

/*
* GET_VAR 'val a: kotlin.Int [val] declared in <root>.example'

type=kotlin.Int origin=null↪→
*/
a

}

/*
* GET_VAR 'val a: kotlin.Int [val] declared in <root>.example'

type=kotlin.Int origin=null↪→
*/
a

Listing 2.17: Local variable shadowing

The argument value in the IR can be a complex expression, not just a constant.
These values are evaluated as part of the function call.

An argument can be optionally associated with the matching parameter
name. This functionality is known as named arguments. Named arguments
make it possible to pass the arguments in a different order.† The compiler takes
care of reordering the arguments back to the order of parameters. For example
foo(j = 2, i = 1) compiles to the same IR as regular foo(1, 2).

The ordering of arguments is significant because the order of arguments
(not parameters) decides the evaluation order. So the Kotlin compiler needs
to generate additional code to preserve the evaluation order. The compiler
generates the code only if it cannot prove that changing the evaluation order

†However, the primary use case is to improve the readability of calls with many arguments.

46

2.6. Functions

/*
* FUN name:foo visibility:public modality:FINAL <> (i:kotlin.Int,

j:kotlin.Int) returnType:kotlin.Unit↪→
* VALUE_PARAMETER name:i index:0 type:kotlin.Int
* VALUE_PARAMETER name:j index:1 type:kotlin.Int
* BLOCK_BODY
*/
fun foo(i: Int, j: Int) {
}

Listing 2.18: Declaration of function with parameters

/*
* CALL 'public final fun foo (i: kotlin.Int, j: kotlin.Int):

kotlin.Unit declared in <root>' type=kotlin.Unit origin=null↪→
* i: CONST Int type=kotlin.Int value=1
* j: CONST Int type=kotlin.Int value=2
*/
foo(1, 2)

Listing 2.19: Function call with arguments

does not change the program semantics. For this reason, the previous example
with constant arguments has the same IR, but the example in listing (2.20) does
not. In this example, the arguments are function calls that can have side effects.
Therefore, their evaluation order matters and must be preserved. The analysis
does not have to explicitly handle named arguments since they are resolved by
the compiler front end.

2.6.3 Default arguments
A default argument is declared as a parameter that has an associated expression.
If the function call does not provide an argument for the parameter, the
default argument is used instead. The default expression is stored in the
defaultValue property of the IrValueParameter class. An example is shown
in the listing (2.21).

The default value can be any expression valid in the function context. The
expression is not required to be valid at the call site. As a result, the expression
can access this and private members of the same class (in case of methods).

47

2. Analysis of the Kotlin pRogRamming language

/*
* BLOCK type=kotlin.Unit origin=ARGUMENTS_REORDERING_FOR_CALL

* VAR IR_TEMPORARY_VARIABLE name:tmp0_j type:kotlin.Int [val]
* CALL 'public final fun someFunction (x: kotlin.Int) ...
* x: CONST Int type=kotlin.Int value=2

* VAR IR_TEMPORARY_VARIABLE name:tmp1_i type:kotlin.Int [val]
* CALL 'public final fun someFunction (x: kotlin.Int) ...
* x: CONST Int type=kotlin.Int value=1

* CALL 'public final fun foo (i: kotlin.Int, j: kotlin.Int) ...
* i: GET_VAR 'val tmp1_i ...
* j: GET_VAR 'val tmp0_j ...
*/
foo(j = someFunction(2), i = someFunction(1))

Listing 2.20: Function call with named arguments

/*
* FUN name:foo visibility:public modality:FINAL <> (i:kotlin.Int,

j:kotlin.Int) returnType:kotlin.Unit↪→

* VALUE_PARAMETER name:i index:0 type:kotlin.Int
* EXPRESSION_BODY
* CONST Int type=kotlin.Int value=1

* VALUE_PARAMETER name:j index:1 type:kotlin.Int
* EXPRESSION_BODY
* CONST Int type=kotlin.Int value=2
*/
fun foo(i: Int = 1, j: Int = 2) {
}

Listing 2.21: Declaration of function with default arguments

It can also access preceding parameters. An interesting observation (from
the analysis perspective) is that the expression may throw an exception. An
exception produced by a default argument will only be thrown if the call does
not provide a value for the parameter.

The IR can recognize that an argument is missing because its value is not
in the IrCall list of arguments. The listing (2.22) shows such a function call.
As can be deduced from the example, the front end does not resolve default

48

2.6. Functions

arguments. Since default values can affect the exception flow, the static analysis
must implement support for this feature.

/*
* CALL 'public final fun foo (i: kotlin.Int, j: kotlin.Int) ...
* j: CONST Int type=kotlin.Int value=3
*/
foo(j = 3)

Listing 2.22: Function call with default arguments

It is worth looking at how the back end implements default arguments
to understand better how they work. The listing (2.23) shows a decompiled
code generated by the JVM back end. In summary: the back end generates
a wrapping function with an additional control parameter. That control
parameter is interpreted as a bit field, and it signals which arguments are
provided and which are not. The original call is replaced with a call to this
wrapping function. All the omitted arguments in the call are replaced with
nulls.†

// Kotlin code
foo(j = 3)

// Generated code
// Replaced call
foo_default(0, 3, 1, (Object)null);

// Wrapping function
public static void foo_default(int var0, int var1, int var2, Object

var3) {↪→
if ((var2 & 1) != 0)

var0 = 1;
if ((var2 & 2) != 0)

var1 = 2;
foo(var0, var1);

}

Listing 2.23: Implementation of default arguments

†More precisely, a missing argument is replaced with a default empty value determined by
the runtime type of the parameter. What is the default value is in general platform-specific. In
JVM, it is, for example, null for classes and 0 for whole numbers.

49

2. Analysis of the Kotlin pRogRamming language

2.6.4 Varargs
Varargs or variable arguments pass multiple values via a single parameter.
Varargs are more or less a syntax sugar as the same effect can be achieved with
an array. However, the compiler treats them as core functionality since they
are not resolved by the front end.

From the function perspective, varargs behave as if the parameter has a type
Array. This change of type can be seen in the listing (2.24). In the example, the
actual parameter type is an IntArray, and the parameter is marked as vararg.

/*
* FUN name:foo visibility:public modality:FINAL <>

(i:kotlin.IntArray) returnType:kotlin.Unit↪→

* VALUE_PARAMETER name:i index:0 type:kotlin.IntArray
varargElementType:kotlin.Int [vararg]↪→

*/
fun foo(vararg i: Int) {
}

Listing 2.24: Declaration of function with vararg parameter

The main difference is from the caller’s perspective. All the vararg values
are wrapped in the IrVararg object, as is shown by the listing (2.25). Varargs
without any value are represented precisely the same way as an omitted value
for a default argument.

/*
* CALL 'public final fun foo (vararg i: kotlin.Int) ...
* i: VARARG type=kotlin.IntArray varargElementType=kotlin.Int
* CONST Int type=kotlin.Int value=1
* CONST Int type=kotlin.Int value=2
*/
foo(1, 2)

Listing 2.25: Function call with vararg

Whatmakes the implementation of varargs complicated is a spread operator.
The spread operator allows passing an array into a vararg parameter. Such an
action cannot be done directly as the array size is generally unknown at the
call site. The spread operator is represented as the IrSpreadElement class. This

50

2.6. Functions

class only holds an expression of type array. The spread operator can be used
in combination with other values and can even be used multiple times. An
example of this situation is shown in the listing (2.26).

/*
* CALL 'public final fun foo (vararg i: kotlin.Int) ...
* i: VARARG type=kotlin.IntArray varargElementType=kotlin.Int

* SPREAD_ELEMENT
* CALL 'public final fun intArrayOf (vararg elements:

kotlin.Int) ...↪→
* elements: VARARG type=kotlin.IntArray ...
* CONST Int type=kotlin.Int value=1
* CONST Int type=kotlin.Int value=2

* CONST Int type=kotlin.Int value=3

* SPREAD_ELEMENT
* CALL 'public final fun intArrayOf (vararg elements:

kotlin.Int) ...↪→
* elements: VARARG type=kotlin.IntArray ...
* CONST Int type=kotlin.Int value=4
* CONST Int type=kotlin.Int value=5
*/
foo(*intArrayOf(1, 2), 3, *intArrayOf(4, 5))

Listing 2.26: Spread operator

Varargs can have default values, in which case it is always an array. The
default value is used when there is no value for the parameter. As a result, it
is no longer possible to directly call the function with an empty vararg.†

2.6.5 Return
All functions have a return type and return a value. The returned value is the
evaluation result of the function call expression. The return type is stored
as a returnType property of the IrFunction class. The return keyword has
a dedicated class IrReturn (an example is shown in the listing (2.27)). This
class has a property value representing the returned expression.

A function does not have to return a value explicitly. For these types of
functions, the compiler makes sure that the function evaluates to a value of

†A possible workaround is to use a spread operator on an empty array.

51

2. Analysis of the Kotlin pRogRamming language

/*
* FUN name:foo visibility:public modality:FINAL <> ()

returnType:kotlin.Int↪→
*/
fun foo(): Int {
/*
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='public final fun foo ():

kotlin.Int declared in <root>'↪→
* CONST Int type=kotlin.Int value=1
*/

return 1
}

Listing 2.27: Return

kotlin.Unit. Unit is similar to void from other languages as it represents
a missing value. However, in Kotlin, the Unit is implemented as a regular
singleton class / object class.

A function in Kotlin can be declared as a single expression using a = symbol.
The compiler front end transforms this form back to an ordinary function
declaration. So, for example, fun foo() = 1 produces exactly the same IR
as was in the listing (2.27).

2.6.6 Methods
Functions that are members of some class are called methods. Methods differ
from ordinary functions in three fundamental properties:

• Methods have a special parameter called a dispatch receiver.

• A method can override a method from the parent class/interface.

• Functions can be called only using a static call, while methods can also
use a virtual call.

The dispatch receiver is always present and must be an instance of the
method’s class. The dispatch receiver cannot change during the execution of
the method (it is not writable). The IR does not have a special class for methods,
so it uses the IrSimpleFunction class. The only difference for methods is the

52

2.6. Functions

presence of a value for the dispatchReceiverParameter property. An example
is shown in the listing (2.28).

class A {
/*
* FUN name:foo visibility:public modality:FINAL <> ($this:<root>.A)

returnType:kotlin.Unit↪→
* $this: VALUE_PARAMETER name:<this> type:<root>.A
* BLOCK_BODY
*/
fun foo() {
}

}

Listing 2.28: Method declaration

A dispatch receiver can be accessed using the this keyword. Even though
the dispatch receiver has an extra property in the declaration class, it does
not have a dedicated access instruction. The dispatch receiver is accessed by
IrGetValue as a regular variable, but it has a unique symbol <this>. The
dispatch receiver access is shown in the listing (2.29).

/*
* GET_VAR '<this>: <root>.A declared in <root>.A.foo'

type=<root>.A origin=null↪→
*/
this

Listing 2.29: This keyword

The function declaration IR has a property named modality. The modality
is related to method overriding. In all previous listings, the property was set
to FINAL. This property can have two other options: OPEN and ABSTRACT. The
modifier FINAL prohibits other methods from overriding the current method.
An OPEN method is possible to override, and at the same time, it must have
a body (the BLOCK_BODY in the IR). An ABSTRACTmethod can also be overridden.
However, it cannot have a body, and it must be overridden in the first non-
abstract child class. Both FINAL and OPEN methods can be a target of a static
call, but ABSTRACT methods cannot be. The following listing (2.30) shows an
example of an open and subsequently overridden method.

53

2. Analysis of the Kotlin pRogRamming language

open class A {
/*
* FUN name:foo visibility:public modality:OPEN <> ($this:<root>.A)

returnType:kotlin.Int↪→
* $this: VALUE_PARAMETER name:<this> type:<root>.A
* ...
*/

open fun foo() = 1
}

class B: A() {
/*
* FUN name:foo visibility:public modality:OPEN <> ($this:<root>.B)

returnType:kotlin.Int↪→
* overridden:
* public open fun foo (): kotlin.Int declared in <root>.A
* $this: VALUE_PARAMETER name:<this> type:<root>.B
* ...
*/

override fun foo() = 2
}

Listing 2.30: Method overriding

An example of a method call is shown in the listing (2.31). By default,
methods are called using the virtual call. Static and virtual calls differ in the
way they are dispatched. A static call uses a static dispatch which means that
the exact called function is determined at compile time. A virtual call uses
a dynamic dispatch, and in this case, the exact method can be determined only
at runtime. Which method is called depends on the dispatch receiver class. In
the IR, the call looks the same in both cases since the IR uses the IrCall class
for both static and virtual calls. Which dispatch is used can be determined only
by the class content.

There are several situations where a static call can be or must be used even
for methods. A static call is always used when the dispatch receiver is provided
using a super keyword. A super call always executes the directly overridden
method (relative to the currently evaluated method). This overridden method
is typically located in the direct parent class.† It is impossible to use a virtual call
with the super keyword because it would call the same method instead of the

†However, there are some exceptions since the parent class may inherit this method from
its parent without overriding it. Importantly the target method is always resolvable at compile
time.

54

2.6. Functions

class A {
fun foo() {
}

/*
* CALL 'public final fun foo () ...
* $this: GET_VAR '<this> ...
*/

fun callFoo() = foo()
}

Listing 2.31: Method call

overridden one. The super keyword is represented by a superQualifierSymbol
in the IrCall class. The super qualifier symbol points to the class of the
statically called method. An example is shown in the listing (2.32).

class B: A() {
override fun foo() {

/*
* CALL 'public open fun foo (): kotlin.Unit declared in <root>.A'

superQualifier='CLASS CLASS name:A modality:OPEN
visibility:public superTypes:[kotlin.Any]' ...

↪→
↪→
* $this: GET_VAR '<this> ...
*/

super.foo()
}

}

Listing 2.32: Super call

For a similar reason, private methods must always be called using a static
call. Otherwise, a wrong method could be called if a child declares its own
private method with the same signature. On the other hand, final (non-
overridable) methods may be called either by static or dynamic dispatch. The
dynamic dispatch can be used because final methods cannot be overridden nor
shadowed.

Kotlin, in general, does not allow method shadowing. Therefore, a class
cannot declare a new method that shares a signature with another method
from its parent class. The two exceptions are overridden methods and private
methods.

55

2. Analysis of the Kotlin pRogRamming language

2.6.7 Extension functions
Extensions are used to associate an additional function with a class outside
this class declaration. The function does not become a method of that class,
and it is always called via a static dispatch. Each extension function has an
extension receiver, which is different from the dispatch receiver. In the IR,
the extension receiver is stored in a property extensionReceiverParameter
of the IrFunction class. The listing (2.33) shows an example of an extension
declaration.

class A
/*
* FUN name:foo visibility:public modality:FINAL <>

($receiver:<root>.A) returnType:kotlin.Unit↪→
* $receiver: VALUE_PARAMETER name:<this> type:<root>.A
* BLOCK_BODY
*/
fun A.foo() {
}

Listing 2.33: Declaration of extension function

Extensions are a syntax sugar in the sense that they allow calling a function
with the same syntax as if it was a method. An example of the call is shown
in the listing (2.34). The same function can be implemented by passing the
extension receiver as an additional argument. In fact, this is the way the
compiler implements the extension functions.

An extension function can be declared inside another class, and in that case,
it becomes a method of that class. An extension method has both a dispatch
receiver and an extension receiver. This extension then can be overridden and
called using a dynamic dispatch resolved with respect to the dispatch receiver.
The extension receiver is never used for a dynamic dispatch.

The extension receiver can be accessed by the same this keyword as the
dispatch receiver. If the extension also has a dispatch receiver, there is a colli-
sion, and the extension receiver has a priority. The dispatch receiver can still
be accessed by a qualified this keyword. The qualified this is resolved by the
front end, and only the target variable symbol differs in the IR. This difference
is shown in the listing (2.35).

56

2.6. Functions

class A {
fun callFoo() {

/*
* CALL 'public final fun foo (): kotlin.Unit declared in <root>'

type=kotlin.Unit origin=null↪→
* $receiver: GET_VAR '<this> ...
*/

foo()
}

}

fun A.foo() {
}

Listing 2.34: Extension function call

class A {
fun B.fooA() {

/*
* GET_VAR '<this>: <root>.A declared in <root>.A.fooA'

type=<root>.A origin=null↪→
*/

this@A
}

fun B.fooB() {
/*
* GET_VAR '<this>: <root>.B declared in <root>.A.fooB'

type=<root>.B origin=null↪→
*/

this
}

}

Listing 2.35: Qualified this

2.6.8 Overloading
Two functions are overloadedwhen they share a name but do not have the same
signature. In JVM, the function signature is composed of the function name and
its parameter types. Which function is called depends on the argument types
(and the count of arguments). The overloading is resolved statically, so what
matters is the argument type known during compilation (not the exact type in
runtime).

57

2. Analysis of the Kotlin pRogRamming language

Kotlin has a more complicated overloading resolution because it also
considers extension receivers and default arguments. Overloading is handled
by the compiler front end. At the IR level, all the calls already have the proper
symbols resolved. For this reason, it is not necessary to explicitly handle
overloading in the static analysis.

2.7 Properties
Kotlin properties are a replacement for Java fields as their primary purpose
is to hold class data. However, they are more than just Java fields. They can
be declared outside of class in the global scope to represent global variables.
They can also have custom getters and setters (together known as accessors)
that alter their behavior.

Properties are in some sense similar to local variables. They have the
same syntax, and they also share some features. For example, they can both
have delegates, and both can be lateinit. However, local variables do not
support all the features of properties. Most notably, local variables cannot have
custom getters/setters, and they cannot be referenced (function references are
explained in (2.9.3)).

A property declaration is implemented by the class IrProperty. The most
important properties of this class are: backingField, getter and setter. The
property backingField contains a declaration for what can be considered an
equivalent of a Java field. The backing field is the actual entity in which
the property value is stored. A declaration of the backing field has a type
IrField that is almost identical to IrVariable (at least from the static analysis
perspective).

Accessors are implemented as regular functions via the IrSimpleFunction
class. A property getter is a function without parameters that returns the
property value. A property setter updates the property value and has one
parameter that holds the new value. Also, it does not return a value.

The listing (2.36) shows an example of the simplest possible property. It
is declared as val, meaning it is read-only, and it does not have a custom getter
– only an initializer. A property must always have a getter, so the compiler
generates a default one if none is explicitly provided. This default getter only
returns the field value. The field value is read similarly to how local variable

58

2.7. Properties

reads work. The only difference is that the class IrGetField is used instead of
IrGetValue.

/*
* PROPERTY name:foo visibility:public modality:FINAL [val]

* FIELD PROPERTY_BACKING_FIELD name:foo type:kotlin.Int ...
* EXPRESSION_BODY
* CONST Int type=kotlin.Int value=0

* FUN DEFAULT_PROPERTY_ACCESSOR name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='... fun <get-foo> ...
* GET_FIELD 'FIELD PROPERTY_BACKING_FIELD name:foo ...
*/
val foo: Int = 0

Listing 2.36: Property declaration

A backing field cannot be accessed directly from outside the property
declaration. To read a value from a property, the code must instead call the
property getter (example in the listing (2.37)). Since the getter is just a function
(though with a special name), the call uses the already introduced class IrCall.

val foo: Int = 0

/*
* CALL 'public final fun <get-foo> (): kotlin.Int declared in

<root>' type=kotlin.Int origin=GET_PROPERTY↪→
*/
foo

Listing 2.37: Property read

Mutable properties (declared as var) work the same way, except they must
also have the setter. Setters are implemented similarly to getters, except they
have a different name and slightly different default body. The listing (2.38)
shows the setter default implementation. The default setter writes to the
backing field using a class IrSetField (equivalent of class IrSetValue).

59

2. Analysis of the Kotlin pRogRamming language

/*
* FUN DEFAULT_PROPERTY_ACCESSOR name:<set-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* VALUE_PARAMETER name:<set-?> index:0 type:kotlin.Int
* BLOCK_BODY
* SET_FIELD 'FIELD PROPERTY_BACKING_FIELD name:foo ...
* value: GET_VAR '<set-?> ...
*/

Listing 2.38: IR of default property setter

2.7.1 Computed properties
All previous examples declared the properties as if they were just fields – which
they effectively are without custom accessors. In fact, the default accessors are
equivalent to the getter/setter pattern from Java (only with a better syntax).
Providing a custom getter and setter makes it possible to change the property
semantics entirely. The property is no longer restricted to just storing a value,
and in some cases, the property might not even have a backing field.

In a custom accessor body, the property backing field can be accessed
by a soft keyword field. An example of such a getter is shown in the
listing (2.39). The presented code has the same semantics as the one with the
default getter. The IR is also almost the same compared to listing (2.38). The
only difference in the IR is that the getter is explicit and is therefore not marked
as DEFAULT_PROPERTY_ACCESSOR.

val foo: Int = 0
get() = field

Listing 2.39: Property with a custom getter and a backing field

A property does not need a backing field if it has a custom getter and no
accessor accesses the backing field.† The compiler does not generate IR for the
backing field if it is not necessary. The missing backing field is showcased in
the listing (2.40).

†The requirement implicitly forbids the presence of a default accessor.

60

2.7. Properties

/*
* PROPERTY name:foo visibility:public modality:FINAL [val]
* FUN name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing ...
* CONST Int type=kotlin.Int value=0
*/
val foo: Int

get() = 0

Listing 2.40: Computed property

2.7.2 Member properties
So far, everything in this section was implicitly about the global properties. The
member properties differ from the global properties in two significant ways:

• They belong to some object and need a reference to it.

• They are initialized during the construction of the object.

Accessors are implemented as functions, so the reference is passed as their
dispatch receiver. The IrGetField and IrSetField also need access to the
object. For that reason, both have a property receiver.† The listing (2.41)
shows an example of a simple read-only member property. A notable change
from the previous examples is in the last line of the IR dump. There the object
is passed to the IrGetField. The setter IR is modified similarly, and its example
is therefore omitted.

Since accessors are methods effectively, they support features related to
inheritance. They can be overridden, they can be called using the super
keyword, and they can be shadowed if declared as private. The implementation
of those features also works the sameway. The only difference is that the whole
property must be declared as override, so it is not possible to override only one
of the accessors. The backing field is not involved in the overriding in any way.
Each overridden property declares its own private backing field, meaning it
does not reuse the overridden property backing field.

†It is not called dispatchReceiver since it technically is not used for dynamic dispatch
as field access is resolved statically.

61

2. Analysis of the Kotlin pRogRamming language

class A {
/*
* PROPERTY name:foo visibility:public modality:FINAL [val]
* FIELD PROPERTY_BACKING_FIELD name:foo ...
* EXPRESSION_BODY
* CONST Int type=kotlin.Int value=0

* FUN DEFAULT_PROPERTY_ACCESSOR name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* $this: VALUE_PARAMETER name:<this> type:<root>.A
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='... fun <get-foo> ...
* GET_FIELD 'FIELD PROPERTY_BACKING_FIELD name:foo ...
* receiver: GET_VAR '<this>: <root>.A ...
*/

val foo: Int = 0
}

Listing 2.41: Member property

2.7.3 Initialization of properties
A property initialization only applies to properties with backing fields. Proper-
ties without backing fields cannot be initialized as their value depends only on
the custom getter. Each property with a backing field must satisfy one of the
following requirements:

• have an initializer

• be lateinit (explained in the following subsection)

• have a type with a default value determined by the platform (for example,
an Int)

• is provably not read before the first write occurs

The initializer is stored in a property initializer of the backing field
representation IrField. The exact time when this initializer is executed
depends on the property type. Member properties are initialized by the class
constructor, and the exact process is explained together with constructors
in (2.8.1). Initialization of global properties is more complicated as it is partially
platform-dependent (at least to my knowledge).

62

2.7. Properties

Kotlin guarantees (on all platforms) that a global property field will be
initialized somewhen before it is first accessed. The initialization may or may
not happen if the property is not accessed during the program execution. It
is also not required to initialize the property right before its first access (it can
happen sooner).

The remaining explanation is based on my experiments with the JVM
platform, so it might not be entirely accurate for other platforms. JVM
does not support global constructs like properties, variables, or functions.
Kotlin compiles these constructs as static members of a special hidden class
(preserving their declaration order). The compiler generates one such class
for each file with these global constructs. On the JVM, every static member
of a class is initialized together in their declaration order. This initialization
happens right before the class is first instantiated or before access to any of its
static members.

That means accessing a single global property initializes all global proper-
ties from the same file. Calling a global function will also have the same effect.
The initialization happens in the order in which the properties are declared in
the file.

It is important to note that the exact initialization order may affect the static
analysis soundness in some rare cases. The problem may happen if the analysis
is sensitive to the order in which exceptions are thrown. The initializer can be
any expression, including a function call (or even a throw keyword), so it can
throw an exception. As a result, the analysis could first run into a different
exception than the actual program.

2.7.4 Lateinit modifier
The Kotlin compiler guarantees that all variables (including backing fields) are
initialized before their first access. The lateinit modifier removes that guarantee.
The modifier can be used for both local variables and properties with backing
fields.

Reading a lateinit property before it contains any value causes a runtime
exception kotlin.UninitializedPropertyAccessException. The compiler
inserts a guard before each lateinit variable read to implement this behavior.
The guard has a form of an if statement with a call to a method that throws
the exception.

63

2. Analysis of the Kotlin pRogRamming language

The listing (2.42) shows what the guard looks like when decompiled to Java.
It also shows that the check is not in the IR. The explicit check is unnecessary
since the IR represents the lateinit modifier differently. For that purpose, both
IrVariable and IrProperty classes have a boolean property isLateinit.

