Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Distributed computations
on RaspberryPi cluster

Roman Janku

Supervisor: doc. ing. Jifi Vokfinek, Ph.D.
May 2022



ii



U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4 N
Student's name: Jankll Roman Personal ID number: 495658
Faculty / Institute:  Faculty of Electrical Engineering
Department / Institute: Department of Computer Science

L Study program: Software Engineering and Technology

J

Il. Bachelor’s thesis details

~
Bachelor’s thesis title in English:
Distributed computations on RaspberryPi cluster
Bachelor’s thesis title in Czech:
Distribuované vypocty na RaspberryPi klastru
Guidelines:
Implement an experimental platform using RaspberryPi computational cluster for evaluation/validation of distributed
algorithms.
1. Study the RaspberryPi platform and applicable technologies for cluster implementation
2. Analyze and propose SW pipeline to implement and deploy distributed algorithms to RaspberryPi cluster
3. Implement server and client applications for managing and executing distributed computational tasks
4. Implement selected distributed algorithms to evaluate the functionality of the SW pipeline
5. Evaluate the implemented system using experiments on implemented algorithms, provide a scientific-like evaluation of
the selected distributed computation algorithms
6. Use proper SW engineering methodology and SW testing, i.e. unit tests and integration tests of the SW pipeline
7. Provide an quick-user guide to enable easy reuse and experimentation with the platform
Bibliography / sources:
[1] Ansible documentation. [online]. Ansible project contributors. Available at: https://docs.ansible.com/ansible/latest/
[2] Docker documentation. [online]. Docker Inc. Available
at: https://docs.docker.com/
[3] Java SE 11 & JDK 11 documentation. [online]. Oracle. Available at https://docs.oracle.com/en/javal/javase/
11/docs/api/index.html
Name and workplace of bachelor’s thesis supervisor:
doc. Ing. Jifi Vokfinek, Ph.D. Department of Computer Science FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 02.02.2022 Deadline for bachelor thesis submission: 20.05.2022
Assignment valid until:  30.09.2023
doc. Ing. Jifi Vokfinek, Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
L Supervisor's signature Dean'’s signature )

[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 Page 1 from 1 © CVUT v Praze, Design: CVUT v Praze, VIC



iv



Acknowledgements

Firstly, I would like to thank Mr. Jiri
Vokitinek for giving me this topic of bach-
elor thesis and supervising me while I was
working on it. His critique and advices
were irreplaceable.

Secondly, I would like to thank my class-
mates for giving me advice and criticising
my work. Their comments allowed me
to improve the thesis.

Finally, I would like to thank my family
and friends for supporting me and having
patience with me working on the thesis
most of the time.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used
in the bibliography.

Prague, May 14, 2022



Abstract

This bachelor thesis deals with the de-
velopment of a platform for implement-
ing and measuring distributed algorithms
on RaspberryPi cluster. Client-server
application was developed in Java pro-
graming language. This application en-
ables users to measure performance of dis-
tributed algorithms that were already pre-
pared or were custom made on Rasp-
berryPi cluster. This application is dis-
tributed and computers in cluster are
being prepared by Ansible. Client-side
of application runs in virutal environment
of Docker platform. Subsequent measure-
ments showed good results the platform
reached when running distributed algo-
rithms. The result of the work is finished
platform that will enable users to imple-
ment and measure distributed algorithms.

Keywords: cluster, PicoCluster,
distributed algorithms, distributed
computations, RaspberryPi, Ansible,
Docker, Java

Supervisor:

doc. ing. Jiti Vokiinek, Ph.D.
Department of Computer Science,
Karlovo namésti 13,

120 00 Praha 2

vi

Abstrakt

Tato bakalarska prace se zabyva vyvojem
platformy pro vyvoj a méreni distribuova-
nych algoritmi na clusteru RaspberryPi.
V programovacim jazyce Java byla vyvi-
nuta client-server aplikace, kterd umoz-
nuje méreni jak jiz naprogramovanych
tak i vlastnich distribuovanych algoritmt
na clusteru RaspberryPi. Tato aplikace
byla distribuovdana a jednotlivé pocitace
v clusteru byly pripraveny pomoci na-
stroje Amnsible. Klientska cast aplikace
bézi ve virtudlnim prostiedi platformy
Docker. Naslednym mérenim bylo zjis-
téno, ze platforma dosahuje velmi dobrych
vysledkt pri béhu distribuovanych algo-
ritmt. Vysledkem prace je hotova plat-
forma, kterd umozni uzivatelim vyvoj
a meéfeni distribuovanych algorithmi.

Kli¢ova slova: cluster, PicoCluster,
distribuované algoritmy, distribuované
vypocty, RaspberryPi, Ansible, Docker,
Java



Contents

1 Introduction
1.1 Assignment ..................
1.2 Requirements ................

2 RaspberryPi platform
2.1 Hardware ....................
2.2 Software . ....................

3 Proposal of solution

4 Software pipeline for development

and deployment
4.1 Comparison of build tools. .. ...
4.2 Maven configuration ..........
4.3 Comparison of deployment tools
4.4 Ansible configuration..........
4.5 Comparison of runtime
environments. . .................
4.6 Docker configuration ..........

5 Client and server applications
5.1 External libraries .............
5.2 Shared library ................
5.3 Server application ............
531 Clients ...................
5.3.2 Message handling ..........
5.33Tasks. ... L.
5.3.4 Distibuted data ... .........
5.4 Client application.............
5.4.1 Blinkt! module ............
5.5 Communication ..............
5.5.1 Main client-server
communication ................
5.5.2 Client-server data download .
5.5.3 Communication between
cients........................

6 Distributed algorithms
6.1 Implementing algorithms ......
6.2 Implemented algorithms .......

7 Experiments with distributed
algorithms

8 Software testing

9 Conclusion
9.1 Future improvements..........

vii

Bibliography
A How to use platform

B Attachments

GER



Figures

2.1 Pico5cluster ................. 154
3.1 Scheme of network ............. [
5.1 Class diagram of the server .. ..
5.2 Picture of Blinkt! module. . . ... 24

7.1 Comparison of reliability with

and without notifications depending

on delay between messages.......
7.2 Comparison of response time with

and without notifications depending

on delay between messages . .. ....
7.3 Comparison of two response curves

depending on delay between

TMESSAZES « e v vveee e 38|
7.4 Comparison of two delivery rates

depending on the delay between

INESSAZES . v vv i 138
8.1 Pico 48 cluster running Blinker

task. ... o
A.1 Graphical user interface of server

application.....................
A.2 Dialog for adding new task . ...

viii



Chapter 1

Introduction

The objective of this bachelor thesis is to develop a platform that will enable
users to implement their custom distributed algorithms and evaluate their
properties. The platform should be easy to use even for people without much
experience in programming.

At first, a proper study of the platform should be carried out to find all
possibilities and limitations it has. After that, a solution will be proposed that
will be then developed into a full platform that will cover all the functionality
given by the requirements.

All applications should be developed in such a way that they would be easy
to modify. This would make the platform versatile and easy to adapt for use
in many environments. The implementation of user algorithms should also be
very straightforward without unnecessary complications and repeated code.

The platform should use automation as much as possible. It is expected
that the platform will use much more nodes than the five RaspberryPis
that were used for development. In addition, these nodes can be placed at dif-
ferent locations with no physical access to them making their orchestration
more difficult. Also, it should be able to run on variety of target machines
without extensive modifications.

Proper testing of the platform should also be done to find and fix as many
bugs as possible. Variety of testing methods should be used to test all the
aspects of the platform ranging from unit test to full user testing of the plat-
form.

Measurements should also be done to characterise the performance of impor-
tant parts of the platform. These measurements should focus on the network
as it will probably be the bottleneck of the whole platform.

Finally, as the platform will probably be modified and extended by future
users it must be well documented. The documentation should cover everything
from source code thru theory of operation and development and deployment
pipeline to graphical user interface.

Bellow is the assignment of the bachelor thesis and requirements gathered
throughout the development of this platform.

1



1. Introduction

B 11 Assignment

Implement an experimental platform using RaspberryPi computational cluster
for evaluation/validation of distributed algorithms.

1.

Study the RaspberryPi platform and applicable technologies for cluster
implementation

Analyze and propose SW pipeline to implement and deploy distributed
algorithms to RaspberryPi cluster

Implement server and client applications for managing and executing
distributed computational tasks

Implement selected distributed algorithms to evaluate the functionality
of the SW pipeline

Evaluate the implemented system using experiments on implemented
algorithms, provide a scientific-like evaluation of the selected distributed
computation algorithms

Use proper SW engineering methodology and SW testing, i.e. unit tests
and integration tests of the SW pipeline

Provide an quick-user guide to enable easy reuse and experimentation
with the platform

B2 Requirements

Several requirements were specified at the beginning of work on this project.
However, most of them were added during development after consultations
with supervisor.

Functional requirements of the system are:

User can run a task with parameters and on selected number of nodes.
Platform can run user-created algorithms.

Tasks are placed in queue and started when possible.

Tasks results can be exported in a standardized format.

User can put nodes into suspended state in which the node will not run
tasks.

Algorithms can download additional data from server.

Algorithms can communicate between nodes running the same task using
UDP.

Nodes can notify server that message had been sent.



1.2. Requirements

User can specify maximum size of UDP packet.

Algorithms can send status information to the server.

State of node is displayed on the Blinkt! module.

Algorithms can use Blinkt! module for its own purposes.

8 Deployment process should be automated and easily scalable.
Non-functional requirements are:

® The platform should be well documented.

® User guide should be created. It should cover the implementation
of custom algorithms as well.

® Platform should support distributed algorithms written in Java.






Chapter 2
RaspberryPi platform

Pico 5 clusteIE with five RaspberryPi 4B+ boardsE| was used. Apart from five
RaspberryPi boards it contains power supply and gigabit ethernet switch.
All this is enclosed in an acrylic cube with selected connections wired to sides
of the cube. On the figure can be seen the completed cluster.

gEEBEaEEs

Figure 2.1: Pico 5 cluster

Apart from PicoCluster with five RaspberryPis a PicoCluster with fourty-
eight RaspberryPis is available. The cluster with fourty-eight RaspberryPis

Thttps://www.picocluster.com/collections/pico-5

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

5


https://www.picocluster.com/collections/pico-5
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

2. RaspberryPi platform

will be used later to test how the platform scales for bigger number of nodes.
For development the version with five RaspberryPis was used. These two
versions are exactly the same from hardware as well as software perspective.
The only difference is the number of RaspberryPis.

