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Abstract

We will investigate the mathematical epi-
demiological models, while considering
both the batch and networked compart-
mental models. Different means of control-
ling the course of epidemics will be consid-
ered, where the pharmacological and non-
pharmacological interventions will be dis-
tinguished. Lyapunov theory of compart-
mental non-negative systems will be used
for proving the stability of the disease-free
equilibrium globally, while linearization
will be used locally. Moreover, we will for-
mulate current public health challenges
as feedback control problems. Specially
developed models for SARS-CoV-2 will
be investigated. In the end, we will test
the applicability of designed controls in
light of incomplete data.
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Abstrakt

Budeme zkoumat matematické epidemio-
logické modely, pricemz vezmeme v tivahu
jak davkové, tak sitové kompartmentové
modely. Budou uvazovany rizné zpusoby
kontroly pribéhu epidemii, pricemz bu-
dou rozliseny intervence farmakologické
a nefarmakologické. Ljapunovova teorie
kompartmentalnich nezapornych systému
bude pouzita pro pokus o prokizani stabi-
lity bezchorobné rovnovahy pro globdlni
zavery, zatimco linearizace pro lokalni za-
véry. Kromé toho budeme formulovat ak-
tudlni vyzvy v oblasti verejného zdravi
jako problémy kontroly zpétné vazby. Bu-
dou zkoumany specialné vyvinuté modely
pro SARS-CoV-2. Na zavér vyzkousime
pouzitelnost navrzenych ovladacich prvka
ve svétle netplnych dat.

Kli¢ova slova: epidemiologické modely,
modelovani, kontrola, COVID-19

Pteklad nazvu: Epidemiologické
modelovani a Fizeni
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Chapter 1

Introduction

Diseases have always been an important part of human history. Right from
the start of recorded history there have been epidemics that have caused many
deaths before disappearing, sometimes returning years later, and sometimes
diminishing in severity as populations develop immunity.

Even in the ancient past there were epidemics. The Antonine Plague
(Plague of Galen) [12] of 165 to 180 AD, was the first pandemic impacting the
Roman Empire. It is belived the plague was smallpox, although measles has
also been suggested. Afterwards, the Plague of Cyprian [I3] was a pandemic
from about 249 to 262 AD that afflicted the Roman Empire. The agent of
this plague is not known, but the suspects are smallpox, pandemic influenza,
and viral hemorrhagic fever. The plague of Justinian [14] of 541 to 549 AD.
This plague afflicted the entire Mediterranen Basin, Europe, and the Near
East. Justinianic plague was bubonic plague. These pandemics have made a
huge impact on the societys and cultures which makes it even more pressing
to understand the effects of pandemic in the modern world today.

The Black Death [16](also known as the Pestilence, the Great mortality
or the Plague) was a bubonic plague pandemic that affected Afro-Eurasia
from 1346 to 1353. It is the deadliest pandemic in recorded human history,
causing the deaths of 75- 200 million of people in Eurasia and North Africa,
with a peak in Europe from 1347 to 1351.

Cholera [15] pandemics have occurred multiple times in the last 200 years,
with the first pandemic originating in 1817. Concern about colera epidemics
only grew when the European cities grew beyond the scale without having a
proper sewerage system. As a result the Sanitation movement was founded
which significantely improved the quality of life in European and American
cities.

1918 influenza pandemic, also known as the "Spanish flu" [18], was an
exceptionally deadly global pandemic. Estimates of deaths ranges from 17
million to 50 million, and possibly as high as 100 million.
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The start of more recent pandemics was in 2002 with SARS-CoV-1 [17],
which caused severe acute respiratory syndrome. Later in 2009 a pandemic of
Swine flu happened which lasted until 2010. Covid-19 [I9] or the coronavirus
disease is a contagious disease caused by the SARS-CoV-2 virus. This epi-
demic that is still ongoing and the one that caused around 6 million deaths
in the world.

Beside epidemics, there are also diseases that become endemic in some
populations. At the present it seems that the Covid-19 could become endemic
disease, since some countries are already declaring it an endemic disease
(Spain).

B 11 History

In 1662 John Graunt, a London haberdasher, published his book "Natural and
Political Observations made upon the Bills of the Mortality", and in doing
so established the field of epidemiology. Graunt brought to light a diversity
of facts about human life and disease that had not previously been appreciated.

The first model of mathematical epidemiology is considered to have ap-
peared in the work of the Daniel Bernoulli (1700-1782) on inoculation against
smallpox. Variolation, essentially inoculation with a mild strain, was intro-
duced as a way to produce lifelong immunity against smallpox, but with a
small risk of infection and death. There was heated debate about variola-
tion, and Bernoulli was led to study the question of whether variolation was
beneficial. His approach was to calculate the increase in life expectancy if
smallpox could be eliminated as a cause of death [10].

An additional contribution to the knowledge on disease transmission pro-

cess was obtained by the study of the temporal and spatial pattern of cholera
cases in the 1855 epidemic in London by John Snow [9], who was able to
pinpoint the Broad Street water pump as the source of the infection.
For us to be able to describe a mathematical model for the spread of a
communicable disease, it is necessary to make some assumptions about the
means of spreading infection. The modern view is that diseases are spread by
the contact of humans through a virus or bacteria’s.

W.H. Hamer was the founder of the idea that the spread of the infection
should depend on the number of susceptible individuals and the number of
infective individuals [4]. Hamer suggested a mass action law for the rate of
new infections, and this idea has been basic in compartmental models since
that time. It is worth noting that the foundations of the entire approach
to epidemiology based on compartmental models were laid, not by mathe-
maticians, but by public health physicians. Kermack and McKendrick in
1927 introduced the basic compartmental model as means to describe the
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transmission of communicable disease. However, in order to describe this
model, first the compartmental model in general will be described.