/*
* PROPERTY name:foo visibility:public modality:FINAL [lateinit,var]
* FIELD PROPERTY_BACKING_FIELD name:foo ...
* FUN DEFAULT_PROPERTY_ACCESSOR name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='... fun <get-foo> ...
* GET_FIELD 'FIELD PROPERTY_BACKING_FIELD name:foo ...
*/
// Source code
lateinit var foo: A

fun callFoo() {
/*
* FUN name:callFoo visibility:public modality:FINAL ...
* BLOCK_BODY
* TYPE_OP type=kotlin.Unit origin=IMPLICIT_COERCION_TO_UNIT ...
* CALL 'public final fun <get-foo> (): ...
*/

foo
}

// Decompiled code (Java)
public static final void callFoo() {

if (foo == null) {
Intrinsics.throwUninitializedPropertyAccessException("foo");

}
}

Listing 2.42: Lateinit property

2.7.5 Extension properties
Extension properties are very similar to extension functions. Compared to
ordinary member properties, they have one notable limitation: they cannot
have a backing field. Extension properties are like global properties with
custom accessors from the implementation standpoint. The one difference

64

2.7. Properties

is that the accessor has IR equivalent to an extension function, not a global
function. An example IR of an extension property is shown in the listing (2.43).

class A {
}

/*
* PROPERTY name:foo visibility:public modality:FINAL [val]
* FUN name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* $receiver: VALUE_PARAMETER name:<this> type:<root>.A
* BLOCK_BODY
* RETURN ...
* CONST Int type=kotlin.Int value=1
*/
val A.foo: Int

get() = 1

Listing 2.43: Extension property

2.7.6 Delegated properties
The implementation of custom property accessors can be delegated to some
other object. Since the delegation works fundamentally the same for both
accessors, I will focus only on getters in the following examples. The object to
which the property is delegatedmust implement an operator function getValue.
If the property is mutable, the object must also have a similar function setValue.
The listing (2.44) shows this delegation and how it is converted by the back end.

class Delegate {
operator fun getValue(thisRef: Any?, property: KProperty<*>):

Int = 0↪→
}
val foo: Int by Delegate()

// Converted to
private val foo_delegate = Delegate()
val foo: Int

get() = foo_delegate.getValue(null, ::foo)

Listing 2.44: Delegated property implementation

65

2. Analysis of the Kotlin pRogRamming language

The listing (2.45) shows IR representation of the truly delegated property
from the listing (2.44). The IR from this example contains two elements that
were not discussed yet. For that reason, I have removed them from the
example. The first one is the constructor call that creates the Delegate object.
Constructor calls will be explained in (2.8.1). The second element represents
a property reference that will be discussed in (2.9.4). Other than that, the IR
effectively matches the converted code from the listing (2.44).

/*
* PROPERTY name:foo visibility:public modality:FINAL

[delegated,val]↪→
* FIELD PROPERTY_DELEGATE name:foo$delegate type:<root>.Delegate

...↪→
* EXPRESSION_BODY
* CONSTRUCTOR_CALL ...

* FUN DELEGATED_PROPERTY_ACCESSOR name:<get-foo> ...
* correspondingProperty: PROPERTY name:foo ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='... fun <get-foo> () ...

* CALL 'public final fun getValue (...): kotlin.Int
[operator] ...↪→

* $this: GET_FIELD 'FIELD PROPERTY_DELEGATE
name:foo$delegate ...↪→

* thisRef: CONST Null type=kotlin.Nothing? value=null
* property: PROPERTY_REFERENCE ...
*/
val foo: Int by Delegate()

Listing 2.45: IR of delegated property

Theprevious example shows a global property, but member properties work
almost the same. The only difference is that the associated object is passed to
the getValue function in the thisRef parameter.

Local variables can also be delegated even though they do not support
custom accessors. The semantics of the delegation is the same, but the
implementation is different. The IR cannot use IrVariable as it does not have
properties for storing accessors. Instead, IrLocalDelegatedProperty is used.
This class is similar to IrProperty, except it does not have a backing field.

The listing (2.46) shows an example with a delegated local variable. The
resulting IR is not that different from the case with ordinary properties, except

66

2.7. Properties

the local variable is referenced using another class. Access to a delegated local
variable is translated to an accessor call as if the variable was a property.†

fun a() {
/*
* LOCAL_DELEGATED_PROPERTY name:foo ...
* VAR PROPERTY_DELEGATE name:foo$delegate ...
* CONSTRUCTOR_CALL ...

* FUN DELEGATED_PROPERTY_ACCESSOR name:<get-foo> ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='... fun <get-foo> (): ...

* CALL 'public final fun getValue ...
* $this: GET_VAR 'val foo$delegate ...
* thisRef: CONST Null type=kotlin.Nothing? value=null
* property: LOCAL_DELEGATED_PROPERTY_REFERENCE ...
*/

val foo: Int by Delegate()
}

Listing 2.46: Local delegated property

The delegate for a delegated property can be provided by another object.
The object providing the delegate must implement the operator function
provideDelegate to support this feature. An example of this implementation
is shown in the listing (2.47). Since it is just syntax sugar, the IR does not
fundamentally change compared to the listing (2.45).

class DelegateProvider {
operator fun provideDelegate(thisRef: Any?, prop: KProperty<*>)

= Delegate()↪→
}

val foo: Int by DelegateProvider()

val foo: Int by DelegateProvider().provideDelegate(null, ::foo)

Listing 2.47: Property delegate provider

†In the compiled code, each access to the local variable is directly replaced by a call to the
delegate (so no extra getter is generated).

67

2. Analysis of the Kotlin pRogRamming language

2.8 Classes
Classes group together functions and data (in the form of properties). These
functions and properties are then called class members. The previous two
sections already described how this membership changes the semantics of
functions and properties. This section focuses on the classes themselves as well
as the remaining associated constructs.

Each class in Kotlin must inherit from another class; by default, this class
is kotlin.Any. The only exception to this rule is the class Any. For this reason,
Any is a supertype of all classes.

At the IR level, a class is represented by the class IrClass. An example of
an empty class is shown in the listing (2.48). IrClass contains the following
interesting properties:

kind – is an enum called ClassKind that says which type of class the construct
represents. It can be one of: class, interface, enum, annotation, or object.

modality – has a similar meaning as the modality of methods (explained
in (2.6.6)). One difference is that only abstract classes can have abstract
methods, and they cannot be directly instantiated.

superTypes – is a list of all parent classes (and interfaces).

thisReceiver – holds IrValueParameter that represents the receiver accessible
by the this keyword.

declarations – contains all the member declarations inside the class.

/*
* CLASS CLASS name:A modality:FINAL visibility:public

superTypes:[kotlin.Any]↪→
* $this: VALUE_PARAMETER INSTANCE_RECEIVER name:<this>

type:<root>.A↪→
* ...
*/
class A

Listing 2.48: Class declaration

68

2.8. Classes

A class, as declared in the previous listing, is never entirely empty. Every
class has at least one constructor and the equals, hashCode, and toString
methods. If these declarations are not explicitly present, the compiler will
generate them. These declarations make every class listing quite long (it has
at least four additional methods). For this reason, the listings in this section
never include the whole class IR at once.

The example omits two types of declarations: constructor and fake over-
rides of the three methods. Constructors will be explained in the following
subsection. Fake override is either a function (IrSimpleFunction) or a prop-
erty (IrProperty) with a flag isFakeOverride set to true. This flag means the
declaration is inherited from a supertype and is not explicitly overridden by the
current class. A fake override does not have a body (as shown by the example
in listing (2.49)). The compiler ensures that a fake overridden method is never
directly called and instead makes a super call to the parent method.

/*
* FUN FAKE_OVERRIDE name:toString visibility:public modality:OPEN

<> ($this:kotlin.Any) returnType:kotlin.String [fake_override]↪→
* overridden:
* public open fun toString (): kotlin.String declared in

kotlin.Any↪→
* $this: VALUE_PARAMETER name:<this> type:kotlin.Any
*/

Listing 2.49: IR of fake override method

2.8.1 Constructors
Constructors are a special type of function that create class instances. The IR
represents them as IrConstructor, which inherits from IrFunction. There-
fore, IrConstructor shares most properties with IrSimpleFunction, used for
regular functions. In fact, constructors are very similar to statically dispatched
functions. There are still some differences; for example, the constructed type
is returned implicitly – without a return statement.

One notable property unique to IrConstructor is the flag isPrimary. This
flag decides if the constructor is primary or secondary. Primary constructors
always have precisely two statements in their body and cannot have more.

69

2. Analysis of the Kotlin pRogRamming language

The first statement is a delegating call to a parent constructor represented
as IrDelegatingConstructorCall. This delegating call is almost the same
as a regular function call, except it can only be used to call other constructors.

The second statement is a special instruction that initializes the created
object. This instruction has a class IrInstanceInitializerCall. The back end
initializes the object by replacing this instructionwith all blocks that participate
in the object initialization. These initialization blocks are explained later.

The listing (2.50) shows an example of the simplest primary constructor. In
this case, the compiler generated the constructor because it was not declared
explicitly. The default constructor is no different from an explicit constructor
without parameters.

/*
* ...
* CONSTRUCTOR visibility:public <> () returnType:<root>.A [primary]
* BLOCK_BODY
* DELEGATING_CONSTRUCTOR_CALL 'public constructor <init> ()

[primary] ...↪→
* INSTANCE_INITIALIZER_CALL classDescriptor='CLASS CLASS name:A

...↪→
*/
class A

Listing 2.50: IR of default constructor

Aprimary constructor can have parameters and can optionally declare them
as properties. Parameters of the primary constructor (but not secondary) can
be used to initialize properties in the class. The listing (2.51) presents this
property initialization. In this example, both the constructor and property
are the class’s direct children (the remaining IR is omitted). The alternative
syntax is an example of a property declaration directly in the constructor. The
alternative syntax produces identical IR.

A class can have only one primary constructor, but it can have several
secondary constructors. A secondary constructor can have a custom body, but
its parameters cannot be used in a property initializer. However, the properties
can still be initialized via an assignment in the custom body.

A secondary constructor does not always have the initialization instruction.
This instruction is present only if there is no primary constructor. The reason
is that each secondary constructor must take over the responsibilities of the

70

2.8. Classes

class A(foo: Int) {
/*
* ...
* CONSTRUCTOR visibility:public <> (foo:kotlin.Int) ...
* VALUE_PARAMETER name:foo index:0 type:kotlin.Int
* BLOCK_BODY
* DELEGATING_CONSTRUCTOR_CALL ...
* INSTANCE_INITIALIZER_CALL ...
*
* PROPERTY name:foo visibility:public modality:FINAL [val]
* FIELD PROPERTY_BACKING_FIELD name:foo type:kotlin.Int ...
* EXPRESSION_BODY
* GET_VAR 'foo: kotlin.Int ...
*/

val foo: Int = foo
}

// Alternative syntax
class A(val foo: Int)

Listing 2.51: Class with a member property initialized in the primary constructor

missing primary constructor. The taken responsibilities include both the object
initialization and calling the parent constructor. However, the secondary
constructor does not do either if the primary constructor is present. Instead,
it must call the primary constructor as the first statement in the body. This
type of delegation is showcased in the listing (2.52).

class A() {
/*
* CONSTRUCTOR visibility:public <> (i:kotlin.Int)

returnType:<root>.A↪→
* VALUE_PARAMETER name:i index:0 type:kotlin.Int
* BLOCK_BODY
* DELEGATING_CONSTRUCTOR_CALL 'public constructor <init> ()

[primary] declared in <root>.A'↪→
*/

constructor(i: Int): this()
}

Listing 2.52: Secondary constructor

Since the primary constructor cannot have a body, there must be another
way to perform complex initialization. The init block serves this exact purpose.

71

2. Analysis of the Kotlin pRogRamming language

Its content is implicitly called by the initialization instruction. The backing
field initializers also participate in the object initialization, so the initialization
instruction also calls them. A single class can have multiple init blocks and
properties with backing fields. All init blocks and backing field initializers are
called in the order in which they are declared.

In the IR, the init block has a class IrAnonymousInitializer and is always
stored directly in the class body. The listing (2.53) shows an init block that
initializes a read-only property. Interestingly, the init block directly accesses
the property field as the property does not have a setter.

class A {
val foo: Int

/*
* ANONYMOUS_INITIALIZER isStatic=false
* BLOCK_BODY
* SET_FIELD 'FIELD PROPERTY_BACKING_FIELD name:foo ...
* receiver: GET_VAR '<this>: ...
* value: CONST Int type=kotlin.Int value=1
*/

init {
foo = 1

}
}

Listing 2.53: Anonymous initializer

The initialization instruction targets only constructs declared directly in the
current class. It specifically does not call anything from parent classes. On
the other hand, each parent class is also initialized because at least one of its
constructorsmust be called. Initialization is never overridden, and it happens in
the order from the most base class down to the actually constructed class. This
rule has some unexpected side effects. For example, an initialization expression
of a base class property is called even if the property is overridden with a new
initialization expression.

Creating an object requires calling one of its constructors, for which there
is the IR class IrConstructorCall. For the purpose of this analysis, the class
is almost the same as an ordinary IrCall, as shown by the listing (2.54).
The only interesting difference is that the constructor call implicitly allocates

72

2.8. Classes

memory for the created object. The object allocation is also why there
is a distinction between constructor call and delegating constructor call.

/*
* CONSTRUCTOR_CALL 'public constructor <init> (foo: kotlin.Int)

[primary] ...↪→
* foo: CONST Int type=kotlin.Int value=1
*/
A(1)

Listing 2.54: Constructor call

2.8.2 Interfaces
Each class inherits precisely from one other class, but it can implement any
number of interfaces. Interfaces are remotely similar to abstract classes in that
they can have methods/properties. These declarations can be either abstract
(without implementation) or open (with implementation).

Interfaces are represented as classes (IrClass) of kind interface, as shown
in the listing (2.55). The primary difference from a regular class is that interface
does not have a constructor. Interestingly, they still implicitly inherit from Any
even though interfaces cannot explicitly inherit a class. Interfaces also have all
the fake overrides of methods from Any (omitted from the example).

/*
* CLASS INTERFACE name:A modality:ABSTRACT visibility:public

superTypes:[kotlin.Any]↪→
* $this: VALUE_PARAMETER INSTANCE_RECEIVER ...
* ...
*/
interface A

Listing 2.55: Interface declaration

Because of interfaces, a single class can have multiple supertypes. Having
multiple supertypes can create an interesting situation if some of those super
types declare a method with the same signature. In this case, the class inherits
the method from multiple sources. The listing (2.56) shows an example in

73

2. Analysis of the Kotlin pRogRamming language

which this is not a problem because both methods are abstract. From the IR
perspective, the only difference is that now there are two overridden methods
at once.

interface A1 {
fun foo()

}

interface A2 {
fun foo()

}

class B: A1, A2 {
/*
* FUN name:foo ... modality:OPEN <> ($this:<root>.B) ...
* overridden:
* public abstract fun foo (): kotlin.Unit declared in <root>.A1
* public abstract fun foo (): kotlin.Unit declared in <root>.A2
* $this: VALUE_PARAMETER name:<this> type:<root>.B
* BLOCK_BODY
*/

override fun foo() {
}

}

Listing 2.56: Overriding the same method from multiple interfaces

What causes a problem is when there are multiple inherited implementa-
tions. The method then must be explicitly overridden. The method may want
to call one of those inherited implementations. This super call would be, under
normal circumstances, done using the super keyword. However, since there
are multiple options, super would not be able to distinguish which implement-
ation to call. The super keyword has a qualifier like in the listing (2.57) to solve
this problem. The correct super symbol for the IR is provided by the front end.

Multiple overridden methods also affect rules for default arguments. Only
the base declaration of each method can specify default arguments, which are
then the same for all overrides. This rule prevents the method from having
multiple different default values for a single parameter. However, the same
problem can happen if multiple base declarations of the method have default
arguments. For this reason, it is not possible to inherit two interfaces that both
have the same function with a default argument for the same parameter. So, for

74

2.8. Classes

interface A1 {
fun foo() = 1

}

interface A2 {
fun foo() = 2

}

class B: A1, A2 {
/*
* RETURN ...
* CALL 'public open fun foo (): kotlin.Int declared in <root>.A2'

superQualifier='CLASS INTERFACE name:A2 ...↪→
* $this: GET_VAR '<this> ...
*/
override fun foo() = super<A2>.foo()

}

Listing 2.57: Qualified super call

example, the code in listing (2.58) will not compile – even though the specified
default argument is the same in both cases.

interface I1 {
fun foo(i: Int = 1, j: Int)

}

interface I2 {
fun foo(i: Int = 1, j: Int)

}

class B: I1, I2 {
override fun foo(i: Int, j: Int) {
}

}

Listing 2.58: Default arguments with multiple base methods

The no collision rule technically allows each base method to declare a de-
fault argument, but only for different parameters. So the above example would
compile if the method I2.foo had this declaration instead: fun foo(i: Int,
j: Int = 1). In this case, the method B.foo has default values for both
parameters.

75

2. Analysis of the Kotlin pRogRamming language

The fact that this combination of default arguments is allowed has an
implication for a caller of such a method. In the IR, the default arguments are
kept in the method declaration, not in the call. So to find the default arguments,
the back end (and the static analysis) has to search each base declaration of the
called method. The front end ensures that each parameter will have at most
one default value. However, each default argument may be in a different base
declaration.

2.8.3 Objects
An object class is effectively a syntax sugar for a singleton pattern [8]. In
contrast to other syntax sugar, this one is not resolved by the front end. In
the IR, the object class is implemented as the IrClass of a kind object. The
rest of the IR is similar to other classes, except the object class has a private
constructor accessible only by the compiler. The listing (2.59) shows example
of object class declaration.

/*
* CLASS OBJECT name:A modality:FINAL visibility:public

superTypes:[kotlin.Any]↪→
* $this: VALUE_PARAMETER INSTANCE_RECEIVER name:<this>

type:<root>.A↪→
* CONSTRUCTOR visibility:private <> () returnType:<root>.A

[primary]↪→
* ...
*/
object A

Listing 2.59: Object declaration

The single instance of the object class can be accessed globally. The IR
has a special expression IrGetObjectValue that returns the object instance.
As shown by the listing (2.60), this expression only holds a symbol to the
retrieved object class.

2.8.4 Enum classes
An enum class can be seen as an object class with multiple different instances,
all globally accessible. Therefore, they can have methods and properties but

76

2.8. Classes

/*
* GET_OBJECT 'CLASS OBJECT name:A ...
*/
A

Listing 2.60: Object access

also custom constructors. The constructors are still private, but they can be
used explicitly to create each enum entry. Like in the case of regular classes, if
the constructor is not explicit, it is automatically generated.

An example of an enum class is shown in the listing (2.61). Implementation-
wise, enum classes are once again represented as IrClass, this time of kind
ENUM_CLASS. By default, enum classes contain even more constructs than
regular classes. The listing shows only objects of type IrEnumEntry that declare
each enum entry. The class contains the property initializerExpression.
This expression holds the constructor call used to create the associated object.
Enum classes have an extra class IrEnumConstructorCall to represent the
constructor call. This class is not different from the IrConstructorCall (at
least for the static analysis purpose).

The previous listing omits multiple generated fake override methods de-
clared in the parent class kotlin.Enum. These methods are not interesting for
the static analysis since the actual implementation is in the standard library.
However, there are also two special synthetic methods. The IR of these meth-
ods is shown in the listing (2.62). These two methods are used to retrieve the
enum entries. The method values always returns all entries while the valueOf
method returns only entry with the matching name. The SYNTHETIC_BODY
means it is up to the back end to generate the correct implementation.

Accessing an enum entry is semantically similar to accessing an object
class, but the IR implements it by a different class IrGetEnumValue. However,
the content and meaning of IrGetEnumValue and IrGetObjectValue are very
similar. Listing (2.63) shows the IR dump of this class.

2.8.5 Inner classes
A class declared inside another class can be marked as inner. The advantage
of doing so is that the inner class members can access the outer class members.

77

2. Analysis of the Kotlin pRogRamming language

/*
* CLASS ENUM_CLASS name:A modality:FINAL visibility:public

superTypes:[kotlin.Enum<<root>.A>]↪→
* $this: VALUE_PARAMETER INSTANCE_RECEIVER ...

* CONSTRUCTOR visibility:private <> () returnType:<root>.A
[primary]↪→

* BLOCK_BODY
* ENUM_CONSTRUCTOR_CALL 'public constructor <init> (...)

[primary] declared in kotlin.Enum'↪→
* <E>: <root>.A
* INSTANCE_INITIALIZER_CALL ...

* ENUM_ENTRY name:X
* init: EXPRESSION_BODY
* ENUM_CONSTRUCTOR_CALL 'private constructor <init> ()

[primary] declared in <root>.A'↪→

* ENUM_ENTRY name:Y
* init: EXPRESSION_BODY
* ENUM_CONSTRUCTOR_CALL 'private constructor <init> ()

[primary] declared in <root>.A'↪→
* ...
*/
enum class A {

X, Y
}

Listing 2.61: Enum declaration

The inner class implicitly captures an object of the outer class to implement
this behavior. For this reason, an inner class can be instantiated only in a scope
containing the intended object to capture.

The listing (2.64) contains an example of an empty inner class. If a class
is inner or not is decided by a flag isInner in the class IrClass. The class IR
itself does not differ in any other way, but all constructors do. Each constructor
has an additional parameter $outer representing the captured outer class object.
An inner class does not explicitly store this parameter even if it is necessary.
This task is left to the back end.

The outer object can be used as a dispatch receiver for calling members of
the outer class. An example of such a call is shown in the listing (2.65). The IR
does not explicitly use the captured outer object. Instead, it acts as if the object
was stored as this.

78

2.9. Functional programming

/*
* FUN ENUM_CLASS_SPECIAL_MEMBER name:values visibility:public

modality:FINAL <> () returnType:kotlin.Array<<root>.A>↪→
* SYNTHETIC_BODY kind=ENUM_VALUES

* FUN ENUM_CLASS_SPECIAL_MEMBER name:valueOf visibility:public
modality:FINAL <> (value:kotlin.String) returnType:<root>.A↪→

* VALUE_PARAMETER name:value index:0 type:kotlin.String
* SYNTHETIC_BODY kind=ENUM_VALUEOF
*/

Listing 2.62: IR of synthetic enum methods

/*
* GET_ENUM 'ENUM_ENTRY name:X' type=<root>.A
*/
A.X

Listing 2.63: Enum access

2.9 Functional programming
Kotlin treats functions as first-class citizens meaning developers can work with
functions as with other values. Functions can be referenced, and this reference
can be subsequently stored in a variable or passed to a so-called higher-order
function.† Functions can be declared inside other functions, capturing their
local variables. Kotlin also provides a lot of syntax sugar like lambda functions
or anonymous classes.

To represent a function as a value, it must first have some type. For
this purpose, Kotlin has a special family of generic classes. These classes are
named in the form of kotlin.FunctionN, where the N suffix is the number
of parameters the function has. The parameter and function return types are
generic parameters of the FunctionN classes. Each FunctionN has an operator
method invoke with the corresponding number of parameters. The invoke
method is used to call the function.

†Higher-order functions are like normal functions, except they either take another function
as an argument or return it.

79

2. Analysis of the Kotlin pRogRamming language

class A {
/*
* CLASS CLASS name:B modality:FINAL visibility:public [inner]

superTypes:[kotlin.Any]↪→

* $this: VALUE_PARAMETER INSTANCE_RECEIVER name:<this> ...
* CONSTRUCTOR visibility:public <> ($this:<root>.A)

returnType:<root>.A.B [primary]↪→

* $outer: VALUE_PARAMETER name:<this> type:<root>.A
* BLOCK_BODY
* DELEGATING_CONSTRUCTOR_CALL ...
* INSTANCE_INITIALIZER_CALL classDescriptor='CLASS CLASS

name:B ...↪→
* ...
*/

inner class B
}

Listing 2.64: Inner class declaration

class A {
fun foo() {
}

inner class B {
/*
* FUN name:callFoo ...
* $this: VALUE_PARAMETER name:<this> type:<root>.A.B
* BLOCK_BODY
* CALL 'public final fun foo (): kotlin.Unit ...
* $this: GET_VAR '<this>: <root>.A declared in <root>.A' ...
*/

fun callFoo() {
foo()

}
}

}

Listing 2.65: Inner class calling a method from its enclosing class

Developers rarely work with the function type and invokemethod directly
as Kotlin provides syntax sugar for both. For example, a function with one para-
meter of type Int and the return type Stringwould have type Function1<Int,
String>. This function type can be written as (Int) -> String. A function of
this type stored in a variable foo can be called directly using the invoke method

80

2.9. Functional programming

as: foo.invoke(1). An alternative syntax is foo(1), which mimics an ordinary
function call. The compiler front end transforms this syntax sugar back to the
original form, so the IR does not distinguish between them.

Examples of both of these transformations can be seen in the listing (2.66).
At the same time, the listing shows an example of a higher-order function.
There is no difference between calling a lambda, an anonymous function, or
a function reference – all have the same type. Since invoke is a method, the
called function is passed as a dispatch receiver. Arguments for the function
expression are then passed as arguments to the invoke method.

/*
* FUN name:a visibility:public modality:FINAL <>

(foo:kotlin.Function1<kotlin.Int, kotlin.String>)
returnType:kotlin.String

↪→
↪→

* VALUE_PARAMETER name:foo ...
* BLOCK_BODY
* RETURN ...
* CALL 'public abstract fun invoke (p1: P1 of

kotlin.Function1): R ...↪→
* $this: GET_VAR 'foo: ...
* p1: CONST Int type=kotlin.Int value=1
*/
fun a(foo: (Int) -> String) =

foo(1)

Listing 2.66: Higher-order function calling invoke

2.9.1 Local functions
A function declared inside another function is called a local function. Local
functions behave almost the same as ordinary functions. The notable difference
is that they cannot be directly called (and referenced) from outside of the scope
in which they were declared. Their IR is also almost identical to the other
functions (as shown in the listing (2.67)), except they have local visibility.

An example of a local function call is shown in the listing (2.68). As the
listing shows, there is also no significant difference in the IR representation
compared to regular functions. The same is true for local function references
that will be presented later.

81

2. Analysis of the Kotlin pRogRamming language

/*
* FUN LOCAL_FUNCTION name:foo ...
* BLOCK_BODY
* RETURN ...
* CONST Int type=kotlin.Int value=1
*/
fun a() {

fun foo(): Int = 1
}

Listing 2.67: Local function declaration

fun a() {
fun foo(): Int = 1

/*
* CALL 'local final fun foo (): kotlin.Int declared in <root>.a'

...↪→
*/
foo()

}

Listing 2.68: Local function call

Local functions can capture local variables of the function in which they
are declared. Only variables declared before the local function are captured.
The dispatch and extension receivers are also captured this way. The capturing
is transitive, which plays a role if several local functions are nested inside each
other. Because of the transitivity, each local function has access to variables
from all functions that enclose it.

The IR does not explicitly express the capturing. Instead, it acts as if the
variable belonged to the function, only it is declared elsewhere. Therefore, it
is up to the back end to decode and implement the capturing. An example of
an IR with capturing function is shown in the listing (2.69).

A class can also be declared inside a function, making it a local class. Local
classes have very similar semantics to local functions. They are similar because
the property of being local can be generalized to almost all declarations. In
general, local declarations can access declarations from their enclosing scope
but have local visibility. The local visibility prevents them from being accessed
outside the declaration scope. In the case of a local class, its members can

82

2.9. Functional programming

/*
* FUN name:a ...
* BLOCK_BODY
* VAR name:i type:kotlin.Int [var]
* CONST Int type=kotlin.Int value=0
* FUN LOCAL_FUNCTION name:foo ...
* BLOCK_BODY
* SET_VAR 'var i: kotlin.Int [var] declared in <root>.a'

...↪→
* CONST Int type=kotlin.Int value=1
*/
fun a() {

var i = 0
fun foo() {

i = 1
}

}

Listing 2.69: Writing to a captured local variable

access variables from the enclosing functions. For example, a method from
a local class captures the enclosing function variables as if the method itself
was a local function. Again, the capturing is not explicitly expressed in the IR,
and the variable access also looks the same.

