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Chapter 1

Introduction

Supervised machine learning is an art which, for data in the form (x, y) dis-
tributed according to probability distribution P all, tries to find a function f
(called predictor), which can estimate y from x. The predictor is practically
created using a finite dataset D = {(xi, yi)}nd

i=1 of samples sampled i.i.d. from
P all. However, in many applications, the predictor f can face samples from
different probability distribution than P all. The quality of the estimate of
y can decrease in such cases. This problem is encountered in many prac-
tical applications of supervised machine learning algorithms, and we call it
the problem of robustness of supervised machine learning algorithms to the
change of the underlying probability distribution of the samples.

Let us illustrate the problem by an example. Consider the task of hand-
written digit recognition using a supervised machine learning algorithm.
When obtaining data to solve this task, we can invite many volunteers and
let them each fill in a sample sheet, on which every participant writes digits
in annotated fields prescribing which digit should be written in the respec-
tive field. The input of the predictor is then the image of the digit, and the
desired output is an integer corresponding to the annotation of the field.

(a) Europe (b) US

Figure 1.1: Different styles of writing the digits 1 and 7 between Europe
and the United States [1]. Notice the similarity between the European 1 and
American 7.
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Figure 1.2: Example
of two environments, A
and B. Each environ-
ment consists of two
classes which are to be
recognised. The red line
separates well the classes
in the environment A
and is optimal in the evi-
ronment, but when used
in environment B it gives
significantly suboptimal
results. The classes
are sampled from nor-
mal distributions with
equal covariance matri-
ces and different means.
There are 20000 samples
in each class.

We could notice that each instance of the handwritten digit has its char-
acteristics, making it possible to recognize it by other people. On the other
hand, each participant has his/her specific style of writing, which makes
his/her digits unique and distinguishable from other participants’ digits.
Sometimes it is possible to say who wrote the digits just from their look.
Therefore, we can say that each participant forms an environment and that in
each environment, the digits are drawn from slightly different environment-
specific probability distributions. Suppose we create our predictor only on
samples from one participant. In that case, it will likely fail when faced with
digits from someone else – the example of this can be image 1.1, where a
predictor created on the digits from a European participant could recognize
American digits 7 as digits 1. Optimally, we would like the predictor to filter
out the effect of the environment and learn only the useful characteristics of
the digits.

To illustrate why such failure could happen, see the figure 1.2. The results
are significantly suboptimal if we try to classify samples from environment B
using only information from environment A. We will return to this example
in later sections of the thesis.

To show that the problem of the robustness to the change of an environ-
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Figure 1.3: Communication scheme in image steganography.

ment is not artificial, we will introduce the reader to the problem of cover
source mismatch [2] in image steganography. Steganography aims to commu-
nicate a secret message through an overt channel without the communication
being detected. In the case of image steganography, such a channel has a form
of images. Steganalysis then aims to detect the presence of the hidden se-
cret message. Researchers created the steganographic algorithms (algorithms
that hide the secret message in innocently looking data, for example, in an
image from vacation) following the Kerckhoffs’s principle [3], which states
that the security of the algorithm must rely only on the secret key and it
must be assumed that all parameters of the communication except the secret
key can be known to the adversary. Unfortunately, it is a common practice
that the same assumptions are made when designing the tools for steganal-
ysis – it is assumed that the steganalyst has perfect knowledge about the
steganographic algorithm, probability distribution of the cover objects (be-
nign data, which is later used to hide the message, i.e., a set of images), and
the length of the message. This assumption on the steganalyst’s knowledge
is highly unrealistic in practical application, and if the steganalyst’s assumed
probability distribution of the cover objects differs from the actual proba-
bility distribution of the cover objects, the performance of the algorithms
used for steganalysis decreases, as shown in [2]. This problem is called cover
source mismatch.

The cover source mismatch can be formulated using the notion of envi-
ronments and change of the data generating probability distributions. Each
cover source forms an environment with its specific data generating prob-
ability distribution. The goal is to find a steganalytic predictor robust to
the change of the environment (cover source, data-generating probability
distribution). The predictor then must detect the useful signal (the hidden
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message) while unaffected by the environment-specific signal in the commu-
nication channel (i.e., the contents of the cover image).

Some solutions were proposed to mitigate the cover source mismatch [4]
[5] [6]. However, the problem is mostly overlooked by the community, which
is why we find it interesting. We will use it as a benchmark to demonstrate
the algorithms presented in this thesis and measure their performance on the
problem. We hope that the thesis will bring original results on this problem.

The outline of the work is following. In chapter 2, we present the reader
with basic concepts of supervised machine learning and the concept of em-
pirical risk minimization. We also show why the concept is appealing from
the theoretical and practical points of view. Then we point out the weakness
of this concept when applied to the problem mentioned above. In chapter
3, we will study the notion of environment and different measures of quality
of prediction and methods utilizing the environments. In chapter 4 we will
provide a short introduction to image steganography and demonstrate the
concepts from the previous chapter on the problem of cover source mismatch
in image steganography.
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Chapter 2

Introduction to Supervised
Machine Learning

Recall the handwritten digit recognition task. In this task, we would like an
instance of a handwritten digit to form the input of function f , and we would
like the function to output which digit it is reliably. We can restrict ourselves
to 64 × 64 pixels grayscale image of each digit. We will then transform the
image into a vector by concatenating the rows of the image, obtaining a
real-valued vector with 4096 components. This is the actual input x of the
function f . Throughout the thesis, we will assume that the input is an
n-dimensional real-valued vector from some set X ⊂ Rn.

We will further assume that each input x can be unequivocally given a
label y, which is a machine-readable annotation of the data. In the hand-
written digit recognition task, the label would clearly state which digit (zero
to nine) is captured in the input. Formally, the label is an m-dimensional
vector from some set Y ⊂ Rm.

The tuple (x, y) of the input and the corresponding label is called sample.
We assume that we can use a set of samples to find the function f . Machine
learning problems with data in the form of inputs annotated by labels are
called supervised [7]. When we find the function f and deploy it into its
application, we assume that it will be provided only the input data x, and
we would like it to output the correct label y (or at least a good estimate of
the label).

We further assume that the samples are sampled from some probability
distribution P all over X × Y . We can summarize and detail our goal as to
find a function f from some set of functions F , which, for any sample (x, y)
sampled from P all, takes x as an input and outputs a good estimate ŷ = f(x)
of the label y. We will call f predictor and F hypothesis space or the set
of possible predictors. We want the estimate to be as good as possible. The

15



quality of the estimate is measured by a real-valued loss function ℓ, which
takes the estimate ŷ and label y as its inputs and outputs a value, which
tells us how well ŷ estimates y. Good assumptions on the loss function are
that the output is non-negative and the lower is the output, the closer is ŷ
to y. Ideally, we would like the loss function to be zero for matching input
arguments.

For discrete Y , the image of f is often an open superset of Y . This allows
to continuously decrease the distance of ŷ and y, which is needed to use some
of the machine learning algorithms. The loss function is in that case defined
on the superset of Y . To obtain a value of prediction from Y , we apply some
projection t to the output ŷ. An example of such projection is thresholding,
e.g. for Y = {0, 1} and the output of f real valued, the projection function
is

t(ŷ) =
0 if ŷ ≤ 0.5,

1 if ŷ > 0.5.

Regarding the loss functions, one of the most general lost functions it the
is the 0-1 loss, which for any of its input arguments returns 0 if they match
and 1 otherwise. That is

ℓZO(ŷ, y) =
0 if ŷ = y

1 if ŷ ̸= y.

The 0-1 loss function naturally captures the accuracy of predictor f – the
portion of samples which are predicted correctly by f . Accuracy of the
predictor f can be obtained from the 0-1 loss as

1− E(x,y)∼P all

[
ℓZO(f(x), y)

]
.

We want to maximize the accuracy, which is equivalent to minimizing the
0-1 loss.

However, the 0-1 loss has two main drawbacks. First, it does not capture
how close is ŷ to y – only whether these two matches. Second, the 0-1
loss has zero gradient a.e., which is an obstacle for optimization algorithms
computing gradients of the loss function to obtain optimal f , as the value
of the gradient is non-informative. In this case, loss functions with more
informative gradient values are used instead. An example of such a loss
function is the squared error, which is defined as

ℓSE(ŷ, y) = ∥ŷ − y∥2.

Note that this loss function continuously decreases as ŷ gets closer to
y. Therefore, minimizing this loss approximates maximizing the accuracy.
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Other frequently used loss functions include cross-entropy or absolute error
[8].

A careful reader might wonder why we do not predict y from x exactly.
The explanation is that it is often practically impossible or intractable to
find such a predictor. First, the exact solution to the problem may not be
present in the hypothesis space F . Second, there may be no practically
usable closed-form formula to compute f directly, and F may be too big to
allow for an exhaustive search. The above formulation of the problem allows
us to 1. obtain a result even in the case when there is no exact solution to
the problem in the set F , and if needed, 2. use faster methods which usually
find only an approximate solution, but do so in a reasonable time.

Now we can summarize the above objective as the risk minimization ob-
jective [9]:

Definition 2.1 (Risk minimization objective)
The risk minimization objective is to minimize the risk functional

Rall(f) = E(x,y)∼P all [ℓ(f(x), y)] (2.1)

by the choice of f ∈ F .

From the practical point of view, this objective has a significant drawback:
the distribution P all is often not known [9], or searching for a suitable f over
the distribution is not tractable (calculation of the expectation in (2.1) means
calculation of an integral, which generally may not have an analytic solution).
Thus, we often cannot minimize (2.1) directly.

Therefore a finite dataset D is drawn independently from the distribution.
Let nd ∈ N denote the number of samples in D. Then the empirical risk
minimization (ERM) objective is solved [9]:

Definition 2.2 (Empirical risk minimization objective)
Minimize the empirical risk functional

RERM(f) = 1
nd

∑
(x,y)∈D

[ℓ(f(x), y)] (2.2)

by the choice of f ∈ F , where D is a finite dataset drawn i.i.d. from the
distribution P all.

The process of selecting the predictor f ∈ F is called training.

The rationale behind usingD to represent P all is thatD forms an estimate
P̂all of P all. For nd → ∞, P̂all converges to P all almost surely. This is a
solid reason to think that the low values of the empirical risk minimization
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objective (2.2) imply low values of the risk minimization objective (2.1) for
large enough datasets. As we will show later in this chapter, some additional
assumptions need to be made for the above-mentioned to hold, but we can
say in advance that for a wide class of problems, it does.

There are many hypothesis spaces F used, namely the linear regressors,
support vector machines, or neural networks [7]. Each of these is connected
with methods used for minimizing the (2.2) term. In the experimental sec-
tion of this thesis, we will use the linear regression solved by the least-squares
method [10] and the feedforward neural network solved by the gradient de-
scent algorithm [7].

Example 2.1 (Linear regression and least squares method). Let D ⊂ X ×Y
be a dataset of size nd ∈ N. We will assume that the space of the labels Y is
a subset of R, that is, the labels are real numbers.

