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Abstract

This thesis aims to predict the 6 degree-
of-freedom (6DoF') pose of a query image
containing moving objects in a 3D map.
First, we create a fully automatic gener-
ation of datasets for localization from a
Matterport scanner. A method for cre-
ation of a dataset with moving objects
is presented. The dataset is then used
to evaluate a new proposed way of lo-
calization in dynamic environments. We
demonstrate that our pipeline improves
localization compared to not accounting
for the dynamic objects.
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Abstrakt

Cielom tejto prace je odhadnuf pézu v
Siestich stupnoch volnosti pre query obra-
zok s pohybujicimi sa objektami. Najprv
vytvorime plne automaticky skript pre vy-
tvaranie datasetov pre lokalizaciu z Mat-
terport skeneru. Predstavime metédu na
vytvaranie datasetov s dynamickymi ob-
jektami. Tento dataset je potom pouzity
na vyhodnotenie nového navrhnutého spo-
sobu lokalizacie v dynamickom prostredi.
Ukazeme, 7Ze nase spracovanie zlepsi loka-
lizaciu v porovnani s pripadom, kedy sa
dynamické objekty neuvazuju.

Klacové slova: Vizudlna lokalizacia v
interiéri, Lokalizicia v dynamickom
prostredi, Vytvaranie datasetu pre
lokalizaciu z Matterportu

Preklad nazvu: Vizualna lokalizacia v
dynamickom prostredi
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Chapter 1

Introduction

Visual localization is a method to estimate the 6 Degree-of-Freedom (DoF)
camera pose given a RGB image from the scene, i.e. the position and
orientation of the camera. It is a very important task in computer vision.
The possibility of accurate localization leads to many applications, such as
self-driving cars, mobile robots, or augmented reality.

For outdoor localization, there is a possibility to use GPS systems. It can
be accurate down to several meters, which is not enough for uses such as
self-driving cars. Moreover, it does not provide any information about the
orientation of the camera. This can be significantly improved using visual
localization. For indoor applications it is not possible to use GPS at all, and
it needs to rely on visual localization if not wanting to use any additional
equipment such as lidar, accelerometers, gyroscopes, or compasses. Even
though the mentioned devices are more used nowadays, but they are still
expensive or inaccurate and complicated to use.

Indoor visual localization is a complicated task, since even small changes
in the pose of the camera lead to great changes in the scene. In addition,
the indoor environment is often repetitive [1] and not only on small scales -
there are usually many of the same chairs, tables and doors. It also applies
on greater scales - hallways and offices often look very similar. Moreover,
there are also many plain walls (or windows) that do not provide any useful
information for localization. Another challenge is that the environment is
only seldom static and often contains a lot of moving objects.



1. Introduction

The main goal of this thesis is to improve an already existing algorithm
for visual localization [2] so that it also works in dynamic environments, i.e.,
environments with changing or moving objects. The motivation for this step is
the fact that moving objects often lead to big changes in the scene, which can
make the original algorithm work imprecisely. Also, dynamic environments
are more common in the real world, making this improvement even more
important.

B 1.1 SPRING project

The thesis is part of the EU Horizon 2020 project SPRING [3]. Its goal
is to develop socially assistive robots capable of performing not only basic
robotic skills such as navigation, grasping and manipulating objects, but also
communicating with people naturally. Robots must be able to move, hear and
communicate in complex and unstructured public places. This thesis deals
with the visual localization of the robot. The project will be tested at Broca
Hospital, which is a gerontology hospital in Paris. This is the reason why
the thesis assignment is focused on the home / medical environment. Also,
hospitals are very dynamic environments, with a lot of moving equipment,
people in the rooms or even visitors all around the hallways. The original—
static—localization would not work and we assume that our improvements
will bring great advancement in this field.

B2 Objectives

The objectives of the work are the following:

1. Review the state-of-the-art methods for indoor visual localization, see
[2,14H7].

2. Create a new dataset in a medical environment. The dataset should also
contain dynamic objects.

3. Make adjustments to [2] to provide robustness against moving objects.

4. Demonstrate and evaluate the improved method on the new dataset.



1.3. Codes

. 1.3 Codes

All the codes used in this thesis are publicly available on Github [g].

