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Klíčová slova: diskriminativní, generativní, modelování, multi–instanční učení, množinová
data, variační autoencoder

Title:

Hybrid Discriminative-Generative Training for Set data

Author: Bc. Jakub Bureš

Abstract: This master’s thesis deals with hybrid discriminative and generative models and
their possible use in multi–instance learning, where one sample consists of a set of vectors.
So far, these models have only been trained discriminatively. However, it turns out that the
discriminative approach alone can have downsides and, by adding a generative component,
these downsides can be minimized. There are several ways to include a generative com-
ponent in model training. We focus on two, one using contrastive learning and the other
based on a variational autoencoder. The mainstay of working with set data is then the HMill
framework with the Mill.jl library, implemented in the Julia programming language, which
allows us to train models on these data simply and efficiently. We will try to extend it with a
generative component.

Key words: discriminative, generative, modeling, multiple instance learning, set data, varia-
tional autoencoder



8



Contents

Introduction 17

1 Theoretical Introduction 19
1.1 Mathematical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Choice of prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Discriminative vs. Generative Models 27
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Discriminative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Connection to Kullback–Leibler divergence . . . . . . . . . . . . . . . . . 28

2.2.2 One–hot encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Generative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Semi-supervised variational autoencoder . . . . . . . . . . . . . . . . . . 36

2.3.3 Noise–contrastive estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Hybrid Generative and Discriminative Models 43
3.1 Energy-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Joint energy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Contrastive learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Hybrid dicriminative and generative models . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Toy problem - polynomial regression . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Experiment setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Hybrid VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Toy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9



10

4 Multiple Instance Learning 55
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Embedded–space paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Cross–validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Application of HDGM to the MIL problems . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Hybrid VAE for MIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.1 Setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Conclusion 67

Bibliography 69

A Computional formulas 73
A.1 Solution of DKL

(
N

(
z ;µ,σ2IP

)∥N (
z ;0, IP

))
. . . . . . . . . . . . . . . . . . . . . . 73

A.2 Derivation of Epθ(x) [´∇θEθ (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



List of Figures

1.1 Splitting the data into K = 5 roughly equal-sized parts. . . . . . . . . . . . . . . . 22
1.2 Illustrative sketch of prediction error as a function of model complexity. . . . . 23

2.1 Discriminative approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Generative approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Reparametrization trick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 VAE diagram, where the input x is passed through VAE architecture to create

reconstructed input x̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 True and estimated samples using VAE. . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Results of the NCE experiment for one–dimensional and two–dimensional Gaus-

sian case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Sensitivity of the polynomial model to the order of the polynomial s ´1, specif-
ically s ´ 1 P {2,4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Sensitivity of the polynomial model to the order of the polynomial s ´1, specif-
ically s ´ 1 P {5,6}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Sensitivity of the polynomial model to the order of the polynomial s ´1, specif-
ically s ´ 1 P {8,10}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Sensitivity of the polynomial model to the parameter τ, specifically τ P {0.1,1}. 51
3.5 Sensitivity of the polynomial model to the parameter τ, specifically τ P {10,100}. 51
3.6 Sensitivity of the polynomial model to the parameter τ, specifically τ P

{
103,104

}
. 51

3.7 AUC–ROC for both SM and HM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Comparison of the generated samples of the SM and HM models. The train

data are identical in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 The difference between standard ML and MIL. Standard ML is special case of
MIL with |b| = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 MIL diagram, where b is the input bag, fθ is the classifier applied on the result-
ing embedded space representationΛΩ (b) of the bag. . . . . . . . . . . . . . . . 57

4.3 Evaluation of prediction error with the use of training data and testing data on
MIL data sets Musk1, Musk2, Fox, and Tiger. . . . . . . . . . . . . . . . . . . . . . 58

4.4 Dependence of the prediction error err(α) on the hyper–parameter α. . . . . . . 60
4.5 Comparison of prediction errors for HDGM and standard discriminative train-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
11



4.6 Comparison of the dependencies of the average AUC on logνwith st. deviation
for hybrid VAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12



List of Tables

1.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Transformation of a label encoding (left) to the one–hot encoding (right). . . . . 30

4.1 Results of CV evaluated on the testing data. . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Prediction error summary for the HDGM loss in case of ξ= 10. . . . . . . . . . . 61
4.3 Comparison of prediction errors for HDGM α = 0.5 and discriminative part

only. Pay special attention to the last column err(ξ= 10) in each approach. . . . 61
4.4 Average AUCs and st. deviations of individual data sets for both approaches

with r = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Average AUCs and st. deviations of individual data sets for hybrid VAE over

r = 10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

13



14



List of Acronyms and Abbreviations

CE Cross–Entropy

CV Cross–Validation

EBM Energy–Based Model

ELBO Evidence Lower Bound

FP False Positive

FN False Negative

FPR False Positive Rate

HDGM Hybrid Discriminative Generative energy-based Model

i.i.d. Independent and Identically Distributed

JEM Joint Energy–based Model

KL Kullback–Leibler (divergence)

MCMC Markov Chain Monte Carlo

MIL Multiple Instance Learning

ML Machine Learning

MLE Maximum Likelihood Estimation

NN Neural Network

PDF Probability Density Function

PR Precision–Recall (curve)

ROC Receiver Operator Characteristic (curve)

SL Supervised Learning

SSVAE Semi–Supervised Variational AutoEncoder
15



TP True Positive

TPR True Postive Rate

TN True Negative

UL Unsupervised Learning

VAE Variational AutoEncoder

16



Introduction

In the field of supervised learning, tremendous progress and success have been achieved
in recent years. Examples of such successes include speech recognition [1], protein structure
prediction [2, 3] or anomaly detection [4, 5, 6, 7]. Anomaly detection, also known as outlier
analysis, attempts to identify data points, events, and/or observations that deviate from the
normal behavior of a data set. At the level of Internet security, anomaly detection often op-
erates with set data that are processed using multiple instance learning [8, 9, 10, 11]. So far,
the parameters of these models have only been trained discriminatively.

Multiple instance learning tasks are of the type that we call classification. Such tasks
are typically addressed by minimizing a cross–entropy loss, which is defined as an expected
value of logarithm of the Softmax function. It is actually a generalization of the logistic func-
tion into multiple dimensions.

It turns out that cross-entropy has its limits and can be extended on the basis of con-
trastive learning, which is used in generative modeling. Contrastive learning [12, 13] is a
machine learning method that is often used in representation learning for image classifica-
tion or video understanding. For training such models is, most of the time, minimized the
contrastive loss, which reduces the distance between representations of different augmented
views of the same image and increases the distance between representations of augmented
views of different images.

In this master’s thesis, these two objectives, that is, cross–entropy and contrastive loss,
are brought together and used in the form of a hybrid combination [14] and thus the model
parameters can be trained both discriminatively and generatively. This study provides im-
portant insight into possible cooperation of these two approaches. However, contrastive
learning is not the only generative approach that we use to improve discriminative model-
ing. An interesting way to combine generative and discriminative modeling is also offered by
the semi–supervised variational autoencoder [15, 16, 17]. This is an extension of the standard
variational autoencoder [18, 19] which is nothing more than an artificial neural network that
compresses the input into the latent space using an encoder. The decoder then receives as
input the information sampled from the latent space and produces an estimate of the input.

All experiments are performed in the Julia programming language [20] for several rea-
sons. For the first, Julia is considered by many to be a rising star among all programming
languages. It is a fast, dynamically typed language suitable for computational science. More
essentially, the HMill unified framework and the Mill.jl library [21, 22] implemented in Julia
provide an easy and effective way to work with multiple instance learning problems. The
corresponding scripts are listed in https://github.com/KubaBury/hybridVAE.jl.
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This work is organized into four chapters in a logical sequence. The first chapter contains
a theoretical introduction, which is necessary to better understand the whole work. The sec-
ond chapter consists of discriminative and generative modeling [23, 24, 25]. The theoretical
aspects of these two approaches are described in detail. Part of the generative models is also
the already mentioned variational autoencoder and its extended semi-supervised version.
This is followed by Chapter 3, where a method is presented to define hybrid learning us-
ing energy-based models [26, 27, 28, 29]. In this chapter, a brief introduction to contrastive
learning is provided. The last chapter covers multiple instance learning, i.e., how to work
with multiple data and its training method. Many experiments are carried out here, which
point out some shortcomings of the discriminative approach itself and include its improve-
ment using a hybrid approach.

The primary goal of this thesis is to test the hybrid approach in real set data and ulti-
mately to show its benefits or downsides compared to discriminative learning.
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1
Theoretical Introduction

It is customary that vast academic paper, for better understanding, in its beginning out-
lines miscellaneous theoretical aspects, which are used during the other chapters. This the-
sis is no exception.

1.1 Mathematical notation

It will be most appropriate to begin by introducing the basic notation that will be used
throughout this thesis. This will ensure that any confusion will be avoided, even though the
notation is quite standard.

Notation for random variables using upper case letters of the Latin alphabet is widely
used. Typically, the letters used are from the end of the alphabet, i.e. X ,Y or Z . The real-
ization of a random variable, also known as an observed value or simply an observation, will
be denoted by the appropriate lower case letters. Thus, the realization x P R corresponds to
the random variable X , which holds by analogy for other random variables. However, signif-
icant simplification can be achieved if one uses the same notation for random variables and
realizations.

Bold symbols, for instance, x P RD or y P RD , will be used to distinguish vectors and
scalars. All vectors are assumed to be column vectors, so x = (x1, x2, . . . , xD )J and hence xJ

is a row vector.
Any matrices will be denoted by blackboard bold Latin letters, for example, if one has

N values of D-dimensional vector of observations x1, x2, . . . , x N , it can be simply combined
into a D ˆ N data matrix X in which the j th row of X corresponds to the row vector xJ

j .
The symbol IN denotes the square N ˆ N identity matrix, i.e., matrix with ones on the main
diagonal and zeros elsewhere. The set of observations will be denoted by bold uppercase
letter, for example X = {x1, x2, . . . , x N }.
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1.2 Probability theory

Mathematical models are very well described by probability and for this reason, this sec-
tion will look at some of the basic concepts of probability theory that we will need. The most
important such concept is probability density function (PDF). The symbol p(x) will be used
predominantly for the PDF, which is a function of x. In addition, this will be used for both
discrete and continuous x. In this way can be achieved significant simplification and unifi-
cation of all formulas and equations. Any PDF is a non-negative function and its integration
over the entire space is equal to 1. This applies to multivariate case as well as it applies to uni-
variate case, therefore integration of joint PDFs p(x) = p (x1, x2, . . . , xD ) over the entire space
is also equal to 1. In mathematical terms one can express it as follows

ż

RD
p(x)dx = 1. (1.1)

In other parts of this thesis we will use conditional PDFs such as pθ (x) ” p (x |θ) that are
conditioned by known parameters θ P Θ Ă Rs , where Θ is called parameter space. The
constraint (1.1) can be always fulfilled by redefining the PDF as

pθ (x) =
p0
θ

(x)

Z (θ)
, Z (θ) =

ż

RD
p0
θ (x)dx , (1.2)

where p0
θ

(x) specifies the functional form of the pθ (x) and does not need to integrate to 1.
The normalization constant Z (θ) is often called the partition function.

The average value of some function g (x) under a probability distribution p(x) is typically
denoted by E

[
g (x)

]
and it is called expected value or mean [30]. For a continuous variable,

expected value are expressed in terms of an integration with respect to the corresponding
probability density

E
[
g (x)

]= ż

R

p(x)g (x)dx.

In the case of a discrete variable, one has to keep in mind that an integration turns into a sum
over all x. To specify over which PDF the expectation is calculated, the notation Ep(x)

[
g (x)

]
can be used.

1.3 Supervised learning

Supervised learning (SL), in less academic terms called "learning with a teacher", is one
of the machine learning tasks [24]. The goal of this approach is to make a good prediction
of the output y (sometimes also called target variable), denoted by the symbol ŷ , with given
input x . This prediction is obtained through learning a model fθ (x) ” f (x ;θ) that minimizes
a loss function L( fθ(x), y) (also known as the error function), where θ PΘ are the parameters
of the model.

To construct this prediction one needs data, hence it is supposed that we have avail-
able set of independent and identically distributed (i.i.d.) observations, input–output paired
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samples denoted by D = {(
xi , yi

)}N
i=1, eventually, this may in fact be

D = {(
x i , yi

)}N
i=1 , x i PRD , yi PR, @i = 1, . . . , N . (1.3)

The index i will be omitted whenever it is clear that we are referring to terms associated
with a single data point. Such setting is usually known as training data and its applications
are regression problems. As an example, we can mention a couple of typically used loss
functions for such problems. They are squared error and absolute error

L
(
ŷ , y

)={(
y ´ ŷ

)2∣∣y ´ ŷ
∣∣

where ŷ = f̂θ (x) = f (x ; θ̂). As we are not quite interested in regression problems in this thesis,
we will mainly deal with the second approach. That is classification problems, i.e. when y P C
is qualitative output and where C is a finite set. A typical example is binary classification,
where C = {´1,+1}. However, classification will be object of interest later in Section 2.

Here it is clear why the term "learning with a teacher" is used. This metaphor means that
the student presents output ŷ and the teacher provides either a correct answer and/or an
error that corresponds to the student’s answer.