B2 Comparmental models

Compartmental systems are a subclass of non-negative dynamical systems
primarily governed by physical conservation laws, such as conservation of
mass, energy, fluid, etc., pertaining to exchanges between different parts of the
system -subsystems, compartments. Usually, each compartment is modelled
as kinetically homogeneous, presuming instant perfect mixing of the content
within it. Compartment contents are modeled as non-negative variables of
state. The conservation laws imply evolution of the whole system’s state on a
non-negative orthant R™. Moreover, together with dissipation and transport of
mass, energy or information, one finds an analogy of compartmental systems’
dynamics to system thermodynamics. Compartmental models can be found
in biological, social, medical, chemical, ecological, economic, demographic,
queuing systems, LSS and stochastic (probabilistic) systems, as well as in
telecommunications, transportation, power systems, heat transfer systems,
(system) thermodynamics, structural vibration systems, to name just a few
areas of application. Nonlinear non-negative compartmental systems exhibit
rich dynamics, possibly even deterministic chaos. Property of compartmental
models is that they can have non-isolated equilibria. By definition, such
equilibria cannot be asymptotically stable. Instead, comparable notions useful
for compartmental systems are convergence and semistability; wherein all
limit points are Lyapunov stable but convergence to a particular limit point
depends on initial conditions.

In semistability one thus has dependence of the final asymptotic steady-state
on the precise initial state: a trajectory starting close to one non-isolated
equilibrium point may very well end up, (converge), to another equilibrium
point close to the original one. In fact, semistability implies Lyapunov
stability and asymptotic stability implies semistability.

For such specialized model structures and stability notions, special stability
guarantees are available. For example, non-oscillatory and only monotonic
solutions can be guaranteed for compartmental systems under dissipativity.
In considering passivity and dissipativity for compartmental systems, linear
supply rates are of interest, which is not conventionally the case for general
dynamical systems [I]. Characteristics of non-negative compartmental systems
are:

® mass-action kinetics,

directed flows and time-delays,

non-negative inputs-constrained control space, e.g u €[0,1],

partial stability, semistability,
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B convex linear programming problems,

® constrained optimization

B 1.2.1 Kermack-McKendrick epidemics models

Simple model introduced by Kermack and McKendrick in 1927 in order to
describe the transmisson of communicable disease. The Kermack-McKendrick
model is a non-negative compartmental model, based on relatively simple
assumptions on the rates of flow between different classes of members of the
population. The COVID-19 epidemic revived interest in epidemic models,
which had been largely ignored.

To model an epidemic, we divide the population into three compartments 5,
I, and R. We let S(t) represent the number of individuals who are susceptible
to the disease, that is, who are not infected at time ¢. I(t) stands for the
number of infected individuals, assumed infectious and able to spread the
disease by contact with susceptibles. R(t) represents the number of individuals
who were infected and then removed from the possibility of being infected
again. Removal can be carried out through isolation from the rest of the
population, or through immunization against infection, or through recovery
from the disease or through death caused by the disease. The terminology
SIR will be used to describe a disease that confers immunity against re-
infection, to indicate the flow of individuals from the susceptible class S to
the infective class I to the removed class R. Epidemics are usually diseases of
this type. There are even models in case when once infected individuals is
again susceptible to a diseases. The terminology SIS is used to describe one
of those models. Usually, diseases caused by a virus are of SIR type while
diseases caused by bacteria are of SIS type.

More complicated models are possible, for example, there are SEIR and
SEIS models, with an exposed period between being infected and becoming
infective, moreover, there are epidemics models with even more compartments,
like SIDARTHE which was developed for the COVID-19 [5].

The general model includes the dependence of infectivity on the age of
infection, that is, the time since becoming infected. What is often called
the Kermack-McKendrick epidemic model is actually a special case of this
general model introduced by Kermack and McKendrick in their 1927 paper.

The time ¢ is the independent variable in these compartmental models.
These models are initially formulated as differential equations, since the rates
of transfer between compartments are explained mathematically as derivatives
with respect to time of the sizes of the compartments. The assumption is
made that the epidemic process is deterministic, that is,the behaviour of
population is determined completely by its history and by the rules which
describes the model. When formulating models in regard of the derivatives
of the sizes of each compartment we assume that the number of members in
the compartment is a differentiable function of time [2].

4
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B 13 Simple Kermack-McKendrick Model

Starting point of the study will be the simple SIR disease model, or otherwise
known as the special case of the model proposed by Kermack and McKendrick
in 1927

S =—BSI
I=p6SI—al (1.1)
R=al.

These are the assumptions of the SIR model:

® an average member of the population makes contact which are enough
to transmit infection with SN others per unit time, where N represent
total population size.

® infected leave the infective class at the rate o per unit time.

® in this model there is no departure or entry into the population, and the
population size is constant with the size N.

Important note for the SIR disease model is N = S+ 1+ R. Since the assump-
tion of a recovery proportional to the infectives has no clear epidemiological
meaning, we will need to give it a more detailed mathematical explanation.
The term "cohort" of members will represent the members who were all
infected at one time, while the u(s) will denote the members who are still
infective s-time units after having been infected [2]. The assumption says
that « of these leave the infective class in unit time then

u = —au, (1.2)
and the solution of this differential equation is

u(s) = u(0)e” . (1.3)

As a result, it can be seen that those who remain infective s-time units
after becoming infective is e~*%, so that the length of the infective period is
distributed exponentially with mean [;°e~**ds = 1/c, and this is what the
second assumption really assumes.

This model can be only represented with the first two equations, or the R
equation can be dropped since R is determined from .S and [

S =—pSI (1.4)

I =85I—al,

with the initial conditions S(0) = So, 1(0) = I, So+ Ip = N [2.

In the Figure 1.1 the susceptible, infective and recovered compartment for
the SIR uncontrolled model can be seen. The behaviour of the system is nicely
shown, while the infectives are increasing the susceptible are decreasing until

5
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Figure 1.1: Uncontrolled SIR model.

there are not enough susceptible that would keep "feeding" the infectives. The
big question with epidemics models is, when the small number of infectives is
introduced into a population, will this number of infectives cause an epidemic.
Since epidemics model are part of non-negative compartmental, then this
model makes sense only as long S(¢) and I(¢) remain non-negative. It can be
observed that S < 0 for all t and I > 0 if and only if Sy > /3. As a result
I increases so long as S > «/f but since S decreases for all t, I in the end
decreases and reaches zero. The conclusion is that if Sy < «/3, I decreases to
zero (no epidemic), while if Sy > «/f, I first increases to a maximum attained
when «/f and then decreases to zero (epidemic). Quantity £S5/« is called
the basic reproduction number Ry. Basic reproduction number determines if
there is an epidemic or not, if Ry < 1 the infection dies out, while if Ry > 1
there is an epidemic. The definition of the Ry is that it represents the number
of secondary infections caused by a single infective introduced into a whole
susceptible population of size N & Sy over the course of the infection of this
single infective [2]. In this case an infective makes SN contacts in unit time,
all of which are susceptible and thus produce new infections, and the mean
infective period is 1/«, therefore the basic reproduction number is actually
BN/a. This can be easily shown in the Matlab simulink simulation. If the
population is N = 1, then the maximum value the Sy can have is 1, then
the case of having no epidemics is provided if Ry < 1 or f/a < 1, which
can be seen in the Figure 1.1. However in the Figure 1.2, the case when the
infected are first increasing and after some time are decreasing, can be seen,
or in other words the epidemic case. In the case of the population being N=
1, then the Sy can have the value 1 at the maximum. If the reproduction
number is Ry > 1 then the no epidemics case is satisfied if 3/« > 1, or in other
words, if the rate of infection is less then rate of recovery then the spread stops.