The links to other repositories are presented:

Improved InLoc implementation,

Implementation in Habitat,

Creation of cutouts in Matlab,

Blender scripts.

Please note, that I commited the changes under several usernames — either
dubenma or dubenmal. Most notably though, the implementation in Habitat
was accidentally committed under the name of Michal Polic, since we shared
the same computer in the office. All the changes in the repository were done
by me only.






Chapter 2

Previous work

As have been said, visual localization is problem of estimating 6DoF pose of
the camera. Two main approaches are used in the literature: (i) pre-build 3D
map based localization; (ii) image retrieval based localization.

The 3D maps are usually created from 3D point clouds. The point clouds
itself are often created from 2D images taken in some local motion—this
is known in the literature as Structure-from-Motion (SfM) [9]. A feature
descriptor is assigned to each 3D point. One way to obtain the pose is using
a neural network (geometric regression [10], regression forests [11], or Long
short-term memory (LSTM) [12]) from the input point cloud (RGBD space)
to the pose parameters. A second way is using feature matching and solving
a Perspective-n-Point (PnP) problem to obtain the query pose ( |[13H16]).
Using 3D maps can directly give us the 6DoF pose, but the method is not
efficient in large-scale datasets, e.g., big rooms or entire houses.

Using image retrieval techniques can cope with large datasets, but on
the other hand, it can only provide us approximate location of the query.
Still, methods based on this principle are widely used. The location of the
query is obtained from the most similar image retrieved from image database
( [L2/4l17H19]). To scale onto large datasets, local descriptors are used. More
modern approaches are using dense descriptors using Convolutional Neural
Networks (CNN) ( [2,[4,/20]). While the other are using local information
( [21H23]). These methods can be further improved with feature selection

( [23l[24]) or feature weighting ( [14}25]).

5



2. Previous work

. 2.1 InLoc

InLoc [2] is a state-of-the-art visual localization method. There have been
a lot of improvements in the field by then. However, since it is part of the
assignment, the thesis focuses on improving this method.

The paper describes the Inloc dataset as follows:

® 356 query RGB photos with reference poses,

B 9972 database RGBD images with reference poses.

The base for database images were 277 panoramic RGBD images that were
obtained from scanning two buildings at the Washington University in St.
Louis with a Faro 3D scanner. For each panorama, 36 RGBD perspective
images also called cutouts were obtained. The RGB images for the query
were taken using a smartphone camera on 2 floors of the building. The other
floors play the role of a confuser in the dataset.

The InLoc pipeline has the following 4 steps:

1. Candidate image retrieval: Given an RGB image as an input query,
it first identifies a set of locations in the scene potentially visible in the
query via image retrieval.

2. Feature matching: For each location, it performs feature matching
and re-ranks the locations based on the number of matches passing a 2D
geometric verification stage.

3. Pose estimation: Camera poses are then estimated for the top-ranked
locations only.

4. Pose verification: Camera poses are visually verified and the image
with least error is retrieved.

In the first step, the feature descriptor vectors are extracted using NetVLAD
[4] CNN for both the database and the query images. The top 100 database
images most visually similar to the query are identified based on the score
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2.1. InLoc

similarity matrix. In the second step InLoc performs mutual matching of the
densely extracted CNN features for top 100 retrieved images and performs
spatial verification by fitting homographies. The tentative matches are
geometrically verified by estimating up to two homographies using RANSAC.

In the Pose estimation step, InLoc estimates a 6DoF camera pose for
the top 10 candidates with the largest number of homography inliers. As
perspective images in our database have depth values, and hence associated
3D points, the query camera pose can be estimated by finding pixel-to-pixel
correspondences between the query and the matching database image followed
by P3P-RANSAC. The dense 2D-2D matches between the query image and
a retrieved database image define a set of 2D-3D matches when taking the
depth map of the database image into account. The pose is then estimated
using standard P3P-RANSAC.

For evaluation purposes, query reference poses needed to be estimated.
The reference camera poses of the query were computed as in Algorithm [1]
First, the most visually similar cutouts for each query image are selected (line
5). The cutouts are then automatically matched to the query images (line (7)),
and the camera pose is computed using the found correspondences (line |9).
The poses are reprojected and visually verified. If a significant misalignment
is found, the correspondences are manually annotated, and the camera pose
is recomputed (lines [104{13). Finally, the poses are quantitatively and visually
inspected (line |14).