2.9.2 Lambda functions
Lambda functions can be described as local functions without a name or, in
other words, as anonymous functions. However, Kotlin distinguishes between
these two terms. There are some differences in what a lambda function can and
cannot do compared to anonymous functions. Though, these differences are
only in the code and not at the IR level.

In Kotlin, lambdas can be declared with a pair of curly brackets.† The
IR represents a lambda function as an ordinary function (IrSimpleFunction)
that is wrapped inside IrFunctionExpression. An example of the lambda
declaration and its IR is shown in the listing (2.70).

The following listing (2.71) shows a proper anonymous function with its IR.
There is a minor difference compared to the lambda function IR, but it has no
particular effect on the static analysis. One difference at the code level is that the

†This syntax represents an ordinary block in other languages like Java.

83

2. Analysis of the Kotlin pRogRamming language

fun a() {
/*
* FUN_EXPR type=kotlin.Function0<kotlin.Int> origin=LAMBDA
* FUN LOCAL_FUNCTION_FOR_LAMBDA name:<anonymous> visibility:local

...↪→
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='local final fun

<anonymous> (): kotlin.Int declared in <root>.a'↪→
* CONST Int type=kotlin.Int value=1
*/

{
1

}
}

Listing 2.70: Lambda function

anonymous function uses a regular return statement while lambdas implicitly
return their last expression. However, the analysis does not have to deal with
that since the IR always contains the return statement explicitly.

fun a() {
/*
* FUN_EXPR type=kotlin.Function0<kotlin.Int>

origin=ANONYMOUS_FUNCTION↪→

* FUN LOCAL_FUNCTION name:<no name provided> visibility:local ...
* BLOCK_BODY
* RETURN type=kotlin.Nothing from='local final fun <no name

provided> (): kotlin.Int declared in <root>.a'↪→
* CONST Int type=kotlin.Int value=1
*/

fun(): Int = 1
}

Listing 2.71: Anonymous function

2.9.3 Function references
A function reference is an expression of one of FunctionN types. More
precisely, the reference type is actually kotlin.reflect.KFunctionN instead
of FunctionN. KFunctionN inherits from FunctionN, so it has the invoke
method, but it also holds additional runtime information about the function.

84

2.9. Functional programming

This runtime information is used for reflection. The invoke method of this
reference expression calls the referenced function.

In the IR, the function reference is represented as the IrFunctionReference
class. The class has the property reflectionTarget, which is the symbol of
the referenced function. IrFunctionReference shares a base class with other
classes related to calling functions such as IrCall. The base class contains all
the necessary properties for handling parameters and receivers. An example of
a function reference IR is shown in the listing (2.72).

fun foo(i: Int) {
}

/*
* FUNCTION_REFERENCE 'public final fun foo ...

type=kotlin.reflect.KFunction1<@[ParameterName(name = 'i')]
kotlin.Int, kotlin.Unit> ...

↪→
↪→
*/
::foo

Listing 2.72: Function reference

Methods can also be referenced via a similar syntax. Method references
introduce two complications compared to ordinary functions. First, methods
have a dispatch receiver. That receiver can be either captured by the reference
or provided later by the reference caller. The second problem is that the method
reference must preserve the type of dispatch the method is subjected to.

Combining the two above properties can create unexpected results (depend-
ing on the point of view). An example of such a situation is shown in the list-
ing (2.73), where the actually called method is not the one that was referenced.
The example shows that the method reference itself may not exactly know
whichmethodwill be called later. In fact, it can be calledmultiple timeswith dif-
ferent dispatch receivers, calling different methods each time. At the same time,
not every method can be called using dynamic dispatch (for example, private
methods). As a result, the method reference must correctly choose between the
two dispatch types.

The IR does not explicitly contain information about the used dispatch
type, but it can be inferred from the referenced method. What the IR dis-
tinguishes is whether the dispatch receiver is captured or not. The situation

85

2. Analysis of the Kotlin pRogRamming language

open class A {
open fun foo() {

println("A")
}

}

class B: A() {
override fun foo() {

println("B")
}

}

// References A.foo without capturing the dispatch receiver
val foo = A::foo
// Prints "B"
foo(B()) // or B().foo()

Listing 2.73: Virtual method reference

in which the receiver is not captured is shown in the listing (2.74). The later
provided dispatch receiver is implemented as an additional parameter of the
invoke method. For that reason, the function reference type in the example
is KFunction2, even though the method does have only one regular parameter.

open class A {
open fun foo(i: Int) {
}

}

/*
* FUNCTION_REFERENCE 'public open fun foo (i: kotlin.Int) ...

type=kotlin.reflect.KFunction2<<root>.A, @[ParameterName(name =
'i')] kotlin.Int, kotlin.Unit> ...

↪→
↪→
*/
A::foo

Listing 2.74: Method reference without capturing receiver

The following example in the listing (2.75) shows the IR of a call that
provides the dispatch receiver externally. There is effectively no difference
in the call itself compared to a situation when the object would be a regular
parameter.

86

2.9. Functional programming

open class A {
open fun foo() {
}

}

/*
* CALL 'public abstract fun invoke (p1: P1 of

kotlin.reflect.KFunction1): R ...↪→

* $this: FUNCTION_REFERENCE 'public final fun foo () ...
* p1: CONSTRUCTOR_CALL ...
*/
(A::foo)(A())

Listing 2.75: Calling a method reference without captured receiver

If a method reference captures the dispatch receiver, it is stored in the
property dispatchReceiver of the class IrFunctionReference. An example
of such a situation is shown in the listing (2.76).

class A {
fun foo() {
}

}

/*
* FUNCTION_REFERENCE 'public final fun foo () ...

type=kotlin.reflect.KFunction0<kotlin.Unit> ...↪→

* $this: CONSTRUCTOR_CALL ...
*/
A()::foo

Listing 2.76: Method reference with captured receiver

Function references are also possible to use with extension functions.
The extension receiver is handled almost identically to the dispatch receiver.
It can also be captured during the reference or provided later as an extra
argument. However, there is one notable difference. Extension receivers
have their own property extensionReceiver in the IrFunctionReference
class. The distinction is important as extension receivers are not used for
dynamic dispatch. An example is shown in the listing (2.77). Since there
are two different properties, it would be technically possible to capture

87

2. Analysis of the Kotlin pRogRamming language

both receivers simultaneously. However, Kotlin does not directly support
referencing extension methods, so this cannot happen. The reference itself
(without captured receivers) can be obtained only through reflection.

fun A.foo() {
}

/*
* FUNCTION_REFERENCE 'public final fun foo () ...

type=kotlin.reflect.KFunction0<kotlin.Unit> ...↪→

* $receiver: CONSTRUCTOR_CALL ...
*/
A()::foo

Listing 2.77: Extension function reference with captured receiver

2.9.4 Property references
Properties are like two functions joined together, and therefore they can
also be referenced. A property reference has similar semantics to function
references, but the implementation is different. Property reference has the class
IrPropertyReference instead of IrFunctionReference. The main difference
between these two references is that property references can contain both
getter and setter at the same time.

The property reference type is also different making it possible to call either
the getter or setter. Properties have two families of types: KPropertyN
and KMutablePropertyN, both from package kotlin.reflect.† KPropertyN
is used for read-only properties and exposes only the get method. Mutable
properties utilize KMutablePropertyN which has support for both accessors.
KMutablePropertyN inherits the get method from KPropertyN. KPropertyN
inherits from FunctionN, so the property reference also behaves like a function
reference to the property getter.

Similar to FunctionN, the N in KPropertyN determines the number of
parameters. Properties do not have user-definable parameters, so this number

†In contrast to function references, there is no PropertyN.

88

2.9. Functional programming

only represents the number of receivers. Since Kotlin has two different types
of receivers, this number can go only up to two.‡

The listing (2.78) contains an example of a global property reference that
is subsequently called. Methods get and set work similarly to the method
invoke. They call the referenced property getter, respectively setter, and have
corresponding signatures. For example, as shown in the listing, the set method
has a parameter value that is passed to the property setter.

var foo: Int = 1

/*
* VAR name:fooReference

type:kotlin.reflect.KMutableProperty0<kotlin.Int> [val]↪→
* PROPERTY_REFERENCE 'public final foo: kotlin.Int [var]' ...
*/
val fooReference = ::foo

/*
* CALL 'public abstract fun set (value: V of

kotlin.reflect.KMutableProperty0): kotlin.Unit ...↪→
* $this: GET_VAR 'val fooReference ...
* value: CONST Int type=kotlin.Int value=2
*/
fooReference.set(2)

Listing 2.78: Property reference

References to member and extension properties work the same andwith the
same peculiarities as was the case of function references. However, local vari-
ables cannot be referenced yet. There is a class which can be used to reference
local variables with delegate. It is the IrLocalDelegatedPropertyReference.
Nevertheless, it can only be used by the compiler. Implementation-wise, the
class is almost the same as IrPropertyReference, so the example is omitted.

2.9.5 Function types with receiver
A function typewith receiver is a form of syntax sugar. This syntax sugarmakes
it possible to treat function expressions as extension functions. Compared to

‡FunctionN can have the number theoretically unlimited. In practice, the number is limited
by the platform to some large value.

89

2. Analysis of the Kotlin pRogRamming language

other syntax sugar features, this one is only partially resolved by the front end.
Therefore, it has an impact on the IR.

The IR for function type with receiver is not that different from a regular
function type. As the listing (2.79) shows, the difference is only in the parameter
type. The receiver is represented as the first parameter in the function type.
This is the same approach used for method references without a receiver. In
this case, the function type is also marked as ExtensionFunctionType.

class A

/*
* FUN name:foo visibility:public modality:FINAL ...
* VALUE_PARAMETER name:action index:0

type:@[ExtensionFunctionType] kotlin.Function2<<root>.A,
kotlin.Int, <root>.A>

↪→
↪→
* BLOCK_BODY
*/
fun foo(action: A.(Int) -> A) {
}

Listing 2.79: Declaration of a higher-order function with function type with receiver

ExtensionFunctionType signalizes that the first type can be provided
as a receiver. The name ExtensionFunctionType can be misleading, however.
The reason is that this feature can be combined with method references that do
not capture the dispatch receiver. In this case, the function expression receiver
is the dispatch receiver, not the extension receiver. It is possible to pass such
method reference as an argument without any conversion, and the IR does not
differentiate that directly.

Lambda function can also be used as arguments for parameters with
receivers. In this case, the lambda type is inferred to represent an extension
function. An example of the inference is presented in the listing (2.80). The
example uses a function call to enable the type inference, but an assignment to
a variable with the same type also works.

The call from the listing looks complex, but it can be decomposed into
several already explained components. The call contains a single action
argument that holds the lambda function. The lambda has the corresponding
type to the parameter of the called function. The function wrapped in the
function expression is an extension function, so it has an extension receiver.

90

2.9. Functional programming

fun foo(action: A.(Int) -> A) {
}

/*
* CALL 'public final fun foo ...
* action: FUN_EXPR type=@[ExtensionFunctionType]

kotlin.Function2<<root>.A, kotlin.Int, <root>.A> ...↪→

* FUN LOCAL_FUNCTION_FOR_LAMBDA name:<anonymous> ...
* $receiver: VALUE_PARAMETER name:$this$foo type:<root>.A
* VALUE_PARAMETER name:it index:0 type:kotlin.Int
* BLOCK_BODY
* RETURN ... from='local final fun <anonymous> ...
* GET_VAR '$this$foo: <root>.A ...
*/
foo {

this
}

Listing 2.80: Calling a higher-order function with function type with receiver

The wrapped function also has a single parameter of type Int. The parameter
is named it, which in Kotlin is the default name for a single lambda parameter.
Finally, the lambda returns its extension receiver.

Variable holding a function expression with receiver behaves as an exten-
sion function declaration. This virtual declaration is accessible in the same
scope as the variable itself. The listing (2.81) shows how the function can be
called and how it looks on the IR level. The receiver is passed as a regular ar-
gument (as with method references). The example also shows an alternative
syntax for the call, demonstrating that the receiver truly is a regular argument.
The alternate syntax produces the same effect and also the same IR.

2.9.6 Inline functions
A function can be declared as inline using the inline keyword. In the IR, the
inline function is marked by a flag isInline from the IrFunction class. The
compiler may inline the function at the call site, but it is not always required.
The inlining is performed by the back end, which means that the analysis has
to somehow account for this feature.

The primary use case for the inlining are functions that take another
function as an argument. Inlining a function has two benefits in this case.

91

2. Analysis of the Kotlin pRogRamming language

fun foo(action: A.() -> A) {
val a = A()

/*
* CALL 'public abstract fun invoke (p1: P1 of kotlin.Function1): R

...↪→
* $this: GET_VAR 'action: ...
* p1: GET_VAR 'val a ...
*/

a.action() // action(a)
}

Listing 2.81: Calling function value with receiver

First, it is a performance optimization if the argument is a lambda expression –
it avoids unnecessary allocation of an object. The second advantage is that
the inlined lambda becomes part of the caller function body even from the
developer’s perspective. As a result, inlined lambda functions can do some
things that are otherwise not possible. For example, they can directly call
return, a feature known as non-local returns.

By using the non-local return, a lambda can return a value from its enclosing
function. The non-local return works as if it was called directly from that
enclosing function. Evaluation of the enclosing function ends immediately,
returning the result value. The called inline function is also terminated.
Therefore, nothing after the lambda call is executed in the inline function that
has called the lambda. This situation is demonstrated in the listing (2.82).

If a lambda function can use a non-local return, it can also use the return
keyword to return from its body explicitly. Anonymous functions also support
the explicit return (even if the function is not inlined).† The difference is that
lambdas need to use a label with the explicit (local) return. An example of this
labeled return is shown in the listing (2.83).

The last two listings contain an IR dump of the IrReturn class. The first
represents the non-local return, and the second one contains the local return.
The output is slightly different in each case as the return target is different. The
return target is represented as a property returnTargetSymbol that points to
the function from which the execution should return.

†On the other hand, an anonymous function cannot use non-local returns.

92

2.10. Other

inline fun foo(action: (Int) -> Int) {
action(1)
// Not called
...

}

fun callFoo(): String {
foo {

/*
* RETURN ... from='... callFoo ... declared in <root>'
* CONST String type=kotlin.String value="A"
*/

return "A"
}
// Not called
...

}

Listing 2.82: Non-local return from inlined lambda

2.10 Other
So far, all the features presented in this chapter are in some way handled
by the static analysis proposed in this thesis. This section contains an
overview of several Kotlin features for which this is not entirely the case.
The static analysis either does not directly support those features, or the
implementation is significantly simplified. I explain the inner workings of these
features in a very simplified manner compared to the previous explanations.
However, a more detailed analysis would be required should these features be
implemented appropriately in the future.

2.10.1 Generics
Like Java, Kotlin supports generics, also known as type parameters. Generics
allow the developers to write reusable code that is more type-safe. These type
parameters can be used together with classes, functions, extensions, and type
aliases.

Generics are a compile-time feature and do not add semantic value to the
program.† Generic types are erased at runtime, which means that all parameter

†For this reason, the analysis can safely ignore them, but using them may help with its
precision.

93

2. Analysis of the Kotlin pRogRamming language

inline fun foo(action: (Int) -> Int) {
action(1)
// Is called
...

}

fun callFoo(): String {
foo {

/*
* RETURN ... from='... <anonymous> ... declared in <root>.callFoo'
* CONST Int type=kotlin.Int value=1
*/

return@foo 1
// Not called
...

}
// Is called
...

}

Listing 2.83: Local return from inlined lambda

types are replaced with the type kotlin.Any. Therefore, the type information
is present only at compile time and cannot affect the program at runtime.

In the IR IrFunction, IrClass and IrTypeAlias all implement an interface
IrTypeParametersContainer. This interface has a property typeParameters,
which is a list of IrTypeParameter. The class contains all necessary properties
to implement features like declaration-site variance or constraints.

2.10.2 Coroutines
Kotlin coroutines are amechanism for asynchronous programming. Coroutines
are almost entirely implemented by an external library. For this reason, the ana-
lysis can handle them like other libraries. The primary exception is the suspend
keyword and associated suspend functions that are implemented by the com-
piler.

If a suspend function needs to wait for some asynchronous event or
computation, it can pause its execution. Unlike in classical thread-based
multitasking implementations, the thread is not blocked. The thread, therefore,
can continue executing some other code. Once the awaited event happens, the

94

2.10. Other

execution can resume from the same place where it was paused (in some cases,
using a different thread).

In the IR, a suspend function is marked by a flag isSuspend in the class
IrSimpleFunction. From the IR perspective, there is no other difference.
However, the suspend functions do differ a lot from normal functions but only
in the compiled code. The primary difference is that the compiler generates
an extra Continuation parameter for them. At the same time, the compiler
performs some transformations of the function body to support the suspending.

2.10.3 Reflection
Reflection is a feature that allows inspecting declarations like classes or fun-
ctions at runtime. Reflection can be used to reason about the program structure
or dynamically call methods by a name created at runtime. Kotlin support for
reflection is almost entirely dependent on the target platform and its support for
reflection. Themost advanced support is on the JVM,where it is even possible to
load additional classes dynamically. Static analysis of these features is generally
hard or even impossible to implement.

Reflection in Kotlin is implemented similarly to Coroutines. Most of the
implementation is in a library, and the IR supports only essential things such
as class and function references. These references are used to obtain the
object representing that declaration. There are multiple different types of these
objects, depending on the declaration. Examples of such types are KClass or
KFunction0.

Class reference expressions are represented in the IR with two different
classes: IrClassReference and IrGetClass. IrClassReference is used to
obtain the class reference statically, such as A::class. IrGetClass gets the
class reference from an existing object which must be done dynamically.

95

ChapteR 3
Static analysis design

This chapter explains how the proposed static analysis works. Its design was
created incrementally together with the prototype implementation, and as such,
it changed many times. This chapter captures the final form of the design, not
the incremental changes. I will describe some of the changes and their reasons
in the following chapter (4).

This chapter is written as a description of a fictional implementation of
the static analysis. However, the text is not a documentation of the created
prototype. It is meant as a guide for making the implementation. The reason
why the prototype differs is explained in the following chapter (4). How the
prototype differs from this design is subsequently covered in chapter (5).

The chapter is divided in the following way: The first section introduces
the basic concepts of the proposed analysis and explains the reasoning and
decisions behind them. The second section is about the static analysis archi-
tecture and contains an overview of its core building blocks. The remaining
three sections gradually explain the inner workings of the analysis.

3.1 Fundamental design decisions
This section summarizes the key observations made in the first chapter and
draws conclusions from them. These conclusions were the starting point for
the actual design of the static analysis. Everything stated in this section
is so fundamental that it practically has not changed throughout the project.

97

3. Static analysis design

The section is split into three subsections. The first one lists all the core
requirements for the static analysis. The following subsection contains known
and intentional limitations that affect the analysis soundness. These limitations
can be seen as the opposite of the requirements – things that are not necessary
to handle correctly. Based on those stated requirements and non-requirements,
I have chosen the appropriate strategy explained in the final subsection.

3.1.1 Requirements
The following requirements have a significant impact on the analysis design
as well as some implementation details. The requirements are dictated by the
target use case and the state of the Kotlin ecosystem. The analysis focuses on
a single narrow use case, and therefore it may not be suitable for other use cases.
However, since one of the requirements is flexibility, it should be possible
to adjust the design to work for many other use cases.

Required output The analysis should return a precise list of all exception
types that a given function can throw. The functions of interest represent
endpoints in a back-end API. For this reason, they have parameters and can
be called at any time while the back end is running. The tracked exceptions
are single-purpose domain exceptions resulting from incorrect user input.
However, not every user mistake qualifies as a domain exception – it is only
those mistakes that violate domain rules. In particular, domain exceptions
are not caused by malformed requests (for example, a request with incorrect
arguments). To properly analyze these exceptions, the analysis must assume
that the function can be called with any possible arguments and at any time.

Soundness In an ideal world, the analysis would be sound to grant that all
exceptions are appropriately handled. However, achieving complete soundness
is very difficult and not necessary. It is enough for the given use case to list all
situations leading to a loss of soundness.† Thanks to the list, the analysis users
will be aware of these limitations and adjust their code accordingly. This list
is in the following subsection (3.1.2).

†At least as long as the list does not contain any fundamental or frequently used features.

98

3.1. Fundamental design decisions

Accepting any compilable code The analysis must be able to analyze any
compilable code to be usable for a real-world project. Therefore, it must support
all Kotlin features. On the other hand, the analysis does not have to work with
non-compilable code since the compiler checks these problems. So the analysis
can assume that any analyzed code is syntactically and semantically valid.

High precision The given use case requires the analysis to have high preci-
sion. Frequent false alarms would cause developers to write unnecessary code,
which would hurt the adoption of this technology. Some Kotlin features are
used more than others – which ones depend on the project type and coding
style. It is good to focus on the more generally prevalent features such as vir-
tual method calls and higher-order functions. Especially those two features are
necessary to analyze precisely.

Not relying on IR type information This requirement is technically only
a consequence of the previous requirement. However, it is so important that
I am mentioning it extra. As was explained in (1.5), relying on the type
information is not a good strategy for achieving high precision. However,
there is another reason not to do this. If the analysis does not require type
information, it can easily support constructs without precise types (or with
no type). For example, not dealing with types makes support for generics
much more straightforward as they can be almost completely ignored. Another
benefit is that it will be easier to add support for other languages, including
those dynamically typed. Even though multi-language support is not a goal
of this thesis, it is nice to have this option available as a potential future
improvement.

Execution speed and hardware requirements Analysis performance is not
a big priority. It is intended to be run together (in parallel) with acceptance
tests on a CI server. Therefore, it is acceptable to have comparable speed
and hardware requirements to such acceptance tests.† However, it would be
beneficial if the analysis could match the performance of unit tests. In that
case, developers could use the analysis directly as part of their development
process.

†Depending on the project size acceptance test can run for minutes or even for hours and
may require powerful servers.

99

3. Static analysis design

Target platform For now, the analysis must support Kotlin JVM as the only
target platform. The design should allow adding support for other Kotlin
targets in the future. Supporting more targets would make it possible to use
this analysis on more projects, including front ends. The problem of domain
exception handling on front ends is similar to back ends. So, in theory, this
analysis could be used on the front ends with only slight modifications. It is also
technically possible to write back ends in Kotlin JS or even Kotlin Native, which
could also be supported.

Support for multi-module projects Multi-module projects are common in
Kotlin, so they need to be supported. Larger projects are typically split into
many modules, and almost all projects use some open-source libraries.† The
support for multiple modules must be solved by the analysis design. The reason
is that the analysis will be implemented as a compiler plugin that works only
with a single module at a time.

Flexibility Designing static analysis involves many tradeoffs based not only
on these requirements. For making the correct tradeoffs, it is necessary to
understand how they will affect the analysis usability for the given use case. It
is not always possible to know these effects before actually trying the analysis
on different projects. So the design process relies on educated guessing with
trial and error. The design must be easy to change to accommodate this process
as much as possible.

Maintainability Each release of Kotlin brings new features to the language. In
order to support all valid Kotlin code, the analysis will have to be maintained
and updated to support new Kotlin versions. The design must make it possible
(and ideally easy) to add support for new features.

3.1.2 Intentional simplifications
This subsection lists multiple problems and explains how the analysis will deal
with them. The presented solutions have one thing in common: they do not
preserve analysis soundness. Better solutions exist for most of the problems.

†Libraries with accessible source code can be considered as additional modules (at least for
this purpose).

100

3.1. Fundamental design decisions

However, incorporating them into this project is not worth it, as not correctly
solving those problems makes everything much simpler.

The theoretical loss of soundness is not a big problem. Even though the
analysis will not be sound in general, it will still be sound in practice (most of
the time). The reason is that these problems do not significantly interfere with
the type of code the analysis is intended for. However, it might be necessary to
use a better approach for other use cases.

Closed-source libraries Since the analysis will be implemented as a compiler
plugin, it requires access to the source code. Libraries for which the source code
cannot be obtained are not analyzable this way. The analysis will approximate
functions from such libraries as if they returned any possible value. This
approach is not sound since a function can throw an exception or mutate
a shared state. The analysis will allow its user to specify how the function
behaves to address this problemmanually. Themanual specification is intended
as a fallback if the automatic approximation is insufficient. I estimate that the
need for manual specification will not be that frequent. The reason is that
closed source libraries are not that common, and they are usually not part of
the domain logic.

Java code Code written in another language than Kotlin represents the same
problem as closed-source libraries. Kotlin makes it easy to integrate Java and
Kotlin code. Therefore, it is common to have a project that partially contains
Java code either in the form of a module or an external library. The problem
with external libraries will eventually become less significant as the Kotlin
ecosystem grows. The community has an incentive to reimplement existing
libraries in Kotlin because of Kotlin Multiplatform. Projects that directly
combine Java and Kotlin are not part of the analysis’s intended use case. These
projects are typically large legacy systems that are already using some other
strategy to handle exceptions and documentation.

Reflection The reflection in Kotlin JVM can do multiple things that affect the
analysis. It can obtain runtime information about classes and functions. This
information can be safely approximated as any possible value of the given type.
This approximation will not reduce the precision that much since this type of

101

3. Static analysis design

information is typically in the form of a primitive type. The reflection can also
call some function that can be approximated by calling any function with the
same signature. This approximation is not precise at all, but this is not really
a problem. The reflection is usually not used this way in a domain code.

The problematic part of reflection is dynamic class loading. Once again, the
analysis cannot analyze code it does not know about. However, this problem
has an elegant solution if the loaded class source code is available. In that case,
the code can be put into the analysis as anothermodule. From the analysis point
of view, the code will be present from the program start. Such approximation
is safe and relatively precise. If the code is not available, then the problem is the
same as with closed-source libraries.

Implicit exceptions Implicit exceptions are not a theoretical problem. They
behave like explicit ones, so the core algorithm for their analysis can be the
same. The problem is in the implementation. The analysis would have to know
about each operation that can cause an implicit exception. Such operations are
then possible to analyze as an if block with the operation in one branch and
a throw instruction in the else branch. Identifying and implementing all these
operations requires much work, especially because of how Kotlin represents
them in the IR. Doing all this work would be practically useless as domain
exceptions are always explicit.

Nevertheless, this is an unsound approximation because the presented
analysis ignores handlers that are considered unreachable. The approximation
is acceptable for the target use case. It will cause problems only if there
are handlers for implicit exceptions which interact with domain logic. An
example code is a try expression catching an implicit exception and rethrowing
a domain exception instead. Inmy opinion, this is a very bad practice as implicit
exceptions should handle programming errors. The correct way (that the
analysis supports) is to write a guard that directly throws the domain exception.

