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Abstract

Quantized neural networks (QNNs) help
implement large-scale models on devices
with limited hardware resources. This the-
sis aims to compare and improve meth-
ods for training QNNs, so the gap be-
tween quantized and full-precision mod-
els closes. Discretization is generally a
non-differentiable procedure and, there-
fore, unsuitable for gradient-based back-
propagation. The introduction of stochas-
ticity to the network solves this issue for
the price of a more complex training pro-
cess.

Two families of methods were studied
to train QNNs. Both introduce stochas-
tic quantization into the standard NNs.
One family samples stochastic quantized
values in the forward pass. The other
family propagates moments of probability
distributions.

We propose simplifications to sampling-
based methods and suggest that proba-
bilistic propagation can be used for pre-
training. Pre-training enables the other-
wise slow learning binary NNs to be used
on a broader range of deep NN architec-
tures. Experiments validate the function-
ality of both approaches on the MNIST
and CIFAR datasets.

Keywords: quantized neural networks,
stochastic neural networks, relaxed
quantization, probabilistic learning,
binary neural networks

Supervisor: Mgr. Oleksandr
Shekhovtsov, Ph.D.

Abstrakt

Kvantované neuronové sité (QNNs) po-
mahaji implementovat rozsahlé modely
na zarizenich s omezenymi hardwarovymi
zdroji. Cilem této préace je porovnat a zlep-
$it metody pro trénovani QNNs, aby se
zmensil rozdil mezi kvantizovanymi a 'full-
precision’ modely. Diskretizace je obecné
nediferencovatelny proces, a proto je ne-
vhodné pro optimalizaci zpétnym sitenim
gradientu chyby. Zavedeni stochasti¢nosti
do neuronovych siti tento problém fesi za

vvvvvv

Byly studovany dvé rodiny metod pro
trénovani QNNs. Obé zavadéji do stan-
dardnich neuronovych siti stochastickou
kvantizaci. Jedna rodina vzorkuje stochas-
tické kvantizované hodnoty béhem do-
predné propagace. Druhé rodina propa-
guje momenty pravdépodobnostnich roz-
déleni.

Navrhujeme zjednoduseni metod zalo-
zenych na vzorkovani a navrhujeme, ze
by pravdépodobnostni propagace mohla
byt pouzita pro predtrénovani siti. Pred-
trénovani umoznuje vyuzit jinak pomalu
se ucici binarni neuronové sité na Sirsi
skéle architektur hlubokych neuronovych
siti. Experimenty ovéruji funkénost obou
pristupt na datasetech MNIST a CIFAR.

Klicova slova: kvantizované neuronové
sité, stochastické neuronové sité,
uvolnénd kvantizace, pravdépodobnostni
uceni, bindrni neuronové sité

Preklad nazvu: Uvolnéna kvantizace a
binarizace neuronovych siti
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Chapter 1

Introduction

Neural networks are exploited in various cases with full-precision weights and
activations. However, larger models demand a lot of computational power
and a large memory to store all their parameters/weights. This requirement
renders them unusable for resource-constrained devices or limited-budget
applications. Therefore some compression is needed to limit the memory
and CPU requirements. Among multiple different approaches, several stand
out. One such method is pruning, which focuses on removing redundant
parameters from already functional NNs [AK13]. Another method, and the
main focus of this work, is the quantization of weights or activations or both.
Last to point out are the methods focusing on custom hardware optimization
for different structures of different hidden layers. For example, specialized
FPGAs can be used instead of GPUs |[CBM™20|, which may improve the
performance and even lower financial costs. All the methods mentioned above
might as well be used together to maximize the savings.

Quantization aims to utilize an already existing neural network and re-
duce its precision. Therefore scalars can be represented with less than the
standard 32 or even 64 bits. While working with smaller precision, much
fewer computational operations need to be executed, and thus the CPU
power requirements are lowered. Quantization also results in memory savings
since all weights are in lower precision. The extreme case of quantization
is the Binary Neural Network (BNN) which works with only 1-bit weights
and activations. BNNs achieve a 32x (or even 64x) reduction in memory
requirements. Rastegari showed in his work [RORF16] that in BNNs, all
multiply-accumulate operations (MACs) can be replaced with XNOR opera-
tions and bit-counting, which results in up to 58 x speedup on CPUs (rather
than GPU).



1. Introduction

The quantization process can be introduced into a NN before or after
training. Quantization after training is called post quantization. Popular DL
frameworks like PyTorch and TensorFlow include the post quantization
function in their libraries. Such a lowering of precision works well for most
DNNs until 8 bits, regardless, without the loss of accuracy [Z2Z2S522]. Zhang
demonstrated in his paper [ZZS22)] that even at 4-bit precision, a post-training
quantized NN for the ImageNet can achieve comparable results to a NN trained
with full-precision. For precision lower than 4 bits, the quantization aware
training needs to be introduced.

The general problem with quantization is that discretization by rounding
is discontinuous, and thus its derivative is zero-almost-everywhere. Therefore,
the generally used gradient-based optimization is inapplicable. For that reason,
multiple approaches were introduced to work around the absence of gradients
or gain the gradients from more sophisticated discretization approximation
methods. The complexity of these approaches substantially differs, and it
fundamentally represents a trade-off between the computational complexity
and the accuracy of a network for different levels of precision. The commonly
used Straight Through Estimator (STE) is the simplest workaround [YLZ™19).
However, it is mainly used as a heuristic: it is ambiguous with respect to the
shape and scale of the surrogate gradients, different implementations involve
different clamping rules, etc. Relaxed Quantization by Louizos [LRBT18)|
allows for more theoretically sound approach. It introduces stochastic relax-
ation by injecting noises into the quantization. The expected loss is a smooth
function of latent weights, and the gradient is well defined. However, it uses
discrete categorical random variables and a complicated Gumbel-SoftMax
estimator, which is computationally demanding. A fast deterministic function
for test-time replaces the exploited quantization process, showing significantly
better results. Another popular quantization approach, stochastic rounding
by Gupta [GAGNI15], can also be explained as quantization with injected
uniform noise. It is a simpler method, but it is unclear why it underperforms.
We compare relaxed quantization by Loiuzos at al. with the stochastic STE.
We find that using uniform noise and the stochastic STE is much simpler and
computationally more efficient and achieves the same accuracy.

The second part of this work focuses on probabilistic propagation in Quan-
tized Neural Networks. Instead of sampling the stochastically quantized
weights and activations, we compute the mean and variance of the respective
discrete variables and propagate these statistics through the network using
analytical approximations. Similar approaches were used in the literature
for different purposes: in [SE19] for the analytic dropout, in [SCHI19| for
variational Bayesian learning of QNNs, in [PW18§| for training binary neural
networks, in [RSFP19] for training networks with quantized weights and
binary activations. In these works, quantized weights are represented by
general categorical distributions.



1. Introduction

We propose developing and applying probabilistic propagation for the noisy
quantization model of Louizos et al., which is easier to parameterize. We
propose the same treatment for weights and activations. We want to explore
the possibility of using this method as pre-training. Its approximate loss
function is smooth and non-stochastic, which should enable easier optimization
in the beginning. However, we do not expect probabilistic learning to achieve
the best performance as a sole method due to the analytic approximations.






Chapter 2

Quantization and Relaxed Quantization

All quantization methods have several common elements, which determine
how the method will translate a full precision value to lower bit precision
such as 4, 2, or even 1 bit. These elements are the merit of precision b, a
quantization function q(-) and an output vocabulary. The merit of precision is
a constant value b, which represents the number of bits available to represent
a quantized value. A general discretization function ¢(-) is defined as a
surjective function that returns a value from an output vocabulary of K= 2°
items. The vocabulary is a countable set of values that can be distinguished
with b bits. The structure of the output vocabulary is predominantly given
as a grid of ordered scalars.

B Grid of Quantized Values

The grid of scalars can be generally arbitrary. In this work, an equidistant
grid is presumed, for now, with step size 1. While assuming a fixed point
quantization, the grid G constructed with b bits is set as:

G =lgo, ., gx-1] =1[0,1,...,2° = 1] (2.1)

Since the input values in most cases will not tally with the universally set
grid points, additional parameters are needed for scale a and offset 8 of the
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2. Quantization and Relaxed Quantization

grid. These parameters can be either learnable or set by hand. The resulting
grid is:

G=aG+p (2.2)

Note that now the grid is still equidistant, but the step size is now set to a.

B Quantization Function ¢(-)

With the set grid G, a problem arises regarding how to classify continuous
values to the given grid points. As it has been already outlined, simple
rounding to the closest grid point

: 1
a?GG:a-L§+2J (2.3)

is a non-invertible function. Figure 2.1 shows that in backpropagation, the
gradient of such quantization function is zero almost everywhere, and therefore,
the SGD optimization is not applicable.

The following sections will introduce multiple heuristics which solve the
missing gradient problem by either replacing the gradient in backpropagation
or either by introducing a differentiable replacement for the rounding function
2.3l

. 2.1 Post-Quantization

The post-training quantization method’s biggest strength comes from skipping
overall issues regarding the backpropagation through the quantization function.
At the beginning is a DNN obtained through standard full precision training.
Zhang showed in his latest paper [ZZS22] that with a large enough dataset
supporting large batch sizes, for example, 1024 samples, he can achieve the
near-original results as the state-of-the-art full-precision model network with
only 4 bits.

Zhang’s work claims that his good accuracy can be algorithmically repli-
cated with guaranteed results. Even though his results are impressive, this
work aims to reduce the precision down to the extreme of one or two bits,
which the Post-Quantization approach does not deliver. Another issue of Post-
Quantization is that it achieves good results almost exclusively in classification
tasks [DNL™17].



2.2. Deterministic Quantization with STE

. 2.2 Deterministic Quantization with STE

The vanilla version of the Straight Through Estimator (STE) estimates the
gradient of the discretization function as the gradient of the identity function
f(x) = x. The identity function is plotted in the figure 2.1. The outcome
of this replacement in its vanilla form is that the backpropagation gradient
descent process ignores the presence of the quantization function, so it does
not influence the parameter updates in SGD.

The STE method has other modifications, where the gradient approximation
imitates some common activation functions such as standard, leaky, or clipped
ReLu. It was shown by Shinya [GI22] and Penghang [YLZ"19] that these
variant methods converge even in cases when the identity STE fails. The
better performance is presumably achieved by retrieving the information
about the maximum and minimum values set in the quantization grid G.

STE is a relatively simple approach to implement in code. However, the
hypothetical information of how are the propagated values influenced by the
quantization is lost. Regardless of this rough approximation, especially the
clipped ReLu version of STE is a method that shows impressive results even
for BNNs [HCS™16]. However, for some low precision cases, the quantization
might not be able to reach optimal values as it was described by Penghang
[YLZ'19] as the instability phenomena. Another issue can arise by the
commutation of the quantization errors and can lead to stagnation of the
output [Hig20].

