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Introduction

In the year 1905, Albert Einstein published his renowned paper titled “On the Elec-
trodynamics of Moving Bodies” in which he reconciled Newton’s laws of motion with
electrodynamics and thus laid the foundation for a whole new era in physics. In this
paper—and further in the following development of the general theory of relativity in
1915—humanity had begun to understand that our universe was not flat.

One of the major discoveries Einstein’s relativity brings is that spacetime has a non-
trivial curvature that can be directly related to the energy and momentum of matter
and radiation. This discovery naturally inspired a great number of mathematicians to
find a new tool that would elegantly grasp the nature of the universe. These efforts
led to a rapid development of differential geometry. Such an outburst of interest in a
fairly new branch of mathematics—the notion of a topological space was distilled by
Felix Hausdorff only in 1914—can be at least partially attributed to this phenomenal
discovery.

However, it is worth mentioning that although Einstein’s work was definitely a
massive inspiration for academic contributions in the area of calculus on curved geo-
metries, his observation was definitely not the first. In this regard, we can mention that
in the 19th century, William Kingdon Clifford in his philosophical writings coined the
expression of mindstuff, i.e., a geometry underlying the fabric of space and the curvature
of which manifests itself as gravity. The rejection of a purely flat geometry reaches even
further into the history as the renowned mathematician Pierre-Simon Laplace attemp-
ted to find the curvature of space already at the turn of the 19th century. Another
example of earlier thoughts on the fundamental hypotheses of geometry is the clas-
sic habilitation dissertation On the hypotheses which lie at the bases of geometry by
Bernhard Riemann from 1868, translated by William Kingdon Clifford in 1873.

Synopsis of the thesis. In Chapter 1, we aim to explore the possible differential
structure of smooth manifolds. Although this part could be considered to be standard
and left out as a pre-requisite knowledge, we prefer to inspect the introduction of the
smooth manifold delicately to avoid any confusion.

Chapter 2 introduces a tangent structure on a manifold. This construction allows
us to locally define notions such as derivatives and vector fields. While all of the
aforementioned should evoke an elementary course of multivariable calculus, on smooth
manifolds, we will need to be more careful when defining them.

Further on, in Chapter 3, we finally introduce the notions of a covariant derivative
and a connection. In this chapter, we focus on the development of intuition on simple
examples rather than a proper definition. The abstraction is instilled in Chapter 4
where we take the conception introduced in the previous chapter and we put it into a
more general setting. In this chapter, we also further explore the notions’ properties
and additional constructions.

Ultimately, in Chapter 5, we discuss the main result of this thesis: the equivalence
of a covariant derivative and a connection form. Apart from that, we also present some
directions of possible generalisation of the thesis.

Although the results of Chapters 4 and 5 are known, the exposition and most of the
proof-work was done by me.
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1. Introduction to smooth
manifolds

In the first chapter of this thesis, we introduce the concept of a smooth manifold. To
readers experienced in topology, definition of the aforementioned might come across as
trivial, but we consider it very important to specify how exactly we approach manifolds
in general, since the underlying definitions might differ from text to text.

Apart from the smooth manifold itself, we will also introduce other key concepts of
differential topology, such as charts, atlases, paracompactness, etc.

Our presentation of these notions follows closely the exposition given in the book [7].

1.1 Charts and atlases

Before we begin, let us discuss the goal of this section. We would like to introduce
a structure on a set that endows it with the property of “looking like” Rn locally. In
general, this will not be necessarily achievable globally on the whole set but we will
manage to arrive at a reasonable compromise using charts and atlases.

Definition 1.1.1. Let M be a set. A chart on M is a pair (U,x) consisting of U ⊆ M
and an injective map x : U → Rn such that x[U ] = {x(a) | a ∈ U} is an open set in
Rn. The composite xi = pri ◦ x : M → R is often called the i-th coordinate function.

Note 1.1.2. Since x, by definition, has Rn as a codomain, we can always write its
action upon a point p ∈ M as x : p 7→ x(p) =

(
x1(p), . . . , xn(p)

)
. Whenever we wish to

emphasise the individual coordinate functions, we write
(
x1, . . . , xn

)
or
(
xi
)

instead of
x.

Remark 1.1.3. Note that we have defined charts on a plain set M . Therefore, we do
not require U in (U,x) to be open since we do not have the topological structure on M
just yet.

Definition 1.1.4. A collection A := {(Uα,xα) | α ∈ A} of Rn-valued charts on a
given set M is called a smooth (Rn-valued) atlas on M , if the following three conditions
hold:

(a)
⋃

α∈A Uα = M , i.e., the collection {Uα | α ∈ A} covers M .

(b) For every α, β ∈ A, the sets xα[Uα ∩Uβ] = {xα(a) | a ∈ Uα ∩Uβ} are open in Rn.

(c) Whenever Uα ∩ Uβ ̸= ∅, the map xβ ◦ x−1
α : Rn → Rn is smooth (i.e., it has all

derivatives). We also say that (Uα,xα), (Uβ,xβ) are smooth-related.

Remark 1.1.5. The above notation xβ◦x−1
β is a shorthand for the precise, yet clumsy,

xβ↾Uα∩Uβ
◦x−1

α ↾xα[Uα∩Uβ ],

where f↾A denotes the standard domain restriction of f to A.

Definition 1.1.6. Suppose A1 and A2 are smooth Rn-valued atlases on a set M .
Define

A1 ≡ A2 ⇐⇒ A1 ∪ A2 is a smooth Rn-valued atlas on M.
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Claim 1.1.7. Let ≡ be the relation defined above. Then the following hold:

(i) ≡ is an equivalence relation on the set of all smooth Rn-valued atlases on a set
M .

(ii) Given an atlas A, the union
⋃
{B | B ≡ A} is an atlas again. Moreover, this atlas

is equivalent to A. Let us call it the maximal atlas generated by A and denote it
Amax.

(iii) Let [A]≡ = {B | B ≡ A} be the equivalence class of an atlas A under the relation
≡. The correspondence [A]≡ 7→ Amax is a bijection.

Proof. Ad (i): For a relation to be an equivalence, it must hold that the relation
is reflexive, symmetric and transitive.

(a) For reflexivity, we need to show that A ≡ A. This fact is trivial, since A is a
smooth atlas and A ∪A = A holds, thus A ≡ A is obvious.

(b) Symmetry means that A1 ≡ A2 if and only if A2 ≡ A1. This follows naturally
from the symmetry of the relation ∪.

(c) Transitivity: if A1 ≡ A2 and A2 ≡ A3, then A1 ≡ A3. This fact is easily checked
by going through the defining properties.

Ad (ii): First, we should note that Amax surely is an atlas in the first place. This
is trivially guaranteed by the fact that Amax is a union of elements that are already
atlases themselves. Next, let us verify that Amax is equivalent to A. Thanks to the
reflexivity of ≡, it holds that A ⊆ Amax, i.e., A∪Amax = Amax, which is an atlas based
on the preceding discussion.

Ad (iii): The bijective correspondence follows easily from the fact that both [A]≡ and
Amax are defined by collecting atlases equivalent to A and their unions, respectively. ■

Definition 1.1.8. Let (U,x) be a chart on M and let A be a smooth atlas on M . We
say that (U,x) is compatible with A, provided that A ∪ {(U,x)} is an atlas on M .

Claim 1.1.9. Let A = {(Uα,xα) | α ∈ A} be a smooth Rn-valued atlas on a set M .
Then the following holds:

(i) Let (U,x) and (V,y) are charts compatible with A, and such that U ∩ V ̸= ∅.
Then the charts (U ∩V,x↾U∩V ) and (U ∩V,y↾U∩V ) are compatible with A, hence
they both belong to the maximal atlas generated by A.

(ii) Let (U,x) be a chart compatible with A, let O be an open subset of x[U ] and let
V denote x−1[O]. Then (V,x↾V ) is a chart compatible with A.

Proof.

(i) For (U∩V,x↾U∩V ) to be compatible with A, it must hold that A∪{(U∩V,x↾U∩V )}
is an atlas over M , i.e., that it satisfies the conditions (a)—(c) in Definition 1.1.4.

(a) The collection {Uα | α ∈ A} ∪ {U ∩ V } obviously covers M .
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(b) For every α ∈ A, it holds that the sets xα[Uα ∩ U ] and xα[Uα ∩ V ] are open
in Rn. Further, since

xα[Uα ∩ U ∩ V ] = xα[Uα ∩ U ] ∩ xα[Uα ∩ V ]

holds and since finite intersections of open sets are open, we immediately
obtain that xα[Uα ∩U ∩ V ] is open in Rn, for every α ∈ A. Hence, the chart
(U ∩ V,x↾U∩V ) is compatible with A.

(c) Whenever Uα∩U∩V ̸= ∅, the maps x↾U∩V ◦x−1
α and xα◦x↾−1

U∩V are smooth.
This condition holds trivially, since both restrictions and compositions of
smooth maps are also smooth.

Since for (U ∩ V,y↾U∩V ), the reasoning is analogous, we consider this proved.

(ii) For the second part, we construct a very similar proof to the above. Let us show
that A ∪ {(V,x↾V )} is an atlas:

(a) The collection {Uα | α ∈ A} ∪ {V } covers M for obvious reasons.

(b) For each α ∈ A, the sets xα[Uα ∩V ] and x↾V [Uα ∩V ] are open in Rn due to
the fact that (U,x) is compatible with A and that V is the inverse image of
an open set in Rn under x.

(c) Whenever Uα∩V ̸= ∅, the maps x↾V ◦x−1
α and xα◦x↾−1

V are smooth because
we are once again dealing with restrictions and compositions of smooth maps.

■

1.2 Topology

Now, let us turn our focus to topology. To introduce our desired construction—
a smooth manifold—we will have to review some of the basic definitions such as the
topology and open sets, basis, etc. Apart from these elementary notions, we will also
demand that our smooth manifold is also Hausdorff and paracompact which are delicate
properties we will talk about later. An excellent survey of general topology is the
book [3].

Definition 1.2.1. Let X be a set and let τ be a family of subsets of X such that the
following conditions hold:

(a) ∅ ∈ τ and X ∈ τ .

(b) If U1 ∈ τ, . . . , Un ∈ τ , then U1 ∩ · · · ∩ Un ∈ τ .

(c) If Ui ∈ τ , i ∈ I, then
⋃

i∈I Ui ∈ τ .

Such family τ is called topology, elements of τ are called open sets and we say that the
pair (X, τ) forms a topological space.

Remark 1.2.2. The notion of a topological space is a vast generalisation of the fa-
miliar notion of a metric space.

More in detail: any metric space (X, d) becomes a topological space (X, τd) by
declaring U ⊆ X to be in τd (i.e., declaring U to be open in (X, τd)) whenever the
following holds:
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given p ∈ U , there exists r > 0 such that Br(p) = {x ∈ X | d(p, x) < r} ⊆ U .

Then it is easy to prove that τd is indeed a topology on X.

Hence, the notion of a topological space axiomatises the well-known property of
open sets in a metric space: an open set is a set, where one can “wiggle around” any of
the points a bit without leaving the open set.

Of course, we cannot talk about any notion of distance in a general topological
space. In fact, it is easy to come up with an example of a topological space (X, τ) such
that τ ̸= τd for any metric d on X. Consider, for example, X = {a, b} and τ = {∅, X}.

Definition 1.2.3. A collection B of subsets of a set X is called the basis, if the
following hold:

(a) B covers X, i.e.,
⋃

B∈B B = X.

(b) If B1 ∈ B, B2 ∈ B and x ∈ B1 ∩B2, then there exists a basis element B ∈ B such
that x ∈ B ⊆ B1 ∩B2.

Claim 1.2.4. Let B be a basis of subsets of X. Then the collection τ of arbitrary
unions of elements of B forms a topology on X. This topology is called the topology
generated by B.

Proof. Using the defining properties of a basis, we shall verify that the conditions
(a)–(c) of Definition 1.2.1 indeed hold when taking unions of the elements of B.

(a) Both ∅ and all of X can be formed as specific unions of elements of B. The
former can be constructed as a union of zero elements and the latter by taking
the union of all elements of B which makes up the whole of X, thanks to (a) in
Definition 1.2.3.

(b) Any arbitrary finite intersection can be constructed by repeated application of the
second property of basis elements.

(c) This condition holds trivially as we take all possible unions into account.

■

Claim 1.2.5. If A = {(Uα,xα) | α ∈ A} is a maximal smooth atlas on M , then the
collection {Uα | α ∈ A} is a basis for a topology on M (called the topology induced by
A).

Proof. First, we will show that {Uα | α ∈ A} forms a basis on M . The first
condition of covering M holds immediately when reviewing the definition of an atlas.
The second condition is assured by Claim 1.1.9. Now that have a basis on M , we can
generate a topology on M by taking arbitrary unions of elements of the basis as we
have seen in Claim 1.2.4. ■

Claim 1.2.6. Let M be a set equipped with a maximal atlas A = {(Uα,xα) | α ∈ A}
and a topology τ induced by A. This topology can be characterised as follows: V ⊆ M
is open if and only if xα[Uα ∩ V ] is an open subset of Rn for all charts (Uα,xα) of A.

Proof. To prove the logical equivalence used in the body of the claim, we shall
break it down into two implications:
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• " =⇒ ": Let V ⊆ M be an open set within the topology τ . Following Claim 1.2.5,
it can be written as V =

⋃
α∈I Uα for some (Uα,xα) in A. Therefore xα[Uα ∩ V ]

is indeed an open subset of Rn for every α ∈ A from the definition of an atlas.

• " ⇐= ": Let xα[Uα ∩ V ] be an open subset of Rn for all charts (Uα,xα) of A.
This implication is a simple consequence of what we have seen in Claim 1.1.9. For
every Oα = xα[Uα ∩ V ], we get an inverse image Vα = x−1

α [Oα], which, according
to the referred claim, is a chart when accompanied by the restriction xα↾Vα and
thus belongs to the maximal atlas. If we do this to all the intersections in Rn, we
get a collection of open sets in M under the topology τ , which was generated by
the atlas A. However, the topology τ was naturally created by taking arbitrary
unions of elements of {Uα | α ∈ A}. This indeed means that V as a union of Vα

belongs to τ as well and therefore is an open set.

■

As we said at the beginning, a manifold should locally “look like” Rn. Now we have
the tools to say it precisely.