Let’s describe the hardware and software of the Pico 5 cluster in a detail.

. 2.1 Hardware

RaspberryPi 4B+ boards are used in our cluster. These boards have quad-core
64-bit ARM v7 processor with 8GB RAM. As a permanent storage a microSD
card is used with capacity of 32GB.

Each RaspberryPi also has four USB 2.0 ports, one HDMI port, one gigabit
Ethernet RJ-45 port, 3.5 mm jack for audio and composite video and USB-C
for power. However, only two USB ports and HDMI port of the top most
RaspberryPi are wired to the side of the cube. The Ethernet ports are
connected to the internal switch and one connection from this switch is wired
to the side of the cube.

Power to the cube is supplied by a standard IEC connector for 240 V. It is
then converted by internal power supplies to voltages that the RaspberryPis
and switch use. The power can be switched on and off by switch placed
on the side of the cube.

Each RaspberryPi has a Blinkt!®| module with eight super-bright RGB LEDs
connected to its GPIO header. It can be used for many purposes but
in this work it was mostly used for state information of the node. How-
ever, some tasks utilize the Blinkt! module for displaying different colors
and patterns on the LEDs.

Although it can be controlled directly by driving the pins 23 and 24
on the GPIO header that work as an I2C bus with data on the pin 23 and
clock on the pin 24, library was used to make the controlling more convenient.
It takes care of the timing, communication protocol and adressing of the LEDs
making it easy to use the module. The used libraries and functionality
of the module are described in detail in the lsection 5.1.

. 2.2 Software

RaspberryPi boards come with Raspbian 9% preinstalled on their microSD
cards. Raspbian is a modified version of Debian GNU /Linux operating sys-
tem®| created specially for RaspberryPi boards. The main features of this op-
erating systems are small size, low system requirements and drivers for Rasp-
berryPi GPIO header and other specific hardware.

Also, basic tools come preinstalled as on standard Debian. Most impor-
tant are ssh used for connecting to the boards, python3 used for running

3https://shop.pimoroni.com/products/blinkt?variant=22408658695
4https://raspbian.org/
https://www.debian.org/


https://shop.pimoroni.com/products/blinkt?variant=22408658695
https://raspbian.org/
https://www.debian.org/

2.2. Software

scripts on the boards and sudo for running programs with elevated priv-
ileges. Default user is named picocluster and has the same password.
This user is added in the sudoers group eliminating any need to use root
user. The picocluster user can also login remotely using the ssh.

Finally, RaspberryPis come preconfigured for network 10.1.10.0/24. The
topmost RaspberryPi has IP address 10.1.10.240, the second from the top
has 10.1.10.241 all the way to the most bottom one that has 10.1.10.244.
Default gateway is also configured on all RaspberryPis with the value
10.1.10.1.

Backup of microSD cards from all RaspberryPis was made to ease restora-
tion of RaspberryPis after the experiment is done or in case anything goes
wrong. To make backup each microSD card was connected to a machine run-
ning Debian operating system and dd®| program was used to copy the microSD
card as whole to the *.img file using the following command

dd if=/dev/sdj of=~/card0.img bs=10M

where parameter if specifies the input file. In our case it’s device that the mi-
croSD card is connected to. The of parameter specifies the output file to which
the microSD card was copied. The last parameter bs specifies size of data that
is copied each time and causes the dd to work faster. If needed, the microSD
cards can be restored by running the dd command with switched if and of
parameters to copy the image to the microSD card.

Shttps://manpages.debian.org/stretch/coreutils/dd.1.en.html

7


https://manpages.debian.org/stretch/coreutils/dd.1.en.html




Chapter 3

Proposal of solution

After considering several possibilities on how to use the RaspberryPi cluster
the following option shown on was chosen.

[

| Lt

__ = &)

— 1 —

E!’ Switch Server PC Internet
in picocluster Router

-

RaspberryPis

Figure 3.1: Scheme of network

The application will use the server-client architecture with server being
outside the PicoCluster. The PicoCluster will be connected using Ethernet
to a PC with two Ethernet cards. This PC will act as a server for the cluster
as well as an router to provide an internet connection for nodes.

This architecture is easily scalable for larger amount of nodes. Also,
reconfiguration of the RaspberryPis will not be needed as they are configured
to use static IP addresses and have a gateway configured. Also, thanks to this,
no DHCP server will be required.

The server and client applications should be developed in Java. Firstly, it
has a good functionality for networking and parallel computing. In addition,
a large number of available libraries significantly speed up the development
by eliminating boilerplate code. Moreover, the applications developed in Java
will make implementation of user algorithms easier. Finally, it can run
on variety of operating systems making the applications usable on variety
of machines.

For deployment at least a partially automated pipeline would be needed.
This will make the build and deploy process easily scalable and not that labour

9



3. Proposal of solution

intensive. At the best, the tool should be able to build the application, prepare
target machines and deploy the application to the target machines fully auto-
matically. Alternatively, the build part can be separated without significantly
complicating the deployment procedure.

Testing should be also automated or at least its part that can be done
automatically. The tests should be done during build or even earlier to find
bugs as soon as possible to minimise the costs and time it takes to fix the bugs.
Also, preventive measures should be taken to eliminate bugs in the first place.

Finally, the node application should be running in a virtual environment.
This would hide the differences between different machines the application
will run on and provide unified runtime environment. Also, it will eliminate
collisions with other software running on the machine. Lastly, it would make
it easier to start and stop the application. Virtualization probably would not
be needed for server application.

10



Chapter 4

Software pipeline for development and
deployment

At least partially automated pipeline for development and deployment was
needed for this project because of its size. Now, we will go thru different
technologies for development, deployment and runtime. We will compare them,
select the most suitable one and we will describe how it is used in this project.

For versioning a gitﬂ was used. Czech Technical University has its own Git-
Labf| which is used for all school projects and it was used for this one as well.
All the source code is available at public repositoryﬁ at this GitLab. There is
a main branch named master. All feature development is done in separate
branches that are then merged into the main branch after they are fully
working. After merging the branch is deleted.

B a1 Comparison of build tools

L] Mavenﬁ is an open-source tool for project management. It is mainly
used for managing project dependencies and running tests and builds.
Although Maven can be used for variety of programming languages it
was made primarily for Java.

Configuration is done in pom.xml files in XML format. Being designed
primarily for Java a little setting is required to make the Maven generate
jar archives. In addition, a lot of libraries and plugins are available
from official Maven repository and many more can be loaded from other
repositories including GitHubﬂ Finally, it can handle multi-project
builds.

"https://git-scm.com/

https://gitlab.fel.cvut.czﬂ
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-

https://maven.apache.org/
https://github.com/|

11


https://git-scm.com/
https://gitlab.fel.cvut.cz/
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace
https://maven.apache.org/
https://github.com/

4. Software pipeline for development and deployment

® Gradle® is very similar to the Maven. It is also an open source tool
available under Apache License 2.0. It primarily focuses on Java, Groovy
and Scala development. However, there are some differences.

The main difference is the use of its own domain-specific language for con-
figuration files. Other than that it supports multi-project builds and can
use the same repositories as Maven. Finally, it has a different system
for handling tasks that are building the final application than Maven.

Maven and Gradle are very similar and both would be a good choice for this
project. In the end, Maven was selected because it is the first choice for use
in Java projects and it was used previously.

B 22 Maven configuration

The online Maven documentation[7] was used when writing the scripts
for build. Project has four Maven modules library, node, server and root.
The root module’ only defines Java version, encoding and three child modules.
Each child module has its own directory named the same as the module.

The child modules add dependencies to the libraries used in source codes.
These libraries are listed in lsection 5.1. The node modules also add addi-
tional repositories for libraries that are not available in the standard Maven
repository. These include JitPack® and Sonatype”’. Libraries that enable Java
programs to use GPIO header of RaspberryPi are hosted in these repositories.

The node and server modules use maven-assembly-plugin'’|that is used
to build fat jar that includes all dependencies and compiled source code in one
.jar archive. This makes it easy to distribute the executable and eliminates
the need to distribute the dependencies separately and include them in class
path. In addition, main classes with main() methods are added to manifest
using this plugin to make the .jar archives runnable.

The 1library module is not being build as an executable jar and is included
in the node and server . jar archives for simpler distribution.

Maven scripts are run using the package target which will recompile
of the source code, run the JUnit tests and package the compiled .class
files with all dependencies in .jar archive. This can be done from IDE
or by running command

mvn package

in the root module. The finished .jar archives are placed in target
directories in library, node and server modules.

Shttps://gradle.org/
"https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-
prace/-/blob/master/picocluster-distributed-algorithm/pom.xml
Shttps://jitpack.io/
%https://oss.sonatype.org/
%%https://maven.apache.org/plugins/maven-assembly-plugin/

12


https://gradle.org/
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/pom.xml
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/pom.xml
https://jitpack.io/
https://oss.sonatype.org/
https://maven.apache.org/plugins/maven-assembly-plugin/

4.3. Comparison of deployment tools

B a3 Comparison of deployment tools

8 Manual deployment means that the developer will copy the required files
to the target machines, build them, prepare the environment and run
them.

This method is very laborious and does not scale easily as twice the num-
ber of nodes to manage means twice as work. It is also very prone to mis-
takes. However, it has no requirements for the target machines that can
be very different and it also does not require installation of any additional
tools.

® Ansible'!| is a tool for managing, configuring and deploying software
on target machines.

It is easily configurable and can perform a variety of tasks on the target
machines. It does not require installation of any additional software apart
from Python 2.4 or later on Linux target machines and PowerShell 3.0
or later on Windows target machines. Of course, Ansible itself must be
present on the controlling machine.