Overall, the ReLu STE methods are the simplest and fastest quantization-
aware training approaches. They are also deterministic, which makes them
easier to implement on hardware [HCS™16]. The results of training a NN
with STE are relatively good. Especially for non-extreme cases, STE methods
seem like a good trade-off between complexity and accuracy, at least shown on
ImageNet, CIFAR10, and MNIST datasets by [YLZ™19], [GI22], [HCS™16].

. 2.3 Stochastic Quantization

The previous section explained that the only possible way of using determin-
istic quantization is to exploit some approximation for the gradient of the
quantization function. Even though these methods performed well on the

7
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output

-1 0 1 input

Figure 2.1: The functionality of STE and RQ for the ternary grid. The green
line represents the process of deterministic rounding to the closest grid point.
The red line represents the approximation of the rounding process using STE
within the first and last grid point. The blue line represents the average values
of quantization using RQ.

MNIST and CIFAR10 datasets, they are sensitive to their settings and have
not proven to be very robust [YLZT19|. Therefore it is relevant to gain more
quantization methods, ideally without the rough gradient approximations.

The new approach started focusing on the injection of stochasticity into
the process of quantization. Methods exploiting stochasticity for quantization
can be universally called Stochastic Quantization (SQ) methods. The idea
behind SQ methods have been already explored by several papers ([DNL™T17],
[LRB™18], [PW18], [GAGNTH]) resulting into methods that managed to
achieve good results. Y. Dong showed in his paper [DNL™17] that SQ
methods are capable of compensating the quantization error and, therefore,
can achieve better accuracy than the deterministic methods. Moreover, SQ
applies to a wider range of data sets and DNN structures [DNLT17].

The SQ methods can be generally divided into two categories. The first
category follows the direction of the deterministic methods and only introduces
a quantization function exploited as additional processing of weights and
activations. This category does not make major changes in the original
network structure, focusing mainly on the sampling of a selected distribution.
The other category is based on Probabilistic Neural Networks and the relevant
propagation of distributions through a network. This approach requires more
significant interventions to the original network’s structure as all layers must
be rebuilt in this matter. On the other hand, sampling is significantly limited
and can even be completely eliminated.



2.3. Stochastic Quantization

B Stochastic Attributes of SQ

A stochastic quantizer can generally be gained by assuming an input noise e.
This noise will determine the probability of a specific value of the input signal
= to be quantized as each of the grid points from G. In other words, artificial
noise is added to the input, which will make the previously non-differentiable
quantizer on average a smooth function. An example of the on average
smooth function is depicted in the figure |2.1. This addition of noise creates
another variable based on the input x as

T=x+e (2.4)

However, only the independent offset value € is obtained for a singular
feedforward pass, and the gradient of the 'on average’ smooth function cannot
be computed. Nevertheless, when assumed that ¢ has zero mean and is
continuously distributed, the expected value of deterministically rounded
random variable & will generally be closer to the original input value =x.
Therefore the expected error of the quantization procedure is smaller; thus, SQ
methods are capable of describing their input with significantly better accuracy
than the deterministic methods while working with the same precision [Hig20].
The following section will describe how the probability of selecting a grid
point is computed based on a cumulative distribution function (CDF).

B Categorical Distribution Function for SQ

The CDF of the noised input P(Z) is directly dependent on the CDF of the
injected noise €. To evaluate the probability of selecting each grid point from
the grid G, it is necessary to specify the properties of the distribution. In
theory, almost any distribution with zero mean can be chosen for the noise e.
The chosen distribution for € is then transferred with its parameters 6 onto
the input variable:

e~P(p=0,0) — &~Pu=u=x10) (2.5)

The probability of selecting a particular grid point is equivalent to the
likelihood of Z to be inside the interval (—a/2; «/2) around the specific grid
point. This estimation can be viewed in the figure 2.3, The probability
p(Z = g;) is evaluated based on the original input value x and the parameters
of the selected distribution 6:

p(& = gilz,0) = P(Z < (9: + a/2)) — P(Z < (9 — @/2)) (2.6)

9
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B The General SQ Learning Problem

The previous sections have defined how to compute the probability of selecting
a grid point as the output of an SQ function. This will serve as the shared
basis for SQ methods. Therefore it is suitable to describe the general problem
of learning NN with SQ.

As was previously outlined, stochastic quantization works with random
variables instead of the point estimates exploited in the deterministic rounding.
Let’s assume a loss function {. The arguments of the loss function are latent
weights 6, the injected noises over the whole network £, and the network’s
input x. The standard aim of any learning process is to minimize the loss
function. In the case of NNs, the minimization is obtained via gradient-based
optimization. Because of the involvement of the random noises £, the gradient
for an optimalization step is computed for the expected value over the injected
noise &:

1

e 1(,0,€)] (27)

There are multiple approaches to solving the equation [2.7. As outlined
in this section’s introduction, the methods can be divided into two separate
categories. The two following sections will focus on the first category and
introduce the well-known Stochastic Rounding (section [2.3.1) and the more
general Relaxed Quantization (section 2.3.2). These two methods exploit
sampling of the input noise, and the reparameterization trick [KSW15] for
learning. On the contrary, the approach of the latter category will avoid
sampling and create a Probabilistic Neural Network (PNN), where the general
distribution’s parameters represent all values.

B 2.3.1 Stochastic Rounding

One of the pioneer’s works on SQ was the Gupta’s Stochastic Rounding (SR)
[GAGN15]. The SR method considers only the closest higher and lowers grid
points with regard to the input value. The elementary approach of SR is to
round up or down with an equal probability of one-half. A more promising
method determines the probability of selecting a grid point based on the
distance between the input value and the closest grid points.

10
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PX=g,,)

9
>
I
«
X

Ji+1

Figure 2.2: Stochastic Rounding principle. The red and blue lines represent the
distance between the input x and the closest higher and lower gird point. The
ratio between the length of the colored lines corresponds with the ratio of the
probability of each grid point to represent the quantized value of x.

The most common case of SR determines the output grid point by sampling
from a uniform distribution. In other words, the injected noise from the
equation [2.4| is uniformly distributed. Let g; be the closest lower grid point,
and g;+1 be the closest higher grid point to the input value z. The start
and end point of the selected uniform CDF is set to be g; and ¢;+1. The
distribution for the formula (2.6l is then:

T~U(lzla [z]la) =Ur —a/2,2+ a/2) (2.8)

Stochastic rounding will round up to g;+1 with the probability of (z —
9i)/(gi+1 — gi) and correspondingly round down to g; with the probability of
(x — gi+1)/(git1 — ¢i). This process is visualized in the figure 2.2/

After quantization, the input is represented only by the closest higher
or lower grid point. This observation is essential for the future distinction
from Relaxed Quantization. The average value of the chosen non-extreme
grid points (over many quantizations of the same input) will be equal to
the value of the original input z. If the value of x is higher/lower than the
highest /lowest grid point g1 /g, the average value will be cropped in regards
to this limitation.

B Effects of Stochastic Rounding

Deterministic rounding to the nearest creates rounding errors which are in
some cases correlated to each other [Hig20|. This causes a systematic error
growth or sum stagnation, which was already observed in 1949 by Huskey
and Hartree. The rounding errors generated with stochastic rounding are
mean indented. In other words, their average value has no error [Hig20].
Therefore, it can be stated that the expected value of inner (dot) products of
large vectors is equal to the exact inner product without quantization. Such

11
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operations are a significant aspect of networks working with convolutional
and linear layers, making SR more advantageous than the STE methods.

B 2.3.2 Relaxed Quantization

This section serves as an introduction to relaxed quantization (RQ). The
RQ approach was introduced under this name in a white paper Relaxed
Quantization for Discretized neural Networks by Louizos [LRBT18| on which
are segments of the following text partly based on. In his paper, Louizos
elegantly explains the concept of using probabilities and cumulative distri-
bution functions (CDFs) for the stochastic quantization process. Relaxed
Quantization (RQ) evades the problem of the non-existing gradient by so-
called ’smoothing’. This process is outlined in the figure 2.1l After obtaining
the smooth quantizer ¢(-), the fundamental SGD process can be exploited for
optimization.

Let’s assume the noised input Z from the equation 2.4. For its mathematical
attributes, the zero mean logistic distribution with the standard deviation of
o will be considered as the distribution of the injected noise €. This resolves
in the context of the formula 2.6/ into:

p(Z = gilz,0) = L(Z < (9: + @/2)) — L(Z < (9: — /2)) =

, , . . ) (2.9)
Sigmoid((g; + a/2 — x) /o) — Sigmoid((g;i — a/2 — x) /o)

The CDF of the logistic distribution is the softmax function meaning
that no integration is necessary for its evaluation. The sigmoid CDF is fast
to evaluate, and it can also be efficiently used for backpropagation. Even
though Gaussians are generally used for such approximations, it has been
experimentally proven to be less effective to use the normal distribution
instead of the logistic distribution [LRB™18|.

Now that it has been established how to determine the likelihood of each
grid point to be selected as the quantized value of the input, random samples
can be drawn. The drawn samples will, on average, create an adhesion curve
to the step function visualized in the figure 2.1l

At this point, it is clear that the whole process depends on the scale/de-
viation of the noise e. When the deviation ¢ of the selected, in this case
logistic, distribution is too large, it prevents the model from fitting the data,
which results in the loss of accuracy. When it is too small, the CDF starts

12



2.3. Stochastic Quantization

Figure 2.3: On the left is depicted the quantization process with a given non
specific distribution p(Z) (green curve). The real line is separated into K intervals
with the width of «, and the center of each interval corresponds to a grid point
gi- The colored area corresponds to the probability of  being assigned to the
grid point g;. On the right is a CDF evaluated for the interval around each
grid point from G. The values correspond to the probability of & being assigned
to the appropriate grid point.

® Py Py Py Py Py Py
ad @ @ @ @ ® @ o i

X 0 G X9 G

Figure 2.4: Two extreme examples of evaluation of the probability to select
the fist grid point g;. The color purple represents the overflowing probability
mass, blue color shows the actual probability within the interval of the first grid
point.

to converge to the step function, and the gradient flow will be interrupted
[LRB™18]. Therefore the noise deviation needs to be initialized reasonably,
not causing underfitting or insufficient gradient flow. The deviation parameter
can also be optimized with gradient descent to minimize the loss function.

B Categorical Distribution over Extreme Grid Points

The interval around the first and the last grid point generally does not cover
all extreme cases of p(Z). That is especially relevant when =z is close to or
beyond the border grid points. This can be observed in the figure 2.4, Unlike
in SR, automatically assigning the closest grid point when exceeding the grid
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2. Quantization and Relaxed Quantization

range is not applicable since all grid points are possible results of quantization.
Therefore it is needed to decide how to deal with the redundant probability
mass overflowing the grid range. One option is to remove one of the interval
limitations and assign the excess probability to the corresponding grid point.
Another option is to remove the relevance from the culprit probability; this
option was used by Louizos [LRB™18].