Definition 1.2.7. A topological space (X, τ) is called locally Euclidean if each point
x ∈ X has an open neighbourhood that is homeomorphic to an open subset of Rn.

Note 1.2.8. The above definition of a locally Euclidean space assumes the definition of
a homeomorphism as a mapping f : X → Y between two topological spaces (X, τ) and
(Y, σ), which is bijective and continuous both ways, i.e., both f and f−1 are continuous.
In topology, continuous maps “reflect” openness, i.e., if V ⊆ Y is an open set under the
topology σ on Y , then the inverse image f−1(V ) ⊆ X is an open set under the topology
τ on X.

Remark 1.2.9. The definition of a smooth manifold that we are heading towards
should formalise the notion of a topological space which locally “looks like” Rn. There
are spaces, however, that locally “look like” Rn, yet they do not have an important
property of a Euclidean space.

Consider the space X = (R×{0})∪(R×{1}) with the topology τ of a subspace of R2

(the space (X, τ) consists of two parallel lines in the plane). Now define an equivalence
relation ∼ on X by putting (x, 0) ∼ (x, 1) for all x ∈ R \ {0}.

If we endow the quotient set X/∼ with the quotient topology1 τ∼ (i.e., declare
U ⊆ X/∼ open, whenever π−1(U) is open in X, where π : X → X/∼ is the quotient
map), then the space (X/∼, τ∼) is not convenient for us since e.g., the points [(0, 0)]∼
and [(0, 1)]∼ cannot be distinguished in (X/∼, τ∼) by disjoint open sets, yet every point
of X/∼ has an open neighbourhood that is homeomorphic to R.

Thus, the space (X/∼, τ∼) from the above remark lacks the property that any pair
of its distinct points can be “separated” by two disjoint open sets. In a slogan, such
a property means that any two distinct points are “quite far away”. We formulate the
property precisely now.

Definition 1.2.10. A topological space (X, τ) is called Hausdorff (also that it satisfies
the T2 axiom), if for all x ̸= y in X there exist disjoint open sets U , V such that x ∈ U
and y ∈ V .

1Since the notion of a quotient topology serves as a mere example in this thesis, we do not elaborate
on it any further. For more information about quotient topologies, see e.g., [3].
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Thus, Remark 1.2.9 gives an example of a locally Euclidean space that is not Haus-
dorff. It is quite easy to see why such property is convenient for us. For a topological
space to be Hausdorff it simply means that we can make a clear distinction (via separ-
ation by open neighbourhoods) between two different points of that space. This proves
especially convenient when treating further notions such as unambiguity of a limit.

There are two other desirable properties a manifold should have: it should be second
countable and/or paracompact. Let us mention that these additional properties are
there for comfort only: non-paracompact manifolds are studied as well, see [5].

Definition 1.2.11. A topological space (X, τ) is called second countable, if τ has an
at most countable basis.

Definition 1.2.12. Let (X, τ) be a topological space.

• A collection {Ui | i ∈ I} is an open cover of X, if
⋃

i∈I Ui = X and every Ui is an
open set.

• An open cover {Vj | j ∈ J} is a refinement of an open cover {Ui | i ∈ I}, if for
every j ∈ J there exists an i ∈ I such that Vj ⊆ Ui.

• A cover {Ui | i ∈ I} is called locally finite, provided that for every x ∈ X, there
exists an open set U such that x ∈ U and the set {i ∈ I | U ∩ Ui ̸= ∅} is finite.

Definition 1.2.13. A topological space (X, τ) is called paracompact, if the following
holds: every open cover of X has a locally finite refinement to an open cover.

Roughly speaking: paracompactness of a manifold ensures that one can perform
certain constructions locally and then “glue” them together in a non-conflicting, pleasing
way. This is particularly useful when defining, e.g., integration on a manifold. We do
not develop integral calculus in this text. For details, see, e.g., [7].

The following result shows why second countability and paracompactness are also
topologically desirable. We state the theorem without proof. For details, we refer to [3].

Theorem 1.2.14. Suppose (X, τ) is a Hausdorff, locally Euclidean space. Then the
following conditions are equivalent:

(i) (X, τ) is paracompact.

(ii) (X, τ) is a metrisable space.

(iii) Each connected component of (X, τ) is second countable.

(iv) Each connected component of (X, τ) is σ-compact (i.e., it is a union of at most
countably many compact spaces).

(v) Each connected component of (X, τ) is separable (i.e., it contains an at most
countable dense subset).

As the final step towards our definition of a smooth manifold, we formulate the
following claim which shows how to attain the “nice” properties we have defined earlier
(being Hausdorff, second countable and paracompact) via specific requirements on our
smooth structure.

Claim 1.2.15. Let A be a smooth atlas on a set M . Then the following holds:
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(i) Suppose that, for any p ̸= q in M , we have either charts (Uα,xα), (Uβ,xβ) with
Uα ∩ Uβ = ∅ and p ∈ Uα, q ∈ Uβ , or there exists a chart (U,x) such that p ∈ U
and q ∈ U . Then the topology on M given by A is Hausdorff.

(ii) If A is countable (or if it has a countable subatlas), then the topology τ on M
induced by A is second countable.

(iii) If the collection {Uα | α ∈ A} of chart domains of A is such that for every α0 ∈ A,
the set {α ∈ A | Uα ∩ Uα0 ̸= ∅} is at most countable, then the topology on M
induced by A is paracompact.

Proof.

(i) Since the first condition indirectly copies the definition of a Hausdorff space, we
will only tend to the latter one. If there exists a chart (U,x) such that both p
and q belong to U , then due to the injectivity of x, we obtain x(p) ̸= x(q). Since
Rn is a Hausdorff space, we can separate by open sets: x(p) ∈ Up and x(q) ∈ Uq,
where Up ∩ Uq = ∅ and both Up and Uq are open. According to Claim 1.1.9, we
can then follow the inverse images x−1[Up] and x−1[Uq] and consider them open
since they form compatible chart domains. Once again, thanks to the injectivity
of x, we have two disjoint open sets separating p and q.

(ii) This claim is trivial since the topology τ is generated by taking arbitrary unions
of chart domains from A. Therefore the set τ contains a countable amount of
basis elements.

(iii) We refer to [7] for the full (rather technical) proof.

■

Now, we arrive at the point where we know what all of our desirable properties
really mean and we are ready to define the final concept of this chapter—the definition
of a smooth manifold.

Definition 1.2.16. An n-dimensional smooth manifold is a pair (M,A), where M is
a set and A is a smooth (Rn-valued) atlas on M , such that the topology on M induced
by A is Hausdorff and paracompact.

Note 1.2.17. An n-dimensional smooth manifold is often referred to as a smooth
n-manifold. It is also common to call just the set M a manifold when specification of
the atlas is unnecessary for the sake of brevity.

Definition 1.2.18. Let M and N be smooth manifolds, and let F : M → N be a map.
We say that F is smooth if for every p ∈ M there exist smooth charts (U,x) containing
p and (V,y) containing F (p) such that F [U ] ⊆ V and the composite y ◦ F ◦ x−1 :
x[U ] → y[V ] is smooth.

Notation 1.2.19. In the following, we will often use the symbol C∞(M) to denote
the set of all smooth, real-valued maps on M .

1.3 Examples of smooth manifolds

Before we proceed to further explore the general theory of smooth structures on
manifolds, let us show some examples of what we can classify as a smooth manifold.
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Example 1.3.1 [Euclidean Spaces]. For every n ∈ N0, the Euclidean space Rn is a
smooth manifold (Rn, {(Rn, idRn)}) of dimension n. Notice that this smooth structure
is not canonically given and is called the standard smooth structure on Rn.

Example 1.3.2 [Spheres in Euclidean spaces]. Let ∥−∥ be the Euclidean norm on
Rn+1, n ≥ 0. The unit sphere

Sn :=
{
x ∈ Rn+1 | ∥x∥ = 1

}
is indeed Hausdorff and second-countable as it is a topological subspace of Rn+1. To
inspect its structure, let us denote for each i ∈ {1, . . . , n+ 1}

U+
i :=

{(
x1, . . . , xn+1

)
∈ Rn+1 | xi > 0

}
,

U−
i :=

{(
x1, . . . , xn+1

)
∈ Rn+1 | xi < 0

}
.

Now consider the continuous function f : Bn → R

f(u) =

√
1− ∥u∥2,

where Bn = {x ∈ Rn | ∥x∥ < 1}. Now it is easy to see that U+
i ∩ Sn and U−

i ∩ Sn are
the graphs of functions

xi = f
(
x1, . . . , xi−1, xi+1, . . . , xn+1

)
,

xi = −f
(
x1, . . . , xi−1, xi+1, . . . , xn+1

)
respectively. Therefore, we can conclude that each subset U±

i ∩ Sn is locally Euclidean
of dimension n and that the maps x±

i : U±
i ∩ Sn → Bn given by

x±
i

(
x1, . . . , xn+1

)
=
(
x1, . . . , xi−1, xi+1, . . . , xn+1

)
are graph coordinates for Sn. Now let us take an arbitrary composition x±

i ◦
(
x±
j

)−1,
where we can assume that i < j. Explicitly, we obtain

x±
i ◦

(
x±
j

)−1 (
x1, . . . , xn

)
=

(
x1, . . . , xi−1, xi+1, . . . , xj−1,±

√
1− ∥x∥2, xj+1, . . . , xn

)
.

In the case of i > j, we obtain a similar relation. Also, consider that if i = j, we get

x+
i ◦

(
x−
i

)−1
= x−

i ◦
(
x+
i

)−1
= idBn .

As we can see, the collection
{(

U±
i ∩ Sn,x±

i

)}
forms a smooth atlas on Sn, turning it

into a smooth manifold of dimension n.

Remark 1.3.3. Example 1.3.2 shows that one can define manifolds in Rn+1 by using
certain functions. Namely, we have used the function

∥−∥ : Rn+1 → R

to conclude that the inverse image

∥−∥−1 (1) = {x ∈ Rn+1 | ∥x∥ = 1}

is a manifold.

This is an instance of a general procedure that is supported by the so-called Regular
Value Theorem. We state the theorem later, see 2.3.3 below.
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2. Tangent spaces

In this chapter, we solidify the terminology and definitions of core concepts of the
differential structure on manifolds such as the derivative at a point and the derivative
of a smooth map between two manifolds.

Thus, in Section 2.1, we introduce the concept of a tangent vector at a point of a
manifold. We also show that these vectors quite naturally form a vector space of the
same dimension as the ambient manifold. Moreover, smooth maps are able to carry
tangent vectors to tangent vectors by means of a derivative of a smooth map.

The point of view that derivatives of smooth maps are linear maps is central to
modern differential geometry. In addition, it leads quite naturally to the concept of a
tangent bundle of a manifold, i.e., of tangent spaces “glued together”, see Section 2.4.
The tangent bundle of a manifold is crucial in an easy treatment of vector fields, curves,
and, ultimately, covariant derivatives.

While we postpone the notion of a covariant derivative to Chapter 3, we also intro-
duce vector fields, curves and their velocities in Sections 2.5 and 2.6.

For further details on the material of this chapter, we refer to [7] again.

2.1 Tangent vectors at a point

We would like to build a notion similar to the definition of a directional derivative
in Rn. We will see that such a concept will lead quite naturally to the concept of a
tangent vector. Let us see an example of what we mean by that.

Example 2.1.1. Let us fix a point p in the Euclidean plane R2. “Standing” at p, there
are various directions, in which we can “look”. Any such direction can be visualised as
a non-zero vector vp = (v1, v2)T having its foot at p.

If a smooth function, say f : R2 → R, is given, we can compute the derivative of f
at p in direction v by computing the expression

∂f

∂x
(p) · v1 + ∂f

∂y
(p) · v2.

If we denote the above expression by vp(f), then it is easy to see that the assignment
f 7→ vp(f) yields a function that

(a) is linear, i.e., the equality

vp(af + bg) = avp(f) + bvp(g)

holds for all a, b ∈ R and all smooth functions f : R2 → R, g : R2 → R.

(b) satisfies the so-called Leibniz rule

vp(fg) = g(p)vp(f) + f(p)vp(g)

for all smooth functions f, g.

11



Conversely, if an assignment f 7→ vp(f) satisfies conditions (a) and (b) for all smooth
maps f , it is easy to extract a vector (v1, v2)T by putting

v1 = vp(f) for f(x, y) = x,

v2 = vp(g) for g(x, y) = y.

Hence, the vector vp can be identified with a map f 7→ vp(f) satisfying (a) and (b)
above.

The above example serves as a motivation for the following definition: we define a
tangent vector at a point to be a “derivative”.

Definition 2.1.2. Let M be a smooth manifold of dimension n and let p ∈ M . A
linear map vp : C∞(M) → R is called a derivation at p, if it satisfies the so-called
Leibniz rule (or, product rule)

vp(fg) = g(p)vp(f) + f(p)vp(g) for all f, g ∈ C∞(M).

The set of all derivations at p is called a tangent space at p and is denoted by TpM .

Remark 2.1.3. At any point p ∈ M , the tangent space TpM is a vector space over R
with the operations + and · defined pointwise, i.e., for vp, wp ∈ TpM and a ∈ R:

(vp + wp)(f) = vp(f) + wp(f), (avp)(f) = avp(f).

Example 2.1.4. An important example of a derivation at a point is the “partial” de-
rivative with respect to a chart. More in detail, given a chart (U,x) of an n-dimensional
manifold M and a point p ∈ U , we define

∂

∂xi

∣∣∣∣
p

: C∞(M) → R

as follows:

∂

∂xi

∣∣∣∣
p

(f) = ∂i
(
f ◦ x−1

)
(x(p)).

Above, on the right-hand side, we have used ∂i to denote the usual partial derivative
with respect to the i-th coordinate of the function f ◦x−1 : x[U ] → R. It is then easy to
show that ∂/∂xi|p is indeed a derivation at p. Notice that the above is chart-dependent
and we should have written the more precise

∂

∂xi

∣∣∣∣
(U,x),p

.

Lemma 2.1.5. Let M be a smooth manifold, let p ∈ M , vp ∈ TpM , and f , g ∈ C∞.
Then the following hold:

(i) If f is a constant function, then vp(f) = 0.

(ii) If f(p) = g(p) = 0, then vp(fg) = 0.

Proof.