1.3.1 Prediction

The generalization performance [34], i.e. the performance on out–of–sample data of the
models learned by the algorithm relates to its prediction capability on independent test data
T . Assessment of this performance is essentially important in practice, since it conducts the
choice of learning method or model, and provides a measure of the quality of the hereafter
chosen model. In fact, there are two separate objectives that need to be achieved:

1. Model selection - estimating the performance of different models in order to choose
the best one.

2. Model assessment - having chosen a final model, estimating its prediction error (gen-
eralization error) on new data.

Cross-validation

The simplest and most widely used method for estimating prediction error of the model
f̂θ is called cross-validation (CV). We review this method using the notation of the authors
of [34]. It is used for direct estimating of the expected extra-sample error

err = E[
L

(
y, ŷ

)]
,

the measure how accurately is the model able to predict output values for previously unseen
data - independent test sample. In an ideal case, if sufficient number of data is available,
a test set can be set aside and used to assess the performance of the employed prediction
model. Since data are often scarce, this is usually not possible.
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Very elegant solution to this problem is via K-fold cross-validation. It uses part of the
available data for fitting the model, and a different part for testing. We split the data into
K roughly equal-sized parts, for example, when K = 5, the scenario is shown in Figure 1.1.
For the j th part (third in Figure 1.1), we train the model to the other K ´ 1 parts of the data,

testtrain train train train

Figure 1.1: Splitting the data into K = 5 roughly equal-sized parts.

and calculate the prediction error of the fitted model when predicting the j th part of the
data. We repeat this process for j P {1,2, . . . ,K } and combine the K estimates of prediction
error. Let γ : {1, . . . , N } Ñ {1, . . . ,K } be an indexing function that indicates the partition to

which observation j is allocated by the randomization. Symbol f̂ ´ j
θ

(x) denotes the fitted

model, computed with the j th part of the data removed. Then the cross-validation estimate
of prediction error is defined by

CV
(

f̂θ
)= 1

N

N
ÿ

i=1

L
(

yi , f̂ ´γ(i )
θ

(x i )
)

. (1.4)

Typical choices of K are 5 or 10 and even case K = N that is known as leave-one-out CV. Gen-
erally, there is not an universal way of choosing K , since it strongly depends on the available
number of data. The biggest problem of this method is a fact that it is computationally very
expensive, because we usually train many models with different complexity and assess their
performance. Let us now analyze the problem of the model complexity. Consider a polyno-
mial regression problem, where the model is defined by

fθ(x) =
s´1
ÿ

i=0

θi xi .

Here, over–fitting occurs very frequently. The complexity of the model of this case is very in-
tuitive, as it is just the order of the polynomial, s ´1. Smaller orders of the polynomial (may)
give rather poor fits to the data in contrast to a much higher order polynomial giving an ex-
cellent fit. However, such a polynomial passes exactly through each data point, oscillates
wildly, and gives a poor prediction for the new input variable x0 PR.

To obtain some quantitative insight into the dependence of the generalization perfor-
mance on model complexity, consider a separate test set of data (testing data) used to assess
the performance of the model. In general, the prediction error evaluated on the training data
for increasing the complexity of the model approaches zero. On the other hand, the predic-
tion error evaluated on the testing data for increasing model complexity is (from a certain
point) increasing as well. The typical scenario is illustrated in Figure 1.2. The goal is then
to choose a model that performs best on testing data. For extremely complicated and com-
plex models that are trained for hours or days, is cross–validation inconvenient approach of
estimating the prediction error as we need to train numerous models of this complexity.
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Testing data

Training data

Figure 1.2: Illustrative sketch of prediction error as a function of model complexity.

ROC and PR curves

In binary classification problems, a classifier labels observations as either positive or neg-
ative. The decision made by the classifier can be represented via a confusion matrix1, which
has four categories [46] . True positives (TP) are observations correctly labeled as positives,
on the other hand true negatives (TN) correspond to negative observations correctly labeled
as negative. False positives (FP) refer to negative observations incorrectly labeled as positive
and finally, false negatives (FN) refer to positive observations incorrectly labeled as nega-
tive. Following Table 1.1 illustrates a confusion matrix. Notice the great similarities with

actual positive actual negative

predicted positive TP ( #true positives) FP ( #false positives)

predicted negative FN( #false negatives) TN ( #true negatives)

Table 1.1: Confusion matrix.

error types of hypothesis testing in statistics. Based on the confusion matrix, a point for ei-
ther ROC or PR space is constructed and in addition a set of evaluation metrics is defined.

1The confusion matrix is not only a matter of binary classification, but can also be extended to multi-class
classification problem. For L classes, the confusion matrix takes the form of L ˆ L matrix.
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Among the best known and most frequently used are the following metrics

Recall = T P

T P +F N
,

Precision = T P

T P +F P
,

True Positive Rate = T P

T P +F N
,

False Positive Rate = F P

F P +T N
.

(1.5)

To construct Receiver Operator Characteristic (ROC) curve one needs to plot the True Pos-
itive Rate (TPR) against the False Positive Rate (FPR). The resulting curve depicts relative
trade-offs between true positive and false positive. Classifiers that give curves closer to the
top-left corner indicate a better performance. When dealing with data sets that are highly
skewed, Precision–Recall (PR) curves give a more informative picture. Obviously, the PR
curve is nothing more than plot of Precision against Recall. As opposition to the ROC, clas-
sifiers performs better for curves closer to the right–top corner. To get one number that
describes the model performance, one can calculate area under either the ROC curve or PR
curve, typically denoted by AUC. The symbols AUC–ROC or AUC–PR are used to distinguish
the AUC association for individual curves. Generally, the higher the AUC score, the better a
classifier performs.

1.4 Unsupervised learning

The previous section dealt with input–output paired samples D. The second approach is
a logical modification of SL, based on data without labels. Such setting is called unsupervised
learning (UL) or "learning without a teacher". Unlike SL, one has a set of N observations in
the form of X = {

x1, x2, . . . , x N
}

and nothing more. In this case, the student learns without
any feedback from a supervisor or teacher providing correct answers. The goal is to directly
infer the properties of p (x).

1.5 Bayesian inference

The Bayesian methodology is a well established approach to statistical inference and be-
came very important technique in statistics and data analysis. As its name suggests, Bayesian
statistics is based on application of Bayes’ rule. In this chapter, we briefly review basic con-
cept of this approach, which was suggested here [31].

Let the measured data be denoted by D, defined according to previous Section 1.1. A
parametric probabilistic model of the data D is given by the probability density function
p (D|θ), where againθ P Θdenotes parameters of the model. The main idea behind Bayesian
theory is the treatment of the unknown parameters θ as a random variable. Bayes’ rule is ap-
plied to infer model parameters θ, therefore

p(θ|D) = p(θ,D)

p(D)
= p(D|θ)p(θ)

ş

Θp(D|θ)p(θ)dθ
. (1.6)
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Since p(D) is just the normalization constant, Equation (1.6) is often simplified to

p(θ|D)9p(D|θ)p(θ). (1.7)

Symbol 9 means equal up to the normalization constant. The term p(θ|D) is known as the
posterior distribution, p(D|θ) as the observation model, and p(θ) is called the prior distri-
bution of the θ. Note that evaluation of the normalization constant can be computationally
expensive, in higher dimension even intractable.

There is of course many possible options how to obtain θ̂ from posterior. Popular choices
for an optimal value of the point estimate are:

1. Maximum A posteriori estimate (MAP)

θ̂MAP = argmax
θ

p(θ|D) (1.8)

This method estimates θ as the mode of the posterior distribution. It appears to be
computationally attractive, as it is not necessary to evaluate the normalization con-
stant.

2. Mean or expected value

θ̂B =
ż

Θ

θ p(θ|D)dθ = Ep(θ|D) [θ] (1.9)

Mean value, unlike MAP estimate, may be very expensive to compute because of the re-
quired integration. This may lead to further approximations such as EM algorithm [32].

1.5.1 Choice of prior distribution

For the posterior computation, it is necessary to specify the prior distribution p(θ), un-
fortunately, this might not be easily determined. This can be achieved through knowledge
of previous models, expert knowledge, their combination, or even uncertainty about θ being
a viable option.

There are also many practical aspects of priors:

• Regularization - supplementing the data if there are scarce, insufficient data, or poorly
defined models.

• Restrictive conditions - imposing various restrictions on the parameters θ reflecting
physical constraints. The choice of a prior distribution with bounded support will also
result in a posterior distribution with bounded support.

• Non–informative prior - if the data are informative enough to make a prediction, it is
proposed to choose a prior with minimal impact on the posterior distribution, such
as uniform distribution. However, typical choices of non–informative priors are the
so–called Jeffreys priors [33].
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1.5.2 Prediction

We are usually not interested in the value of θ̂ itself, but rather, once the model is esti-
mated, we are interested in making a prediction of the output variable y0 for the new input
variable x0. Note that the symbol D contains all previously given data x and y . The posterior
predictive distribution is then determined by the distribution of y0, marginalized over the
posterior

p(y0|x0,D) =
ż

Θ

p(y0|x0,θ)p(θ|D)dθ. (1.10)

When the distribution p(θ|D) is not available, we have to approximate leveraging the Dirac
delta function δ(x) for which the property

ż

R

g (x)δ(x ´ x0)dx = g (x0) (1.11)

holds. Once property (1.11) is applied to Equation (1.10), we get

p(y0|x0,D) =
ż

Θ

p(y0|x0,θ)δ(θ´ θ̂)dθ = p(y0|x0, θ̂),

causing an error. In typical MAP, this is known as over–fitting.
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2
Discriminative vs. Generative Models

2.1 Overview

Machine learning models can be classified into two main categories, discriminative and
generative models. Simply put, a discriminative model makes predictions based on con-
ditional probability p

(
y |x)

and is used for classification or regression problems. In other
words, discriminative models distinguishes the decision boundary between the classes. It
corresponds to learning parameters that maximize the conditional probability distribution
p(y |x). On the contrary, a generative model revolves around the distribution of a data set
to return a probability for a given example. Rather than looking at classes and trying to find
something to separate them, it focuses only on the one class at the time and builds a model
what that certain class looks like, then turns attention to the other class. To express it more
formally, generative models learn parameters that maximize p

(
x |y)

and p
(
y
)
. Since

p
(
x , y

)= p
(
x |y)

¨ p
(
y
)

, (2.1)

with joint PDF it is possible to generate new
{

x 1, y 1
}

pairs. In some cases, the use of the
second decomposition p

(
x , y

)= p
(
y |x)

¨p (x) is also an option. Note that in an unsupervised
setting, the task is reduced to inferring only p (x). To provide more insight into this problem,
simple illustrations are available in Figures 2.1 and 2.2.

2.2 Discriminative modeling

In this section, we review the basic concepts of discriminative modeling proposed in [14].
Given data D according to (1.3), with the empirical distribution of x being referenced by p̃(x)
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decision boundary

Figure 2.1: Discriminative approach.

distributions

Figure 2.2: Generative approach.

and the empirical label distribution p̃(y |x) containing L categories. In this thesis, we focus
on classification problems, where the variable y is now a qualitative variable called a class
label, taking on L possible values, and comes from a finite set C. A classification problem is
typically solved using a parametric function fθ : RD Ñ C, where θ denotes the parameters
of the model. In practice, the function fθ is often used in the form of RD ÑRL . This function
maps each data point x P RD to L real–valued numbers known as logits. It should be noted
that RL is allowed here due to the utilization of one–hot encoding, which will be explained in
Section 2.2.2. Logits are used to parameterize a categorical distribution through the transfer
function

qθ
(
y |x)= exp

(
fθ (x) [y]

)
ř

yPC exp
(

fθ (x) [y]
) , (2.2)

which is known as Softmax. In other words, the true data distribution p̃
(
y |x)

is modeled by
a parameterized family of functions

{
qθ

(
y |x) |θ PΘ

}
and thus p̃

(
y |x)

is assumed to belong
to this family. Note that the convention fθ (x) [y] means the y th element of fθ (x), that is, the
logit corresponding to the y th class label. For learning fθ is usually minimized total cross–
entropy (CE) loss

CE(θ) =´Ep̃(y,x)
[
log qθ

(
y |x)]=´Ep̃(x)

[
Ep̃(y |x)

[
log qθ

(
y |x)]]

« ´
1

N ¨ L

N
ÿ

i=1

ÿ

yPC
log qθ

(
y |x i

)
,

(2.3)
as it is relatively easy to compute and has several other justifications. These justifications will
be addressed in the following text. Notice that the last approximation of (2.3) holds using the
law of large numbers.

2.2.1 Connection to Kullback–Leibler divergence

The rationale for objective (2.3) comes from minimizing the Kullback-Leibler (KL) diver-
gence with a target distribution p̃(y |x) [35]. In general, the KL divergence (or KL distance)
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from p̃(y |x) to qθ
(
y |x)

is defined as

DKL
(
p̃(y |x)||qθ

(
y |x))= ż

p̃(y |x) log
p̃(y |x)

qθ
(
y |x)dy = Ep̃(y |x)

[
log

p̃(y |x)

qθ
(
y |x)] (2.4)

and has the following properties:

1. DKL
(
p̃(y |x)∥qθ

(
y |x))

ě 0,

2. DKL
(
p̃(y |x)∥qθ

(
y |x))= 0 iff p̃(y |x) = qθ

(
y |x)

almost everywhere,

3. DKL
(
p̃(y |x)∥qθ

(
y |x))

‰ DKL
(
qθ

(
y |x)∥p̃(y |x)

)
and KL divergence does not obey the tri-

angle inequality.