The latter option is de facto a truncation of the distribution so it is restricted
to the interval (g1 — /2, gk + «/2). The probability of Z being smaller than
some constant value C' can be then gain as the normalized difference between
the probability of the input being smaller than the value C' and the probability
of the input being smaller than the low end of the interval around the first
grid point:

P(z < C|7 € (90 — /2,91 +@/2),C €R) =
P(@ < C)— P(& <(g90—a/2))
P(Z < (9r-1+ a/2)) = P(Z < (90 — a/2))

(2.10)

The influence of the truncation is negligible when the over/under flown
probability has small values. That occurs for well-scaled and offset grids G,
for non-extreme precision cases, or small variance distributions. On top of
that, the re-normalisation of the CDF only introduces more computation to
the training which can be saved by exploiting the other method. Moreover,
it is unclear if the normalized CDF would perform significantly better solely
by decreasing the dominance of the extreme grid points shown in both cases
in the figure 2.4, Therefore from now on, the limit removal method will be
considered the primary one while keeping the latter option used by Louizos
ILRBT18]| for possible future consideration for implementation.

B Non-Differentiability of the Categorical Distribution

In the previous steps was gained a categorical distribution over the grid
G, which is still non-differentiable. Once again, the gradient could be ap-
proximated. However, this is undesirable towards the ongoing push for
directly differentiable quantization. Louizos [LRB™18]|, proposed replacing
the categorical distribution with a concrete distribution, securing a continu-
ous gradient flow. He named this transformation the relazation procedure.
It introduces a smooth categorical distribution in a process similar to the
renowned softmax function. Softmax is a function that turns a vector of K
real values into a vector of K non-negative real values that sum to 1. Let m;
be the categorical probability of sampling the grid point g;. The shift to the
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concrete distribution is obtained as [LRB™18]:
u; ~ Gumbel(0, 1) (2.11)

L. _exp((logmi + ui) /)
l >ojexp((logmj +uj)/A)

(2.12)

The variable z; represents a random sample from the concrete distribution.
The parameter A is a temperature of approximation, as A is closer to zero,
the result will still be a non-continuous categorical distribution [LRB™18].
The final quantized value Z of input x can be obtained as [LRBT18]:

K
E= 20 (2.13)
=1

Note that the value of # is not necessarily equal to any grid point from G.
It is only desirable to deviate from the grid point values because it enables a
smooth gradient flow for the SGD optimalization.

B RQ Process in Use

Working with & allows for usage of the standard gradient-based optimization.
However, the process is computationally demanding, and therefore it does
not make sense to use the same method of quantization during the testing
time when gradients are not computed. Therefore during test time, the
quantization can stay stochastic with RQ, or it can be substituted with a
basic deterministic one just like in the section 2.2l For this switch between
methods to work correctly, it is crucial to transfer the offset and bias of each
grid G in the whole DPP.

Even though the explanation of RQ is much more complicated than for the
deterministic approach, it can be simplified into four steps.

1. obtain the intervals of each grid point
2. calculate the categorical distribution from the selected CDF
3. calculate the shift to concrete distribution

4. evaluate the output z as in equation |2.13

15
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Note that the R(Q) computational complexity explodes for higher precision.
The complexity explosion is caused by the computation of the probability
of each grid point and the subsequent transformation into the concrete
distribution. Another reason is that to compute the equation [2.12] multiple
random numbers need to be drawn. To keep the complexity at bay, the
quantization-on-a-local-grid modification from the following section can be
exploited. Another option is to not apply RQ for precision over 4 bits, where
other previously introduced fast approaches can be used.

B Quantization on a Local Grid

Relaxed Quantization over a grid with a larger amount of grid points is
computationally expensive since it requires drawing 2° random numbers
for all weights and activations which are currently being quantized in this
layer [LRBT18|. This resolves into a substantially increased number of
operations used in forward-pass throughout the network and increased memory
demands to keep more parameter values for the backward gradient propagation.
Therefore the training time and memory requirements are gradually extended
for girds with the precision of over 2 bits.

Louizos [LRB™ 18| introduced a solution called the ’localized grid’ It is
based on the same approach of truncating the extremes of the distribution
p(Z) in the equation [2.6l Let us assume an input z, the closest grid point to
it is a,,. Simultaneously, only the grid points within the standard deviation
range from x,, are considered. The standard deviation can be derived from
the parameter o, which is used to introduce noise € to the input z.

This results into a new categorical probability established as:

Pz <C|z € (|x] —do, |x] +d0)) =
Pz <C)—P(Z < |z]—do)
P(Z < |z]+d0) — P(Z < |z] —do)

(2.14)

This entry only serves to complete the topic of the RQ. For lower precision
quantization, i. e. 2 bits, is such computation unnecessary since the CPU
and memory savings are not significant. For larger precision models where
the more additional process complexity would actually improve the training,
other less demanding methods of discretization can be used.
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Bl 2.3.3 Comparison between RQ, SR and STE methods

From the theory is clear that the implementation of the logistic RQ algorithm
is more computationally complex than the SR and STE methods. It requires
probability evaluation over the grid G and also utilizes sampling from the
Gumbel distribution for each of its grid points. Moreover, additional compu-
tations are needed to acquire the propagating value. The advantage of this
stochastic quantization process is its full differentiability which allows for the
gradient propagation without any reparametrization tricks. In comparison,
stochastic rounding requires only one sampling from the uniform distribution.
The only other computation in implementation is the deterministic rounding
to the closest grid point. Finally, STE does not require sampling, making
it the fastest method to evaluate. However, the complexity of stochastic
rounding is not much higher. This difference in evaluation complexity will
later notably manifest during experiments.

Rounding to the closest grid point can substitute the sampling-based
quantization methods for the testing time. Therefore, the same speed as
for the deterministic method is achieved during test time for both RQ and
SR. In general better generalization/robustness and the overall accuracy is
to be expected for networks using stochastic quantization (RQ, SR) over
the deterministic approach (STE). Corresponding results to this expectation
were shown in [GAGNI15] or in [XAHK21|. Stochastic rounding and RQ both
avoid stagnation which was observed for the methods using STE [YLZ"19).

In the work by Louizos et al. was introduced a hybrid function between RQ
and SR. This method samples from the logistic distribution and propagates the
sampled value via the reparametrization trick. During backpropagation, it is
assumed that the value was obtained from the evaluated concrete distribution,
and thus, the continuous gradient flow is preserved. The difference between
this method and the original SR is the different gradient propagation, the
different noise distribution, and the fact that this method can propagate more
distant grid points. The probability of propagating a non-neighboring grid
point is based on the size of the noise deviation parameter. Sampling over
more grid points should, in theory, allow for faster optimization.

It is significant to mention that RQ requires the hardware to be able to
support stochastic operations, i. e. draw random numbers with the given
parameters [HCST16]. This requirement can be limited to the training time
since for the test time is exploited the deterministic quantization method.
Nevertheless, the sampling capability requirement might pose a hindrance to
implementing onboard training on small CPUs or chips For such cases, STE
is a simple solution, and it can be sufficient for many.
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Chapter 3

Probabilistic Learning

Probabilistic learning of neural networks generally includes some kind of
stochasticity such as a dropout, various input noise, weights as random
variables, etc. The introduced uncertainty is then consciously propagated
through the network as a random variable distribution. A great example
of this approach is the well-known Bayesian Neural Networks which can
generalize better and show confidence in their results thanks to the use of
stochastic parameters [SF19]. Multiple approaches have been introduced, i.e.
Sampling-Free Learning of Bayesian Quantized Neural Networks [SCH19],
Probabilistic Binary Neural Networks [PW18], Feed-Forward Propagation in

PNNs [SF19).

Where a standard neural network (SNN) propagates only point estimates
and loses the concept of uncertainty, a probabilistic neural network (PNN)
keeps its knowledge of uncertainty and propagates it to the following layers
[SCHI9]. A significant advantage of PNNs also arises in the field of quanti-
zation, where optimization of the distribution parameters does not face the
trouble of zero gradients in the rounding function [SF19].

A PNN is based on working with probability distributions (PDs). Every
value in PNNs is perceived as a PD, which can be to a great extent character-
ized only by its mean and variance. In cases when no sampling is performed,
no other information about a PD is needed, which keeps the propagation
process as general as possible. For cases when detailed identification of a PD
is needed, the standard normal distribution was chosen in this work since
it is widely exploited and has an apparent use of the parameters, which is
advantageous. The assumption of the normal distribution is also based on the
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3. Probabilistic Learning

renowned Central Limit theorem, which takes place during the multiplication
of random variables within linear and convolutional layers [SLET1T].

PNNs are the second category of approaches to the SQ learning problem
stated in the section |2.3] Unlike the sampling methods, it is entirely stochastic,
so it generalizes better and learns faster [SE19]. Thus the PNN learning for
quantization poses a good method for fast model initialization and provides the
model with better robustness. However, during the derivation of some layers,
some dependencies between random variables occur, and approximations
must be made. Together with the general tendency of stochastic learning
to underfit the model for the price of better robustness, the PNN cannot
converge to the best accuracy results. Therefore, when the stochasticity
enhanced by the influence of the exploited approximation starts to slow down
the learning, the PNN method can be replaced by a more precise sampling
method.

This chapter introduces a process of taking a state-of-the-art architecture
designed for SNNs and rebuilding it into a PNN. Ideally, this process should
be universal to apply to the same stochastic relaxation model as the SR and
RQ methods. Then the targeted transfer between these two approaches can
be smoothly achieved during the training phase.

B Inputs & Outputs of a Layer in PNNs

Generally an input to any layer in NNs is a vector x = {x1,29,...,2,}. In a
PNN is every element of x represented by its mean u; = E [2;] = ¢(h) and
variance 0? = V [z;] = 0(h). The vector h represents the input to the NN,
Functions ¢ and 6 are given by the previous layers, such as a Linear layer or
a Quantization Layer, which influence the propagating parameters.

Since point estimates are no longer used, it is necessary to derive how PDs
and their means and variances will change when various functions are used.
Thus, in the following section, the propagation of distribution parameters of
all elementary layers in a NN will be derived. Notably, a derivation is needed
for the already introduced relaxed quantization layer |2.3.2| which will keep
the memory and computational demands low during the training time.
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3.1. Mean and Variance Propagation

B 3.1 Mean and Variance Propagation

This section focuses on working with means and variances of stochastic weights
and activations. Unlike the standard approach, gradient-based learning is not
updating the trained value itself, but it changes the properties of each value’s
probability distribution. Backpropagation of means and variances requires
an analysis of calculations used in elementary layers and derivations of how
the layer affects the propagating PD properties.