Algorithm 1 Calculation of the query reference pose

1: Inputs: set of query images Q;

2: Outputs: reference poses P,.f;

3: Proy < empty set of reference poses;
4. for each ¢ € Q do

5: Select N visually most similar cutout images to ¢;

6: for each n € N do

6 Automatically match the cutout,, to the query;

8: end for

9: Compute the camera pose P, and visually verify the reprojection;
10: if Significant misalignment is present then

11: Manually annotate correspondences for difficult queries;
12: Repeat from [9;

13: end if

14: Quantitatively and visually inspect the poses;

15: P,«ef — Pref + Pq

16: end for

17: return P,..f;




2. Previous work

B 22 NetvLAD

NetVLAD is a CNN based architecture that is used for feature extraction.
The NetVLAD layer offers a powerful pooling mechanism with learnable
parameters that can be easily plugged into any other CNN architecture. In
this thesis, we used the same architecture as in [2] and [7]. The NetVLAD layer
was combined with VGG-16 [26] and pre-trained on the Pitts30k dataset [4].
The input to the neural network is an image and the output is a NetVLAD
descriptor vector.

. 2.3 Visual Localization with Hololens

The master theses |7| brings improvements to InLoc implemenatation. It also
comes with a new dataset of 2 rooms from Czech Institute of Informatics,
Robotics and Cybernetics (CIIRC) building in Prague. Matterport 3D scanner
was used to acquire panoramic RGBD images. The RGB panoramas had to
be downloaded manually from the site. Unfortunately, their rotations were
unknown. To fix this, the orientations were estimated by minimizing the
differences between the downloaded panoramic image and the projection of
the point cloud from the reference position. The found rotations of panoramic
images were assumed as ground-truth. Perspective images were created from
the rotated panoramic image. The query images were taken in two ways. The
first one was using a smartphone camera. To determine the pose, Vicon (pose
estimation system) was used. The second one was using HoloLens camera,
which is capable of taking images and estimating their poses internally by a
SLAM-based algorithm.

The goal of the thesis was to use a sequence of query images for improving
the localization. Two methods were implemented. One of them succeeded
to bring improvements to the localization, while the other did not perform
very well. This thesis is a continuation of the work and builds on the
implementation. However, since there were still known errors in the code for
localization of sequences, we worked only with a sequence of length 1.



Chapter 3

Creation of dataset

The general content of the dataset for InLoc is: 3D model of the space, RGBD
perspective images for database and RGB perspective images for query and
known poses for both sets of images. In general query poses are usually not
known. In the InLoc paper 2] the poses were estimated and manually verified.
In the master thesis the positions were obtained from Matterport SDK
but the rotations also needed to be estimated. Manual work always leads to
errors in some extends so we aimed to prepare a dataset for which the poses
did not need to be estimated.

B 31 Scanning the scene with Matterport camera

The data for the thesis were acquired at 2 different spaces of the Broca
hospital. We will refer to those spaces as Hospital and Living Lab
Figure 3.2l Hospital consists of places such as reception, waiting room, big
hallways with elevators and rooms for treating the patients. Living Lab is a
smaller space with office environment.

For the creation of our dataset only the Matterport 3D scanner was used.
We used Matterport Pro 3D Camera [27]. The camera was mounted on a
tripod and placed at a spot where we wanted to scan the space. The scanning
was triggered using Matterport Capture app on an iPad. The camera rotates
around its z-axis to create 360° picture. Once it finished, the tripod was
moved to a new spot. Generally we aimed to have around 1.5 meters between
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3. Creation of dataset

the spots covering the whole space. The app shows the resulting point cloud
from above. The scans automatically align with each other and therefore
show the whole scanned space so far, so it is easy to see which spots still
need to be scanned. After the scanning is finished, mirrors and windows are
needed to be marked in the app and also parts outside of our desired space
need to be cut off.

Figure 3.2: The floor plan for the scene Living Lab.