The third property indicates that care is needed in the syntax describing KL divergence. We
say that (2.4) is from p̃(y |x) to qθ

(
y |x)

. Using the logarithmic property, (2.4) can be further
rewritten in the form

Ep̃(y |x)

[
log

p̃(y |x)

qθ
(
y |x)]= Ep̃(y |x)

[
log p̃(y |x)

]
´Ep̃(y |x)

[
log qθ

(
y |x)]

, (2.5)

where the first term is called entropy, often denoted by H
(
p̃(y |x)

)
and the second term is

called CE. The subscript θ emphasizes that qθ
(
y |x)

is the approximate density we get to
control. This gives us KL distance for single data point x , but for optimization we need to
include all data points [36]. Let

L (θ) =
N

ÿ

i=1

D (i )
KL

(
p̃(y |x i )∥qθ

(
y |x i

))
(2.6)

be the sum of KL distances over all data points. Since the entropy of p̃(y |x i ) does not depend
on θ therefore by minimizing (2.6) with respect to θ we obtain

min
θ

L (θ) = min
θ

´

N
ÿ

i=1

Ep̃(y |x i )
[
log qθ

(
y |x i

)]= min
θ

´Ep̃(y,x)
[
log qθ

(
y |x)]

, (2.7)

which corresponds to minimizing the objective CE(θ) defined in Equation (2.3). This part
deserves further discussion for a few reasons:

• Maximum likelihood estimation (MLE) of θ is equivalent to minimizing the KL dis-
tance.

• One may encounter the concepts of minimization or maximization of CE.

To address these reasons, it is necessary to briefly review the MLE. The MLE principle as-
sumes that the most reasonable values for θ are those for which the probability of the ob-
served sample is highest. Since qθ

(
y |x)

is the PDF model, we have to follow the log–likelihood
function

LML (θ) =
N

ÿ

i=1

ÿ

yPC
log qθ

(
y |x i

)
,
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which is up to the factor ´ 1
N ¨L the same as the objective (2.3). The value of this factor does

not affect the actual optimization, but the negative sign is important because it makes the
difference between minimizing and maximizing. Further optimization of LML (θ) gives the
point estimate

θ̂ML = argmax
θ

N
ÿ

i=1

ÿ

yPC
log qθ

(
y |x i

)
= argmin

θ

´

N
ÿ

i=1

ÿ

yPC
log qθ

(
y |x i

). (2.8)

It is much more common to minimize a function than to maximize it in practice, and there-
fore the log–likelihood function is inverted by adding a negative sign to the front of the first
part of Equation (2.8) yielding a negative log–likelihood or simply cross–entropy.

2.2.2 One–hot encoding

Machine learning (ML) algorithms can misinterpret the numeric values of labels if there
exists a hierarchy between them. One–hot encoding is a very common approach for dealing
with this issue in order to improve the algorithm performance. Each unique category value
is transformed into a new column, and then these dummy variables are filled with 0 or 1 (0
for FALSE and 1 for TRUE). For the sake of clarity, the transformation of a label encoding into
a one–hot encoding is illustrated in the following table 2.1.

However, this method has its own downsides. For example, it creates new variables and
if there exist many unique category values, the models have to deal with a large number
of predictors, leading to the so-called Big-p problem [39]. Also, one–hot encoding causes
multicollinearity between the individual variables, which may lead to reducing the model’s
accuracy.

Food Name Categorical # Calories

Pizza 1 266

Hamburger 2 295

Caviar 3 264

ñ

Pizza Hamburger Caviar Calories

1 0 0 266

0 1 0 295

0 0 1 264

Table 2.1: Transformation of a label encoding (left) to the one–hot encoding (right).

2.3 Generative modeling

2.3.1 Variational autoencoder

The first approach to generative modeling that will be discussed is the variational au-
toencoder (VAE) [18, 19, 42], which is classified as an UL method. In this section, motivation
will be addressed and individual mathematical aspects will be discussed in detail.
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Problem scenario

Assume that the data X = {x1, x2, . . . , x N } are generated by some random process involv-
ing an unobserved continuous variable z , which will be referenced as a latent variable or
code. The objective is again to find the PDF of the given data in parametric form pθ (x). One
can choose an approximate distribution in the form of

pθ (x) =
ż

pθ (x , z)dz =
ż

pθ (x |z) pθ (z)dz , (2.9)

But such an approximation is usually very expensive to compute or can even be intractable.
Intractability of the pθ (x) makes posterior PDF pθ (z |x) also intractable.

Naive approach

One of the simplest ways to solve this problem may seem to be to build a model depend-
ing on the latent variable fθ (z) and try to train its parameters. For simplicity, let the prior
distribution be p (z) = N (z ;0, IP ), where P denotes the dimension of the latent space z , and
also let

x = fθ (z)+ε, ε„N
(
ε;0,σ2

¨ ID
)

which actually gives

pθ (x |z) =N
(
x ; fθ (z) ,σ2

¨ ID
)

. (2.10)

It may be noted that the subscript D represents the dimension of the data point x . The true
PDF of the given data can be cleverly written using the empirical PDF, i.e., in the form of
p̃ (x) = 1

N

řN
i=1δ (x ´ x i ), which can be exploited by finding the parameters θ by minimizing

DKL
(
p̃ (x)∥pθ (x)

)
. Since minimizing the KL distance is equivalent to MLE and using the

approximate form (2.9), the following holds

θ̂ = argmin
θ

´

N
ÿ

i=1

log pθ (x i )

= argmin
θ

´

N
ÿ

i=1

log

ż

N
(
x i ; fθ (z) ,σ2

¨ ID
)
¨N (z ;0, IP )dz

= argmin
θ

´

N
ÿ

i=1

log
P

ÿ

j=1

exp

(
´

1

2σ2

(
x i ´ fθ

(
z j

))J (
x i ´ fθ

(
z j

)))
.

(2.11)

Integration over z is represented by sampling. In iterations, for an incorrect value of θ, all
the generated samples may be away from the samples of x , and the gradient is poor.

Variational Bayes approach

To solve this problem, it is necessary to introduce a further approximate posterior dis-
tribution qφ (z |x) « pθ (z |x) with parameters φ, preferably Gaussian. Standard terminology
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refers to the model qφ (z |x) as probabilistic encoder and pθ (x |z) is called probabilistic de-
coder. For VAE, the idea is to use the KL distance from qφ (z |x) to pθ (z |x), which produces

DKL
(
qφ (z |x)∥pθ (z |x)

)= ż

qφ (z |x) log
qφ (z |x)

pθ (z |x)
dz

=
ż

qφ (z |x) log
qφ (z |x) pθ (x)

pθ (x |z) pθ (z)
dz

= log pθ (x)+
ż

qφ (z |x) log
qφ (z |x)

pθ (x |z) pθ (z)
dz

= log pθ (x)+Eqφ(z |x)

[
log

qφ (z |x)

pθ (z)
´ log p (x|z)

]
= log pθ (x)+DKL

(
qφ (z |x)∥pθ (z)

)
´Eqφ(z |x)

[
log p (x |z)

]
.

(2.12)

Using the last equality of (2.16), it is possible to rewrite the equation in its typical form

log pθ (x) ´ DKL
(
qφ (z |x)∥pθ(z |x)

)= Eqφ(z |x)
[
log pθ(x |z)

]
´ DKL

(
qφ (z |x)∥pθ (z)

)
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

= ´L
(
θ,φ; x

) , (2.13)

where the right–hand side is called Variational Lower Bound for a single data point. There
is no uniformity in terminology, and thus one can also encounter the name Evidence Lower
Bound (ELBO) with associated maximizing ELBO. The first term on the right-hand side is
known as reconstruction loss, and the second term is often called a regularization term. In
order to have more control over optimization, a multiplicative hyper–parameter β is often
added in front of the regularization term. ELBO is subsequently rewritten as

´ Lβ
(
θ,φ; x

)= Eqφ(z |x)
[
log pθ(x |z)

]
´β ¨ DKL

(
qφ (z |x)∥pθ (z)

)
, (2.14)

which is more formally known as β-VAE [19]. Varying β allows us to control the increment
of KL distance to be in numbers similar to the reconstruction loss. Clearly, the original VAE
framework is achieved for β= 1. Since a KL distance is always non–negative, it holds

log pθ (x) ě ´L
(
θ,φ; x

)
. (2.15)

The objective is to maximize the log-likelihood log pθ (x) which is equivalent to minimizing
the negative log–likelihood and that is what will be used here. At this point, we have a lower
bound for one data point x , but we need to include all observations in the lower bound. The
joint log–likelihood can be rewritten as a sum over the marginal log–likelihoods of individual
observations log pθ (x1, x2, . . . , x N ) = řN

i=1 log pθ (x i ) that completes all the building blocks
needed to determine the optimization equation. This formulation provides one major ad-
vantage, which is that it is now possible to jointly optimize both the generative parameters θ

32



and the variational parametersφ as follows

θ̂,φ̂= argmin
θ,φ

´

N
ÿ

i=1

log pθ (x i )

= argmin
θ,φ

N
ÿ

i=1

L
(
θ,φ; x i

)
= argmin

θ,φ
´

N
ÿ

i=1

Eqφ(z |x i )
[
log pθ(x i |z)

]
´ DKL

(
qφ (z |x i )∥pθ (z)

)
.

(2.16)

For a better understanding of the problem, a VAE diagram is shown in Figure 2.4. Note that
the latent space is usually much smaller than the input space, and for this reason, it is also
sometimes called the bottleneck.

Reparameterization trick

deterministicstochastic

Figure 2.3: Reparametrization trick.

The key success of VAE lies in the fact that
Equation (2.16) can be efficiently computed
using reparameterization trick. We express z
as a deterministic variable

z = gφ (ε, x) , (2.17)

where ε stands for an auxiliary variable with
independent marginal p (ε) and gφ (.) is a
function parameterized byφ.

A common explanation for this trick is that
during the optimization the gradient cannot
back–propagate through a random node. So,
in the case of VAE, the reparameterization
trick shifts the source of randomness to an-
other variable different from z and allows dif-
ferentiation with respect to z . However, this
explanation may not be sufficient and for this
reason we will state a more formal justifica-
tion [38]. Consider taking the gradient with
respect to θ of Ep(z)

[
fθ (z)

]
. It can be easily

computed as

∇θEp(z)
[

fθ (z)
]=∇θ

ż

p(z) fθ (z)dz

=
ż

p(z)∇θ fθ (z)dz

= Ep(z)
[∇θ fθ (z)

]
.

(2.18)
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Figure 2.4: VAE diagram, where the input x is passed through VAE architecture to create
reconstructed input x̂ .

The result is obvious; the gradient of the expectation is equal to the expectation of the
gradient. However, the gradient of the expectation becomes much more interesting if the
PDF pθ(z) is also parameterized by θ, resulting in

∇θEpθ(z)
[

fθ (z)
]=∇θ

ż

pθ(z) fθ (z)dz

=
ż

pθ(z)∇θ fθ (z)dz +
ż

fθ (z)∇θpθ(z)dz

= Epθ(z)
[∇θ fθ (z)

]+ż

fθ (z)∇θpθ(z)dz .

(2.19)

The second term of (2.19) is not guaranteed to be an expectation and this very fact indicates
that back–propagation would not compute an estimate of ∇θEpθ(z)

[
fθ (z)

]
. That being the

case, if we apply the reparameterization trick z = gθ (ε, x) to this simple example, we get

Epθ(z)
[

fθ (z)
]= Ep(ε)

[
f
(
gθ(ε, x)

)]
. (2.20)

At this point, it is possible to take the gradient ∇θEp(ε)
[

f
(
gθ(ε, x)

)]
analogously to that in

(2.18). To be perfectly clear, the authors of [18] proposed an easy exercise. Take the univariate
Gaussian case p(z|x) =N

(
z;µ,σ2

)
. In such a case, proper reparameterization takes the form

of
z =µ+σε, (2.21)

where ε„N (0,1) and, therefore, the expectation

EN (z;µ,σ2)
[

f (z)
]= EN (ε;0,1)

[
f (µ+σε)

]
«

1

M

M
ÿ

j=1

f
(
µ+σε j

)
.

Note that this is nothing more than a transformation of a random variable. If we look closer
at (2.16), the expectation on the right–hand side, i.e. Eqφ(z |x i ), is taken over the parameter-
ized PDF. This must be rewritten using the reparameterization trick so that the Monte Carlo
estimate of the expected value is differentiable with respect toφ.
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Variational autoencoder

So far, we have only dealt with VAE in general. In this section, we put everything together
and specify the individual parts of the ELBO (2.16). Let the probabilistic encoder be a multi-
variate Gaussian with a diagonal covariance matrix

qφ (z |x) =N
(

z ;µφ,σ2
φIP

)
(2.22)

and let the probabilistic decoder pθ (x |z) take the form depending on the type of given data
and model. This is typically either multivariate Gaussian or Bernoulli. Finally, let the prior
pθ (z) be the centered izotropic multivariate Gaussian, i.e.

pθ (z) = p (z) =N (z ;0, IP ) , (2.23)

where the generative parameters θ are omitted, since the chosen prior distribution lacks
parameters. When using (2.22), µφ and σφ are non–linear functions of the data point x and
the variational parameters φ. For further simplification of the notation, the index φ will be
omitted. This setting actually allows us to take the reparameterization trick in a form similar
to that of Equation (2.21), which means that

z i , j =µi +σi dε j , (2.24)

where the symbol d denotes the Hadamard product, i.e. the element product and the aux-
iliary variable ε„ N (0, IP ). Another major fact is that the KL distance from a Gaussian dis-
tribution to a Gaussian distribution has an analytical solution (for a full derivation, see the
Appendix A.1), so DKL

(
qφ (z |x)∥pθ (z)

)
can be expressed in closed form:

DKL
(
qφ (z |x)∥pθ (z)

)= DKL
(
N

(
z ;µ,σ2IP

)∥N (z ;0, IP )
)

= 1

2

P
ÿ

j=1

(
´1 ´ logσ2

j +µ2
j +σ2

j

)
.