6
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Figure 1.2: The number of infected in non-epidemic case.
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Figure 1.3: The number of infected in epidemic case.

B 1.4 Network epidemics models

To introduce network epidemics models, first, the network theory will be
introduced. Network theory can be described as a link of graphs to real-
world phenomena. The graph represents a set of mutually interconnected
objects. In graph theory, objects are usually called nodes or vertices, while

7
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the connections between nodes are usually called edges. In epidemiology,
it can be simply referred to as individuals and their contacts. To simulate
epidemics over a network of contacts, we need to record the infection status
of all individuals. The easiest way of doing it, is by defining a vector for
the infection status, in which the i-th element describes whether the i-th
individual (node) of the network is infected.

In contrast to batch epidemics models, network epidemics models are based
on a detailed study of mixing patterns in populations and assume a great
deal of knowledge about the contact structure. This makes the parameter
estimation and model validation that much more difficult for the network
models. Network models divide a whole population into subgroups having
different contact patterns to give very detailed predictions including the
effects of various management strategies that treat various segments of the
population differently. For the simple SIR model, if we are speaking in the
terms of network epidemics dynamics each graph node is endowed with a
population, s;,x;,r;, ¢ = 1,2,...N, the dynamics of which is influenced from
its neighboring nodes, in this way we can model the contact of populations
from different cities, regions, countries, or different groups in a population.
While network models can give very detailed predictions, they have some big
disadvantages. For a detailed network model, simulations take a long time
and it makes it difficult to examine a significant range of parameter values,
and also it is difficult to determine the sensitivity concerning the parameters
of the model. The following are examples of network epidemics models:

1. nSI:
Si = —ﬂsi Z Aijﬂfj
J

i’i = ﬁsi Z Aij.lij
J

NOTE: If the case is that s;, x; refers to a single individual, then this
individual is either susceptible or infected, indeed one individual cannot
infect itself. Therefore, it can be easily seen that it makes perfect sense to
have A;; = 0. However if the s;, z; refer to the batch i (city, region, age
group), then one can have infection from the same batch (for example
from the same city), and different fractions of the same batch can be
susceptible or infected.

2. nSIR:
i = —Bsi )y Aijxj
J

= Bsi Yy Ay — v
J

Ty = YTy

Constraint s; + z; +r; = 1, Vi.
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. 1.5 The Next Generation Matrix

The next generation matrix comes from the idea of calculating a matrix whose
(i,7) entry is the number of secondary infections caused in compartment i by
an infected individual in compartment j. If the assumption is that there are
n disease compartments and m non-disease compartments, and if z € R™ and
y € R™ are the sub-populations in each of these compartments. Moreover, if
the F; represents the rate at which the i-th disease compartment is increased
by a secondary infection, and if the V; represent the rate at which disease
progression, death and recovery decrease the i-th compartment [2]. Therefore
the model can be written in the form

t; = Fi(z,y) = Vi(z,y), i =1,...,n, (1.5)
U =9i(®,y),j =1,...,m.
The following assumptions on F and V are made:
8 Fi(x,y) >0, Vz,y>0andi=1,..,n,
® V(z,y) >0, whenever x; =0, i =1,...,n,
m > Vi(z,y) >0, Vo,y > 0.

After linearizing the model at a disease-free equilibrium and coming to some
conclusions as the result, the matrix K = FV !, which will be called the
next generation matrix is obtained.

The F' and V are n x n matrices

oFi
0xj

(%

(O>y0) V= 7(07y0)'

F =
81‘j

The element of the next generation matrix Kj;; represent the expected total
number of secondary infections produced in infective compartment ¢ during the
evolution of the system due to infected individuals from infective compartment
j. The next generation matrix is a non-negative matrix and Ry = p(FV 1),
the basic reproduction number is the Perron-Frobenius eigenvalue of the
next generation matrix. The related non-negative Perron eigenvector w =
0, FV~lw = p(FV 1w, gives the relative initial index case distribution
over infective compartments conducive to the greatest number of secondary
infections per generation. According to the Perron-Forbenius theorem, as
a result if the positive matrix FV ! is irreducible, then the reproduction
number is a simple eigenvalue.
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Chapter 2

Models with non-pharmacological
interventions

Epidemics models or non-negative compartmental models can be easily modi-
fied to models with interventions or models with multiple compartments that
represent different scenarios. Interventions in the epidemiological model can
be non-pharmacological, like quarantine and isolation, and contact restrictions
or pharmacological, like vaccines. Important note is that the conclusions
made for the simple Kermack-McKendrick (SIR) epidemic model also hold
for the more complicated compartmental models. These models can be seen
in [2], and they can incorporate vaccination, or quarantine and isolation,
asymptomatic and symptomatic cases of disease, etc. As a part of the models
with non-pharmacological interventions, the modified SIR, and the model
with quarantine and isolation will be explained in the next section.

B 2.1 Modified SIR

In the SIR model, the effect of the contact restrictions can be implemented
with 8 chosen as a function of the proportion of the number of infected in the
form of B(i) = Bo(i — i9)?", where the number of infected can be simply kept
as small as requested where it could be limited by 4, beside this, the limit is
set on the function that if ¢ > g, the function is 0, as shown in the Figure
2.1. This representation of the restrictions is ideal, since in the real case the
restrictions are imposed based on the past number of infected individuals,
which can only be imperfectly known, and maintained at a constant level
for a period of time, rather than reacting instantaneously to the changing
number of infected individuals.

11
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Figure 2.1: Beta as a function of the proportion of infected.
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Figure 2.2: Evolution of the number of infected for different power of the
polynomial.