We will arrange the samples from D into matrices X ∈ Rnd×n, Y ∈ Rnd ,
where the first row of X is the x element of the first sample (x, y) ∈ D and
the first element of Y is the corresponding label y. The second row of X
is the x element of the second sample, and the second element of Y is the
corresponding label of y and so on.

Assume the loss function in the form of the squared error ℓSE.
We want to find a predictor from the hypothesis space of linear predictors

F of functions parametrized by a vector v ∈ Rn in the form of fv(x) = v⊤x
for all x ∈ Rn.

In [10] it is shown that for X with linearly independent columns

w = (X⊤X)−1X⊤Y ∈ Rn, (2.3)

is the minimizer of the objective function RLSM(v)

RLSM(v) =
∑

(x,y)∈D
ℓSE(vT x, y). (2.4)

By dividing RLSM(v) by the number of samples nd, we get the empirical risk
minimization objective (2.2) for a loss function ℓSE and the hypothesis space
of linear predictors F . Because division and multiplication by a positive
number do not change the argument of the minima, w is a minimizer of the
empirical risk minimization objective with loss function ℓSE and hypothesis
space F .

In the experimental section of this thesis we will use a modified solution
in the form

w = (X⊤X + λI)−1X⊤Y ∈ Rn, (2.5)
where λ ∈ R+

0 is a regularisation parameter. Equation (2.5) has two interpre-
tations. First, the computation of the matrix inverse (X⊤X)−1 is unstable in
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computer arithmetic especially for ill-conditioned (nearly singular) matrices
X. Adding some positive number to the matrix diagonal makes the matrix
diagonally dominant (diagonally dominant matrices are nonsingular). This
allows for a more stable computation of the inverse. Second, it can be shown
[11] that (2.5) is the minimizer of

Rridge(v) =
∑

(x,y)∈D

(
ℓSE(v⊤x, y)

)
+ λ ∗ ∥v∥2

2. (2.6)

We can see that an additional constraint on the value of the regression coef-
ficients was added to the objective function (2.4). λ influences the strength
of the constraint – larger λ pushes the coefficients more towards zero. For
ill-conditioned problems (e.g., for problems where the number of the parame-
ters of the model is significantly larger than the number of samples available
for training), the additional constraint bounds the set of suitable solutions
w in contrast to the original problem (2.4) [11].

Example 2.2 (Feedforward neural network and gradient descent [7]). The
feedforward neural network can be described as a function, which is a com-
position of its layers

fθ = f
(p)
θp
◦ · · · ◦ f

(2)
θ2 ◦ f

(1)
θ1 ,

for some p ∈ N, where for each i ∈ {1, 2 . . . , p} layer f
(i)
θi

is a function
f

(i)
θi

: Rqi−1 → Rqi parameterized by a vector of parameters θi ∈ Rri , ri ∈ N.
For all i ∈ {0, 1, . . . , p}, qi ∈ N. We put q0 = n and qp = m (the dimensions
of X and Y respectively). More elaborate definition of the feedforward neural
network and the commonly used layers is beyond the scope of this text. We
can refer the reader to [7] or [8].

In the feedforward neural network, the input x goes through each layer
without returning to some of the previous layers.

We will assume that each layer is differentiable a.e. in its domain. Let
θ := θ1 × θ2 × · · · × θp. For a differentiable loss function ℓ, we can compute
the expected value of the gradient of the loss function over the dataset D
w.r.t the model parameters

g(θ) = 1
nd

∑
(x,y)∈D

∇θℓ(fθ(x), y),

which is the gradient of the RERM(fθ) term (2.2) with respect to θ.
By setting θ ← θ − ϵg(θ), where ϵ is called learning step, the ERM

term decreases. The learning step is repeated until the ERM term reaches
sufficiently low value. This method is called gradient descent.
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Because the computational complexity of the computation of g is O(nd),
usually a randomly selected subset D′ of D is used instead:

g(θ) = 1
n′

d

∑
(x,y)∈D′

∇θℓ(fθ(x), y),

where n′
d is the size of D′. This reduces the computational complexity of

each iteration, and the method is called stochastic gradient descent.
Note that the gradient descent is not guaranteed to reach global minima.

However, it is often enough to find local minima with a sufficiently low value
of RERM .

Machine learning models based on the ERM theory are largely adopted.
This is because the ERM theory puts very loose constraints on the solved
problem – for example, there is no constraint on P all – and many problems
and methods fit the ERM framework. Furthermore, the ERM-based meth-
ods are backed by more than forty years of research and provided by many
software frameworks.

2.1 The Theory Behind Empirical Risk Min-
imization

The general risk minimization objective (2.1) and the empirical risk mini-
mization objective (2.2) were introduced at the beginning of this chapter.
Below, we will explain how the latter approximates the former.

First, let us define the notion of the VC (Vapnik-Chervonenkis) dimension
and related concepts.

Throughout this section, we assume the predictor with the output in the
form of Y = {±1} – this is the binary classification task, where we want to
match the input data with one of two possible classes. We also assume that
each function f ∈ F is a mapping f : X → Y . Further, we assume that
the loss function in the Rall and RERM terms is the 0-1 loss function ℓZO.
We have no assumptions on the form of the distribution P all, which
makes the theoretical results very general.

For the purpose of this section only, input tuple S = (x1, . . . , xns), ns ∈ N,
denotes a tuple of input data x sampled i.i.d. from the marginal probability
distribution of the inputs P all

X , where P all
X is obtained from P all by marginal-

izing out the labels y.
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Definition 2.3 (Dichotomies of S [12])
The set of dichotomies ΠF(S) for input tuple S and hypothesis space F is
defined

ΠF(S) := {(f(x1), . . . , f(xns))|f ∈ F}

This represents the set of all possible outputs of functions in F applied
to the elements of S.

Definition 2.4 ([12])
We will say that the input tuple S is shattered by F if and only if |ΠF(S)| =
2ns.

This means that for this specific S = (x1, . . . , xns) and for each possible
tuple of labels (y1, . . . , yns) ∈ Yns there exists a predictor f in F , such
that (f(x1), . . . , f(xns)) = (y1, . . . , yns). In other words, for any dataset
D = {(xi, yi)}ns

i=1, where xi in the dataset corresponds to xi in the shattered
input tuple S and labels yi ∈ {±1} are arbitrary, there exists a predictor in
the hypothesis space F which predicts yi from xi exactly.

Definition 2.5 (VC dimension [12])
The VC dimension of the hypothesis space F is the size of the largest input
tuple S shattered by F .

If arbitrary size finite input tuples can be shattered by F then the VC
dimension in +∞.

VC dimension can be understood as a measure of the expressive power of
the hypothesis space F . The larger the VC dimension, the larger the dataset
size that some function from F can memorize perfectly. Also, for a hypothesis
space with a finite VC dimension d and for any sample S = (x1, . . . , xns) of
size ns larger than d, there exists some labeling of the sample S (i.e., each
sample x ∈ S is assigned a label y ∈ Y), for which there is no function f ∈ F
with outputs of f matching the labeling on all data from the sample S.

VC dimension is often proportional to the number of parameters of the
hypothesis space F . Many practically used hypothesis spaces have finite VC
dimensions. The VC dimension of the linear predictor fv(x) = v⊤x with
binary output is d for v ∈ Rd [8]. The VC dimension of a feedforward neural
network with sign activation function and E parameters is O(E ln E) [8]. In
[13], the upper bound on the VC dimension for neural networks with ReLU
activations is shown.

Now we introduce the key theorem connecting the (2.1) and (2.2) objec-
tives:
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Theorem 2.1 ([12])
Let F be a hypothesis space of VC-dimension d < ∞, and assume that a
random dataset D of size nd is sampled i.i.d. from P all, where nd ≥ d ≥ 1.
Let 1 > δ > 0, ϵ > 0.

Then with probability at least 1− δ

Rall(f) ≤ RERM(f) + O

√
d ln(nd/d) + ln(1/δ)

nd

 (2.7)

for all f ∈ F .

O is the Bachmann-Landau notation 1.
Theorem 2.1 gives an upper bound on the Rall risk minimization objective.

It determines how well the predictor resulting from the minimization of the
(2.2) objective can generalize to data from the distribution P all unseen in the
dataset D.

There are several ways to lower the upper bound in (2.7) on the Rall term
and improve the generalization properties of f :

• Predictor f , which better fits the data D, achieves lower RERM and
therefore decreases the right-hand side of (2.7).

• The larger is the dataset D, the lower is the right-hand side of (2.7).

• Simpler hypotheses spaces with lower VC dimension decrease the right-
hand side.

There are several aspects and consequences of the theorem 2.1 which we
will discuss below [12].

Note that the bounds in theorem 2.1 hold with a probability 1− δ. Fur-
ther, the lower δ (and larger the probability of the equation to hold), the
larger the upper bound. This is because the dataset D can be sampled
poorly with some non-zero probability, so it does not represent the underly-
ing P all well, and the estimate given by the RERM term is of poor quality.
For example, the dataset can be sampled in such a manner that one type of
input is almost missing. The probability of such a situation decreases with
the growing size of the dataset.

Furthermore, the theorem assumed i.i.d. sampling of D, which can be
violated. For example, the data collection process can introduce an unwanted
bias. Consider the case of handwritten digit recognition. The participants

1h(x) = O(g(x)) means that there exists a positive real number C > 0 and real number
N such that |h(x)| ≤ C|g(x)| for all x ≥ N .
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who provide the digit samples can try to write neatly. However, this is rarely
the case in real life. The predictor trained only on neat handwriting can be
unable to recognize the real-life samples, which look different.

Hypothesis spaces with infinite VC dimensions are very likely to fit the
dataset D perfectly without any guarantees on their generalization properties
to data sampled from P all not included in D. This is a phenomenon strongly
correlated with overfitting. Overfitting is a situation in which the empirical
risk RERM is low, yet the risk Rall is high. This is because, with the growing
VC dimension of the hypothesis space, a more complex predictor allows to
fit the training data better, which leads to lower risk RERM . Yet, the upper
bound on Rall is higher, as the more complex predictor allows to memorize
the dataset D without capturing the underlying data generating distribution,
achieving low accuracy on the data from P all not included in the dataset D
as a result.

As mentioned earlier, many practically used hypothesis spaces have finite
VC dimensions; therefore, they do not violate the theorem’s assumptions.

Also, notice that the equation holds only for datasets larger or equal in
size to the VC dimension of the hypothesis space. For datasets smaller than
the VC dimension, some predictor from the hypothesis space F may fit the
data perfectly, yet no useful upper bound on Rall can be given. This effect
also strongly correlates to overfitting – using too rich hypothesis space on a
small dataset can produce a predictor memorizing the dataset without any
generalization capabilities to unseen data. Note that the datasets in the
experimental section of this thesis are smaller than the VC dimension of
the hypothesis spaces used, and the effect of overfitting is observable: the
accuracy on data exposed during training is nearly 100%, yet the accuracy
on data not exposed during training is significantly smaller. However, the
predictors are still mostly able to provide useful estimates of the labels on
data not exposed during training and are therefore useful.