In the ongoing sections, the below-listed formulas for probabilistic mean
E and variance V will be repeatedly exploited. Since quantization focuses
strictly on the discrete representation of values, only the formulas in the ’sum
form’ are necessary. When P(x = a) represents the probability of the event
‘a’ to occur, then:

E[X] = Za-P(X:a) (3.1)
aeG
V[X]=E[(X -E[X]?] =E[X?| - (E[X]) (3.2)

In the equation |3.2] it is assumed that all terms are finite. From now on,
notations py = E[X] and 0% = V [X] will be used. Similarly when random
vectors are computed with, notations y; = E [X;] and 07 = V[X;] are used.

Further calculations will be based on the properties of the mean and
variance. The properties show the consequence of scaling and offsetting the
random variable X. The rest of the properties show the reaction of variance
to the addition and multiplication of two random variables.

Elc- X +b=c-E[X]+b=c-pux+b (3.3)
Vie-X+b=cV[X]=c-0% (3.4)
EX+Y]=E[X]+E[Y]=pux + py (3.5)
VIX+Y]=V[X]+V[Y]+2 Cov(X,Y) = 0% + 0% +2-Cov(X,Y)
(3.6)
Cov(X +Y,Z) =Cov(X, Z)+ Cov(Y, Z) (3.7)
EX -Y]=E[X]-E[Y] = px - py (3.8)
VX Y] =E[X?V?] — (B[XY])? = (0% + k) (0% +id) — ks =
= 0% oy + ok uy +pk - of
(3.9)

The last two properties assume independence between the random
variables X and Y.
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3. Probabilistic Learning

B 3.1.1 Fully Connected (Linear) and Affine Layer

The general calculation for the Fully Connected and Affine layers is a sum of
products of n weights and n input values which is then offset by an external
bias b:

n—1
a; = Z z;w; + b (310)
=0

For the linear layer the weights and are considered random due to the
stochastic relaxation of the quantized weights, for the affine layer the weights
and the bias are considered deterministic scalars.

B Fully Connected

The mean for the linear layer E [a;;,] is derived gradually. First the mean of
the multiplication of two random variables (Eq. 3.8) z; and w; is computed
and later the sum (Eq. |3.5) over all the semi-activations is performed. At
last is added the mean of the bias variable:

E[zi - wi] =E[z] - E [wi] = pa, - p, (3.11)
n—1 n—1 n—1
E [ i - wi] =D Elzi-wi] =) pio, (3.12)
1=0 =0 1=0
n—1 n—1
Kiin = Z Ha; * Hw; + E [b] = Z Ha; * Hw; + [ (3'13)
1=0 1=0

The variance for the linear layer is computed in a similar matter using the
equations 3.9 and 3.6}

V [z - w;] = op, - 09251. + aﬁ,i . uii + uz,i . agi (3.14)

Wy

n—1 n—1 n—1
\% [Z z - wi] = Z V(J?Ui : U?Ei) + covariance term ~ Z V(O’?Ui . Ui)
i=0 =0 =0

(3.15)

n—1 n—1

O =V [Z %wi] +V[b] =04 + Z(J?ui CO2 +On iy, e O8,)
i=0 i=0

(3.16)

In the equations |3.14] and |3.15| an approximation was made based on the
independence between the random values of the ’part-preactivations’ x; - w;.
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3.1. Mean and Variance Propagation

Figure 3.1: On the left is a diagram of influence of the parent units on
the output activations in a linear layer. On the right is a diagram of the
influence of the shared weights on the output values of a convolutional layer.
Convolutional and Linear layers make their outputs dependent, which corrodes
the otherwise precisely computed propagation of the statistical moments, which
assumes complete independence across the network.

The ’covariance term’ is a sum of covariance evaluations (based on the formula
between the gradually added random values a;, which are assumed to be
independent. Therefore the covariance term is equal to zero. Even though
some influence is be shared between the individual NN units within a linear
layer, it is still a fair approximation [RSFP19]. The mentioned dependence is
based on the fact that all variables a; inherit properties from the same parent
units, as is shown in the figure Since the bias b is completely independent
of the previous layers, the covariance between b and the pre-activation a; is
zero without any approximation.

Bl Affine

For the Affine Layer, the results from the Fully Connected layer can be used
after substituting the variance of the weights and bias with zero and after
substituting the appropriate means by their true value.

n—1 n—1
Maff:E[Z%'wi +b=> g - witb (3.17)
1=0 1=0
n—1
Ugff = Z w? o2, (3.18)
i=0

The same formulas can be derived from equations 3.3 and [3.4.
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B 3.1.2 Batch Normalization Layer

The general reason to use the Batch Normalization layer (BN) is to speed
up the training and make it more stable by normalizing activation vectors in
DNNSs. The normalization is applied to a batch of input data. The input of
a BN layer consists of m activations. The activations are then normalized,
scaled, and offset. This process is expressed in the following equations where
i represents the input index within a batch:

1 m
UBN = EZaZ (3.19)
i=1
1 m
ohN = - > (ai — psN)? (3.20)
i=1
ai — WBN N
iy = ————— normalization (3.21)
VoBn +¢
a=ao-a;,,, +0 learnable scale and offset (3.22)

The parameter ¢ is present to assure numerical stability for extreme cases.
The parameters for scaling o and offset 8 are deterministic scalars, which
can be optimized during training.

To propagate through BN, it is first needed to evaluate the mean values
for the batch normalization’s mean and variance from the equations [3.19 and
3.20) since the value a; is a random variable.

E[psn] =E “@ i ai‘| = ;iE [a;] = ;i i (3.23)
=1 =1 =1

Before calculating the expected value of the BN variance, it is important to
realize that the BN mean is also a random variable. Therefore the result from
the equation |3.23 is used in the following computation:

E [ohy] = E [; > (o E[MBND?] = LS ot o3 (- Bluy)?

(3.24)

The concrete derivation of [3.24] is in more detail in the Appendix [A.1l

Now all terms in the equation [3.22| are represented as deterministic scalars
but a;. However, its mean is known as one of the inputs to the layer -
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p; = Ela;]. Therefore the propagating mean of the BN layer is:

pi —Elupn]

a+p (3.25)
Elogy] +¢

E [&] = Hout =

Lastly the variance can be computed. It can be computed from the
equation’s|3.2|not simplified version. The detailed derivation is in the appendix
A.2| below is the resulting formula:

2
2 2 9;

= P A .2
Oout « E[U%N] T+ (3 6)

As for now, this derivation of Batch Normalisation is only for one channel
propagating the values according to the equations|3.25/and |3.26/ For standard
usage, at least the second dimension is needed. This can be done in a similar
way as for standard BN, where all the dimensions within one layer have their
own BN processes with separate means, variances, and BN parameters ak),

B,

B 3.1.3 Quantization Layer

This section will take into account two approaches. One method will derive
the propagation of mean and variance for rounding to the closest grid point
without any external noise. This method simulates the deterministic quanti-
zation of stochastic inputs. The other section will derive the propagation for
a quantization layer with injected external noise € in a form based on the RQ
layer 2.3.2 This can be viewed as a deterministic and stochastic quantization
procedure in PNNs.

B Propagation of Statistical Moments without Noise Injection

Let’s assume an input vector x = {zg, x1,...,z,—1} of the quantization layer
without regards to the Probabilistic Learning (PL). The general formula for
the quantization process the output of this layer is

7j = lajlg (3.27)

where 2; is the quantized value of z; on the discrete grid G containing K
grid points. In PNNs is x; a random variable, and it is represented by its
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statistical moments. Until now, no other assumptions about the propagating
distribution have been made. However, for quantization to be exploited, more
information about the density function of the PD is required in order to
obtain the probability of the discrete grid points. Therefore an assumption is
made about the form of the density function belonging to the propagating
PD. The most logical assumption is that the CLT will occur somewhere in
the network to some extent.

Shayer [SLE17] showed in his paper, that when a linear or convolutional
layer has stochastic independent weights w;;, , then the pre-activations z,, =
> n Wm,n Ty are approximately Gaussian. This is caused by a long addition of
random variables, which resolves into an appropriate number of convolutions of
probability distributions. When a large enough number of densities convolves
together, then the resulting distribution will be very close to a Gaussian
distribution, and therefore it can be approximated by it.

Even if the CLT does not take place (or has not taken place yet), a
Gaussian is still a valid approximation since it universally gradually gives
more probability to the closest grid points without any skew. Another valid
option for the distribution assumption would be the Logistic distribution,
which resembles the normal distribution, but its cumulative distribution
function is much easier to compute.

The probability of a scalar random variable x being quantized to each grid
point g; from G with the step size « is then given by:

P(zj = gi) = Fj(gi + a/2)) — Fj(g; — a/2)) (3.28)

The function Fj(-) represents the CDF of the normal distribution N ~
(Min,j» Ugn,j), parameters f;,; and crzznj are the inputs of this quantization layer
in related to the random variable x;. The formula for Fj is then computed
as:

1 T — Hin,j
Fi(z) = = + erf( = Hind.
(@) 2+er(\/§-0m,j)

2 ? 2
erfz = —/ e Vdt 3.30
VT Jo (3:30)

(3.29)

From now on, will the notation omit the j index since the focus will be on
the evaluation of a particular input random variable x without regard to its
position in the input structure.
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For extreme cases, when g; is either the highest or lowest grid point, the
appropriate item in the equation is replaced with F(+o00). The process of
quantization is the same as in RQ and can be viewed in the Fig|2.3. After
computing the probability for every grid point, the mean and variance are
calculated by a simple substitution in the equations (3.1 and |3.2:

K-1 K—-1
pz =EE]=> g -P@=g)=> g (Flgi+a/2)—F(g —a/2)
=0 =

<

02 =V[i] =E|(z - E[#])?| =E|#*| - (E[2])* =
—1 -1
=Y g PE=g)—ps= g (Flgi+/2) = Flgi — /2)) — i3

=0 1=

10

(3.32)

The formulas |3.31| and |3.32| can be further analysed to achieve additional
computational simplification. The simplification is based on the fact that two
neighboring grid points share the same CDF value, which is in the current
equations computed redundantly twice. The process is evaluated in detail in
the appendix |[A.3. The resulting formulas are:

K-2
pz=o-(K—=1)+go—a- Y Fla-i+go+a/2) (3.33)
=1
K-2
02 = (a(K —1) + go)* — Z (a® +2a% 4+ 2a - go) F(a i+ go + /2) — 2
i=1

(3.34)

The parameter o represents the distance between two neighbouring grid
points, gg is the offset of the grid GG, and i is the index of the i-th grid point.
A substitution (« - i+ go) = g; can be made in both equations.

B Propagation of Statistical Moments with Noise Injection

The whole process of simulating a non-deterministic quantization is analogous
to the deterministic version. The only difference is caused by the injected
noise €, which could alternate the input mean and variance. The output of
this modified quantization is:

E=|z+elg (3.35)
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In the case when x is deterministic, the mean and variance considered
for the quantization process are purely dependent on the distribution of the
input noise. When z is a random variable, the distribution of the input z is
set following the idea from the previous part. Due to the addition of random
variables throughout the network, the CLT takes place, and a Gaussian
approximates x. The addition of the noise € now represents only another
convolution resulting in a distribution even closer to a Gaussian. Thus the
only necessary information about the noise € for stochastic input z is its mean
and variance with no regard to the type of its distribution.