The higher the power in the polynomial, the faster the polynomial goes close
to zero, however the influence on the epidemic will be that it will last longer.
As shown in the Figure 3.2. for the large enough power of the polynomial it
is possible to accomplish the stability of a disease free equilibrium, however

12
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the duration of the epidemic is prolonged. To make the restrictions more
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Figure 2.3: Infected for variated ig.

realistic, the delay can be added to the calculation of the beta coefficient.
In reality the detection of the current number of infected individuals is not
immediate, moreover the restrictions are always implemented based on the
previous number of infective members. In the Figure 3.4 and Figure 3.5 the
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Figure 2.4: Infected in SIR model with different delay.
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d represent how long the delay is, and it can be seen how the delay influences
the behaviour of the system. Even for the relatively short delay the behaviour
changes from a non-epidemic case to an epidemic case.
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Figure 2.5: Susceptible in SIR model with different delay.

. 2.2 Quarantine and Isolation Model

In case when vaccination is not available, especially in the outbreak of a
new disease, isolation of diagnosed infectives and quarantine of people who
are suspected of having been infected, are the only control measures. The
model is originally developed for the modeling the SARS epidemic of 2002-03,
and it is called SEQIJR model [2]. SEQIJR model consists of the following
equations

S =—BS(epE +epeq + T +e;J)
E = IBS(eEE—i—eEEQ +I+€JJ) — (F&E +’YQ)E

Q =vF — kQQ (2.1)
I =kpE — (ar +75)I
j:/iQQ—}—’yJI—aJJ

R=ajl+ oyl

Compartment S represents susceptible, E stands for exposed members to the
infection, () represents quarantined members, I represents infected members
and J represents isolated members. In this model the exposed members may
be infective with infectivity reduced by a factor e (0 < eg < 1). Exposed

14
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members who are not isolated become infective at rate kg, while they became
quarantined at a proportional rate g in unit time. Quarantinte is not
perfect, but it reduces the contact rate by a factor eg. Detection of the
infecitves is done at a proportional rate v;. Infectives that are detected
become isolated. Isolation is not perfect and there may still be transmission
of disease by isolated members with an infectivity factor of €;. The rate
at which quarantined members develop symptoms and become isolated is
represented by kg. Parameters oy and oy represent the infectives that leave
the infecitve class, and isolated members that leave isolation class respectively.
In this model the parameters vg and 7; are control parameters, however the
parameters €g and €; depend on the how perfect quarantine and isolation
are, and thus also control measures in some sense [2].

INFECTED MEMBERS
001 T T T T T T
€= 0.1
€Q= 0.3
€q= 0.5
0.005 Q=077
0 . !
0 10 20 30 40 50 60 70
ISOLATED MEMBERS
T T
0.01 €q=01]1
€= 0.3
€Q= 0.5
0.005 @07}
0
0 10 20 30 40 50 60 70

Figure 2.6: Quarantine model
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2. Models with non-pharmacological interventions

EXPOSED MEMBERS
0.01 T T T
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0 10 20 30 40 50 60 70
QUARANTINED MEMBERS
0.015 T T T T T T
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Figure 2.7: Quarantine model
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Figure 2.8: Quarantine model
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2.2. Quarantine and Isolation Model

0.01 EXPOSED MEMBERS
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Figure 2.9: Quarantine model
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Figure 2.10: Sum of exposed, quarantined, infected and isolated members

In the figures 2.6, 2.7, 2.8 and 2.9, the infective compartments of the model
are observed based on the perfection of quarantine and isolation. Based on
these results from the simulation it can be concluded that the perfection
of the quarantine has more impact on the number of members in infective
compartments, in other words to control an epidemic it is more important to
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2. Models with non-pharmacological interventions
have perfect quarantine then isolation.

B 2.3 The next generation matrix of the
Quarantine-isolation model

The infective compartments in the model 2.2 are E, @), I and J, while the
non infective are S and R. The F and V can be written as

F— ,BS(EEE+6E€QQ+I+EJJ)

, 2.2
VQEREERQQ + Vi1 (22)
and
(ke +7Q)E
kQ
= ; 2.3
(ar +y5)I (23)
agd
as a result ' and V are
[BepS BegegS 8S BesS]
_| 0 0 0
F = fp 0 0 0 , (2.4)
| 0 KQ v 0
[ke+70 0 0 0]
_ 0 KJ 0 0
V= 0 0 ar+ vy 0|’ (2.5)
| 0 0 0 ayj |
1
KE+YQ (1) 0 0
0 = 0 0
v1l= 0 "vOJ 1 NE (2.6)
art+vg
0 0 a%

and finally the next generation matrix for the quarantine-isolation model is

BepS BepesS BS BesS
KE+YQ K ar+vyg ay
. 7 0 0 0
Kp=FvV—l=|reie : (2.7)
. 0 0 0
100 kQ YJ
0 Ky ar+vg 0

Important note is that the basic reproduction number is actually the Perron-
Forbenius eigenvalue. The next generation matrix of quarantine-isolation
model has 4 eigenvalues, of which one is 0, one is positive, and the other
two are complex conjugate pair. By the Perron-Forbenius theorem, the
Perron-Forbenius eigenvalue in this case is the positive eigenvalue. Since the
expression for this eigenvalue is complex and quite long it is not written here.
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Chapter 3

Models with pharmacological interventions

Vaccination models are a special case of models with pharmacological inter-
ventions. There are other types of pharmacological interventions (treatments),
however since in the ongoing epidemic (COVID-19) the treatments are not
widely available, models with vaccination are more interesting. In the next
section vaccination model will be explained as well as the model when the
new strain of the disease is introduced in the population.

. 3.1 Vaccination model

The vaccination model is taken from the [2]. The effects of vaccination can be
modeled in different ways, depending whether the vaccination is preformed
before the likely outbreak of an epidemic, as it is done before the "flu" season,
or during the ongoing epidemic (like in the COVID-19). First, the vaccination
model that has a fraction of the population vaccinated before epidemic is
considered. The resulting model is

SU = —ﬁSU(IU + 5fv)

Sy = —aBSy(Iy + d1y) (3.1)
jU = ,BSU(IU + (5[\/) —ayly
jV = UﬂSV<IU + (va) - Oéva

R=ayly + ayly,

The initial conditions are as follows Sy (0), Sy (0), Iy7(0) and Iy (0), where
they represent the fraction of the population that is not infected and not
vaccinated, the fraction of the population that is not infected and vaccinated,
the fraction of the population that is infected and not vaccinated and the
fraction of the population that is infected and vaccinated. The parameter o
represents how much the vaccinated members have susceptibility to infection
reduced. Parameter o can have values 0 < o < 1, with ¢ = 0 describes
a perfectly effective vaccine, and ¢ = 1 describing a vaccine that has no
effect at all. The assumption is also made that the vaccinated members
who are infected have infectivity reduced by a factor 4. The parameters ay,
ay represent the recovery rate of the infected unvaccinated individuals and
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3. Models with pharmacological interventions

infected vaccinated individuals respectively. There are two different recovery
rates because it can be assumed that the vaccinated individuals have a better
recovery rate then those who are not vaccinated.