12



(i) Assume, without loss of generality, that f = 1. This assumption is harmless since
if the proposition holds for f1 = 1, it immediately holds for f = c ∈ R as well
because linearity of vp yields vp(f) = vp(cf1) = cvp(f1) = 0. For f = 1, the
product rule gives

vp(f) = vp(ff) = f(p)vp(f) + f(p)vp(f) = 2vp(f),

from which vp(f) = 0 follows.

(ii) This is once again a simple consequence of the product rule:

vp(fg) = f(p)︸︷︷︸
=0

vp(g) + g(p)︸︷︷︸
=0

vp(f) = 0.

■

The construction of a tangent space should give us the notion of something like a
“linear approximation” much as it is in multivariable calculus in Rn. Further, we will
attempt to explore the way smooth maps affect tangent vectors.

Definition 2.1.6. Let M and N be smooth manifolds, and let F : M → N be a
smooth map. For every p ∈ M , define a map

DF |p : TpM → TF (p)N,

vp 7→ (f 7→ vp(f ◦ F )),
(2.1.1)

where f ∈ C∞(N). We call this map the derivative (or, total derivative) of F at p.

Note 2.1.7. Note that Formula 2.1.1 is well defined since when f ∈ C∞(N) and
F : M → N , then the composite map f ◦F ∈ C∞(M) and thus vp(f ◦F ) makes perfect
sense.

Every DF |p(vp) is a derivation on N at the point F (p). Linearity immediately
follows from the fact that vp is linear. To show that the product rule holds, consider
that for any f, g ∈ C∞(N), we have

DF |p(vp)(fg) = vp ((fg) ◦ F ) = vp ((f ◦ F )(g ◦ F ))

= (f ◦ F )(p)vp(g ◦ F ) + (g ◦ F )(p)vp(f ◦ F )

= f (F (p))DF |p(vp)(g) + g (F (p))DF |p(vp)(f).

Claim 2.1.8 [Properties of Derivatives]. Let M , N and P be smooth manifolds,
let the maps F : M → N and G : N → P be smooth, and let p ∈ M . Then the
following holds:

(i) DF |p : TpM → TF (p)N is linear.

(ii) D(G ◦ F )|p = DG|F (p) ◦DF |p : TpM → T(G◦F )(p)P .

(iii) D(idM )|p = idTpM : TpM → TpM .

(iv) If F is a diffeomorphism,1 then DF |p : TpM → TF (p)N is an isomorphism and it
holds that (DF |p)−1 = D

(
F−1

)∣∣
F (p)

.
1Recall that the diffeomorphism from M to N is a smooth bijective map F : M → N , which has a

smooth inverse.
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Proof. Let vp, wp ∈ TpM be derivations at p, let a, b ∈ R, and let f ∈ C∞(M),
h ∈ C∞(P ). Then the following hold:

(i) DF |p(avp + bwp)(f) = (avp + bwp)(f ◦ F ) = aDF |p(vp)(f) + bDF |p(wp)(f).

(ii) D(G ◦F )|p(vp)(h) = vp(h ◦G ◦F ) = DF |p(vp)(h ◦G) = (DG|F (p) ◦DF |p)(vp)(h).

(iii) D(idM )|p(vp)(f) = vp(f ◦ idM ) = vp(f) = idTpM (vp)(f).

(iv) Since according to (i), DF |p is linear, is suffices to prove that it always has an
inverse. Applying (ii) and (iii), we obtain

idTpM
(iii)
= D(idM )|p = D

(
F−1 ◦ F

)∣∣
p

(ii)
= D

(
F−1

)∣∣
F (p)

◦DF |p.

This directly proves that (DF |p)−1 = D
(
F−1

)∣∣
F (p)

and that DF |p is an iso-
morphism.

■

Now that we have properly defined the derivative and explored its basic properties,
our first application of it will be to use the smooth structure we have introduced to
relate the tangent space at any point of the n-dimensional manifold with Rn. In fact,
the derivations ∂/∂xi|p, introduced in Example 2.1.4 form a basis of the space TpM .
This is a non-trivial result, hence we state it without proof (see, e.g., [7] for the full
proof).

Claim 2.1.9. Let M be a smooth manifold of dimension n. Then TpM is a vector
space of dimension n with

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

being its basis.

The above claim (and the notation ∂/∂xi|p) is yet one more trick that will allow us
to work locally as if we were in a Euclidean space. We will see it in the next section.

We finish this section with the claim (again without a proof) that allows us to
identify, for any p ∈ U with U open in M , the spaces TpM and TpU . The full proof can
be found in [7] again.

Claim 2.1.10. Let M be a smooth manifold, let U ⊆ M be open, and let ι : U ↪→ M
be the inclusion of U in M . Then for every p ∈ M , the derivative Dι|p : TpU → TpM
is an isomorphism.

2.2 The derivative in coordinates

So far, our research of tangent spaces has been purely theoretical and abstract. In
this section, we will attempt to show how to perform a certain degree of computations
with tangent vectors and derivatives. Eventually, we will arrive at an intersection of the
differential calculus in Euclidean spaces and the notions we have defined on the tangent
structure of a smooth manifold.

14



Recall from Example 2.1.4 that the operator ∂/∂xi|p acts upon f ∈ C∞(M) as
follows:

∂

∂xi

∣∣∣∣
p

f =
∂f̂

∂xi
(p̂) ,

where f̂ = f ◦ x−1 and p̂ = x(p) denote the coordinate representation of f and p
respectively.

Remark 2.2.1. Following Claim 2.1.9, a tangent vector vp ∈ TpM can be written as
a linear combination

vp =

n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

= vi
∂

∂xi

∣∣∣∣
p

,

where in the latter case, we have adapted the widely recognised Einstein’s summation
convention. The ordered basis (∂/∂x1|p, . . . , ∂/∂xn|p), where xi is the i-th coordinate
function, is referred to as a coordinate basis for TpM and the ordered n-tuple (vi) is
called the components of v with respect to the coordinate basis.

To compute the components of vp ∈ TpM easily, we can utilise its action on the
coordinate basis

(
xi
)
. Specifically, if we want to compute the j-th component of v, we

can simply put

v
(
xj
)
=

(
vi

∂

∂xi

∣∣∣∣
p

)(
xj
)
= vi

∂xj

∂xi
(p) = vj .

Example 2.2.2. Further, we would like to explore how derivatives of smooth functions
look like in coordinates. Let us begin by introducing an example of a smooth map
F : U → V , where U ⊆ Rn and V ⊆ Rm are open. We will attempt to express
DF |p : TpRn → TF (p)Rm as a matrix with respect to the standard bases in Euclidean
spaces. Before we begin, let us mention the used notation, where

(
xi
)

denotes the
coordinates in the domain, whereas

(
yi
)

denotes those in the codomain.

DF |p

(
∂

∂xi

∣∣∣∣
p

)
f =

∂

∂xi

∣∣∣∣
p

(f ◦ F ) =
∂f

∂yj
(F (p))

∂F j

∂xi
(p) =

(
∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

)
f

and thus

DF |p

(
∂

∂xi

∣∣∣∣
p

)
=

∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

. (2.2.1)

In terms of a matrix representation, we can express DF |p as

F ′(p) =


∂F 1

∂x1
(p) · · · ∂F 1

∂xn
(p)

...
. . .

...
∂Fm

∂xi
(p) · · · ∂Fm

∂xn
(p)

 .

This is of course the Jacobi matrix of F at p which is the matrix representation of
the total derivative DF |p : Rn → Rm familiar from multivariable calculus in Euclidean
spaces. What we have attained is a direct correspondence of DF |p : Rn → Rm to the
total derivative DF |p.
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Now, let us reach out from the overly specific example back to the greater generality
of smooth manifolds. As the following claim shows, the definition of a derivative has
been created precisely to get a familiar result.

Claim 2.2.3. Let M and N be smooth manifolds, and let F : M → N be smooth.
Then the derivative DF |p : TM → TN is represented in the coordinate bases by the
Jacobi matrix of F̂ , the coordinate representation of F .

Proof. Let p be a point of M contained in the smooth chart (U,x) on M , and let
F (p) be contained in the smooth chart (V,y) on N . Now we can write the coordinate
representations F̂ = y ◦ F ◦ x−1 and p̂ = x(p). Following our previous example, the
derivative DF̂ |p̂ is represented by the Jacobi matrix of F̂ at p̂ with respect to the
standard coordinate bases. Therefore, we can put

DF |p

(
∂

∂xi

∣∣∣∣
p

)
= DF |p

(
D
(
x−1

)∣∣
p̂

(
∂

∂xi

∣∣∣∣
p̂

))

= D
(
y−1

)∣∣
F̂ (p̂)

(
DF̂ |p̂

(
∂

∂xi

∣∣∣∣
p̂

))

= D
(
y−1

)∣∣
F̂ (p̂)

(
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F̂ (p̂)

)

=
∂F̂ j

∂xi
(p̂)D

(
y−1

)∣∣
F̂ (p̂)

(
∂

∂yj

∣∣∣∣
F (p)

)

=
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

,

where in the second equality, we have utilised the fact that F ◦ x−1 = y−1 ◦ F̂ , and in
the last equality, we have emphasised the notation for coordinate vectors. ■

Remark 2.2.4. Observe that we have created a useful computation shorthand. In
linear algebra, every linear map

g : L1 → L2

between finitely-dimensional vector spaces can be “replaced” with a matrix of g with
respect to chosen bases. Above, we have applied this principle to the linear map

TpM
DF |p−−−→ TF (p)N where we have chosen charts (U,x), (V,y) such that F [U ] ⊆ V

and p ∈ U . Then the matrix F ′(p) of ∂F̂ j/∂xi(p̂) is the matrix of DF |p with respect
to the bases (∂/∂xi|p) and (∂/∂yj |F (p)), respectively. We will often loosely write

DF |p(vp) = F ′(p) · v

whenever

vp = vi
∂

∂xi

∣∣∣∣
p

and v =

v1

...
vn

 .

Remark 2.2.5. Let M be a smooth manifold, and let
(
U,
(
xi
))

and
(
V,
(
yi
))

be two
overlapping smooth charts on M , i.e., U ∩ V ̸= ∅. As an interesting application of
Claim 2.2.3, one can ask the following question: how are two different representations
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of a point p ∈ U∩V related? Naturally, any tangent vector at p can be represented with
respect to either of the bases

(
∂/∂xi|p

)
and

(
∂/∂yi|p

)
. Let us begin with the transition

map y ◦ x−1. By (2.2.1), we can write its derivative as

D
(
y ◦ x−1

)∣∣
x(p)

(
∂

∂xi

∣∣∣∣
x(p)

)
=

∂yj

∂xi
(x(p))

∂

∂yj

∣∣∣∣
y(p)

.

With that in mind, we proceed by expressing the coordinate vector

∂

∂xi

∣∣∣∣
p

= D
(
x−1

)∣∣
x(p)

(
∂

∂xi

∣∣∣∣
x(p)

)

= D
(
y−1 ◦ y ◦ x−1

)∣∣
x(p)

(
∂

∂xi

∣∣∣∣
x(p)

)

= D
(
y−1

)∣∣
y(p)

◦D
(
y ◦ x−1

)∣∣
x(p)

(
∂

∂xi

∣∣∣∣
x(p)

)

= D
(
y−1

)∣∣
y(p)

(
∂yj

∂xi
(x(p))

∂

∂yj

∣∣∣∣
y(p)

)

=
∂yj

∂xi
(x(p))D

(
y−1

)∣∣
y(p)

(
∂

∂yj

∣∣∣∣
y(p)

)

=
∂yj

∂xi
(p̂)

∂

∂yj

∣∣∣∣
p

, (2.2.2)

where p̂ = x(p) as usual. When applied to the components of a tangent vector

v = vi
∂

∂xi

∣∣∣∣
p

= ṽi
∂

∂yi

∣∣∣∣
p

,

we can conclude that the components of v transform as follows:

ṽj =
∂yj

∂xi
(p̂)vi. (2.2.3)

2.3 Extrinsic manifolds

Although a smooth manifold M can be defined purely intrinsically (as a certain
topological space), sometimes it is useful to treat a manifold extrinsically, i.e., as a
“nice” subspace of an ambient space RN (equipped with the usual Euclidean topology).

Hence, an n-dimensional smooth manifold in RN is a subset M of RN with the
following property: for every point p in M , there exist

(i) an open subset V of RN , such that p ∈ V ,

(ii) an open subset U of RN ,

(iii) a homeomorphism φ : U → φ[U ], such that φ[U ] = M ∩ V .

The pair (p, φ−1 : φ[U ] → U) is then a local chart at p and the collection of local charts
fulfils the usual compatibility requirements that make M a smooth manifold.
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Example 2.3.1. For an open set U ⊆ Rn and a smooth map f : U → Rm, the graph

graph(f) = {(t, f(t)) | t ∈ U} ⊆ Rn+m

is a smooth n-dimensional manifold in RN , for N = n+m.

It is not always possible to exhibit a manifold in the form of a graph of a smooth
function. Moreover, the definition of an extrinsic manifold may be quite difficult to
work with.

Luckily, there is a way of producing manifolds via systems of implicit equations.
This result, often called The Regular Value Theorem, is based on the well-known Implicit
Function Theorem. We recall these theorems in this section.

The Implicit Function Theorem. Let us start with the following example. Set

φ(u, v) = (u2 + v2)2 − 2(u2 − v2).

Then φ is a smooth function of two variables and the equation

φ(u, v) = 0

defines a curve in the (u, v)-plane that is called a lemniscate.

−
√
2 -1 1 √

2

Observe that, save three points,2 it seems to be the case that, locally, v is a function
of u, i.e., v = f(u). It may be hopeless to find f explicitly. But there exists a technique
of finding enough derivatives of f .

Thus, suppose we have a point (u0, v0)
T = p on the curve. Suppose that we can

find f such that

φ(u, f(u)) = 0

in the neighbourhood of u0. Thus, for an open set U ⊆ R containing u0, we have smooth
functions

U
graph(f)−−−−−→ R2 φ−−−−−→ R,

u 7−−−−−→
(

u
f(u)

)
7−−−−−→ φ(u, f(u)),

2In what follows, let us suppose that u0 /∈ {−
√
2, 0,

√
2} to avoid the points, where v cannot be

easily expressed as a function of u.
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such that φ ◦ graph(f) = 0. Hence, by the chain rule, we have

(φ ◦ graph(f))′(u) = φ′
(

u
f(u)

)
· (graph(f))′(u)

=

(
∂φ

∂u

∣∣∣∣
(u,f(u))T

,
∂φ

∂v

∣∣∣∣
(u,f(u))T

)
·
(

1
f ′(u)

)
= 0.