(2.25)

Now all that is left is to plug everything into equation (2.16), which leads to the final form for
optimization

θ̂,φ̂= argmin
θ,φ

´

N
ÿ

i=1

Eqφ(z |x i )
[
log pθ(x i |z)

]
´ DKL

(
qφ (z |x i )∥pθ (z)

)
= argmin

θ,φ
´

N
ÿ

i=1

 1

P

P
ÿ

j=1

log pθ
(
x i |z i , j

)+ 1

2

P
ÿ

j=1

(
1+ logσ2

i , j ´µ2
i , j ´σ2

i , j

) .

(2.26)

Toy problem

The objective of this example is to verify that VAE can be utilized to generate new data
points. Assume that we have a data set of 2D i.i.d. observations X = {x1, x2, . . . , x N } gener-
ated from the unknown distribution and that we would like to sample new observations from
this distribution. We should see similar patterns of the true and estimated samples. Let the
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probabilistic decoder be in Gaussian form 2.10, but with the identity matrix as a covariance
matrix, therefore,

pθ (x |z) =N
(
x ; fθ (z) , I2

)
. (2.27)

This allows us to once again rewrite Equation (2.26) in a concrete optimizable form

θ̂,φ̂= argmin
θ,φ

´

N
ÿ

i=1

 1

P

P
ÿ

j=1

logN
(
x i ; fθ

(
z i , j

)
, I2

)+ β

2

P
ÿ

j=1

(
1+ logσ2

i , j ´µ2
i , j ´σ2

i , j

)
= argmin

θ,φ
´

N
ÿ

i=1

 1

P

P
ÿ

j=1

(
x i ´ f

(
z i , j

))J (
x i ´ f

(
z i , j

))+ β

2

P
ÿ

j=1

(
1+ logσ2

i , j ´µ2
i , j ´σ2

i , j

) ,

(2.28)

Figure 2.5: True and estimated samples us-
ing VAE.

where fθ,µ and σ are represented via
the neural network (NN). These are in fact
dense layers, i.e., the NN layer, where neu-
rons are connected to every neuron of its pre-
ceding layer. For the non–linearity of µ and
σ we choose SELU and for fθ it is identity.
Clearly, new data points x̂ (reconstructed in-
put) are then sampled using x̂ = f̂θ (z) with
z „ N (z ;0, IP ), thus there is no need to trans-
form the output. The input layer is the en-
coder, which is again a dense layer with SELU
non–linearity. The hyper–parameter β = 0.2 is
added to ensure a similar increment of KL, see
(2.14). For the training of parameters θ̂ and φ̂, the Adam1 optimization algorithm [37] is
used. It is sufficient to initialize optimization with standard default values, learning rate
α = 0.001, decay rates β1 = 0.9, β2 = 0.999, and finally ϵ = 10´8. The results are shown in
Figure 2.5, where the true data and estimated data are depicted. The estimated distribution
is very close to the true distribution, as the pattern of the samples is indistinguishable. This
experiment revealed that VAE is a good way of successfully generating new data points.

2.3.2 Semi-supervised variational autoencoder

Semi-Supervised Variational Autoencoder (SSVAE) copes with input–output pair sam-
ples D as defined in (1.3). Each pair sample

(
x i , yi

)
has its corresponding latent variable z i .

The authors of [15] propose a probabilistic model that describes the data as generated by a
latent class variable y in addition to a continuous latent variable z . However, only a sub-
set of observations x has the corresponding class labels. Observe that these latent variables
are marginally independent. Empirical distributions of labeled and unlabeled subsets are
denoted by p̃l

(
x , y

)
and p̃u (x), respectively. As with standard VAE, the data is generated by

1The Adam optimization algorithm is a standard optimization tool implemented in most of the program-
ming languages. As opposed to stochastic gradient descent, this method computes individual adaptive learn-
ing rates for different parameters from estimates of the first and second moments of the gradients.
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some random process which can be described as follows

p(y) = Cat
(
y ;π

)
, p (z) =N (z ;0, IP ) , pθ

(
x |y, z

)= hθ
(
x ; y, z

)
.

The symbol Cat
(
y ;π

)
denotes the multinomial distribution with probability vectorπ, and hθ

is a suitable likelihood function depending on the type of given data parameterized by a non–
linear transformation of the latent variables. Predictions of missing labels are obtained from
the inferred posterior distribution pθ

(
y |x)

. The standard VAE employs an inference model
qφ (z |x), however, in the case of semi–supervised learning, this model should also contain
class labels. Ideally, for a given observation x , the model should predict the class label y
and, in addition, be able to construct the latent space z for given x and y . Under these cir-
cumstances, the model is introduced in the factorized form qφ

(
z , y |x) = qφ

(
z |y, x

)
qφ

(
y |x)

.
This factorization is specified further as

qφ
(
z |y, x

)=N
(

z ;µφ
(
y, x

)
,diag

(
σ2
φ (x)

))
, qφ

(
y |x)= Cat

(
y ;πφ (x)

)
,

where µφ,σφ and πφ are represented as NNs. For VAE, we derived the variational lower
bound

log pθ (x) ě Eqφ(z |x)
[
log pθ(x |z)

]
´ DKL

(
qφ (z |x)∥pθ (z)

)=´L
(
θ,φ; x

)
,

from which we now derive lower bounds for SSVAE. This derivation consists of two steps.

Latent Feature Discriminative Model (M1): First, consider observation x that has its class
label y . The variational lower bound is then easily extended as

log pθ
(
x , y

)
ě Eqφ(z |x ,y)

[
log pθ(x |z , y)+ log pθ(y)

]
´ DKL

(
qφ

(
z |x , y

)∥pθ (z)
)

= Eqφ(z |x ,y)
[
log pθ(x |z , y)+ log pθ(y) ´ log qφ

(
z |x , y

)+ log pθ (z)
]

=´J
(
θ,φ; x , y

)
,

(2.29)

where log pθ(y) is a constant that determines the ratio between classes. If the classes are
similarly large, this term becomes irrelevant. When necessary, it is again possible to weigh
the KL distance using the parameter β (2.14).

Generative Semi-supervised Model Objective (M2): In the case of observation x lacking
its class label y , it is treated as another latent variable over which posterior inference is per-
formed. We get

log pθ (x) ě Eqφ(y,z |x)
[
log pθ(x |z , y)+ log pθ(y)

]
´ DKL

(
qφ

(
y, z |x)∥pθ (z)

)
= Eqφ(y,z |x)

[
log pθ(x |z , y)+ log pθ(y) ´ log qφ

(
z |x , y

)+ log pθ (z)+ log qφ
(
y |x)]

=
ÿ

y

qφ
(
y |x)

J
(
θ,φ; x , y

)+H
(
qφ

(
y |x))=´U

(
θ,φ; x

)
,

(2.30)
where H

(
qφ

(
y |x))

indicates the entropy of qφ
(
y |x)

.

To include the entire data set in the bound, we sum (2.29) over the labeled subset and
(2.30) over the unlabeled subset, so that we can write

J̃
(
θ,φ

)= ÿ

(x ,y)„p̃l (x ,y)
J
(
θ,φ; x , y

)+ ÿ

x„p̃u (x)

U
(
θ,φ; x

)
. (2.31)
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This objective lacks the predictive distribution of the label qφ
(
y |x)

in its first expression.
Since the purpose of this distribution is to use it as a classifier, we need to ensure that its pa-
rameters are learned in all cases. Currently, the objective (2.31) would be completely lacking
qφ

(
y |x)

if all data were labeled. To fix this problem, it is suggested to add the classification
loss to (2.31), which yields the concise form

J̃ν
(
θ,φ

)= J̃
(
θ,φ

)+ν ¨Ep̃l (x ,y)
[
´ log qφ

(
y |x)]

. (2.32)

This gives a hybrid combination of generative and purely discriminative modeling. The
hyper–parameter νweighs the discriminative counterpart with a common value of ν= 0.1Ñ ,
where Ñ denotes the size of the supervised data set. Following Equation (2.26), optimization
of (2.32) can be performed jointly

θ̂,φ̂= argmin
θ,φ

J̃ν
(
θ,φ

)
.

The key factor in this formulation is that the optimization of the predictor and the generator
is linked and proceeds simultaneously. The trained predictor should perform better than a
predictor that is trained separately without the generator.

2.3.3 Noise–contrastive estimation

Suppose one has to estimate a model that is specified by an non-normalized proba-
bility density function q0

θ
(x). In such a case, one can utilize noise–contrastive estimation

(NCE) [43, 44]. The first step is to introduce another parameter c among the estimated pa-
rameters θ. For clarity, the symbol θ‹ = {

θ,c
}

is introduced for the set of estimated parame-
ters, including c. Using this notation, we can write the following equality

log qθ‹ (x) = log q0
θ‹ (x)+ c, (2.33)

which means that the newly introduced parameter c is an estimate of the negative logarithm
of the normalization constant Z (θ) (1.2). As the name suggests, we use noise to estimate. By
our convention, let X = {x1, x2, . . . , x N } be observations and Ξ = {ε1,ε2, . . . ,εN } be artificially
generated noise data with known distribution ψ (ε). The estimate θ̂‹ is then defined as

θ̂‹ = argmax
θ‹

LNC (
θ‹

)
= argmax

θ‹

1

2N

N
ÿ

i=1

logSθ‹ (x i )+ log
(
1 ´ Sθ‹ (εi )

)
= argmin

θ‹

´
1

2N

N
ÿ

i=1

logSθ‹ (x i )+ log
(
1 ´ Sθ‹ (εi )

)
(2.34)

where Sθ‹ stands for a logistic function,

Sθ‹ (x) = 1

1+exp
(
´Gθ‹ (x)

) (2.35)
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and finally, the function Gθ‹ represents the difference of the log-likelihoods of qθ‹ and ψ,
hence

Gθ‹ (x) = log qθ‹ (x) ´ logψ (x) . (2.36)

It may be noted that equation (2.34) also appears in SL tasks and is called binary CE loss.
It is actually a special case of CE itself. Thus, it is used for the classification of two classes.
This gives an intuitive insight into how noise–contrastive estimation really works. When data
and noise are compared, the model is learned, so this method can be called learning by
comparison. To make the connection with SL more explicit, denote U = {u1,u2, . . . ,u2N } the
union of two sets X andΞ. Then each data point ui is assigned a binary class label yi , where
yi = 1 if ui P X and yi = 0 if ui PΞ. The aim is to estimate the posterior probabilities of the
classes given the data ui . To do this, one needs the class–conditional PDFs that are given by

p
(
u|y = 1

)= qθ‹ (u) p
(
u|y = 0

)=ψ (u) .

Class labels are equally likely, so that Pr
(
y = 1

) = Pr
(
y = 0

) = 1
2 and the posteriors are deter-

mined as follows

Pr
(
y = 1|u)= qθ‹ (u)

qθ‹ (u)+ψ (u)
= Sθ‹ (u) , (2.37)

Pr
(
y = 0|u)= 1 ´ Sθ‹ (u) . (2.38)

The class labels yi are Bernoulli–distributed so that for the log–likelihood of Bernoulli with
probabilities (2.37) and (2.38), we get

LNC (θ) =
2N
ÿ

i=1

yi logPr
(
y = 1|ui

)+ (
1 ´ yi

)
logPr

(
y = 0|ui

)
=

N
ÿ

i=1

logSθ‹ (x i )+ log
(
1 ´ Sθ‹ (ϵi )

)
,

(2.39)

which is the equation (up to the extrinsic factor 1
2N ) that is optimized in Equation (2.34).

Choice of the contrastive noise PDF

The noise distribution ψ (ε) can be considered as a design parameter. But this choice
is not completely arbitrary, because in practice the noise distribution should meet certain
conditions. These are:

1. It is easy to sample from, because NCE approach relies on artificially generated noise
data ε1,ε2, . . . ,εN .

2. In order to smoothly evaluate (2.36), closed form for logψ (.) is requisite.

3. It leads to a small mean squared error E

[(
θ̂‹ ´θ‹

)2
]

.
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The authors of [44] suggest using a Gaussian or uniform distribution, eventually a Gaussian
mixture.

EXAMPLE 2.1 (One–dimensional Gaussian distribution). To test this approach, we performed
a simple experiment. There are a total of N = 100 i.i.d. and one-dimensional observations
x1, x2, . . . , xN from an unknown distribution that is assumed to be Gaussian. Therefore, it is
of the form

qθ‹ (x) = exp

(
´

1

2
¨

(
x ´µ

)2

σ2
+ c

)
, (2.40)

where θ‹ = {
µ,σ2,c

}
. Since c is an estimate of the negative logarithm of the normalization

constant Z (θ), we can include it into the exponent. Next, we artificially generate noise data
e1,e2, . . . ,eN , which is again easier to do using a Gaussian distribution. This means that it can
be chosen, for example,

ψ (e) = 1
?

2π10
exp

(
´

1

2
¨

e2

10

)
. (2.41)

We choose the noise PDF intentionally so widely spread from its mean value because
these two PDFs, i.e. (2.40) and (2.41), should at least partially overlap. At this point, we
have all the components available and it is possible to construct a function (2.37) that is
minimized using the Adam optimization algorithm [37]. Figure 2.6 shows the comparison
between the estimated distribution and the true one. The estimate is very close to the actual

(a) True (blue) and estimated (red) PDF. (b) True (blue) and estimated (red) PDF.