Number of deployment scripts can be created and called separately
by changing parameter in ansible-playbook command. The deploy-
ment runs in parallel on the target machines so it is easily scalable
on large number of nodes.

However, it requires an UNIX operating system to run. On Windows
it can be used in Windows Subsystem for Linux'?. In addition, it
requires the target machines to have the same operating system installed
as it will configure the apt tool and this configuration is dependent
on the operating system. Also, all the machines must have the same
user with same password and sudo privileges as the Ansible uses ssh
to connect to the target machine and run commands on it.

® GitLab CI/CD" is tool for continuous integration and continuous de-
ployment that is integrated in GitLab. Action can be hooked to events
happening in the repository. For example, push will trigger tests, merge
will trigger build and deploy to test environment, etc.

All this would shorten the deployment time considerably and is available
at the GitHub repository used for this project. However, it would require
the RaspberryPis to be accessible from the internet as the GitLab server
needs access to them to deploy the application to them.

The manual deployment was rejected right at the beginning as it would be
too laborious even with five nodes and would scale terribly for more nodes.
It is also very prone to mistakes because of the human element.

Yhttps://www.ansible.com/
2https://docs.microsoft.com/en-us/windows/wsl/
13https://docs.gitlab.com/ee/ci/

13


https://www.ansible.com/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.gitlab.com/ee/ci/

4. Software pipeline for development and deployment

The GitLab CI/CD would make the deployment fully automated as it
would be hooked on actions in git repository. These actions are done as part
of the edvelopment pipeline and would be done even without the Gitlab
CI/CD. However, opening the RasperryPis to the internet would not only
require extensive network configuration but also would be a huge security
risk. Therefore it was rejected.

In the end, Ansible was selected. Unlike GitLab CI/CD it can run from local
machine and controll machines in local network. Because of this it eliminates
all the work and risks associated with opening the RaspberryPis to the internet.
Moreover, several scripts for different purposes can be created. This method
would require some user input when launching the script but after that it
would be fully automated. Finally, it would easily scale to a larger number
of nodes.

B 4.4 Ansible configuration

The online Ansible documentation[I] and DigitalOcean tutorial[2] was used
for configuring the Ansible. The Ansible handles the whole process of de-
ployment of node application including preparing the runtime, installing
dependencies and creating the Docker container.

The target machines are listed in hosts file'®. It is in ini format with three
groups. The localhost group was used for testing, the cluster group contains
list of IP addresses of the RaspberryPis in Pico 5 cluster and the big group
containes list of IP addresses of nodes in the Pico 48 cluster.

There are eight tasks that cover the whole deployment process. The first
task Install dependencies installs all dependencies that will be needed thru the de-
ployment process. The apt tool is used for installation and it loops over a list
of packages that will be needed later.

Second task Add Docker GPG key adds key for the official Docker repository.
Again, apt tool is used to add the key to the trusted ones. Third task Add
Docker repository adds URL of the official Docker repository. apt is also used
for this task. Fourth task Install Docker finally installs Docker using the apt
tool. It loops over three packages that need to be installed.

Fifth task Install Docker for Python install python libraries that are needed
for Ansible to be able to control Docker.

Sixth task Delete old content & directory deletes all old files in /srv/
directory. Seventh task Copy Docker and program files copies source files
to the target machine. They are copied to the directory /srv/. Eighth task
Build Docker image creates a Docker image from the files that have been
copied. The ninth and last task Run Docker image starts the previously
created Docker image. It is started with elevated privilege to have access
to GPIO header and with pass thru on UDP port 12347.

The Ansible script is run using the following command

Yhttps://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-
prace/-/blob/master/picocluster-distributed-algorithm/hosts

14


https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/hosts
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/hosts

4.5. Comparison of runtime environments

ansible-playbook -i ./hosts -kK --ssh-extra-args=’-o "
PubkeyAuthentication=no"’ -u picocluster deploy.yml

hosts file contains list of target machines, —u speicifes the name of the user
to be used for ssh connection and parameter -ssh-extra-args tells ssh
to use password and not the key. The Ansible will then ask for password that
will be used to connect to the target machines.

Several scripts were derived from the main Ansible script. These scripts are
used when some tasks can be omitted. The fast-deployed.yml script skips
the preparation of target machine and starts with deleting the content of
/srv/ directory and copying source files. It is used when the target machine
was prepared earlier and new version of software needs to be installed.

The restart-docker.yml script only restarts the Docker container run-
ning on the target machine. Last script stop-docker.yml is used to stop
the currently running Docker container on the target machines.

All these scripts are run the same way as the main script.

B a5 Comparison of runtime environments

® Running directly does not require any additional software on the target
machine and running application has access to all hardware on the ma-
chine. However, there can be conflicts with other programs and it can
cause security problems. Also, it is not easy to start, stop and restart
the application.

® Docken™| is an open-source tool that provides operating system-level vir-
tualization. It creates an isolated container for the application containing
only the application and required files. It does not fully virtualize the op-
erating system and uses the host operating system instead. Therefore it
consumes less resources of the host system.

It provides a unified environment for the application that is not dependent
on the host machine. Therefore specific programs, libraries and versions
of them can be installed without causing any collisions. This also
provides a security layer. If the application in the container fails, only
the container fails and not the host operating system. The container
can be restarted after that and it does not affect any other programs
or containers on the host system.

In addition, the application can access the host hardware directly
from container. This includes the GPIO header of the RaspberryPi,
TCP or UDP ports and others. This must be specified in the Docker file
and drivers for the hardware must be installed.

However, Docker requires Linux operating system to run. On Windows
machines a Windows Subsystem for Linux can be used to run Docker.

Shttps://www.docker. com/

15


https://www.docker.com/

4. Software pipeline for development and deployment

® VirtualBoa'® is a tool for virtualization supporting variety of operating
systems. It offers a full virtualization and isolation of the application
running in the virtual machine. Of course, due to the full virtualization
VirtualBox puts a huge load on the system which can be a problem
on device with limited power like RaspberryPi.

However, due to the complete virtualization the access to the hardware
is very limited and the applications running in the virtual machines
would not have access to the GPIO header of RaspberryPis. More-
over, VirtualBox does not offer a good command-line tool for remote
configuration of virtual machines and use of GUI would be required.

® QFEMU"Y is an emulator and virtualizer that uses a hypervisor to emu-
late either CPU or the whole system. It would isolate the application
in a virtual environment similarly to the VirtualBox. However, the vir-
tualization is simpler. It would provide isolation from other applications
and would avoid collision between programs and libraries but would also
cut off access to the RaspberyPi GPIO header. Finally, it would require
installation of full operating system to run the application.

Running the application directly on the RaspberryPi was rejected because
it would make the application hard to control. Either services or another
method would have to be used to start, stop and restart the application. This
would make it hard to use.

VirtualBox was also rejected because it cannot be easily controlled by the An-
sible that was selected as a deployment tool. Moreover, the application would
not have access to the GPIO header to use it with Blinkt! module and the vir-
tualization used by VirtualBox is resource-intensive that could cause problems
on RaspberryPi. Qemu was rejected for similar reasons as VirtualBox al-
though the virtualization is not that resource-intensive.

Docker was selected as the runtime environment for the node application
for several reasons. It can provide access to thevhost hardware making
the Blinkt! module connected to the RaspberryPi GPIO header usable
for status information. Docker is also low resource-intensive making it ideal
for use on RaspberryPi that has limited resources and computational power.

Moreover, running the application in Docker container makes it easier
to start, stop and restart, unlike when running directly on the target machine.
Finally, it provides security meaning faulty application will not cause crash
of the host as well as collisions with other applications are avoided.

B 46 Docker configuration

The online Docker documentation[3] was used for configuring the Docker. All
the docker configuration is in the Dockerfile file'®l

https://www.virtualbox.org/

Yhttps://www.qemu.org/

8https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-
prace/-/blob/master/picocluster-distributed-algorithm/Dockerfile

16


https://www.virtualbox.org/
https://www.qemu.org/
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/Dockerfile
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/Dockerfile

4.6. Docker configuration

The Docker image is created from Debian image Buster version'”. The slim
variant is used as it has removed unnecessary software. Then the path is
switched to the /app/ directory, which will be used for compilation of the ap-
plication.

After that, dependencies that will be needed are installed. This includes
maven, openjdk-11-jdk, sudo, make, gcc and git. Then a WiringPi?
library from git is downloaded and built. This library is needed for the Java
application to be able to work with RaspberryPi GPIO header.

After that, all the needed source files are copied to the image and then
are built using mvn package command. Environment variables with address
of the server and maximum UDP packet size are created and after that
the entry point is set.

The docker image is started by the Ansible as a part of the deployment
process. This is described above. To access logs of the application a following
command can be used

docker logs -f <CONTAINER_ID>

where the container_id is unique identification of the running container.
It can be obtained using the command

docker container 1s

Yhttps://hub.docker.com/layers/debian/library/debian/buster-slim/images/
sha256-79c373b3a8b1543cb91ff909eec8c5b6b2751d8ed1806063abadbea77b83799e?
context=explore

“Uhttps://github.com/WiringPi/WiringPi.git

17


https://hub.docker.com/layers/debian/library/debian/buster-slim/images/sha256-79c373b3a8b1543cb91ff909eec8c5b6b2751d8ed1806063aba4bea77b83799e?context=explore
https://hub.docker.com/layers/debian/library/debian/buster-slim/images/sha256-79c373b3a8b1543cb91ff909eec8c5b6b2751d8ed1806063aba4bea77b83799e?context=explore
https://hub.docker.com/layers/debian/library/debian/buster-slim/images/sha256-79c373b3a8b1543cb91ff909eec8c5b6b2751d8ed1806063aba4bea77b83799e?context=explore
https://github.com/WiringPi/WiringPi.git

18



Chapter 5

Client and server applications

Several applications were developed during the work on this assignment. Two
applications were developed very early and were used to test and create
the pipeline for development. They are available at the repository and are
named Simple servert| and Simple server tester?,

Then the main platform for distributed algorithms was developed. The source
code is written in Java programming language and JavaDoc[4] was used as doc-
umentation for writing the applications apart from a few instances where other
sources were used. These sources are mentioned where they were used.