The upper bound (2.7) is overestimated for most practical applications.
This is because the upper bound must also work for the worst cases of P all,
which may not be very usual in practical applications. In many practical
applications, hypothesis spaces with large VC dimensions are used without
more significant deterioration of the generalization properties to the data
from P all unseen in D.

Sometimes we can notice that the risk Rall is higher than RERM . This is
caused not only by the second term on the right-hand side of (2.7) but also
by the fact that the minimization procedure choosing the predictor f ∈ F
minimizing RERM favors predictors whose risks RERM are by chance lower
than their risk Rall on the specific instance of D.

It is straightforward to see that the above holds only in the case where we
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do not assume the underlying probability distribution P all to change. If the
predictor is trained on data from probability distribution A and evaluated on
data from arbitrary probability distribution B, the upper bound on the risk
does not hold, and the risk can be arbitrary. This is the phenomenon of cover
source mismatch in image steganography, where the assumed probability dis-
tribution of the cover images used to obtain a predictor for steganalysis is
different from the actual probability distribution used by the steganograph.
Therefore, we need to utilize further information about the structure of the
problem to circumvent this issue, which we do by using the concept of envi-
ronments as shown in the next chapter.
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Chapter 3

Incorporating Environments
Into Prediction Tasks

This section will study how the partitioning of the data into environments
can be utilized in the prediction tasks. First, we will discuss measures of
quality of prediction in the presence of environments. Then we will discuss
learning objectives incorporating the knowledge of the environment.

In the experimental part of this thesis (chapter 4), we show how envi-
ronments can describe the problem of the cover source mismatch, and we
demonstrate, evaluate and compare the proposed methods on the problem.

The following notation largely follows [14]. Let Eall denote a set of all
environments. It can be, for example, the set of all people in the world who
can write digits. e ∈ Eall will denote a single environment (for example, a
single participant in the handwritten digits dataset). Let Etr ⊂ Eall be the set
of all training environments – environments directly available for training.
This can be a set of all participants who provided their writing samples
when the dataset of handwritten digits was created. This dataset is then
used to train the predictor for handwritten digit recognition. Specifically, let
De = {(xe

i , ye
i )}ne

i=1 be a dataset for an environment e, where ne denotes the
number of samples in the dataset for this environment. We will assume that
De are i.i.d. samples drawn from some joint probability distribution P e over
X × Y .

Note that Eall can be significantly larger than Etr. For example, it would
be impossible to collect digits samples from all people in the world and store
them centrally. There will always be environments that we have never seen
during training, similarly to the samples from P all unseen in the dataset D in
the ERM. As we will see in the application domain of image steganography
in chapter 4, different environments (called cover sources) are formed by
a broad spectrum of parameters, starting with the captured scene, camera

25



model and camera settings and ending with the software used to post-process
images and JPEG quality factor of the resulting image. An accurate model
of the images is not available, and the number of combinations of the possible
parameters is enormous, which restricts us from using a significant fraction of
them for training. Therefore, the set of training environments is significantly
reduced compared to the set of all environments.

3.1 Measures of Quality of the Predictor
Measures of the quality of the predictor capture our goals in the specific
problem. Their choice also influences the suitability of specific algorithms
to obtain predictors achieving good results under these measures. We will
assume a general set of environments E , over which are the values computed.

Risk functional: If the probability distribution of the environments P ENV

is known, the probability distribution P all of the data across all of the envi-
ronments is given by

P all(x, y) =
∑
e∈E

P e(x, y)P ENV (e). (3.1)

To capture the quality of the predictor, we can then use the risk functional
(2.1). The value of the risk functional is not influenced by high loss function
values in environments with sufficiently low probability of occurrence.

If the probability distribution P ENV can be estimated or is known, then
the risk functional is the best estimate of the performance of the predictor
on data from P all. However, the probability distribution P ENV is often not
known – and if it were, the problem would reduce to the empirical risk
minimization problem and would not be interesting anymore. If a wrong
estimate of P ENV is used, the values of the risk functional can be significantly
different.

Further, the value of risk functional may not be relevant in cases where
the adversary is able to influence the probability distribution P ENV , e.g. by
being able to select an environment he uses to his benefit. Let Re denote
risk in/under/for environment e:

Re(f) = E(x,y)∼P e [ℓ(f(x), y)] (3.2)

The adversary can utilize his knowledge of the predictor f to select an envi-
ronment with maximum Re(f). In the domain of image steganography, the
steganograph may select the cover source to with minimize the accuracy of
the steganalyst and avoid detection.
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Risk of robust prediction: Another measure of the quality of the pre-
dictor, is the risk of robust prediction

Rrob(f) = max
e∈E

Re(f). (3.3)

The risk of robust prediction handles both disadvantages of the risk func-
tional. It is independent of the probability of the environments P ENV ,
which is useful if the probability of the occurrence of the environments
cannot be accurately estimated, as the approach puts an upper bound on
the worst-case among these environments. The upper bound on the worst
case is also an advantage if the presence of an adversary is assumed. Min-
imizing the risk of robust prediction minimizes the risk Rẽ for the worst
possible choice of ẽ ∈ E and the upper bound on other risks has a form:
∀e ∈ E , maxe′∈E Re′(f) = Rrob(f) ≥ Re(f).

However, the risk of robust prediction (3.3) does not take into account
the intrinsic difficulties of the prediction tasks in the environments. The best
achievable risk can be higher in some environments than in others, and as
minimizing (3.3) minimizes risk only in the environments forming the maxi-
mum, the risk in environments not forming the maximum can be significantly
higher than the lowest achievable value in the respective environments. This
phenomenon is observable in the experimental section of this thesis 4.3, where
the risk of robust prediction is minimized by the minrisk classifier.

Regret of robust prediction: To circumvent the above mentioned issue,
the optimistic values of risk in environment e, re, are subtracted from the
risks Re. Value of Re(f)− re is called regret in environment e and the regret
of robust prediction is

Rreg(f) = max
e∈E

(Re(f)− re) . (3.4)

The optimistic value of risk in environment captures our belief about the
best achievable risk in the respective environment. By minimizing the regret
of robust prediction (3.4) we try to achieve the optimistic values of risk in all
environments. However, determining re can be challenging. The estimation
of re can be performed by training a specialized predictor in each environ-
ment and setting re to the risk of the specialized predictor in the respective
environment, which is computationally expensive. This is also the case in the
experimental section of this thesis. The value of the regret in the environ-
ment then qualifies how much we lose by not using the predictor explicitly
trained for the respective environment.
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3.2 Environments in Supervised Machine Learn-
ing Methods

In this section, we present how to use the empirical risk minimization frame-
work from chapter 2 to solve supervised machine learning tasks formulated
using environments. Then we show other supervised machine learning meth-
ods utilizing the structuring of the problem into environments.

Each of the methods has its advantages and disadvantages, which we
will discuss, and the suitability of each method is mainly dependent on the
specific solved problem.

3.2.1 Clairvoyant Method
Clairvoyant method minimizes the risk functional for an estimate P̂ all of P all

constructed from the data generating probability distributions P e in envi-
ronments Etr. The method utilizes the framework presented in chapter 2. In
order to apply the clairvoyant method, we need an estimate of the proba-
bility distribution of the environments P ENV , which is a strong assumption,
because P ENV , as already mentioned, is generally not known. Further, the
quality of the estimate of P ENV is also significant, as different estimates of
P ENV lead to different results – this can be seen in figure 3.1a, where the
effect, albeit not strong, is noticeable. If the estimate of P ENV is good and
if the resulting P̂ all is a good estimate of P all, the clairvoyant method is the
best to maximize accuracy on P all.

In order to practically use the clairvoyant method, we need to construct
a dataset D over which is the empirical risk computed. For a problem for-
mulated using environments, we can construct D from the datasets De for
environments in the set of training environments Etr. The construction of
the dataset also includes an assumption on the probability of the environ-
ments P ENV (projected in the portion of the samples from De relative to the
overall number of samples). Sometimes we can notice that a simple union of
the datasets for the training environments D = ∪e∈EtrDe is used. This forms
an implicit assumption on the probability distribution P ENV and the prob-
ability of each environment is then determined as the portion of its samples
to the total number of samples in the union

P ENV (e) = ne∑
e∈Etr

ne

.

The clairvoyant method does not recognize between the environments and
may be less suitable to minimize the risk of robust prediction and regret of
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robust prediction as a result. Nevertheless, in many applications, the results
achieved using the clairvoyant method are sufficient approximations of the
solution of the risk or regret of robust prediction.

Another property of the clairvoyant method is that it minimizes the over-
all risk with respect to the assumed probability of the environment, weighting
the risk in more probable environments as more significant. This can be de-
sirable if the environment ẽ, where the value of Rẽ(f) is the largest of all the
environments, is very unlikely to appear.

The clairvoyant method is referred to as holistic linear and holistic MLP
in the experimental part of this thesis.

3.2.2 Mixture of Experts, Atomistic Approach
A generalization to the clairvoyant method is to combine multiple expert
predictors (experts) to solve the classification task.

A large part of the prior art literature uses unsupervised learning to divide
the data into groups. Therefore, prior knowledge about the environment is
not used. Notable is the mixture of experts method [15], which attempts to
divide the dataset D into similar groups and employ an expert predictor on
each of these groups.

The atomistic approach in image steganography [4] also divides the input
domain into multiple parts and applies an expert predictor on each part.
We implement the approach in the experimental section of this thesis as a
composed predictor, where first, a supervised forensic predictor detects the
environment from which the input data originate. The composed predictor’s
output is then the expert predictor’s output for the detected environment.
Expert predictor for the environment e is trained only on the dataset De for
the environment. We will show that the regret of the resulting predictor is
excellent in environments Etr exposed to the algorithm during training, but
regret in environments from Eall \Etr is significant. Furthermore, the method
is computationally expensive, as multiple predictors need to be trained.

Demonstration of our implementation of the atomistic approach on the
data from figure 1.2 is in the figure 3.1b. Both environments were exposed
during training, and we can see that the forensic predictor was successful in
recognizing the environments and employed suitable predictors in these.

3.2.3 Robust Learning
Robust learning objective: The robust learning objective is a min max
optimization [16] problem:

29



0 2 4

0

2

4

6

8

Environment A Class 0
Environment A Class 1

Environment B Class 0
Environment B Class 1

(a) Clairvoyant method

0 2 4

0

2

4

6

8

Environment A Class 0
Environment A Class 1

Environment B Class 0
Environment B Class 1

(b) Atomistic approach

0 2 4

0

2

4

6

8

Environment A Class 0
Environment A Class 1

Environment B Class 0
Environment B Class 1

(c) Convex robust learning

Figure 3.1: Comparison of methods from section 3.2. Figure 3.1a: Demonstra-
tion of the clairvoyant method. Linear predictors obtained from the closed form
solution of Ridge regression. Decision boundaries are represented by the red and
blue lines. The red line corresponds to the case where the probabilities of the
environments are assumed to be the same. The blue line corresponds to the case
where the probablity of environment A is assumed to be one twelfth of the prob-
ability of environment B. The probabilities of the environments were enforced by
the train dataset size – train datasets of the same size for both environments in the
first case, train dataset of the environment A twelve times smaller than the train
dataset of environment B in the second case. Figure 3.1b: Demonstration of the
atomistic approach. The red line is the decision boundary of the resulting com-
posed predictor. The forensic predictor is neural network with two hidden neurons
and tanh activation. Specialised predictors are linear predictors obtained using
the closed form solution of the Ridge regression. Figure 3.1c: Demonstration
of the convex robust learning. Red line is the decision boundary of the resulting
multilayer perceptron predictor. The optimistic values of risk was estimated by a
linear predictor trained using SGD.
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Definition 3.1 (Robust learning objective)
Minimize

Rregtr(f) = max
e∈Etr

(Re(f)− re) , (3.5)

by the choice of f ∈ F .