The next step is to upload the space to Matterport cloud for further
processing. According to the size of the space it could take up to several hours
to process. Once it was processed the data were available for downloading
after purchase in the form of Matterpak bundle. It consist of:

® 3D mesh file in .obj format together with corresponding texture map
images,

B colorized point cloud in .xyz format,

m ceiling and floor plan images in .pdj.

The data are available here [8]. For the Hospital space 116 scans and for

10



3.1. Scanning the scene with Matterport camera

Living Lab space 36 scans [Figure 3.3 were taken giving us a total of 152
scans.

Figure 3.3: Coordinate systems of the sweeps are shown in the 3D map of the
Living Lab scene.

11



3. Creation of dataset

B 32 Acquiring data using Matterport API

The scans are called sweeps in Matterport terminology, so we will refer to
them as such. Matterport does not provide direct access to the poses of the
sweeps or the panoramic images. These data need to be acquired through
Matterport API . It is available after activation of Developer tools. An
API key has to be generated to connect to Matterport API endpoint. Then a
GET request with the authentication and a query string is sent. The reply is
in the form of a .json file [Listing 3.1

Listing 3.1: Example of a json listing for one panorama.

"data": {
"model": {
"locations": [
{
"panos": [
{
"id": "pano_id",
"position": {
"x": 11.188,
"y": -2.095,
"z": 1.628
},
"rotation": {
"x": -0.015,
"y": -0.008,
"z": -0.707,
"w": 0.707
+,
"skybox": {
"children": [
"skybox_urls"
]
}
}
]
}
]
3

Matterport API does not support retrieving panoramic images as panora-
mas but as skyboxes only. The skybox consists of 6 square images, each
image individually projected onto the shape of a cube: up, down, front, back,
left and right. They come bundled with position and rotation data. The data

12



3.3. Generating cutouts

was saved in a .csv file with 9 values for each panorama: id of the panorama,
name of the panorama, x,y, z for camera position, w, x, y, z as quaternion for
camera orientation.

For the skybox, the json file contained a link for each image to be down-
loaded. The links expire in 10 minutes. For all of the 152 sweeps, it led to
912 images. The links expire in 10 minutes. We implemented a script to
download all the images. Using the skybox images, it is possible to create
panorama images using the library cube2sphere . It is a Python script
that maps 6 cube faces into an equirectangular map, resulting in a panorama
image . It requires Python 3 and Blender to be installed.
The skyboxes were downloaded with a resolution of 2048x2048 pixels and
resulted in a panorama with a resolution of 8192x4096 pixels.

Figure 3.4: Example of a panorama image created from skybox.

All of the above scripts are available on GitHub [31].

B 33 Generating cutouts

Cutouts are RGB perspective images from a scene with a known pose, i.e,
the position, and the rotation of the camera in the map coordinate system.
Having panoramas with their poses, it is possible to generate as many cutouts
from the panoramas as needed. The more, the better . However, we
were limited to cutouts with positions of the Matterport camera and were
able to change their rotations only. We opted for the same sampling of the
panoramas as in the original InLoc dataset, i.e. 36 images using a sampling
of 30° in yaw and £30° in pitch angles. This gave us 5472 cutouts in total .

13



3. Creation of dataset

There are still no data from the robot that will be used in the hospital,
and also the parameters of the camera that will be used on the robot are not
known. We needed to decide ourselves what the parameters will be, so we are
able to generate cutouts. We could have chosen any parameters. It does not
influence the code and can easily be changed as soon as there is any further
specification.

The focal length f, principal point [c., ¢,], and resolution [we, k], which
is the width and height of the cutout, of the Hololens camera [32] was used.
We opted for these parameters since our lab already worked with Hololens
on different projects such as ARtwin [33], where the localization in a factory
and construction environment is developed. However, the parameters were
later slightly changed due to limitations of the simulator AI Habitat [34] we
used as mentioned in [subsection 3.4.1l

f | 1037.301697
¢ | 664.387146
¢, | 396.142090
we | 1344

he | 756

Table 3.1: Parameters of a calibrated Hololens camera in pixels.

Once the parameters were set, the cutouts could be generated. Panoramas
are oriented in the way that when the respective position and orientation
from the Matterport API that are given in the map coordinate system are
applied, we get to the sweep coordinate system S |[Figure 3.3| for which it
applies that the zg axis is pointing up and the xg axis is pointing inside of
the image in the middle of panorama [Figure 3.5.

o

-

Figure 3.5: Panorama with the sweep coordinate system S and angles « and £.
x-axis is pointing to the image, to make the system right-handed.