EFFECTIVNESS OF VACCINE - INFECTED VACCINATED

0.04
— =01
0.03 F —0=02 | |
c=04
——0=045
0.02 - ————0=05 |
c=06
0.01 —0=07 |
—0=09
0 &g ‘ | | 0=09
0 5 10 15 20 25 30 35 40
0015 EFFECTIVNESS OF VACCINE - INFECTED UNVACCINATED
. T T T T T T T
— =01
—0=02
0.01 c=04 |4
——0=045
—0=05
c=06
0.005 07
—0=09
—0=099
0 1 L Il
0 5 10 15 20 25 30 35 40

Figure 3.1: Effectiveness of the vaccine in a vaccination model.

The Figure 3.1 shows how the effectiveness of vaccine impacts the model. It
is clear that it is possible to accomplish stable disease-free equilibrium if the
vaccine is effective enough. It affects both the vaccinated and unvaccinated
individuals.
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3.1. Vaccination model

0.015

0.005

INFECTED VACCINATED

88% VAC
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INFECTED UNVACINATED

90% UNV
70% UNV
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20% UNV
10% UNV

20

25

Figure 3.2: Percentage of the population vaccinated before the epidemic

In the Figure 3.2 the results are shown based on the percentage of the
vaccinated population. The number of the infected vaccinated and unvacci-
nated both will be affected by this. It can be also seen that stable disease-free
equilibrium can be accomplished.

INFECTED VACCINATED

001 T T T T
RESTRICTIONS
NO RESTRICTIONS
0.005 .
O 1 1 1 L L
0 5 10 15 20 25 30 35 40
INFECTED UNVACCINATED
0.01 RESTRICTIONS 1
NO RESTRICTIONS
0.005 .
0 s ‘
0 5 10 15 20 25 30 35 40

Figure 3.3: Impact of restrictions in vaccination model

In the Figure 3.3 it shows the result when the ideal contact restrictions are
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3. Models with pharmacological interventions

implemented in the model as explained in the modified SIR model. Obviously
the restrictions will help with controlling the epidemic.

B 32 Thenext generation matrix of the Vaccination
model

In the model 3.1 the infective compartments are Iy and Iy, while the non
infective ones are Sy and Sy, so F can be

. BSyly + BoSyly
F= [aﬁSy(IU + 51‘/)] (3.2)
and
_|auly
V= [QVIV‘| (3.3)

as a result ' and V will be

e lﬁSU BasU]
oSy oBéSy |’

V= [O‘U 0 ] , (3.5)

0 oy
1
— 0
V_l = [QOU 1‘| . (3-6)
ay

Then the next generation matrix can be calculated as Ky = FV !

K, =FV!l=

BSu BSy
[ ] 5.7

oSy obosy
ay ay
As described in the section 1.5, important property of the next generation
matrix is that the Perron-Forbenius eigenvalue of the next generation matrix
is the basic reproduction number. Therefore:

BSu _ BsSu
K;— M\ = [ O‘gﬁgv 05559‘,‘/_ /\‘| ) (3-8)
ay ay
then the characteristic polynomial is
S 085
A(A_ﬁi_m). (3.9)
oy ay

Based on the Perron-Forbenius theorem, the Perron-Forbenius eigenvalue is
A= % =+ Ugﬂ, as described the basic reproduction number is the Perron-
Forbenius eigenvalue, therefore

_ 8BSy oBSy
ay ay/ '

Ry (3.10)
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3.3. New strain introduced

It is known that the basic reproduction number determines if there is an
epidemic or not. If the Ry < 1 the infection dies out. Therefore, in this
case, in order for the infection to die out the following condition needs to be
satisfied

_ 8BSy aBSy

S ay oy

Ry

<1 (3.11)

. 3.3 New strain introduced

It is important to consider the model when the new strain or version of the
disease is introduced. This can be seen in the recent outbreak of different
strains of COVID-19, like Omicron, or Delta variant of a COVID-19. The new
strain of a disease can significantly impact the epidemic dynamics, especially
in case of pharmacological intervention such as vaccine, if the vaccine is less
efficient for the new strain of the disease.

The model when the new strain is introduced reads

Sy = =Su(B1({y1 + 0Iv1) + B2(Iyz + 61v2))

Sy = =Sv(Bro1({y1 + 61v1) + Baoa(ly2 + 0ly2))
Iy = Sy(Br(Iur + 61v1)) — eyl (3.12)
Tya = Su(Be(Iua + 61v2)) — aylys
Iy = Sy (Bio1(Iy1 + 61v1) — av Iy
Iy = Sy (Bao2(Iua + 61v2) — oy Iva,

where the compartments are mostly the same as in the model 3.1, the main
difference is in the subscripts 1 and 2, where the compartments and parameters
with subscript 1 represent the first variant of the disease while the subscript 2
represent the strain of the disease. In this model the infected members by one
variant of the disease cannot be infected with the other variant at the same
time. In the figure 2.9 in the legend the "I’ stands for infected members,”VAC’
for vaccinated members while the "UNV’ is for unvaccinated members, the ’S’
is for the susceptible members and the 1 represents the original variant of
the disease while the 2 is for new variant the one that can be more infectious.
It can be seen in the Figure 2.9 when the epidemic is almost finished, when
the small amount of the infective members with the new strain is introduced
there is a peak in the infected members.[3]

. 3.4 Discrete vaccination model

To make a vaccination model more realistic, firstly the time is discretized,
and the model consists of the following equations

Sylt +1] = Sy[t] — BCSyltl(Iy[t] + 61y [t])
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3. Models with pharmacological interventions