The robust learning objective minimizes the regret of robust prediction
(3.4) in the training environments, and if the values of re are set to zero, it
minimizes the risk of robust prediction 3.3 in the training environments.

As opposed to the clairvoyant method, we do not need to estimate the
probability of the environments P ENV . As already mentioned, estimating the
optimistic values of risk re can be computationally expensive. Furthermore,
the quality of the estimate can significantly alter the result, as shown in
the experimental part of this thesis in section 4.3 on the minregret simple
validation and minregret extended validation predictors.

In the experiments in chapter 4 we observed the values of the loss func-
tions to be very noisy during the minimization of the robust learning ob-
jective. We think that the problem originates in the fixed step size of the
gradient descent algorithm used. Assume that the predictor fθ is param-
eterized by a vector of parameters θ. Then the gradient of (3.5) w.r.t. θ
is ∂

∂θ
Rẽ(fθ), where ẽ is the arg max of (3.5). The gradient contains infor-

mation on how to decrease regret only in the environment composing the
maximum. Without proper line search, the fixed step size gradient descent
may accidentally increase the regret in some other environment above the
maximum.

Convex robust learning objective: In the following formulation, the
maximum is replaced by a convex combination of the regrets, which we hope
to resolve the issue mentioned above, as the computation of gradient uses
information from all environments with nonzero coefficients in the convex
combination:
Definition 3.2 (Convex robust learning objective)
Assume q = |Etr| < +∞. Assume that the hypothesis space F is parameter-
ized by the parameter vector θ. The convex robust learning objective is to
find the solution (θ, λ) of

min
θ

max
λ∈Λ

∑
e∈Etr

(Re(fθ)− re) , (3.6)

where

Λ =
(λ1, . . . , λq)

∣∣∣∣∣∣∀i ∈ {1, . . . , q}, λi ≥ 0 ∧
q∑

j=1
λj = 1

 . (3.7)
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Note that as

max
e∈Etr

(Re(fθ)− re) = max
λ∈Λ

∑
eEtr

(Re(fθ)− re) , (3.8)

we have that

min
θ

max
e∈Etr

(Re(fθ)− re) = min θ max
λ∈Λ

∑
e∈Etr

(Re(fθ)− re) (3.9)

and the solutions of the robust learning objective and the convex robust
learning objective are equivalent.

We can see the solution of the convex robust learning objective for the
dataset from figure 1.2 in the figure 3.1c. The objective is also demonstrated
in the experimental part of this thesis.

Note that the predictors are trained only on the environments Etr. Upper
bound on the risk in environments e ∈ Eall \ Etr then includes the cases of

• environments e with probability distributions P e within the convex hull
of the training probability distributions [17] [18], and

• environments e with probability distributions P e within some measur-
able distance from the training probability distributions [19].

An interesting property connecting the clairvoyant method and robust
learning was shown in [14], proposition 2. The minimizer of the regret of
robust prediction is a first-order stationary point of the risk functional for
a special choice of P ENV (which is represented by the coefficients λe in the
paper). Unfortunately, to find the special choice P ENV , one has to minimize
the regret of robust prediction first.

3.2.4 Domain Adaptation
Domain adaptation [20] transforms the inputs x in the environments in such
a manner that the probability distribution of the transformed inputs is as
similar as possible across the environments. This (under further assump-
tions) allows putting an upper bound on the error1 in all of the transformed
environments for a predictor trained in one of the transformed environments.
This property is appealing to us, and it is the reason we decided to study
this approach.

Large portion of the domain adaptation literature assumes only two envi-
ronments: source environment and target environment. We will therefore

1error is the portion of mispredicted samples
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follow the two environment setting throughout this subsection. The
scenarios with more than two environments are an extension of this setting,
and the basic concepts are valid in these too. The rationale behind the two
environment setting is inspired by problems where we are provided with a
large enough number of (labeled) samples in the source environment. How-
ever, in the target environment, we have input data labeled only partially
or not at all. The goal is then to create a predictor which works well on
both the source and target environments. In the case of an unlabeled target
environment, this is achieved by finding a transformation of the inputs so
that the inputs in the two environments are mapped on the same probability
distribution (in the best case) and then training a predictor on the data from
the source environment, expecting the resulting predictor to work well also
in the target environment. This is justified by theorem 3.1 introduced later
in this section, which under further assumptions puts an upper bound on the
generalization error in the target environment.

Majority of this subsection will follow [20] and [21]. es denotes the source
environment and et the target environment. Further we will assume binary
classification problem, e.g. Y = {0, 1}. We will assume the hypothesis space
F to be a subset of the set of functions {f : X → {0, 1}}.

P e
X denotes the marginal probability distribution of the inputs x in envi-

ronment e obtained from the joint probability distribution P e. The labeling
function le is defined as [20]

le(x) = EyP e(y|x). (3.10)
Note that the value of le lies in [0, 1], as the labels can be non-deterministic.
In this case, le returns the probability of the label being 1. The labeling
function forms an optimal Bayesian predictor in the respective environment.

We define the error of the predictor f in environment e w.r.t. the labeling
function l as [20]

ϵe(f, l) = Ex∼P e
X

[|f(x)− l(x)|] . (3.11)
Specifically, ϵS(f) := ϵS(f, lS) and ϵT (f) := ϵT (f, lT ). We can see that the
error is a value from [0, 1] and the lower is the value, the better does f
approximate l on the input data from the respective probability distribution.

Further, we need some measure of the distance of two probability distri-
butions. This can be captured using the total variation distance [20]:
Definition 3.3 (Total variation distance)
Let P and P ′ be probability distributions defined on the same sigma algebra
B of measurable subsets of the sample space Ω. Then the total variation
distance is defined as

dV (P, P ′) = sup
B∈B
|P (B)− P ′(B)| , (3.12)
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where P (B) denotes the probability of event B under P .

The key theorem of domain adaptation is then

Theorem 3.1 (Upper bound on target error [20])
For any f ∈ F ,

ϵT (f) ≤ ϵS(f) + 1
2dV

(
P S

X , P T
X

)
+

+ min
{
Ex∼P S

X

[∣∣∣lS(x)− lT (x)
∣∣∣] ,Ex∼P T

X

[∣∣∣lS(x)− lT (x)
∣∣∣]}

(3.13)

The first term is the error of the predictor in the source environment. The
second term corresponds to the discrepancy between the marginal probability
distributions of the inputs. The third term corresponds to the discrepancy
of the labeling functions.

From the theorem, we can see that with increasing distance between the
marginal probability distributions of the input data, the upper bound is
increased. The mismatch between the labeling function also increases the
upper bound. If the second and third terms are small enough and do not
make the upper bound vacuous, we can see that minimizing the error in
the source environment reduces the upper bound on the error in the target
environment.

The practical application of the theorem mentioned above is to create
a transformation function of the inputs so that the distance of the trans-
formed marginal probabilities is minimized. This will reduce the second term
in the upper bound (3.13). Labeling functions for the transformed inputs can
be obtained from (3.10), and under the assumption that the discrepancy be-
tween these labeling functions is low (the third term on the right-hand side
of (3.13)), this will put a strict upper bound on the error in the target en-
vironment. We can then train a predictor on the transformed data from the
source environment, with the error in the target environment bounded from
above by the error in the source environment and the supposedly low values
of the second and third terms in the equation (3.13). As we will see later
in example 3.1 in this section, the assumption of similar labeling functions
can be easily violated. Using this method on the problem then may yield
unusable results, even though the original problem may be perfectly solvable.

An important drawback of theorem 3.1 is that the total variation dis-
tance cannot be accurately computed from a finite number of samples. The
authors of [22] show that for large enough n and any algorithm using only
o(n 2

3 ) samples to distinguish between two discrete probability distributions
over n elements using total variation distance, there exist two probability
distributions with large total variation distance that are indistinguishable by
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the algorithm. This means that any sample-based algorithm using variation
difference to distinguish two probability distributions with infinite support
would need an infinite number of samples.

Therefore, ref. [21] proposes the following formulation of the upper
bound:

Theorem 3.2 (Upper bound on target error [21])
For any f ∈ F ,

ϵT (f) ≤ ϵS(f) + dF̃(P S
X , P T

X)+
+ min

{
Ex∼P S

X

[∣∣∣lS(x)− lT (x)
∣∣∣] ,Ex∼P T

X

[∣∣∣lS(x)− lT (x)
∣∣∣]}

, (3.14)

where
F̃ = {sgn(|f(x)− f ′(x)| − a)|f, f ′ ∈ F , 0 ≤ a ≤ 1} . (3.15)

Overall, the upper bound is very similar to the original upper bound
(3.13), with the three terms having analogous interpretations [21].

We return briefly to the application of domain adaptation to multiple (two
and more) environments in the problem of cover source mismatch in image
steganography. To apply domain adaptation to the problem of cover source
mismatch, we find the projection of the marginal probability distributions of
the inputs x of the cover sources from the set of cover sources Etr available for
training, such that the marginal probability distribution of the transformed
inputs matches for all cover sources from Etr. Then we train a predictor
over the transformed inputs in one of these cover sources. The theorems
presented in this section then allow us to estimate the upper bound on the
error of the resulting predictor on each of the cover sources from Etr. If we
encounter a new environment e not present in the set Etr, we will apply the
previously determined projection to the inputs in this environment, and if we
determine the data generating probability distribution in this environment,
we will be able to obtain an upper bound on the error of the predictor in this
environment.

Drawbacks: The mismatch between the labeling functions, captured by
the third term of (3.13) and (3.14), can be very problematic in image steganog-
raphy if the natural steganography (e.g. [23]) is used. Natural steganography
tries to create stego objects (objects created from cover objects by embedding
a secret message), which are very similar to cover objects from some different
cover source than the one from which the stego objects were created. This
could render the above inequalities (3.13) and (3.14) useless when applied to
such two cover sources, as the labeling of these objects may be opposite in
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the environments – if the cover and stego objects are of the same probability,
the third term in the inequality becomes at least 0.5, which renders the in-
equality unusable, as the error of 0.5 corresponds to random guessing of the
class.