A cutout with zero additional rotation applied will have the center of the
sweep coordinate system in the middle of the image with xg facing right, yg

facing inside, and zg facing up [Figure 3.6

14



3.3. Generating cutouts

Figure 3.6: Sweep coordinate system S in a cutout with zero R rotation applied.
The S coordinate system is then identical with the camera coordinate system.

The matrix R is used to determine the direction for the camera to generate
a cutout. The matrix R is given as

R = RIRT. (3.1)

The matrices R, and R, are rotation matrices around the axes z and z,
respectively. Any form of rotation matrix could have been chosen, even more
complicated ones that would include also rotation around y axis. However,
we opted for only yaw and pitch since it represents the scenario for looking
up, down, and around, since this is the most likely one for the robot.

The goal is to obtain a sphere with the center located at the point [0, 0, O}T
in the coordinate system S. The panorama is then projected onto the sphere
from which we acquire a cutout.

First, the submatrix iQ of the projection matrix P is computed. It trans-
forms points from image coordinate system to camera coordinate system and
is given as:

iQ=RTK™ !, (3.2)
where K is the camera calibration matrix and is given as:
0
fy eyl (3.3)
0

The parameters f;, fy, c; and ¢, are the intrinsic parameters of the camera.

15



3. Creation of dataset

fz and f, describe horizontal and vertical focal lengths and ¢, and ¢, the
principal point. The origin of the digital image in the image coordinate
system is typically located in the upper left corner, so the image must be
translated using the vector [cz, ¢y, 1]7.

Then, for each point in the image, its corresponding direction vector ¢
in the camera coordinate system is computed by Equation 3.4/ and then
normalized by [Equation 3.5l

Tc
U =1Q |yc (3.4)
1
il
7]

This way, points on a sphere are obtained onto which we can project the
panorama image. Then the angles o and (3 are calculated from 7i:

n .
a = —arctan —2, [ = —arcsinn,. (3.6)
[z

The pixel positions « and v in the panorama image were computed from
these angles given:

B a
u:;wp+wp+1, v:%hp—l—hpjtl, (3.7)

where w, and h, are the width and height of the panorama. A value of
one needed to be added because it was implemented in Matlab and it indexes
from 1.

Bilinear interpolation is then used to acquire the final cutout. The value of
the pixel is assigned based on the four closest pixels from the source image.

Each cutout was saved in the .jpg format and a poses.csv file was saved
that consists of: name of a cutout, [x,y, z| position and [w, z,y, z] quaternion

16



3.3. Generating cutouts

for orientation. The position is the same as the one from panorama while the
rotation is computed as:

R.=R,R”, (3.8)

where R, is the cutout rotation, R, is the panorama rotation and R is
given in It is then transformed from a rotation matrix to a
quaternion. An example of generated cutout can be found in

- | A i

(a) : Cutout with rotations R, (0) and (b) : Cutout with rotations R.(30) and
R.(0). R.(—30).

Figure 3.7: Example of cutouts generated from the panorama shown in
ure 3.4

For debugging purposes, the point cloud of the map was projected onto
the cutout to determine whether the poses are correct (Figure 3.8))

Figure 3.8: Generated cutout with a projected point cloud of the map.
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3. Creation of dataset

B 3.4 Al Habitat

AT Habitat [34] is a simulation platform for training embodied Al agents such
as virtual robots. It provides a photorealistic and efficient 3D simulator to
test the learned skills before transferring them to reality. Advantages over
testing/training in the real world include:

m faster - the possibility of parallel processing,
® no danger - poorly trained robots do not have any consequences,
B efficient - possibility of replicating any conditions easily,

B availability - in real life the robot or the right environment may not be
available.

The last property was the main reason why Al Habitat was used for this
thesis. Since there was no access to the robot that will be used in the SPRING
project 3] and the hospital is in France, it is much more practical to make
use of a simulator to test the methods for filtering dynamic objects.