When the noise € is virtually added to «, it influences the mean and variance
of the random variable . The changes follow the properties|3.5 and 3.6, Since
€ is added externally, it is completely independent of the input properties.
The new mean and variance are then:

Unoised = Min + Me (336)
O-’rQwised = Uz'2n + 052 (337)

The new parameters are used to define the CDF of the assumed propagating
PD. The probabilities of selection of each grid point are calculated, and at
last, the output mean and variance is obtained in the same matter as in the
deterministic quantization method (3.31,3.32)). The only difference between
the two methods is the offset of mean and variance in the CDF evaluation

P(x = g;).

B 3.1.4 Average Pooling

Average pooling is de facto an affine layer with all weights set to one and the
bias set to zero. The resulting mean and variance are then normalized by the
number of input values. For example, if average pooling is supposed to be
done over k = 4 random pre-activations {aj, as,as,as} then a small affine
layer is used instead with only one output agy;.

1& 1 &
Eaout] = E [k Zai . 11 =% ZE[(M] (3.38)

=1 =1
1 k 1 k
\% [aout] =V [k Zz::l ag - 11 ~ ﬁ : ;V[(h] (339)
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B 3.1.5 Max Pooling Layer

The max layer is commonly used in various NNs. The problem arises when
the input set of compared values has different means and variances. Even
if a random value has a slightly different mean than another, if they have
high variances, then their sampled values can significantly vary. This can
be viewed in the figure [3.2. Therefore the problem of selecting one highest
value from a set of means and variances is unsolvable without exploiting
some heuristic. There are several possible heuristics applicable to exploiting
different approaches with different computational complexity. Some of max-
pooling heuristics were described in [NKO08a], [PW18], or in [SHYS20]. In
the following sections, multiple methods will be shown.

P(Xx) P(x)

X X

Figure 3.2: On the left: Samples from multiple random variables with almost
identical mean values can still varry significantly. On the right:Even when the
mean value of one random variable is unequivocally larger, its sample can be
still smaller since the other random variable has large variation.

B Simplification to Basic Pooling

The simplest method ignores the max function and only performs pooling
by subsampling to downsize the input dimensions for output propagation.
This can be achieved by always selecting the same index position as the
maximum value or by selecting a random position for each forward pass. This
approach is not ideal, but for NNs where the main idea of the Max Layer was
to downsize the propagating values, it is still applicable. It can also be used
to quickly substitute other more complicated pooling layers.
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B Selecting the Highest Mean

This heuristic is self-explanatory. The variance of a random variable is ignored
altogether, and the forward propagation is based on the vanilla MaxPool
method for full precision deterministic inputs. In the case of a large pooling,
this method can be modified by selecting the top m highest means and then
selecting one of them randomly [SHYS20]. When a mean of an input random
variable is selected for propagation, the variance of the same variable will be
propagated.

B Substitution for Average Pooling

This option is rather a different architecture choice than a method of max
pooling. The more problematic max-pooling layer is substituted with average
pooling from the section |3.1.4. It proposes a more sophisticated method of
ignoring the max function while keeping the pooling. In backpropagation,
all the involved inputs of the max layer will be updated, which distinguishes
this method from the rest. An example of such changing the architecture can
be the toy LeNetb architecture which is commonly implemented both with
average and max-pooling layers.

B Sampling in Evaluation of Max Layer

Another solution is to assume a normal distribution for the input values
and sample from them. The maximum is selected from the sampled values.
Then the properties of the selected distribution are passed forward either
unchanged or with the variance set to zero. The latter option is based on the
fact that the sampled value is fixed for future computations and thus has no
variance.

This method is relatively straightforward without any significant compli-
cations. Peters & Welling also introduced in their work [PW18] another
MaxPool approximation method based on sampling from a general distri-
bution. However, Peters & Welling also concluded that the simple argmax
propagation from the sampled values is more efficient and has satisfactory
results. The elementary sampling process is shown in the figure 3.3/
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Figure 3.3: The sample&argmax process of selecting a PD which will be propa-
gated through one max layer patch with the kernel size 2x2. First all distributions
are assumed Gaussian and scalar values are sampled from them. After selecting
the maximal sampled value, its parent distribution sharing the same index in
the MaxPool kernel is propagated.

B Repeated Approximate Maximum of Two Random Variables

Nadarajah & Kotz introduced in their paper [NKO8b] a process of gaining the
variance and mean of the max operation over two random variables which are
both normally distributed. With the notation s = (0% + 0% + 2Cov(X, Y))%
and a = (ux — py)/s, the formulas for mean and variance are:

Hout = HX - T,Z)(CL) + py - ’l/J(—CL) +s- ¢(a) (340)
Tout = (0% + 1%) - (a) + (03 + pi3) - ¥(=a) + (ny - px) - d(a) - s — éﬁmt |
3.41

Since this works neglects minor dependencies caused by the linear and con-
volutional layer, the input random variables to the MaxPool layer are all
assumed independent and therefore the covariance term in the formula for s
is always zero.

The max evaluation for 2 values can be then arbitrarily chained. For
example for MaxPool2d with kernel (2x2) and stride 2, every other column
computes the max with its neighbouring column to the right, then every other
row computes the max with its downwards neighbouring row. This process is
also shown in the figure 3.4l

X, Y| max |z] trans max trans
> > |Z|W] — |Q] — out
Xo Yo W

Figure 3.4: Elementary case of the process of the chained max function of two
variables.
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3. Probabilistic Learning

B 3.1.6 Convolution Layer

The convolutional layer is the cornerstone of CNNs. It contains multiple
kernels with learnable parameters for each dimension it operates on. These
kernels perform the convolution operation (y = w = x) on the input data,
predominantly multidimensional large matrices. The convolutional function
sums over multiplications of items that share the same index in the kernel
and in the actual window scope over the input matrix. For one dimensional
convolution with weights/kernel of length m, the formula for the output with
index 7 is:

(w*x)(i) = Z W) * T(i4j) (3.42)
j=1

This makes the propagation of mean and variance somewhat similar to
the linear layer, with the difference that the weights are shared over many
connections as the kernel moves around the input matrix. The dependence
on shared weights can be viewed in the figure [3.1. The actual propagated
parameters for a general N-dimensional convolution take shape:

tout = Ely] = E[w] +E [x] (3.43)
0, =Vy =Vw «Vz]+ V[w +Ez]* +E[w]?*V[z] (3.44)

out —

Both of the derived formulas are, in general, identical to the formulas
for the linear layer (section 3.1.1). As it was previously foreshadowed, the
only difference is the special indexation of the summed terms defined by the
convolution function, which depends also on other parameters like stride or
padding.

B Independence of Units after the Linear and Conv Layers

The linear layer introduces only minor dependencies between the NN’s units
since the activations were predominantly dependent on the layer’s weights,
and therefore the dependence can be effectively ignored with impunity. A
convolution layer and its shared weights introduce stronger dependencies
because the kernel works with a small number of weights, which are shared
across a large amount of input data. Moreover, this dependency weakens as
the convolution layer is used repeatedly in the network. In the properties 3.8
and [3.9 is assumed absolute independence between the two multiplication
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3.1. Mean and Variance Propagation

participants. Since these two properties are essential for all derivations for the
propagation of the statistical moments in PNN, not fulfilling the independence
requirement introduces some inaccuracy to the network. A possible solution
is proposed in a white paper by Roth [RSFP19], and Kingma [KSW15].
However, their method exploits sampling, which this work tries to limit as
much as possible.

It is not in the scope and aim of this work to further tackle this issue. The
PNN approach is primarily used to speed-up the initial training, so it can
be later substituted with a more accurate sampling-based method like the
relaxed quantization [2.3.2. The issue of higher variance introduced by the
dependencies is thus irrelevant for further steps in this work. Therefore the
notable influence of the convolutional layer on the NN’s unit independence is
neglected.

B 3.1.7 LogSoftmax Function

The LogSoftmax is the more numerically stable version of "log of Softmax’.
The Softmax function is used as the activation function in the last layer of
NNs, which require their outputs to be represented as probabilities. This
form of results is especially useful for classification tasks with N possible class
outputs. The LogSoftmax normalizes the output of a NN, so the resulting
probabilities lie on a logarithmic scale instead of the softmax’s interval (0, 1).

The formula for LogSoftmax with n output scalars is:

LogSoftmax(x;) = log <zm> (3.45)
j J

When trying to derive the mean and variance propagation through this
layer, an issue arises. Since the fraction’s numerator and denominator are
dependent. Therefore no properties from the section [3.1] can be applied.
Since this layer is present only once in the whole network, a computationally
inefficient and otherwise avoided approach of gaining the mean value through
sampling is applied.

Let’s assume the fully propagated PD’s mean i, and variance o2,. The
sampled values s; will be assumed to be from a normal distribution N ~
(tin, 02,). Each of sampled values can be decomposed following the idea of
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3. Probabilistic Learning

the reparametrization trick [KSW15]:

Si = Lhini + g+ & §~N(0,1) (3.46)

When the reparametrization trick is used, the gradient flow of the SGD
process is clear. The samples for each output are drawn 7" times (i.e. 7" = 10).
The number T is selected, so the estimation represents the probabilistic
moments well, but the number of samples is not excessive. The mean value
then can be computed as the arithmetic mean:

_El1 “i 1 & : esi(t)
Hout,i = E [Og <Z§L o >] ~ T; <0g (Z] eSj(t)>> ~
~ i zT:log (651(15)) _ l ZT:log i ORI
T t=1 T t=1 j=1
1T 1 X n L N
R Z 5i(t) — = Zlog Z eSi=1) | ~ Wini — = Z log Z eSi=1(t)
= T Jj=1 T= j=1

The variance of the LogSoftmax layer in most cases does not need to be
calculated since LogSofMax is usualy only exploited in the last layer of a PNN
and the loss function does not generally take variance into account. However,
for completeness of the method, variance is still derived. The intermediate
calculations cannot be simplified and hence it needs to be calculated by brute
force from the variance property [3.2:

) 2 )

2 e . _ 2 e 2

Oout,i — E (lOg (Z? ot > Mout,z) =K |}Og (Z? ey )1 Hout,i

1L esi® 2 )
~ T ; (log Z;L 057 (t)) — Mout,i
1 T n 2
N T > {si(t) —log [ D e — Hout,i
t J

(3.48)
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B Cross Entropy Loss

The cross entropy loss is commonly exploited in classification tasks. The
formula for this layer is:

n
Lep = —)_ tilog(p;) (3.49)
i=1
The parameter n is corresponds to the number of output classes, t = [t1, ..., ty]

is the one-hot encoded ground truth of the classification task and p; is the
softmax probability of the class i. The formula considers as inputs only the
input mean values, therefore it is unnecessary to compute the variance of the
LogSoftMax function. The propagated value of the CE loss is the identity of
minus log probability of the ground true class.