The problem of high discrepancy between the labeling functions is also
shown in the following example:

Example 3.1 (When the domain adaptation fails [21]). Let X = R, Y =
{0, 1}. Consider the input data and labels in the following form:

P S
X = U(−1, 0)

P T
X = U(1, 2)

lS(x) =
0, x ≤ −1

2
1, x > −1

2

lT (x) =
0, x ≥ 3

2
1, x < 3

2

Function f ∗(x) = 1 ⇐⇒ x ∈
(
−1

2 , 3
2

)
forms a perfect predictor for the

problem, achieving zero error in both environments.
Now assume that we try to apply domain adaptation to the problem and

try to transform the distributions P S
X and P T

X to minimize some probabilistic
distance between them. The transformation function

t(x) = I[x ≤ 0](x + 1) + I[x > 0](x− 1)

transforms the inputs so that t(P S
X) = t(P T

X) = U(0, 1), and any measure of
distance between the distributions is zero. The goal of the domain adaptation
was perfectly achieved, yet we obtain for any predictor f : R→ Y

ϵS(f ◦ t) + ϵT (f ◦ t) = 1,

as the labeling functions in the environments with transformed inputs give
opposite labels. The third term in the upper bound (3.14) is 0.5, therefore
the upper bound is vacuous and the above results do not contradict it.

We can conclude the example by stating that by using the domain adapta-
tion (and by extension, any method enforcing the agreement of the statistics
of the inputs), the previously tractable problem became intractable.

Another significant drawback to the domain adaptation approach is the
following. Imagine the case of two environments, A and B. In environment
B, the probability density functions of the two classes significantly overlap,
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as opposed to environment A, where the overlap is not significant or is not
present at all (e.g., the example from figure 3.2). Assume both classes have
equal prior probability in both environments. For the inputs in the area of
the overlap, the optimal Bayes predictor has no better option than randomly
guessing the class of the input. The overlap reduces the predictor’s accuracy,
and the larger portion of the samples comes from the overlap, the lower the
accuracy.

Assume that the optimal Bayes predictor achieves accuracy α in environ-
ment A and β in environment B, α > β. Now assume that we apply domain
adaptation to the problem. We would like to find a projection function, which
projects the inputs in environments A and B so that the probability density
function of the inputs is identical in both environments after the projection.
Such admissible projection is a function, which maps environment A onto
environment B. For the example in the figure 3.2, this would be

t(x) =
x for x ∈ [1, 3],

x− 1.5 for x ∈ [3, 4].
(3.16)

The optimal Bayes predictor on the transformed data has accuracy β both in
environments A and B. As the accuracy of the optimal Bayes predictor is the
upper bound on the accuracy of any predictor using the same data to classify
the inputs [24], we have that no predictor can achieve better accuracy than
β in the transformed environments. Therefore, in environment A, we have
regressed from the best achievable accuracy α to β.

Conclusion: We spent plenty of time examining the approach before en-
countering the drawbacks mentioned above. We think that the low accu-
racies of the environment-specific predictors in some environments, e.g., for
the quality factors 100 in table 4.3 from section 4.3, are caused by the over-
lap of the probability distributions of the two classes to be recognized. By
applying the domain adaptation approach to the problem, accuracy in the
environments with good accuracy would then be reduced, as in the exam-
ple above. This discouraged us from applying the domain adaptation to the
problem of cover source mismatch. We see the domain adaptation as an in-
teresting research direction and like its theoretical properties. We hope that
further research will be able to modify the theory to be applicable to the
problem of cover source mismatch.
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Figure 3.2: Examples of the probability density functions of the inputs in
environments A and B. The last row is the probability density function of
the inputs if the prior probability of the classes is assumed to be equal.
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Chapter 4

Application in Image
Steganography

In this chapter, we will expand on the problem of cover source mismatch in
image steganography1. The problem is well known within the steganography
community, yet very few solutions have been proposed. We believe that the
cover source mismatch can be viewed as a sensitivity of the predictor to the
mismatch between the training and testing environments. We hope that our
experiments will provide original results.

First, let us introduce some basic concepts of steganography. Throughout
this chapter, we will call classifier the predictor with categorical output.

4.1 Short Introduction to Steganography
The goal of steganography is to communicate a secret message through an
overt channel without the secret message being detected [3].

Overview of the whole setting is in the figure 4.1. The sender – called
the steganographer or simply Alice [25], has an overt communication channel
and a source of cover objects. The cover objects are by themselves benign
and include data that the communicating parties do not hesitate to expose
to third parties. Examples include common photographs, ordinary written
correspondence, or DNS requests. Alice wants to send some secret message
covertly through the channel. She does so by embedding the secret message
in one or more cover objects from her communication channel using an em-
bedding algorithm. The resulting object is referred to as a stego object – it
contains the steganographically embedded message.

1Image steganography is a large interest of the supervisor of this work, which motivated
us to use it as our experimental framework.
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Figure 4.1: Repeated image 1.3. Standard workflow in image steganography.

The overt communication channel is monitored by an adversary, called
steganalyst or warden. The goal of the steganalyst is to detect whether an
embedded secret message is present in the object passing through the com-
munication channel or not. This is a binary classification task. Notice that
the exact contents of the embedded message are not considered in this setting
and therefore are of no importance. Then the message can be characterized
only by its size and called payload.

The recipient shares a secret key with the steganographer. The method
used to achieve the mutual knowledge of the key is not studied in this set-
ting. The recipient uses his secret key, received stego object, and knowledge
of the used embedding algorithm to retrieve the embedded secret message.
Following Kerckhoffs’s principle [3], the security of the whole communication
is expected to rely only on the key.

We assume the contents of the channel to be perfectly observable by all
parties, writable by the steganographer, and read-only by the steganalyst
[25].

Example 4.1. One of the most simple examples of steganography is the use
of invisible ink. In this case, the steganographer’s communication channel is
an ordinary written correspondence. The cover object is a letter describing
her recent vacation. The secret message containing the names and addresses
of the members of an espionage network is written in invisible ink on the other
side of the paper (the embedding algorithm). In this case, the secret key is
not used. Both the steganographer and recipient share the knowledge of the
embedding algorithm and know that heating the letter above a candle will
make the ink visible (the extraction algorithm). The letter is sent through
the postal service. A team of steganalysts is present at the post office and

40



checks all passing letters. Their goal is to detect whether a letter contains
hidden messages or not. A brute force detection algorithm would be to heat
all the letters in a furnace and then check whether some secret message has
appeared or not.

Example 4.2. All experiments in this work were conducted in a subfield of
steganography called image steganography. This is because there has been
a lot of conducted research in this subfield compared to other subfields of
steganography, and therefore there is more literature available.

Image steganography embeds the secret message into images from digital
cameras. The cover source is defined by the model of the digital camera with
specific settings, the specific scene pictured, parameters of postprocessing and
software used, etc. Such fine graining is impractical, and cover sources are
therefore mixed to create new cover sources – e.g., a specific digital camera
model with a specific ISO sensitivity setting and specific output JPEG quality
factor, specific settings of one selected postprocessing software, and other
parameters arbitrary.

Message is then embedded using one of many developed embedding al-
gorithms, for example nsF5 [26], J-UNIWARD [27], WOW [28] or HUGO
[29].

There are also many well-established sets of steganographic features, for
example, cc-JRM [30] and DCTR [31] features, which are then used for ste-
ganalysis using the feature-based classification of the images.

4.1.1 Steganalysis and Cover Source Mismatch
As mentioned earlier, the goal of steganalyst is to detect whether an embed-
ded secret message is present in the communication or not. He can do so by
constructing a binary classifier for the overt communication channel, which
would detect the secret message.

In the literature, it is very often assumed that the steganalyst knows ev-
erything about the communication (the steganographic algorithm, message
length, and the distribution of cover objects) except the secret key, follow-
ing Kerckhoffs’s principle [3]. This assumption allows us to develop secure
steganographic algorithms.

Unfortunately, the same assumption is commonly made during the eval-
uation of steganalytic algorithms. In real-world scenarios, the steganalyst
cannot accurately estimate the parameters of the used cover source. As a re-
sult, this leads to the steganalyst’s assumed cover source being different from
the actual cover source used. This situation is called cover source mismatch
[2], and by using a classifier trained on a different cover source than the one
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it is then employed on, the performance of the classifier can be significantly
reduced. We try to solve the complications caused by the absence of knowl-
edge about the cover source and mitigate the effect of cover source mismatch
by utilizing the concepts presented in previous chapters.

One of the first mentions of the cover source mismatch is found in [32],
and yet to date, there is very little progress on the subject. To this day, there
are very few publications on this phenomenon. Examples include [2], [5], [33]
or [4].

We assume the problem to be caused by the difference between the prob-
ability distribution of the cover objects among different cover sources. Our
assumption is supported by [2], who have shown that there is a strong statis-
tical footprint of the image development pipeline on the DCT coefficients of
the resulting JPEG image. The image processing pipeline is one of the cover
source parameters in image steganography. The difference in the statistical
footprints supports our hypothesis that the probability distributions of the
cover objects in different cover sources are different.

In image steganography, the noise of the resulting image is, for example,
influenced by the specific cover source. The camera models differ in the used
sensor – its size (smaller the pixels, higher the noise), operating temperature
(higher temperature causes more noise), and technology. A higher ISO sen-
sitivity setting uses higher amplification rates of the input signal, which also
amplifies the noise. Higher quality factors leave more noise in the image.
The JPEG quality factors also differ in the values of the quantization tables
used to convert the RAW images to JPEG, which causes differences in the
resulting noise.

So far, some of the approaches to mitigating the cover source mismatch
were [2]

• The atomistic approach explained in section 3.2.2 of this thesis.

• The holistic approach trying to construct a single monolithic classifier
for the whole problem independent of the specific image processing
pipeline. This was done by merging the datasets and training a classifier
using a clairvoyant method on the merged data.

However, none of the proposed approaches fully solved the cover source
mismatch. We believe that the cover source mismatch problem can be formu-
lated in terms of the environments, where each environment corresponds to
one cover source. We can then utilize the methods mentioned in the previous
chapter on the problem, which we will do in the second part of this chapter.
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4.2 Experimental Details
The problem of cover source mismatch has remained unsolved for more than
ten years. We believe that the methods presented in this thesis can solve
the problem of cover source mismatch, and we apply these methods to the
problem in this section. We will also compare the methods on this problem
and evaluate their properties.

4.2.1 Data
We study the following parameters influencing the cover source: specific
model of camera, ISO sensitivity setting, and quality factor, e.g., Canon
EOS 500D with ISO sensitivity 1600 and quality factor 75. The set Eall is
formed by all possible combinations of manufactured digital cameras, their
adjustable ISO sensitivity settings, and all possible JPEG quality factors.

The original images were taken from the ALASKA dataset [34]. The
images were developed using the following pipeline:

1. The images were converted from raw to TIFF using RawTherapee ver-
sion 5.4 with the default neutral profile.

2. The TIFF images were cropped to 512× 512 pixels.

3. The cropped TIFF images were converted to JPEG with a specified
quality factor (value is always specified in the experimental section of
this thesis) with 4:4:4 subsampling. The conversion was performed in
Python 3.6.9 using Pillow 8.1.2 library.