Al Habitat [34] consists of two parts: Habitat-Sim and Habitat-API.
Habitat-Sim is a flexible, high-performance 3D simulator with configurable
agents, sensors, and generic 3D dataset handling. Habitat-API is a modular
high-level library for end-to-end development of embodied AI algorithms —
defining tasks (e.g. navigation, instruction following, question answering),
configuring, training, and benchmarking embodied agents.

We used it to obtain synthetic images from mesh, semantic segmentation
images and depth maps for each cutout. Semantic segmentation was first
implemented in Blender [30], however, it was very slow, taking several seconds
for only one image. Habitat is much faster. It creates a mesh image, semantic
image and also a depth map for one cutout in about 0.35 second. Moreover,
Blender was not a very good option since it did not support creation of depth
maps.

18



3.4. Al Habitat

B 3.4.1 Implementation in Habitat

First we needed to load the mesh 3D model. Habitat supports maps in .glb
format only. Therefore, the .0bj mesh map from Matterport needed to be
converted to .glb. It was done manually in Blender [30].

Later, it was switched to a more complicated model because of future
integration with dynamic objects. The map was manually segmented in
Meshlab. It resulted in an empty map with mostly only walls, floor, ceilings,
and pillars. The segmented objects were saved individually in a folder
specifying the type of the object, for example: chair, sofa, table, sink, etc.

Since there were now too many objects to convert to .glb, a tool 0bj2glb.py
was created to do it automatically. It uses the obj2gltf [35] library.

Structure of habitat_ros__semantic_2/spring__simulation [36]:

a script for generating all the accompanying files for cutouts is imple-
mented in generate dataset_cutout.py,

configuration file in configs/tasks/pointnav.yaml,

empty model in data/scene__datasets/<space name>_empty.glb,

segmented objects in objects__categorized/<space name>/<type of ob-
ject>

The configuration file specifies which sensors are used. For the purpose of
the thesis a RGB sensor, a semantic sensor and a depth sensor were used.
For each, the parameters width, height, horizontal field of view, position, and
orientation of the camera needed to be set. This brings us to the reason why
the parameters of our calibrated Hololens camera could not be used [Table 3.1l
The configuration file does not support decimal values for the field of view.
Therefore, the closest value of the horizontal field of view was computed from
the focal length f of Hololens and the cutout width w:

HFOV = 2arctan (;") . (3.9)

19



3. Creation of dataset

There was also no option to change the principal point. It is expected to
be in the center of the image. The camera parameters that were used are
specified in |3.2. The position and orientation in the configuration file were
filled with only zero values. The pose of the camera changes for every cutout
and it was more practical to change it in the code.

HFOV | 66

f 1034
Ce 672
cy 378
We 1344
he 756

Table 3.2: Parameters of the camera for cutouts.

The poses of the cutouts are loaded from the poses.csv file that was created
in Matlab.

Habitat uses a coordinate system that follows OpenCV [37] orientation:
x going right, y going down, z going forward. This differs from the one
we used in matlab to genereate RGB cutouts which was: x going right, y
going forward and z going up. We needed to tranform the poses to habitat
coordinate system. For the position it was a simple rotation around the x-axis
by -90 degrees. The orientation of the camera in Habitat Rj, was given as:

R, = Ry (—90)RR,(180), (3.10)

The R, is a matrix that represents rotation around the axis x (Equa{
tion 3.11), R, is the rotation of a cutout from Matlab. R, is given in the
coordinate system used in Matlab and needed to be transformed by -90 de-
grees around x. The resulting cutout from this was facing the other direction
so we also added an additional rotation by 180 degrees to fix this.

1 0 0
R;(0)=1| 0 cosf —sinf (3.11)
Osin 6 cos 6

Habitat has a method visitor_utils.show_ observations() that returns obser-
vations from all the sensors specified in the configuration file. The input is the
position and rotation of the camera. RGB sensor returns a RGB synthesized
image from the 3D model.
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3.5. Dataset with dynamic objects

(a) : Cutout generated from a panorama. (b) : Synthesized imaged from a RGB
sensor in Habitat.

Figure 3.9: Comparison of a cutout generated from Matlab and Habitat.