B 3.1.8 RelLu and Leaky RelLu

These activation functions are unchanged in PNNs in comparison to their
standard functionality. For the most part, they have no influence on the
propagating PD. When the mean value is smaller than zero, the mean value
will be clipped to zero for ReLu or significantly scaled for leaky Relu. Luther
showed in his paper [LS19] that after a specific weight initialization, variation
in deep MLP networks with RelLu activations decays. Therefore variance
will be approximated ’by the worst case’ - it will not be affected when the
clipping or scaling takes place.

A more precise approach was shown by Schekhovtsov & Flach in [SF19],
where the propagated mean and variance is derived from a formula for
propagation of mean and variance for maximum of two random variables
Z = max(X,Y), this formula is described in detail in the section 3.1.5. Then
for ReLu applies Y = max(0, X), for LeakyReLu applies ¥ = max(aX, X)
and the propagated parameters can be evaluated.

35



3. Probabilistic Learning

B 3.1.9 Combining the Elementary Layers

The above-derived layers can be freely combined into various DNNs. All the
elementary layers are capable to propagate a PD by updating its statistical
moments instead of the propagation of point estimates used in standard NNs.
In some cases, a more complicated layer can be constructed based on the
elementary ones. An example is multidimensional Batch Normalisation or a
Convolution layer, which can be built from the elementary layers.
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Chapter 4

Implementation and Experiments

B a1 Implementation

The two chapters [2/ and [3] theoretically described multiple approaches to
quantization. The aim of the implementation section is to introduce the
general idea of how to structure the code framework, so it supports multiple
methods of quantization for a singular network architecture setup. The trans-
fer between all the methods within the framework should be achieved only
by changing the network’s settings via an input to the network. Such imple-
mentation requires a complex set of classes based on the original PyTorch
framework. When a smooth substitution between the training methods,
pre-training for some more complex tasks can be easily exploited.

B E-Blocks

Since the main building structure of QNNs is the same as for SNN, most
attributes of the original class nn.Module are shared. However, some
propagation methods and other attributes need to be modified or entirely
replaced. Therefore all NN structure classes inherit from a new Module class:
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4. Implementation and Experiments

class EModule(nn.Module):
def super_forward(self, *args) -> Tensor:
return super(type(self), self).forward(*args)

Later in the implementation, each artificial layer will inherit this as their
parent class. This will later on serve as a sign of a layer that requires
additional inputs specifying the quantization approach. The same change is
also done for the other NN structure block nn.Sequential:

class ESequential (EModule, nn.Sequential):
def forward(self, x, method: Method, **kwargs):
return method.forward_Sequential(self, x, **xkwargs)

B Q-Layers, E-Layers

The Q-Layer class is exploited for layers, in which weights are quantized before
application within the layer. This is the case for the linear and convolutional
layers, which all share the same formula for propagation from the section
3.1.1L The only difference between such layers is the process of selecting the
inputs and weights for the equations from [3.1.1. Therefore QAnyLinear
layer is set up, which solves the propagation of the weighted sum function
and quantizes the input weight. The class QAnyLinear is then inherited as
a parent class by the before mentioned layers.

Functions that evaluate the quantization methods are then united within
the QReLu class. QReLu at first scales and offset its input (weight or
activation) which is then squashed within the range of the quantization grid
G. Then is carried out, the selected quantization function and the result is
scaled and offset again, resulting in a value from the grid G. The same is then
done for the activation value of the given layer. This process is graphically
described in the figure 4.1\

During the testing of a QNN, the complex quantization process of weights
and activations can be replaced by a computationally more advantageous
process depicted in the figure [4.2.

An addition to the Q-classes is the E-Layer class which is not affected
by quantization in propagation, however, its forward passes needs to be
restructured for the probabilistic learning.
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Figure 4.1: Diagram of the implementation of a Q-Layer, in this case the QConv
layer. It also shows the process of quantization of activations.

— Quantized {0,...K —1}

@ Integer convolution
@ Conv with constant kernel

$1,892,by — channel-wise

Figure 4.2: Diagram depicting the implementation of a QConv layer during test
time. The quantization of weights and activations is not exploited, however the
scaling and offset initially introduced for quantization still need to take place.

All the artificial layer classes inherit from either the EModule or the
ESequantial classe, and from their standard full precision counterparts.
For the deterministic, sampling-based, and full precision methods are the
layers, which do not exploit quantization, unchanged in their forward pass,
and therefore they can exploit the original PyTorch implementation, for
example:

class EMaxPool2d(EModule, nn.MaxPool2d):
def forward(self, x, method: Method, **kwargs):

39



4. Implementation and Experiments

return method.forward_MaxPool2d(self, x, **xkwargs)

When the forward propagation of a layer is not identical to the original
PyTorch implementation, the new forward function is set after calling the
selected quantization method class. A particular case of this redefinition is
the quantization layer, which is by default initialized as the STE method.
Therefore all other methods, including the full precision one, must re-define
it.

B Quantization Parameters - class dotdict(dot)

Detailed information about the quantization process, such as the quantization
method, the number of available bits, or the noise distribution, is stored in
one dot.notation dictionary. During a NN’s initialization, this dictionary
is shared to layers requiring quantization, i.e., Linear, Convolution layers.
The layers make a deep copy so that they can train some of the dictionary’s
components, such as the noise distribution parameters.

The dictionary can also hold other general information about the training
process and conduct. Some other information it can hold is the number of
epochs that need to be completed before switching from the probabilistic
pre-training to the sampling-based methods. Therefore a NN network based
on this implementation can be set entirely for various training exploiting
multiple approaches only by a short setting of the dictionary.

B Method

All methods will share a parent class Method, which manages the propagation
process between layers. It contains definitions propagation through elementary
layers, including the quantization layer, which will then later on be changed
depending on the specific quantization approach.

Every quantization-aware training method will then inherit this class and
re-define propagation functions for layers, that are affected by the approach.
A simple example is the MethodReal class, which keeps all original layer
definitions and only evades the quantization layer:
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4.1. Implementation

class MethodReal (Method) :

def forward_quant(self, quant: Quant, x: Tensor):

nnn nnn

no quantization
return x

B 4.1.1 Deterministic Quantization Method

This implementation is based on the theory from the section on STE [2.2
The method assumes the gird G with grid points g; € [0,1,...2° — 1], where
b is the number of available bits. The input z is then rounded to the closest
integer, and the resulting integer value is then clamped in regard to the first
and the last grid point value. For the forward propagation is exploited a
notation trick that ensures uninterrupted gradient flow:

x = x_quant + (x - x.detach())

B 4.1.2 Relaxed Quantization Method

This implementation is based on the theory and formulas from the section
on relaxed quantization 2.3.2] In theory, were multiple different approaches
introduced within the RQ method. The CDF evaluation over extreme grid
points in the section [2.3.2 will exploit the version without truncation, and
Quantization on a Local Grid from the section [2.3.2| is not implemented.
Then the output value is evaluated in 4 steps, where ¢ is the noise variation,
€ = le — 10 is a non-negative small constant to keep numerical stability:

1. interval points evaluation: thresholds =[G — 0.5, gx—1 + 0.5]
2. CDF evaluation: p = Sigmoid((thresholds — x)/o)
3. concrete distribution: y = F.gumbel softmax(log(p))

4. ouput expectation evaluation: out = Zfi—ol Yi * Gi

41



4. Implementation and Experiments

B 4.1.3 Probabilistic Learning Method

This approach required a re-definition of the forward propagation for all
elementary layers. The derivations of each re-definitions were introduced one
by one in the section |3.1.

All the forward passes de facto only execute the derived formulas. For the
MaxPool layer was selected the process of repeated maximums of two random
variables. Its implementation follows the algorithm shown in the figure 3.4l

For a more robust, but slower evaluation of the quantization layer, the
basic formulas [3.31, 3.32 can be exploited. Other option is to implement the
faster method with formulas [3.33| and [3.34] which can be simplified since the
grid is scaled and offset after the quantization. Thus o = 1 and gg = 0. The
assumed normal distribution is symmetrical around its mean and thus the
final equations for the layer are |A.22| and [A.32;

K-1
pr =Y F(—i—0.5) (4.1)
=1
K-1
o2 = (K —12 -3 (1+2)F(i+0.5) — 2 (4.2)
=1

B Random Variable

While working with PNN, the network needs to process and forward two
parameters, the mean and variance of the propagating distribution. This
requires the implementation of a new class, which will inherit the attributes
of the original torch.Tensor class. This class is called RandomVar and
contains two Tensors with the same shape as in SNN. One of the tensors is
for the propagating mean, the other for the variance. The RandomVar class
also has additional attributes supporting several mathematical operations
over random variables. These attributes are based on the formulas from the
section |3.1. The RandomVar class also supports sampling from the Normal
distribution with regard to its current mean and variance.
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B 4.1.4 Other Quantization Methods

Multiple other methods can be implemented based on the theory from this
work. However, in the majority, they are only a mix of the three already
introduced method classes. Their implementation is therefore based only on
minor changes in the forwarding functions for each layer. For example, the
stochastic rounding method only changes the quantization forward function
by implementing a different noise and exploits the notation trick from STE
to achieve uninterrupted gradient flow.

B 4.1.5 Pre-Training

One of the goals of the thesis was to implement selected quantization layers
in a universal framework so that different networks could be exploited during
the training of one model network. Since all non-probabilistic methods do
not significantly change the network’s structure and at most introduce some
extra parameters for learning, the only step required is to change the forward
function for the layer affected by the change.

The transfer from a probabilistic to a non-probabilistic method is needed
to evaluate the point estimates of all weights. One option is to sample
each parameter’s distribution n-times and set the mean value as the initial
weight for the standard NN. The other, much faster option is to simply set
all weights as the corresponding distribution’s mean. For transfer from a
non-probabilistic to a probabilistic method, weight distribution means are
set as the previous weight values, and the variance is set to any meaningful
value, i.e., 0 or 1/3.
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B Statement of Contribution

Two different implementations were written with the structure explained in
this section to test the introduced methods in the theoretical part of the
theses. Both implementations were then exploited for experiments.

In the first implementation, only a rough code structure was provided, and
I implemented all the methods, training procedures, and support functions
myself. An exception to this was the QReLu function (depicted in |4.2)) which
was implemented by the thesis supervisor Mgr. Oleksandr Shekovtsov, PhD.

In the second implementation were, all methods apart from the MethoPP
class implemented by Dr. Oleksandr Shekovtsov. Therefore any inaccuracies
in the code would not affect the results of the more complex experiments.
The theoretical structure behind the implemented methods was following the
equations, which were described in the chapter [2.3.2. My contribution to the
second implementation was independent derivation and implementation of
the probabilistic learning method within the MethoPP class. The class was
then added to the more precise framework for experimenting.