7 different cameras and ISO sensitivity combinations were selected. They
are listed in table 4.1. For better readability, the combinations of the camera
and ISO sensitivity in the results were replaced by letters, which are in the
respective rows of table 4.1. The experimental setting utilizes feature-
based classification.

The embedding simulation and feature extraction were performed with
the following setup:

• The message length was 0.04 bpAC2.

• The embedding algorithm was nsF5 [26].
2bpAC (bits per AC coefficient) is a unit that defines the length of the message in bits

relative to the image size – more specifically to the number of AC coefficients of the JPEG
image, which is constant for images JPEG images of the same size
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Camera name ISO Letter
denomination

Panasonic FZ28 100 A
Nikon D610 100 B
iPad Pro (12.9” gen. 2) 20 C
Canon EOS 500D 1600 D
Sony ILCE-7R 800 E
Pentax K10D 400 F
Panasonic GM1 3200 G

Table 4.1: Cover sources used for the experiments and their letter denomi-
nation in the experimental results.

• The steganographic features were cc-JRM [30].

The nsF5 embedding algorithm simulates optimal coding [35], which can
reduce the number of changes made in the image to embed the secret mes-
sage. For 0.04 bpAC and 512 × 512 image, the number of changes without
optimal coding is approximately 10322. With the optimal coding simulation,
the average number of changes for the cover sources we selected for our ex-
periments shrinks to 1163 for quality factor 100 and 2176 for quality factor
75.

The datasets were partitioned into disjoint training, validation, and test
datasets in a 3:1:1 ratio. Three different partitionings of the datasets were
used, and all reported results are aggregated over these partitionings.

The classifier performance in this section is usually measured as a proba-
bility of error PE. This is defined as the ratio of misclassified samples on a
dataset made of a 1:1 mixture of cover and stego objects and is a common
measure in the steganographic literature – as the exact probability of the
stego objects is often not known, equal probability of the cover and stego
objects is assumed.

4.2.2 Methods
Three hypothesis spaces were used:

1. Linear predictor with bias. The optimization procedure was, in this case,
always the same. The inputs were first normalized so that the features
had zero mean. The labels were {−1, 1}. Then the closed-form solu-
tion of the Ridge regression with least-squares loss function (see exam-
ple 2.1, equation (2.5)) for the problem without bias was found. The
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bias was then computed using the ROC curve to minimize PE on the
train dataset. The optimal value of the regularization coefficient λ ∈
{10−7, 10−6, . . . , 10−1, 1, 10, . . . , 104} was selected to minimize PE on the
validation dataset. Because the number of available samples in the datasets
we use is much lower than the number of features, making the problem
ill-conditioned, we prefer ridge regression to other linear methods for the
reasons mentioned in the example 2.1 (better numerical stability, bounded
set of solutions).

2. Multilayer perceptron. The architecture was selected using a random
search on the validation dataset from the set of parameters in the first
part of the table 4.2. The random search criterion was always objective
dependent and will be specified later in this section, together with the
objectives. The optimizer was ADAM optimizer with weight decay. The
parameters of the optimizer were selected from the set of parameters in
the second part of the table 4.2. Parameters not mentioned were set to
their default values.

3. Multinomial logistic regression. This served to obtain the optimistic value
of risk re for the convex robust learning objective, where the regret was
computed on loss values, and we needed to compute the optimistic value
of risk for the cross-entropy loss. The models were optimised using the
ADAM optimiser with default parameters, cross-entropy loss function
and L2 regularization on the weight parameters with parameter λ ∈
{10−7, 10−6, . . . , 10−1, 1, 10, . . . , 104}. The optimal value of λ was selected
to minimize PE on the validation dataset. The number of steps was 200000
with no early stopping.

The experiments were the following:

1. We trained a specialized classifier for each camera A-G and QF 75, 76,
90, and 100 using the linear predictor with a bias to recognize cover and
stego images from the respective cover sources. These will be called single
cover source classifiers. The PE of the single cover source classifier on the
data from the cover source it was trained on is the optimistic value of PE

for the respective cover source.

Further, we implemented several methods from section 3.2 on the problem
of recognizing cover and stego images. The training cover sources included
cameras A-E and quality factors 75 and 100. Other cameras and quality
factors were used only to evaluate the resulting classifiers’ generalization
properties to cameras and quality factors unseen during training and were not
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Model hyperparameters
parameter name possible values
activation function ReLU, hyperbolic tangent
no. of neurons in 8, 16, 32, 64, 128each hidden layer
no. of hidden layers 1, 2, 3

Optimizer hyperparameters

parameter name possible values

learning step {2× 10i, 4× 10i, 8× 10i,
10× 10i|i ∈ {−4,−3, . . . ,−6}}

decay parameter {0, 10−2, 10−3, 10−4, 10−5, 10−6}

Table 4.2: Parameter sets for random search of model architecture and opti-
mizer parameters

included in the training and validation sets. The methods utilizing knowledge
from multiple cover sources are:

2. We trained three multilayer perceptron classifiers to recognize the cover
sources for two versions of the atomistic approach:

(a) If the quality factor is known, we need to estimate which camera
A-E was used within the QF. We need a classifier for QF 75 and QF
100, a total of 2 classifiers. In the tables, this is atomistic QF known.
The quality factor can often be read from the metadata of the image,
which is why we find this setting interesting.

(b) If the quality factor is not known, we need to estimate it with the
camera A-E. We need one classifier for it. In the tables, this is
atomistic QF predicted.

In both cases, the training and validation dataset was constructed as a
union of the respective train and validation datasets in the cover sources
to be recognized. Early stopping and selection of the best architecture
in the random search were selected to maximize the classification accu-
racy of the validation data. After estimating the camera (and quality
factor if needed), we used the corresponding single cover source classifier
to determine whether the image is a cover image or a stego image.

3. Two classifiers were obtained using the clairvoyant method. The test and
validation datasets were the union of the datasets for the training environ-
ments. Note that this includes an implicit assumption on the probability
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of the cover sources, where cover sources with larger datasets have a larger
probability, as mentioned in the section 3.2.1. These represent the holistic
approaches in the literature on steganalysis.

(a) Clairvoyant method where the hypothesis space is the linear predic-
tion with bias. In the tables, this is holistic linear.

(b) Clairvoyant method where the hypothesis space is the multilayer per-
ceptron. The early stopping criterion and criterion for selecting the
best model was the value of PE on the validation dataset. In the ta-
bles, this is holistic MLP. We use the multilayer perceptron because
of its non-linearity. We think that the bad performance of the holis-
tic classifiers shown in [2] was caused by the fact that the authors
used linear classifiers on a nonlinear problem. Therefore, we want to
compare the linear holistic classifier with a nonlinear one.

4. Minimization of the risk of robust prediction in the training cover sources.
Multilayer perceptron was used. The risk was estimated on the validation
dataset. Early stopping and random search selected the model with the
lowest maximum PE among the validation datasets for the training cover
sources. In the tables, this is minrisk of RP

5. Three approaches to minimize the regret of robust prediction. We always
used the multilayer perceptron and random search selected classifier with
the lowest maximum risk among the validation datasets of the training
cover sources. The early stopping criterion selected the predictor with
the lowest regret value across the training environments. The difference
between the approaches was in the estimate of the optimistic value of risk:

(a) The simple train optimistic value of risk: this is the PE on the train
dataset for the cover source of the single cover source classifier for
the respective cover source. The regret is computed as the regret of
PE on the train dataset. In the tables, this is the minregret simple
train

The PE of the single cover source classifiers is often very low on the training
datasets due to the small number of samples compared to the number of
features. We were afraid that the low values of PE would not allow for
a reliable estimate of the environment with maximum regret, and the
approach would degenerate to the minimization of the risk. Therefore we
also tried the following two estimates of regrets:

(b) The simple validation optimistic value of risk is similar to the simple
train optimistic value of risk. However, the optimistic value of risk
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A QF75 G QF75 A QF100 G QF100
A QF75 7.9 48.1 49.1 50.0
G QF75 26.8 11.5 49.4 50.0
A QF100 49.8 50.0 40.7 48.6
G QF100 50.0 50.0 46.0 44.4

Table 4.3: Selected results from table A.1. Single cover source classifiers, PE

in percents on the test dataset. Horizontally are cover sources on which the
classifiers were trained, vertically are cover sources on which the classifiers
were tested.

and regret are computed on the train dataset. In the tables, this is
the minregret simple validation.

(c) The extended validation optimistic value of risk is estimated as the
minimum value of PE on the validation dataset of the cover source
among all the single cover source classifiers for cameras A-E and QF
75 and 100. In the tables, this is the minregret extended validation.

6. The minimization of the convex robust learning objective for the train
cover sources. In this case, the regrets were computed on the loss func-
tions. The single cover source classifiers were trained on a different loss
function and in a manner that did not allow us to obtain a reliable es-
timate of the optimistic value of risk for the loss function used with the
convex robust learning objective. Therefore the optimistic values of risk
were estimated from the multinomial logistic regression classifiers, each
of which was trained on a single cover source from the set of training
cover sources and the optimistic value of risk was calculated on the same
cover source. Therefore, they are counterparts of the single cover source
classifiers trained using different loss functions.
We used the multilayer perceptron to minimize the convex robust learning
objective. Early stopping and random search selected the classifier with
the best maximum regret on the validation data. The minimization of the
convex robust learning objective is referred to as minregret convex in the
tables.

4.3 Experimental Results
In the table 4.3 we can notice a strong effect of cover source mismatch.
When we test the classifier trained on cover source G QF75 on different
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max regret
A-E 75, 100

11.3 7.0 2.9 1.4 2.0 24.8 1.9 0.5 0.5
mean PE 21.4 20.4 21.0 21.3 21.3 31.7 20.2 21.0 21.0
max PE 39.5 38.9 38.7 40.4 40.6 39.5 39.6 41.6 41.6

max regret
A-G 75, 100

11.3 7.0 4.2 3.4 2.0 35.7 1.9 11.1 9.9
mean PE 22.3 21.6 22.4 22.7 22.4 33.6 21.5 23.2 23.2
max PE 43.8 41.7 41.9 43.3 42.3 47.2 42.7 45.2 45.0

max regret A-G 76 13.1 21.8 12.0 22.6 15.5 28.4 21.4 28.0 N/A
mean regret 4.5 10.3 3.9 9.3 7.0 19.7 10.1 10.3 N/A
max regret A-G 77 4.1 15.1 9.4 11.7 6.7 41.8 11.9 23.8 N/A

mean regret 0.8 2.3 3.3 3.4 2.2 24.1 2.1 6.1 N/A
max regret A-G 90 14.5 30.0 19.6 22.8 20.2 35.2 21.8 39.4 N/A

mean regret 7.8 14.1 9.1 10.2 9.3 27.0 11.2 21.9 N/A

Table 4.4: Aggregated results from tables A.2 and A.3. The column heading
for columns 3 to 11 describes the evaluated classifier. All values are measured
on the test dataset. Probability of error PE was measured in percents and the
mean and maximum over the cover sources described by the first and second
columns is reported. For each cover source, the regret is measured w.r.t. the
PE of the single cover source classifier for the respective cover source it was
trained on – positive value means larger PE than the PE of the single cover
source classifier – and only the maximum and/or mean over the cover sources
described by the first and second columns is reported in the table. The regret
is reported in percent points. The classifiers from the column headings were
trained only on cover sources A to E with QF 75 and 100. Cover sources
F and G for any QF and cover sources A-G for QF 76, 77 and 90 were not
exposed during training and were used only for test purposes.

cover sources in the table, the PE steps from 11.5 percent to values near 50
percent, equivalent to random guessing of the class.