Figure 2.6: Results of the NCE experiment for one–dimensional and two–dimensional Gaus-
sian case.

distribution, and for an increasing number of observations, the estimate would get closer
and closer.
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EXAMPLE 2.2 (Two–dimensional Gaussian distribution). The one–dimensional case may seem
too simple, and therefore an example with a two-dimensional Gaussian distribution was per-
formed. The experimental setup remains nearly the same; only the dimensionality of the
problem differs. Recall that the multivariate Gaussian distribution in R2 can be written as

qθ‹ (x) = exp

(
´

1

2

(
x ´µ

)J
Σ´1 (

x ´µ
)+ c

)
,

where µ P R2 and Σ P R2ˆ2 is a symmetric and positive semidefinite covariance matrix. As
the noise PDF is chosen ψ (e) =N

(
e;µ1,Σ1

)
, where µ1 = (2,2)J and Σ1 = 10 ¨ I2. Figure 2.6

shows the results in a vein similar to that in the previous case.
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3
Hybrid Generative and Discriminative

Models

In the previous chapter, we have introduced the basics of discriminative and generative
modeling. An interesting and key approach is SSVAE, which combines both types of model-
ing. This chapter attempts to do the same, but from a slightly different perspective. In total,
we review two methods. The first method combining discriminative and generative models
will be based on contrastive learning, and the second method will use the aforementioned
SSVAE.

3.1 Energy-based models

In the first part of this chapter, we review the theory of energy–based models (EBM) [26,
27, 28, 29]. It is motivated by statistical physics and aims at PDF estimation. Given a large
data set, we want to estimate the PDF over the entire data space. Assuming that we are
modeling images from, for example, the CIFAR-101 data set [41], the goal is to estimate a
PDF over all possible images of size 32 ˆ 32 ˆ 3, where those images have a high likelihood
of looking realistic and are one of the CIFAR classes. Nowadays, images are extremely high-
dimensional and that is why simple methods such as interpolation between images fail.

The fundamental idea of EBMs is to transform any function that predicts values larger
than zero into a PDF by dividing by its volume (normalization constant). This implies that
the probability densities pθ(x) for x PRD in EBM are assumed to be expressed in the form

pθ (x) = exp
(
´E

θ
(x)

)
Z (θ)

, (3.1)

1The CIFAR-10 data set consists of 60000 32x32 color images in 10 different classes.
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where Z (θ) is a normalization constant and Eθ : RD Ñ R is called the energy function with
parameters θ, which maps each data point x to a scalar. In front of the objective Eθ(x)
there is a negative sign because we want data points with high likelihood to have low en-
ergy, while data points with low likelihood should have high energy. The significant advan-
tage of the density formulation of EBM is that there are a relatively large number of ways to
choose energy Eθ. The exponential function captures major variations in probability, and
log–likelihood is a natural scale to work with. Unfortunately, we cannot compute Z (θ) for
the vast majority of them (not even numerically, since computing time scales exponentially
in the number of dimensions of x), and we have to rely on the Monte Carlo estimate. The
idea here is to take the gradient with respect to θ from the log–likelihood log pθ (x), which
decomposes as the sum of two terms

∇θ log pθ (x) =´
(∇θEθ (x)+∇θ log Z (θ)

)
. (3.2)

The second term can be rewritten as expectation Epθ(x) [´∇θEθ (x)], which yields the follow-
ing (for the full derivation, see Appendix A.2)

∇θ log pθ (x) = Epθ(x) [´∇θEθ (x)] ´∇θEθ (x) . (3.3)

Drawing samples from pθ (x) is far from trivial, thus we exploit a well-established Monte
Carlo method called stochastic gradient Langevin dynamics (SGLD) [45]. For any continuous
pθ (x) we can compute the score function

∇x log pθ (x) =∇x Eθ (x) , (3.4)

and generate samples using the following stochastic process

x0 „ψ (x) , x t+1 = x t ´η∇x Eθ (x)+
a

2η ϵ, ϵ„N (ϵ;0, ID ) , t P {0,1, . . . ,T ´ 1} , (3.5)

where ψ (x) is the prior distribution (that is easy to sample from, such as Gaussian) used to
generate the initial sample x0 and η P R is a step size. This algorithm ensures that for ηÑ 0
and T Ñ 8, xT is distributed as pθ (x) [28].

Note that for two different data points x and x‹, computing pθ (x) and pθ (x‹) requires
Z (θ), however, the ratio pθ (x)/pθ (x‹) does not involve Z (θ) and one can easily check which
data point is more likely.

3.1.1 Joint energy models

Recall, that in Section 2.2 we described the Softmax function, which is used to model the
true data distribution. It is defined as

qθ
(
y |x)= exp

(
fθ (x) [y]

)
ř

yPC exp
(

fθ (x) [y]
) .

Crucial observation is made by the authors in [27], where they show that supervised learning
classifiers are secretly EBMs on pθ(x , y), i.e., the logits fθ (x) [y] in objective (2.2) can be seen
as defining an EBM so that the joint PDF can be expressed as

pθ
(
x , y

)= exp
(

fθ (x) [y]
)

Z (θ)
. (3.6)
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This objective is called joint energy model (JEM), and it is obvious that fθ (x) [y] =´Eθ(x , y).
The desirable model pθ (x) can be obtained by marginalizing (3.6) over y , resulting in the
following density

pθ (x) =
ř

yPC exp
(

fθ (x) [y]
)

Z (θ)
, (3.7)

where the energy is given by Eθ(x) = ´ log
ř

yPC exp
(

fθ (x) [y]
)
. A very useful property ap-

pears when computing pθ(y |x), because we can take advantage of the definition of a con-
ditional distribution pθ(y |x) = pθ

(
x , y

)
/pθ (x). Substituting (3.6) and (3.7) into this condi-

tional distribution results in

pθ
(
y |x)= qθ

(
y |x)= exp

(
fθ (x) [y]

)
ř

yPC exp
(

fθ (x) [y]
) . (3.8)

Note that the normalization constant Z (θ) canceled out and we ended up with the same
function, which was introduced in (2.2).

3.2 Contrastive learning

Contrastive learning [12, 13] is an ML technique used to learn the so-called general fea-
tures of a data set by teaching the model which data points are similar or different. All this
happens without labels; therefore, contrastive learning is frequently called the self–supervised
technique of ML. Given X = {x1, x2, . . . , x N }, in contrastive learning problems, it is very com-
mon to optimize an objective often called contrastive loss, which can be written in the form
as follows

CL(θ) =´Ep̃(x)

[
log

exp
(
mθ (x) ¨ mθ(x 1)

)
řM

i=1 exp
(
mθ (x) ¨ mθ(x i )

) ]
, (3.9)

where M < N denotes the number of normalization samples. The function mθ : RD Ñ RH

maps each data point to a representation space of dimension H , while x and x 1 are two
different augmented views of the same data point. If x is an image, then an augmented view
of x can be obtained, for example, by rotating or colorizing that image. Note that the inner
product between two vectors can be replaced with any distance metric, for instance, the
Euclidean distance.

This objective tries to maximally distinguish an input x i from an alternative input x 1
i . In

other words, (3.9) reduces the distance between the representations of different augmented
views of the same image x , x 1 (positive pairs) and increases the distance between the rep-
resentations of augmented views of different images (negative pairs). This means that the
model should be able to distinguish between different types of image without even knowing
what these images really are.

3.3 Hybrid dicriminative and generative models

In this section, we will put everything together and present an approach to combine both
types of models. The authors of article [14] proposed a solution, however, the rationale for
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this objective originates from [23], where the authors show that hybrid models can outper-
form their purely generative or purely discriminative counterparts.

To achieve this goal, a hybrid model consists of a discriminative conditional and a gen-
erative conditional, and it is trained by minimizing the negative sum of both conditional
log-likelihoods, concretly

min
θ

´Ep̃(x ,y)
[
log qθ

(
y |x)+ log qθ

(
x |y)]

, (3.10)

where the first term is a standard Softmax NN classifier (as mentioned in Equation (2.2) or
(3.8)), while the second term differs from Softmax in its denominator, so that

qθ
(
x |y)= exp

(
fθ (x) [y]

)
řN

i=1 exp
(

fθ (x i ) [y]
) . (3.11)

The objective (3.11) can cause serious problems with the unknown normalization constant
řN

i=1 exp
(

fθ (x i ) [y]
)
, which is often intractable, as we have already mentioned in previous

considerations. The authors of [14] recommend resolving this obstacle using an approxima-
tion via contrastive loss

Ep̃(x ,y)
[
log qθ

(
x |y)]= Ep̃(x ,y)

[
log

exp
(

fθ (x) [y]
)

řN
i=1 exp

(
fθ (x i ) [y]

)] « Ep̃(x ,y)

[
log

exp
(

fθ (x) [y]
)

řM
i=1 exp

(
fθ (x i ) [y]

)] ,

(3.12)
where M < N denotes the number of normalization samples. This loss is related to (3.9),
which was mentioned in the previous section, but there are few distinctions to discuss. We
use labels in this formulation as we assume a supervised setting and, more importantly, we
do not use any mapping mθ or augmented views. The main contribution of (3.9) is the pro-
posed approximation in the denominator. To have an adequate approximation, M must
be sufficiently large, becoming exact in the limit M Ñ N . In practice, increasing M is not
straightforward as it requires a larger memory. However, this does not apply to our experi-
ments.

Now it is possible to substitute the approximation (3.12) into Equation (3.10), which re-
sults in a hybrid combination of supervised learning and constrastive learning in the form
of

min
θ

HDGM(θ;α)

= min
θ

´Ep̃(x ,y)
[
α log qθ

(
y |x)+ (1 ´α) log qθ

(
x |y)]

« min
θ

´Ep̃(x ,y)

[
α log

exp
(

fθ (x) [y]
)

ř

yPC exp
(

fθ (x) [y]
) + (1 ´α) log

exp
(

fθ (x) [y]
)

řM
i=1 exp

(
fθ (x i ) [y]

)] ,

(3.13)

called the Hybrid Discriminative Generative energy-based Model (HDGM). The newly intro-
duced hyper–parameter α is a weight between [0,1]. It is obvious that in the case of α = 1,
the objective is reduced to the standard cross–entropy loss, while in α = 0, the objective is
reduced to a case called end-to-end supervised version of contrastive learning. The choice
of hyper–parameter α is a decision of the experiment designer, however, the authors of [14]
evaluated many possible variants in their experiments and found that the choice of α = 0.5
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produces the highest classification accuracy performance. Unfortunately, these experiments
involved only image classification.

The HDGM (3.13) is absolutely crucial for us as we extend this approach to the multi–
instance learning problem, but this is discussed in further sections.

3.3.1 Toy problem - polynomial regression

First and foremost, we test the HDGM in a simple example before moving on to more

difficult cases. Assume that we have generated the synthetic data D = {
xi , yi

}N
i=1, where

xi , yi P R, therefore, this is only a two-dimensional problem. However, the data are poor.
The goal is to train a model using the form (3.13) derived in the previous section and observe
the effect of the generative part on the resultant model.

According to the energy–based models 3.1, we know that for the joint distribution, it
holds

pθ(x, y) = exp
(

fθ(x)[y]
)

Z (θ)
, (3.14)

where the energy is given by fθ(x)[y] = ´Eθ(x, y). The general model of polynomial regres-
sion is written as

fθ (x) =
s´1
ÿ

i=0

θi xi . (3.15)

At this point, we transform this problem into a polynomial regression. We must be aware
of the discriminative term in Equation (3.10), because we do not want to classify, but our
objective is to find the best fit to the given data. For this reason, we replace log qθ

(
y |x)

with
the typical regression loss, i.e., the residual sum of squares

S = S(θ) =
N

ÿ

k=1

(
yk ´

s´1
ÿ

i=0

θi xi
k

)2

. (3.16)

Generally, any joint probability distribution can be broken down into parts by the chain rule.
In this case, a decomposition of the form

pθ(x, y) = pθ(y, x) = pθ(y |x) ¨ p(x) (3.17)

is appropriate. Therefore, we need to find pθ(y |x) and p(x). From polynomial regression, we
can obtain the conditional PDF

pθ(y |x) =N
(

y ;
s´1
ÿ

i=0

θi xi ,σ2

)
, (3.18)

where the variance σ2 is considered the known parameter. In this example, we also need to
determine the prior distribution of x. To keep this example simple, let the prior be Gaussian
as well as (3.18), so that

p(x|τ) =N
(
x;0,τ2) , (3.19)

where the choice of parameter τ is based on the fact that we do not want to influence the
given observations too much. This leads to a non–informative prior and thus τ should be
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adequately high. If the value of τ is high, the data are spread very far from their expected
value. Substituting equations (3.19) and (3.18) into (3.17) results in

pθ(x, y) =N
(
x;0,τ2)

¨N
(

y ;
s´1
ÿ

i=0

θi xi ,σ2

)
= 1

2πστ
exp

´

(
y ´

řs´1
i=0 θi xi

)2

2σ2
´

x2

2τ2

 , (3.20)

whereas logits of the model are given by

fθ(x)[y] =´

(
y ´

řs´1
i=0 θi xi

)2

2σ2
´

x2

2τ2
. (3.21)

We can now substitute (3.21) and (3.16) in Equation (3.10), resulting in

min
θ

{
α S(θ) ´Ep̃(x,y)

[
(1 ´α) log qθ

(
x|y)]}

=

min
θ

{
α S(θ) ´Ep̃(x,y)

[
(1 ´α) log

exp
(

fθ (x) [y]
)

řN
i=1 exp

(
fθ (xi ) [y]

)]}
=

min
θ


α S(θ) ´Ep̃(x,y)

(1 ´α) log

exp

(
´

(
y´

řs´1
i=0 θi xi

)2

2σ2 ´ x2

2τ2

)
řN

k=1 exp

(
´

(
y´

řs´1
i=0 θi xi

k

)2

2σ2 ´
x2

k
2τ2

)



.