Whole source code was commented using JavaDoc commentsﬂ and therefore
a javadoc program from java binaries can be used to generate documentation
of source code in html format.

. 5.1 External libraries

Several external libraries were used for specific tasks. Thanks to these libraries
focus could have been shifted from writing boilerplate code to the actual
problem that was being solved.

® reflections? is library available at the central Maven repository®l It is
used to encapsulate reflections in Java that are being used for loading
algorithms and message handlers. It is available under Apache 2.0 license.

B org. junitﬁ is a group of libraries used for unit testing of Java code.
It is available under Eclipse Public License v1.0 at the central Maven
repository.

"https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska- |

[prace/-/tree/master/simple-server
“https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska- |

jprace/-/tree/master/simple-server-tester
Jhttps://www.oracle.com/cz/technical-resources/articles/java/javadoc-tool.

el

4https://mvnrepository.com/artifact/org.reflections/reflectionsl

“https://mvnrepository.com/|

°https://junit.org/junit5/

19


https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/simple-server
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/simple-server
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/simple-server-tester
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/simple-server-tester
https://www.oracle.com/cz/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/cz/technical-resources/articles/java/javadoc-tool.html
https://mvnrepository.com/artifact/org.reflections/reflections
https://mvnrepository.com/
https://junit.org/junit5/

5. Client and server applications

® gson’| is a library used to serialize and deserialize Java objects into

and from JSON format. It is used on server and node for serialization
of messages. It is available under Apache 2.0 license in the central Maven
repository.

® blinkt4jPis a library made specially for use on RaspberryPi. It provides
a simple set of methods used for controlling the Blinkt! module connected
to the GPIO header. It is available under General Public License v3
on GitHub".

® pi4j.core'V is a library enabling Java programs to control the GPIO
header of the RaspberryPi thru set of methods. It is available under
Apache 2.0 license on the Central Maven repository.

B 5.2 Shared library

The shared library contains code that is common for both server and node
applications. It is placed in

cz.cvut.fel. jankurom.picoclusterDistributedAlgorithm.library

package. This library includes distributed algorithms, exceptions and
classes defining the JSON for communication. Each of these groups has its
own package and subpackages.

B algorithms

All the distributed algorithms that are being run on the platform are
in this package. Fach algorithm has its own subpackage containing one
class that extends the abstract class AbstractAlgorithm. This class
acts as interface for the algorithm having methods that the platform
uses to communicate with the algorithm.

Also, two other classes are included in this package. Class Algorithms
contains an interface that encapsulates reflections used to retrieve all
implemented algorithms and work with them. Interface TaskRunner is
implemented by the node application and contains method used by the al-
gorithm to send messages to other nodes, configure LEDs on BLinkt!
module, send status updates and other.

B communication

In this package are included all classes used for communication between
server and nodes. The most important class is Message that defines
the JSON format of messages used for main communication between
server and node. The enum MessageType contains all constants for mes-
sage types. In the dto subpackage are included DTO classes for transfer

"https://mvnrepository.com/artifact/com.google.code.gson/gson
Shttps://github.com/HoldYourWaffle/blinkt4]j
https://github.com/
Ohttps://mvnrepository.com/artifact/com.pi4j/pi4j-core

20


https://mvnrepository.com/artifact/com.google.code.gson/gson
https://github.com/HoldYourWaffle/blinkt4j
https://github.com/
https://mvnrepository.com/artifact/com.pi4j/pi4j-core

5.3. Server application

of structured data for start messages, information about nodes and also
classes defining messages used for downloading data from server by the al-
gorithm.

B exceptions

Exceptions that are in this package are used directly by the code that is
in the library. Any other exceptions that are used only on server or node
are in packages in the server or node application respectively.

B 53 Server application

The server application is the center of the platform for distributed calculations.
All the nodes connect to it and it controls them and computations running
on them.

The class structure of the server application is shown in the figure
Exceptions, GUI classes, selected utility classes and less important methods
were omitted to improve readability of this diagram.

Interface
Distril + clientsChanged() - -
+ serverStarted() Configuration
+ receivedError() + load()
+ taskChanged() + hasKey()
+ serverStopped() + getValue()
+has’ 0.1 + logMessage()
1 S s
| /
Distributor ‘ 7
+ addDataSource() e <<u! - <;rﬁse>>
+ removeDataSource() sy qle /s AbstractExporter JsonExporter
<<use>> |
Server s *export() 3
+ getTasks() T ’| + getFileExtension) |~
+ stopTask() T ccuses>
+ terminate()
— + addTask()
ClientListener + getClients() +has
+ receivedStatus() paiapctient) (e E sk
+ finishedTask() Mactiont() + setParameters() TaskState
+ stoppedTask() - + unsuspendClient() + setFullName()
+ recievedError() ~ rickCRant() + setEndTime() +isin :gﬁN\I;‘”YNG
+ failedTask() . " e =0 - FALED
. N et 1| FANISHED
‘-\\ + setStantTime() NONE
ccuse>3~,  Thas e +has assigned | * SetState) STOPPED
Client + addPartialResult()
ix 0.1
+ setUuid()
+ getTask()
+ send() 3 3 A
+ getUuid
H getTask% <<use>> + hasHandlerForMessageType() ccuse>> + handleMessage()
+ setStatus() + getHandlerForMessageType() + getHandledMessageType()
+ isHandlingMessageType()
iy
+isin |1 StatusHandler W
e S
DISCONNECTED diagram
READY
STOPPING
COMPUTING
CONNECTED StoppedHandler’
SUSPENDED

Figure 5.1: Class diagram of the server

21



5. Client and server applications

B 5.3.1 Clients

The center of the server application is Server class. When started, this class
listens on specified TCP port for incomming connections from clients. It
also contains a list of tasks that are being run on the cluster with all their
information. Listening for incomming connections is done in a separate thread
in order not to block the main program.

When a new client connects all information is passed to a new instance
of Client class. This class handles connection to the client by opening sockets
in both directions. As in the Server class, listening on incomming socket
is done in separate thread in order not to block rest of the application.

Client can have several states. When it has just connected it is in CONNECTED
state. In this state it cannot do any distributed computations. After it has
its UUID assigned and all other nodes are notified of its existence it changes
its state to READY. In this state it is prepared to do distributed calculations.

When it has task received it changes its state to COMPUTING. After it finishes
either successfully or not it changes its state back to the READY state and can
receive another task. If it is being stopped it changes its state to STOPPING
and after the node confirms it had stopped it removes itself from server.

User can put any ready client in SUSPENDED state. Node in this state
cannot receive task to computate and can be changed back to READY state
by the user.

The Baeldung tutorial[5] was used as a starting point when writing this
part of server application.

B 5.3.2 Message handling

When a message from client is received it is parsed as an Message object.
This message is then passed to aproriate handler. Handlers are being found
by the HandlersAccessor class that uses reflection to load all available
handlers.

When the appropriate handler is not found an exception is thrown. This
exception is caught and error message is sent back. On server this message
is ignored and nothing happens. All handlers implement the abstract class
AbstractHandler.

B 5.3.3 Tasks

When a new task is added it is put in the end of the queue. Server then
checks at certain events whether it can start the next task. These events
include new client connected, node finishing or failing task, node stopping or
task starting. If there are enough nodes available to run the task it is started
otherwise it waits.

When a new task is being added to the queue the server checks if it has
enough nodes connected to run the task. If there are fewer nodes than required
the task fails without being started.

22



5.4. Client application

When the task is in the queue waiting to be started it is in READY state.
When it is in the front of the queue and there are enough ready nodes to run
it starts and changes its state to RUNNING. After finishing it changes its state
to FINISHED.

If even one node fails the whole task fails and task changes its state
to FAILED. If task failed the result of the task contains description of the reason
it failed. Tasks can also be stopped by user which changes their state
to STOPPED.

B 5.3.4 Distibuted data

Port for distributing data is opened on the server. Again, it is handled
by a sepearate thread in order not to block the rest of the program. It listens
for incomming messages and when message is received it searches for a given
data identification.

If data with the given identification is found, it is sent back to the node. If
there are no such data an error message is sent back. Connection is closed
after replying in both cases.

B 54 Client application

Client application does all the computations. After started it connects
to the server and awaits its commands.

Connection to the server is handled by the Client class in a separate
thread in order not to block the application. After connecting to the server it
generates an UUID and is waiting for server commands.

Also, in another thread it starts listening on specified UDP port for commu-
nication between nodes. Any data received on this port are passed to the run-
ning algorithm.

When a start command is received from server it starts computing the task
in a separate thread. It supplies all the functionality to the node it requires.
This includes sending and receiving messages that are sent between nodes,
downloading distributed data from server and list of coworkers on the task.

When the task is finished it sends the result to the server and when it fails
it sends to the server the reason it failed. On stopping it attempts to stop
the algorithm using stop() method. This is highly dependent on the task
implementation. After the task is stopped it informs the server.

Handling of received messages is done in a same way as on the server.
However, different handlers are implemented as each application does not
have to handle all messages there are. As on the server, Baeldung[5] tutorial
was used for writing this part of client.

23



5. Client and server applications

B 5.4.1 Blinkt! module

Figure 5.2: Picture of Blinkt! module

Blinkt! moduleE-I (shown in the [Figure 5.2) is connected to the RaspberryPi

GPIO header and can be used by the client application to show information.
Interaction with the module is done exclusively using the BlinkIt class{T_EI.
This class hides the details of communication with module and publishes
a set of methods that can be used either by the Client class to display state
of the lient application or by the task running in the client application.

If not overridden by the algorithm running on the node the Blinkt! module
shows current state of node application. The meaning of each LED is described
below. The LEDs are numbered from left to right beginning with zero
and ending with seven if placed the same way as can be seen on

® LED 0 lights up green if the node application has started successfully.

m LED 1 lights up green when connection to the server was established
or yellow if the connection was interrupted.

® LED 2 lights up green if node has assigned ID and is ready to participate
in distributed algorithms.

® LED 8 and LED j light up red when the node application has terminated.
8 LED 5 lights up red if the computation failed on the node.
8 LED 6 lights up red if the computation was stopped by server.