44



Chapter 5

Experiments

The outlined implementation structure from the previous section was adopted
twice. The first implementation focused on the sampling-based and STE
methods of quantization. The second implementation was more thorough,
introduced more learnable parameters, improved the training/validation
evaluation, and primarily introduced the extension for probabilistic learning.

B 51 First Implementation

The structure of the code in the first implementation was naive, it did not
initialize all the feasible parameters, and the overall initialization of the
network structure was not optimal. Nevertheless, the goal target structure
for training a network with STE, RQ, SR was achieved. With the naive
implementation was build a toy LeNet-5 network that trained on the MNIST
dataset. Multiple tests were run on this model with the focus on the general
performance with united settings for all methods, including the full precision.
The training with quantization was set to quantize both activations and
weights with the same precision.

During the training of the networks was tested how computationally/time
expensive are they to run. The results are shown in the table In
comparison to the values in the table, the original full precision architecture
took, on average, 18.5 seconds per epoch. The data from the table shows
that the additional computations and sampling in RQ resulted in a significant
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slow down of the training. Even at the 1-bit precision, evaluating a single
epoch takes double the time. The results also show that stochastic rounding
is, in this matter, close to the fast STE method as expected.

bit precision ‘ average epoch time [seconds]

| STE SR RQ
1 20.93 22.35 42.25
2 20.81 22.37 43.59
4 20.48 22.31 115.13
6 20.76 22.41 265.2
8 20.73  22.42 420.36

Table 5.1: Time taken to complete one learning epoch on LeNet5 exploiting the
STE, SR, or RQ method for quantization with different precision. The listed
values are the average time scores over 40 epochs carried out on a personal PC
with limited computational resources.

naive RQ STE SR | RQ STE SR
imp. 1 bit 1bit 1bit|2bit 2 bit 2 bit
accuracy [%)] | 96.02 98.43 08.52 | 97.92 99.12 99.19 | 99.40

Real

Table 5.2: Validation accuracy after 60 epochs of training the LeNet5 network
on the MNIST dataset with multiple quantization and full precision methods in
the naive environment implementation.

The validation accuracy results with the naive method setup after 60
epochs are shown in the table |5.2 The experiment settings are listed in the
appendix B.1. STE and SR both reached the validation accuracy of over 99 %
with 2-bit quantization. Gupta’s stochastic rounding even achieved accuracy
comparable with the original full precision network. With the same precision,
RQ achieved an accuracy of 97.88 %. RQ also trained significantly slower
than the STE and SR. The results are shown in the figure [5.1. Since the SR
method is implemented as STE with uniform noise, the training progress is
fairly similar. While the results for STE and SR are satisfactory, the training
for RQ implementation was not successful.

The outcome of this set of experiments was that the naive quantization
framework was capable of successfully training a simple NN with non-binary
weights and activation. The RQ method proved to be computationally more
expensive, and the accuracy results from its elementary form underperformed
the SR and STE methods. Since the RQ’s performance on 2 bits preci-
sion was underwhelming in comparison with the experiments conducted by
Louizos [LRB™18], it was concluded that a better structured and initialized
implementation is needed for RQ to work correctly.
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Figure 5.1: The validation accuracy results of training LeNet5 NN with 1 and 2
bit precision quantization of weights and activations. Naive implementation.

B 5.2 Second Implementation

The second implementation achieved a better structure, initialization of
parameters was improved, and some quantization-related functions were
updated. The training loop was upgraded, so it supported more training
settings, and additional optimization methods were added. Most notably was
added the class MethodPP for the probabilistic propagation.

At first, was tested the performance of the non-probabilistic learning
methods so a comparison between the two implementations could be made.
Therefore the experiment setting still follows appendix [B.1. The resulting
accuracy for 1 and 2-bit precision is in the table 5.3 In general, the methods
training with the second implementation achieved better accuracy results.
The stochastic rounding method proved to be fast in training and its accuracy,
even at 1-bit precision, was over 99 %. In addition to the first implementation
was also trained a NN with probabilistic learning. As was expected from the
theoretical analyses, it learned fast, but it could not reach the best accuracy.

2nd RQ STE SR PNN| RQ STE SR PNN
imp. 1bit 1bit 1bit 1bit |2 bit 2 bit 2 bit 2 bit

acc. [%]‘98.96 99.10 99.23 98.85‘99.19 99.25 99.29 99.23

Table 5.3: Validation accuracy after 60 epochs of training the LeNet5 network
on the MNIST dataset in the secondary implementation framework for 1 and 2
bit precision.
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The next goal was to pre-train a NN with the probabilistic learning, for
which it was expected that the initial optimization would be faster. The
experiment was set so that SR or STE substituted the probabilistic learning
method after 60 epochs.

The original STE and the pre-trained STE training were run in parallel, so
the expected faster training for PNN could be observed. For any optimiza-
tion speed difference to be noticeable, the more complicated Fashion-MNIST
dataset was trained. During the pre-training period, the NNs with probabilis-
tic learning quickly reached accuracy of over 90 %. After the switch to the
STE method, the evaluated training loss immediately rises approximately
to the values observed for the pure STE training after the same amount of
optimization epochs. This can be seen in the figure 5.3, In the figure |5.2
is plotted the accuracy during training. After the switch from probabilistic
learning, the accuracy for single sampling validation dropped even below
the current accuracy obtained by the pure STE method. Such behavior was
unexpected and remained even during further experiments on the FMNIST
dataset with various training settings.
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Figure 5.2: Training accuracy evaluation of basic STE and pre-trained STE
quantization methods with Mirror Descent policy optimalization for the FMNIST
dataset.

At last, was experimented with the CIFAR-10 dataset with the allCNN
architecture described in the appendix [B.2l In this case, the pre-trained STE
method did initially train faster. After the switch, its train accuracy dropped
(figure [5.5), and the loss evaluation rose above the results of network training
without pre-training.
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Figure 5.3: Training loss evaluation of basic and pre-trained STE quantization
methods with Mirror Descent policy for optimalization for the FMNIST dataset.
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Figure 5.4: Validation accuracy evaluation of basic STE and pre-trained STE
quantization methods with Mirror Descent policy optimalization for the FMNIST
dataset.

Such results were not expected based on the theoretical work in the chapter
3. The validation results show that the pre-training does not reach better
accuracy or loss even during the initial phase, when its training accuracy is
higher (figures 5.6, 5.4)). The validation accuracy for the probabilistic learning
method was estimated with deterministic quantization, which showed better
results when multiple samples were averaged to gain the deterministic weight
representation.

From the loss evaluation in figures, [5.3| is clear that the STE and prob-
abilistic learning methods have different training targets. Therefore their
loss evaluation is significantly different, whereas the accuracy results are not
distant. After the switch from pre-training, the training target also changes.
The current network structure cannot adapt to the change of targets and
merely restarts the optimization from a worse position.
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Figure 5.5: Training accuracy evaluation of basic STE and pre-trained STE
quantization methods with Mirror Descent policy optimalization for the CIFAR
dataset.
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Figure 5.6: Validation accuracy evaluation of basic STE and pre-trained STE
quantization methods with Mirror Descent policy optimalization for the CIFAR
dataset.
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Chapter 6

Discussion

Low resource neural networks have received significant interest in the last few
years. In the past, most approaches focused on the post-training quantization
and the pruning of redundant connections in DNNs. Such methods lead to
significant improvements. However, the power-hungry CNN networks require
further computational and memory savings to run on power-constrained
devices. Therefore the first methods started to focus on quantization aware
training, which would be able to solve the problem of backpropagation through
the discontinuous discretization function. These methods could be roughly
divided into gradient approximations with STE, sampling-based quantization,
and probabilistic training.

This work theoretically covered quantization with probabilistic learning,
stochastic rounding, and the STE gradient estimation method. All the meth-
ods were implemented and tested in experiments. The stochastic rounding and
the relaxed quantization introduced sampling-based propagation. Relaxed
quantization and probabilistic learning enabled fully continuous gradient flow
without reparametrization tricks. Unlike the stochastic quantization methods,
probabilistic learning does not require any sampling outside the cross-entropy
loss function, making it faster to evaluate and applicable on hardware without
support for sampling. This approach to quantization is related to the ap-
proach for full precision training, and analytic dropout in [SE'19] or for training
networks with quantized weights and binary distributions in [RSFP19].

Other approaches for probabilistic learning of QNNs ([MBK20], [GSS21],
[JSS21]) exploit Bayesian learning chain model which also achieving good
results. All the probabilistic learning approaches contain a certain level of
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6. Discussion

approximation, however, unlike SR or STE, they do not build upon any
heuristics, and their results are therefore better theoretically justifiable. The
significant advantage of probabilistic propagation is that it can train with
the speed of a real-valued network. It does not suffer from low signal-to-
noise gradients, typical for the STE method. Therefore, it can be, in theory,
exploited in training complex problems for which are the basic quantization
methods inapplicable.

The initialization training with the MethodPP can also be advantageous
for networks where the initial gradient for STE and SR methods is too small.
Therefore, the network does not learn. Since the probabilistic learning has a
better signal-to-noise ratio and generally trains faster during the initialization
phase, it can overcome the starting low gradients with relative ease and
prepare the network for more accurate learning with SR/STE after gaining
training the weights into a less complicated optimization space.

However, the expected good results from pretraining of sampling-based
methods with the derived probabilistic learning did not occur. The ex-
periments were otherwise successful in training QNNS for the MNIST and
FMNIST datasets with 1 and 2 bits precision only while maintaining accuracy
over 99 %. In theory, the pretraining approach, which was unsuccessful for
the relatively simple datasets, could improve when implemented on more
challenging tasks like the ImageNet, where QNNs do not reach good accuracy
without pretraining. This should be tested in further work on this topic.
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6.1. Conclusion

. 6.1 Conclusion

This work introduced several popular quantization-aware approaches and
stated the general problem of stochastic QNNs. The problem was then solved
by different methods of stochastic rounding, relaxed quantization, and proba-
bilistic learning, which were all theoretically described and implemented for
experiments. To establish a quantized probabilistic neural network, formulas
for propagation of the first two statistical moments were derived. All the
introduced methods were included in an environment for quantization aware
training in PyTorch. The framework allows for the shared implementation
of a network architecture, which can be trained with different quantization
methods only by parameter setting.

In experiments were QNNs with the extreme case of BNNs trained on the
MNIST dataset. The resulting accuracy for MNIST was nearly identical to
the accuracy acquired from a full precision network of the same architecture.
The stochastic rounding method achieved satisfactory results, even though
its structure was less complex than for the relaxed quantization. Relaxed
quantization and probabilistic learning for 1-bit precision achieved slightly
worse results than the other methods. For the 2-bit precision, all methods
were more or less identical. More experiments were performed with the
CIFAR-10 and FMNIST datasets with the aim of accelerating the training
period by pre-training with the probabilistic method. However, with the
current implementation and experiment settings, no improvements to the
training speed were achieved. All methods were otherwise able to achieve
validation accuracy of over 80 % with basic training settings.