0.01

0.005
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S-VAC

0.6 S-UNV | |
041 3
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Figure 3.4: New strain model
Syt + 1] = Sv[t] — o BCSy [t)(Iu[t] + 61v[t])
Iyt +1] = Iy[t] + BCSy[t](Iu[t] + 6Iv[t]) — avlult] (3.13)

Iv[t+ 1] = Iv[t] + o BOSV[t](Iut] + 6Iv[t]) — avIv]i]

Beside this modification to the model 3.1, the population is split into three
age groups (children, adults, seniors). The reason behind this is because it
is known that SARS-CoV-2 differently impact children, adults and seniors
[7]. In comparison with the previous models, the § is now 3x3 matrix as
well as the parameter C, where C represents contact matrix, while the f is
transmission matrix [6]. The transmission matrix § is assumed to have the
following structure

B B2 P2
=B fP3s [a (3.14)
B2 Ba  PBs

where (1 is a transmission probability between two children, §s is a transmis-
sion probability between children and adults or seniors, 3 is a transmission
probability between two adults, 84 transmission probability between seniors
and adults and (5 is transmission probability between seniors [6]. In [6]
parameters 51, B2, O3, B4, and By are estimated by fitting the model to data
on age-specific cumulative numbers of confirmed cases.

The contact matrix is expressed as a sum of the four specific contact matrices
describing daily numbers of contacts at home (Cp), school (Cg), work (Cw ),
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3.4. Discrete vaccination model

and other types of contacts (Co) [6]:

1.52  0.67  0.036 4.77 0.20 0.0014
Cy=1284 2.05 020, Cg=]181 0.33 0.0075
0.93  0.58 0.75 0.022  0.019 0.022

0.085 0.19 1.4-107° 1.61  0.78 0.24

Cw = 0.42 5.28 94-107°|, Co=|1.10 394 1.01

1.75-107°  0.00012 4.107° 0.15 0.89 0.93

To make the model even more realistic, the decision making for the contact
restrictions is based on the risk index, which is derived for the SARS-CoV-2.
The risk index adds up points for the values of four risk indicators. These
are:

1. the number of infected individuals in the last 14 days
2. the number of seniors that have been contracted in the last 14 days

3. the calculation of the reproduction number (if the virus is spreading in
the population)

4. the average positivity of tests over the last 7 days

The risk index scale from 0 to 100, based on the points assigned to each
of the indicators. In the [8] it shows how the actual contact restrictions
for the SARS-CoV-2 were implemented in the Czech Republic based on the
value of risk index. Considering the table in [§], similar contact restrictions
were implemented in the model 3.3, in sense of lowering the values in the
contact matrix based on the value of risk index. Moreover to make the
model even more realistic the measures were held the same for some time. In
Figure 3.5 the results can be seen, which are in some sense expected since
the biggest proportion of infectives are unvaccinated members. It is worth
mentioning, that the biggest transmission factor is for the adults, which as a
result can be seen in the Figure 3.5 where the largest proportion of infectives
are unvaccinated adults, moreover the vaccinated adults contribute a greater
proportion of infectives than unvaccinated infected children.
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Figure 3.5: Infected vaccinated and unvaccinated splited into age cohorts
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Chapter 4

Stability of a disease-free equilibrium

As in any controlled dynamical system, stability, global and asymptotic are
of crucial interest, which in case of epidemics model is the stability of the
disease free invariant set i = 0. Sometimes it can be concluded from the
system parameters, but in general cases Lyapnov stability analysis is needed.
An important note is that the epidemic systems are compartmental system,
which is a subclass of non-negative dynamical systems.

B a1 Lyapunov analysis for non-negative
compartmental systems

Non-negative compartmental systems defined by continuous-time dynamics
= f(x), v € RY, (4.1)

have their states evolving in the non-negative orthant R" if and only if z; = 0,
fi > 0,V € R% Vi. Such dynamical systems are called essentially non-
negative. Linear non-negative dynamical systems in continuous-time

=Mz, v €RY, (4.2)

necessarily have a Z-matrix [II] M. Such systems allow for special forms of
Lyapunov functions, which allows us to simplify the Lyapunov analysis, where
as in general this is not the case. One of those functions are so called linear
copositive Lyapunov functions

V(z) =wlz >0, w0, (4.3)

V(z) =w? f(z) <O0. (4.4)

Furthermore, since in epidemics models considering fractions of the total
constant population, the system state is restricted to a face of a n-simplex,
which is itself (n — 1)-simplex, those are compact subsets so an even more
general conditions of LaSalle’s invariant principle apply to guarantee global
asymptotic stability of various invariant sets therein contained

Viz)=wlz >0 w0, (4.5)
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4. Stability of a disease-free equilibrium

V(z) =w’ f(x) <0. (4.6)

This approach for the stability analysis can be shown on simple SIR
epidemic model. Using Lyapunov methods, the stability and the convergence
to the SIR disease-free equilibrium state ¢ = 0, can be proven. Using linear
Lyapunov functions Vi(s,i,7) = s + i or Vo = i, appropriate for positive
compartmental systems with states in R"!. After computing the derivative of
the Lyapunov function the result is:

Vi=§+41i=—1F=—ni, (4.7)

simply by looking the function 5.7 it can be concluded by Lasalle’s invariance
principle, that it converges to ¢ = 0 equilibrium set for all v > 0. However
this function disregards the transfer between the susceptible and infected
and takes into account only clearing of the infected to recovered. The second
function is the proper function for the stability of ¢ = 0 invariant set, more
characteristic of the partial stability Lyapunov function. Furthermore, the
derivative of the second Lyapunov function is

Vo =i=(Bs—7)i, (4.8)

given that 0 < s < 1, Vo = (8s — )i < 0 for v > B, again implying
convergence by Lasalle’s invariance principle to i = 0 for 79 < 1. Important
note is that the Lyapunov results are sufficient and not necessary.

B a2 Lyapunov analysis for vaccination model

Lyapunov analysis of the vaccination model 4.1 is done as it is described in
the Section 5.1. Since the vaccination model is non-negative compartmental
model Lyapunov linear functions can be used. Linear Lyapunov function for
the model 4.1 is

V=I1yp+1y. (4.9)

From the definition of the model it is known that 0 < Iy <1land 0 < Iy, < 1.
Moreover the Lyapunov function defined in the 5.9is 0 <V < 1.
The derivative of the Lyapunov function 5.9 is

V=1Iy+Iy (4.10)

V= ﬁSU(IU + 5]\/) —ayly + O',BS\/(IU + 5fv) =
= Iy(BSu + oBSv — ay) + Iy (B6Sy + 036Sy — ay)

Since the 0 < Sy <1 and 0 < Sy < 1, and if the total population is 1 then
Su+ Sy + Iy + Iy + R =1 then V can never be as big as when the Sy =1,
Sy =1, Iy =1 and Iy = 1, which from the definition of the model is not
possible.