The results in the table 4.3 also show that steganography in images with
a high quality factor is much less detectable than in images with a low quality
factor: PE of 7.9 and 11.5 for QF 75 vs. 40.7 and 44.4 for QF 100 on the
diagonal of the table – the diagonal corresponds to the case when the classifier
is tested on the same cover source it was trained on. This is because a higher
quality factor leaves more noise in the image, which allows for a more efficient
embedding of the message, and as we mentioned earlier, a smaller number of
changes is made in the image.

Selected results from the comparison of the methods utilizing knowledge
from multiple environments are in table 4.4. We were surprised by negative
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values in the table A.2, and we explain them by the fact that the classi-
fiers were provided information from multiple cover sources during training,
as these can be more informative than the individual cover source-specific
datasets.

The regret is the difference between the PE of the single cover source
classifier for the cover source and PE achieved by the classifier from the
respective column of the table 4.4. Maximum regret is reported in the table.

The atomistic classifiers are excellent on known cover sources. However,
the generalization to cameras and quality factors not exposed during training
is very poor.

The clairvoyant multilayer perceptron is not significantly better than the
holistic linear classifier, and on quality factors not exposed during training, it
is significantly worse. Therefore we conclude that using nonlinear hypothesis
space did not provide a significant advantage.

From the minregret classifiers (excluding the minregret convex), the min-
regret extended validation classifier seems to be on par with the minregret
simple train. As expected, the minregret extended validation is better than
the minregret simple validation, probably due to the better estimate of the
optimistic value of risk, as mentioned in section 3.2.3. The good performance
of the minregret simple train was not expected, and it seems that the con-
cern about the quality of the estimate of the optimistic value of risk was
unfounded.

The minrisk classifier reduces the maximum risk in cover sources exposed
during training. However, the regret is very large. Both were expected from
the analysis in section 3.2.3. It seems that the approach tried to minimize its
risk under several cover sources, which were difficult to train by default, while
neglecting other cover sources, where it could achieve much lower values of
risk.

The minregret convex classifier generalizes well to cameras not exposed
during training on quality factors included in the train dataset both in terms
of the maximum regret and mean PE. This can be explained by 1. better
numerical properties of the optimization problem and 2. the fact that the
robust learning objective takes into account additional information about the
achievable values of PE in the form of the optimistic values of risk re and
tries to achieve these.

However, the generalization to quality factors not exposed during training
is still best with the holistic linear classifier.

The convex robust learning objective does not remove the noisiness of the
values of the loss function (figure 4.3). When comparing smoothed values of
the loss functions of the classifiers optimized using the convex robust learning
and robust learning objectives (figure 4.2), the convex robust learning objec-
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(a) Minregret simple validation (b) Minregret convex

Figure 4.2: Loss values of the minregret simple validation and minregret
convex classifiers on the train dataset in the first dataset partitioning. The
values were smoothed by moving average with window size 3001.

Figure 4.3: Unsmoothed loss values of the minregret convex classifier on the
train dataset in the first dataset partitioning.
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tive seems slightly smoother, but notice that the smoothing is very strong.
The benefit of solving the convex robust learning objective instead of the
robust learning objective is not as significant as expected.

52



Chapter 5

Conclusion

This thesis introduced the reader to basic concepts of supervised machine
learning. We discussed methods utilizing structured data in the form of
environments to obtain predictors robust to the change in the underlying
probability distribution of the data.

After an initial search, we chose the problem of cover source mismatch
in image steganography to demonstrate the methods. The problem of cover
source mismatch is important and easy to formulate, yet not much attention
is devoted to it in the literature. In the experimental section of this thesis,
we explained the basic concepts of image steganography. We tested the
performance of the methods from previous chapters on the problem of cover
source mismatch.

Preparation of the data and implementation of the experimental frame-
work were time-consuming.

Unfortunately, we did not find a truly robust predictor to the change of
the cover source, as the results on the quality factors 76, 77, and 90 show.
However, the trained predictors were robust to some types of cover source
changes. These results are better than the state-of-the-art literature. Some of
the results were submitted as a conference paper [36] and are under review
at the time of writing.
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A QF75 7.9 ± 1.43 18.9 ± 4.43 8.1 ± 1.38 46.2 ± 0.87 12.8 ± 1.26 10.2 ± 0.66 48.1 ± 1.31
B QF75 19.2 ± 0.98 5.7 ± 0.72 22.1 ± 3.70 47.2 ± 0.47 18.1 ± 2.39 13.8 ± 0.98 49.1 ± 0.89
C QF75 10.4 ± 0.40 22.3 ± 3.58 9.0 ± 1.37 48.1 ± 1.11 16.2 ± 1.20 12.7 ± 0.48 48.1 ± 0.87
D QF75 10.2 ± 4.88 49.6 ± 0.23 9.3 ± 2.93 2.0 ± 0.79 14.5 ± 5.85 13.3 ± 7.21 41.5 ± 6.57
E QF75 17.8 ± 1.71 24.2 ± 4.43 19.7 ± 0.86 48.3 ± 0.78 8.3 ± 0.47 13.4 ± 2.02 49.1 ± 0.31
F QF75 7.2 ± 0.52 17.6 ± 4.70 6.6 ± 0.90 46.4 ± 0.60 10.7 ± 2.49 7.2 ± 1.31 47.9 ± 1.08
G QF75 26.8 ± 10.01 47.2 ± 1.24 26.0 ± 5.96 23.6 ± 5.06 24.4 ± 9.30 14.7 ± 2.94 11.5 ± 3.28
A QF100 49.8 ± 0.21 49.9 ± 0.12 49.9 ± 0.33 50.0 ± 0.00 49.9 ± 0.25 50.0 ± 0.00 50.0 ± 0.00
B QF100 48.7 ± 1.16 50.0 ± 0.00 48.6 ± 1.08 50.0 ± 0.00 49.9 ± 0.14 49.4 ± 1.09 49.2 ± 0.98
C QF100 49.6 ± 0.33 49.9 ± 0.18 49.6 ± 0.51 50.0 ± 0.00 49.9 ± 0.24 49.9 ± 0.09 50.0 ± 0.00
D QF100 49.8 ± 0.26 49.6 ± 0.61 49.8 ± 0.23 50.0 ± 0.00 50.0 ± 0.00 49.8 ± 0.26 50.0 ± 0.00
E QF100 49.6 ± 0.41 48.8 ± 1.09 49.8 ± 0.16 50.0 ± 0.00 50.0 ± 0.00 49.8 ± 0.31 50.0 ± 0.00
F QF100 49.9 ± 0.17 50.1 ± 0.17 49.6 ± 0.46 50.0 ± 0.00 49.7 ± 0.00 49.9 ± 0.17 50.0 ± 0.00
G QF100 50.0 ± 0.00 49.8 ± 0.34 50.0 ± 0.00 50.0 ± 0.00 49.6 ± 0.69 49.8 ± 0.34 50.0 ± 0.00
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A QF75 49.1 ± 1.61 50.0 ± 0.00 49.8 ± 0.37 50.0 ± 0.00 49.9 ± 0.12 49.9 ± 0.12 50.0 ± 0.00 7.9
B QF75 49.4 ± 0.89 49.2 ± 0.68 49.8 ± 0.62 50.0 ± 0.00 49.4 ± 0.59 48.9 ± 0.14 50.0 ± 0.00 5.7
C QF75 49.2 ± 1.37 50.0 ± 0.00 49.7 ± 0.46 50.0 ± 0.00 49.7 ± 0.46 49.8 ± 0.24 50.0 ± 0.00 9.0
D QF75 47.4 ± 4.42 50.0 ± 0.00 49.6 ± 0.61 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 2.0
E QF75 48.9 ± 2.84 49.4 ± 1.09 49.8 ± 0.31 50.0 ± 0.00 49.8 ± 0.16 49.7 ± 0.00 50.0 ± 0.00 8.3
F QF75 49.2 ± 1.38 50.0 ± 0.00 49.9 ± 0.17 50.0 ± 0.00 49.9 ± 0.17 49.9 ± 0.17 50.0 ± 0.00 7.2
G QF75 49.4 ± 1.03 50.0 ± 0.00 49.4 ± 1.03 50.0 ± 0.00 50.0 ± 0.00 49.8 ± 0.34 50.0 ± 0.00 11.5
A QF100 40.7 ± 0.62 49.5 ± 0.33 40.8 ± 0.81 49.4 ± 0.50 41.0 ± 1.70 41.4 ± 0.57 48.6 ± 0.12 40.7
B QF100 47.5 ± 0.72 34.0 ± 1.42 48.7 ± 1.06 49.9 ± 0.14 48.0 ± 0.76 48.5 ± 1.42 49.5 ± 0.62 34.0
C QF100 40.9 ± 0.37 48.8 ± 0.48 41.4 ± 0.73 48.8 ± 0.51 42.8 ± 1.59 41.5 ± 1.35 47.0 ± 0.24 41.4
D QF100 43.1 ± 1.54 46.5 ± 1.11 44.1 ± 1.20 22.4 ± 1.36 43.7 ± 1.44 43.1 ± 0.97 44.3 ± 0.90 22.4
E QF100 39.2 ± 1.86 49.6 ± 0.41 41.3 ± 1.48 48.6 ± 1.64 38.6 ± 1.48 39.5 ± 2.15 47.7 ± 1.62 38.6
F QF100 39.2 ± 0.30 49.2 ± 0.75 41.2 ± 0.86 49.2 ± 0.62 39.0 ± 1.99 39.8 ± 1.67 47.8 ± 0.62 39.8
G QF100 46.0 ± 1.50 49.4 ± 0.60 46.4 ± 1.79 45.0 ± 0.34 45.4 ± 2.25 44.6 ± 0.00 44.4 ± 2.41 44.4