Coroutines As was mentioned in the (2.10.2), the compiler modifies suspend
functions. Most of the time, these modifications can be ignored as they do
not change the semantics of the functions. There is one situation (that I know
of) in which it matters: When the function suspends itself by obtaining its
continuation. The problem here is that this operation completely changes the

102

3.1. Fundamental design decisions

function’s control flow. The analysis will lose soundness if it is not aware of
the suspension. It should be safe to ignore this problem for the current use
case as this type of suspension is not common in domain code. However, the
problem will eventually have to be adequately solved (which is possible).

3.1.3 The chosen approach
After carefully considering the requirements and options, I have decided to use
a method called abstract interpretation. This approach was briefly explained at
the end of (1.5.3). Because of its inherent advantages and disadvantages, I think
that it is a good match for the given problem.

Themost notable advantage of abstract interpretation is that it can be sound
and have very high precision. The level of precision depends on the chosen
program state abstraction and the specific algorithm. Also, the precision can
be gradually tuned to meet the requirements of the given use case. The primary
disadvantage is that abstract interpretation can be slow compared to other
methods.

The proposed algorithm is custom designed, based on general concepts that
are shared by all analyses utilizing abstract interpretation. It shares some simil-
arities with the analysis from the previously mentioned article “An abstract in-
terpretation for estimating uncaught exceptions in StandardML programs” [34].
For example, both methods use an intermediate representation. However, each
analysis uses a very different one. My intermediate representation works with
dynamic dispatch instead of higher-order functions.

The analysis abstracts the program state in the following way: Each
object/value is represented only as a type with fields that hold other objects.
Two objects with the same type and the same fields with equal objects are equal.
For this reason, the analysis does not distinguish between primitive values of
the same type. For example, all integers are considered equal.

In its current form, the algorithm is flow-sensitive but not path-sensitive.
This property means that the analysis follows the control flow, and therefore
it considers when and what instructions are executed. However, it does not
utilize information about the branch conditions. This limitation is a direct
consequence of the fact that the analysis does not distinguish primitive values.

Not distinguishing primitive values is not a fundamental limitation of
abstract interpretation. The chosen state abstraction naturally reduces the

103

3. Static analysis design

achievable precision. It is a deliberate decision not to support primitive values
because it significantly simplifies the interpretation. Because of how Kotlin
represents basic operations, it would be necessary to implement interpretation
for dozens, maybe hundreds of methods.† Also, there would not be a noticeable
benefit for all this work – domain exceptions typically depend on a user input
and mutable global state.

The core abstract interpretation algorithm needs some entry point as a start-
ing point. Ideally, this entry point is a function without any parameters. Since
endpoints are typically methods with parameters, converting them to entry
point functions is necessary. Each endpoint then can be interpreted as an inde-
pendent program.

The analysis performs the conversion by creating additional wrapping
function for each endpoint. The wrapping function calls the endpoint function
and uses a special Any value as an argument for each parameter. The dispatch
receiver of methods is also substituted by this Any value. The Any value acts
as an object of any possible type (restricted by the expected expression type).
All fields of the Any value are also Any values. In summary, the Any value
behaves like an unknown object that can potentially be anything allowed by
the type system.

Even though abstract interpretation does not rely on the type system,
having type information can improve the analysis precision. The most obvious
(but not only) example is the Any value. Without the type information, it would
represent all classes in the program (which can be many classes – thousands or
even more). The number of possible classes usually goes down to a few once
the type information is available.

3.2 Architecture
The architecture described in this section is a fundamental part of the analysis
design. It is not just an implementation detail of the prototype because it
influences how the analysis conceptually works. As per the architecture,
the analysis uses two custom intermediate representations (on top of the
Kotlin IR). While converting between all these representations, the analysis

†The IR represents everything as methods, in this case, delegated to native code.

104

3.2. Architecture

gradually lowers all advanced features into the most basic ones. Therefore, the
architecture influences the way features are analyzed.†

The previous section contained several requirements that are best solved
at the architecture level. Namely, these are: flexibility, maintainability, and
multi-module project support. All three requirements can be satisfied by using
a modular architecture. The modular architecture solves these requirements in
the following way:

Flexibility With modular architecture, it is easier to change a single module.
The other modules will be affected by these changes less than if every-
thing was implemented together. In an extreme case, a whole module
could be dropped and designed/implemented from scratch.

Maintainability Not all modules in the architecture depend on the Kotlin
compiler. This separation limits the impact of changes in the Kotlin
compiler on the analysis implementation. Implementing new features
will also be easier since not every module will have to be changed.

Multi-module project support As explained in more detail below, the analysis
works in multiple steps. In the first step, the analysis processes each
project module separately. The results of each processed module are
merged and used all at once in the remaining steps. The support for this
process was the primary driving force of the architecture design.

Since the analysis is modular, it consists of several modules. Each module
will be explained in detail in its own subsection.‡ The following is a list of all
the analysis core modules:

FIR – is a custom higher-level IR similar to the Kotlin IR.

BIR – is a custom lower-level IR designed specifically for the abstract interpret-
ation algorithm.

Front end – converts the Kotlin IR into FIR.

Runtime – provides FIR for special functions used (but not provided) by the
front end.

†Some features are analyzed directly by the abstract interpretation, and some are lowered
during the preprocessing.

‡The prototype implementation follows the architecture and has the same core modules.

105

3. Static analysis design

Back end – transforms FIR into BIR.

Interpreter – contains the algorithm that performs the static analysis on the
BIR.

Analysis – instruments the interpreter to provide the required outputs.

The module names are based on terminology commonly used in compilers.
Kotlin compiler also uses this terminology, so these names might be confused.
To avoid this type of confusion, from now on, I will use the following
conventions:

• Kotlin compiler components (like the front end) will always be referenced
with an appropriate adjective (for example, compiler front end).

• Modules of the static analysis will be generally used without an adjective
or in another way distinguishing them from the compiler modules.

This naming collision can occur only for the following terms: front end, back
end, and runtime. Kotlin compiler also contains its own FIR, but this thesis does
not use it. So any future reference to FIR is always related to the static analysis
FIR. Similarly, plain IR is only present in the Kotlin compiler.

From a high-level perspective, the analysis works in the following way.
First, the front-end module converts the Kotlin IR into FIR and stores it into
a file. The conversion is done separately for each module. Therefore, at the
end of this step, there are many files with FIR. In the second step, the runtime
generates its own FIR (which can be optionally stored in an additional file).
Next, the back end loads all the generated FIR, merges it together, and converts
it to BIR. As a result, the back end works with the whole program, and the BIR
also represents the whole program. Subsequently, the analysis module takes
the BIR and generates a unique entry point for each function to be analyzed.
The analysis module then uses the interpreter module to interpret each entry
point. In the end, the analysis module converts the interpretation results into
the expected output format.

3.2.1 FIR
The Kotlin IR is relatively easy to work with during the compilation process.
However, it is not specifically designed to be used for static analysis, so it

106

3.2. Architecture

is unnecessarily complex. It contains a large amount of information necessary
for the compiler but irrelevant for static analysis. Having more information
is sometimes good, and sometimes it just makes things more complicated.
These are the primary reasons why the FIR was created. However, there are
also some more practical ones like easier unit testing.

FIR is very similar to the Kotlin IR – it has similar structure and naming
conventions. The differences are that it can be serialized and is significantly
simpler. It also abstracts away some Kotlin features, which makes it more
universal. For this reason, the FIR has a slightly different level of abstraction
than the Kotlin IR. The abstraction level is not necessarily higher or lower. FIR
just expresses some features more conveniently for the target use case.

Everything in the Kotlin IR can be converted to FIR while preserving all
semantics, but the opposite is not true. Not every valid FIR is a valid Kotlin IR.
This asymmetry is partially caused by FIR being very dynamic. For example, it
has types, but they are not required. The second reason is that FIR is generally
less strict than the Kotlin IR.

Even though FIR is optimized for Kotlin, it can express the semantics of
other languages. The closer the language semantics is to Kotlin, the easier
it will be. So, for example, ideal candidates are languages like Java or Scala.
However, it is theoretically possible to also support more diverse languages
such as JavaScript.

3.2.2 BIR
BIR is derived from FIR, so it has a similar structure, but it has a much lower
level of abstraction. BIR is designed specifically for the purpose of exception
static analysis. It supports only a necessary subset of FIR features to simplify
the analysis. The remaining features are lowered to the supported features by
the back end. BIR also does not preserve all semantics of the program (which
FIR does) because the analysis does not utilize the full semantics. Notably, it
does not support constants and conditions in branches.

Like FIR, BIR elements also have properly defined semantics. The back
end needs to know this semantic to convert FIR into BIR. On the other
hand, the analysis does not entirely follow the BIR semantics and makes some
approximations.

107

3. Static analysis design

The reason is that even with all the simplifications, BIR is still Turing-
complete. Therefore, some approximations are necessary. Compared to
FIR, BIR does not have constants and proper conditions, but both can be
theoretically represented differently. For example, each constant can be an
extra class, and operations can be implemented by dynamic dispatch. Such
representation is not practically usable but still possible.

3.2.3 Front end
The general role of the front-end module is to parse a program source code and
create the corresponding FIR. In the case of Kotlin, most of this work is already
done by the Kotlin compiler. The front end only needs to translate the Kotlin IR
to FIR. Because the front end is implemented as a compiler plugin, it depends
on a specific compiler/language version. Multiple versions can be supported,
but it requires implementing a front end for each version.

FIR effectively creates an API that isolates the front end from the rest of
the analysis. This isolation makes the architecture great at supporting different
versions of Kotlin and potentially other languages. The isolation must be total
to maintain this property. For this reason, only the front end and runtime can
depend on the specific language. All other modules use only FIR and BIR.
As a side effect, the front end is the only module depending on the Kotlin
compiler.

3.2.4 Runtime
Runtime is a very simple module whose only responsibility is to provide FIR
for special functions not defined elsewhere. The provided FIR can be an
implementation of functions from the standard library or functions build-in
in the actual runtime of the program. The analysis users can also reuse the
runtime module to provide definitions for functions from unknown third-party
libraries.†

The runtime also provides additional helper functions for the front end. For
example, the front end can use these helper functions to express some features

†These explicit definitions are necessary only for functions that have non-negligible side
effects (like throwing an exception). The remaining missing functions are resolved by the back
end.

108

3.2. Architecture

not directly representable in FIR. The front end could generate the helper
functions every time it needs them. However, having them only once in the
runtime module is simpler. Arrays and iterators are good examples of features
implemented this way.

The front end indirectly depends on its runtime because it relies on the
presence of runtime FIR. Therefore, front ends for different languages will need
different runtimes, each for the specific language. However, one runtime should
be able to support different versions of the same language because of backward
compatibility.

3.2.5 Back end
The primary goal of the back end is to convert FIR into BIR. The back end is the
first module that needs FIR of the whole program at once. Otherwise, it cannot
generate the correct BIR. The conversion process involves many consecutive
steps that gradually perform the conversion, feature by feature.

For the most part back end directly converts FIR elements into equivalent
BIR elements. Some FIR elements are not directly expressible in BIR, and those
need to be lowered. These lowerings are explained in more detail later in (3.4).

To support calls to other modules, FIR does not require every used function
and class to be declared. However, BIR does not allow that. Therefore, the back
end must provide a declaration for each used but missing class and function.†

The back end generates missing functions such that they do nothing except
return the Any value. Since the generated function is an unsound approximation
of the actual implementation, the back end raises a warning. The analysis user
can then decide if it is necessary to provide the correct implementation for the
missing function manually.

3.2.6 Interpreter
The interpreter module performs the static analysis of a program represented
by BIR. The module’s name is derived from the used algorithm – abstract
interpretation. Even though the interpreter performs an analysis, it technically
does not perform the desired analysis (the analysis module does that). The

†Even a perfectly valid program can use some missing functions. For example, if the
program contains a library without source code.

109

3. Static analysis design

interpreter does not know anything about the static analysis use case. For
example, it has no notion of API endpoints. It can only analyze a single
parameterless function or, in other words, an entry point.

The input for the interpreter is the analyzed program (which includes
the entry point). The output is a set of exceptions that can terminate the
analyzed program (because they are not handled). Both input and output also
contain an environment. The environment contains variables present at the
program’s start/end. The analysis module uses this environment to modify the
interpretation process.

3.2.7 Analysis
Since the interpreter module performs general unhandled-exceptions analysis,
it can be used for multiple purposes. The analysis module is there to implement
the actual domain API exception analysis. The analysis module does that by
instrumenting the interpreter in a specific way. The interpreter is called many
times during a single analysis run. Each time the analysis provides different
inputs. There are two warm-up stages and an analysis stage.

The warm-up stages are there to initialize the program’s global state. API
endpoints can be called at any time, so the global state must be initialized
accordingly. The interpreter is called during the first warm-up stage with an
unmodified program and an empty environment. The returned environment
contains the initialized global state of the program. The global state is then
passed using the input environment in successive runs of the interpreter.

The API endpoints can also modify the global state. The analysis performs
the second warm-up stage to ensure that the order of API calls does not affect
the results. In this stage, the analysis creates a special function that calls all
endpoints in any possible order with all possible arguments. This function can
be constructed as a When expression nested in a loop. Each function call is in its
own branch, and there is an additional branch with a Return statement.† The
function calls use the Any value to simulate all possible arguments.

The environment obtained from the second warm-up stage is then used
in the analysis stage. The analysis stage performs the actual analysis of each

†The extra return ensures that the loop terminates at all possible times.

110

3.3. Abstract interpretation algorithm

endpoint. This part of the analysis is done according to the description at the
end of (3.1.3).

3.3 Abstract interpretation algorithm
This section explains the semantics of BIR and how the interpreter analyzes this
semantics. BIR consists of many elements that are represented as classes in the
implementation. The following text uses code from the implementation to show
the structure of each element. The code listings are simplified to contain only
the element declarations. In reality, there are additional utility methods.

3.3.1 Symbols
Symbols give names to declarations and, at the same time, can be used
as pointers to declarations. There are four basic symbol types, each for a specific
declaration. These symbols are: Variable, Function, Class and Label. The
class symbol is also frequently used as a symbol for types. Both FIR and BIR
use the same symbols. Additionally, BIR uses the class TypeSet to represent
several types at once.

As shown in the listing (3.1), all symbols have a name that gives them
identity. The function symbol is more complicated than others because it
consists of a signature (name) and an optional dispatch receiver type. The
dispatch receiver type is present only for functions that represent methods.
There can be multiple functions with the same signature and different dispatch
receiver types. This feature is used together with dynamic dispatch to imple-
ment method overriding.

Symbol names can have practically any value. However, the back end and
interpreter use some special symbols that are reserved. The front end cannot
generate these symbols to avoid collisions. These reserved symbols are an
implementation detail that can change. So, the back end can introduce new
reserved symbols if necessary. All reserved symbols always contain characters
“[” and “]”. The front end should not use these symbols to ensure there is no
collision, even in future versions.†

†The choice of square brackets is intentional since they cannot be used in any symbol name
on the JVM platform. The Kotlin front end uses angle brackets that have the same property.

111

3. Static analysis design

class Variable(override val name: String)

class Function(
val signature: Signature,
val dispatchReceiverType: Class?,

) {
class Signature(override val name: String)

}

class Class(override val name: String)

class Label(override val name: String)

Listing 3.1: FIR and BIR symbols

3.3.2 Declarations
BIR has three fundamental declarations: Function, Class and Program. All
declarations in BIR are global and cannot appear anywhere else except in the
Program element. A program declaration (listing (3.2)) represents the BIR of
the whole program, so it contains all other declarations. Additionally, it has
a signature of the program entry point function. The entry point is represented
only as a function signature because knowing the function dispatch receiver
type is unnecessary. The entry point cannot have a dispatch receiver, so its
type is implicitly null.

class Program(
val entryPoint: Symbol.Function.Signature,
val functions: List<Function>,
val classes: List<Class>,

): Element()

Listing 3.2: BIR Program declaration

A function declaration (listing (3.3)) has several properties, and all are used
to perform a function call. The function symbol is used to determine which
function to call. The function body is the code that gets executed as a result of
the call. The parameters have the same symbols as variables because they are
represented as local variables. The parameter order in the list is significant
because it determines which argument is stored in which variable. All the

112

3.3. Abstract interpretation algorithm

remaining function properties are optional and are used only as a source of type
information. As a result, a local variable does not have to be declared if it has
an unknown type. Since parameters have to be declared, their allowedTypes
property is optional to signalize the absence of the type information.

class Function(
val symbol: Symbol.Function,
val allowedDispatchReceiverTypes: TypeSet?,
val allowedReturnTypes: TypeSet?,
val parameters: List<Parameter>,
val variables: List<Variable>,
val body: Expression,

): Declaration() {
class Parameter(

val symbol: Symbol.Variable,
val allowedTypes: TypeSet?,

): Element()
class Variable(

val symbol: Symbol.Variable,
val allowedTypes: TypeSet,

): Element()
}

Listing 3.3: BIR Function declaration

A class (listing (3.4)) is effectively just a structure in BIR. It contains
a symbol and optionally fields. As with local variables in functions, these fields
are dynamic, and the declaration is there only to optionally provide the field
type. However, Class declarations themselves are required. Otherwise, their
symbols cannot be used as types. Classes in BIR do not support inheritance,
which is why the TypeSet class exists. TypeSet is primarily used to represent
all possible types castable to the original type.†

3.3.3 Basic expressions
Most BIR elements are expressions, which evaluate to some value. In a regularly
executed program, the value is an object. In the abstract interpretation, the
value is a set of objects that the analysis thinks can be the actual result of the
expression.

†Which is usually the type and all its subtypes, but it can also be used for union types.

113

3. Static analysis design

class Class(
val symbol: Symbol.Class,
val fields: List<Field>,

): Declaration() {
class Field(

val symbol: Symbol.Variable,
val allowedTypes: TypeSet,

): Element()
}

Listing 3.4: BIR Class declaration

The simplest expressions in BIR are those that directly produce value. These
expressions are CreateObject, Any, and Nothing – all shown in the listing (3.5).
CreateObject evaluates to a new empty object of the given type. Nothing
is a value with no objects, which means it is an empty set.† Any is the Any
value introduced in (3.1.3).‡ Any can optionally be typed to limit the number of
objects it represents. Any can contain anything meaning all fields also contain
Any. The analysis cannot make many assumptions about the content of Any,
only those based on the type information.

class CreateObject(val type: Symbol.Class): Expression()

class Any(val allowedTypes: TypeSet?): Expression()

object Nothing: Expression()

Listing 3.5: BIR basic expressions

Dereferencing Nothing is not possible. If that still happens, the analysis
assumes it was caused by an approximation error. In that case, the error
is resolved by ignoring the current execution path. Therefore, the analysis
effectively acts as if it is impossible to reach the problematic instruction. This
assumption is not sound because the program can actually have a null pointer

†Nothing can be seen in multiple other ways: as a null pointer or as the bottom element of
a lattice.

‡It is the top element of a lattice.

114

3.3. Abstract interpretation algorithm

dereference error. The loss of soundness is justified because implicit exceptions
are not analyzed properly.†

The other basic expression is the Block (in listing (3.6)). The Block contains
a list of other expressions. Evaluating a block means evaluating all expressions
inside it. The Block evaluates to the same value as its last expression. If the
Block does not have any expressions, then it evaluates to Nothing.

class Block(val expressions: List<Expression>): Expression()

Listing 3.6: BIR Block expression

3.3.4 Locations
Locations store values. There are two basic types of locations: variables
and fields. Variables (or local variables) belong to a function. Each function
execution has its own isolated set of variables. Field values are stored in objects,
so they are not isolated between function calls.

Functions with dispatch receiver type in their symbol have access to an
additional location. This location stores the function dispatch receiver. The
dispatch receiver can be accessed by the This expression (listing (3.7)). The
dispatch receiver can be used like any other value. The location itself is unique
in that it is managed by the interpreter, and the program cannot write to it. The
location also cannot be accessed from functions without a dispatch receiver
declaration.

object This: Expression()

Listing 3.7: BIR This expression

Locations can be read from and written to. The corresponding elements
for these operations are in listing (3.8). Variables and fields need each their
own set of operations because fields cannot be accessed without the receiver

†The null pointer dereference can be analyzed by this analysis, but it is not practical. The
analysis cannot always decide if the error truly exists or is just a result of an approximation.

115

3. Static analysis design

(owner object). The interpreter knows which function it is currently executing,
so variables can be accessed only by their symbols.

class GetVariable(val symbol: Symbol.Variable): Expression()
class SetVariable(

val symbol: Symbol.Variable,
val body: Expression,

): Expression()

class GetField(
val receiver: Expression,
val symbol: Symbol.Variable,

): Expression()
class SetField(

val receiver: Expression,
val symbol: Symbol.Variable,
val body: Expression,

): Expression()

Listing 3.8: BIR location access expressions

The get operations return the value stored in the referenced location. In the
case of GetField, the receiver is a value, and therefore it can contain multiple
objects, not just one. For this reason, GetField retrieves the field value of each
object separately and merges the values into one result value. Since values are
immutable, the merging does not affect the stored values.

The semantics of set/write operations depends on the interpreter mode. The
interpreter has two modes called overwrite and unification. The unification
mode works as in other static analyses. In this mode, set operations add
the value (the result of the body expression) to the location, preserving the
currently stored value. Because of that, once a value is written to a location, it
cannot be removed.

The overwrite mode is, to my knowledge, unique to this analysis. In this
mode, location writes work as in a regular program which means writing to
a location removes the previously stored value. The difference of these two
modes can be demonstrated on the following example: foo = A1(); foo =
A2(); After these two statements, the value stored in foo depends on the
used mode. In the unification mode, the value will be A1 and A2, while in the
overwrite mode, the value will be only A2.

116

3.3. Abstract interpretation algorithm

The example shows that the overwrite mode is more precise than the
unification mode. However, there is a reason why other analyses use the
unification mode only. The analysis may not terminate when interpreting
loops and recursions in the overwrite mode.† Both loops and recursions are
terminated when the abstract state reaches a fixed point – it can no longer
change. The underlying problem of the overwrite mode is that the abstract
state lattice is no longer climbed only upwards. Each write can set the abstract
state to any lattice element, so there might no longer be a fixed point. For this
reason, special measures need to be taken to ensure the terminationwhile using
overwrite mode.

Repeated writes of an object already stored in the location do not have
any effect (in both modes). The object’s identity is determined by its memory
address, not by its type or content. Therefore, a single location can store
multiple objects of the same type. This definition of identity causes even the
unification mode not to terminate. This time the reason is that the lattice
becomes infinite. Solutions to both of these problems will be explained later,
together with loops and recursion.

3.3.5 Branching
Branching is implemented as a When expression (listing (3.9)). When has a list
of branches, and each branch has its body. Notably, branches do not have
conditions, so the interpreter cannot decide which branch should be executed.
Instead, it executes all branches simultaneously.

class When(val branches: List<Branch>): Expression() {
class Branch(val body: Expression): Element()

}

Listing 3.9: BIR When expression

The interpretation of branching is closely related to the concept of execution
paths. An execution path follows the program control flow, and it represents

†The static analysis must always terminate, or it would not be practical to use it. The
analysis cannot detect that it will run forever, so on its own, it cannot decide to stop if that
happens. Therefore, it is necessary to design the analysis so that no program’s constructs can
cause the analysis to not-terminate.

117

3. Static analysis design

a single specific path through that control flow. Each execution path has
a current program state and a pointer to the following instruction. An execution
path can reach its end, in which case it is terminated, and its execution
is stopped. The termination may also happen for other reasons like a raised
exception, but in this case, the execution path is later resumed in the handler.

The When expression splits the current execution path into multiple ones,
one for each branch. Each branch is evaluated independently in isolation.
Therefore, their execution paths share the past state but do not influence each
other. After the branch evaluation is complete, all non-terminated paths are
merged into a single one. This merged execution path then continues after
When. If there is no non-terminated branch, the execution does not continue
after When.

The example in listing (3.10) highlights the key properties of the previously
stated rules. The example is written in a custom DSL that creates BIR.† The
example assumes that the interpreter uses overwrite mode (unification mode
produces the same result but for a different reason). In the example, there is an
existing variable x with an object E. The first branch sets the value of variable
y to E and then changes x to a new object E1. The second branch also sets
the value of variable y to E because the change to x did not happen from this
execution path perspective. After When, the variable x contains either E or E1
because it is not possible to determine which path was taken. The variable y
contains only a single object E because both paths stored the same object in the
variable.

SetVariable("x") { CreateObject("E") }
When {

Branch {
SetVariable("y") { GetVariable("x") }

SetVariable("x") { CreateObject("E1") }
}
Branch {

SetVariable("y") { GetVariable("x") }
}

}

Listing 3.10: An example of When expression evaluation

†The same DSL is used in the prototype tests.

118

3.3. Abstract interpretation algorithm

When in BIR is always considered as exhaustive, which is a difference
compared to the Kotlin IR. Because of this property, the interpretation can
assume that exactly one branch is always executed. This assumption is essential.
It allows the interpreter to drop the original location value if it was changed in
all non-terminated branches.

The requirement for a branch to be non-terminated is also important. For
example, a branch can write to some variable and then throw an exception
(which terminates the execution path). Anything in that branch cannot affect
anything after When. So the requirement prevents the changed variable from
being visible outside the terminated branch.

Like in Kotlin, When is an expression, and therefore it evaluates to a value.
The value is obtained by merging result values from every non-terminated
branch body.

3.3.6 Exceptions
An object of any type can be used as an exception. Exceptions can be thrown by
the Throw expression (listing (3.11)). Which exception is thrown is determined
by the value of the body expression. A Throw expression can throw multiple
atomic exceptions at once because the value can contain multiple objects. This
multi exception is represented as a single value that is later decomposed if need
be.

class Throw(val body: Expression): Expression()

Listing 3.11: BIR Throw expression

Even though Throw is an expression, it effectively does not evaluate to any
value. It terminates the current execution path, so the value is not accessible.
The terminated execution path state is stored and can be later accessed in the
exception handler.

Exception handlers are declared by a Try expression (listing (3.12)). The
semantics of a Try expression is almost identical to that of Kotlin. The primary
difference is that there is no finally block. The exception handling process
is also slightly changed since the exception is decomposed first. From the
handler’s perspective, the exceptionmay contain both handled and not-handled

119

3. Static analysis design

exceptions. Handling exceptions in this merged form would unnecessarily
reduce precision. The decomposition separates the exception into two parts to
solve this problem. The current handler handles the first part of the exception,
and the rest is passed to the other handlers.

class Try(
val body: Expression,
val handlers: List<Handler>,

): Expression() {
class Handler(

val variable: Symbol.Variable,
val handledTypes: TypeSet,
val body: Expression,

): Element()
}

Listing 3.12: BIR Try expression

Several execution paths are created during the execution of a Try expression.
One execution path is for the Try body. Additionally, each reachable/activated
handler has its own execution path.† Any created non-terminated execution
path might be the correct one, and it is impossible to determine which one
it is. So both the state of these execution paths and their results are merged.
The merged result is the result of the whole Try expression. The merged
state is accessible after the Try expression. In this sense, the Try expression
is evaluated similarly to When.