So if the values of the Sy, Sy, Iy, Iy are replaced with 1. Then

B+oB—ay+Bi+0Bd—ay <0
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4.3. Linearization of the model with quarantine and isolation at the disease-free equilibrium

Then for the V < 0 it is satisfied when

ay + ay

< 14+0+d6+06

(4.11)

B 4.3 Linearization of the model with qguarantine and
isolation at the disease-free equilibrium

Since model with quarantine and isolation is a nonlinear system it is useful
to linearize the said model at the disease-free equilibrium. Disease-free
equilibrium is the point (V,0,0,0,0), however to simplify calculation N = 1.
The linearization of 2.1 at the disease-free equilibrium has the system matrix

egf — (ke +79)  €peQp 5 erp
Q —KQ 0 0
KE 0 —(ar+5) 0
0 KQ VJ —Qy

The characteristic polynomial of the corresponding matrix is a fourth degree
polynomial. In order to check the behaviour of eigenvalues it is easier to keep
all but one parameter fixed to obtain dependence on it alone.

04r 1

021 ]

-0.2 1 1

0.4+ 1

-0.6 1

-0.8 1

Figure 4.1: Variation of 5.

In the figures the points with the same colors represent the eigenvalues for
some value of varying parameter.
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Figure 4.3: Variation of €.
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Figure 4.4: Variation of €.
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Figure 4.5: Variation of k.
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Figure 4.7: Variation of vq.
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By definition, all of the eigenvalues have to have negative real part in order
to have stable disease-free equilibrium. Therefore, the biggest influence on
the model has parameter (3, since it moves the eigenvalues along x-axis (real
axis). Other parameter mostly do not have that big influence on the model
as it can be seen in the figures. Important note is that from the linearization
of the quarantine-isolation model we can only make conclusions locally and
not globally.

The Figure 4.7, and Figure 4.8 do not show that much sensitivity to the
regarded parameters, but parameters vg and -, represent control parameters
in the model 2.1. Even though it seems that parameters e¢g and €¢; do not
have a big influence, however, they represent control measures in some sense,
since they explain how perfect quarantine and isolation are.
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Chapter 5
Models developed for COVID-19

B 5.1 SIDARTHE

SIDARTHE model was developed for the COVID-19 epidemic in Italy [5]. In
this model the total population is partitioned into eight stages:

1. S - susceptible

2. I - infected (asymptomatic infected, undeteceted)

3. D - diagnosed (asymptomatic infected, detected)

4. A - ailing (symptomatic infected, undetected)

5. R - recognised (symptomatic infected, detected)

6. T - threatened (infected with life-threatening symptoms, detected)
7. H - healed (recoverd)

8. E - extinct (dead).

The SIDARTHE model consists of the following differential equations
S(t) = —S(t)(al(t) + BD(t) + vA(t) + SR(t))

I(t) = S(t)(al(t) + BD(t) + vA(t) + SR(t)) — (e + ¢ + N)I(1)
D(t) = el (t) = (n+ p)D(t)
A(t) = CI(t) = (0 + p+ R)A()
(t) (t)+ 0A(t) — (v + &R(t) (5.1)
(t) = pA(t) + vR(t) — (6 + 7)T(t)
M(t) + pD(t) + kA(t) + ER(t) + oT'(t)
E(t) = 7T(t)

nD
A

R
T
H(t) =

The parameters «, 3,7,d represent the transmission rate because of the
contacts between a Susceptible member and an Infected, a Diagnosed, an
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5. Models developed for COVID-19

Ailing, and Recognised member. The characteristics of these parameters
is that they are modifiable by social distancing policies. Parameters ¢ and
0 denote the probability rate of detection, relative to asymptomatic and
mildly symptomatic cases respectively. The rate at which infected members
develop symptoms, aware and not aware of being infected is represented
with parameters ¢ and n respectively. Parameters p and v respectively
denote the rate at which undetected and detected infected subjects develop
life-threatening symptoms. The mortality rate is captured by parameter 7.
Recovery of the five infected classes is represented by A, &, &, p and 0. Model
parameters are based on the evolution of the epidemic in Italy in the period
from the February 20, 2020 to March 12, 2020.

0.8

0.7 [

051

0.4

0.1

Figure 5.1: Uncontrolled SIDARTHE.

The Figure 5.1 shows how the epidemic proceeds in every compartment
based on the estimated parameters as well as the initial conditions in [5].
In each of the figures, Figure 5.1, Figure 5.2, Figure 5.3, nice property of
Threatened compartment is shown. Clearly, at the beginning of the epidemic
it is not possible to have threatened members, they need to develop severe
symptoms which takes time.
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Figure 5.2: SIDARTHE ideal restrictions.

In the Figure 5.2 the infected compartments of the SIDARTHE model
are shown. To try and accomplish stable disease-free equilibrium the ideal
restrictions, similar to those in the modified SIR model, are implemented.
In SIDARTHE model, instead of having one infective compartment (like in
SIR), there are 5 infective compartments (I, D, A, R, T. Since in the SIR
model there is only one transmission factor 5, in SIDARTHE there are several
of them «, 3, v, 0. Therefore, the contact restrictions are made based on
the sum of every infective compartment. Based on the simulations, the best
possible scenario is shown in the Figure 5.2, showing that no matter how ideal
restrictions are, with the initial conditions and parameters developed in [5] it
is not possible to accomplish stable disease-free equilibrium with restrictions.
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Figure 5.3: SIDARTHE realistic restrictions.

To make restrictions more realistic, in comparison to the ideal restrictions
the restrictions are made based on the calculation of the moving average
of the sum of all infective compartments, moreover the delay is added in
the implementation of the restrictions in the population. Comparing the
two figures it can be seen that there is an increase in all of the infective
compartments as expected.