® LED 7 lights up yellow, when the node is doing computations in dis-
tributed algorithms and green if it has finished the distributed algorithm.

[un

"https://shop.pimoroni.com/products/blinkt|

https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-
race/-/blob/master/picocluster-distributed-algorithm/node/src/main/java/cz/
cvut/fel/jankurom/picoclusterDistributedAlgorithm/node/client/ElinkIt.javq

o

24


https://shop.pimoroni.com/products/blinkt
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/node/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/node/client/BlinkIt.java
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/node/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/node/client/BlinkIt.java
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/node/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/node/client/BlinkIt.java

5.5. Communication

These states can be set using methods from the BlinkIt class. Every
task can access the Blinkt! module thru the TaskRunner interface defined
in library. It has two methods

void setLed(int index, java.awt.Color)
void setLed(int index, int red, int green, int blue)

that allow programmer of the algorithm to control the LEDs. When
these methods are called, methods with same name in the TaskListener
interface are called on the Client class which then calls appropriate method
on the BlinkIt class.

Before setting the LEDs from the task a backup of current state is made
and after the task stops using the LEDs (typically after finishing, stopping or
failing the task) the state is restored. This is done automatically and does
not require any action from the programmer.

. 5.5 Communication

There are three ways of communication used by the applications. These
ways of communications enable server to orchestrate nodes, distribute large
data from server to the nodes and to enable algorithms to send messages
between nodes. Let’s describe each way of communication in detail.

B 5.5.1 Main client-server communication

This is the main communication that happens between client and server. It
is used to control the nodes, give them tasks and collect results from them.
The server listens for incomming TCP connections from clients on specified
port (default is 12345). Messages are then sent through the socket encoded
as an JSON object with the following scheme

{
"type":"<TYPE>",
"from":"<SENDER_UUID>",
"to":"<RECIPIENT_UUID>",
"content":"<CONTENT>",

}

from specifies sender of the messages. Server fills it out with server
value and nodes use their UUID in a String form. to specifies the recipient
of the message and is filled out the same way as from.

content is the content of the message and this can contain various data
encoded as a string. The way the data should be interpreted is dependent
on the message type. type specifies the type of the message and what
information it carries. The type of the message should be written in capital
letters.

Let’s describe all the implemented messages, their use and content.

25



5. Client and server applications

® ERROR can be used by a server and client as well to inform the other side
about an error. In the content a two line string is placed. On the first
line is number of the error or zero and on the second line is description
of the error.

For example, it is used by a server to inform client that the UUID he
requested is already in use. However, in this case to parameter won’t be
filled as the client has no UUID assigned yet.

B FATLED is used by a client to inform server that the task has failed
and could not be completed. In the content a string is included describing
the reason the task failed. Client must be ready to receive a new task
immediately after sending this message.

® FINISHED is used by the client to inform server that the assigned task
is finished. In the content is a string with result of the task returned
from run() method of the algorithm. Client must be ready to receive
a new task immediately after sending this message.

B NODES is used by a server to inform all connected clients that have UUID
about all connected clients with UUIDs. It is sent only when the list
of connected nodes has changed. In the content a JSON array is included
with NodeDto objects that are formatted as follows

{
"address": "<NODE_ADDRESS>",
"port": "<NODE_PORT>",
"uuid": "<NODE_UUID>"

}

where address is the IP address of the client, port is the port number
from which the client connects and in the uuid is UUID of the client.

® SENT is used by a client to inform server that he sent a message through
UDP communication between clients. In the content is the UUID
of the recipient of the UUID message encoded as a String.

B START is sent by a server to client to start a task on the client. In the con-
tent of the message a JSON string is included with StartTask DTO
containing all the information about the task that should be run and its
parameters. It is formatted as follows

{
"taskName": "<TASK_NAME>",
"parameters": ["<PARAMETER1>", "<PARAMETER2>"],
"network": ["<COWORKER1>", "<COWORKER2>]

}

taskName contains the full name of the task class including all the pack-
ages. On this class the run() method will be called to run the task.
parameters is an array of strings that are parameters for the task and are

26



5.5. Communication

passed to it on its start. This array can be empty if the task has no pa-
rameters. network is an array of strings that contains UUIDs of all
nodes collaborating on this task including the UUID of the node this
message is sent to.

® STATUS is sent by a client to server to inform about the progress made
in the task. This is implemented by the task it self. In the content
a string is included describing the status of the node.

® STOP is sent by server to client to stop computation of the current task.
Task should stop as soon as possible but this is implemented by the task
and therefore is fully dependent on it.

® STOPPED is sent by a node to the server to inform that the task had been
stopped and the client is ready to start a new task.

® UUID_CONFIRM is sent by a server to client and it confirms the UUID
sent by the node. The UUID is included in the content in its string form.
Client must use this UUID from now on.

® UUID_REQUEST is used by a client to request UUID on the server. Client
generates an UUID and includes it in a String form in the content
of the message. Then awaits the reply from the server.

It is also a first message that the client must send as he needs to have
an UUID assigned. Because client has no UUID assigned yet it leaves
the from empty.

B 5.5.2 Client-server data download

This communication happens on port one higher than the port for main
client-server communication (by default 12346). It enables the algorithms
to download additional data from the server that have unique identifica-
tion. Data are loaded from disk by the DataDistributor on server. All
communication is in JSON format.

Client initiates the communication by opening the socket and sending
request message

{
"key" :"<IDENTIFICATION>"

where the key is the unique identification of the data on the server.
The server retrieves the requested data and sends them back to the client
using response message

{
"error":"FLAG",
"data":"<DATA>"

27



5. Client and server applications

where the error is a flag indicating if error happened while retrieving
the data or the data were successfully retrieved. If the flag is FALSE than
the data were retrieved successfully and are encoded as a string in the data
parameter. If the flag is TRUE than error happened and instead of retrieved
data there is description of the error in the data parameter.

After the exchange of these two messages the communication is finished
and the socket is closed.

B 5.5.3 Communication between clients

Communication between clients happens on port which is two numbers higher
than the port for the main server-client communication (by default it is
12347). However, unlike the two previous communications that use TCP
this one uses UDP. Therefore delivery and correctness are not guaranteed
and the platform does nothing to guarantee any of them. UDP protocol was
chosen to lower the load on the cluster network and its Ethernet switches.

The communication between the clients is only for the algorithms the plat-
form does not use this communication in any way. The string that the algo-
rithm wants to send is encoded into bytes and it is sent to the target client.
No additional data are added. The receiving client then recreates the string
from received bytes.

The packet sent on this connection must have a maximum length due to the use
of array as a buffer for the message. Maximum size of the message is speci-
fied in the Dockerfile as an environmental variable UDP_PACKET_SIZE. This
value should be less then 64000 (64 kB) to ensure the packets can be delivered
and should be lowered if network is not able to deliver packets of this size.
However, since the buffer is allocated every time message is received, the max-
imum packet size should be kept as small as possible.

Tutorial from Baeldung[6] was used when writing the code for UDP com-
munication.

28



Chapter 6
Distributed algorithms

Several algorithms for testing and measurements were implemented during de-
velopment. However, it is meant for users to implement their own algorithms
to run on the platform.

B 6.1 Implementing algorithms

All algorithms must extend the AbstractAlgorithm class that defines the in-
terface used by the platform to run the distributed algorithms. It defines
methods that the algorithm should implement in order to work correctly.
Below is a list of all methods with description.

Algorithm can have other methods and classes defined. However, these
classes and methods should be in the package in which the main algorithm
class is placed or in its subpackages to avoid collisions.

B String run(String[], TaskRunner) is the main method containing
the algorithm it self. This method is run on the client after receiving
START command. Parameters given by user are passed to the algorithm
using the String array and TaskRunner is interface thru which the al-
gorithm can use functionality provided by the platform. It is described
in more detail below. Partial result is returned using String return
value. In case the algorithm fails it should throw an exception that
will be caught by the client application and an entire algorithm will be
stopped.

® String composeResult(Stringl[]) is method used by server to combine
partial results from each client given in the parameter. These partial
results are returned by the run() method. This method is only called
when the whole algorithm finishes and not when one client fails or the task
is topped by the user. Return value of this method is the final result
of this algorithm.

B String name() returns human-readable name of the algorithm that
appears on the server in drop down menu with list of algorithms.

B String description() returns short description of the algorithm.

29



6. Distributed algorithms

B String[] parameters() returns array of strings that are describing
each parameter of the algorithm. These descriptions are displayed
to the user when starting the algorithm. An empty array must be
returned when algorithm has no parameters.

® void stop() this method is called when client wants to stop the algo-
rithm. The algorithm should stop at earliest possibility and should call
stopped () method on the TaskRunner class after finishing.

B void receivedMessage(String, String) is called by client when mes-
sage on UDP is received from another node. The content of the message
and sender UUID is given as parameters. This method can be empty
if the algorithm does not send messages through the UDP connection.

B Map<String, File> getDistributedFiles() returns HashTable con-
taining files that should be loaded by data distributor and algorithms
can download them. The String will be used to identify the given file
on thevserver. An empty hash map must be returned if the algorithm
has no distributed files. Use sufficiently unique identifying string to avoid
collisions with other algorithms.

TaskRunner is an interface defining methods available to the algorithm. It
is passed thru the run() method’s parameters to the algorithm. Algorithm
can use this interface to perform selected tasks on the platform. All available
methods are listed below. All methods are blocking.

B void sendStatusUpdate(String) sends a status message to server con-
taining string given as a method parameter.

B void setlLed(int, Color) and void setLed(int, int, int, int) set
specified LED on the Blinkt! module to a specified color. Two ways
of defining the color can be used, either Color from java.awt or by sup-
plying values for red, green and blue colors.

B void taskStopped() should be called by algorithm when it is stopped
after the client called the stop() method.

B String[] getCoworkers() can be used by algorithm to get list of UUIDs
of the coworkers that are working on the same task.

B void sendMessageToNode(String, String) isused by algorithm to send
message with given content to a coworker with specified UUID. UDP is
used and therefore the delivery is not guaranteed.