3.3.7 Functions calls
Functions can be called by two different BIR expressions: StaticCall and
VirtualCall (listing (3.13)). The difference between them is in the used
dispatch type. StaticCall uses static dispatch, while VirtualCall uses
dynamic dispatch. The dispatch type affects only the function selection. The
function execution works the same in both cases. Neither of the two calls
supports parameter overloading. Only the function signature and the dispatch
receiver type decide which function is called.

StaticCall precisely knowswhich function to call because it has the whole
function symbol. The dispatch receiver is optional because StaticCall can

†The interpreter does not evaluate a handler if it is not necessary.

120

3.3. Abstract interpretation algorithm

class StaticCall(
val symbol: Symbol.Function,
val dispatchReceiver: Expression?,
val arguments: List<Expression>,

): Expression()

class VirtualCall(
val symbol: Symbol.Function.Signature,
val dispatchReceiver: Expression,
val arguments: List<Expression>,

): Expression()

Listing 3.13: BIR function call expressions

also call a function that does not have a dispatch receiver. On the other hand,
VirtualCall always has a dispatch receiver. It uses the dispatch receiver type
to select which function variant to call.

A function call is evaluated slightly differently depending on the call type.
In the case of StaticCall, the process is the following: First is evaluated the
dispatch receiver, but only if its expression is present. If the dispatch receiver
expression evaluates to Nothing, the current execution path is terminated.
Subsequently, all arguments are evaluated in the order in which they are stored
in the list. Last, the function body is evaluated in an isolated context. The
context contains new local variables for the function and all the arguments. The
arguments are stored as local variables under the names of the corresponding
parameters (determined by their ordering).† Once the called function finishes
its execution, the control flow returns to the caller.

VirtualCall extends the above process by a function lookup step. This
step is necessary because the call does not know which exact function should
be executed. The function lookup is performed just before the actual function
call. The selected function is the one that has a matching signature and
a matching dispatch receiver type (to the evaluated dispatch receiver). The
dispatch receiver may be composed of multiple objects of different types. In
that case, the dispatch receiver value is grouped by the object type. Each group
is then resolved separately. As a result, VirtualCall can call multiple functions
simultaneously, one for each present dispatch receiver type. The effect of all
these calls is then merged as if each was performed in a separate When branch.

†The number of parameters and arguments must match; otherwise the BIR is not valid.

121

3. Static analysis design

The dispatch receiver grouping involves several edge cases. First, there
might be multiple objects of the same type. If so, they are kept together
as a single value, and the function is called only once. Another problem arises
if there is no function with matching dispatch receiver type. With no function
to call, the dispatch receiver is ignored. If this situation causes the VirtualCall
not to call any function, the execution path is terminated.

Both function calls are expressions, so they evaluate to the return value
of the called function. In the case of VirtualCall, it is the merged result of
all called functions. A function can return a value using a Return expression
(listing (3.14)). Return itself does not evaluate to anything as it terminates the
execution path (same as the Throw expression). A function can properly end
even without Return – when the execution reaches the end of the function
body. This execution path does not have a return value, and therefore the call
evaluates to Nothing.

class Return(val body: Expression): Expression()

Listing 3.14: BIR Return expression

The execution paths inside the called function can branch. Because of
that, there might be multiple ways in which the function was terminated. For
example, some execution paths can end with an exception while others with
a return. Execution paths that end with an exception do not properly end the
function execution. For this reason, they do not contribute to the function call
result value. On the other hand, return values from all other execution paths
are merged into the result value. If there is no properly ended execution path,
then the execution does not continue after the function call.

3.3.8 Loops
Repetition is implemented in BIR via the Loop expression and two jumps: Break
and Continue. All these expressions are shown in the listing (3.15). Loop
represents an infinite repetition. The loop can end properly (like a function)
only if it is terminated by a Break expression. The loop also ends (but not
properly) when the function returns, or an exception is raised. To end properly
means that the execution continues right after the loop.

122

3.3. Abstract interpretation algorithm

class Loop(
val label: Symbol.Label?,
val body: Expression,

): Expression()

class Break(val label: Symbol.Label?): Expression()

class Continue(val label: Symbol.Label?): Expression()

Listing 3.15: Loop related BIR expressions

From the loop perspective, there are three different types of execution paths.
The first type terminates the loop properly (Break). The second type terminates
the loop improperly (Return and Throw). The last type repeats the loop because
it either reaches the Continue expression or the end of the loop body. After
the loop evaluation, the state from all properly terminated execution paths
is merged together.† This merged state is the program state after the loop.
Improperly terminated execution paths are handled the same as in previous
cases. The state of the remaining paths from the previous iteration is merged
and used as the initial state for the next iteration. The first iteration uses the
program state from before the loop.

For a loop to have any meaning, its body must have multiple branches.
Some of those branches must terminate the loop, while others must allow the
loop to repeat. Without any terminating execution path, the loop is infinite
and effectively does nothing of interest. Without any repeating path, the loop
is executed only once, so using a loop is not necessary. The Loop expression
evaluates to Nothing, but only if the execution continues after it. Otherwise,
it does not have an accessible result value. Both jumps terminate the current
execution path, and therefore they never evaluate to anything.

All three expressions have a label. The purpose of these labels and their
semantics is the same as in the Kotlin IR. Break and Continue can terminate an
inner loop improperly (almost like an exception) if they target the outer loop.

The loop evaluation works by repeatedly evaluating the loop body until the
next iteration cannot do anything new. For this reason, the loop evaluation
may stop just after a few iterations, even though it could repeat thousands of

†These terminated execution paths can come from any iteration.

123

3. Static analysis design

times in actual code. This early stopping occurs once the analysis can prove
that it can safely approximate any number of iterations.

Deciding when to stop is what makes the loop evaluation difficult. The
interpreter cannot precisely determine if the next iteration will do something
different (it is just another type of static analysis). Always predicting that it can
do something different is sound but not practical because it results in an infinite
cycle. A valid approach is to repeat the loop until the program state no longer
changes. The comparison is performed before each iteration by comparing the
current program state with the initial state of the previous iteration. In other
words, the evaluation continues until the program state reaches a fixed point.
This approach is still imperfect because sometimes, the loop body does not do
anything new, even with a different program state. However, this problem does
not affect the analysis soundness or precision (only performance).

This loop termination algorithm requires two things. First, the program
state must always reach a fixed point (after finitely many iterations). Second,
there must be a way to compare the two program states.

Both location write modes have a problem because, on their own, they do
not guarantee the existence of a fixed point. The overwrite mode deals with this
problem by switching to the unification mode after a predetermined number of
iterations. Therefore, in the overwrite mode, the loop is evaluated several times
to see if there is a fixed point. If the fixed point exists, then everything is all
right. Otherwise, the loop is evaluated as if the interpreter used the unification
mode the whole time. Once the loop is evaluated, the interpreter can switch
back to the overwrite mode.

The overwrite mode can reach a fixed point for many common types of
loops. For example, it can be used with any loop that does not change the
program state and only iterates over some array. An example of a loop that
creates a problem is a builder for an infinite structure like a linked list. If each
loop iteration adds another element to the list, then there is no fixed point.

The linked list builder is a problem even for the unification mode. The
unification mode does nothing to prevent the list from infinitely growing. For
this reason, the unification mode must be extended to ensure that the fixed
point exists in all cases. In order for a fixed point to always exist, the following
requirement must be satisfied: There must be only finitely many locations to
which can be written only finitely many times. There are only finitely many

124

3.3. Abstract interpretation algorithm

symbols in the program, limiting the number of variables and fields in each
object. There are also only finitely many existing objects. Since the unification
mode preserves written values, all existing objects will eventually be present
in a given location.† What breaks the requirement is the possibility of creating
new objects (infinitely many of them). A new object means new locations and
a new value to store in the old locations.

The solution is to limit the number of objects that can be created in the
loop. Alternatively, limit the number of objects preserved after each loop
iteration, which improves precision. There are multiple ways how to achieve
this objective. I have chosen one that unifies all objects of the same type, but
only if they were created in the loop. Objects that existed before the loop are
never unified.‡ The unification of multiple objects replaces every reference to
those objects with a reference to a new object. This new object contains the
merged content of all unified objects. Now the loop can create only finitely
many new objects.††

The unification of objects happens only in the unification mode. Doing
it in the overwrite mode is not sound, which is why the mode is changed to
unification. The reason is that the program can recognize that the unification
happened. The distinction is possible in both modes, but the program can alter
its behavior in an unsound way in the overwrite mode.

An example of this situation is shown in the listing (3.16). After the
unification, both a and b point to the same object. The object has a field i that
contains E1 because it was present in the object from a. What happens after
b.i = E2() depends on the mode. The unification mode adds E2 to the shared
field, so the read a.i returns both E1 and E2. This value is a safe (but imprecise)
approximation of the correct value E1. However, in overwrite mode, the field’s
value is overwritten with E2. Therefore, the read returns only E2, which is not
a sound approximation.

The second requirement for the termination algorithm was that there
must be a way to compare two program states. For the purpose of the loop
termination, the following would be enough: Two program states are equal
if the code inside the loop body cannot tell them apart. In other words,

†Once that happens, no future writes can alter this location.
‡It is unnecessary, reduces precision, and most importantly, it would not be possible to

switch back to the overwrite mode.
††The program contains only finitely many classes.

125

3. Static analysis design

var a = X()
a.i = E1()
var b = X()
// unification occurs
b.i = E2()
a.i == ?

Listing 3.16: An example of problem with object unification in the overwrite mode

the program cannot do anything to detect that the program state is different.
Once again, this property is not possible to decide precisely. A more general
statement is that two program states are equal if no program can tell them apart.
However, given how the abstract state works, this is also not trivial to prove.
So the final algorithm only compares the structure of both program states.

The structure comparison begins from objects stored in local variables. Each
object is compared by identity and recursively by its fields. Both must match,
otherwise the program states are not considered equal. The identity comparison
can be used only for objects that existed before the loop. New objects do not
have a counterpart with the same identity in the other program state. Instead,
the algorithm must establish an identity pairing for each new object. For two
objects to be paired, they must have the same type and be stored in equivalent
locations. The algorithm has to look in all locations for every occurrence of
those objects to prove the pairing is valid. If some object does not have any
possible pairing, the program states are not equal.

The algorithm above is the basic idea of the comparison, but the actual
implementation is significantly more complex. The primary difficulty comes
from values that contain multiple objects. The algorithm must find the correct
pairings for objects from the two values (objects in values are not ordered).

3.3.9 Recursion
When evaluating a function call, it is also necessary to ensure that the analysis
terminates. The interpretation is guaranteed to terminate as long as each nested
function call calls a different function. There are only finitely many functions
in the program, so there is a very long but finite chain of function calls in the
worst case. A problem happens only when function execution eventually leads
to a call of itself. In that case, the program contains a recursion.

126

3.3. Abstract interpretation algorithm

Recursion is conceptually similar to loop as it causes the interpreter to
execute the same code many times. However, a fundamental difference in
recursion makes it harder to deal with. What makes the recursion difficult
is demonstrated by the example in the listing (3.17). The function from
the example either calls itself or throws an exception. There are multiple
handlers that each handle a different exception and rethrow another exception.
What exception the function actually throws depends on how many times the
recursive call is performed. The function can immediately throw E. Alterna-
tively, it throws E1 if it calls itself exactly once. If the recursion is performed
twice, the result is E2. In all other cases, it is E3.

Function("foo") {
Try({

When {
Branch { StaticCall("foo") }
Branch { Throw("E") }

}
}) {

Handler("_", "E") {
Throw("E1")

}
Handler("_", "E1") {

Throw("E2")
}
Handler("_", "E2") {

Throw("E3")
}

}
}

Listing 3.17: An example of a problematic recursion

In the example, the function does not change the program state in any way
and has no parameters.† However, it is still necessary to call it multiple times.
Additionally, the example illustrates that the number of recursive calls matters.
It is impossible to estimate howmany recursive calls are necessary to observe all
possible results of the call.‡ For this reason, recursion cannot be implemented
just by ignoring the recursive call after some predetermined amount of time.

†A more real-world example would have a control variable to control the recursion. This
variable is omitted because the analysis cannot use it in any useful way.

‡The presented example can have many more handlers.

127

3. Static analysis design

The recursion must eventually end, otherwise the analyzed program will
never terminate during actual execution. A program that runs into this infinite
recursion does not throw any additional exceptions.† The interpreter can use
this fact and safely assume that eventually, the branch that leads to the recursive
call is not taken.

The basic idea of how to analyze the recursion is as follows. At first, the
interpreter ignores all calls that would cause a recursion by terminating the
current execution path. At the same time, the interpreter marks the function to
know which one was called recursively. The remaining execution paths of the
function are interpreted as usual. Once the interpretation returns to the first
call of the marked function, the interpreter can start evaluating the recursion.

The interpreter already knows how the function behaves if it does not call
itself. In other words, it knows the effect of the last iteration in the actual
recursion. Now it can evaluate the same function again. However, this time
when it reaches the recursive call, it applies the known effect of the function
call instead of evaluating it directly. This process simulates that the recursion
was called exactly once. The process can be repeated many times, each time
simulating one more recursive call. Therefore, the interpreter evaluates the
recursion inside out.

The key thing in the whole process is how to record and apply the function’s
effect. A function’s effect is everything observable from outside after the
function was called. Namely, it is the return value, thrown exceptions, and
mutated program state. In some sense, recording the function effect caches
results of the function call. The effect application means that the function
call is substituted by the recorded effect. How exactly it is done depends on
the interpreter implementation, so it is hard to explain without going into the
implementation details.

The recursion evaluation can end once the effect of the function does not
change from the previous iteration. The effect comparison works similarly
to the comparison performed by loops but involves comparing more program
states. The reason is that the program state captured by all exceptions must also
be compared. The exceptions, as well as the returned values, must also match.

†Eventually, it will end with a stack overflow error, but the analysis does not report implicit
exceptions.

128

3.3. Abstract interpretation algorithm

Once the recursive evaluation can end, the interpreter uses the last recorded
effect as a result of the original function call.

There are two more problems with the process: It completely ignores the
parameters of the recursive function, and it might not terminate because of
new objects. A function’s effect can depend on its arguments. For example, the
function can return the argument. So the approximation does not work if the
recursive call has different arguments.

Solving both of these problems involves using the object unification. For
this reason, the interpreter must switch to the unification mode to evaluate
recursion. At the end of each repetition, all newly created objects are unified.
Unification itself does not solve the problem with different arguments. Instead,
the interpreter merges and remembers all arguments from each recursive
function call. Every time the function evaluation is repeated, it gets all
previously encountered arguments. Therefore, the function evaluation can
simulate multiple different calls at once. The last change is that the recursion
evaluation cannot end while the arguments of the recursive function are
changing.

3.3.10 Type coercion
Some BIR elements have required types because they are required for the
program to have a meaning. Examples include the function dispatch receiver
type, the exception type in handlers, or the object types. When it is not required,
the types are optional but not useless. They can be used to improve the analysis
precision. Whenever the analysis encounters an object with an incorrect type,
it ignores it.

Such approximation is sound because the analysis assumes that the ana-
lyzed program is compilable. Being compilable also means that the program
had to pass type checking. Type checking ensures that the situation mentioned
above cannot happen in an actual program. The only other option is that it
happened because of some previous imprecise approximation.

This process, named Type coercion, occurs everywhere the type information
is available. Most notably, it is performed before a value is written to a location.
Type coercion is particularly useful for Any because it significantly limits the
number of possible types it can represent. Usually, the type coercion removes

129

3. Static analysis design

only some objects from the value. However, it may happen that the whole value
is discarded, in which case the value becomes Nothing.

3.4 Translation from FIR to BIR
This section focuses on the translation process from FIR to BIR that is done by
the back end. FIR and BIR share many core ideas, and most of their semantics
have almost one-to-one mapping. The rest of FIR can be seen as an extension
to BIR. This section describes FIR with this fact in mind, focusing on the
differences between FIR and BIR. Semantics that is the same (or almost the
same) is not explicitly explained again. Therefore, if something is omitted, it
implicitly means it works the same as in BIR.

When designing both FIR and BIR, I had to decide which features to support
directly and which lower in the front end. There is no strict rule, but there are
a few guidelines. Everything supported in BIR must be implemented in the
interpreter. It is preferable to limit the number of supported features by the
interpreter since it is the most complicated module. At the same time, features
that are not supported directly must be possible to lower without a significant
loss of precision. Everything supported by FIR must be either supported by
BIR or lowered by the back end. The rest of the Kotlin features are handled by
the front end. Features that could be useful for other languages are generally
supported by FIR. Because of that, other implementations of the front end do
not have to duplicate that much code. However, some features are far easier
to translate in the front end. In that case, doing the translation directly in the
front end is preferred.

FIR is composed of many elements, just like BIR. There are three main
types of elements: declarations, expressions, and statements. Both declarations
and expressions are statements. Having statements is necessary because FIR
allows declarations to be nested and mixed with expressions. The concept of
statements is taken over from the Kotlin IR as it supports this nesting.

FIR uses the same symbols as BIR, but it additionally has the Environment
symbol. This environment symbol is either a Class or a Function. The
symbol is used to reference environments. More on environments is in the
last subsection (3.4.8).

130

3.4. Translation from FIR to BIR

Types in FIR are represented by class symbols, like in BIR. Types and classes
in FIRworkmore like in Kotlin because there is support for inheritance. The FIR
is dynamic, so many declarations do not require a type, but some do. The back
end must convert most of these types because BIR elements primarily work
with a TypeSet instead of a single type. If necessary, a type is converted to
a TypeSet that contains that type and all its subtypes.† Missing types have the
same meaning in both FIR and BIR – they represent any possible type.

FIR does not directly support union types since Kotlin also does not have
them. In theory, it is possible to represent union types by creating a synthetic
class that all classes from the union type inherit. This workaround can be used
even for classes from other modules because classes in FIR can be declared
multiple times. The back end then merges duplicate class declarations together.

3.4.1 Declarations
FIR introduces several new declarations compared to BIR. A DeclarationBlock
from the listing (3.18) is one of them. A declaration block is like a regular
block, but it contains declarations instead of expressions. It is a replacement
for a program declaration that FIR does not have. Since FIR is meant to be
generated per module, the program declaration is unnecessary. On the other
hand, FIR needs to represent the modules somehow, so this is the primary use
case for the declaration block. It is also used as a class body because classes
(compared to functions) cannot directly contain expressions.

class DeclarationBlock(
val declarations: List<Declaration>,

): Declaration()

Listing 3.18: FIR DeclarationBlock

Local variables in FIR are declared directly in the function body as this
is how the Kotlin IR declares them. Similarly, fields can be declared anywhere
in the class body. Additionally, FIR has global variables which can be declared
anywhere. As in BIR, all variable declarations are optional because all variables

†This conversion is one of the reasons why the back end needs to work with the entire
program.

131

3. Static analysis design

are dynamic. FIR has different declarations for each variable type, as is shown
in the listing (3.19). This distinction is necessary, otherwise it would not be
possible to declare global variables in functions and classes. The primary
purpose of this non-typical feature is to make the front-end implementation
easier. Conversion of local variables and fields is straightforward. The back
end only needs to find them and move them to the BIR declarations.

BIR does not have global variables, so these are represented as fields of
a global object. The global object is created at the program start and then passed
as an argument in each function call. Therefore, the back end adds a special
global parameter to each function.

sealed class Variable: Declaration() {
class Local(

val symbol: Symbol.Variable,
val type: Symbol.Class,

): Variable()

class Global(
val symbol: Symbol.Variable,
val type: Symbol.Class,

): Variable()

class Field(
val symbol: Symbol.Variable,
val type: Symbol.Class,

): Variable()
}

Listing 3.19: FIR variable declarations

Functions in FIR (listing (3.20)) have a similar declaration as in BIR. Most of
the differences are a consequence of things already explained above. It does not
have any semantic meaning where a function is declared. This is a significant
change compared to the Kotlin IR. For example, in the Kotlin IR, nested
functions capture enclosing function variables. FIR represents this feature
differently by explicitly capturing environments which will be explained in
the subsection (3.4.8). As a side effect of the isolated declarations, methods
can be declared anywhere – outside the class body or even in another module.
Therefore, their location does not determine the class they belong to. Instead,
this is determined by the dispatch receiver type in the function symbol.

132

3.4. Translation from FIR to BIR

class Function(
val symbol: Symbol.Function,
val returnType: Symbol.Class?,
val referenceType: Symbol.Class,
val parameters: List<Parameter>,
val capturedEnvironments: List<Symbol.Environment>,
val body: Statement,

): Declaration() {
class Parameter(

val symbol: Symbol.Variable,
val type: Symbol.Class?,

): Element()
}

Listing 3.20: FIR Function declaration

Classes (listing (3.21)) in FIR are much closer to the Kotlin IR than to BIR.
They support inheritance by the superType property and have a body. FIR
does not have interfaces – they are represented the same as abstract classes.
As a result, FIR technically supports multi-class inheritance. However, it does
not resolve collisions of fields, so it is up to the front end to make sure this is not
a problem.

class Class(
val symbol: Symbol.Class,
val superTypes: List<Symbol.Class>,
val capturedEnvironments: List<Symbol.Environment>,
val modality: Modality,
val body: Declaration,

): Declaration() {
enum class Modality {

Concrete, Abstract,
}

}

Listing 3.21: FIR Class declaration

Classes have modality, which can be either concrete or abstract. Abstract
classes cannot be instantiated, and the back end does not include them any-
where in the BIR. Abstract classes are necessary for the back end to understand
the inheritance hierarchy properly. On the other hand, the interpreter does not
want to know about them. The reason is Any. If abstract classes were present

133

3. Static analysis design

in BIR, then Anywould be less precise since instances of abstract classes cannot
exist in reality. An example where this imprecision would manifest is shown
in the listing (3.22).

interface A {
@Throws(E1::class)
fun foo() {

throw E()
}

}

class B: A {
@Throws(E1::class)
override fun foo() {

throw E1()
}

}

Listing 3.22: An example of acceptance test that utilizes class modality

Theexample code is taken from the acceptance tests. The Throws annotation
contains classes of exceptions reported by the analysis. In the example, the
method foo in interface A throws an exception E. However, the analysis reports
that it throws E1. This behavior is intended because that is exactly what would
happen if someone called the method foo on an object with a static type A. The
analysis knows that such an object can only have a type B because it is the only
concrete class in the A inheritance hierarchy. Therefore, any virtual call of the
method foo can execute only the method declared in B.

Since FIR has global variables, it must also have a way to initialize them at
the program start. In contrast to the Kotlin IR, FIR does not have initialization
expressions for the variables. Instead, they are initialized during the first write.
The Init declaration (in listing (3.23)) is the primaryway to do this initialization.
Init can be declared anywhere, and it is always executed before the rest of the
program.

class Init(val body: Statement): Declaration()

Listing 3.23: FIR Init declaration

134

3.4. Translation from FIR to BIR

The order inwhich Init declarations are executed is unspecified as it cannot
be decided at compile time. The problem is caused by dependencies between
init blocks. For example, an initial value of one global variable can depend on
another global variable. The back end resolves this dependency by generating
code that simulates all possible evaluation orders at once. The code is one big
loop with a single When inside it. Each Init block is in its own branch. Then
there is an extra branch with Break. The semantics of the BIR Loop expression
takes care of the rest.

This initialization code is put in the entry point function. The back end
generates this function during the construction of the BIR Program declaration.
The global object is also created in this function (at its start) and stored in a local
variable. Therefore, code in Init can access the global variables the same way
as other functions.

3.4.2 Basic expressions
Basic expressions from BIR have their direct counterparts in FIR (listing (3.24)).
There are someminor differences: The Block expression has statements instead
of expressions. Nothing is renamed to Null to bring the name closer to Kotlin.
Any has only a single optional type, so it can either represent everything or
a type and all its subtypes.

class Block(val statements: List<Statement>): Expression()

class CreateObject(val type: Symbol.Class): Expression()

object Null: Expression()

class Any(val type: Symbol.Class?): Expression()

Listing 3.24: FIR basic expressions

FIR is designed to preserve the program semantics, and therefore it has
constants. Each constant requires a type in addition to its value. The back end
converts any constant to the CreateObject expression that creates an object of
the corresponding type. The constant value is lost in the process. The constant
type is necessary because the back end cannot depend on Kotlin types, so it

135

3. Static analysis design

would not knowwhich object to create. FIR supports the same type of constants
as Kotlin (and other JVM languages), as shown by the listing (3.25).

sealed class Constant: Expression()

class Boolean(val value: kotlin.Boolean, val type: Symbol.Class):
Constant()↪→

class Char(val value: kotlin.Char, val type: Symbol.Class):
Constant()↪→

class Byte(val value: kotlin.Byte, val type: Symbol.Class):
Constant()↪→

class Short(val value: kotlin.Short, val type: Symbol.Class):
Constant()↪→

class Int(val value: kotlin.Int, val type: Symbol.Class): Constant()
class Long(val value: kotlin.Long, val type: Symbol.Class):

Constant()↪→
class String(val value: kotlin.String, val type: Symbol.Class):

Constant()↪→
class Float(val value: kotlin.Float, val type: Symbol.Class):

Constant()↪→
class Double(val value: kotlin.Double, val type: Symbol.Class):

Constant()↪→

Listing 3.25: FIR constant expressions

3.4.3 Locations
Local variables and fields are accessed the same way as in BIR. These access
expressions are in the listing (3.26). The access expressions for local variables
have different names compared to BIR because FIR distinguishes between local
and global variables.

Global variables are accessed by their own access expressions (listing (3.27)).
The back end converts these to field access expressions. The receiver for the
field access is the global object. The global object is in the special function
parameter explained before. Therefore, the object is internally obtained by the
GetLocalVariable expression.

FIR does support arrays but in a very specific way. There are two access
expressions (listing (3.28)) that access dynamic fields. Fields in FIR do not have

136

3.4. Translation from FIR to BIR

class GetLocalVariable(val symbol: Symbol.Variable): Expression()
class SetLocalVariable(

val symbol: Symbol.Variable,
val body: Expression,

): Expression()

class GetField(
val receiver: Expression,
val symbol: Symbol.Variable,

): Expression()
class SetField(

val receiver: Expression,
val symbol: Symbol.Variable,
val body: Expression,

): Expression()

Listing 3.26: FIR local variable and field accessors

class GetGlobalVariable(val symbol: Symbol.Variable): Expression()
class SetGlobalVariable(

val symbol: Symbol.Variable,
val body: Expression,

): Expression()

Listing 3.27: FIR global variables accessors

to be declared, so this feature can be used to implement a map. In this case, an
array is just a map that uses numbers as keys.†

class GetDynamicField(
val receiver: Expression,
val field: Expression,

): Expression()

class SetDynamicField(
val receiver: Expression,
val field: Expression,
val body: Expression,

): Expression()

Listing 3.28: FIR dynamic field accessors

†Such implementation is not practical for an actual programming language, but it is suffi-
cient for this type of static analysis.