Table A.1: Probability of error PE in percents on the test dataset. Horizon-
tally are cover sources on which the classifiers were trained, vertically cover
sources on which the classifiers were tested. The diagonal column is diagonal
of the table. Closed form solution of ridge regression, message length of 0.04
bpAC, nsF5 embedding, cc-JRM features.
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A QF75 7.9 0.4 ± 0.87 -1.6 ± 1.62 0.4 ± 0.75 1.1 ± 0.89 1.5 ± 0.12 17.2 ± 2.81 -0.8 ± 0.98 -0.1 ± 1.86 -0.2 ± 1.99
B QF75 5.7 -0.1 ± 1.55 -0.3 ± 0.41 1.3 ± 1.08 0.6 ± 1.23 2.0 ± 0.27 24.8 ± 2.71 0.3 ± 0.89 0.3 ± 0.59 0.1 ± 0.76
C QF75 9.0 -0.3 ± 0.79 -0.1 ± 1.28 0.8 ± 0.57 0.6 ± 0.57 0.5 ± 1.32 21.2 ± 0.97 0.5 ± 0.55 0.5 ± 1.65 0.5 ± 1.65
D QF75 2.0 0.7 ± 0.63 0.4 ± 0.31 2.9 ± 2.04 1.0 ± 0.77 0.6 ± 0.45 12.1 ± 7.03 0.1 ± 0.48 -0.0 ± 0.79 -0.0 ± 0.79
E QF75 8.3 -2.1 ± 0.86 -2.6 ± 1.09 -1.4 ± 1.83 -1.3 ± 1.23 -1.2 ± 1.89 14.2 ± 5.75 -1.9 ± 0.00 0.2 ± 1.12 0.0 ± 1.23
F QF75 7.2 -2.3 ± 0.46 -1.0 ± 0.91 -0.4 ± 1.70 -1.0 ± 0.69 -0.1 ± 1.05 15.7 ± 5.88 -0.6 ± 1.56 -0.2 ± 0.86 -0.2 ± 0.62
G QF75 11.5 -1.0 ± 1.82 2.2 ± 1.03 4.2 ± 1.91 3.4 ± 1.79 -0.0 ± 3.00 35.7 ± 2.81 0.8 ± 3.05 11.1 ± 5.19 9.9 ± 5.19
A QF100 40.7 -1.3 ± 2.37 -3.4 ± 0.66 -2.1 ± 1.64 -0.3 ± 1.01 -1.2 ± 0.21 -1.2 ± 0.37 -2.7 ± 1.50 -0.7 ± 0.99 -0.0 ± 0.45
B QF100 34.0 -2.5 ± 2.48 -0.9 ± 1.80 0.2 ± 1.34 0.9 ± 1.53 0.7 ± 0.85 4.2 ± 3.86 1.9 ± 0.94 0.1 ± 1.30 0.0 ± 1.42
C QF100 41.4 -2.0 ± 1.44 -2.5 ± 0.84 -2.8 ± 2.48 -1.0 ± 1.27 -0.8 ± 1.30 -2.2 ± 0.88 -1.8 ± 1.32 0.2 ± 1.14 0.2 ± 0.95
D QF100 22.4 11.3 ± 0.48 7.0 ± 1.56 1.8 ± 1.21 -0.3 ± 1.42 0.3 ± 1.40 16.7 ± 2.58 -1.6 ± 0.54 -0.0 ± 1.36 -0.0 ± 1.36
E QF100 38.6 -0.4 ± 1.02 -1.6 ± 0.62 -1.5 ± 0.27 1.4 ± 2.34 0.3 ± 0.82 -0.3 ± 0.16 -1.7 ± 2.42 -0.4 ± 1.62 -0.2 ± 1.50
F QF100 39.8 -0.8 ± 3.30 -2.6 ± 1.92 -0.3 ± 0.30 1.3 ± 0.91 -0.4 ± 0.96 -0.5 ± 3.01 -2.2 ± 1.41 0.3 ± 0.52 0.9 ± 0.30
G QF100 44.4 -0.6 ± 0.91 -2.8 ± 3.72 -2.6 ± 1.82 -1.2 ± 2.75 -2.2 ± 0.60 -0.6 ± 2.09 -1.8 ± 1.50 0.8 ± 0.00 0.6 ± 0.34

max regret
A-E

11.3 7.0 2.9 1.4 2.0 24.8 1.9 0.5 0.5
mean PE 21.4 20.4 21.0 21.3 21.3 31.7 20.2 21.0 21.0
max PE 39.5 38.9 38.7 40.4 40.6 39.5 39.6 41.6 41.6

max regret
A-G

11.3 7.0 4.2 3.4 2.0 35.7 1.9 11.1 9.9
mean PE 22.3 21.6 22.4 22.7 22.4 33.6 21.5 23.2 23.2
max PE 43.8 41.7 41.9 43.3 42.3 47.2 42.7 45.2 45.0

Table A.2: Probability of error PE in percents on the test dataset. Vertically are cover sources on which the classifiers
were tested and aggregated results from the respective columns. The diagonal column is from the table A.1 Other
columns are relative to the diagonal column (positive values are larger than the diagonal, negative lower than the
diagonal) and their value is called regret. The classifiers were trained only on cover sources A to E and the F and G
cover sources were used only for test purposes. Message length of 0.04 bpAC, nsF5 embedding, cc-JRM features.
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A QF76 9.4 1.3 ± 1.18 6.5 ± 2.05 2.2 ± 1.12 5.6 ± 5.15 4.3 ± 3.25 18.6 ± 4.50 6.9 ± 1.67 3.3 ± 0.77
B QF76 5.7 0.7 ± 1.21 2.2 ± 1.96 1.7 ± 0.98 3.3 ± 2.91 3.6 ± 2.81 25.4 ± 1.31 3.3 ± 2.06 5.5 ± 3.21
C QF76 9.7 2.5 ± 3.44 7.6 ± 1.83 3.6 ± 3.75 7.6 ± 4.14 6.2 ± 3.33 20.8 ± 2.69 7.1 ± 1.47 7.5 ± 1.06
D QF76 2.2 10.8 ± 3.33 21.8 ± 1.07 12.0 ± 3.52 15.8 ± 4.30 15.5 ± 2.21 12.3 ± 4.22 21.4 ± 6.61 18.6 ± 2.05
E QF76 7.7 1.2 ± 0.47 3.1 ± 0.41 1.2 ± 0.47 3.8 ± 3.92 3.6 ± 4.22 15.9 ± 9.09 4.5 ± 1.09 3.9 ± 0.71
F QF76 7.3 2.3 ± 2.59 9.3 ± 5.01 3.1 ± 4.79 6.8 ± 5.32 6.5 ± 4.47 16.7 ± 4.98 7.8 ± 3.23 5.7 ± 2.51
G QF76 11.9 13.1 ± 9.16 21.6 ± 12.23 3.6 ± 3.62 22.6 ± 5.19 9.3 ± 8.04 28.4 ± 9.82 19.8 ± 15.66 28.0 ± 4.29

max regret QF76 13.1 21.8 12.0 22.6 15.5 28.4 21.4 28.0
mean regret QF76 4.5 10.3 3.9 9.3 7.0 19.7 10.1 10.3

A QF77 9.2 1.3 ± 0.86 -1.1 ± 2.03 1.6 ± 1.40 2.1 ± 0.94 3.0 ± 1.41 17.5 ± 4.66 -0.8 ± 1.18 4.1 ± 1.87
B QF77 7.8 0.2 ± 1.43 0.8 ± 1.57 2.5 ± 0.83 0.8 ± 0.27 2.2 ± 2.14 23.3 ± 4.03 -0.3 ± 1.30 1.7 ± 0.62
C QF77 10.4 0.0 ± 1.29 0.4 ± 1.88 2.6 ± 1.81 1.2 ± 1.10 2.3 ± 2.13 20.4 ± 3.26 0.8 ± 2.82 2.5 ± 1.42
D QF77 2.9 4.1 ± 0.85 4.4 ± 1.75 9.4 ± 0.83 7.0 ± 1.95 6.7 ± 2.58 41.8 ± 4.88 4.0 ± 1.38 7.3 ± 1.13
E QF77 8.6 0.1 ± 1.21 -1.4 ± 1.98 1.1 ± 0.81 0.9 ± 1.79 1.6 ± 1.40 13.3 ± 4.04 0.4 ± 3.34 2.1 ± 0.68
F QF77 8.8 -1.0 ± 1.04 -2.3 ± 2.49 0.7 ± 1.70 -0.2 ± 1.99 -0.5 ± 2.12 16.5 ± 7.82 -1.2 ± 1.99 1.3 ± 1.35
G QF77 13.7 1.0 ± 2.81 15.1 ± 12.72 5.4 ± 1.19 11.7 ± 3.38 0.4 ± 2.68 36.3 ± 1.19 11.9 ± 11.36 23.8 ± 3.57

max regret QF77 4.1 15.1 9.4 11.7 6.7 41.8 11.9 23.8
mean regret QF77 0.8 2.3 3.3 3.4 2.2 24.1 2.1 6.1

A QF90 15.5 5.4 ± 3.04 11.4 ± 4.95 6.3 ± 2.16 7.4 ± 1.99 5.7 ± 4.51 29.9 ± 2.12 6.8 ± 2.73 20.8 ± 0.77
B QF90 13.1 13.2 ± 1.36 17.9 ± 1.44 13.6 ± 1.43 16.3 ± 2.23 16.8 ± 3.21 24.8 ± 3.14 14.3 ± 1.08 26.7 ± 2.06
C QF90 19.3 3.0 ± 4.52 9.4 ± 4.47 6.0 ± 1.26 7.0 ± 0.73 5.6 ± 3.15 25.4 ± 2.11 7.2 ± 2.55 18.0 ± 1.81
D QF90 8.7 14.5 ± 2.30 30.0 ± 16.17 19.6 ± 8.28 22.8 ± 10.03 20.2 ± 7.09 35.2 ± 9.67 20.9 ± 6.23 39.4 ± 3.04
E QF90 16.5 8.4 ± 4.53 3.5 ± 1.73 2.7 ± 3.61 2.7 ± 3.34 1.8 ± 1.42 25.4 ± 6.72 3.7 ± 4.14 11.4 ± 3.77
F QF90 17.5 5.8 ± 7.82 7.0 ± 6.15 3.3 ± 3.31 4.9 ± 3.40 3.2 ± 1.67 26.2 ± 4.32 3.9 ± 5.01 18.2 ± 0.52
G QF90 24.2 4.6 ± 1.82 19.2 ± 6.21 12.3 ± 5.84 10.5 ± 1.37 11.7 ± 8.63 22.2 ± 6.19 21.8 ± 3.49 19.2 ± 6.63

max regret QF90 14.5 30.0 19.6 22.8 20.2 35.2 21.8 39.4
mean regret QF90 7.8 14.1 9.1 10.2 9.3 27.0 11.2 21.9

Table A.3: PE in percent on the test dataset of cover sources with quality factors 76, 75, and 90. Vertically are
cover sources on which the classifiers were tested and column aggregated results from the respective parts of the
table. The classifiers in the columns are the same as in the table A.2 and cover sources with quality factors in
this table were not exposed to the classifiers during the training. Values to the right of the diagonal column are
relative to it (positive values are larger than the diagonal, negative lower than the diagonal). The diagonal column
was constructed analogously to the diagonal column in table A.1 – for each row, a single cover source classifier
was trained on the train dataset of the cover source matching the row description and evaluated on test dataset
of the same cover source, using the closed-form solution of Ridge regression. Message length of 0.04 bpAC, nsF5
embedding, cc-JRM features.
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