The semantic image is discussed in the following section regarding dataset
with dynamic objects. The depth image represents a depth map: the value
of each pixel is the destination in meters to the object shown in the pixel.
By default the maximal range of the sensor is 10 meters so we changed the
range to infinity to have precise data. We used the depth map to compute

the point cloud for each cutout [Figure 3.10a

The implementation is accessible on Github .

B 3.5 Dataset with dynamic objects

In real life static scenes are not very realistic. There are objects that are
moving everywhere. For public places it is especially true for people. They
are not a static part of the environment and therefore cannot be used in the
localization pipeline. The general idea of the dataset with dynamic objects
is that we would still have static database RGBD images, but the queries
would contain dynamic objects.

In practice, there could be a neural network responsible for segmentation
of objects in a query image such as YOLACT . It would provide us with a
mask for dynamic objects. The matches between queries and database image
in the area of the mask would not be considered. Which could, in theory,
improve the localization.

In this thesis we tried to simulate such dataset. For the dynamic dataset
we first manually added objects to an already existing 3D map. We created
two new dynamic datasets for each scene using the objects we already had.
It was created in Meshlab in the following way:
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3. Creation of dataset

(b) : The true colored point cloud is a part of the point cloud provided
from Matterpak. The yellow-blue point cloud is the point cloud from (a).
It shows that the two point clouds align. The axes shown is the camera
coordinate system.

Figure 3.10: Poincloud generated from a depth map.

1. The 3D model from Matterpak was loaded.
2. The objects that were manually segmented were also loaded.

3. We moved each object to a new location and saved it.

We decided on this method because it seemed as the best one to simulate
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3.5. Dataset with dynamic objects

movement of objects. It could have been done in a way that the objects would
be also moved away from their original location. However, that would lead
to change not only in the new position but also in the old position, since it
would result in holes in the final mesh. We needed to create masks for the
dynamic objects that would give us information about every change in the
scene. That is why the dynamic objects were added to the scene.

We created two sets of datasets with dynamic objects: dynamic 1 and
dynamic__2. The dataset without any dynamic objects is referred to as static
dataset. The dataset dynamic_1 has the objects placed on the ground in
the remaining empty spaces. The dataset dynamic 2 had twice that many
dynamic objects. Half of them are at the locations from dynamic_1 and
half were added to new locations. This time the objects were added also to
locations where they would cross other objects. Some of the objects were not
placed on the ground but left flying to create greater occlusions.

Unfortunately, we lost the texture maps for the objects so the dynamic
objects did not have any color and the default white material was applied.
This way it is easily recognizable which objects are the dynamic objects,
though. The objects are then converted to .glb. After that, they can be
loaded to Habitat.

We will need masks for the dynamic objects. The semantic sensor in
Habitat was used for the purpose. It gives us the information about what
objects are in the cutout. Each object loaded into the scene has its own id
associated. The value of the pixel in the semantic image is the id of the
object that is in the pixel. This is not very useful on its own. There is a
list of ids of the objects for each category of objects. A new semantic image
was created that has the ids of the category names as values of the pixels
at the place of the objects. A file named semantic.csv was created to save
the information about object categories. Each line is for one object category
and data is following: id of the category, value of the pixels in the semantic
image, name of the category. These masks can be used as training data for
segmentation in YOLACT [3§]. It could also be useful if we wanted to add
any of the categories to the dynamic objects.

Finally, the masks for dynamic objects were created from these semantic
images. A new image was created. The pixels in the position with the value
of id of the dynamic category in the semantic image were given a value of 1
in the new image. In the rest of the positions in the image pixels have the
value of 0.

All the necessary data were obtained, and they needed to be changed to
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3. Creation of dataset

InLoc format.

. 3.6 Creation of new InLoc dataset

The data obtained will be used for both database and query images. The
dataset is split to sweeps that will be used as queries and the rest serves
as data for database images. The data structure used in the previous
work [7] was preserved. All the data were copied to a server to have
them stored at one place. A script was implemented to convert the data
to the right structure. All the needed scripts can be found in localiza-
tion__service/Build_SPRING/prepareDataset/.