B 5.2 Model H

In [6]]20] the model is developed for COVID-19 outbreak in the Czech Republic.
The model consists of the following discrete-time equations

S[t+1] = S[t] — AS[t]
E[t + 1] = E[t] + AS[t] — o E[t]
L[t + 1] = La[t] + (1 = ps)o E[t] — valalt]
Iplt + 1] = D[t] + pso Et] — EIp[t]
Inlt + 1] = Ip[t] + (1 — pr)&Lplt] — s In[t] (5.2)
L[t + 1] = L[t] + prélylt
R[t + 1] = R[t] + vala[t] + 7s[t],

where the probabilities with which individuals leave the respective model
class is represented by parameter o, £, v, and . In the model 5.2. the A is
defined as:
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5.2. Model H

rala[t] + ralp[t] + redp[t] + reds(t]
NIt '

A= BC (5.3)

Here, 8 and C are defined the same as in the model 3.3. Compartment S
represents susceptible, E stands for exposed individuals, I, represents infected
asymptomatic, I, represents presymptomatic individuals (individuals before
developing symptoms), I stands for the infected individuals that undergo
testing, while the Ij are infected individuals that decide not to undergo
the testing and instead stay at home. The compartment R represents the
recovered individuals. The rg is a factor reducing the infection transmission
probability for an asymptomatic individual, relative to a symptomatic one
and r. is a factor reducing contact rate of a symptomatic individual relative
to asymptomatic one. In this model the same restrictions were implemented
as in the model 3.3, where the risk index was calculated and based on the
value of this risk index the decision on the restrictions was made. In each
of the figures, Figure 5.4, Figure 5.5, Figure 5.6, the blue color represents
children, red is for adults, and yellow for seniors.
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Figure 5.4: Uncontrolled Model H.

In the Figure 5.4, uncontrolled Model H is shown. In every infective
compartment the most infected are adults, which is expected since they have
the biggest transmission factor.



5. Models developed for COVID-19
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Figure 5.5: Model H ideal contact restrictions.

Figure 5.5 shows infective compartments when the ideal contact restriction
is implemented in the model. By the ideal contact restrictions, it is considered
the ideal contact restrictions as explained in the modified SIR model. Even in
this case it is not possible to achieve the stability of a disease-free equilibrium,
however it is possible to limit the maximum number of infected individuals.
Comparing this result, with the results in the Figure 5.4 it is noticeable, by
implementing the ideal contact restrictions, the duration of the epidemic is
significantly extended.
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5.2. Model H
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Figure 5.6: Model H real contact restrictions.
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Figure 5.7: Model H overlapped Figures 5.4 and 5.6.

In Figure 5.7 the overlapped results from Figure 5.4 and 5.6 is shown so
it is easier to notice differences.In the legend, the ones with number 1 are
from the results from Figure 5.4, while the ones with 2 are from Figure 5.6
Definitely with real restrictions the maximum number of infectives will be
lowered and it will delay the peak of the infected.
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Chapter 6

Robustness of the models

The robustness of the models is tested based on incomplete data, specifically
if the ideal contact restrictions are based on the incorrect number of the
infective members. In reality this is unavoidable, since detection of infected
members is not 100% reliable.

0.01 INFECTED VACCINATED
0.005 .
O 1 1 1 T
0 5 10 15 20 25 30

INFECTED UNVACCINATED

0.005

Figure 6.1: Vaccination model
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6. Robustness of the models
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Figure 6.2: Vaccination model holding restrictions for some time
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Figure 6.3: Quarantine-isolation model

When the ideal contact restrictions are decided based on the incorrect
number of the infective members is shown in Figures 6.1, Figure 6.2, and
Figure 6.3 for different models. In reality, this approach can represent when
the tests are false negative, or when someone decides not to get tested. Based
on these results, the quarantine-isolation model seems more robust to the
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6. Robustness of the models

incomplete data, than the vaccination model. In the vaccination model, the
case when there is unstable disease-free equilibrium is possible. Moreover,
it seems that the infected unvaccinated members are more affected by the
incomplete data.
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Chapter 7

Conclusion

Mathematical epidemiological models became more observed since the SARS-
CoV-2 epidemic. It became clear in order to control epidemics some controls
were needed. Different types of models and controls were considered, like
pharmacological and non-pharmacological interventions. Obviously, it de-
pends on the features of the disease what interventions are needed, and how
"aggressive" they need to be. As seen, epidemiological models are easily
modifiable to the needs we want. The reason why some simpler models
were considered is because they are quite easy to understand, they show
qualitatively correct dynamics, and they also highlight important properties
of the course of epidemics.

An important property of epidemiological models is the basic reproduction
number Ry, more specifically if the Ry < 1 the infection dies out, on the other
hand, if the Ry there is an epidemic. The basic reproduction number in the
simple model is a ratio between infectivity and recovery rates. By increasing
the rates of recovery rate, for example with medication or treatment, or
decreasing the infectivity rate, one can hope to push Ry < 1 and thereby
stop an epidemic outbreak. When looking at the Ry (3.11) of the vaccination
model 3.1 it is noticeable that susceptible vaccinated members increase the Ry
factor but multiplied with the parameter o. Therefore, the lower the o the less
influence susceptible vaccinated have. It was already explained, the parameter
o represents vaccine effectiveness, therefore the more effective vaccine the
lower is Rg. This property is shown in Figure 3.1, where with enough effective
vaccines it is possible to achieve stable disease-free equilibrium.

For the non-pharmacological interventions, the modified SIR model and
Quarantine-isolation model were considered. In these models, the ideal
restrictions were implemented as a function of the proportion of the number
of infected, in order to try and stabilize disease-free equilibrium. It is shown
that it is possible to control epidemics with this kind of contact restriction
implemented in the model, however, this is the ideal case. In order to make
these restrictions more realistic, the delay in the implementation of contact
restrictions was added. A delay in the model definitely influences the course
of the epidemic, and it can go from stable disease-free equilibrium to unstable
disease-free equilibrium.

The models specifically developed for the SARS-CoV-2, shows us that it is
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7. Conclusion

not possible to accomplish stable-disease equilibrium, even with ideal contact-
restrictions. With contact restrictions, we can try to limit the maximum
number of the infected, but we need to keep in mind that this will cause an
extended duration of the epidemic. If we want to try and accomplish stable
disease-free equilibrium we need some kind of pharmacological treatment
in order to battle COVID-19. Morever, it is impossible to process all the
testing of the infected individuals, in time in order to provide appropriate
restrictions.
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