(3.22)

Note that for α = 1 we get purely polynomial regression, and for α = 0, the term S(θ) is not
involved at all. The estimated parameters are then obtained as

θ̂ = argmin
θ


α S(θ) ´Ep̃(x,y)

(1 ´α) log

exp

(
´

(
y´

řs´1
i=0 θi xi

)2

2σ2 ´ x2

2τ2

)
řN

k=1 exp

(
´

(
y´

řs´1
i=0 θi xi

k

)2

2σ2 ´
x2

k
2τ2

)



. (3.23)

Now, we have everything we need to carry out the experiment, since Equation (3.22) is the
final optimization form. For optimization of Equation (3.23), Adam with default values is
used.
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3.3.2 Experiment setup and results

We generate synthetic dataD, two clusters consisting of five data points each. This makes
the data very poor. Standard polynomial regression is probably not the best tool here; in
the best possible way, the generative component should improve the polynomial regression
itself. We have three parameters, α, s ´ 1 and τ, which will be varied during the experiment.
We want to observe how the estimated model behaves in relation to the hyper–parameter
α. The model is then fitted for different weights α P {0.0,0.1,0.2, . . . ,1.0}, giving 11 different
models in total. The models estimated for α P {0.0,0.5,1.0} are highlighted, as they are more
important to us than the other models. Let this experiment be further divided into two parts
according to s ´ 1 and τ.

Fixed order of the polynomial

For the first part, we train the models for the fixed order of the polynomial s ´1 = 10, but
for six different values of the parameter τ P {0.1,1,10,100,1000,10000}. The results obtained
(Figures 3.4, 3.5 and 3.6) for small τ barely vary from those for high τ and one can observe
a mere effect of τ. This phenomenon is exactly what we hoped for, as the prior distribu-
tion should be non–informative (3.19). Additionally, it can be observed that the polynomial
model itself, i.e., the α = 1 curve, is probably not the best for prediction. From this point of
view, we would prefer to choose the model trained for α= 0.2 or α= 0.1, since these models
exhibit a lower degree of oscillation.

Fixed prior parameter

In the second part of this experiment, we train our polynomial models for the fixed value
of τ = 100, but this time with 6 different values of the order of the polynomial, concretely,
s ´ 1 P {2,4,5,6,8,10}. The goal of this part is to observe how the contrastive part of Equa-
tion (3.22) affects the polynomial regression for different values of s ´ 1. As can be seen in
Figures 3.1, 3.2, and 3.3, for small s ´1, such as s ´1 = 2, the term log qθ

(
x|y)

does not have a
crucial influence. However, we get a considerable difference between models for higher or-
ders of the polynomial. Furthermore, the curve forα= 0 prefers not to oscillate. It seems that
due to the low complexity of the model, the generative component is not important. How-
ever, with increasing complexity, its importance increases. From this point of view, we can
say that we have managed to improve the polynomial model with the help of the generative
component.
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Figure 3.1: Sensitivity of the polynomial model to the order of the polynomial s ´ 1, specifi-
cally s ´ 1 P {2,4}.

Figure 3.2: Sensitivity of the polynomial model to the order of the polynomial s ´ 1, specifi-
cally s ´ 1 P {5,6}.

Figure 3.3: Sensitivity of the polynomial model to the order of the polynomial s ´ 1, specifi-
cally s ´ 1 P {8,10}.
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Figure 3.4: Sensitivity of the polynomial model to the parameter τ, specifically τ P {0.1,1}.
+

Figure 3.5: Sensitivity of the polynomial model to the parameter τ, specifically τ P {10,100}.

Figure 3.6: Sensitivity of the polynomial model to the parameter τ, specifically τ P
{
103,104

}
.
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3.4 Hybrid VAE

In section 2.3.2, we derived SSVAE, whose predictor can fill in missing data labels. To
achieve this, we constructed two lower bounds (2.29) and (2.30). We can slightly reinterpret
this methodology for a fully supervised data set, where the predictor is used to predict labels
for new data. Based on [15], we can split this approach into two models. The first model
optimizes the predictor and generator separately, while the second model has the predictor
and generator linked. This ensures that optimization is performed jointly.

Separate model (SM): For training of SM, we use only the lower bound ´J
(
θ,φ; x , y

)
and

standard cross–entropy loss. The total loss that is minimized is then

JSM

(
θ,φ

)= ÿ

(x ,y)„p̃l (x ,y)
J
(
θ,φ; x , y

)+Ep̃l (x ,y)
[
´ log qφ

(
y |x)]

. (3.24)

Observe that the lower bound (2.29) does not contain the predictor qφ
(
y |x)

and the opti-
mization of these two expressions proceeds independently of each other.

Hybrid model (HM): The second phase deals with the inclusion of the predictor qφ
(
y |x)

in both summands. To do this, we use ´U
(
θ,φ; x

)
, which does not participate in SM. Since

we operate with a completely supervised data set, we cannot sum over x from an unlabeled
subset. However, the summation is performed over x and y from the labeled data set. We get
the modified version of Equation (2.31), that is

J̃νH M

(
θ,φ

)= ÿ

(x ,y)„p̃l (x ,y)

(
J
(
θ,φ; x , y

)+U
(
θ,φ; x , y

))+ν ¨Ep̃l (x ,y)
[
´ log qφ

(
y |x)]

= J̃H M
(
θ,φ

)+ν ¨Ep̃l (x ,y)
[
´ log qφ

(
y |x)]

.

(3.25)

From Equation (2.30) we know that ´U
(
θ,φ; x

)
contains the predictor qφ

(
y |x)

. Unlike (3.24),
the optimization of (3.25) trains the predictor that is linked to the generator. A very impor-
tant factor here is the hyper–parameter ν, which has a fatal influence on the correct training
of the predictor.

3.4.1 Toy problem

In the following experiment, we clarify this method, concretize the individual compo-
nents, and simplify it for our purposes. The objective here is to compare the performance
of a predictor of HM with that of a separately trained predictor in SM. In the first phase, we
train the SM and compute its AUC–ROC. In the second phase, we will test whether for some
values of the hyper–parameter ν the predictor of HM achieves a higher AUC–ROC.

Training and testing data are synthetically generated as 2–moons, i.e., two interleaving
half circles. Therefore, it is a type of the well–known N–Moons [40], often used to visual-
ize clustering and classification algorithms. Note that this data set is completely supervised
with 2 balanced classes, which means that the predictor is used to predict the class for new
data, not to fill in missing labels. We already mentioned the meaningfulness of the term
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log pθ(y), which occurs in both bounds (2.29) and (2.30). Both classes are equally repre-
sented in the data set, hence we do not take this term into account, and it is not included.

Figure 3.7: AUC–ROC for both SM and HM.

In addition, we can use and adjust the
settings from the standard VAE experiment
(2.28), since ´J

(
θ,φ; x , y

)
actually corre-

sponds to ´L
(
θ,φ; x

)
. It only needs to be

extended with class labels y so that the in-
put layer accepts both x and y and genera-
tor fθ accepts both z and y . Specifically, fθ
consists of 2 dense layers with SELU non–
linearity and identity, µ and σ are simple
dense layers with SELU non–linearity, and
finally the predictor qφ

(
y |x)

is stacked with
2 dense layers with SELU and Softmax non–
linearity as the output layer. Note that ob-
servations are first encoded using a single
dense layer with stereotypical SELU non–
linearity.

First, we train the SM model and compute the AUC–ROCSM on the predictor. The next
step is to find the values of ν where the AUC–ROCH M for the predictor of HM is higher than
the AUC–ROCH M . Figure 3.7 illustrates the results. Note that both models were trained by
Adam with default values. The HM predictor performs better than the SM predictor for ap-
proximately ν > 9000. Concretely, AUC–ROCH M (ν= 10500) = 96.68% and for SM model we
get AUC–ROCSM = 95.48%. This improvement is 1.2% compared to SM, and thus we can say
that our hybrid model is fully functional. An interesting finding is also the fact that for very

(a) Generated samples of SM. (b) Generated samples of HM, ν= 10000.

Figure 3.8: Comparison of the generated samples of the SM and HM models. The train data
are identical in both cases.

small values of ν the AUC–ROCH M drops rapidly. Therefore, care should be taken to ensure
that the model is set up correctly. On the other hand, for higher values of ν, the AUC–ROCH M

asymptotically approaches the AUC–ROCSM .
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The question remains as to how well the generators are trained. If the predictors are
trained well but the generators work badly, the whole method would be useless. We compare
the newly generated data for both SM and HM with the training data in Figure 3.8. As can
be seen, the samples generated for both classes correspond to the training samples for both
models.
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4
Multiple Instance Learning

4.1 Fundamentals

The term multi–instance learning (MIL) (or multiple instance learning) originates from
the pioneer work [8], nevertheless the authors of [11] proposed the following nomenclature,
which will be reviewed and used gladly in our work.

In standard machine learning (ML) problems, each sample is represented by a fixed vec-
tor x , however, in MIL it is dealt with samples which are represented by a set of vectors. These
vectors are called instances and come from an instance space X , for example RD . The sets of
these instances are called bags and come from the bag space B =PF (X ), where PF (X ) de-
notes all finite subsets of X . With this in mind, we can easily write any bag as b = {

x PX
}

xPb .
Instances in the bag meet the standard i.i.d. assumption. Each bag b can be arbitrarily large
or empty, thus the size of the bag is defined in the form |b| P N0. There may exist intrinsic
labeling of instances, but we are at this point only interested in labeling at the bag levels.
Bag labels come from a finite set C. Unlike ML, where a predictor is learned in the form
fθ : RD Ñ C, what we want in MIL is to learn a predictor in the form fθ : B (X ) Ñ C. Note
that a predictor can also be rewritten in the form fθ ({x}xPb). We consider the supervised set-
ting in which each sample of the data set is assigned a label. We can denote the available
data by the notation

D‹ =
{(

bi , yi
)

PBˆC | i P
{
1,2, . . . , |D‹|}}, (4.1)

where |D‹| apparently denotes the size of D‹. The difference between standard ML and MIL
is visualized graphically in Figure 4.1. Note that MIL problems fall into the category of binary
classification, therefore C = {´1,+1}.
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observation predicition

(a) Standard machine learning

observation predicition
...

(b) Multiple instance learning

Figure 4.1: The difference between standard ML and MIL. Standard ML is special case of MIL
with |b| = 1.

4.2 Embedded–space paradigm

Very elegant solution to deal with samples on the level of bags provides an embedded–
space paradigm. This paradigm defines a vector space for the representation of bags and
specifies a mapping from each bag b P B to this space. It is a crucial component in which
most MIL methods differ. Assume that the target vector space is RM . Let the overall embed-
dingΛ : B ÑRM be given by

Λ(b) = (
λ1(b),λ2(b), . . . ,λM (b)

)
= (

λ1 ({x}xPb) ,λ2 ({x}xPb) , . . . ,λM ({x}xPb)
)

PRM ,
(4.2)

where λi : B ÑR, i P {1,2 . . . , M } is a partial mapping or individual projection. Mappings λi

are instrumental in obtaining and aggregating the appropriate information on the level of in-
stances. They can be defined by some instance transformation k : X ÑR and an aggregation
function (or pooling) g : PF

(
R|b|) ÑR of the form

λi (b) = g (k {x}xPb) . (4.3)

The most widely used aggregation functions are minimum, maximum, or mean value. On
the resulting embedded representation of bag samples, any standard machine learning al-
gorithm can be applied, that is, training a bag-level classifier f B

θ
:RM Ñ C using an adjusted

data set
D‹

ES =
{(
Λ(bi ), yi

)
P RM

ˆC | i P
{
1,2, . . . , |D‹|}}. (4.4)

Compare (4.4) and (4.1). However, such simple definitions of embedding do not lead to good
performance in practice. Consider two bags; these bags may have a similar mean value of all
of their instances despite these instances having a completely different structure. It is nec-
essary to proceed to a different embedding solution based on more complex rules. These
methods first pre–process the instances and extract the relevant patterns from them in an
unsupervised way (no labeling of instances is required). Embedding is then applied to these
patterns. The collection of abstract patterns analyzed in the training set is written asΛΩ (b),
where the parametersΩ are usually referred to as vocabulary. These parameters can be con-
sidered in both transformation k and aggregation g . For example, the function k is typically
implemented as a distance measure between an instance and the pattern.

In summary, three components are required to solve MIL problems, that is, a function
that operates at the level of instances k, an aggregation g , and a bag-level classifier f B

θ
. The

first two components form the embedding ΛΩ (b), where the parameters Ω are optimized
together with all other parametersθ in the model. An example of such a pipeline is illustrated
in Figure 4.2.
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Figure 4.2: MIL diagram, where b is the input bag, fθ is the classifier applied on the resulting
embedded space representationΛΩ (b) of the bag.

4.3 Training

The authors of [11] proposed a versatile unified framework called HMill (Hierarchical
multi–instance learning library) for the definition and training of the models and even im-
plemented this functionality in the Julia programming language. Furthermore, the frame-
work was published as an open–source project entitled Mill.jl under the MIT license [21].

Standard MIL classifier: For our purposes, we use a rather simple NN architecture. In-
stances are first passed through a single dense layer with ξ P N neurons and tanh non–
linearity, then mean and maximum aggregations are applied simultaneously (in some cases,
maximum is better than mean, and thus it is better to use both). It is followed by another
dense layer with ξ neurons (with a standard value of ξ= 10) and tanh non–linearity and the
output linear dense layer with 2 neurons (since we classify into two classes and use one–hot
encoding). Finally, the cross–entropy (2.3) is used as a loss function. Therefore, the training
process is similar to a common classification problem. For actual optimization, we stick to
the Adam optimizer with the default values analogously to all previous experiments.

4.3.1 Cross–validation

For the MIL testing, we have four data sets available, namely Musk1, Musk2, Tiger, and
Fox. These data sets come from the UCI database and are specially modified for modeling
with set data. All of them will be used to assess the performance of the MIL model.