B String fetchData(String) can be used to download data from data
distributor on server. Identifier of the data is given as parameter. null
is returned if error occures when downloading the data or the data is
not available.

Implemented algorithm should be placed in its own subpackage in the

30



6.2. Implemented algorithms

cz.cvut.fel. jankurom.picoclusterDistributedAlgorithm.algorithms

package in order for the platform to be able to find it. If it is placed
in a different package the getA11Algorithms () method in Algorithms class
must be changed so it searches the package in which the algorithm is placed.
Otherwise, the server and the client will not be able to find the algorithm.

B 6.2 Implemented algorithms

Nine algorithms were implemented in total. Two of these algorithms were used
to measure the performance of the platform. Results of these measurements
are summarized in|chapter 7. The rest of the algorithms are testing algorithms
that were used to verify the functionality of the platform. All algorithms
are described below with their functionality. All algorithms are available
in repository/'.

® Blinker task makes use of the Blinkt! module and displays various
patterns on it. The patterns are implemented in the Patterns class
and are being called thru the

static void runPattern(int pattern, TaskRunner taskRunner)

method. This method calls the appropriate method depending on the pat-
tern ID passed as an argument. Implemented patterns are

RGB snake displays eight colors on the LEDs (red, orange, yellow,
light green, green, cyan, blue and purple) from right to left and shifts
them one position left every 250 ms.

RGB fade slowly changes colors starting from red, going thru green
and blue and returning to red.

RGB disco flashes random colors.

RGB runner flashes red, green and blue color from right to left.

8 (Calculate Pi is a testing task that calculates 7w using randomly selected
method. Server side of the algorithm then does basic statistics using
values received from clients as these are being calculated with certain
precisions.

Methods used to calculate 7 are:

using the constant? from Java standard library

java.lang.Math.PI

Ihttps://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-
prace/-/tree/master/picocluster-distributed-algorithm/library/src/main/java/
cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms

Zhttps://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/
Math.html#PI

31


https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/tree/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html#PI
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html#PI

6. Distributed algorithms
approximation by summing first thousand members of Gregory-
3
o _1 n
= 2n+1

approximation by summing first twenty five members of Nilakantha
-4
series

Leibnitz series

- L1y
T=3
+7§(2n+2).(2n+3)-(2n+4)

approximation by using limit?®

. . (180)
7= lim z-sin | —
T—00 €T

where x is Integer .MAX_VALUE.

calculation using arcsin()°
T=2-" (arcsin (\/ 1- x2> + |arcsin(z)|)
where z € (—1;1).

® Distributor tester is a task for testing the distributor functionality
of the server used by algorithms to download data from server. When
the task starts it downloads a text from the server and sends it back
as a result of the task.

B Fail task was designed to test the functionality of handling errors
on client’s as well as server’s side. It takes one parameter that is float
from interval (0; 1) that sets probability that node running this algorithm
will fail. 0 means no chance to fail and 1 is 100% chance the node will
fail. The node generates number from interval (0;1) from continuous
uniform distribution.

® Interval message is the first task used for measuring the performance
of the network and nodes. After the task is started it waits for two
seconds to let coworkers initialize as well. Then it starts sending UDP
messages with specified size and in specified intervals to all coworkers.
The number of messages is also specified as parameter of the task.

After it is done sending messages it waits for additional ten seconds
for any delayed messages and then calculates how many messages it
received and what the success rate is. This is sent to the server that
sums the statistics.

3https://www.mathscareers.org.uk/calculating-pi/

4https://www.mathscareers.org.uk/calculating-pi/

http://www.ams.org/publicoutreach/feature-column/fcarc-pi-calc

Shttps://www.wikihow.com/Calculate-Pi#Using-Arcsine-Function.2FInverse-
Sine-Function

32


https://www.mathscareers.org.uk/calculating-pi/
https://www.mathscareers.org.uk/calculating-pi/
http://www.ams.org/publicoutreach/feature-column/fcarc-pi-calc
https://www.wikihow.com/Calculate-Pi#Using-Arcsine-Function.2FInverse-Sine-Function
https://www.wikihow.com/Calculate-Pi#Using-Arcsine-Function.2FInverse-Sine-Function

6.2. Implemented algorithms

B Response messageis the second task used for measuring the performance
of the network and nodes. After it is started it waits for two seconds to let
coworkers initialize and then it starts to send numbered messages to all
coworkers with specified size and in specified intervals. Then it waits
for responses and measures the time elapsed from sending. The number
of messages sent is specified as an parameter.

After it sends all messages it waits for ten seconds and then calculates
statistics mainly the success rate and average response time. These
statistics are then sent to the server that combines them.

® Sleep is the first implemented task that was used to test the functionality
of client and server. It takes two parameters of minimum and maximum
sleep time in milliseconds. Node then sleeps for a random duration
within the maximum and minimum and then sends server message that
he had finished.

B Status updater is designed to test functionality of status updates sent
from client to erver. It takes a positive integer as an argument that
defines number of messages that will be sent to the server. Algorithm
waits for 5 seconds between sending subsequent status messages.

8 UDP tester was made for testing the UDP communication between nodes.
When it is started it sends messages to all coworkers and awaits messages
from them. When it receives all messages it finishes. The algorithm
waits for messages indefinitely and needs to be manually stopped.

33



34



Chapter 7

Experiments with distributed algorithms

After the platform was finished it was subject to a several measurements.
The purpose of these measurements was to characterise performance of the plat-
form. The main focus was on the network as it will be the bottleneck for most
of distributed algorithms. Two specially developed algorithms were used
for the measurements. These algorithms use the UDP communication be-
tween nodes and measure performance.

8 nterval Message sends UDP packets to all its coworkers. This packet
has a specific size and is sent repeatedly with waiting time between
repeated sendings. Number of repeated sending, size and waiting time
are parameters of the algorithm. All nodes have the same parameters.
The success rate is measured as each node knows how many messages it
should receive and can compare it to how many messages it has received.

B Response Message sends UDP packets to all its coworkers and awaits
response from them. Again, the messages have certain size, are repeat-
edly sent in specified intervals and in specified number as in the Interval
message. The success rate of delivering messages is measured as in the In-
terval Message however, in addition a response time is measured.

Both algorithms were measured with various parameters that gradually
increased the load on the network. In addition, both algorithms were measured
when nodes were sending notifications to the server and when they were not.
This resulted in four sets of data that can be found either on enclosed CD
or at gitlab repository.

When sending notifications to server node is sending SENT message to the server
after sending message on UDP connection between nodes. As the SENT mes-
sage is sent with each UDP message it increases the load on the network.

To ensure equal conditions Docker image was restarted before each measure-
ment. In addition, a limit for reliability was set. After the reliability of delivery
went under 75 % when increasing load on the cluster, the measurements were
stopped.

In order not to copy all tables here, several interesting phenomena were
selected and described below.

35



7. Experiments with distributed algorithms

® Contrary to what was expected the reliability does not depend that
heavily on the notifications being sent or not as can be seen in
Moreover, with bigger load the algorithms probably become more reliable,
as can be seen on the graph.

105

a5

70
1000 500 200 100 20 10 5

ms

= with notification = without notification

Figure 7.1: Comparison of reliability with and without notifications depending
on delay between messages

This can be caused by the fact that the network card on RaspberryPi is
connected thru USB which limits the transfer speed. The switch is then
able to switch the data more reliably even though more data is being sent.
The data for the graph were taken from Interval measurement algorithm
with packet size of 10 kB and with varying delay between messages
and number of message.

The same can be said about the time measured as shown in
The difference in response time is not that large. The data were taken
from Response measurement task with 10 kB size of packet.

36



7. Experiments with distributed algorithms

120
110

100

ms

40

30
1000 500 200 100 50 20 10

ms
m— ith Notification = without notification

Figure 7.2: Comparison of response time with and without notifications depend-
ing on delay between messages

However, the rise in response time is not solely caused by the network
it self. The biggest factor is the way the messages received on UDP are
being handled. They are being handled one after another causing them
to be in a queue for a long time. This significantly increases the response
time.

B Response time has a dip or even double dip that was unexpected. Gen-
erally, the response time rises with more data being sent. However,
at the beginning it takes a small dip or even a double dip in case of

bigger data being sent. This can be seen on [Figure 7.3. It was not
discovered what causes this phenomenon.

37



7. Experiments with distributed algorithms

270

170

70

1000 500 200 100 50 20

ms
=——1kB =——5kB

Figure 7.3: Comparison of two response curves depending on delay between
messages

®m 10 kB data are being delivered more reliably than 5 kB data. This
happened in Interval measurement algorithm and something very similar
happened in Response measurement algorithm as well. The percentage
of delivered 5 kB packages drops slower than for 10 kB but after some
time it starts to drop much faster and the delivery of 10 kB packages

becomes more reliable. This can be seen on |[Figure 7.4

105

95

85

75
70

65

55
1000 500 200 100 50 20 10

e 5, KB e 10 kB

Figure 7.4: Comparison of two delivery rates depending on the delay between
messages

38



7. Experiments with distributed algorithms

This is probably caused by the swith. It has a limited number of packets
that can be switched in a given amount of time. When the 5 kB data are
being sent, the RaspberryPi sends more smaller packets which means
the switch is gonna be overloaded sooner. On the other hand, when
the 10 kB data are being sent, the RaspberryPi sends fewer but larger
packets. This means the switch becomes overloaded later because it has
fewer packets to switch although the packets are larger in size.

As can be seen on versitron[I1], there are two main characteristics
of an Ethernet switch. The first one is switching capacity written down
in bytes per second or its multiples. This specifies how much data
the switch can handle in one second. The second one is forwarding
performance written down in packets per second or its multiples. This
defines how many packets can the switch handle in one second and proba-
bly this limit is being exceeded above resulting in packets being dropped.
More about this can be found in Ciscd and HuaweiZ forums.