Future work on this topic should extend the benchmark results to other
models and expand the environment to utilize more complex neural network
architectures. It should reintroduce and improve the current pre-training
approach and show its results on quantization tasks that are unsolvable by the
standard sampling-based quantization due to the low signal-to-noise gradient.
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Appendix A

Derivations for BN Mean and Variance
Propagation

. A.1 Mean of BN variance

The derivation of the mean of a BN variance 0]25 N

1 n
ohN = - > (ai — pBN)? (A1)
i=1

E [UJQBN] =E [% zn:(ai ) [MBN])Q] = %Zn:E [(ai -E [,UBN])Q} =
i i=1
=-> E {a? —2-a; Elupn] +E [,LLBNH = (A2

_ %Z (E [QZZ] +E[-2-a;-E[upn]] + E [E [MBN]Z])

For clear process, the terms inside the sum in the Eq. are processed one
by one. Let’s start with the first term:

E|a}] = V]a] +E[a]* = 07 + 4 (A.3)

Since the E [upn] is already a mean value, another mean function will not
change its value:
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A. Derivations for BN Mean and Variance Propagation

E [E [1pn]’] = E[E [upn]] - E[E [upn]] = E [usn)? (A1)
E[-2-a;i -E[upn]l = -2 -Elai] - E[E[upn]] = =2 pi - E[usn]  (A5)

When the equations [A.3 [A.4] and [A.5| are substituted back to [A.2], the
resulting mean of BN variance is:

z": (03 + ;=2 pi - Epupy] +E[HBN]2) —
o (A.6)

= 3o+ Y (i~ B[]’

{UBN} - %

. A.2 Variance propagation of BN

Some of the following steps are based on the fact that ug is a scalar and not
a random variable. Hence propagation of E is allowed.

There are two possible approaches to deriving the propagated variance
through the BN layer. The first one is the expected derivation process of eval-
uating the mean of squared BN activation and then subtracting the squared
mean of the BN activation. However, there has to be an approximation made
in the last step assuming independence between a; and upy, which does not
hold since a; is used to calculate upy.

Therefore another derivation can be applied based on knowing the expected
value of the BN mean E[upy] and the expected value of the BN variance
E[o% ] from equations [3.23| and |3.24. Given these two values, the rest of the
BN layer can be seen as an affine layer.

Qi — UBN a4+ B~ MBN
\/U%N+§ +/E UBN +§
ol +< ElupN]

E[ofn] +5 E[ofy] +5¢

The equation [A.7] can be seen as a simple affine function with the scalar scale
~ and scalar offset 5. Propagation of the mean and variance for affine layers

(A7)

:ai'
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A.3. Mean and Variance of Quantization Layer

has been already derived in the section |3.1.1, more precisely in the equations
3.17|and [3.18. Thus the rest of the evaluation is unambiguous:

. a ElpBN]
Ela] =pi-v+d=a;- +( -a+6):
VEoBy] +s \\Elohy] +6 (48)
_ #i —Elppy] a+ B
Efofy] +¢
a2
V[a]:’yz-agzm-a? (A.9)

Side note: The result of the mentioned classical derivation approach has
reached the same results despite the approximated dependence between terms.
However, the classical derivation process is significantly more complicated,
rendering it sub-optimal. The demonstrated approach to exploiting the
attributes of the affine layer can also serve as an example of how can more
complicated layers be in the future constructed by exploiting the properties
of the already derived elementary layers.

B A.3 Mean and Variance of Quantization Layer

B A3.1 Mean

Let’s parameterize the grid points of the grid in the following matter:
gi=a- -1+ go (A.10)

This parametrization emphasizes the equidistant spacing between the grid
points. If the grid was selected another way, the following derivation process
would be inapplicable. The scale of the grid, or distance between grid points,
is a. The offset of the grid is the value of the first grid point.

Substitute the reparametrized value of g; to the the formula for the mean
value 13.31k
K-1

Ly = Z(a~z’+go)'(F(a'i—i—go—i-a/?)—F(a"i+90—a/2)) (A.11)
i=0

Then for the grid points with indexes i € [0,1,..., K — 1] applies:
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A. Derivations for BN Mean and Variance Propagation

0: (a-0+g0)(F(a-0+g0+0a/2) = Fla-0+go—a/2))  (A12)

1: (e 1+g0)(Fla-1+g+a/2)=Fla-1+g-0a/2)) (A13)
it (avitg)(Floai+tg+a/2)—Fla-itg-a/2)) (A14)

K—1: (a-(K=1)+go)(Fla-(K—1)+g+a/2)-
(A.15)
—F(a- (K = 1)+ g0 — /2))

An equation other than the first one, let’s notate it i + 1, can be simplified
into:

i+1: (avitatg)(Flo(i+1)+g+a/2) = Flai+gp+a/2)
(A.16)

When the probabilities of two consecutive CDF evaluations are added
according to the formula |A.11, some terms cancel each other. The result of
such addition is notated A;:

Aj=(a-i+go)F(a-i+go—a/2)+

+(a(i+1)+g0) Flali+ 1)+ go + /2)) — - F(a- i+ go + o/2) (A.17)

Now it is clear, that for non extreme grid points g;, the only term that
prevails is:
—a-F(a-i+go+ a/2)

Therefore a simplified form of |A.11]is evaluated:

K-1 K—1
Zgi-P(a?:gi):go~F(go—a/2)— Za-F(a-i+go+a/2)+
i=0 =1

+a- (K=1)+go)  Fla- (K —1)+go+ a/2)

(A.18)
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A.3. Mean and Variance of Quantization Layer

Following the process from relaxed quantization, the first and last CDF
evaluation are approximated so

F(go — a/2) = F(—00) =0 (A.19)
Fla(K—-1)+go+a/2) = F(x) =1 (A.20)
Then the final formula, which is to be exploited in code, is formed:
K-1
pz=a-(K—1)+go— - Z Fla-i+go+a/2) =
i=1
K1 (A.21)
=a-(K—-1)4+gy—a- Z F(gi+ a/2)
i=1

For symmetrical PDFs applies F'(x) = (1 — F(—xz)). Thus a further simplifi-
cation can be made:
K-1
pz=oa- (K=1)+g+a- Y. (F(—gi—a/Q)—l) =
=1
—1

=

=a- (K- +g—a- (K-1)+a) F(-g—a/2)= (A.22)

™

NH

%
K-1

=go+ Y F(—gi—a/2)=go+ Y F(—gi—/2)
1

i=1 %

B A.3.2 Variance

The derivation process for variance is almost identical. Since the squared
mean can be assumed from the previous derivation, only the first term from
the formula [3.32] needs to be evaluated. The second term’s evaluation for
each grid point is:

0: gg(F(a-O—i—go—l—a/Q)—F(a~0+go—a/2)) (A.23)

1: (e 1490 (Fla-14g+a/2) = Fla-1+g —a/2))  (A24)
i (aritg0) (Flavitgota/2)—Fla-itg—a/2)) (A25)

K—1: (o (K = 1) + g0)*(Fla- (K = 1) + go + a/2)—
(A.26)
~F(a- (K = 1) + g0 — /2))
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A. Derivations for BN Mean and Variance Propagation

In a similar matter as for the expected value, the evaluation for the grid
point g;y1 is:

(0?3 +2a i+ go+ g3 + a® + 20 i+ 2a- go) (Fla i+ go + a/2) —
—F(a-i+go—a/2)>
(A.27)

For A; =i+ (i + 1) then applies:

A; = (a~i+g0)2F(a-i+go—a/2)+

+ (@i + 1) + g0)2 Flali + 1) + go + a/2))— (A.28)

—(® +2a% i +2a-go)F(a-i+go+a/2)

For the non extreme grid points g;, the only term that prevails is

—(a? 4+ 202 i+ 2a-go)F(a-i+go+a/2) (A.29)

Therefore a simpliﬁed form of [3.32] is evaluated:

E:% P(z=g
=0

K-1

=g - F(go— a/2) — Z o +2a% i+ 2a-go)Fla-i+go+a/2)+
1=1
o (K —1)+g0)* - Fla- (K —1)+go+a/2)

(A.30)

After the substitution of values from equations [A.19| and [A.20] the final form
of the second term of [3.32] is:

K-1
g P(@=g;) =
1=0
K—1
(o (K1) 4g0) ~ Y (o2 + 20 i

i+2a-go)F(a-i+ go+ a/2)

Il
N

%

(A.31)

Then the formula for the propagated variance of the quantization layer is

K-1
o2 =(a-(K—1)+g0)*— Y (a®+20% i+20-go) F(gi+/2) — i (A.32)
=1
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Appendix B

Experimental Details

. B.1 MNIST Datasets and LeNet5 Architecture

The MNIST dataset contains 60k training and 10k test handwritten digit
images with 28 x28 resolution for classification to 10 classes. The images were
not pre-processed in any way.

The Fashon MNIST dataset contains 70k images of individual articles of
clothing at 28x28 resolution. The dataset uses 60k images for training and
10k images for testing.

The exploited LeNetd architecture structure was
32C5 — AP2 — 64C5 — AP2 — 1024FC512 — 512FC10 — Softmax

With the notation XCY denoting a convolutional layer using Y x Y kernel
filter with X output channels. YFCZ denotes a fully connected layer with Y
in features and Z out features. APY denotes the standard average pooling
with kernel Y x Y with the stride Y. All layers in the network are followed
by a batch normalization layer.

For all methods was exploited learning rate le-3 and batch size 128. For
loss function was selected the cross entropy. Parameters for the batch nor-
malization layer were preset to [-0.5; -0.5.]
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B. Experimental Details

B B.2 CIFAR-10 Dataset and ALL-CNN Architecture

The CIFAR-10 dataset contains 50k training and 10k test images of 10
different objects with 32x32 resolution. The images were not pre-processed
in any way.

The Fashon MNIST dataset contains 70k images of individual articles of
clothing at 28x28 resolution. The dataset uses 60k images for training and
10k images for testing.

The exploited architecture structure was constructed mainly from CNN
blocks without bias followed by batch normalization.

—Conv2d(3,96, 3, 1, 1,) — Conv2d(96, 96, 3, 1, 1) — Conv2d(96, 96, 3, 2,
1)) — Conv2d(96, 192, 3, 1, 1) — Conv2d(192, 192, 3, 1, 1)— Conv2d(192, 192,
3,2, 1) — Conv2d(192, 192, 3, 1, 1) — Conv2d(192, 192, 1, 1,)—Conv2d(192,
10, 1, 1)—AdaptiveAvgPool2d()—Flatten()—

where the convolutional layers have the following parameter notation:
Conv2d(I, J, K, L, M) with I for the number of input channels, J for the
number of output channels, K for the convolution kernel size, L for the stride,
and M for padding. The learning rate was set to le-4 and the batch size to
128.
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