For each scene, there is a folder for data from Matlab and a folder for
data from Habitat. The Matlab folder consists of a single folder named
cutouts that contained all the created cutouts and the poses.csv file created in
Matlab. Then there is a folder for data from Habitat. There are 3 subfolders
specifying the dataset type: static, dynamic_1 or dynamic 2. Each of them
contains folders rgbs, depth and semantic. The folder rgbs contains synthetic
images from the 3D model. The folder depth contains .mat files with colored
point clouds of each cutout. The folder semantic contains semantic images of
objects, semantic images specifying the category of objects and a semantic.csv
file. These are not needed for our dataset. In the dynamic datasets there is
also masks folder that contains masks for the dynamic objects.

4
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(a) : Dynamic cutout. (b) : Mask of dynamic objects.

Figure 3.11: Cutout in a dynamic environment together with its mask of moving
objects.

The right structure [Figure 3.12is achieved by running the script prepare-
Dataset.m. At the beginning of the script the scene and the type of dataset
need to be specified. If a dynamic dataset is chosen, it creates cutout images
with dynamic objects [Figure 3.11al It takes a cutout and at the place of a
dynamic mask Figure 3.11b| it replaces the image with a synthesized image
with dynamic objects. The image is saved to a new cutout folder in the
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habitat directory.
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3.6. Creation of new InLoc dataset

cutouts_dynamic
masks_dynamic
matfiles

matfiles_dynamic

meshes

meshes_dynamic

poses

query_all

| metadata

] query_1l.jpg

| query_n. jpg
livinglab

cutouts

query_all

Figure 3.12: Structure of a dynamic dataset.

B 3.6.1

InLoc dataset without queries

Table 3.3| shows how the data are distributed. The first column specifies
from which of the datasets the data were taken. For the dynamic dataset the
number of the dataset needs to be added. The second and the third columns
specify the source of data and the fourth column the target location in the
InLoc dataset. Its full path is <path to dataset>/<type of dataset>/<space
name>/<data type>. It is further separated. For each of these folders the
structure is following: <space name>/<sweep number>.
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Type of dataset | Data from Matlab Data from Habitat | Inloc data

static cutouts/ cutouts/

static depth/ matfiles/

static rgbs/ meshes/

dynamic cutouts/ cutouts__dynamic/
dynamic depth/ matfile_dynamic/
dynamic rgbs/ meshes__ dynamic/
dynamic masks/ masks__dynamic/
static cutouts/poses.csv poses/

Table 3.3: Comparison of the structure of the obtained data and the new dataset
in InLoc format [Figure 3.12| for each dataset type. Only the static dataset is
true to the original InLoc dataset. Dynamic dataset is our addition.

All the variables are the following:

Type of dataset: static, dynamic_ 1, dynamic_ 2,

B Space name: hospital, livinglab,

Data type: folder names from the fourth column in Table 3.3
® Sweep number: 1 to n, where n is the number of sweeps,

For hospital space n = 116,
For livinglab space n = 36.

The space name is in the path twice. It is for practical reasons. If there
was a need to change something in the dataset from one of the scenes it was
easier to just delete one whole folder and create the dataset again. In the
final dataset with queries the first use of <space name> is ignored.

The data in the directory poses is created from the file poses.csv that
contains poses for all of the cutouts. The directory contains .mat files with
rotation and position for each cutout. For each cutout, the poses are saved
in a separate file.

For the static data set, only the directories that are specified as static
in the first column of [Table 3.3| are used. For dynamic datasets, all of the
directories are used. It is because the database data is static and the query
data is dynamic.

Finally, we add a folder models to which the Matterpak bundle is copied for
each scene. We need only the mesh map with textures. Matterport models
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3.6. Creation of new InLoc dataset

have their own unique names, so the .0bj model needs to be renamed to a
general name model.obj so that it can be used in the InLoc pipeline without
any other changes in the code.

B 3.6.2 Separating query and database data

The data then need to be separated to database and query. It is implemented
in splitQuery.m. First, it copies the whole dataset from the previous step.
The ids of sweeps we want as queries are specified, and those are then moved
to the folder queries. We aimed to use around 12% of the sweeps for queries
and the rest for database. For the Hospital scene we used 15 out of 116 sweeps
Figure 3.13, and for the LivingLab scene 5 out of 36 sweeps [Figure 3.14.

For the queries, we actually need only the cutout images and reference
poses. However, we keep all of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>