Thttps://community.cisco.com/t5/switching/quot-switching-bandwidth-quot- |
[and-quot-forwarding-rate-quot/td-p/2116399

“https://forum.huawei.com/enterprise/en/forwarding-performance-and- |
|switching-capacity/thread/570609-861|

39


https://community.cisco.com/t5/switching/quot-switching-bandwidth-quot-and-quot-forwarding-rate-quot/td-p/2116399
https://community.cisco.com/t5/switching/quot-switching-bandwidth-quot-and-quot-forwarding-rate-quot/td-p/2116399
https://forum.huawei.com/enterprise/en/forwarding-performance-and-switching-capacity/thread/570609-861
https://forum.huawei.com/enterprise/en/forwarding-performance-and-switching-capacity/thread/570609-861

40



Chapter 8

Software testing

Several methods of testing were used to minimise the number of bugs. How-
ever, in project of this size and complexity it is hard to find and eliminate
all the bugs. Several methods of testing were selected for this project to ensure

the

best testing that was possible and to find most of the bugs.

Static testing was used during the whole process of writing source code.
It was used to catch typos and obvious bugs early in the development
where they are easy to fix. QAPlugE for IntellijIdea was used to automate
these tests.

Many potential problems were eliminated by this method. For example
usage of concrete class instead of interface from java.util, naming
conventions, making classes final, hiding constructors and other issues.
These issues were not bugs as such but will improve the readability of the
code and will make future modifications easier thanks to cleaner code.

However, discretion is needed when fixing issues found out by the tool.
Not all issues are real issues and do not need to be fixed. Example of this
can be found in Blinkerﬂ on line 41. Analysis tool points out the empty
while() loop as a potential problem but it is being used for waiting
until the pattern finishes. It might not be the best way to do this but is
simple and works as intended without causing any problems.

In addition, Google Java Style Guidﬂ was used for formatting the source
code. This improves readability of the source code and prevents mistakes.
Again, automated tool was used for this in a form of google—java—formalﬁ
plugin that automatically reformats the code.

Several interesting statistics were also found out during static analysis
of the code using Statz’stz’(ﬂ plugin. These statistics are:

1

https://plugins. jetbrains.com/plugin/4594-qgaplug

https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska- |

race/-/blob/master/picocluster-distributed-algorithm/library/src/main/java/

cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms/

blinker/Blinker.javal

https://google.github.io/styleguide/javaguide.html

“https://plugins.jetbrains.com/plugin/8527-google- java-format

“https://plugins. jetbrains.com/plugin/4509-statistic]

41


https://plugins.jetbrains.com/plugin/4594-qaplug
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms/blinker/Blinker.java
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms/blinker/Blinker.java
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms/blinker/Blinker.java
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace/-/blob/master/picocluster-distributed-algorithm/library/src/main/java/cz/cvut/fel/jankurom/picoclusterDistributedAlgorithm/library/algorithms/blinker/Blinker.java
https://google.github.io/styleguide/javaguide.html
https://plugins.jetbrains.com/plugin/8527-google-java-format
https://plugins.jetbrains.com/plugin/4509-statistic

8. Software testing

Module library has 1431 lines of source code, node has 1240 lines
of code and server has 2576 lines of code. This adds up to 5247
lines of code in total.

Module library has 23 Java classes, node has 14 Java classes and server
has 31 Java classes. This is 68 Java classes in total. Interfaces
and enums are being counted as classes for this purpose.

Algorithms are in 11 Java classes with 939 lines of code.

There is one unit test class with 27 lines of code.

® Unit testing was used to test tasks and especially the computation of 7
using different methods. jUnit’| was used for testing and the tests were
launched on each build as a part of Maven build script. All the unit
tests are in the Git repository.

Using the unit tests it was uncovered that at least the first thousand
members of Gregory-Leibnitz series must be summed to have sufficient
precision however only first twenty-five members of Nilakantha series are
sufficient to have better precision.

It would be too complicated to test other parts of the application using
unit testing. It would require extensive mocking of important parts
of application. Manual testing and testing tasks were used instead.

8 Manual testing was the most important part of testing. Due to the
complexity of developed platform it was the easiest way to test the
functionality and catch bugs. Several approaches to testing were used.

In the early stages of development when only the connection between
server and clients was established a logging of communication was used.
Since the communication is in JSON format it is easily readable by
humans and the communication can be debugged in this way.

Reading the communication also proved to be very helpful when devel-
oping the functionality for starting, ending and stopping tasks. However,
in this case, it was also used in conjunction with very simple testing
tasks that were created specifically for this purpose. Thanks to them it
was easy to get this part of platform working.

More testing tasks were developed later to test other functionalities of
the platform. For example downloading additional data from server, com-
munication between clients, sending status updates to server, controlling
Blinkt! module and others. These tasks proved to be irreplaceable as
testing the functionality other ways would be much more laborious.

All these testing tasks are included in the GitLab repository and can be

used as a start point in custom algorithms development for the platform.

B Deploy to Pico 48 cluster was used to test how well the platform can
scale on a bigger cluster. It is exactly the same from hardware as well

Shttps://junit.org/junits/

42


https://junit.org/junit5/

8. Software testing

as software perspective as the cluster with five RaspberryPis. The same
pipeline, tools and scripts were used as for the cluster with five Raspber-
ryPis. The cluster running Blinker task can be seen on

Figure 8.1: Pico 48 cluster running Blinker task

The main difference was a considerably longer deploy time and this was
expected. The deploy and runtime pipeline is not optimal and can be

vastly improved as mentioned in [section 9.1].

However, the longer time of deployment was the only noticeable difference
between working with cluster with five and fourty-eight RaspberryPis.
Granted, no in-depth testing of performance was done, only a couple
of testing tasks were run to verify the functionality.

User testing

It was hard to do user testing on this project. This project is aimed
at a very small group of people with special needs. Therefore, finding
a user that will test the project was extremely difficult. However, one
user that would test the project was found. In fact, the user is using
the project to run his distributed algorithms and perform his own tests
and measurements. Full feedback of the user can be found in attachements
and summery of the most important ideas is included below.

The documentation is very well written, it contains most of the in-
formation about the platform and is easy to navigate.

Setup was easy. All scripts for the pipeline were prepared and only
problem was bad indentation of three lines in deploy script and wrongly
specified user.

The first deployment took a lot of time and probably is inefficient.
It copies unnecessary files to the RaspberryPis.

43



8. Software testing

The server has hardcoded path to the configuration file which re-
sulted in problems.

The number of nodes that run the task is badly marked in the dialog
making it hard to spot.

There was no problem implementing custom pattern for Blinkt!
module and it took less than 20 minutes.

The code is very well written and documented which makes it
very easy to read and understand. It also follows the correct Java
principles.

Overall, the platform was rated very positively, was easy to setup
and work with and user enjoyed working with it.

44



Chapter 9

Conclusion

The objective of this work was successfully met, all the points from the as-
signment were accomplished and functionality for all requirements was
done. The result is a finished platform for running distributed algorithms
on the RaspberryPi cluster.

At first, the PicoCluster was studied from hardware as well as software
perspective. All the collected information was used to propose a solution.
Based on this proposal software pipeline for development and deployment
of the client-server application that runs the distributed algorithms was cre-
ated. Also, runtime environment for thevclient application on the PicoCluster
was created. After that, a client-server application for running the distributed
algorithms was developed alongside with selected distributed algorithms.

These algorithms were then used to test the platform and measure per-
formance of the platform. The acquired measurements were then stud-
ied and interesting phenomena were discovered. The testing was not done
only by testing tasks but also using static analysis of the source code and
unit testing as well. In addition, one target user was found to do the user
testing and sahred his feedback..

Finally, a user guide for setup as well as for implementing custom algorithms
was created to make it easy for future users to use the platform. Potentially,
the platform can be expanded to include more functionality.

. 9.1 Future improvements

During development improvements and features were proposed and many
of them were implemented. However, not all improvements and features
were implemented due to the lack of time or because they were not that
important. Bellow is the list of these improvements and features that were
not implemented.

® Pipeline improvements are required. As of now, Docker image is being
built on each RaspberryPi separately. This is a huge performance
issue that has to be solved. The docker image should be built once,
uploaded to official Docker repository or repository on machine used

45



9. Conclusion

to orchestrate the RaspberryPi and from there downloaded by each
RaspberryPi and run. This will shorten the deploy time considerably.

B Prebuilt Docker image to skip repeated actions during deployment. Each
image starts by installing Java and drivers for RaspberryPi GPIO headers.
This can be done in a separate image that will be then used as a starting
point for image with client application. It will shorten the deploy time.

8 Loading tasks from JSON to make it easier to run tasks on the platform.
JSON describing tasks that should run on the network will be cre-
ated by user and then loaded in the program. Then it will be parsed
by the server program and tasks will be created in queue. These tasks
will be then automatically run.

® Server part of algorithm that will be launched only once on the server
machine. Now, the platform can only run fully decentralized algorithms
and server part only does result agregation. After adding the server
part algorithms could use a custom server part. That will mean that
algorithms that require strong server part running as 1:N could be run
on the platform.

These improvements are worth a future development as they would make
the platform faster and easier to use.