4.3.1.1 Setup and results

In this experiment, the data sets are split 100 times randomly into two sets in advance,
the train and the test sets, with 80% of the observations being in train set and 20% of the
observations belonging to the test set. For future simplification, let a number of random
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splits be denoted by r , and thus we have r = 100. Note that r is not a number of folds. We fit
the model in the train set and then evaluate the prediction error in both the train and test set
by cross–entropy. The objective here is to plot the dependence of the prediction error on the
complexity of the model. A smaller number of random splits, such as r P {25,50}, was tested,

(a) CV for data set Musk1. (b) CV for data set Musk2.

(c) CV for data set Fox. (d) CV for data set Tiger.

Figure 4.3: Evaluation of prediction error with the use of training data and testing data on
MIL data sets Musk1, Musk2, Fox, and Tiger.

however, the results were too noisy. For this reason, it is necessary to select a higher value
of r , although the experiment becomes noticeably expensive to compute.

Model Complexity: The suitable candidate for a model complexity seems to be number of
neurons ξ in the first and the penultimate layer of the MIL model.

Prediction Error: For prediction error, we simply use the standard cross–entropy loss as
outlined at the beginning of this section. There is no need for any trickier objective. To
simplify the notation, let the total cross–entropy loss evaluated in the kth random split for
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fixed ξ be denoted by CEk
(
θ̂,ξ

)
, then the estimated prediction error is given by

err(ξ) = 1

r

r
ÿ

k=1

CEk
(
θ̂;ξ

)
. (4.5)

To summarize, we fit 100 models for selected ξ on train data and evaluate the prediction

argminerr(ξ) minerr(ξ) err(ξ= 10)

Musk1 2 0.70 0.97

Musk2 3 0.57 0.81

Fox 1 0.89 2.13

Tiger 1 0.56 0.82

Table 4.1: Results of CV evaluated on the testing
data.

error for all fitted models on test data,
then the mean value is taken over all
splits. This process is repeated for
each ξ P {1,2,3 . . . ,20}, giving 2000
models to train in total.

As can be seen in Figure 4.3, the re-
sults obtained are expected. The pre-
diction error evaluated on the train-
ing data (red curve) for the higher
complexity of the model approaches
zero. However, testing data (blue
curve) give oscillating curves with an

increasing trend (with a little exception of Musk1), therefore, model selection is necessary.
This applies to each data set. Furthermore, Table 4.1 numerically summarizes the results
evaluated in the test data. The first column of the table represents the best choice of model
complexity ξ for the given MIL model.

4.4 Application of HDGM to the MIL problems

In the previous part, the CV experiment was performed with the expected results. How-
ever, the calculated prediction error on the test data is quite high. The question is whether
there is any method to reduce the prediction error of the MIL model. The name of the section
suggests that it will be attempted using the HDGM.

4.4.1 Setup and results

On the initiative of reducing the prediction error, it is proposed to train an MIL model that
is obtained by minimizing the hybrid loss function. Since the discriminative part is already
used in the HMill framework, the only task is to add the generative part. At this point, we do
not operate with an enormous number of data points. The data sets we use have hundreds
of bags at maximum, and thus we can normalize the generative term over all bags without
approximation. Then the MIL model remains the same as in the previous experiment; the
only difference is in the loss function. Once again, we split this experiment into two parts.

Dependence on hyper–parameterα

In the first part of this experiment, we train the models in relation to the hyper–parameterα.
For this setup, we need to choose a fixed ξ. Since the authors of [11] usually set ξ= 10, we use
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this value as well. For prediction error evaluation, standard cross–entropy is used as in the
previous experiment. Once again, the number of splits is r = 100 and the weights are identi-
cal to the polynomial regression example, that is α P {0.0,0.1,0.2, . . . ,1.0}. Recall that for the
value ofα= 1, Equation (3.13) is reduced to the standard cross–entropy. For further simplifi-
cation, let the total hybrid loss calculated on the kth split be written as HDMGk (θ̂;ξ= 10,α).
Therefore, the calculated prediction error can be written in the form

err(α) = 1

r

r
ÿ

k=1

HDMGk (θ̂;ξ= 10,α). (4.6)

We expect to see a curve in the shape of a bowl that has its global minimum at a pointα= 0.5
or at least somewhere near. The results of the first part are represented in Figure 4.4 and

(a) HDGM for dataset Musk1. (b) HDGM for dataset Musk2.

(c) HDGM for dataset Fox. (d) HDGM for dataset Tiger.

Figure 4.4: Dependence of the prediction error err(α) on the hyper–parameter α.

Table 4.2, where it can be seen that the addition of the generative term to the MIL loss
function decreased the prediction error evaluated in all data sets. This improvement is con-
siderable in Musk1 and Musk2 data sets, where a nice bowl can be observed.
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Dataset argminerr(α) minerr(α)

Musk1 0.4 0.68

Musk2 0.2 0.54

Fox 0.7 1.89

Tiger 0.4 0.74

Table 4.2: Prediction error summary for the
HDGM loss in case of ξ= 10.

In the Fox and Tiger data sets, the anal-
ysis does not reveal any significant differ-
ences between hybrid and discriminative
training. Overall, these results suggest that
the HDGM approach works moderately and
that regularization in the form of a very
simple generative term may improve the
predictions. Unfortunately, the choice of
α = 0.5 was not confirmed as the best in
our experiment; see the first column of Ta-
ble 4.2.

Dependence on model complexity ξ

In the second part, the evaluation of the prediction error is approached using the com-
plexity of the model. We fix α = 0.5 and for model complexity, we select ξ P {1,2,3 . . . ,20}.
Similarly to the above, let the total hybrid loss calculated on the kth split of the data be de-
noted by HDMGk (θ̂; ξ, α = 0.5). Finally, the estimated prediction error in this case is defined
by

err(ξ) = 1

r

r
ÿ

k=1

HDMGk (θ̂;ξ,α= 0.5). (4.7)

In other words, the setup is the same as in 4.3.1, therefore, the results obtained will be added
to Figure 4.3 and Table 4.1 for convenient comparison. Since we are interested in predictions
for test data, the curves for train data will be omitted in this setting. The results are shown in
Figure 4.5 and Table 4.3.

Discriminative part only HDGM; α= 0.5

argminerr(ξ) minerr(ξ) err(ξ= 10) argminerr(ξ) err(ξ) err(ξ= 10)

Musk1 2 0.70 0.97 6 0.64 0.69

Musk2 3 0.57 0.81 6 0.55 0.66

Fox 1 0.89 2.13 1 0.95 1.96

Tiger 1 0.56 0.82 2 0.58 0.80

Table 4.3: Comparison of prediction errors for HDGM α = 0.5 and discriminative part only.
Pay special attention to the last column err(ξ= 10) in each approach.

Here is a situation very similar to the previous part of this experiment. The improvement
in the prediction error for HDGM (green curve) is quite noticeable in the first two data sets,
Musk1 and Musk2, while Fox and Tiger do not look so convincing. Furthermore, the number
of random splits r = 100 is still needed to remove the noise from the prediction error. In
general, it can be said that the HDGM approach leads to a small decrease in prediction error.
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(a) HDGM: α= 0.5 vs Discriminative; Musk1. (b) HDGM: α= 0.5 vs Discriminative; Musk2.

(c) HDGM: α= 0.5 vs Discriminative; Fox. (d) HDGM: α= 0.5 vs Discriminative; Tiger.

Figure 4.5: Comparison of prediction errors for HDGM and standard discriminative training.

4.4.2 Discussion

D HDGM

Musk1 81.40˘12.11 % 83.89 ˘11.13%

Musk2 79.77˘8.96% 82.78 ˘7.38%

Tiger 91.22 ˘2.34% 90.25˘2.80%

Fox 54.43 ˘3.77% 56.22˘6.18%

Table 4.4: Average AUCs and st. deviations
of individual data sets for both approaches
with r = 50.

In ongoing experiments, we tested the pos-
sibility of improving the training of the MIL
model using HDGM. The prediction error of
these models was slightly reduced. However,
prediction error is not a commonly used met-
ric to measure the performance of a prediction
model. Common tools are the ROC or PR curve
and the corresponding AUC, as outlined in Sec-
tion 1.3.1. However, the previous analysis re-
vealed a large amount of noise in the results,
and therefore it was necessary to average the
prediction error. There is no point in plotting
individual ROC or PR curves, but to average the AUC values of the model over r runs. Note
that all data sets are fairly balanced in classes, and thus we employ AUC–ROC.

Due to the CV results 4.3, we select such model complexity, where the model gives the
best performance (for both approaches, D and HDGM with α= 0.5) and calculate the mean
of AUC–ROC over r = 50 training runs. Table 4.4 collects the results achieved with great cor-
respondance to the previous results. Slight improvement can be observed in Musk1, Musk2,
and Fox. However, the increase in AUC for Tiger has not been achieved. Note that for Musk1
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and Musk2 there is a rather high standard deviation. This can be explained by the small
number of bags in these data sets.

4.5 Hybrid VAE for MIL

We will use a common assumption that instances x in the bag b are independent, iden-
tically drawn samples from a distribution p f (x). Then, the likelihood of the bag is governed
by the point process distribution [47], that is

p(b) = pc (b)
|b|
ź

j=1

p f (x j )

where pc (b) is probability of cardinality of the bag. Due to the independence assumption,
the maximum likelihood estimate of unknown parameter of p f (x) is identical to its estima-
tion from a collection of instances from all bags [47]. Analogous result holds for the ELBO
and thus the VAE of the instances can be trained from all instances. In the case of supervised
VAE, the label associated with the instance is that of the bag. Implementation of the hybrid
VAE is thus composed of two parts:

1. the generative model (VAE) is trained on the instances from all bags,

2. the discriminative model is trained using the standard MIL classifier.

Both of these objects have already been derived. The only thing left to do is to put them
together using (3.25), replacing the classifier qφ

(
y |x)

with the standard MIL classifier. Note
that such an arrangement means that the two losses combined in (3.25) may have very dif-
ferent scales, and the challenge is to tune the proportionality constant ν.

4.5.1 Setup and results

We now proceed to a more specific description of the individual parts of the hybrid VAE
model for MIL.

Standard MIL classifier: Standard MIL classifier completely corresponds to the classifier
described in Section 4.3, with ξ= 10.

Hybrid VAE: The hybrid VAE model is similar to that of 3.4.1. It consists of an encoder
containing single dense layer with tanh non–linearity, then µ and σ are also single dense
layers with tanh non–linearity and fθ is stacked with 2 dense layers with tanh non–linearity
and identity as the output. This setting is subtly shallower than the previous hybrid VAE
setting. Additionally, we need to switch SELU for tanh to suppress the outcoming values, as
we expect an enormous scale of this loss.
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In this experiment, we want to plot the dependence of AUC–ROC on the hyper–parameterν
similar to Figure 3.7, in order to find the best option for ν. Unfortunately, during the training
of this model, the influence of stochasticity reappears again, and we get different results for
different initializations. We reduce the effect of stochasticity by averaging over r = 10 runs.
To balance both losses in (3.25), the value of ν= 1010 is approximately needed. Therefore, we
start with ν= 1.25 ¨ 109 and proceed by doubling this value. The following Table 4.5 summa-
rizes the results.

Musk1 Musk2 Fox Tiger

ν AUC[%] AUC[%] AUC[%] AUC[%]

1.25 ¨ 109 92.46˘9.51 89.01 ˘ 7.47 65.98˘2.10 82.14˘1.89

2.50 ¨ 109 83.24˘12.54 92.08˘8.22 63.86˘4.25 80.96˘1.86

5.00 ¨ 109 88.18˘9.37 94.89˘4.21 66.11˘5.36 81.51˘2.46

1.00 ¨ 1010 90.78˘9.45 92.97˘5.23 63.19˘4.24 80.60˘1.74

2.00 ¨ 1010 91.16˘5.34 89.01˘8.14 63.98˘3.06 82.99 ˘2.14

4.00 ¨ 1010 87.99˘9.39 87.08˘10.93 64.54˘3.77 82.70˘2.34

8.00 ¨ 1010 90.91˘8.23 93.80˘4.46 64.56˘4.73 81.44˘2.15

1.60 ¨ 1011 91.04˘8.71 95.47˘5.84 63.70˘5.11 81.73˘2.23

3.20 ¨ 1011 85.65˘10.33 92.19˘5.88 65.61˘3.81 81.99˘1.71

6.40 ¨ 1011 90.71˘4.90 83.59˘13.59 66.14˘4.16 81.64˘1.58

Table 4.5: Average AUCs and st. deviations of individual data sets for hybrid VAE over r = 10
runs.

Apparently, finding the optimal value for ν is very difficult, as the results behave very
unpredictably 4.6. Hybrid VAE for MIL problems does not follow the trend of 3.7 as we had
hoped. Compared to a purely discriminative approach 4.4, noticeably higher AUC values
were obtained for Musk1 and Musk2. This indicates the great potential of this method and
confirms its functionality. A slight improvement can also be seen on the Fox, but on the
Tiger there is a significant deterioration. Unfortunately, standard deviations are still very
high, especially for Musk1 and Musk2.

In general, we can say that, compared to standard discriminative training, there has been
a considerable improvement.

4.5.2 Discussion

Let us try in this discussion to dissect the possible causes of high standard deviations.
The most probable variant seems to be the excessive complexity of our hybrid VAE model.
There are only a few layers, but these layers are, in fact, dense layers. This means that there
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(a) Average AUC of Hybrid VAE for Musk1. (b) Average AUC of Hybrid VAE for Musk2.

(c) Average AUC of Hybrid VAE for Fox. (d) Average AUC of Hybrid VAE for Tiger.

Figure 4.6: Comparison of the dependencies of the average AUC on logν with st. deviation
for hybrid VAE.

is a large number of parameters to train, and thus any type of pruning could improve the
performance of the model.