137

3. Static analysis design

The field expression is used to determine the accessed field name. The
field expression can evaluate to an object of any type. The string representa-
tion of the evaluated object is the field name, or at least it would be in an actual
program. The interpreter cannot precisely evaluate the expression because it
has no notion of primitive values. Instead, the back end assumes that all field
expressions evaluate to the same constant. With that assumption, the back end
replaces the dynamic accessors with the ordinary static ones that work with
a single special field.

This conversion is sound as long as any write to the field happens using the
unification mode. However, the back end has no way to force the interpreter
to switch to the unification mode. The solution is to wrap each write operation
into a When expression with two branches. One branch performs the write
operation, and the other one does nothing – preserving the original value even
in the overwrite mode.

3.4.4 Control flow
Control flow in FIR works almost the same as in BIR. There are the same
expressions as shown in the listing (3.29). The only notable difference is that
branches do have conditions. Thanks to that, FIR can preserve the program
branching semantics.

The back end cannot just discard the conditions because they can have
side effects. The result of the condition evaluation can be discarded, but the
evaluation must happen. At the same time, it is necessary to preserve the
semantics of which conditions are evaluated when. In an example where
a second branch is taken, the first branch condition must have evaluated to
false and the second to true. The key observation is that the first condition
was evaluated even though the execution continues in the second branch. This
means that the executed branch also sees effects caused by all conditions from
the previous branches. The back end simulates this property by copying the
appropriate conditions at the beginning of each branch. So the first branch
starts with the first condition, the second branch has the first and second
condition, and so on.

The When expression in both FIR and BIR is exhaustive. The back end
and interpreter depend on this property to capture the branching semantics
correctly. The back end cannot verify if When is genuinely exhaustive, so it is up

138

3.4. Translation from FIR to BIR

class When(val branches: List<Branch>): Expression() {
class Branch(

val condition: Expression,
val body: Statement,

): Element()
}

class Loop(
val label: Symbol.Label?,
val body: Statement,

): Expression()

class Break(val label: Symbol.Label?): Expression()

class Continue(val label: Symbol.Label?): Expression()

class Return(val body: Expression): Expression()

Listing 3.29: FIR control flow expressions

to the front end to ensure that. The problem of ensuring exhaustiveness does
not exist in BIR because it does not have the conditions. It is impossible to
create When in BIR that semantically is not exhaustive. On the other hand, in
FIR, it is possible to construct When with conditions that sometimes all evaluate
to false.

3.4.5 Exceptions
FIR implements exception handling almost identically to BIR. Both have the
same exception expressions (listing (3.30)). Additionally, the FIR Try expression
has an optional finally block with the exact semantics as Kotlin. BIR does not
need the finally block as it can be expressed via other constructs.

Lowering a finally block is a little more complicated because it must
preserve the semantics of the exception propagation. As a reminder, the
finally block is always called at the end of the Try, and it propagates thrown
exceptions unless it itself throws an exception. A pseudocode of the lowering
result is shown in the listing (3.31) and will be gradually explained in the
following text.

The lowering is performed by nesting the original Try expression into
two another Try expressions. The middle Try has a handler that catches all

139

3. Static analysis design

class Throw(val body: Expression): Expression()

class Try(
val body: Statement,
val handlers: List<Handler>,
val finally: Statement?,

): Expression() {
class Handler(

val exceptionVariable: Variable.Local,
val body: Statement,

): Element()
}

Listing 3.30: FIR exception handling expressions

exceptions and has the content of the finally block. As a final instruction,
this handler rethrows the caught exception. This construction preserves the
propagation property. If the finally block throws an exception, the control
flow never reaches the inserted rethrow, so the original exception is ignored.

Right now, the handler is not called if the original Try expression does not
throw an exception. This problem is solved by throwing a helping exception
at the end of every preserver body of the original Try expression. Therefore,
the exception is thrown from the Try expression body and all handlers (but not
from the finally block). The back end uses a special class to represent the
helping exception to avoid collisions with other exceptions.

Now the finally block inside the handler is called every time. However,
the new problem is that the helping exception escapes the handler because
it rethrows all exceptions. For that, there is the outer Try expression. It
has a handler that only catches this helping exception, stopping the helping
exception without affecting other exceptions.

The last problem is that the result value of the original Try expression
is lost. The result value must be accessible if the original Try expression does
not propagate an exception. This situation happens exactly when the helping
exception is thrown and not suppressed in the middle handler. So the solution
is to put the result value in a special field of the helping exception. The result
value is stored in the field in all places that subsequently throw the exception.
The outer handler that catches the helping exception then reads the value from

140

3.4. Translation from FIR to BIR

// Original try
try {

// A
} catch (e: E) {

// B
} finally {

// C
}

// After lowering
try {

try {
try {

// A without last expression
throw CallFinally(

result = // last expression from A
)

} catch (e: E) {
// B without last expression
throw CallFinally(

result = // last expression from B
)

}
} catch ([e]: Any) {

// C
throw [e]

}
} catch ([e]: CallFinally) {

[e].result
}

Listing 3.31: Conversion of finally block

the field. The semantics of the BIR Try expression ensures that this value is the
result of the outer Try expression.

3.4.6 Function calls
FIR offers more options than BIR when it comes to calling functions. It supports
three types of calls: static, virtual, and newly dynamic. The dynamic call
is used to call function values and therefore is explained in the following
subsection about function references. StaticCall and VirtualCall from
FIR (in listing (3.32)) are structurally identical to their equivalents in BIR.
However, the back end still needs to do some transformations. Namely, it
must provide additional arguments to match previously made changes to the

141

3. Static analysis design

function parameters. The back end adds additional parameters to support global
variables and captured environments.

class StaticCall(
val symbol: Symbol.Function,
val dispatchReceiver: Expression?,
val arguments: List<Expression>,

): Expression()

class VirtualCall(
val symbol: Symbol.Function.Signature,
val dispatchReceiver: Expression,
val arguments: List<Expression>,

): Expression()

Listing 3.32: FIR StaticCall and VirtualCall expressions

StaticCall from FIR has the same semantics as in BIR. On the other
hand, VirtualCall has one difference that the back end must resolve. Since
FIR supports inheritance, VirtualCall works more like in object-oriented
languages. VirtualCall calls the appropriate method based on the inheritance
hierarchy. More specifically, if an object’s class does not contain the called
method, the dynamic dispatch will search in the object’s parent class. This
search does not happen in BIR as VirtualCall always selects the function
with the matching type. Therefore, the back end needs to provide an ex-
plicit implementation for these implicitly inherited methods.† The generated
methods are simple: they return the result of a super call with forwarded
arguments. The super call is implemented as a static call to the parent class
method.

3.4.7 Function references
A function reference returns a value that represents the referenced function.
The function value acts as any other value. For example, it can be stored in
a variable. The function value can be passed to DynamicCall (listing (3.33))
that executes the referenced function. The dynamic call is similar to the other
calls. It differs in that the called function is decided dynamically based on the
function expression value. The call arguments and dispatch receiver must

†In the Kotlin IR, these implicitly inherited methods are the fake overrides.

142

3.4. Translation from FIR to BIR

match with the called function. Otherwise, the back end will generate invalid
code that will later cause a crash in the interpreter. The back end cannot verify
that the arguments match, so it does not warn about this problem.

class DynamicCall(
val function: Expression,
val dispatchReceiver: Expression?,
val arguments: List<Expression>,

): Expression()

Listing 3.33: FIR DynamicCall expression

There are two expressions that can be used to obtain the function reference:
FunctionStaticReference and FunctionVirtualReference. Both are shown
in the listing (3.34). The difference between them is how the function is selected
during the dynamic call. A dynamic call of a static reference acts as a static call
to the referenced function. A dynamic call of a virtual reference is translated
to a virtual call, and therefore it uses a dynamic dispatch.

class FunctionStaticReference(
val symbol: Symbol.Function,

): Expression()

class FunctionVirtualReference(
val symbol: Symbol.Function.Signature,

): Expression()

Listing 3.34: FIR function reference expressions

BIR does not have a dynamic call nor function references, so the back end
needs to lower them to other constructs. Since a function reference returns
a value, it must produce some object. This object encodes the called function
and the call type. This information is then decoded at the place of the dynamic
call. The back end implements this lowering similarly to the Kotlin compiler –
by using anonymous classes with a special method.

The back end generates a special reference class for each used combination
of functions and reference types. The function reference is then converted to
the CreateObject expression of that reference class. The reference class has one
special method called invoke. This method performs the actual function call

143

3. Static analysis design

and returns its result. The type of used function call depends on the reference
type for which the class was generated. The dynamic call can then be replaced
with a virtual call to the invoke method. The virtual call uses the function
value as the dispatch receiver. In other words, the called function and reference
type is encoded in the object type, and a virtual call is used to decode it back.
A simple example is shown in the listing (3.35).

// FIR
Function("a") {

DynamicCall({ FunctionStaticReference("b") })
}
Function("b")

// BIR
Function("a") {

VirtualCall(
"[invoke]",
dispatchReceiver = { CreateObject("[static-reference-b]") }

)
}
Function("b")
Class("[static-reference-b]")
Function("[invoke]", dispatchReceiverType = "[static-reference-b]")

{↪→
Return { StaticCall("b") }

}

Listing 3.35: Conversion of dynamic call

The previous example does not involve function arguments and a dispatch
receiver. Both must be forwarded from the dynamic call to the actual call inside
the invoke method. The function arguments are dealt with easily because
they can be directly passed as arguments of the invoke method. The problem
is with the dispatch receiver. It cannot be directly passed because the invoke
call already has a different dispatch receiver. Instead, the back end stores the
original dispatch receiver in a special field this inside the function value. Since
the function value is passed as the invoke dispatch receiver, the this field can
be therefore accessed inside the method and forwarded.

144

3.4. Translation from FIR to BIR

3.4.8 Environments
Environments are the most complex feature in FIR. They are only present in
FIR and can be used to implement several seemingly unrelated features from
Kotlin. They implement extension functions, local functions, and inner classes.
Environments are very flexible and can even be used to implement context
receivers once they are added to Kotlin [14].

Both functions and classes have their own environment with slightly
different semantics. Also, both functions and classes can capture environments.
A function environment contains all local variables (including parameters)
and the function dispatch receiver. A class environment contains all fields
of that class. All environments also contain environments captured by the
function/class.

The captured environments are explicitly declared in the function/class
declaration property capturedEnvironments. Additionally, classes inherit
captured environments from their supertypes. By capturing an environment,
a function can access the environment content. In some sense, captured
environments are implicit parameters. Classes themselves cannot interact with
a captured environment. Instead, they store it in a special field so it can be
accessed later by the class methods.

These are the operations that capture environments: class instantiation,
static and virtual function calls, and all function references.† These operations
cannot be performed without access to the captured environments. Otherwise,
the environments could not be captured. Environments that are currently
accessible are also called active. The only active environments at any moment
are the following ones:‡

• The environment of the currently executed function.

• Environments captured by the currently executed function.

• Environments provided by the ExtendEnvironment expression.

What active environments are captured is determined by their type. Each
declaration can capture multiple environments, but only one of each type. In

†Therefore, function references immediately capture environments, and no environments
are captured during the dynamic call.

‡The dispatch receiver is not added to the active environments. This is important to note
because it must be explicitly added during the conversion of some Kotlin features.

145

3. Static analysis design

the sameway, there can be only one active environment of each type. Therefore,
there is no ambiguity about how to capture the environment.

The ExtendEnvironment expression (listing (3.36)) adds a new active envir-
onment. The environment type is determined by the symbol property. The
activated environment is the evaluation result of the environment expression.
The environment is active only inside the body expression. The environment ex-
pression is always evaluated once, no matter how many times the environment
is later accessed.

class ExtendEnvironment(
val symbol: Symbol.Environment,
val environment: Expression,
val body: Statement,

): Expression()

Listing 3.36: FIR ExtendEnvironment expression

It is possible to nest multiple ExtendEnvironment expressions to activate
several environments. However, if there is already an active environment
with the same type, the previous environment is shadowed and deactivated.
Therefore, the new environment has a priority. The ExtendEnvironment
expressions can also shadow environments activated for the other reasons from
the previous list. The list is ordered by the environment’s priority (the first rule
having the lowest priority). For example, the environment of the currently
executed function is always shadowed by any other environment of the same
type.†

A captured environment content can be accessed as other object fields using
expressions GetField and SetField. In fact, an environment is just an object.
In the case of classes, the environment is the class instance, so it can also be
used as a dispatch receiver. A function environment is an object of a special
class, and therefore it does not have an additional meaning.

A function environment also stores the function dispatch receiver that can
be accessed similarly to a regular dispatch receiver. That means using the This
expression (listing (3.37)). This in FIR has an optional environment property.
This property specifies fromwhich environment to obtain the dispatch receiver.

†In practice, shadowing happens only for class environments because there is currently no
use case for shadowing function environments.

146

3.4. Translation from FIR to BIR

If the property is null, then there is no difference to the This expression from
BIR. In other words, null means this function environment.

class This(val environment: Environment?): EnvironmentParent()

Listing 3.37: FIR This expression

The captured environment object can be obtained by the Environment
expression (listing (3.38)). The expression has a property symbol that specifies
the type of the accessed environment. Both This and Environment expressions
can be used as an environment’s parent. Only active environments can be
accessed without providing a parent. Providing a parent makes it possible
to access captured environments and a dispatched receiver from the parent’s
environment. So, for example, a function can access a class captured by its
dispatch receiver.

sealed class EnvironmentParent: Expression()

class Environment(
val symbol: Symbol.Environment,
val parent: EnvironmentParent?,

): EnvironmentParent()

Listing 3.38: FIR Environment expression

Conceptually, the conversion of environments to BIR is relatively simple.
On the other hand, the implementation is very complex because this feature
interacts with several other features. As a result, there are many combinations
to cover, which means many edge cases. There are several relatively isolated
constructs that the back end needs to transform, each described below.

Captured functions body A function environment is a special object created
at the beginning of the function and stored in a special variable. All function
parameters are stored in the object fields under the same name. The dispatch
receiver is also saved in the object in an additional field. The back end replaces
all local variable reads and writes with reads and writes to fields of this object.
As a result, the function no longer directly uses any local variables. Everything
is in the environment object.

147

3. Static analysis design

Function declarations of capturing functions Captured environments are
passed to the capturing functions by extra arguments. Therefore, the back
end adds additional parameters to each capturing function. Each captured
environment has its own parameter. These parameters are also potentially
stored in the function environment object.

Function calls of capturing functions These calls must be adjusted accord-
ingly to pass the captured environments. Since each environment has its unique
type, it is easy to decide which environment goes into which argument. The
back end obtains the environments by performing implicit parent-less environ-
ment access. In other words, it works as if the environment was accessed by
the Environment expression without a parent.

Function references of capturing functions The implementation of function
references is probably the most complex step. Conceptually, the captured
environments use a similar idea as the referenced function dispatch receiver.
They are all stored in the function reference object when the object is created.
The invoke method then extracts the captured environments from the object
and passes them to the function. In contrast to the dispatch receiver, the
captured environments are stored there the whole time (and not just before
the invoke call). There is also another (equivalent) way to look at the
implementation. The function reference class can be declared to capture the
same environments as the referenced function. Instantiating the reference class
performs the capturing automatically. The invoke method can then access the
captured environments from its dispatch receiver.

Instantiation of capturing classes Classes store the captured environments
in fields. These fields must be initialized during the class instantiation. A good
place to do this initialization would be in a class constructor. The problem
is that FIR does not have any notion of constructors. Objects are created by
the expression CreateObject, which does not support direct initialization of
fields. However, constructors are just functions. Therefore, the back end can
generate a special constructor with a parameter for each captured environment.
The constructor creates the object using the CreateObject expression, stores
all its parameters in the object, and finally returns the object. The back end

148

3.5. Translation from Kotlin IR to FIR

then replaces all original CreateObject expressions with a static call to this
constructor.

Environment access Environments are always stored in some variable or
field. So any environment access can be replaced either with the GetVariable
or GetField expression. Environments have parents, and therefore they
form a hierarchy. Each parent stores the child’s environments in its fields.
So an environment access with a parent is transformed into several nested
location reads. The back end needs to determine which field to access in each
environment. This task is relatively easy because there is a predetermined
field naming scheme based on the environment type. The only complicated
environment to resolve is the active one (the first accessed). The active
environment can be stored in multiple places depending on how it was acti-
vated. For this reason, the back end needs to track how environments were
activated.

Environment extension The environment extension must be stored in a local
variable because it must be evaluated exactly once. Each environment exten-
sion must be stored in a separate variable with a unique name to support the
environment shadowing. The back end needs to remember which variable
stores which environment. Otherwise, it would not be possible to access it
later.

3.5 Translation from Kotlin IR to FIR
This section explains how the front end translates the Kotlin IR into FIR. Most
of the translation is straightforward because FIR was designed with that goal
in mind. FIR preserves a significant part of Kotlin features and their semantics,
so these can be directly translated. Features that are not directly supported by
FIR are easily lowered to supported features.

At least that is the theory. In practice, the actual implementation still has
some complexity because it needs to extract the needed information from the
Kotlin IR. For this reason, the second chapter (2) went into great detail about
the Kotlin IR. The combined knowledge from the second chapter and this
chapter is enough to implement a significant part of the front end. This section

149

3. Static analysis design

intentionally omits the description of this part since it would be just a repetition
of what was already explained. The lowering of the features missing from FIR
is covered in the rest of this section.

3.5.1 Locations
Variables in FIR do not have initializers. Instead, the initialization is expressed
as a regular assignment right after the variable declaration. In the case of global
variables, the assignment must be wrapped in the Init declaration. Otherwise,
it would not be performed at the program start.

FIR also does not explicitly support properties. The front end converts
them the same way as the Kotlin back end. The backing field is converted to
a class field (or a global variable). The two accessors are represented as regular
functions with special names. The conversion of delegated properties is also
taken from the Kotlin back end.† The same strategy is also used for local
delegated properties.

Arrays are the last missing feature related to locations. Kotlin treats arrays
as regular objects implemented in the Kotlin standard library. Therefore, it is the
standard library that actually implements them. Since the implementation is in
native code, there is notmuch the front end can do. Instead, the implementation
is done in the runtime module. The runtime uses the GetDynamicField and
SetDynamicField expressions to implement the get and set operations of
arrays. Additionally, the runtime provides a similar implementation for array
iterators. Implementing just these methods is sufficient for a sound and precise
approximation of the actual array implementation.‡

3.5.2 Control flow
The representation of both loops and branching in FIR is slightly different from
the Kotlin IR. Kotlin has separate while and do-while loops. Additionally, the
FIR loop does not have a stopping condition. The condition can be represented
by When with two branches inserted into the loop body. The first branch
contains the loop condition and has an empty body. The second branch is an

†How the translation looks like was already shown in (2.7.6).
‡Assuming the remaining methods are handled the same way as the rest of the standard

library.

150

3.5. Translation from Kotlin IR to FIR

else branch and contains Break. Therefore, if the condition is satisfied, the loop
continues because nothing happens. Otherwise, the loop ends. The while loop
has When at the beginning of its body and do-while at the end.

The When expression can be directly converted with one modification. The
front endmust add an empty else branch to each non-exhaustive When to ensure
it is exhaustive. The created else branch is a regular branchwith a constant true
as its condition.

The Kotlin IR has one control-flow-related feature that cannot be directly
expressed in FIR. This feature is the non-local return of inline functions.† The
analysis can safely ignore the performance aspects of function inlining, but it
must support the non-local returns. The straightforward solution is to perform
the function inlining. The concept of function inlining is not that complicated,
but the implementation is. Nevertheless, there is another solution that is easier
to implement.

The idea is to use the same strategy utilized in the back end to convert
the finally block. In other words, to implement the non-local return by an
exception. First, the front end creates a unique exception.‡ All non-local returns
are then replaced with throwing this exception. Before the exception is thrown,
the returned value is stored in the exception field. The front end wraps the
inlined function call in a Try block with a handler for that exception. Finally,
the handler uses a local return to return the value stored in the exception field.

3.5.3 Functions
The Kotlin IR uses one class for both static and virtual calls. During the call
translation, the front end needs to decide which type of function call to use.
A safe way is to use a static call for every function that is not an override and
has the final modality. Additionally, the static call is used for super calls. The
virtual call is used in all other instances. The front end also needs to resolve
function overloading, which is not supported by FIR. The front end does that by
name mangling, meaning it adds the parameter types to the function signature.
Therefore, each overloaded function gets its unique signature.

†In the future versions of Kotlin, the list might be extended by non-local breaks and
continues [15]. In that case, these constructs can be implemented almost identically as non-
local returns.

‡Each inline function call must have its own exception to prevent collisions.

151

3. Static analysis design

FIR intentionally does not have default arguments because of their associ-
ated complexity. Values of default arguments cannot be just inserted in the
function call. The problem is that the expression must be performed in the
function owner context, not in the caller context.

The workaround is to create a wrapping function with the same dispatch
receiver type as the called function. The wrapping function internally calls
the originally called function. As a result, the default argument expressions
are executed in the correct context. The original call is replaced with a call to
this wrapping function. The original arguments are passed as parameters of
the wrapping function. The missing arguments are provided by the wrapping
function by evaluating the corresponding default argument expressions. Each
missing argument is stored in a variable before it is passed to the original
function.†

FIR also does not support vararg parameters for a similar reason as with the
default arguments. Instead, a varagr parameter is implemented as an array. It
is up to the caller to create this array and put all vararg arguments into it. The
spread operator complicates this process because the array inside the operator
does not have a known size. The runtime solves this problem by providing
an artificial method that adds all elements from one array to another array.‡

The caller then can use this method to move all the elements from the spread
operator into the vararg array.

Extension functions are an example of a feature that FIR accounts for but
does not directly support. Extension functions (and similarly extension proper-
ties) are implemented by capturing the environment of the extension receiver.
The semantics of captured environments solves almost all problems of exten-
sion functions. The front end needs to make only two modifications. The call
site must be adjusted by wrapping the function call in the ExtendEnvironment
expression.†† The other necessary modification is in the extension function
body. The front end must replace all accesses to the extension receiver with the
Environment expression.

†This step is necessary to allow the default argument expressions to access the values of
previous arguments.

‡The standard library does not have such a method for arrays because they have a fixed
size. However, this is not a problem for the runtime. The runtime does not have to consider
array indices so that it can store all elements in a single dynamic field. Therefore, the runtime
provides arrays with effectively infinite size.

††The extension receiver is put into the ExtendEnvironment expression as the environment.

152

3.5. Translation from Kotlin IR to FIR

The remaining feature discussed in this subsection is string interpolation.
String interpolation is technically a syntax sugar that hides several function
calls. A string interpolation joints together several values that are converted to
a string. The front-end implementation does precisely this by calling functions
from the Kotlin standard library.† The only difficulty comes from making sure
that the calls are chained in the correct order.

3.5.4 Classes
The absence of constructors in FIR is the main difference when it comes to
supporting classes. The front end represents constructors as regular functions.
This converted constructor initializes the object, but it cannot create it directly.‡

The initialized object is passed as a dispatch receiver, so the constructor function
is technically a method. However, it is always called statically. The dispatch
receiver must be provided by the constructor caller. It is either This in the case
of a delegating constructor call or CreateObject for the initial constructor call.

Several constructs participate in the object initialization: a call to another
constructor, a secondary constructor body, an init block, and a property initial-
izer. As per the previous paragraph, the delegated constructor call is directly
replaced with a function call. The secondary constructor body is left intact, but
primary constructor body is changed. The IrInstanceInitializerCall is re-
placed with code from all init blocks and property initializers. The initialization
code is merged in the order of declaration.

Kotlin has many special types of classes. All of them are implemented
as regular classes in FIR. However, two types need additional handling. These
are the object classes and enum classes.

The object class needs an associated global variable that stores the single
object of this class. Access to the object class is converted to a read from
this global variable. The variable is initialized in the Init declaration. The
initialization is split into two steps. In the first step, the object is created by
the CreateObject expression and stored in the variable. In the second step, the

†The Kotlin back end does the conversion in a similar but more optimized way.
‡The reason is that there are two different situations in which a constructor is called. It can

be called with the intent to create the object by IrConstructorCall. The other option is that
it was called from another constructor by IrDelegatingConstructorCall. Since both types of
calls are replaced with a regular function call, it is not possible to distinguish these two cases.
The problem is that the object must be created only in the first case.

153

3. Static analysis design

object is initialized by calling its default constructor. This two-step initialization
is important because the constructor code can access the object class before it
is fully initialized.

The translation of enum classes is based on the same idea as for object
classes. The difference is that there are more global variables, one for each
enum entry. The front end also needs to generate the enum class synthetic
methods. The valuesmethod is generated such that it returns an array with all
the enum entries. Implementing the valueOfmethod can be simplified because
the interpreter will not preserve the passed entry name. Therefore, a sound and
the best possible approximation is to return a value that represents all the enum
entries simultaneously.

3.5.5 Function references
Function references are implemented partially by the front end and partially
by the runtime. The runtime provides a special function reference class
that implements all the FunctionN interfaces.† The class implements many
invoke methods, one for each possible number of parameters. The method
implementation uses the DynamicCall expression to call the function value.
The referenced function value is stored in a field. The method passes all its
arguments to the DynamicCall and returns the call result.

A code that references a function does so by instantiating the class and
storing the function reference in its field. Whether to use a static or virtual
function reference is determined by the same rules as for calling the function
directly. The advantage of this approach is that the invoke call site does not
have to be changed.

Additional steps are required to support dispatch receivers properly. There
are two situations that need to be dealt with separately. If the dispatch receiver
is captured immediately, it is stored in an additional field of the function
reference class. The invoke method uses the value of this field as the dispatch
receiver for the inner call.

The other option is that the dispatch receiver is provided at the invoke
call site. In this case, the dispatch receiver is passed as a regular argument.
However, there is no way to distinguish the dispatch receiver from a regular

†Alternatively, it can be implemented as a separate class per interface.

154

3.5. Translation from Kotlin IR to FIR

argument at the call site. This information is present only when the function
is referenced. There are two different implementations of the function reference
class to solve this problem. The first implementation works as presented above
and is used in the previous case. The second implementation solves the latter
case. It uses its first parameter as a dispatch receiver, and only the remaining
parameters are passed as regular arguments. Since the information is encoded
during instantiation, it is no longer required at the invoke call site.

The implementation of property references works almost identical to the
function references. The primary difference is that the property reference class
needs to store up to two functions instead of one.† The referenced accessors
are called in the two inherited methods (get and set). Both classes also extend
the function reference classes and make the invokemethod an alias for the get
method.