46



Bibliography

[1] Ansible documentation. [online]. Ansible project contributors. [October
19th 2021]. Available at: https://docs.ansible.com/ansible/latest/|

[2] How to Use Ansible to Install ans Set Up Docker on Ubuntu 20.04
| DigitalOcean. [online]. DigitalOcean. [October 19th 2021]. Avail-
able at: https://www.digitalocean.com/community/tutorials/how+
[fto-use-ansible-to-install-and-set-up-docker—-on-ubuntu-20-04

[3] Docker documentation. [online]. Docker Inc. [October 19th 2021]. Available
at: https://docs.docker.com/|

[4] Java SE 11 & JDK 11 documentation. [online]. Oracle. [November
19th 2021]. Available at https://docs.oracle.com/en/java/javase/
11/docs/api/index.html|

[5] A Guide to Java Sockets | Baeldung. [online]. Baeldung. [April 30th 2022].
Available at: https://www.baeldung.com/a-guide-to-java-sockets|

[6] A Guide to UDP In Java | Baeldung. [online]. Baeldung. [April 30th 2022].
Available at: https://www.baeldung.com/udp-in-javal

[7] Maven - Maven Documentation. [online]. The Apache Software Founda-
tion. [November 28th 2021]. Available at: https://maven.apache.org/

[8] Tutorial: ~ Debian Router/Gateway in 10 Minuten einrichten
- gridscale. [online] gridscale [April 30th 2022]. Available at:
https://gridscale.io/community/tutorials/tutorial-debian- |
routergateway-10minuten/|

[9] NetworkConfiguration - Debian Wiki. [online] Debian Wiki [April 30th
2022|. Available at: https://wiki.debian.org/NetworkConfiguration

[10] iptables(8) - Linux man page. [online] linux.die.net [April 30th 2022].
Available at: https://linux.die.net/man/8/iptables|

[11] Three important Network Switching Parameters | Versitron. [online]
Versitron [May 1st 2022]. Available at: https://www.versitron.com/
whitepaper/network-switching-parameters|

47


https://docs.ansible.com/ansible/latest/
https://www.digitalocean.com/community/tutorials/how-to-use-ansible-to-install-and-set-up-docker-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-use-ansible-to-install-and-set-up-docker-on-ubuntu-20-04
https://docs.docker.com/
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://www.baeldung.com/a-guide-to-java-sockets
https://www.baeldung.com/udp-in-java
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://gridscale.io/community/tutorials/tutorial-debian-routergateway-10minuten/
https://gridscale.io/community/tutorials/tutorial-debian-routergateway-10minuten/
https://wiki.debian.org/NetworkConfiguration
https://linux.die.net/man/8/iptables
https://www.versitron.com/whitepaper/network-switching-parameters
https://www.versitron.com/whitepaper/network-switching-parameters

48



Appendix A

How to use platform

This is a complete guide describing how to deploy and use the platform
for running distributed algorithms. At least basic knowledge of UNIX system
including file system, networking and software installation is required.

This tutorial was written for Debian operating system. It might require

some changes to work with other operating systems.

1. Preparation of server machine

Server machine should be running Linux, as the Ansible requires UNIX
to run. Windows with Windows Subsystem for Linux can be used but
this solution was not tested.

Java at least version 11 is required to run the server application. The server
application uses settings in file options and this file is required to start
the server application. It must be placed at the same place as .jar
archive.

Any files used by distibuted algorithms must be placed at the location
defined by the algorithm.

Ansible is required to run the deployment scripts. It only needs to be
installed on the machine that will be running the script and not the target
machines. On Debian, it can be installed using command

apt install ansible

Internet access

Client machines require internet access for their functionality. If they
are connected to the internet thru the server machine that will act
as a router IP forwarding and firewall must be set. This procedure
was taken from online tutorial[§] and modified using Debian Wiki[9]
and iptables manual page[10] for this purpose.

Firstly, network interfaces must be set up correctly. The easiest way
to do this is using the /etc/network/interfaces configuration file that
should look as follows

source /etc/network/interfaces.d/*

49



A. How to use platform

auto lo
iface lo inet loopback

allow-hotplug enol
iface enol inet dhcp
iface enol inet6 dhcp

allow-hotplug enp2s0

iface enp2s0 inet static
address 10.1.10.1
netmask 255.255.255.0

enol is interface going to the internet and enp2s0 is interface going
to the network containing the RaspberryPi cluster. You may need
to change interface names and configuration of the interface going
to the internet according to your local network settings.

Secondly, a line

net.ipv4.ip_forward=1

must be uncommented in /etc/sysctl.conf to allow Linux to forward
IP packets and act as a router.

Lastly, a tool iptables-persistent must be installed. This will backup
iptables settings and restore them after powering the server machine off
and on. During installation, let the tool create backups of current rules
in the /etc/iptables/rules.v4 file. Then, modify this file to have
the following content

*nat
—-A POSTROUTING -o enol -j MASQUERADE
COMMIT

*filter

-A INPUT -i lo -j ACCEPT

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
—-A INPUT -i enol -j DROP

COMMIT

These settings will enable NAT from the inner network to the internet
and forbid any incoming connections apart from those that were opened
from the inner network. You may need to use different device names.
enol is network interface to the internet. You may combine these rules
with your rules you have configured before.

To reload iptables settings use command

iptables-restore < /etc/iptables/rules.v4

to load settings from the file we have just modified.

50



A. How to use platform

3. Preparation of client machines

Ansible requires all clients to have the same user with same password.
In addition, this user must be added to the sudoers file. If you are using
PicoCluster this is already done.

After that, IPv4 addresses of all client machines must be added to the hosts
file. You can use the existing cluster group and replace the already
existing IP addresses or define your own group. If you define your own
group, you need to replace the name in all Ansible scripts.

Finally, server address, port, maximum packet size and notification
to server must be set in the Dockerfile. These three parameters are
set using environmental variables.

The variable PICOCLUSTER_SERVER sets the address and port of the server.
IPv4 address and port number separated by a colon should be supplied.
Alternatively, hostname of the server can be supplied.

The variable UDP_PACKET_SIZE sets the maximum packet size that can
be sent between nodes using the UDP connection. The size is set in bytes
and should be as low as possible.

The variable END_SENT_MESSAGE_INFO sets weather client will be sending
notifications to server every time he sends packet over the UDP connection
to another client. Allowed values are false and true. When it is set
to false client will not send notifications to the server, when set to true
it will.

4. Deploying client application

Deployment of the client is done automatically using Ansible scripts.
These scripts install all software and dependencies required for the client
application to run on the client machine.

All the Ansible scripts are written specifically for use with Raspber-
ryPis running Raspbian operating system. For use with other platforms
and operating system they might need to be modified.

For first deploy to new machines use the full-deploy.yml script which will
install Docker and all dependencies as well as deploy the client application.
Use this command to run the script

ansible-playbook -i ./hosts -kK --ssh-extra-args=’-o "
PubkeyAuthentication=no"’ -u picocluster full-deploy.
yml

If you are using different user then replace picocluster with the name
of the user you are using.

To deploy to machines that already have Docker and all dependencies
installed, you can use fast-deploy.yml script. It has a shorter execution
time thanks to omitting installation of Docker and all dependencies.

o1



A. How to use platform

To only restart the application running in Docker container use restart-docker.yml
script which only restarts the running Docker container and application
running in it.

The server application must be running when the client applications are
being started. If the client application cannot connect to server, it will
fail.

To stop Docker containers and applications in them use stop-docker.yml
script.

5. Graphical user interface of the server

server for PicoCluster distributed algorithm - 0 x

Name: <NAME>

Istatus: <STATUS>

<ADDRESS>
<UUID> ( d )
<STATE>

<TASK>
<TASK_STATUS>

<TIME>

<NODES>

<RESULT>

[2022-05-02, 09:33:24]; Server startad,

Figure A.1: Graphical user interface of server application

Graphical user interface of server is show on |[Figure A.1| and bellow is
description of its components.

a. List of connected nodes

Buttons to control nodes (Kick kicks selected node from server,
Suspend changes selected node to suspended state and Wake changes
selected node to ready state)

c. Table with information about selected node
d. List of all tasks on the server

e. Buttons to control tasks (Add opens a dialog for adding a new task,
Stop stops selected running task or removes ready task and Ezxport
exports all tasks to JSON file)

f. Table with details about selected task
g. List of logs

6. Running tasks

52



A. How to use platform

Click the Add button in the main server window. A dialog for adding
new task will appear as shown on the |[Figure A.2|

Start new task

Sleeping task

Parameter

Minimum sleep time (ms)

Maximum sleep time (ms)

| Run || Cancel

Figure A.2: Dialog for adding new task

Fill the dialog as follows

a. Use the combobox to selected algorithm you want to run.

b. Fill the table with parameters for the algorithm. All inputs need
to be confirmed by pressing Enter key. Otherwise, the input will
not be saved.

c. Select the number of nodes you want the algorithm to run on.

After filling the dialog click Run to add the task to queue. The added task
will be started as soon as it will be first in the queue and sufficient number
of nodes in ready state will be available. The task will fail if the number
of connected nodes is smaller than number of nodes on which the task
should run. To close the dialog without adding new task click Cancel
button.

7. Exporting results

Data gathered from distributed algorithms can be exported from the pro-
gram using the Ezport button. Program asks for location and name
of the file where the data will be exported. After dialog confirmation all
results are written in JSON format to the file.

All tasks are exported using this method including READY and RUNNING
tasks.

The file has following format

53



A. How to use platform

"partialResults": [

"resultl",

"result2"
1.
"name": "<NAME_OF_TASK>",
"nodes": <NODE_COUNT>,
"result": "<TASK_RESULT>",
"state": "<TASK_STATE>",
"fullName": "<FULL_CLASS_NAME>",
"startTime": "<START_TIME>",
"endTime": "<END_TIME>",
"parameters": [

"paraml",

"param2"

o4



Appendix B
Attachments

All attachments are included on the CD enclosed with printed thesis or are
available at project’s GitLabE repository.

® Document measurements.pdf contains all data measured when Interval

measurement and Response measurement were run on the platform.
The graphs in are created from data in this document.

B File feedback.md contains the raw feedback given by tester. It was

shortened in |chapter 8 in User testing part.

® Archive source.zip contains source code of all applications developed
in this thesis. The source code was taken from Bachelor thesis release
from the GitLab.

Ihttps://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-

prace

55


https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace
https://gitlab.fel.cvut.cz/jankurom/semestralni-projekt-a-bakalarska-prace

	Introduction
	Assignment
	Requirements

	RaspberryPi platform
	Hardware
	Software

	Proposal of solution
	Software pipeline for development and deployment
	Comparison of build tools
	Maven configuration
	Comparison of deployment tools
	Ansible configuration
	Comparison of runtime environments
	Docker configuration

	Client and server applications
	External libraries
	Shared library
	Server application
	Clients
	Message handling
	Tasks
	Distibuted data

	Client application
	Blinkt! module

	Communication
	Main client-server communication
	Client-server data download
	Communication between clients


	Distributed algorithms
	Implementing algorithms
	Implemented algorithms

	Experiments with distributed algorithms
	Software testing
	Conclusion
	Future improvements

	Bibliography
	How to use platform
	Attachments