Hence,

f ′(u) = −

∂φ

∂u

∣∣∣∣
(u,f(u))T

∂φ

∂v

∣∣∣∣
(u,f(u))T

.

The Implicit Function Theorem is an obvious generalisation of the above. The full proof
can be found e.g., in [1].

Theorem 2.3.2 [Implicit Function Theorem]. Suppose W ⊆ Rn × Rm is open
and suppose that

φ : W → Rm

is a smooth function. Suppose, moreover, that there exists (u0, v0) ∈ W such that
φ(u0, v0) = 0 and such that the matrix

Dvφ =


∂φ1

∂v1
· · · ∂φ1

∂vm
...

. . .
...

∂φm

∂v1
· · · ∂φm

∂vm


is invertible at v0. Then there exist open sets U ⊆ Rn and V ⊆ Rm such that

(u0, v0) ∈ U × V ⊆ W

and such that for each u ∈ U , there exists a unique f(u) ∈ V satisfying

φ(u, f(u)) = 0.

Moreover, the function u 7→ f(u) is smooth and

Df(u) = −
(
Dvφ|(u,f(u))T

)−1
·Duφ|(u,f(u))T

holds, where

Duφ =


∂φ1

∂u1
· · · ∂φ1

∂un

...
. . .

...
∂φm

∂u1
· · · ∂φm

∂un

 .

Theorem 2.3.3 [The Regular Value Theorem]. Let W ⊆ RN be an open set and
let φ : W → Rm be a smooth map. For any c ∈ Rm, denote by

φ−1(c) = {x ∈ W | φ(x) = c}
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and assume that c is a regular value of φ, i.e., assume that the linear map

RN Dφ|x−−−→ Rm

has rank m for all x ∈ φ−1(c). If, moreover, φ−1(c) ̸= ∅, then

M = φ−1(c)

is a smooth manifold in RN of dimension n = N −m (we also say that M has codimen-
sion m in RN in this case). Furthermore, the equality

TxM = ker(Dφ|x)

holds for all x ∈ M .

Proof. Take x ∈ M . Then, after suitable renumbering of the axes of RN , we

can assume that the last m columns of the matrix representation of RN Dφ|x−−−→ Rm are
linearly independent.

Put n = N −m and write RN = Rn × Rm, x = (u0, v0). By the Implicit Function
Theorem, there are open sets U ⊆ Rn and V ⊆ Rm such that (u0, v0) ∈ U ×V and such
that for each u ∈ U , there is a unique f(u) ∈ V such that

(u, f(u)) ∈ M,

i.e., such that φ(u, f(u)) = c. Thus,

M ∩ (U × V ) = graph(f)

is a smooth manifold of dimension n, since the function f is smooth.

The above argument is valid for all x ∈ M , hence M is a smooth manifold of
dimension n.

To prove that TxM = ker(Dφ|x), observe that

U
graph(f)−−−−−→ RN φ−−−−−→ Rm,

u 7−−−−−→(u, f(u)) 7−−−−−→ φ(u, f(u))︸ ︷︷ ︸
=c

.

Therefore, the chain rule yields

Dφ(graph(f)(u)) ·D graph(f)(u) = 0.

Setting u = u0 hence graph(f)(u0) = (u0, f(u0)) = x, we obtain

Dφ(x) ·D graph(f)(u0) = 0.

Since TxM = im(D graph(f)(u0)), we immediately obtain that

TxM ⊆ ker(Dφ|x).

However, both TxM and ker(Dφ|x) have dimension n:

(i) TxM does since M has dimension n,

(ii) ker(Dφ|x) does since im(Dφ|x) has dimension m and the equality

dim(ker(Dφ|x)) + dim(im(Dφ|x)) = N = n+m

holds.

Thus, the equality TxM = ker(Dφ|x) holds for all x ∈ M . ■
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2.4 Tangent bundles

Now, we are ready to state another very important definition: the tangent bundle.
This construction allows us to refer to an object containing the information not only
about the smooth manifold but also about its tangent spaces at all points. Recall
that the vector spaces TpM and TqM are disjoint, whenever p ̸= q, see Remark 2.1.3.
The purpose of forming the tangent bundle is to “glue” these vector spaces together.
Moreover, the bundle will become a manifold in a natural way.

Definition 2.4.1. Let M be a smooth manifold. The (disjoint) union

TM =
⋃
p∈M

TpM

is called the tangent bundle of M .

Remark 2.4.2. Since the union
⋃

p∈M TpM is disjoint, an element of TM is an ele-
ment of TpM , for a unique p ∈ M . Hence, there is a well-defined map

πM : TM → M,

vp 7→ p.

We now define charts on TM as follows: for every chart (U,x) on an n-dimensional
smooth manifold M , we define a chart (Ũ , x̃) by putting

Ũ = π−1
M [U ] = {vp ∈ TpM | p ∈ U}.

Further, since every vp ∈ TpM can be written as vi∂/∂xi|p (see Claim 2.1.9), we put

x̃(vp) =
(
x1(p), . . . , xn(p), v1, . . . , vn

)
.

Observe that, after we prove that the collection of all (Ũ , x̃) forms a smooth atlas, the
set TM will become a smooth manifold of dimension 2n.

Theorem 2.4.3. Let A = {(Uα,x) | α ∈ A} be a smooth atlas, turning M into a
smooth n-dimensional manifold. Then the collection {(Ũα, x̃α) | α ∈ A} turns TM into
a smooth 2n-dimensional manifold. Moreover, the map

πM : TM → M

is smooth.

Proof. Note first that the image of x̃ is x[U ] × Rn which is an open subset of
R2n. Also note that the map x̃ is a bijection onto its image, because its inverse can be
written explicitly as

(x̃)−1 (x1, . . . , xn, v1, . . . , vn) = vi
∂

∂xi

∣∣∣∣
x−1(x)

.

Now that we have established charts on TM , let us check that they form a smooth
atlas. Suppose that (U,x) and (V,y) are two charts on M , and let (Ũ , x̃) and (Ṽ , ỹ)
be the corresponding charts on TM using the construction above. The sets

x̃
[
Ũ ∩ Ṽ

]
= x[U ∩ V ]× Rn and ỹ

[
Ũ ∩ Ṽ

]
= y[U ∩ V ]× Rn
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are clearly open in R2n. According to (2.2.3), the transition map ỹ◦x̃−1 can be expressed
explicitly as

(
ỹ ◦ x̃−1

) (
x1, . . . , xn, v1, . . . , vn

)
=

(
y1(x), . . . , yn(x),

∂y1

∂xi
(x)vi, . . . ,

∂yn

∂xi
(x)vi

)
which is clearly smooth. Thus, we obtain a smooth atlas on TM from an atlas on M
which generates a topology on TM . It follows from Claim 1.2.15 that TM is Haus-
dorff and paracompact. This concludes the fact that TM is a smooth 2n-dimensional
manifold.

To see that πM is smooth, note that with respect to charts (U,x) on M and (Ũ , x̃)
on TM , its coordinate representation is

(
x ◦ πM ◦ x̃−1

) (
x1, . . . , xn, v1, . . . , vn

)
= (x ◦ πM )

(
vi

∂

∂xi

∣∣∣∣
x−1(x)

)
=
(
x ◦ x−1

)
(x)

= x.

Hence, the coordinate representation is a mere projection (x, v) 7→ x, which is smooth.
■

Remark 2.4.4 [The local trivialisation of TM ]. Roughly, one might say that a smooth
n-dimensional manifold M is “glued” together from “patches” of the form x[U ] ⊆ Rn,
where (U,x) ranges through the charts (U,x) of the smooth maximal atlas of M .

We show now that a similar thing can be said about the tangent bundle: for every
chart (U,x), there is a trivialisation map

τ(U,x) : π
−1
M [U ] → U × Rn.

More precisely, for every vp = vi∂/∂xi|p in π−1
M [U ], we define

τ(U,x)(vp) =
(
p,
(
v1, . . . , vn

))
.

It is easy to see that the triangle

π−1
M [U ]

πM↾
π−1
M

[U ] ""

τ(U,x) // U × Rn

proj
{{

U

commutes, where proj is the projection onto the first component.

Moreover, the proof of Theorem 2.4.3 shows that τ(U,x) is an isomorphism such that

τ(U,x)↾π−1
M (p): TpM → {p} × Rn,

vp 7→
(
p,
(
v1, . . . , vn

))
is an isomorphism of vector spaces. The above maps allow us to treat TM locally as
U × Rn. We will use this trivialisation often in what follows.

Example 2.4.5 [The tangent map]. As a first example of trivialisation, we show how
to treat the map

TM
TF−−→ TN
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which is just consisting of the maps

TpM
DF |p−−−→ TF (p)N

for a smooth map M
F−→ N . The map TF is called the tangent map of F .

Locally, we can describe TF as follows: identify, for every chart (U,x), elements of
π−1
M [U ] with pairs (p, v), where p ∈ U and v ∈ Rn. Then the pair(

F (p), DF̂ |x(p) · v
)

is a pair in the trivialisation given by a chart (V,y) of N such that F (p) ∈ V . To relax
the notation further, we will write

(p, v) 7→ (F (p), F ′(p) · v)

for the map TF in trivialisation given by (U,x).

The above is quite useful. One can, for example, show that the diagram

TM

πM

��

TF // TN

πN

��
M

F
// N

commutes, just by “chasing the elements around in a trivialisation”

(p, v)
_

πM

��

� TF // (F (p), F ′(p) · v)
_

πN

��
p �

F
// F (p)

We will use such arguments a lot later, see Chapter 4.

Claim 2.4.6. Let M and N be smooth manifolds, and let TM πM−−→ M and TN
πN−−→ N

be their respective tangent bundles. Then, for a smooth map M
F−→ N , the map

TF : TM → TN

is itself a smooth map.

Proof. Let (U,x) and (V,y) be charts on the m-dimensional manifold M and
the n-dimensional manifold N , respectively, such that p ∈ U , F (p) ∈ V . Further, let
(Ũ , x̃) and (Ṽ , ỹ) be charts on TM and TN , respectively, constructed as in the proof
of Theorem 2.4.3. Then, thanks to the trivialisation of TM and TN , we can write

x̃
[
Ũ
]
= x[U ]× Rm and ỹ

[
Ṽ
]
= y[V ]× Rn

which allows us to locally express (x(p), v) ∈ x̃[Ũ ] as(
x1(p), . . . , xn(p), v1, . . . , vn

)
.

Therefore, for action of the composite ỹ ◦ TF ◦ x̃−1, we can write(
ỹ ◦ TF ◦ x̃−1

)
(x(p), v) =

(
ỹ ◦DF |p ◦ x̃−1

)
(x(p), v) =

(
y(F (p)), F ′(p) · v

)
,
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where F ′(p) is the Jacobi matrix of F at p. Since F is a smooth map, then the composite
y◦F is smooth as well. For the second component, we see that it is given by the Jacobi
matrix, i.e., it is linear and therefore smooth. ■

We conclude this section with a list of basic properties of tangent maps. The proof
is easy and we omit it.3

Claim 2.4.7. Let M , N and P be smooth manifolds, and let F : M → N and
G : N → P be smooth maps. Then the following hold:

(a) T (G ◦ F ) = TG ◦ TF .

(b) T (idM ) = idTM .

(c) If F is a diffeomorphism, then TF : TM → TN is also a diffeomorphism and it
holds that (TF )−1 = T

(
F−1

)
.

2.5 Curves and velocity vectors

When we have introduced our definition of a tangent space, we had not discussed
possible interpretations or different definitions. In fact, the definition of a tangent space
can be approached from various viewpoints and one of them is considering a tangent
vector to be an equivalence class of velocities of curves passing through the given point.
We will not indulge in this definition much further but it is convenient to understand
the notion of curves and their velocity vectors on smooth manifolds as it will prove
rather useful further in the thesis.

Definition 2.5.1. Let M be a smooth manifold. A curve in M is a continuous map
γ : I → M , where I ⊆ R is an interval.4

Note 2.5.2. It is very important to note that the notion of a curve does not convey
just a set of points in M . Instead, it is the entire map from an interval to M .

Definition 2.5.3. Let M be a smooth manifold, let γ : I → M be a curve on M , and
let t0 ∈ I. The velocity vector of γ at t0, denoted by γ′(t0), is defined as follows:

γ′(t0) = Dγ|t0

(
d

dt

∣∣∣∣
t0

)
∈ Tγ(t0)M,

where d/dt|t0 is the standard coordinate basis vector in Tt0R.

Remark 2.5.4. Based on the knowledge how derivatives act upon their targets, the
velocity vector acts upon a function f ∈ C∞(M) as

γ′(t0)(f) = Dγ|t0

(
d

dt

∣∣∣∣
t0

)
f =

d

dt

∣∣∣∣
t0

(f ◦ γ) = (f ◦ γ)′(t0).

As we can see, the velocity vector γ′(t0) is the derivation at γ(t0) of a function taken
along γ.5

3The proof is very similar to the proof of Claim 2.1.8.
4In most cases, we will require I to be an open interval of R, but since it can be useful to consider it

having one or two endpoints and since our definition works either way (and definitions relying on it can
undergo only a slight modification in order to work), there is no harm in not specifying its openness.

5This is one of the points where we can employ the property of I having an endpoint. If t0 happens
to be an endpoint of I, this still holds, provided that we interpret d/dt|t0 as a one-sided derivative or
the derivative of any smooth extension of f ◦ γ to an open subset of R.
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Remark 2.5.5. Now, we can ask the question of how does γ′(t0) look like when
expanded into the coordinate basis on Tγ(t0)M . Let (U,x) be a smooth chart on M
containing γ(t0). For t sufficiently close to t0, the coordinate representation of γ is
γ(t) = (γ1(t), . . . , γn(t)). Further, the derivative yields

γ′(t0) =
dγi

dt
(t0)

∂

∂xi

∣∣∣∣
γ(t0)

.

This formula is similar to the one in Euclidean spaces.

Now—because we have promised not to indulge in the definition of tangent spaces
via curves on manifolds—we state the next proposition without proof. It should serve
predominantly as an interesting viewpoint giving us further geometric intuition behind
tangent vectors.