3.5.6 Local declarations
All declarations inside a function utilize the environment feature. They capture
the environment of the directly enclosing function. In contrast to extension
functions, the call site does not have to be adjusted. However, the local
declaration body conversion is more complicated. The front end needs to
replace all accesses to the captured variables. Each such access is substituted
by access to a corresponding field in the correct environment. Determining the
correct environment can be difficult. The reason is that local declarations can
be nested. Therefore, it might be necessary to inspect the declaration hierarchy
and construct the environment access accordingly.

Inner classes are similar to local classes, and they are similarly implemented.
In this case, the captured environment belongs to the enclosing class. The
instantiation of an inner class does not have to be further modified. The access
to the outer class object is replaced as in the implementation of extension
functions. The only difference is that the replacement is performed in all
declarations inside the inner class body.

†The same class can be used for both val and var properties. This is possible because the
Kotlin compiler ensures that the setter is not called if it does not exist.

155

ChapteR 4
Implementation

In the introduction of the first chapter (1), I have already discussed my very
first steps while working on this thesis. However, the real work really started
afterward, and this chapter focuses on that. In this chapter, I will describe my
approach to creating this thesis. Subsequently, I will explain how I have tested
both the design and the created prototype. The rest of the chapter is dedicated
to the challenges I have encountered and had to solve as well as the mistakes
I have made.

4.1 The implementation procedure
I have used several software engineering techniques to deal with the complexity
and size of this project. This section describes these techniques and how they
helped me. The used techniques can be split into two categories: project
management and software development.

4.1.1 Project management
Even though this project was done by a single-member team, project manage-
ment was critical to its success. Without project management, it would be im-
possible to prioritize and react to problems correctly. The project had a strictly
fixed deadline and resources but only a partially fixed scope. The goals of this

157

4. Implementation

project put restrictions on the scope, but they had some flexibility. I have pri-
oritized the goals in the following way (from the most important to the least
important):

• the static analysis design

• this document

• the prototype

I have set the primary goal to be the static analysis design. As a result,
the design had to be excellent and complete. Therefore, there was little to no
change possible to the scope of this goal. The rest of this project was driven by
the primary goal, so its scope was adapted to ensure it would be met. The role
of project management was to constantly monitor the progress and adjust this
flexible part of the scope.† However, putting enough effort into this document
was also fairly important. Having a good design without proper documentation
has little value.

In order to continuously adjust the scope, it was necessary to monitor the
progress and estimate the remainingwork. At the beginning of the project, I did
this evaluation once aweek. The frequency slowly increased as the project went
on, and till the end, it was once per day. Having some data is critical for the
monitoring and estimating process. For this reason, I have kept track of how
much time each task took to complete. Additionally, I have used a TODO list
to track all remaining tasks. I have also used my bachelor’s thesis timesheets
as a reference point for the estimates.

Estimating how much time is remaining (in terms of hours) was relatively
easy. I estimated the actual number with a margin of error of approximately
5 % two months before the project completion. Correctly estimating the tasks
was significantly more difficult. Especially since implementing the interpreter
module required much more time than expected. Errors in these time estimates
posed a danger to the project because the timeline was relatively strict. There
was a risk that some less important tasks would take so long that there would
be no time left for the more important ones. Therefore, correct and frequent
prioritization was the other job of project management.

†This part of the scope was the only possible thing to change since everything else was
fixed.

158

4.1. The implementation procedure

4.1.2 Software development
I have approached the project in an iterative manner and created the design
incrementally. The process involved many experiments, including a lot of
trial and error. In some sense, it was closer to research than software
development. In the beginning, I had an approximate idea of how to structure
the architecture modules. However, the overall design emerged gradually
through the development. I have used the prototype to guide the design process.
In other words, the primary purpose of the prototype was to make experiments
and discoveries.

For the project management to work reasonably, the development speed
must be predictable and sustainable. To ensure these two properties are
achieved, I have used an approach called TDD [7]. The core idea behind TDD
is to write tests before the actual implementation (and also to work in small
steps). I have used this approach from the project’s start to finish. As a result,
the prototype has many tests covering almost all functionality. With the TDD,
my development process looked something like this:

• First, I have decided what feature to implement.

• Then, I have written acceptance tests for that feature.†

• Since the feature was not implemented yet, those tests were failing at this
point.

• Subsequently, I have localized in what module the feature must be
implemented.

• Sometimes, the feature had to be implemented in multiple modules. In
that case, I did the following three steps separately for each module, one
module after another.

• In the selected module, I have implemented more low-level tests (typic-
ally unit tests).

• Only now, I started with the actual implementation.

• When the implementation was done with all tests passing, I moved to
another module.

†The different types of tests will be explained in the following section.

159

4. Implementation

• The acceptance should pass once the implementation is done in every
module. If not, it is necessary to start debugging and writing unit tests
to cover this bug.†

• As the last step, I went back to each module to decide if to invest more
time into refactoring or not.

The above process hides one crucial concept: The use of so-called tracer
bullets. This idea is described in the book “The Pragmatic Programmer” [11].
It is about incrementally implementing small incomplete features but always
having something that works as intended (the explanation is oversimplified).
In order words, it says that each feature should be implemented in the whole
system at once (in this case, in all modules). The idea is that development
is guided by features and not project structure.‡ This approach has at least
two advantages. It allows using the acceptance tests since they test the
whole system at once. Additionally, it makes the incremental design evolution
easier by reducing the opportunities to make mistakes. The mistakes that this
approach mitigates are those that result from an incomplete understanding of
the problem at the given time.

There were occasions when I had to deviate slightly from the above process
because it made the development easier. In the beginning, I wrote a large
number of acceptance tests for many features without actually implementing
them. There were two reasons for that. First, I needed to find a good way to
write them.†† The second reason is that I needed a high-level list of all Kotlin
features to make the initial development plan.

The other notable instance where I did things differently is related to the
interpreter module.‡‡ The problem with the interpreter module is that its
features interact with each other. Therefore, it is hard to implement them
separately. For this reason, I have decided first to implement a fake interpreter.
The fake interpreter could do only things necessary for the acceptance tests to
pass and nothing more. Therefore, the fake interpreter was a subset of the real

†The bug’s presence means that the unit tests did not initially cover everything necessary.
‡The opposite extreme is implementing a whole module and only then starting the

implementation of another one.
††It is not possible to decide if some syntax is good or not without writing many tests. If

I have to write many tests, why not use them later.
‡‡This approach was technically according to the tracer bullets idea, but it differs from the

procedure I have described.

160

4.2. Testing

interpreter. The real interpreter was implemented all at once, but only after the
BIR was stable enough.

4.2 Testing
Almost all the prototype testing was done using automated tests.† As was
mentioned in the previous section, I have used the TDD approach. Therefore,
the tests were primarily created gradually together with the implementation.
As a result, I have not run into that many bugs during the development. Once
a feature was implemented, it usually worked as intended. For this reason,
I rarely had to use a debugger, only for challenging bugs.

I would not say that the prototype does not have any bugs. There is no way
of knowing if the automated tests cover everything, and I am aware of many not
adequately tested features. The problem is not with testing individual features;
there are not that many of them. The problem is a combination of two or even
more features. For example, an overridden extension method combines two
individual features: extension properties and method overriding.

Just because two features are tested separately does not mean that their
combination is also tested. In fact, my experience was that these combined
features are the hardest to implement and test. There are so many combinations
to check that it becomes hard to keep track of what is and is not tested. At
the same time, not every combination needs extra handling from the code.
Therefore, many newly created tests passed even though nothing new was
implemented. Having tests that pass automatically is not good because it is hard
to ensure they actually work.‡ In summary, these tests take more time and add
less value per test than other types of tests. However, not writing these tests
is also not a good option. I estimate that around 20 % of these tests have found
actual bugs and missing features. As a result, these are good exploratory tests.
Their downside is that they significantly increase the number of written tests.

The project contains three different types of tests: acceptance tests, integra-
tion tests, and unit tests. Each has its advantages and disadvantages, so they are

†This type of project would be practically impossible to implement without automated
tests.

‡The test might contain a bug and pass even when the tested feature does not work.

161

4. Implementation

used accordingly. These terms do not have a precise meaning. For this reason,
I will explain how these tests are used in this project and how they work.

The acceptance tests are used to test the whole project together. Their
advantage is that they are easy to write and understand. Also, they are the
only tests that verify the interactions of multiple modules. They have several
downsides, so other types of tests are also necessary. First, they cannot test
everything as they only compare the analysis results with the list of expected
exceptions. Additionally, they are not that good at explainingwhy some feature
is not working because the problem can be anywhere. A significant downside
also is that they are the slowest tests in terms of the execution speed.

The listing (4.1) shows an example of the first written acceptance test. Each
test is written as a file that contains a regular Kotlin code. The tests use a Throws
annotation to tell which functions should be analyzed. This annotation contains
a list of expected exceptions. A test passes if the analysis reports that the
annotated functions can throw exactly the exceptions from the annotation.

@Throws(E::class)
fun main() {

throw E()
}

Listing 4.1: An example of an acceptance test

The integration and unit tests are used to test individual modules. They
are faster than acceptance tests, and they can also better isolate the tested
behavior. Their downside is that they cannot detect problems caused by the
incorrectly used API of another module. This type of problem occurs if the test
is designed incorrectly and does not follow the API semantics. Consequently,
the implementation is also incorrect even though all tests pass.

Tests from each module look slightly different because each module utilizes
a different DSL. I have created these DSLs to make the tests more maintainable.
Since each module is different, its DSLmust also be different. Not every module
in the project has a DSL because some modules have only a few tests. Modules
that have a DSL are the following: front end, back end, and interpreter.

The front-end module uses tests like the one in the listing (4.2). This
test consists of a name, a string with Kotlin code, and an expected result.
The expected result is declared in the body of matches, representing the FIR

162

4.2. Testing

generated by the front end. The tests use the Kotlin compiler to convert the
Kotlin code to the Kotlin IR. Since the front end is a compiler plugin, it is called
as part of the compilation process.

test("variable declaration", """
fun foo() {

var i = 1
}

""") matches {
Function("foo") {

LocalVariable("i", Type.Int)
SetLocalVariable("i") { Constant(1) }

}
}

Listing 4.2: An example of a front end integration test

The front-end module is the only module that uses the integration tests.
From a certain point of view, the integration tests are just like unit tests in
other modules. I have made this distinction because there is one important
but hidden difference. These tests use the Kotlin compiler, so they actually test
the integration of two modules. Most of the time, the difference is only in the
test speed.† However, the test also tests the Kotlin compiler as a side effect.
Therefore, it may happen (and it did) that a test does not work because of the
Kotlin compiler and not the front-end module.

The back-end unit tests are very similar in structure to the front-end tests.
The difference is that the back-end tests convert FIR to BIR instead of Kotlin
code to FIR. The unit tests in the back end reuse part of the DSL that constructs
FIR elements. Additionally, they use another DSL builder for BIR elements. The
listing (4.3) shows an example of a back-end test.

The tests in the interpreter module once again follow the same idea. The
tests reuse the DSL builder for BIR to declare the test. Compared to the previous
two modules, declaring the expected answer is more straightforward. The
interpreter’s goal is to analyze exceptions, and therefore the tested answer
is a list of exceptions.

The interpreter has two different modes. Both modes are necessary to
test under the same conditions. However, these two modes produce different

†Running the Kotlin compiler adds a noticeable overhead compared to the tests from other
modules.

163

4. Implementation

test("variable declaration") {
Function("a") {

LocalVariable("i", Type.Int)
SetLocalVariable("i") { Constant(1) }

}
} matches {

Function("a", variables = {
Variable("i", Type.Int)

}) {
SetVariable("i") { CreateObject(Type.Int) }

}
}

Listing 4.3: An example of a back end unit test

answers in many scenarios. Therefore, one test cannot be used for both modes
(at least not in every case). Writing a different set of tests for each mode means
duplicating much code – the tests will differ only in the expected answer. The
solution is to declare the test once but with two different answers. The DSL
then creates two separate tests, one for each mode. An example of such a test
is shown in the listing (4.4).

test("variable reassignment") {
SetVariable("a") { CreateObject("E1") }
SetVariable("a") { CreateObject("E2") }
Throw { GetVariable("a") }

} expect {
overwrite toThrow "E2"
unification toThrow listOf("E1", "E2")

}

Listing 4.4: An example of an interpreter unit test

The two modes do not always produce different results. Therefore, the DSL
provides a simpler syntax for those cases to save some typing. An example
of this syntax is shown in the listing (4.5). Even though the expected answer
is declared only once, the test is still run separately for each mode.

164

4.3. Challenges and mistakes

test("throw") {
Throw { CreateObject("E") }

} expect "E"

Listing 4.5: Simplified syntax of interpreter unit tests

4.3 Challenges and mistakes
Challenges and mistakes have an interesting relation. Often one leads to the
other and vice versa. Making a mistake in the form of a wrong decision can
significantly complicate things and, as a result, creates a challenge. On the
other hand, it is easy to make costly mistakes while dealing with a difficult
challenge. Both situations occurred many times on this project. I wrote down
the ones that I either consider interesting or important to avoid in the future
development of this project.

Many of my mistakes resulted from my faulty assumptions about how the
Kotlin compiler works. These mistakes caused the analysis to interpret the
semantics of some Kotlin features incorrectly. I have explicitly documented
the correct semantics in the second chapter so as not to repeat these mistakes.†

4.3.1 Incorrectly tested exception flow
This mistake is related to the fake implementation of the interpreter module.
This fake implementation was used for a large part of the prototype develop-
ment. Most of the acceptance tests were created during that time. From the
beginning, I intended to implement the real interpreter later and just swap the
implementations. In theory, exchanging the implementations should not affect
the tests in any way. However, the deployment of the real implementation
broke most of the tests.

The new implementation was correct; the problemwas with the tests. More
precisely, the problem was that the fake interpreter did not correctly analyze
the exception flow. I was aware of this limitation. What I was not aware of was
the fact that many tests depended on this incorrect behavior of the interpreter.

†However, givenmy experiencewith this project, I would say that the documentation is still
not entirely correct.

165

4. Implementation

Since the tests passed until that point, it never occurred to me that they were
wrong from the beginning.

The problem with the tests is demonstrated by the listing (4.6). This
example test verifies that the analysis correctly merges exceptions produced
by two different function calls. However, the test is written in such a way
that the function b is never called since a always throws an exception. The
real implementation of the interpreter follows the control flow, including the
exception flow. Therefore, it detects that the second function call is unreachable
and reports that only the first exception is thrown. As a result, all tests that
tested more than one exception had to be changed to throw each exception
only in some execution paths.

// Actual: @Throws(E1::class)
@Throws(E1::class, E2::class)
fun main() {

a()
b()

}

fun a() {
throw E1()

}

fun b() {
throw E2()

}

Listing 4.6: Acceptance test that was broken by the exchange of interpreter
implementations

4.3.2 Null pointer dereferences
The final interpreter design terminates the current execution path if it derefer-
ences a Nothing value. However, this was not always the case. For a long time,
I thought that the analysis could not reach such a state if the dereference were
not present in the actual program. For this reason, I have decided not to im-
plement the execution path termination. Then I accidentally discovered a test
where this can happen and where it affects the analysis precision.

The test was relatively complicated, but it can be reduced to the version
shown in the listing (4.7). If this was an actual program, the handler should

166

4.3. Challenges and mistakes

observe an object of type Y in the variable x. The reason is that the exception
can be thrown only after the first iteration of the loop. Therefore, the variable
x is set to the value of y, which can be only Y.

The original implementation incorrectly reported that the value of x can be
either X or Y. The problem was in the first iteration of the loop, specifically
in the upper branch. The variable y is Nothing during that branch execution.
As a result, the original implementation skipped the Throw because therewas no
exception to throw. However, the interpretation continued in this now-empty
branch. So from the interpreter’s point of view, two paths reached the end of
the loop body.† One path changed the value of x, and the other did not. The
exception is correctly thrown in the second iteration, but the variable x already
contained the incorrect value. This problem is solved by terminating the upper
branch path when it tries to throw the Nothing value.

SetVariable("x") { CreateObject("X") }
Try({

Loop {
When {

// if (y != null)
Branch {

// null check call is omitted
Throw { GetVariable("y") }

}
// else
Branch {

SetVariable("y") { CreateObject("Y") }
SetVariable("x") { GetVariable("y") }

}
}

}
}) {

Handler("_", "Y") {
// Should be "Y" but was "X" and "Y"
GetVariable("x")

}
}

Listing 4.7: A test that is not analyzed properly without execution path termination
after null pointer dereference

†This problem took me way more time to figure out than it should have.

167

4. Implementation

4.3.3 Implementation of Any
The interpreter implementation turned out to be significantly more difficult
than I had expected. There was one particularly bad decision that contributed
to the implementation difficulty. It was to implement the Any value properly.
I have also made another less impactful but still bad decision to save time and
not implement custom garbage collection.†

There are multiple ways to implement the Any. The most straightforward
one is to create an object for every existing class and merge them into a single
value. These objects would have to be marked so that access to their fields
would also return Any. This solution could have been implemented in an hour.
However, this solution has several problems related to the analysis performance.
Each new Any would cause an allocation of thousands of objects. Additionally,
accessing the fields of this valuewould be equivalent to thousands of operations.
A virtual call has a similar effect because it calls one method for each type.

The other option is implementing the Any as a special type of object. The
Any is represented only by a single class instance in this implementation. This
solution still has the problem with virtual calls, but it solves allocations and
field access overhead. So, in theory, the performance should be much better.

My original estimate was that this implementation would be slightly more
complicated but still manageable. Additionally, I thought it would be a funda-
mental part of the Any design. Both assumptions were completely wrong. It
took me around a week to implement, and the result depends on the remaining
implementation of the interpreter.‡ Therefore, it is an implementation detail,
not describable without an understanding of the remaining implementation.

Overall, this mistake was an exemplary case of premature optimization.
For the prototype’s purpose, the performance difference does not matter. This
is especially true since the interpreter is tested on very small programs with
a few classes. Also, I am not sure there would be a difference even in real
programs. Without proper performance testing, it is impossible to determine
precisely. Most of the time, the type coercion would reduce the thousand of
objects only to a few. The problem might be more pronounced for analysis

†At least, I thought that I would save time.
‡The implementation involved solving surprisingly many edge cases. It also made the

remaining implementation of other features harder.

168

4.3. Challenges and mistakes

of dynamic languages without type information. However, this was not the
intended use case of the prototype.

4.3.4 Implementation of garbage collection
The interpreter internally allocates Kotlin objects to represent the analysis
objects. These objects are stored in a map, which holds the object together
with its fields. As a result, the Kotlin garbage collector will not deallocate these
objects even if they are no longer used by the analysis. Therefore, it is up to the
interpreter to ensure that the objects are deallocated.

There are two main options for how to do the deallocation. The easiest one
(which I have used) is to put the objects in a WeakHashMap. This map holds
its keys as weak references allowing the Kotlin garbage collector to deallocate
them. The other way is to implement a custom garbage collection. Making
a custom garbage collection is not that difficult because even the simplest
tracing algorithm would be sufficient.

However, I wanted to save time and opted for the first solution. The first
solution has one well-hidden problem. The WeakHashMap does not guarantee
that all its keys are reachable objects. Therefore, its content can change at
any moment because of the garbage collector. This instability is a problem for
several algorithms used in the interpreter.

One of them is the algorithm that unifies objects created in the loop.
Because of the map instability, the algorithm cannot just unify all new objects
in the map. The map could contain no longer accessible objects that would also
be unified. In some cases, the unification would alter the analysis output, but
only sometimes – depending on the Kotlin garbage collector. As a consequence,
the analysis would not behave deterministically.

For this reason, several algorithms need to be implemented in a different
waywhich involvesmorework. The implementation of these algorithms is very
similar to that of the custom garbage collector. In some sense, my initial
decision forced me to make multiple implementations of the custom garbage
collector instead of one.

169

4. Implementation

4.3.5 Virtual and dynamic dispatch
The original interpreter and BIR did not support virtual dispatch. Instead, it
was represented by a dynamic dispatch. In some sense, these two dispatches
are equivalent because one can be used to implement the other. The dynamic
dispatch was implemented using a VMT generated by the back end. In other
words, each object carried a reference to its class object. The class object stored
the methods in fields. Therefore, a method call was translated into two field
accesses and a dynamic call.

The VMT implementation turned out to be worse than the current solution
in all aspects. It took way more time to implement and introduced a runtime
overhead. It alsomade the interpretermore complicated because the interpreter
had to distinguish two types of values: objects and functions.

Overall, I did not initially correctly assess what the differences in imple-
mentations would look like. Taking back the decision did not cost almost any
time, but it meant discarding a lot of no longer necessary code. Therefore, mak-
ing the right choice at the beginning would save some time.

4.3.6 Changes in FIR and BIR
Both FIR and BIR have changed multiple times during the development. Most
of these changes did not cost that much time compared to the previously stated
problems. I have expected that there would be some changes because this is the
nature of the iterative process. I am making a list of these changes to document
the dead ends that I have already explored. The following list contains only the
most notable changes, but there were many other ones that had little impact.

FIR loops Initially, loops in FIR were implemented the same as in the Kotlin
IR: with conditions and two different types of loops. Since the BIR loop was
the same as now, the back end was performing the conversion. I later decided
to remove this feature and move the loop conversion from the back end to
the front end. The reason was that this feature had not added any significant
value to FIR. At the same time, it complicated the front end more than the
actual conversion. The problem was mainly with testing because the condition
was present in every loop even though it was unnecessary for the test. This
decision has one downside: it forces the other front ends to implement the

170

4.3. Challenges and mistakes

conversion also. However, the conversion is trivial, so the advantages outweigh
the disadvantages.

Function references The original design had only one type of function
reference, which is equivalent to the static reference.† The reason was that
I did not know that virtual reference is necessary. I have incorrectly assumed
that function references are only static. This mistake is an excellent example of
the types of problems I have revealed through exploratory testing.

Environments The following feature was technically never implemented but
was considered as part of the initial design. In the initial design, environment
access was transitive, and the Environment expression did not have a parent.
Instead, the back end searched the environment hierarchy to construct the
access automatically. The new design moves this responsibility to the front
end. The original design has two problems related to the fact that multiple
environments of the same type might be active at once. Therefore, the back end
would have to implement the environment precedence rules tomatch the Kotlin
semantics. The first problem is that this requiresmuchwork to do correctly. The
second problem is that front ends for languages with different semantics would
be hard to implement.

Function overloading The initial design of functions supported the function
overloading. It was implemented by including parameter types as a list in
the function signature (next to the signature name). The signature was later
changed to encode the parameters directly in its name. The reason was similar
to loops: it made testing easier.

Type information The analysis originally did not use any non-essential
type information. Therefore, the type information was not preserved in the
intermediate representations. The type information was introduced together
with Any as it was suddenly very useful.

†The current prototype still has only this static reference.

171

ChapteR 5
Evaluation

This chapter summarizes the results of this thesis. The designed static analysis
supports all Kotlin features necessary for the analysis’s intended use case.† The
analysis precision is also sufficient, and the created prototype implements most
of the static analysis.

The prototype is great for experimenting with the analysis but has several
problems that make it unsuitable for production use. These problems are caused
by the fact that the prototype was never meant to be used in production.
However, the ultimate goal of this thesis was to have a real-world benefit.
I still want to achieve this goal, so I intend to continue working on this project.
Therefore, understanding these problems andwhy they exist will help eliminate
them.

There is a long way from the prototype phase to the real-world deployment.
Just finishing the prototype will not be enough to make it a good product. For
this reason, I have proposed several necessary improvements for the analysis
design as well as its implementation. Those improvements and some other less
significant ones are explained in the second section. Before that, I will describe
the current state of the prototype.

5.1 Assessment of the prototype
The prototype was created to explore the static analysis’s possible designs and
verify the design decisions. I would not be able to make this design without it.

†At least to my knowledge. Given the complexity of Kotlin, it is hard to know for sure.

173

5. Evaluation

The prototype was created with this purpose in mind. On the other hand, the
prototype was not meant to be an actual usable product. Namely, the prototype
does not implement all features and does not handle correctly every edge case.†

Additionally, the prototype implementation is not always as clean as I would
like.

The implementation quality of each module varies greatly. The reason
is that it was worth investing more time in maintaining the more complex
modules. I estimated a return on investment of each refactoring to decide
what to refactor and when. The more complicated the module is, the harder
it is to implement if the existing implementation is not good. On the other
hand, a simple code that is isolated from the rest might be better to ignore in
the short term. For example, the most complex module is the interpreter, and
therefore it is in a relatively good shape. Another example is the front-end
module which is relatively simple but has changed frequently. Therefore, the
code in this module is not that good as the constant refactoringwas not justified.

Even though the implemented project is meant as a prototype, it is not
meant to be entirely discarded.‡ I have designed the prototype such that it
would be possible to reuse some of its parts, especially the tests. Also, the
prototype is split into many relatively isolated modules and has extensive test
coverage. Therefore, it should be possible to refactor the problematic parts.

Writing tests represented a significant part of the development. In fact,
the acceptance tests represent around 27 % of the all code in the project,
and the remaining tests are approximately 43 %. In total, all tests combined
constitute 70 % of the code. An additional 10 % of the code is in tooling that
makes the development easier (by simplifying tasks like testing and debugging).
Therefore, only 20 % of the code is the actual implementation.

Currently, the prototype has around 1,750 tests. Of these tests, there are
approximately 300 acceptance tests. Since the interpreter is the most complex
module, it is also the most tested with 1,000 unit tests. However, not all tests in
the interpreter are unique, as was explained in (4.2). I do not know how many
unique tests are in the whole project, but my estimate is around 1,000.

†Especially edge cases that arise from interactions of multiple features and the inner
workings of the Kotlin compiler.

‡The code of prototypes like this is usually not used for subsequent development.

174

5.1. Assessment of the prototype

The number of tests is not excessive. Many of these tests actually found
bugs and prevented regression. Also, I am aware of features that are still not
tested thoroughly enough. Therefore, more tests will be required in the future.

The prototype does not implement the complete analysis, and there are
two reasons for that. The primary one is that it was not necessary to finish
the design. During the design phase, I needed the prototype for exploration.
What is possible to explore is always limited by what the prototype currently
supports. For example, it is impossible to experimentwith function references if
the prototype does not implement regular function calls. The prototype is now
in a state that allows experimenting with all the missing features separately.
Therefore, these features do not have to be fully implemented to discover how
they should be handled.

The second reason the prototype is incomplete is that it is impossible to do
everything in the given time frame. The project is large, and even if it supported
all the features, it would still not be ready for production use.† I implemented
all I could in the available time, prioritizing the fundamental features.

The core of the analysis is almost fully implemented. The only thingmissing
is the support for recursion.‡ For this reason, a recursive call causes the analysis
to crash because it runs out of memory. Other than that, the whole interpreter
and BIR are implemented correctly. The back end is also almost done and
can convert all currently implemented FIR features. The FIR is missing some
features because they are not used by the front end yet.