Another possible cause is the small amount of data. We have 4 data sets, but they are not
very large. Each of them has hundreds of bags and a few thousand instances at maximum.
In addition, these data are also divided into training and testing sets, making the data more
scarce.

There are, of course, other methods for dealing with high standard deviation, which to-
gether with the two already mentioned, could be the basis for further research.
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Conclusion

The aim of this thesis was to provide an insight into the hybrid training of set data and
compare the properties with the discriminative training of set data. In total, two hybrid train-
ing options were presented and experimentally tested on real data.

Before the actual application of these methods, we were concerned with discriminative
and generative modeling separately. We summarized the principles of discriminative learn-
ing in classification problems and revealed its connection with KL distance. Generative mod-
eling was primarily dealing with VAE, where individual theoretical aspects were explained
thoroughly. The important component for hybrid modeling is not the vanilla VAE, but its
extended version, called SSVAE, which turns out to be the key for our purposes. In addition,
part of the generative modeling was noise–contrastive estimation, which was presented in
a short overview. Once the technicalities of these approaches have been resolved, we per-
formed simple experiments to obtain a full clarification of these methods. The next research
objective was hybrid modeling. The first method was derived on the basis of energy–based
models and contrastive learning, where the standard cross–entropy loss is extended by the
contrastive loss to produce an advanced, hybrid loss. Thus, models are consequently trained
using this hybrid loss. The second method is the hybrid VAE, which we have modified on
the basis of the SSVAE. Since SSVAE is a semi–supervised method, the modification mainly
concerned the conversion to a fully supervised form, which was experimentally verified on
simple synthetic 2–Moons data. We call this modification hybrid VAE. The continuation of
this thesis is about the novel machine learning paradigm called multiple instance learning,
which copes with set data. We introduced basic concepts and principles such as embedded–
space and its way of training.

Using the Mill.jl library, we tested the standard discriminative learning of the MIL model
by cross–validation and AUC. There was a large amount of noise in the results, and it was nec-
essary to compare the averages. Then, we applied a hybrid approach based on constrative
learning. According to the averages of prediction errors and AUCs, there is a slight improve-
ment, but unfortunately standard deviations are too high, and therefore we cannot claim this
improvement to be that significant. Even in the second method, the hybrid VAE, we encoun-
tered considerable noise in the results. On this impulse, we had to average the resulting AUCs
over more training runs. Furthermore, we trained the model with different values of pro-
portionality hyper–parameter in order to find the best setting. Due to this, an initially very
simple task became very expensive to compute. The best setting for the hyper–parameter
could not be found, however, three of the four data sets showed a significant increase in AUC
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compared to the standard MIL model. This achievement indicates the great potential of this
approach, which can be further researched.

In general, we have been able to improve the standard discriminative training of set data
using the two hybrid methods presented.

68



Bibliography

[1] D. Yu, L. Deng, Automatic Speech Recognition. Berlin: Springer, 2016.

[2] Y. Zhang, Progress and challenges in protein structure prediction. Current opinion in
structural biology, 2008, 18.3: 342-348.

[3] B. Kuhlman, P. Bradley, Advances in protein structure prediction and design. Nature Re-
views Molecular Cell Biology, 2019, 20.11: 681-697.

[4] T. Pevny, P. Somol, Discriminative models for multi-instance problems with tree structure.
In ’Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security’, 2016,
83-91.

[5] T. Pevny, M. Grill, M. Rehak, Reducing false positives of network anomaly detection by
local adaptive multivariate smoothing. Journal of Computer and System Sciences 83.1,
2017, 43-57.

[6] J. Stiborek, T. Pevny, M. Rehak, Multiple instance learning for malware classification. Ex-
pert Systems with Applications 93, 2018, 346-357.

[7] G. Pang, et al., Deep learning for anomaly detection: A review. ACM Computing Surveys
(CSUR), 2021, 54.2: 1-38.

[8] T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez, Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence, 1997, 89.1-2: 31-71.

[9] J. Wu, S. Pan, X. Zhu, C. Zhang, X. Wu, Multi-instance learning with discriminative bag
mapping. IEEE Transactions on Knowledge and Data Engineering, 30(6), 2018, 1065-
1080.

[10] S. J. Yang, Y. Jiang, Z. H. Zhou, Multi-instance multi-label learning with weak label.
In ’Proceedings of the Twenty-Third international joint conference on Artificial Intelli-
gence’, 2013. p. 1862-1868.

[11] S. Mandlik, Mapping the Internet: Modelling Entity Interactions in Complex Heteroge-
neous Networks. arXiv preprint arXiv:2104.09650.

[12] P. Khosla, et al., Supervised contrastive learning. Advances in Neural Information Pro-
cessing Systems, 2020, 33: 18661-18673.

69



[13] A. v. d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[14] H. Liu, P. Abbeel, Hybrid discriminative-generative training via contrastive learning.
arXiv preprint arXiv:2007.09070, 2020.

[15] B. Paige, et al., Learning disentangled representations with semi-supervised deep gener-
ative models. Advances in neural information processing systems, 2017, 30.

[16] Y. Li, et al., Disentangled variational auto-encoder for semi-supervised learning. Infor-
mation Sciences, 2019, 482: 73-85.

[17] W. Qian, F. Lauri, F. Gechter, Supervised and semi-supervised deep probabilistic models
for indoor positioning problems. Neurocomputing, 2021, 435: 228-238.

[18] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] C. P. Burges, I. Higgins, et al., Understanding disentangling in β-VAE arXiv preprint
arXiv:1804.03599, 2018.

[20] J.Bezanson, et al.,A fast dynamic language for technical computing. ArXiv12095145,
2012.

[21] T. Pevny, S. Mandlik, Mill.jl framework: a flexible library for (hierarchical) multi-
instance learning [on–line] Available from: https://github.com/CTUAvastLab/Mill.
jl. Accessed 30 April 2020.

[22] S. Mandlik, M. Racinsky, V. Lisy, T. Pevny, Mill. jl and JsonGrinder. jl: automated
differentiable feature extraction for learning from raw JSON data. arXiv preprint
arXiv:2105.09107, 2021.

[23] M. Jordan, A. Ng,On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes. Advances in neural information processing systems, 2001,
14.

[24] M. Talabis, R. McPherson, I. Miyamoto, J. Martin and D.Kaye, Information Security An-
alytics. Syngress, 2015.

[25] S.-S. Shai, B.-D. Shai, Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[26] W. Gratwohl, K. C. Wang, J. H. Jacobsen, Your classifier is secretly an energy based model
and you should treat it like one. arXiv preprint arXiv:1912.03263, 2019.

[27] Y. LeCun, S. Chopra, R.Hadsell, et al., A tutorial on energy-based learning. Predicting
structured data, 2006, 1.0.

[28] Y. Song, D. P. Kingma, How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

70

https://github.com/CTUAvastLab/Mill.jl
https://github.com/CTUAvastLab/Mill.jl


[29] J. Kelly, R. Zemel, W. Grathwohl, Directly Training Joint Energy-Based Models for Con-
ditional Synthesis and Calibrated Prediction of Multi-Attribute Data. arXiv preprint
arXiv:2108.04227, 2021.

[30] C. M. Bishop, N. M. Nasrabadi, Pattern recognition and machine learning. New York:
Springer, 2006.

[31] V. Smidl, The Variational Bayes Approach in Signal procesing. PhD Thesis. Trinity Col-
lege Dublin. 2004.

[32] S. K. Ng, T. Krishnan, G. J. McLachlan, Handbook of computional statistics. The EM al-
gorithm. Springer, Berlin, Heidelberg. 2012, 139-172.

[33] H. Jeffrey, An invariant form for the prior probability in estimation problems. In ’Pro-
ceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences’,
1946, 1–9.

[34] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning. New York:
Springer, 2009.

[35] D. Commenges, Information Theory and Statistics: an overview. ArXiv preprint
arXiv:1511.00860, 2015, 1–22.

[36] L. Mao, Cross Entropy, KL Divergence, and Maximum Likelihood Es-
timation. [on–line] Available from: https://leimao.github.io/blog/
Cross-Entropy-KL-Divergence-MLE/. Accessed 30 April 2020.

[37] P. D. Kingma, J. Ba A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[38] G. W. Gundersen: The Reparameterization Trick. [on–line] Available from: https://
gregorygundersen.com/blog/2018/04/29/reparameterization/. Accessed 30 April
2020.

[39] J. Brownlee, How to Handle Big-p, Little-n (p » n) in Machine Learning.
(2020). [on–line]. Available from: https://machinelearningmastery.com/
how-to-handle-big-p-little-n-p-n-in-machine-learning/. Accessed 30 April
2020.

[40] F. Pedregosa, G. Varoquaux, et al. Scikit-learn: Machine Learning in Python. [on–line]
Available from: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_moons.html. Accessed 30 April 2020.

[41] A. Krizhevsky, et al., Learning multiple layers of features from tiny images. 2009

[42] J. Bures, Generativní modely dat popsaných stromovu strukturou.. Bachelor’s Thesis.
Czech Technical University in Prague. 2019.

71

https://leimao.github.io/blog/Cross-Entropy-KL-Divergence-MLE/
https://leimao.github.io/blog/Cross-Entropy-KL-Divergence-MLE/
https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://machinelearningmastery.com/how-to-handle-big-p-little-n-p-n-in-machine-learning/
https://machinelearningmastery.com/how-to-handle-big-p-little-n-p-n-in-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html


[43] M. Zhuang, M. Collins, Noise contrastive estimation and negative sampling for con-
ditional models: Consistency and statistical efficiency. arXiv preprint arXiv:1809.01812,
2018.

[44] M. Gutmann, A. Hyvärinen, Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In ’Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics’, JMLR Workshop and Conference Proceed-
ings, 2010, 297-304.

[45] D. A. Levin, Y. Peres, Markov chains and mixing times. American Mathematical Soc.,
2017

[46] J. Davis, M. Goadrich, The relationship between Precision-Recall and ROC curves. In pro-
ceedings of the 23rd international conference on Machine learning. 2006. 233-240.

[47] B. N. Vo et. al, Model-based learning for point pattern data. Pattern Recognition, 2018,
84: 136-151.

72



A
Computional formulas

A.1 Solution of DKL

(
N

(
z ;µ,σ2IP

)∥N (
z ;0, IP

))
In the VAE section, the ELBO (2.16) is derived and subsequently optimized. One of the

ELBO expressions is the KL distance mentioned above. For two multivariate Gaussian distri-
butions, we have a KL distance analytical solution. The complete calculation is given here.
First, recall that the PDF for a multivariate Gaussian distribution inRP with meanµ PRP and
covariance matrix Σ PRPˆP is defined as

N
(
z ;µ,Σ

)= 1
a

(2π)P detΣ
exp

(
´

1

2

(
z ´µ

)J
Σ´1 (

z ´µ
))

.
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Then, the KL distance for two different multivariate Gaussian distributions can be computed
as

DKL
(
N

(
z ;µ1,Σ1

)∥N (
z ;µ2,Σ2

))= EN (µ1,Σ1)
[
logN

(
µ1,Σ1

)
´ logN

(
µ2,Σ2

)]
= 1

2
EN (µ1,Σ1)

[
´ logdetΣ1 ´

(
z ´µ1

)J
Σ´1

1
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z ´µ1

)+ logdetΣ2 +
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)J
Σ´1

1
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z ´µ1
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2
log

detΣ2

detΣ1
+ 1
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where Tr(.) denotes the trace of a matrix. Finally, substituting µ1 =µ, Σ1 =σ2IP , µ2 = 0 and
Σ2 = IP gives

DKL
(
N

(
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)∥N (
z ;0, IP
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2
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log
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A.2 Derivation of Epθ(x) [´∇θEθ (x)]

In the third chapter, we introduced EBM and its way of training. The necessary step is to
compute the following gradient

∇θ log Z (θ) =∇θ log

ż

exp
(
´Eθ (x)

)
dx

=
(ż

exp
(
´Eθ (x)

)
dx

)´1

∇θ
ż
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´Eθ (x)

)
dx

=
(ż
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(
´Eθ (x)

)
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)´1 ż

∇θ exp
(
´Eθ (x)

)
dx

=
(ż

exp
(
´Eθ (x)
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75


	List of Figures
	List of Tables
	Introduction
	Theoretical Introduction
	Mathematical notation
	Probability theory
	Supervised learning
	Prediction

	Unsupervised learning
	Bayesian inference
	Choice of prior distribution
	Prediction


	Discriminative vs. Generative Models
	Overview
	Discriminative modeling
	Connection to Kullback–Leibler divergence
	One–hot encoding

	Generative modeling
	Variational autoencoder
	Semi-supervised variational autoencoder
	Noise–contrastive estimation


	Hybrid Generative and Discriminative Models
	Energy-based models
	Joint energy models

	Contrastive learning
	Hybrid dicriminative and generative models
	Toy problem - polynomial regression
	Experiment setup and results

	Hybrid VAE
	Toy problem


	Multiple Instance Learning
	Fundamentals
	Embedded–space paradigm
	Training
	Cross–validation

	Application of HDGM to the MIL problems
	Setup and results
	Discussion

	Hybrid VAE for MIL
	Setup and results
	Discussion


	Conclusion
	Bibliography
	Computional formulas
	Solution of DKL (N(bold0mu mumu zzVOzzzz; bold0mu mumu VO,2IP )  N(bold0mu mumu zzVOzzzz; bold0mu mumu 00VO0000,IP ) )
	Derivation of Epbold0mu mumu VO(bold0mu mumu xxVOxxxx)[-bold0mu mumu VOEbold0mu mumu VO(bold0mu mumu xxVOxxxx) ]