Claim 2.5.6. Let M be a smooth manifold, and let p ∈ M . Every vp ∈ TpM is the
velocity vector of some smooth curve in M passing through p.

Claim 2.5.7. Let M and N be smooth manifolds, let F : M → N be a smooth map,
and let γ : I → M be a smooth curve. For any t0 ∈ I, the velocity at t0 of the composite
curve F ◦ γ : I → N is given by

(F ◦ γ)′(t0) = DF |γ(t0)
(
γ′(t0)

)
.

Proof. From the definition of the velocity of a curve:

(F ◦ γ)′(t0) = D(F ◦ γ)|t0

(
d

dt

∣∣∣∣
t0

)
= DF |γ(t0) ◦Dγ|t0

(
d

dt

∣∣∣∣
t0

)
= DF |γ(t0)

(
γ′(t0)

)
.

■

Clearly, Claim 2.5.7 tells us how to compute the velocity of a composite curve using
the derivative. However, it is often much more convenient to use this proposition the
other way round and use it to compute the derivative DF |p at some point p ∈ M .
For any vp ∈ TpM , we can compute DF |p(vp) using a smooth curve γ whose initial
tangent vector is v. Such a curve always exists, thanks to Claim 2.5.6. Then we apply
Claim 2.5.7 to F ◦ γ. The next corollary summarizes our discussion.

Corollary 2.5.8. Let M and N be smooth manifolds, let p ∈ M and vp ∈ TpM , and
let F : M → N be smooth. Then for every smooth curve γ : I → M such that 0 ∈ I,
γ(0) = p, and γ′(0) = v, the following holds:

DF |p(v) = (F ◦ γ)′ (0).

2.6 Vector fields and frames

An insightful reader may remark that so far, we have been generalising various
notions we know from calculus in Euclidean spaces onto smooth manifolds. Another
notion we extend in a similar manner are vector fields. In the setting of multivariable
calculus, a vector field on an open subset U ⊆ Rn is simply a continuous map from U
to Rn, often visualised as attaching an “arrow” to each point of U . In the context of
smooth manifolds, we think of a vector field as of a special kind of a continuous map X
from M to its tangent bundle TM.
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Definition 2.6.1. Let M be a smooth manifold. A rough vector field on M is a
section of the map πM : TM → M , i.e., a map X : M → TM with the property that

πM ◦X = idM , (2.6.1)

or equivalently, Xp ∈ TpM for each p ∈ M .

Note 2.6.2. As we can see already in the definition, we usually write the action of X
upon p as p 7→ Xp instead of X(p).

To further expand the nomenclature regarding vector fields, let us introduce the
following notions:

• A vector field is a continuous rough vector field.

• A smooth vector field is a vector field, which is smooth as a map from M to TM
with respect to the smooth structure on TM we have solidified in Theorem 2.4.3.

• The support supp(X) of X is the closure of the set {p ∈ M | Xp ̸= 0p}.

• A vector field is said to be compactly supported if its support is a compact set,
i.e., if every open cover of supp(X) has a finite subcover.

• If M is a smooth n-manifold, X : M → TM is a rough vector field, and (U,x) is
a smooth chart on M , we can expand the action of X upon a point p ∈ M using
the coordinate basis vectors of TpM as follows:

Xp = Xi(p)
∂

∂xi

∣∣∣∣
p

.

This defines n coordinate functions Xi : U → R of X in (U,x).

Claim 2.6.3. Let M be a smooth n-manifold, let (U,x) be an arbitrary smooth chart
on M , and let X : M → TM be a rough vector field. Then the restriction X ↾U is
smooth if and only if its coordinate functions with respect to (U,x) are smooth.

Proof. Given the smooth structure on TM , let (x1, . . . , xn, v1, . . . , vn) be the
coordinates on π−1[U ] ⊆ TM . Then the coordinate representation of X on U is

X̂(x) =
(
x1, . . . , xn, X1(x), . . . , Xn(x)

)
,

where Xi is the i-th component function of X in xi-coordinates. Immediately, we can see
that smoothness of X on U is equivalent to smoothness of its component functions. ■

Example 2.6.4 [Coordinate Vector Fields]. Let M be a smooth n-manifold, and let
(U,x) be an arbitrary smooth chart. Then the assignment

p 7→ ∂

∂xi

∣∣∣∣
p

determines a vector field on U . We call this vector field the i-th coordinate vector field
and denote it ∂/∂xi. Naturally, it is smooth since its component functions are constant.

Remark 2.6.5. The set X(M) of all smooth vector fields on a smooth manifold M is
a vector space under the pointwise addition and scalar multiplication

(X + Y )p = Xp + Yp and (aX)p = aXp.
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The zero element is the zero vector field, which for every p ∈ M yields 0p ∈ TpM .
Furthermore, for X ∈ X(M) and f ∈ C∞(M), we define fX : M → TM by

(fX)p = f(p)Xp,

turning X(M) into a module over the ring C∞(M).6

We will now proceed by taking a slight detour which culminates in an interesting
characterisation of smooth manifolds. Before that, we will show that the representation
of vector fields using coordinate vector fields is convenient since their values form a basis
for the tangent space at each point but that it is not the only option. Let us start with
a bulk definition of several notions.

Definition 2.6.6. Let M be a smooth n-manifold.

• An ordered k-tuple (X1, . . . , Xk) of rough vector fields defined on a subset A ⊆ M
is said to be linearly independent if ((X1)p, . . . , (Xk)p) is a linearly independent
k-tuple in TpM for every p ∈ A. Furthermore, it is said to span the tangent bundle
on A, if the k-tuple ((X1)p, . . . , (Xk)p) spans TpM at every p ∈ A.

• A local frame for M is defined as an ordered n-tuple of rough vector fields
(E1, . . . , En) defined on an open subset U ⊆ M , which is linearly independent and
which spans the tangent bundle on U . Therefore, the vectors ((E1)p, . . . , (En)p)
form a basis for TpM at every p ∈ U . Furthermore, if U = M , it is called a global
frame and if each of the vector fields Ei is smooth, we call it a smooth frame.

Example 2.6.7. Let (U,x) be a smooth chart for a smooth manifold M . Then the
coordinate vector fields form a smooth local frame (∂/∂xi) on U . We call this frame
the coordinate frame on U .

Remark 2.6.8. When working in Rn, a very special type of frame exists which can
prove rather useful when discussing geometric problems. A k-tuple of vector fields
(E1, . . . , Ek) defined on a subset A ⊆ Rn is said to be orthonormal if for every p ∈ A,
the vectors ((E1)p, . . . , (Ek)p) are orthonormal with the respect to the Euclidean dot
product under the usual identification of TpRn with Rn. A frame—whether local or
global—consisting of orthonormal vector fields is called an orthonormal frame.

Remark 2.6.9. Regarding local frames, several tools for constructing them have been
developed, e.g., the Gram-Schmidt Algorithm for Frames, see [8]. Therefore, local
frames are rather common. However, global frames are not that easy to come by. A
smooth manifold is said to be parallelisable if it admits a smooth global frame. It
can be shown that the elementary examples of smooth manifolds such as Rn or S1 are
indeed parallelisable. Despite this naive initial evidence, most smooth manifolds are
not parallelisable. Not even the (still fairly elementary) example of the 2-sphere S2 is
parallelisable. This specific matter is subject of the renowned Hairy ball theorem, see
e.g., [7]. Generally, it can be shown that parallelisability of a smooth manifold M is
closely related to the question of whether its tangent bundle is diffeomorphic to M×Rn

or not.

6A module is a “vector space over the structure that is not a field”. See [11] or [7].
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3. Covariant derivatives and
connections

One of the important questions in the study of manifolds is the following: what does
it mean to “transport” a tangent vector “parallelly” along a curve on a manifold? While
the previous chapters introduced manifolds, tangent vectors and curves, we have no way
how to answer the above question yet. For that, we need an additional structure on
our smooth manifold. This extra structure can be essentially given in two conceptually
different ways that can be proved to be equivalent. It is the aim of this thesis to prove
this equivalence. The two ways, informally, are as follows:

(a) A covariant derivative on a manifold.

Roughly speaking, a covariant derivative is a generalisation of a directional de-
rivative. By giving a covariant derivative, we can thus define “to be parallelly
transported” as having a zero covariant derivative in its own direction.

In fact, the above leads to another important concept of differential geometry—
that of a geodesic curve. Geodesic curves (also known simply as geodesics) are
those curves that are “as straight as possible”.

(b) A connection form on a manifold.

Although a proper definition of a connection form is a bit technical, its underlying
idea is again very simple. One looks at the tangent bundle and tries to “connect”
individual tangent spaces at points that are “close to each other”. In this man-
ner, one can speak about the “same vector in different tangent spaces”. Having
established such a connection, the definition of a “parallel transport” of a vector
is simple: the vector is required to “stay the same”.

As we have already mentioned, both approaches above are equivalent to each other. We
prove this equivalence in Chapter 5 below.

In the current chapter, we give examples of covariant derivatives on a plane and on
a two-dimensional sphere. We also indicate how the connection form works on a simple
example of an open region of a Euclidean plane.

3.1 Covariant derivative in E2
x,y

Introducing and explaining the covariant derivative is very easy on a flat space
E2
x,y, i.e., a Euclidean plane with coordinates x, y. At each point (x0, y0), we have

a tangent space (which is a plane once again) spanned by ex = ∂R/∂x|(x0,y0) and
ey = ∂R/∂y|(x0,y0), where R(x, y) = (x, y) is the position (or radius) vector.

The notion of a covariant derivative ∇UV is supposed to compute the rate of change
of a tangent vector field V in the direction of a vector field U . Consider

V : (x, y) 7→ 3ex − 2ey
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and let us compute its rate of change in the direction of the x and y axes:

∂

∂x
V

∣∣∣∣
(x0,y0)

=

(
∂

∂x
(3ex)−

∂

∂x
(2ey)

)∣∣∣∣
(x0,y0)

= 3
∂

∂x
(ex)︸ ︷︷ ︸
=0

∣∣∣∣
(x0,y0)

− 2
∂

∂x
(ey)︸ ︷︷ ︸

=0

∣∣∣∣
(x0,y0)

= 0.

For y, we get an analogous result. This is pretty much what we have expected. For a
non-constant vector field

V (x, y) = v1(x, y)ex + v2(x, y)ey,

we need to be slightly more careful:

∂

∂x
V

∣∣∣∣
(x0,y0)

=
∂

∂x

(
v1ex + v2ey

)∣∣∣∣
(x0,y0)

=
∂

∂x

(
v1ex

)∣∣∣∣
(x0,y0)

+
∂

∂x

(
v2ey

)∣∣∣∣
(x0,y0)

=
∂v1

∂x

∣∣∣∣
(x0,y0)

ex + v1
∂

∂x
(ex)︸ ︷︷ ︸
=0

∣∣∣∣
(x0,y0)

+
∂v2

∂x

∣∣∣∣
(x0,y0)

ey + v2
∂

∂x
(ey)︸ ︷︷ ︸
=0

∣∣∣∣
(x0,y0)

=
∂v1

∂x

∣∣∣∣
(x0,y0)

ex +
∂v2

∂x

∣∣∣∣
(x0,y0)

ey.

Analogously, we obtain

∂

∂y
V

∣∣∣∣
(x0,y0)

=
∂v1

∂y

∣∣∣∣
(x0,y0)

ex +
∂v2

∂y

∣∣∣∣
(x0,y0)

ey.

Hence—in coordinates x, y—derivatives of vectors fields in directions of the axes are
precisely the partial derivatives.

Apparently, in flat space, the covariant derivative is just the ordinary partial deriv-
ative, where we differentiate both the vector field component functions and the basis
vectors in tangent spaces. Our result can be written in a more elegant way, denoting
c1 = x, c2 = y, e1 = ex, and e2 = ey and employing Einstein’s summation convention:

∂

∂ci
V

∣∣∣∣
(x0,y0)

=
∂

∂ci
(
vjej

)∣∣∣∣
(x0,y0)

=
∂vk

∂ci

∣∣∣∣
(x0,y0)

ek, (3.1.1)

where we have harmlessly renamed the indices j ↔ k.

3.2 Covariant derivative on a sphere

In the previous section, we have learned that the covariant derivative can be given
the following interpretation:

∇uv = “the rate of change of a vector field v in direction u

with the normal component subtracted”
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since the tangent vector to a point of a plane “remains” in the plane and thus its normal
component is zero.

We will now pass onto a “more exotic” manifold, while maintaining the above idea
for a covariant derivative. Namely, let

S2 = {(x, y, z) ∈ E3
x,y,z | x2 + y2 + z2 = 1}

be the unit sphere, considered a smooth regular submanifold od E3
x,y,z. We can give it

the traditional parametrisation:

Φ : (0, π)× (0, 2π) → E3
x,y,z,

(u, v) 7→ (X(u, v), Y (u, v), Z(u, v)),

where

X(u, v) = cos(v) sin(u), Y (u, v) = sin(v) sin(u), Z(u, v) = cos(u).

Note that, strictly speaking, the image of (0, π) × (0, 2π) under Φ is not the whole of
S2. However, we will ignore this nuisance for the time being. At each point Φ(u0, v0)
of S2, there are two tangent vectors: eu = ∂Φ/∂u|(u0,v0) and ev = ∂Φ/∂v|(u0,v0). Their
exact formulas can be computed using the chain rule:

eu =
∂Φ

∂u

∣∣∣∣
(u0,v0)

=

(
∂X

∂u

∂Φ

∂X
+

∂Y

∂u

∂Φ

∂Y
+

∂Z

∂u

∂Φ

∂Z

)∣∣∣∣
(u0,v0)

= cos(v0) cos(u0)
∂Φ

∂X

∣∣∣∣
(u0,v0)

+ sin(v0) cos(u0)
∂Φ

∂Y

∣∣∣∣
(u0,v0)

− sin(u0)
∂Φ

∂Z

∣∣∣∣
(u0,v0)

= cos(v0) cos(u0)ex + sin(v0) cos(u0)ey − sin(u0)ez,

ev =
∂Φ

∂v

∣∣∣∣
(u0,v0)

=

(
∂X

∂v

∂Φ

∂X
+

∂Y

∂v

∂Φ

∂Y
+

∂Z

∂v

∂Φ

∂Z

)∣∣∣∣
(u0,v0)

= − sin(v0) sin(u0)
∂Φ

∂X

∣∣∣∣
(u0,v0)

+ cos(v0) sin(u0)
∂Φ

∂Y

∣∣∣∣
(u0,v0)

+ 0
∂Φ

∂Z

∣∣∣∣
(u0,v0)

= − sin(v0) sin(u0)ex + cos(v0) sin(u0)ey + 0ez,

where we have used that ∂Φ/∂x|(u0,v0) = ex, ∂Φ/∂y|(u0,v0) = ey and ∂Φ/∂z|(u0,v0) = ez
for the orthonormal basis ex, ey, ez with respect to the identification of TΦ(u0,v0)E3

x,y,z

with E3
x,y,z.