Most of the missing features come from the front end. Analyzing these
features will usually result in a crash, occasionally an incorrect output. It
is hard to state what features are not correctly implemented. What works and
what does not can be determined by looking at the acceptance tests. There are
many TODO comments in the project that explain what might be implemented
incorrectly. Additionally, a more high-level list of the missing features is in the
file “TODO.md”. Some of the more important missing features are:

• access to transitively captured variables (but directly captured variables
work)

• inner classes
†For reference, the project has approximately 30,000 lines of code, not counting empty

lines.
‡The recursion is almost done since the core algorithm can be reused from loops.

175

5. Evaluation

• virtual function references (only static references are supported)

• property references

• delegated properties

The prototype also does not support most of the Kotlin standard library.
This limitation is not directly addressed in the analysis design, so technically, it
is not a missing feature. However, it is important to remember this fact when
writing acceptance tests and trying the analysis in general.†

5.2 Suggestions for future improvements
This section contains some of my ideas on how to proceed with the project
implementation. The theme of this section is to make the analysis usable in
practice. Therefore, each suggestion simultaneously describes the potential
weaknesses of the analysis.

The most important suggestion is simple: finish the analysis implementa-
tion according to the design. All the remaining suggestions can be split into four
different categories depending on what they try to improve. These categories
are usability, maintainability, performance, and precision. Each category has
a dedicated subsection that contains a curated list of ideas from that category.
However, many more things need to be done or would be nice to do.

5.2.1 Usability
The primary goal of usability improvements is to motivate developers to use
the analysis. There are two different ways to achieve that: improve the added
value of the analysis or make it easier to use. One of the biggest problems right
now is that the initial analysis setup would take too much work. This problem
is addressed by the first two suggestions. The remaining two suggestions focus
on new features of the analysis, thus improving the added value.

†For example, a mistake that I have made several times was using exceptions from the
standard library. These exceptions are not explicitly declared, and therefore they do not have
a proper inheritance hierarchy. The missing declaration causes a problem when the exception
is passed into a function that expects its supertype. Because of the missing inheritance
hierarchy, the type coercion discards the exception.

176

5.2. Suggestions for future improvements

Kotlin standard library As of now, the Kotlin standard library is handled
as a closed-source library. Therefore, developers/users need to write manual
FIR declarations for each non-trivial function they use. These declarations can
be shared between different projects, but that is not a good solution on its own.
It is necessary to generate the FIR declarations like for other libraries – from the
Kotlin source code. These declarations then can be put in the runtime module,
so this process would not have to be repeated on each project.

The standard library is open source, so the code is available. The problem
is that not everything is implemented in Kotlin. There is one trick to mitigate
this problem. Analyze the standard library on all platforms, especially Kotlin
native, since that is built from scratch in Kotlin. This approach does not solve
everything because the native standard library does not contain everything the
JVM standard library does. However, having the declarations for a part of the
library is still better than nothing.

Gradle plugin The analysis currently requires a complex configuration. For
example, it requires paths to all modules with source code, and paths for output
files. However, the most complicated step is to register the compiler plugin.
Manually running the analysis is not possible, not only because it should be
used on the CI server. Therefore, the users will have to write some script to
orchestrate the analysis. Writing such a script involves work and requires some
knowledge about the internal implementation of the analysis.

A much better solution is to use some build automation tool, for example,
Gradle [10]. The solution involves creating a Gradle plugin that wraps up
the analysis. The users will only have to add the plugin to their project and
maybe do some simple configuration. The Gradle plugin will then perform the
appropriate configuration and orchestration of the analysis.

Warnings Given how the analysis works, it can be used to detect several
potential problems. The analysis can report these problems as additional
warnings. Having these warnings would be helpful because they can uncover
bugs in the code. Additionally, they can warn the developers about places
where the analysis loses precision or even soundness. Adding these warnings
is not very difficult because the analysis already knows about them; it just does
not report them. Here are a few examples of problems that could be reported:

177

5. Evaluation

• Unreachable handlers – handlers that handle an exception that can never
be thrown

• Dereference of the Nothing value – could warn about potential null
pointer dereference

• Loop without terminating path – will cause the program not to terminate

• Non-analyzable constructs – operations that the analysis knows cause
loss of soundness (for example, call to unknown function)

Exception propagation path The analysis knows where each exception
originated and how it propagated through the program. Therefore, it can pre-
sent this information to the user. Having this information is very useful for
several use cases. For example, the API documentation could link to the source
code where the exception is thrown. This link acts as additional documentation
about the exception. The reason is that the code around the exception also
explains what the exception means.

5.2.2 Maintainability
Maintainability is about ensuring that the project development continues at
a stable pace. This aspect of development becomes more pronounced as the
project grows and gets more complicated. The prototype is already a relatively
large project and will get much larger before being ready for the production use.
Therefore, the following suggestions focus on making the future development
easier.

Refactoring As mentioned in the previous section, the current code quality
of some modules is not high. This problem should be addressed relatively soon.
However, it is not necessary to refactor everything at once. Instead, I would
suggest refactoring continuously along with code changes.

Logging This idea addresses a problem with debugging acceptance tests.
Sometimes it is difficult to determine why an acceptance test does not work.
Using a debugger is possible but takes too much time. The problem with
the debugger is that acceptance tests contain much code. Therefore, stepping

178

5.2. Suggestions for future improvements

through the interpreter is a long process. The proposed solution is to add
logging to the interpreter to record all the performed operations. From my
experience, this log will be enough to determine the cause of most problems.

Unused declarations The debugging of acceptance tests is difficult because
of another related problem. Since there is much code, it is hard to inspect
the generated BIR. The only reasonable way to improve the situation is to
reduce the amount of code. Most of the code in acceptance tests is there
because of the automatically included utility code and code from the runtime
module.† However, no test actually uses all the included code at once. Therefore,
the solution is to remove functions that are not (transitively) called from any
analyzed function.

5.2.3 Performance
This subsection contains some proposals for improving the analysis perform-
ance. It is important to note that I have not done any performance testing of
the analysis. Therefore, I do not know if the prototype does not contain any
bottlenecks caused by non-optimal implementation. Also, I am not sure if the
performance needs to be improved at all. For this reason, these proposals fo-
cus on the analysis design and ideas that are not implementation-dependent.
These ideas might be worth considering if the analysis performance will have
to be improved. However, this consideration should be guided by performance
testing and profiling.

Parallelization Modern computers (and especially servers) have many pro-
cessor cores. Utilizing more of them can sometimes dramatically improve per-
formance. The analysis has several places that can be easily parallelized. The
first one is in the last phase of the analysis module. In this phase, the analysis
runs the interpreter for each endpoint separately. Therefore, this phase can be
completely parallelized.

However, only parallelizing this phase will not overall have that significant
impact. The problem is in the second warm-up phase, which also calls all the
endpoints (to perform the initialization). This phase evaluates all the endpoints

†This included code is important because the tests frequently use it. Without the included
code, the test would have to duplicate it.

179

5. Evaluation

in a single interpreter run, so the previous solution is insufficient. Nevertheless,
even this phase can be parallelized. The interpreter evaluates each branch in
complete isolation. Therefore, the evaluation of any When is also parallelizable.

Deduplication A single value in the interpreter can contain multiple objects
of the same type. Sometimes these objects are not possible to access separately
in any way. In that case, the program cannot tell how many objects there are
in the value. From the program’s point of view, the value acts as if it contained
only one object. However, there are still multiple objects from the interpreter’s
point of view. As a result, the interpreter performs more work when reading
and writing to these objects.

Improving the performance can be done by unifying these objects. The
unification comes without the loss of precision or soundness (even in the
overwrite mode). The interpreter can detect if the unification can be done, but
it requires an additional calculation. Both the cost of the calculation and the
saved time by the optimization depend on the analyzed program. Therefore, it
is impossible to determine the optimization benefits without trying it on real-
world programs.

BIR optimizations The BIR generated by the back end contains many expres-
sions that do not affect the interpretation in any way. In other words, they
do not have any observable side effects, and their evaluation value is not used.
These expressions are often a result of the conversion from FIR to BIR. For ex-
ample, the conversion of conditions in Whenmoves the conditions in the branch
bodies. If the condition expression does not have any side effects, then it is not
necessary to evaluate it. However, the interpreter does not recognize that and
therefore evaluates the condition.

Overhead from this evaluation can be significant, for example, if the
expression calls a function that does not have a side effect. The solution is to
implement simple optimizations similar to the optimizations done by compilers.
The most useful optimizations are function inlining, constant propagation, and
dead code elimination.

180

5.2. Suggestions for future improvements

5.2.4 Precision
The remaining suggestions are those that improve the analysis precision.
The analysis focuses on high precision, so I did consider including these
improvements in the current design. However, in all these cases, I have decided
against that. The reason is that all these suggestions are hard to implement
and bring unclear benefits. Therefore, it is necessary first to evaluate if their
implementation will add enough value to justify the cost. This evaluation
needs to be done on real-world projects as with the performance improvements.
I could not make this evaluation yet, since running the analysis on actual
projects is currently impossible.

Arrays All array accesses in the current design are converted into access to
a single location. The reason is that the interpreter does not support primitive
values. It is possible to improve this approximation for accesses that use
constant indices. This improvement does not require the interpreter to support
any new features as it can be implemented in the back end. The idea is that the
array will have one shared location and then additional locations for constant
indices. Writing to the shared location will have to write to all locations.
Writing to a specific location will also have to write to the shared location but
not to the other specific locations. However, the back end needs to implement
all the optimizations mentioned in the previous subsection for this idea to work.
The reason is that currently, all array accesses are hidden behind a function call.
Therefore, without the optimizations, the indices are never constant.

Unification The unification mode can have a significant negative impact on
precision. The interpreter cannot always avoid using the unification mode, but
recovering some of that lost precision is possible. The unification mode must
be used to ensure the analysis termination. The unification mode generally
cannot be mixed with the overwrite mode, otherwise it would lose soundness.
However, there are some instanceswhere the soundness is not affected. In those
instances, the interpreter can carefully use the overwrite mode. An example of
such a situation is a newly created object inside a loop. This object can safely use
the overwrite mode until the end of the loop iteration in which it was created.

The other improvement of the unification mode is specific to the object
unification algorithm. The algorithm’s goal is to set a finite limit on how many

181

5. Evaluation

objects can be created in a loop. Right now, the algorithm does that by unifying
all new objects of the same type. The algorithm is built on the idea that there are
only finitely many classes. However, there are also finitely many CreateObject
expressions inside each loop. So the algorithm can use this fact instead.

This new algorithm is more precise for loops that create the same type of ob-
ject usingmultiple CreateObject expressions. The problemwith implementing
this strategy is that the CreateObject expressions are currently indistinguish-
able. To make them distinguishable, they would, for example, have to contain
some ID.

Generics At the moment, generics are implemented by erasure. In other
words, the analysis ignores them. Therefore, they do not contribute to the
optional type information.

There are two options for how to utilize the type information of generics.
The first one is easier since it can be implemented in the front end, but it is less
precise. The idea is to replace each generic type with its upper bound type. This
approach utilizes only part of the generics since the actual generic types of each
object are still erased.

The second option improves that but requires a support from FIR and the
back end. In this version, the back end creates many child classes for each
generic class. Specifically, it creates one child class for each used combination
of generic types – similarly to how C++ templates work. Each object is then
instantiated from one of these child classes depending on its generic types. The
difficulty of this approach is to correctly create the inheritance hierarchy to
match the generic variance rules.

182

Conclusion

The primary goal of this thesis was to design a static analysis that tracks ex-
ception propagation. The intended use case for the analysis is to automatically
document domain exceptions in APIs of back ends written in Kotlin. Using this
analysis will simplify exception handling in the back ends, and therefore it will
save development time and money.

The intended use case puts several requirements on the analysis. The most
important ones are that the analysis must support all Kotlin features and, at
the same time, have high precision. High precision is necessary, especially for
frequently used features like dynamic dispatch and lambda functions.

I researched several existing solutions for the static analysis of exception
propagation. However, I did not find any solution that would satisfy the
requirements mentioned above. The problem is that all those solutions focus
either on purely object-oriented languages or purely functional programming
languages. None of the considered solutions combine these two aspects –which
is necessary to analyze Kotlin programs. Therefore, I based my design only
partially on the existing research. Instead, I primarily relied on general concepts
of static analysis.

The designed static analysis uses an approach called abstract interpretation.
The analysis utilizes the Kotlin compiler to parse the source code into Kotlin
IR. This Kotlin IR is gradually converted into two custom intermediate
representations. The first intermediate representation is more high-level,
and its primary purpose is to make the design more modular. The second
intermediate representation is used to perform the abstract interpretation.

183

Conclusion

In order to create the design, I had to understand the Kotlin semantics well.
Since the analysis uses Kotlin IR, I also had to learn how it works. These two
things are related, and I documented them in this thesis.

As part of the analysis design process, I implemented a prototype which
was the secondary goal of this thesis. I used the prototype to experiment with
different design decisions and ensure the design’s correctness. The created
prototype has extensive test coverage that ensures the prototype’s correctness.
The prototype implements most of the design but not all of it. It also has
some additional limitations, and therefore it cannot be used in a production
environment. I proposed solutions to these limitations as part of the suggested
future improvements. In summary, all goals of this thesis were met.

The completion of this project represented a great challenge for me. The
project was challenging because of its size, complexity, and time constraints.
I learned many new things while working on the project, not only about Kotlin.
My vision for this project was (and still is) that it would become a practically
usable tool. The prototype is not there yet, but I intend to continue improving
it until it is ready.

184

Bibliography

1. AKHIN, Marat; BELYAEV, Mikhail et al. Kotlin language specification:
Kotlin/Core. JetBrains / JetBrains Research, 2020.

2. BUSE, Raymond P.L.; WEIMER, Westley R. Automatic Documentation In-
ference for Exceptions. In: New York, NY, USA: Association for Comput-
ing Machinery, 2008. isbn 9781605580500. Available from doi: 10.1145/
1390630.1390664.

3. CHANG, Byeong-Mo; CHOI, Kwanghoon. A review on exception analysis.
Information and Software Technology. 2016, vol. 77, pp. 1–16. issn 0950-
5849. Available from doi: https://doi.org/10.1016/j.infsof.2016.
05.003.

4. DOLNÍK, Filip; MÁLEK, Václav. NI-APR term project. 2021. Semestral
project. Faculty of Information Technology, Czech Technical University
in Prague.

5. ELIZAROV, Roman. Kotlin and exceptions [online]. Medium, 2020 [visited
on 2022-05-04]. Available from: https://elizarov.medium.com/kotlin-
and-exceptions-8062f589d07.

6. EVANS, Eric. Domain-Driven Design: Tacking Complexity In the Heart of
Software. USA: Addison-Wesley Longman Publishing Co., Inc., 2003. isbn
0321125215.

7. FOWLER, Martin. Bliki: Testdrivendevelopment [online]. 2005. [visited on
2022-05-04]. Available from: https : / / martinfowler . com / bliki /
TestDrivenDevelopment.html.

185

https://doi.org/10.1145/1390630.1390664
https://doi.org/10.1145/1390630.1390664
https://doi.org/https://doi.org/10.1016/j.infsof.2016.05.003
https://doi.org/https://doi.org/10.1016/j.infsof.2016.05.003
https://elizarov.medium.com/kotlin-and-exceptions-8062f589d07
https://elizarov.medium.com/kotlin-and-exceptions-8062f589d07
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html

BibliogRaphy

8. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John M.
Design Patterns: Elements of Reusable Object-Oriented Software. 1st ed.
Addison-Wesley Professional, 1994. isbn 0201633612.

9. GOOGLE. KSP [comp. software]. 2022. [visited on 2022-05-04]. Available
from: https://github.com/google/ksp.

10. GRADLE. Gradle [comp. software]. 2022. [visited on 2022-05-04]. Avail-
able from: https://gradle.org.

11. HUNT, Andrew; THOMAS, David. The pragmatic programmer: From
journey to mastery. Addison-Wesley, 2020.

12. IOZZELLI, Yuri. Solving the structured control flow problem once and for all
[online]. leaningtech, 2019 [visited on 2022-05-04]. Available from: https:
//medium.com/leaningtech/solving-the-structured-control-flow-
problem-once-and-for-all-5123117b1ee2.

13. JETBRAINS. Calling Kotlin from Java [online]. 2022. [visited on 2022-05-
04]. Available from: https://kotlinlang.org/docs/java-to-kotlin-
interop.html.

14. JETBRAINS. Kotlin – Context receivers [online]. 2022. [visited on 2022-05-
04]. Available from: https://github.com/Kotlin/KEEP/blob/master/
proposals/context-receivers.md.

15. JETBRAINS. Kotlin – Support non-local break and continue [online]. 2022.
[visited on 2022-05-04]. Available from: https://youtrack.jetbrains.
com/issue/KT-1436.

16. JETBRAINS. Kotlin docs: Kotlin [online]. 2022. [visited on 2022-05-04].
Available from: https://kotlinlang.org/docs/home.html.

17. JETBRAINS.Kotlin evolution: Kotlin [online]. 2022. [visited on 2022-05-04].
Available from: https://kotlinlang.org/docs/kotlin- evolution.
html.

18. JETBRAINS. Kotlin FAQ [online]. 2022. [visited on 2022-05-04]. Available
from: https : / / kotlinlang . org / docs / faq . html # is - kotlin -
compatible-with-the-java-programming-language.

19. JETBRAINS. Kotlin language specification – Scopes and identifiers [online].
2022. [visited on 2022-05-04]. Available from: https://kotlinlang.org/
spec/scopes-and-identifiers.html#scopes-and-identifiers.

186

https://github.com/google/ksp
https://gradle.org
https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2
https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2
https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2
https://kotlinlang.org/docs/java-to-kotlin-interop.html
https://kotlinlang.org/docs/java-to-kotlin-interop.html
https://github.com/Kotlin/KEEP/blob/master/proposals/context-receivers.md
https://github.com/Kotlin/KEEP/blob/master/proposals/context-receivers.md
https://youtrack.jetbrains.com/issue/KT-1436
https://youtrack.jetbrains.com/issue/KT-1436
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/kotlin-evolution.html
https://kotlinlang.org/docs/kotlin-evolution.html
https://kotlinlang.org/docs/faq.html#is-kotlin-compatible-with-the-java-programming-language
https://kotlinlang.org/docs/faq.html#is-kotlin-compatible-with-the-java-programming-language
https://kotlinlang.org/spec/scopes-and-identifiers.html#scopes-and-identifiers
https://kotlinlang.org/spec/scopes-and-identifiers.html#scopes-and-identifiers

Bibliography

20. JETBRAINS. Kotlin Programming Language [comp. software]. 2022. [vis-
ited on 2022-05-04]. Available from: https://github.com/JetBrains/
kotlin.

21. JETBRAINS. What is Kotlin [online]. 2022. [visited on 2022-05-04]. Avail-
able from: https://kotlinlang.org/docs/faq.html#what-is-kotlin.

22. JO, Jang-Wu; CHANG, Byeong-Mo; YI, Kwangkeun; CHOE, Kwang-Moo.
An uncaught exception analysis for Java. Journal of Systems and Software.
2004, vol. 72, no. 1, pp. 59–69. issn 0164-1212. Available from doi: https:
//doi.org/10.1016/S0164-1212(03)00057-8.

23. LEROY, Xavier; PESSAUX, François. Type-Based Analysis of Uncaught
Exceptions. 2000, vol. 22, no. 2. issn 0164-0925. Available from doi: 10.
1145/349214.349230.

24. MEYER, Bertrand. Soundness and completeness: With precision [online].
2019. [visited on 2022-05-04]. Available from: https://cacm.acm.org/
blogs / blog - cacm / 236068 - soundness - and - completeness - with -
precision/fulltext.

25. MØLLER, Anders; SCHWARTZBACH, Michael I. Static Program Analysis.
Department of Computer Science, Aarhus University, 2020. Available also
from: https://cs.au.dk/~amoeller/spa.

26. ORACLE. Java language and Virtual Machine Specifications [online]. 2022.
[visited on 2022-05-04]. Available from: https : / / docs . oracle . com /
javase/specs.

27. ORACLE. Java releases [online]. 2022. [visited on 2022-05-04]. Available
from: https://www.java.com/releases.

28. ORACLE.What’s new in JDK 8 [online]. [visited on 2022-05-04]. Available
from: https://www.oracle.com/java/technologies/javase/8-whats-
new.html.

29. OW2.ASM [comp. software]. 2022. [visited on 2022-05-04]. Available from:
https://asm.ow2.io.

30. PALERMO, Jeffrey. The Onion Architecture : part 1 [online]. 2008. [visited
on 2022-05-04]. Available from: https://jeffreypalermo.com/2008/07/
the-onion-architecture-part-1.

187

https://github.com/JetBrains/kotlin
https://github.com/JetBrains/kotlin
https://kotlinlang.org/docs/faq.html#what-is-kotlin
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00057-8
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
https://cs.au.dk/~amoeller/spa
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://www.java.com/releases
https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://asm.ow2.io
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1

BibliogRaphy

31. RICE, H. G. Classes of Recursively Enumerable Sets and Their Decision
Problems. Transactions of the American Mathematical Society [online].
1953, vol. 74, no. 2, pp. 358–366 [visited on 2022-05-04]. issn 00029947.
Available from: http://www.jstor.org/stable/1990888.

32. SCHUCHORT, Thilo. Kotlin Compile Testing [comp. software]. 2022. [vis-
ited on 2022-05-04]. Available from: https://github.com/tschuchortde
v/kotlin-compile-testing.

33. VMWARE. Spring [comp. software]. 2022. [visited on 2022-05-04]. Avail-
able from: https://spring.io.

34. YI, Kwangkeun. An abstract interpretation for estimating uncaught excep-
tions in Standard ML programs. Science of Computer Programming. 1998,
vol. 31, no. 1, pp. 147–173. issn 0167-6423. Available from doi: https://
doi.org/10.1016/S0167-6423(96)00044-5. Selected Papers of the First
International Static Analysis Symposium.

188

http://www.jstor.org/stable/1990888
https://github.com/tschuchortdev/kotlin-compile-testing
https://github.com/tschuchortdev/kotlin-compile-testing
https://spring.io
https://doi.org/https://doi.org/10.1016/S0167-6423(96)00044-5
https://doi.org/https://doi.org/10.1016/S0167-6423(96)00044-5

Appendix A
Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
BIR Back end Intermediate Representation
CFG Control-Flow Graph
CI Continuous Integration
DDD Domain-Driven Design
DSL Domain-Specific Language
DTO Data Transfer Object
FIR Front end Intermediate Representation
ID Identifier
IR Intermediate Representation
JVM Java Virtual Machine
KSP Kotlin Symbol Processing
TDD Test-Driven Development
UX User Experience
VMT Virtual Method Table

189

Appendix B
Glossary

domain exception An exception that is expected as a result of
a domain rule violation.

single-purpose domain exception A domain exception that can be produced by
only one type of domain rule violation.

analysis soundness The analysis presented in this thesis is sound
if it reports all possible exceptions a function
can throw. The precise meaning depends on the
specific analysis.

analysis correctness Complementary attribute to the analysis sound-
ness. The analysis presented in this thesis
is complete if it reports only possible exceptions
a function can throw.

analysis precision A relative expression of howmanymistakes the
analysis makes.

front end In the compiler context, it is the compiler part
that analyzes a source code and converts it to IR.
In this static analysis context, it is the module
that converts the Kotlin IR to FIR.

back end In the compiler context, it is the compiler part
that generates a native code from IR. In this
static analysis context, it is the module that
converts the FIR into BIR.

191

B. GlossaRy

intermediate representation A data structure used in compilers and this
static analysis to represent the processed pro-
gram.

Kotlin intermediate representation IR used in the Kotlin compiler.
front end intermediate representation A custom higher-level IR similar to the Kotlin

IR and used mainly by the analysis front end
and back end.

back end intermediate representation A custom lower-level IR used mainly by the
analysis back end and interpreter.

runtime In the context of Kotlin language, it is a set of
libraries that provide some special functional-
ity to the running program. In this static ana-
lysis context, it is a module that provides FIR
declarations for a subset of the Kotlin runtime
and standard library.

interpreter The module of this static analysis that performs
the abstract interpretation.

192

Appendix C
Contents of the enclosed CD

MT_Dolnik_Filip_2022.pdf..................................the thesis in PDF
readme.md.......................................description of the CD content
src

prototype..the prototype source code
thesis.......................................the thesis source code in LATEX

193

	Introduction
	Initial analysis
	The problem of documenting exceptions
	Exception handling example
	How to document exceptions
	Checked exceptions
	Typed results
	Automated acceptance tests
	Dynamic analysis
	Static analysis

	Libraries for static analysis of Kotlin
	Source code analysis
	JVM bytecode analysis
	Summary

	Prior art
	Existing solutions for Kotlin
	Existing solutions for Java
	Existing solutions for other languages

	Analysis of the Kotlin programming language
	IR description
	Reverse engineering methods
	The Kotlin standard library
	Exceptions
	What is an exception
	Throwing an exception
	Exception handling
	Exception propagation

	Control flow
	Conditions
	Loops
	Jumps
	Function calls

	Functions
	Local variables
	Parameters
	Default arguments
	Varargs
	Return
	Methods
	Extension functions
	Overloading

	Properties
	Computed properties
	Member properties
	Initialization of properties
	Lateinit modifier
	Extension properties
	Delegated properties

	Classes
	Constructors
	Interfaces
	Objects
	Enum classes
	Inner classes

	Functional programming
	Local functions
	Lambda functions
	Function references
	Property references
	Function types with receiver
	Inline functions

	Other
	Generics
	Coroutines
	Reflection

	Static analysis design
	Fundamental design decisions
	Requirements
	Intentional simplifications
	The chosen approach

	Architecture
	FIR
	BIR
	Front end
	Runtime
	Back end
	Interpreter
	Analysis

	Abstract interpretation algorithm
	Symbols
	Declarations
	Basic expressions
	Locations
	Branching
	Exceptions
	Functions calls
	Loops
	Recursion
	Type coercion

	Translation from FIR to BIR
	Declarations
	Basic expressions
	Locations
	Control flow
	Exceptions
	Function calls
	Function references
	Environments

	Translation from Kotlin IR to FIR
	Locations
	Control flow
	Functions
	Classes
	Function references
	Local declarations

	Implementation
	The implementation procedure
	Project management
	Software development

	Testing
	Challenges and mistakes
	Incorrectly tested exception flow
	Null pointer dereferences
	Implementation of Any
	Implementation of garbage collection
	Virtual and dynamic dispatch
	Changes in FIR and BIR

	Evaluation
	Assessment of the prototype
	Suggestions for future improvements
	Usability
	Maintainability
	Performance
	Precision

	Conclusion
	Bibliography
	Acronyms
	Glossary
	Contents of the enclosed CD