Since TΦ(u0,v0)S2 is spanned by the two vectors eu, ev above, once can consider the
vector n = eu×ev, to form the basis (eu, ev, n) of Ex,y,z. Observe that ⟨eu|ev⟩ = 0, where
⟨−|−⟩ denotes the standard scalar product in R3. Hence (eu, ev, n) is an orthogonal basis
of R3.

Let us use the above computation to establish what it means that a curve is “as
straight as possible”. As a criterion for straightness, we will demand the velocity of such
a curve to be constant, i.e., taking the second derivative alongside the curve should be
zero. Note that since we are working extrinsically, taking derivatives of curves within
the manifold can yield objects that do not belong in the tangent space. Thus, we will
decompose them into a tangential and a normal component.

Let us start with the computation of the velocity of a curve γ : I → S2. Such a
curve can be interpreted as I ∋ λ 7→ (u(λ), v(λ)) 7→ Φ(u(λ), v(λ)) ∈ S2. The velocity of
γ at a point γ(λ0) is

dγ

dλ

∣∣∣∣
λ0

=
∂u

∂λ

∂Φ

∂u

∣∣∣∣
λ0

+
∂v

∂λ

∂Φ

∂v

∣∣∣∣
λ0

=
∂u

∂λ
(λ0)eu +

∂v

∂λ
(λ0)ev.
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Note that the velocity vector is always in Tγ(λ0)S
2. Hence, we have

∇ d
dλ
γ =

dγ

dλ

since the normal component is zero. Now, using the product rule, the acceleration, i.e.,
the second derivative, of γ at point λ0 is given by

d

dλ

(
dγ

dλ

)∣∣∣∣
λ0

=
d

dλ

(
∂u

∂λ

∂Φ

∂u
+

∂v

∂λ

∂Φ

∂v

)∣∣∣∣
λ0

=
∂2u

∂λ2

∂Φ

∂u

∣∣∣∣
λ0

+
∂u

∂λ

d

dλ

(
∂Φ

∂u

)∣∣∣∣
λ0

+
∂2v

∂λ2

∂Φ

∂v

∣∣∣∣
λ0

+
∂v

∂λ

d

dλ

(
∂Φ

∂v

)∣∣∣∣
λ0

.

Further, observe that it is not yet entirely clear what the quantities

d

dλ

(
∂Φ

∂u

)∣∣∣∣
λ0

and
d

dλ

(
∂Φ

∂v

)∣∣∣∣
λ0

represent and where they “live”. Proceeding with the computation of the above quant-
ities using the chain rule, we obtain the following formula:

d

dλ

(
dγ

dλ

)∣∣∣∣
λ0

=
∂2u

∂λ2

∂Φ

∂u

∣∣∣∣
λ0

+
∂u

∂λ

(
∂u

∂λ

∂2Φ

∂u2
+

∂v

∂λ

∂2Φ

∂u∂v

)∣∣∣∣
λ0

+

+
∂2v

∂λ2

∂Φ

∂v

∣∣∣∣
λ0

+
∂v

∂λ

(
∂u

∂λ

∂2Φ

∂v∂u
+

∂v

∂λ

∂2Φ

∂v2

)∣∣∣∣
λ0

.

Putting u1 = u and u2 = v, we can rewrite the above into a more concise

d

dλ

(
dγ

dλ

)∣∣∣∣
λ0

=
∂2ui

∂λ2

∂Φ

∂ui

∣∣∣∣
λ0

+
∂ui

∂λ

∂uj

∂λ

∂2Φ

∂ui∂uj

∣∣∣∣
λ0

(3.2.1)

in compliance with Einstein’s summation convention. A keen reader will surely notice
that we have utilized the fact that ∂2Φ/∂u∂v = ∂2Φ/∂v∂u holds.

We will now expand the 3-dimensional vectors ∂2Φ/∂ui∂uj |λ0 in the basis (eu1 , eu2 , n),
where n is the unit normal vector to the tangent space given by n = eu1×eu2 . Therefore,
we obtain

∂2Φ

∂u∂v

∣∣∣∣
λ0

= Γk
ijeuk + Lijn, (3.2.2)

where the coefficients Γk
ij are called the Christoffel symbols and Lij the second funda-

mental form.

Merging (3.2.1) with (3.2.2) and using the fact that ∂Φ/∂uk|λ0 = euk , we are now
able to split the acceleration vector d2γ/dλ2|λ0 into the tangential and the normal
components:

d2γ

dλ2

∣∣∣∣
λ0

=
∂2uk

∂λ2
euk +

∂ui

∂λ

∂uj

∂λ

(
Γk
ijeuk + Lijn

)
=

(
∂2uk

∂λ2
+ Γk

ij

∂ui

∂λ

∂uj

∂λ

)
euk + Lij

∂ui

∂λ

∂uj

∂λ
n.

Since the acceleration vector of a geodesic should change only in its normal part, all of
the coefficients of the tangential part should be zero:

∂2uk

∂λ2
+ Γk

ij

∂ui

∂λ

∂uj

∂λ
= 0, for all k. (3.2.3)

The above are the geodesic equations and curves γ : I → S2 that fulfil these equations
are called geodesics.
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Example 3.2.1. Now, let us figure out the geodesic equations on the sphere S2,
parametrised by Φ. We will first compute the Christoffel symbols on the sphere. We
denote by ⟨−|−⟩ the standard scalar product in R3 and we will use the orthogonal basis

eu = cos(v0) cos(u0)ex + sin(v0) cos(u0)ey − sin(u0)ez,

ev = − sin(v0) sin(u0)ex + cos(v0) sin(u0)ey

of TΦ(u0,v0)S2 and the vector n = eu × ev. By computing the matrix(
⟨eu|eu⟩ ⟨eu|ev⟩
⟨ev|eu⟩ ⟨ev|ev⟩

)
=

(
1 0
0 sin2(u0)

)
we observe that the basis (eu, ev, n) is orthogonal but not orthonormal. Since the
Christoffel symbols Γk

ij , k = 1, 2, are mere coordinates of the orthogonal projection of
∂2Φ/(∂ui∂uj) to TΦ(u0,v0)S2 = span(eu1 , eu2), we have

Γk
ij =

〈
∂2Φ

∂ui∂uj

∣∣∣∣ euk

〉
⟨euk | euk⟩

, k = 1, 2.

For example, the Christoffel’s symbol Γ1
11 is calculated as follows:

Γ1
11 =

〈
∂2Φ

∂u2

∣∣∣∣ ∂Φ∂u
〉

=

〈− cos(v0) sin(u0)
− sin(v0) sin(u0)

− cos(u0)

∣∣∣∣∣∣
cos(v0) cos(u0)
sin(v0) cos(u0)

− sin(u0)

〉
= − cos2(v0) sin(u0) cos(u0)− sin2(v0) sin(u0) cos(u0) + sin(u0) cos(u0)

= − sin(u0) cos(u0)
[
sin2(v0) + cos2(v0)

]︸ ︷︷ ︸
=1

+sin(u0) cos(u0) = 0.

Via such routine computations, we can see that

Γ1
11 = Γ1

12 = Γ1
21 = 0 and Γ1

22 = −1

2
sin(2u0),

Γ2
11 = Γ2

22 = 0 and Γ2
12 = Γ2

21 = cot(u0).

Hence, the geodesic equations on the sphere are given by

∂2u

∂λ2
− 1

2
sin(2u)

∂v

∂λ

∂v

∂λ
= 0,

∂2v

∂λ2
+ 2 cot(u)

∂u

∂λ

∂v

∂λ
= 0.

For example, a part of the “equator” of S2 is a geodesic on S2, i.e., a curve, where
u = π/2. Let us verify this claim: For u = π/2, the geodesic equation take the shape of

0 = 0,

∂2v

∂λ2
= 0.

The solution for this single equation is v(λ) = kvλ + v0 for some real numbers kv, v0.
When we take the usual parameterisation of a sphere into account, we get

Φ(u(λ), v(λ)) = (cos(v(λ)) sin(u(λ)), sin(v(λ)) sin(u(λ)), cos(u(λ)))

= (cos(kvλ+ v0), sin(kvλ+ v0), 0).

As we can see, a part of the equator spanned by the variable parameter kvλ+ v0, where
λ ∈ I ⊆ R, is a geodesic on S2 for u = π/2.
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Example 3.2.2. Consider the curve

λ 7→ (u(λ), v(λ)) 7→ Φ(u(λ), v(λ)) ∈ S2,

where the parameter λ ∈ (0, π/2) and (u(λ), v(λ)) = (π/2, λ). Mapping Φ is the usual
(smooth) parameterisation of S2, i.e., altogether, the image of this curve forms a quarter
of the sphere’s equator. Now, take the vector field

v(λ) = cos
(
u2(λ)

)
eu1 + sin

(
u2(λ)

)
eu2

and compute the covariant derivative of v in the direction of the curve. That is, we
compute the partial derivative with the normal component subtracted. This gives

∇ d
dλ
v = ∇ ∂

∂u2
v = − sin

(
u2(λ)

)
eu1 + cos

(
u2(λ)

)
eu2 ,

where the first relation holds since we are working with a curve, where u2(λ) = λ. It is
worth noting that v(0) = eu1 and v(π/2) = eu2 , i.e., the vector field v “rotates” in the
tangent planes.

3.3 Covariant derivative in the plane, once more

The study of a covariant derivative on S2 from the previous section raises the ques-
tion whether the “flat” manifold E2

x,y fits into the picture as well. Indeed, Equation 3.1.1
can be rewritten as

∂

∂ci
(v) =

∂vk

∂ci
ek + vjΓk

ijek

by simply introducing Γk
ij = 0 for all k, i, j.

However, the situation changes rather dramatically when we move to different co-
ordinates in our plane, for example to polar coordinates, i.e.,

Φ : (0,∞)× (0, 2π) → E2
x,y,

(r, φ) 7→ (X(r, φ), Y (r, φ)),

where

X(r, φ) = r cos(φ) and Y (r, φ) = r sin(φ).

Again, it is worth noting that the image of (0,∞) × (0, 2π) under Φ is not the whole
of E2

x,y but let us ignore that for the time being. At each point Φ(r0, φ0), we have the
tangent vectors br0 and bφ0 forming the basis of the tangent space at Φ(r0, φ0). More
specifically, the vectors take the form of

br0 =
∂Φ

∂r

∣∣∣∣
(r0,φ0)

=

(
∂X

∂r

∂Φ

∂X
+

∂Y

∂r

∂Φ

∂Y

)∣∣∣∣
(r0,φ0)

=
∂X

∂r
(r0, φ0)ex +

∂Y

∂r
(r0, φ0)ey =

(
cos(φ0)
sin(φ0)

)
,

bφ0 =
∂Φ

∂φ

∣∣∣∣
(r0,φ0)

=

(
∂X

∂φ

∂Φ

∂X
+

∂Y

∂φ

∂Φ

∂Y

)∣∣∣∣
(r0,φ0)

=
∂X

∂φ
(r0, φ0)ex +

∂Y

∂φ
(r0, φ0)ey =

(
−r0 sin(φ0)
r0 cos(φ0)

)
.
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It is worth noting that bφ0 has its length depending on φ0. Now, if we consider a vector
field

v(r, φ) = v1(r, φ)br + v2(r, φ)bφ,

then

∂

∂r
(v) =

∂

∂r
(v1br) +

∂

∂r
(v2bφ) =

∂v1

∂r
br + v1

∂

∂r
(br) +

∂v2

∂r
bφ + v2

∂

∂r
(bφ),

∂

∂φ
(v) =

∂

∂φ
(v1br) +

∂

∂φ
(v2bφ) =

∂v1

∂φ
br + v1

∂

∂φ
(br) +

∂v2

∂φ
bφ + v2

∂

∂φ
(bφ).

Observe that the expression contains a change of basis vectors in tangent spaces. Spe-
cifically

∂

∂r
(br) =

(
0
0

)
,

∂

∂φ
(br) =

(
− sin(φ)
cos(φ)

)
,

∂

∂r
(bφ) =

(
− sin(φ)
cos(φ)

)
,

∂

∂φ
(bφ) =

(
−r cos(φ)
−r sin(φ)

)
which we need to express in the basis br, bφ again. For this, we need the transformation
matrix

T(ex,ey)7→(br,bφ) =
(
T(br,bφ)7→(ex,ey)

)−1
=

(
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)−1

=

(
cos(φ)/r − sin(φ)/r
sin(φ) cos(φ)

)
.

Hence

∂

∂r
(bφ) =

∂

∂φ
(br) = 0br +

1

r
bφ =

1

r
bφ and

∂

∂φ
(bφ) = −rbr + 0bφ = −rbr

because (
cos(φ)/r − sin(φ)/r
sin(φ) cos(φ)

)(
− sin(φ)
cos(φ)

)
=

(
0
1/r

)
,(

cos(φ)/r − sin(φ)/r
sin(φ) cos(φ)

)(
−r sin(φ)
−r cos(φ)

)
=

(
−r
0

)
.

Thus, altogether, we obtain

∂

∂r
(v) =

∂v1

∂r
br +

(
∂v2

∂r
+

1

r
v2
)
bφ,

∂

∂φ
(v) =

(
∂v1

∂φ
− rv2

)
br +

(
∂v2

∂φ
+

1

r
v1
)
bφ.

If we put p1 = r, p2 = φ, b1 = br, and b2 = bφ, we have

∂

∂pi
(v) =

(
∂vk

∂pi
+ vjΓk

ij

)
bk,

where the Christoffel’s symbols in polar coordinates are

Γ1
11 = 0, Γ1

22 = −r, Γ1
12 = Γ1

21 = 0,

Γ2
11 = 0, Γ2

22 = 0, Γ2
12 = Γ2

21 =
1

r
.
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3.4 The idea behind connections

Although the construction of the tangent bundle TM of a manifold M glues together
tangent spaces TpM for p ∈ M , there is no notion of how to pass from TpM to TqM ,
whenever p ̸= q.

More precisely, there is no linear isomorphism between spaces TpM and TqM that
would be given by M itself. The collection of such isomorphisms would then allow us
to speak about the “same vector” in different tangent spaces.

The notion of a connection on M is a new additional structure that allows us to
speak about the “same vector but in different tangent spaces”. The definition of a
connection can be given in the spirit of differential geometry: we seek an isomorphism
between TpM and TqM , whenever p and q are “infinitesimally close” to each other.

The exposition in this section was much inspired by Chapter XVII.16 of the book [2].

An open subset of a plane. Let M be an open subset of the plane, and let p and
q = p + h be two points of M . Assume that, for all h in a sufficiently small open
neighbourhood V of the point (0, 0)T in the plane, we have a linear isomorphism

F (h) : R2 → R2,

such that the mapping

(p, u) 7→ (p+ h, F (h)−1 · u),

provides us with an isomorphism between TpM and Tp+hM . Moreover, we want the
dependence h 7→ F (h) to be smooth and we want that F (0) = id : R2 → R2.

More in detail, we use the linear isomorphism F (h) to provide an identification of
vectors in Tp+hM with vectors in TpM for “small enough” h.

In order to conform with the traditional notation, we are going to use F (h)−1 to
construct a smooth mapping

Φp : V × R2 → U × R2,

(h, u) 7→ (p+ h, F (h)−1 · u).

Hence if h is “infinitesimally close” to (0, 0)T , then the value Φp(h, u) will return the
vector F (h)−1 · u as the “copy” of vector u in Tp+hM .

To express the above slogan precisely, we need to consider the derivative of Φp at
((0, 0)T , u), which is a linear map

DΦp|((0,0)T ,u) : T((0,0)T ,u)(V × R2) → TΦp((0,0)T ,u)(U × R2)

that is “infinitesimally close” to the identity mapping.

The value of the above derivative at (k, v) is the pair1

(k, v −DF |0(k, u)).

The pair (k, v) should be interpreted as follows: k is the vector in V that represents the
“move” from p to p+h, whereas v is the “change” of vector u. The second component of

1We omit the lengthy calculations that lead to this result. We only mention that they follow the
standard approach: split Φp : V ×R2 → U×R2 into two functions Φp,1 : V ×R2 → U , Φp,2 : V ×R2 → R2

and find DΦp in the form of a “Jacobi matrix”.
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the pair (k, v−DF |0(k, u)) then represents the change of v that is “caused” by “passing”
u to a “nearby” tangent space.

The crucial part of the result is the appearance of the derivative DF |0 at point (k, u)
of the smooth mapping

F : V → Iso(R2,R2),

h 7→ F (h),

where we denoted by Iso(R2,R2) the manifold2 of linear isomorphisms of R2 with itself.

The above derivative is therefore a linear map

DF |0 : T0V → TF (0)Iso(R2,R2)

which, due to the fact that T0V ∼= R2 and TF (0)Iso(R2,R2) ∼= Lin(R2,R2), is a bilinear
map

DF |0 : R2 × R2 → R2,

(k, v) 7→ DF |0(k, u).

Conversely, if we give a bilinear map

Γp : R2 × R2 → R2,

we can define F (h) : R2 → R2 to be the linear mapping

idR2 +Γp(h,−).

Then, for h “small enough”, the map F (h) will be a linear isomorphism, since then F (h)
is “not far away” from the identity mapping.3

Thus, we can define a mapping

Cp((p, k), (p, u)) = ((p, u), (k,−Γp(k, u)))

that we will, for now, call the connection form.

We will show in the next chapter that connection forms and covariant derivatives
are two equivalent descriptions of the same phenomenon, namely, of “transportation of
a vector through different tangent spaces”.

A final remark: our notation Γp resembles the notation for Christoffel symbols of
Section 4.1. This is no coincidence; we prove later that they carry essentially the same
information.

2It can be proved, using determinants, that Iso(R2,R2) is an open set in the complete normed space
Lin(R2,R2) of all linear maps from R2 to R2. Hence, Iso(R2,R2) is a smooth manifold of dimension 4.

3We allude here for the generalisation of the well-known fact that (1 + x)−1 =
∑∞

k=0(−1)kxk for
|x| < 1. See e.g., [1].
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4. Abstract covariant derivatives
and abstract connections

So far, we have worked with covariant derivatives in the concrete setting of examples.
We have also indicated how the connection on a tangent bundle could provide us with
essentially the same information as a covariant derivative.

To prove that covariant derivatives and connections are indeed the same thing, we
need to start investigating both concepts abstractly. Thus, in this chapter, we define
both covariant derivatives and connections as mappings on a tangent bundle, which
satisfy additional properties.

4.1 The abstract covariant derivative

Recall that we have defined vector fields on a smooth manifold M to be (smooth)
maps of the form M

X−→ TM such that

TM

πM

��
M

X
99

idM
//M

commutes, see Definition 2.6.1.

Clearly, such a notion can be considered only locally which leads us to considering
a bit more general notion of a vector field. Namely, for a chart (U,x), we can consider
smooth maps U

X−→ TM such that the triangle

TM

πM

��
U

X

::

inclusion
//M

commutes.

Due to local trivialisation of TM (see Remark 2.4.4) we can say that X has the
form p 7→ (p, x(p)), where p 7→ x(p) is a smooth map from U to Rn. In fact, one can go
further and use the even more relaxed notation of Example 2.4.5.

Remark 4.1.1. Analogously to Remark 2.6.5, the set of all vector fields forms a
module over C∞(U) and we denote it by X(U).

Definition 4.1.2. Let M be a smooth manifold of dimension n and let (U,x) be a
chart on M . A covariant derivative on U is a map

∇ : X(U)× X(U) → X(U),

(X,Y ) 7→ ∇XY

such that the following conditions hold for every f ∈ C∞(U):

(D1) ∇X1+X2Y = ∇X1Y +∇X2Y .
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(D2) ∇fXY = f∇XY .

(D3) ∇X(Y1 + Y2) = ∇XY1 +∇XY2.

(D4) ∇X(fY ) = Xf · Y + f · ∇XY .

Above, Xf is the vector field p 7→ (p, f(p) ·Xp).

Remark 4.1.3. In the chart (U,x), we have vector fields U → TM , given by

p 7→

(
p,

∂

∂xi

∣∣∣∣
p

)
,

which we can denote by ∂/∂xi, i = 1, . . . , n. Further, in chart (U,x), we can put

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
.

Moreover, it then follows from (D1)—(D4) above that, for the vector fields

X = Xi ∂

∂xi
and Y = Y j ∂

∂xj
,

we can write

∇XY = ∇Xi ∂

∂xi

(
Y j ∂

∂xj

)
= Xi

(
∇ ∂

∂xi

(
Y j ∂

∂xj

))
= Xi

(
∂Y j

∂Xi

∂

∂xj
+ Y j∇ ∂

∂xi

(
∂

∂xj

))
= Xi

(
∂Y j

∂Xi

∂

∂xj
+ Y jΓk

ij

∂

∂xk

)
= Xi

(
∂Y k

∂Xi
+ Y jΓk

ij

)
∂

∂xk
,

where in the last adjustment, we have harmlessly renamed index j to k.

Remark 4.1.4. The above remark allows us to define geodesics on M in a manner
similar to Section 3.2. More in detail: if we put γ : t 7→ γ(t) together with the
requirement of self-parallelism

∇ d
dt
γ̇ = 0,

we obtain the relations

d2xk

dt2
+ Γk

ij

dxi

dt

dxj

dt
= 0.

In the rest of this section, we prove some basic properties of a covariant derivative.
We keep the chart (U,x) fixed in all what follows.

Definition 4.1.5. Let M be a smooth manifold, and let ∇ and ∇̃ be two covari-
ant derivatives on U . Define the difference of the covariant derivatives ∇ and ∇̃ as
D(X,Y ) := ∇XY − ∇̃XY .

Claim 4.1.6. We can easily see that the difference D(X,Y ) is bilinear:

(a) For any f, g ∈ C∞(U) it holds that

D(fX1 + gX2, Y ) == ∇fX1+gX2Y − ∇̃fX1+gX2Y

(D1)
== ∇fX1v +∇gX2Y − ∇̃fX1Y − ∇̃gX2Y

(D2)
== f∇X1Y + g∇X2Y − f∇̃X1Y − g∇̃X2Y

== fD(X1, Y ) + gD(X2, Y ).
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(b) For any f, g ∈ C∞(U) it holds that

D(X, fY1 + gY2) == ∇X(fY1 + gY2)− ∇̃X(fY1 + gY2)

(D3)
== ∇X(fY1) +∇X(gY2)− ∇̃X(fY1)− ∇̃X(gY2)

(D4)
== X(f)Y1 + f∇X(Y1) +X(g)Y2 + g∇X(Y2)

−X(f)Y1 − f∇̃X(Y1)−X(g)Y2 − g∇̃X(Y2)

== fD(X,Y1) + gD(X,Y2).

Remark 4.1.7. Conversely to Claim 4.1.6, if B is any bilinear map on smooth func-
tions, and if ∇ is any covariant derivative, it is easy to see that the map ∇̃ := ∇−B is
a covariant derivative again: For any f ∈ C∞(U) it holds that

(D1)

∇̃X1+X2Y = ∇X1+X2Y −B(X1 +X2)

= ∇X1Y +∇X2Y −B(X1, Y )−B(X2, Y )

= ∇̃X1Y − ∇̃X2Y.

(D2)

∇̃fXY = ∇fXY −B(fX, Y )

= f∇XY − fB(X,Y )

= f∇̃XY.

(D3)

∇̃X(Y1 + Y2) = ∇X(Y1 + Y2)−B(X,Y1 + Y2)

= ∇XY1 +∇XY2 −B(X,Y1)−B(X,Y2)

= ∇̃XY1 + ∇̃XY2.

(D4)

∇̃X(fY ) = ∇X(fY )−B(X, fY )

= X(f)Y + f∇XY − fB(X,Y )

= X(f)Y + f∇̃XY.

Remark 4.1.8. Recall that every bilinear1 map can be decomposed into its symmetric
and alternating parts, i.e., put D(X,Y ) = S(X,Y ) +A(X,Y ), where

S(X,Y ) =
1

2
(D(X,Y ) +D(Y,X)) ,

A(X,Y ) =
1

2
(D(X,Y )−D(Y,X)) .

Claim 4.1.9. Let M be a smooth manifold of dimension n, and let ∇ and ∇̃ be two
covariant derivatives on a chart (U,x). Then the following are equivalent:

(i) ∇ and ∇̃ have the same geodesics.
1This is a trivial claim and in fact holds for all multilinear maps, see [2]. Bilinear map is then just

a special case.
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(ii) ∇XX = ∇̃XX holds for all X.

(iii) S (i.e., the symmetric part of the difference D = ∇− ∇̃) vanishes.

Proof. Let x : R → U , t 7→ x(t), be a curve. Now, let us break the equivalence
into separate implications:

• (i) =⇒ (ii): Recall that γ is a geodesic for ∇, if

d2γk

dt2
+ Γk

ij

dγi

dt

dγj

dt
= 0

holds. Analogously, γ is a geodesic fo ∇̃, if

d2γk

dt2
+ Γ̃k

ij

dγi

dt

dγj

dt
= 0

holds. Above, Γk
ij and Γ̃k

ij are the Christoffel symbols belonging to ∇ and ∇̃,
respectively.

By the existence and uniqueness theorem for ordinary differential equations, see
e.g., [6], for each p ∈ U and each vp ∈ TpM , there is a geodesic such that γ(p) = 0

and dγ/dt|0 = vp. Thus, Γk
ij = Γ̃k

ij .

• (ii) =⇒ (i): As we have established in Claim 2.5.6, at every t0, any tangent
vector X at the point x(t0) can be interpreted as a velocity vector x′(t0) of some
smooth curve in U , passing through x(t0). Given the fact that ∇XX = ∇̃XX for
any X, the geodesic equations yielded by putting2 ∇XX = 0 must be the same
for both covariant derivatives ∇ and ∇̃.

• (ii) =⇒ (iii): Assumption ∇XX = ∇̃XX immediately also yields that D(X,X) =
0. Then

D(X + Y,X + Y ) = 0,

D(X,X)︸ ︷︷ ︸
=0

+D(X,Y ) +D(Y,X) +D(Y, Y )︸ ︷︷ ︸
=0

= 0.

Thus

D(Y,X) = −D(X,Y ),

i.e., D is an alternating bilinear form and hence its symmetrical part is equal to
zero.

• (iii) =⇒ (ii): The assumption S = 0 can be interpreted as ∇−∇̃ = D = A. This
means that ∇XX − ∇̃XX = D(X,X) = A(X,X) = 0. Therefore ∇XX = ∇̃XX.

■

Definition 4.1.10. Let M be a smooth manifold, and let ∇ be a covariant derivative
on U . The map

T∇(X,Y ) := ∇XY −∇Y X − [X,Y ],

where [X,Y ]f = X(f)Y −Y (f)X is the Lie bracket of vector fields, is called the torsion
of the covariant derivative ∇.

2Thanks to the fact that X = x′(t) = Dx|t0(d/dt|t0), this is the exact same case of self-parallelism
as we have seen in Section 3.2.
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Remark 4.1.11. Lie bracket is an antisymmetric map:

[Y,X]f = Y (f)X −X(f)Y = −(X(f)Y − Y (f)X) = −[X,Y ].

Using this, we can see that also torsion is an antisymmetric map:

T∇(Y,X) = ∇Y X −∇XY − [Y,X] = −(∇XY −∇Y X − [X,Y ]) = −T∇(X,Y ).

Remark 4.1.12. For torsion, it generally holds that

T∇ − T∇̃ = ∇XY −∇Y X − [X,Y ]− ∇̃XY + ∇̃Y X + [X,Y ]

= D(X,Y )−D(Y,X)

= 2A,

where A is the alternating part of the difference D = ∇− ∇̃.

Theorem 4.1.13. Let M be a smooth manifold. For any covariant derivative ∇ on
U , there exists a unique torsion-free covariant derivative ∇̃ on U , such that ∇ and ∇̃
have the same geodesics.

Proof. Set ∇̃ = ∇− 1
2T∇. Then

T∇̃(X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

= ∇XY − 1

2
T∇(X,Y )−∇Y X +

1

2
T∇(Y,X)− [X,Y ]

= T∇(X,Y )− 1

2
T∇(X,Y ) +

1

2
T∇(Y,X)

= T∇(X,Y )− 1

2
T∇(X,Y )− 1

2
T∇(X,Y )

= 0,

where in the fourth row we have utilised the result of Remark 4.1.11. ■

Remark 4.1.14. Let us make a comment on why torsion-free covariant derivatives are
desirable. A non-vanishing torsion of ∇ means—very vaguely—that certain “loops” do
not close. A geometry with non-zero torsion can therefore behave rather unexpectedly.
Models of physics usually demand torsion-free covariant derivatives. See, e.g., [4] for
the discussion of torsions. Our Theorem 4.1.13 states that one can always modify a
local covariant derivative to a torsion-free one without changing the geodesics.

Remark 4.1.15. In Definition 4.1.2, we have defined covariant derivative in a specific
chart (U,x). One can obviously define a covariant derivative on the entire manifold M
to be the map

∇ : X(M)× X(M) → X(M)

that satisfies (D1)—(D4) of Definition 4.1.2 with U = M .

Given such a derivative ∇ on M , one can define a covariant derivative ∇̃ on any
chart (U,x) such that the equality

(∇XY )↾U= ∇̃(X↾U )(Y ↾U )

holds.

Conversely, having covariant derivatives ∇(U,x) on all charts (U,x), such that ∇(U,x)

and ∇(V,y) are compatible whenever U∩V ̸= ∅, then one can define a covariant derivative
on the whole manifold.
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4.2 The Finsler bundle

Before we will be able to define connection forms abstractly, we have to introduce
the so-called Finsler bundle T2M of a smooth manifold M . Formally, the Finsler bundle
is a smooth manifold T2M equipped with two smooth projections

T2M

p1
��

p2 // TM

TM

that make the square

T2M

p1
��

p2 // TM

πM

��
TM πM

//M

commutative and that has a certain universal property making the above square a
pullback. Before we state the property, let us show how a pullback of two maps between
sets is formed.

Example 4.2.1. Let

Y

g

��
X

f
// Z

be a diagram of sets and mappings and let us consider the set P = {(x, y) | f(x) = g(y)},
equipped with the projections

p1 : P → X, p2 : P → Y,

(x, y) 7→ x, and (x, y) 7→ y.

Then it is clear that the square

P

p1
��

p2 // Y

g

��
X

f
// Z

commutes. Moreover: whenever any square

W

pX
��

pY // Y

g

��
X

f
// Z

commutes, then there clearly is a unique map

h : W → P,

w 7→ (pX(w), pY (w)),
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making both triangles

W

pX

##

h

  
P

p1
��
X

W

h   

pY

��
P p2

// Y

commutative.

In fact, it is easy to see that the above universal property (i.e., the existence of a
unique map h) determines the set P in the square

P

p1
��

p2 // Y

g

��
X

f
// Z

up to a unique isomorphism (i.e., up to a bijection).

Definition 4.2.2. Define the Finsler bundle of a manifold M to be the pullback

T2M

p1
��

p2 // TM

πM

��
TM πM

//M

in the realm of smooth manifolds and smooth maps.

Remark 4.2.3. Definition 4.2.2 is in the spirit of Category Theory. It can be unrav-
elled into more elementary terms as follows:

• the points of T2M are triples (p, vp, wp) with p ∈ M , vp ∈ TpM and wp ∈ TpM .

• the topology of T2M is that of a subspace of TM × TM .

• the maps p1 and p2 are the obvious (smooth) projections

(p, vp, wp) 7→ (p, vp) and (p, vp, wp) 7→ (p, wp),

respectively.

We use the universal property of the Finsler bundle to define a certain smooth map
TTM

τM−−→ T2M that we will use later.

Proposition 4.2.4. For every manifold M , the square

TTM

πTM

��

TπM // TM

πM

��
TM πM

//M

commutes. Thus, there is a unique smooth map

TTM
τM−−→ T2M
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making the triangles

TTM

πTM

$$

τM

$$
T2M

p1
��

TM

TTM

τM $$

TπM

""
T2M p2

// TM

commutative.

Proof. The proposition will follow from the universal property of a pullback once
we show that the square

TTM

πTM

��

TπM // TM

πM

��
TM πM

//M

commutes. This is a special case of Example 2.4.5. ■

We are now ready to state the abstract definition of the connection form on a
manifold.

Definition 4.2.5. A smooth map C : T2M → TTM is called the connection form, if
the following three properties hold:

(a) The diagram

T2M

id $$

C // TTM

τM

��
T2M

commutes, where τM is the mapping of Proposition 4.2.4.

(b) The diagram

T2M

p1 ##

C // TTM

πTMzz
TM

commutes and C is linear in every fibre.3

(c) The diagram

T2M

p2 ##

C // TTM

TπMzz
TM

commutes and C is linear in every fibre.
3Recall that, for a map f : X → Y , the fibre of an element y ∈ Y under f is the inverse image of

the singleton set {y}. Also, we omit the set notation and simply write f−1(y) = {x ∈ X | f(x) = y}.
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Remark 4.2.6. Definition 4.2.5 is best understood via the trivialisation technique.
In (U,x), we have

C : (p, v, w) 7→ (p, v, w,−Γp(v, w))

due to condition (a). Conditions (b) and (c) then state that Γp(v, w) is linear in v and
w, respectively. After renaming, we have obtained the connection form

(p, k, u) 7→ (p, k, u,−Γp(k, u))

familiar from Section 3.4.

Remark 4.2.7. There exists an equivalent description of the connection form that is
more pleasant to work with. Namely, define a smooth map

TTM
K−→ TM

in a local trivialisation by putting

((p, u), (k, v)) 7→ (p, v + Γp(k, u))

and observe that it has the following two properties:

(a) The square

TTM

TπM

��

K // TM

πM

��
TM πM

//M

commutes and it is linear in every fibre. Indeed

((p, u), (k, v))
_

TπM

��

� K // (p, v + Γp(k, u))_

πM

��
(p, π′

M |(p,u)(k, v)︸ ︷︷ ︸
=k

) πM

// p

(b) The square

TTM

πTM

��

K // TM

πM

��
TM πM

//M

commutes and it is linear in every fibre. Indeed

((p, u), (k, v))
_

πTM

��

� K // (p, v + Γp(k, u))_

πM

��
(p, u) πM

// p
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5. Equivalence of covariant
derivatives and connection forms

Recall from Chapter 4 that we have introduced two concepts that deal with “infin-
itesimally small changes” of vectors in the tangent bundle of a smooth manifold M :

(1) The covariant derivative ∇UV describes changes of a vector field V “in the direc-
tion” of a vector field U .

(2) The connection form K : TTM → TM that arises from the fact that we can
“connect” vectors in “nearby” fibres of the tangent bundle TM .

The goal of this chapter is to prove that the two concepts above are equivalent to
each other. In the final section of the current chapter, we indicate the techniques that
lead to an abstract treatment of “infinitesimally small changes”, i.e., we show the style
of reasoning that leads to the introduction of the so-called tangent categories.

5.1 Covariant derivatives yield connection forms

Recall from Remark 4.1.15 that a covariant derivative on a manifold M is a mapping

∇ : X(M)× X(M) → X(M)

that, for f ∈ C∞(M), satisfies

(D1) ∇X1+X2Y = ∇X1Y +∇X2Y .

(D2) ∇fXY = f∇XY .

(D3) ∇X(Y1 + Y2) = ∇XY1 +∇XY2.

(D4) ∇X(fY ) = Xf · Y + f · ∇XY .

We will now show that, given a covariant derivative on a manifold M , one can define
a connection form K on M . The trick will be, of course, to define K locally, using the
trivialisation technique.

The covariant derivative in a trivialisation gives a connection form. Let
(U,x) be a chart on M such that π−1[U ] ∼= U × Rn, i.e., such that π−1[U ] is trivial.
Given smooth vector fields M

X−→ TM , M Y−→ TM , then for any p ∈ U , we can write

X(p) = (p, F (p)), Y (p) = (p,G(p)),

where U
F−→ Rn and U

G−→ Rn are smooth. Then (∇XY )(p) = (p, δ(p)), where U
δ−→ Rn

is smooth and

δ(p) = DG|p(F (p)) + Γp(F (p), G(p)),
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where Γp : Rn → Rn is a bilinear map. To see that this is indeed what we saw in
Chapter 4, let us write

F (p) = f i(p)ei, G(p) = gj(p)ej ,

where (e1, . . . , en) is the canonical basis of Rn. Then

DG|p(F (p)) = f i(p)DG|p(ei) = f i(p)
∂gj

∂xi
ej

by linearity of DG|p and by the description of DG|p as a Jacobi matrix. Furthermore,
bilinearity of Γp states that Γp(F (p), G(p)) has the form

Γp

(
f i(p)ei, g

j(p)ej
)
= f i(p)gj(p)Γp(ei, ej).

Since Γp(ei, ej) lies in Rn, it has necessarily the form

Γp(ei, ej) = Γk
ij

∣∣∣
p
ek for some Γk

ij

∣∣∣
p
. (5.1.1)

Hence

δ(p) = f i(p)
∂gj

∂xi

∣∣∣∣
p

ej + f i(p)gj(p) Γi
ij

∣∣
p
ek =

(
f i(p)

∂gk

∂xi

∣∣∣∣
p

+ f i(p)gj(p) Γk
ij

∣∣∣
p

)
ek.

This is indeed the description of the covariant derivative from Chapter 4.

Now define

K(p, u, k, v) = (p, v + Γp(k, u)) .

It is then trivial to see that K (locally) satisfies all of the required properties of a
connection form.

As it can be easily seen from (5.1.1), conversely, any choice of coefficients Γk
ij |p yields

a bilinear map Γp.

5.2 Connection forms yield covariant derivatives

Working in a local trivialisation (U,x) again, any connection form TTM
K−→ TM

has the form

K : (p, u, k, v) 7→ (p, v + Γp(k, u))

for a bilinear map Γp : Rn × Rn → Rn, depending smoothly on p.

We will now consider two vector fields M
X−→ TM , M Y−→ TM and form the com-

posite

M
X−→ TM

TY−−→ TTM
K−→ TM.

We claim that the above composite gives, in our trivialisation (U,x), a covariant deriv-
ative.

By setting X(p) = (p, F (p)) and Y (p) = (p,G(p)) for all p ∈ U , we obtain smooth
maps U

F−→ Rn, U
G−→ Rn as in the previous section. Then the action of the above

composite upon p can be written as

p 7→ (p, F (p)) 7→ ((p,G(p))), (F (p), DG|p(F (p))) 7→ (p,DG|p(F (p)) + Γp(F (p), G(p)).
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Thus, we have (locally) defined a covariant derivative.

That the above two processes are inverse to each other follows easily. Thus we can
formulate the main result of this chapter.

Theorem 5.2.1. Suppose M is a smooth manifold. Then to give a covariant derivative
on M is to give a connection form on M .

5.3 More general setting

There are at least two directions in which the results of this text can be generalised.
The first one is entirely in the spirit of differential geometry, whereas the second uses
quite abstract algebraic methods.

Connections and the derivatives in vector bundles. The tangent bundle TM
of a smooth manifold M is a smooth manifold again and it comes equipped with a
smooth map πM : TM → M such that each fibre π−1(p) = TpM is a vector space. A
generalisation of this phenomenon leads to the notion of a vector bundle as a smooth
map πE,M : E → M such that every fibre π−1

E,M (p) is a vector space. There are, of
course, certain additional coherence conditions that have to hold in order for πE,M to
be a vector bundle. These extra conditions allow one to define and study covariant
derivatives and connection forms on vector bundles. See, e.g., [7], [11].

Tangent categories. One of the results presented in Chapter 2 of this thesis, namely
Claim 2.4.6, states that TM

TF−−→ TN is a smooth map, whenever M
F−→ N is smooth.

Moreover, Claim 2.4.7 says that T (idM ) = idTM and T (G ◦ F ) = TG ◦ TF , whenever
M is a smooth manifold and F , G are composable smooth maps. In the language of
Category Theory, this means that T is an endofunctor of the category of all smooth
manifolds and all smooth maps. Several other important concepts of this thesis have
categorical nature, for example, the commutativity of the square in Example 2.4.5 states
that πM is a component of a natural transformation from the tangent functor T to the
identity functor, the construction of the Finsler bundle T2M from Definition 4.2.2 is
given as a pullback, etc.

The first to introduce these concepts abstractly was Jiří Rosický [10]. Since his ori-
ginating work on tangent categories, a lot of papers that develop differential geometry at
this level of abstraction have appeared. Of particular relevance to this text is the recent
paper [9] where covariant derivatives and connection forms are presented in tangent
categories.
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Conclusion

This thesis aimed to acquaint the reader with the subject matter of defining a
differential structure on a smooth manifold. The text was constructed on a robust
framework of multivariable calculus in Euclidean spaces where the issue is far simpler.
However, we have successfully introduced a tangent structure which allowed us to define
appropriate notions locally. As we have shown, this “piecewise construction” can be
“glued together” using a connection. As a final result of this thesis, we have shown that
a connection is equivalently given by a covariant derivative.

This theory serves a significant role in both theoretical and applied fields of physics.
As we have already mentioned in the introduction of the thesis, there is a vast area
of physics concerning the general theory of relativity which pronouncedly requires the
notion of parallel transport. Apart from this obvious and already established example,
we could name many more, e.g., in electrical engineering, transition of perpendicular
frames along the direction of wave propagation in a waveguide. In contemporary science,
it is clear that the assumption of a flat spacetime is very restrictive which immediately
grants this branch of mathematics a worthy place among other brilliant discoveries.

Future work. In this thesis, we have established the equivalence of two additional
structures on a smooth manifold: a covariant derivative and a connection form.

We have used rather traditional techniques of differential geometry to achieve this
goal. We have a feeling, though, that the techniques of tangent categories are extremely
interesting and that they could provide us with unexpected interrelations of various
concepts of “classical” differential geometry. This must, however, be left for future
work.
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