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Abstract. We study the classification of entanglement in tripartite systems by using Bell-type
inequalities and principal basis. By using Bell functions and the generalized three dimensional Pauli
operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully
separable and bi-separable mixed states. By using the correlation tensors in the principal basis
representation of density matrices, we obtain separability criteria for fully separable and bi-separable
2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the
tripartite entanglement.
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1. Introduction
One of the most remarkable features that distinguishes
quantum mechanics from classical mechanics is the
quantum entanglement. Entanglement was first rec-
ognized by EPR [1], with significant progress made
by Bell [2] toward the resolution of the EPR problem.
Since Bell’s work, derivation of new Bell-like inequali-
ties has been one of the important and challenging sub-
jects. CHSH generalized the original Bell inequalities
to a more general case for two observers [3]. In [4] the
authors proposed an estimation of quantum entangle-
ment by measuring the maximum violation of the Bell
inequality without information of the reduced density
matrices. In [5] series of Bell inequalities for multi-
partite states have been presented with sufficient and
necessary conditions to detect certain entanglement.
There have been many important generalizations and
interesting applications of Bell inequalities [6–8]. By
calculating the measures of entanglement and the
quantum violation of the Bell-type inequality, a rela-
tionship between the entanglement measure and the
amount of quantum violation was derived in [9]. How-
ever, for high-dimensional multiple quantum systems
the results for such relationships between the entan-
glement and the nonlocal violation are still far from
being satisfied. In [10], an upper bound on fully entan-
gled fraction for arbitrary dimensional states has been
derived by using the principal basis representation of
density matrices. Based on the norms of correlation
vectors, the authors in [11] presented an approach to
detect entanglement in arbitrary dimensional quan-
tum systems. Separability criteria for both bipartite
and multipartite quantum states was also derived in
terms of the correlation matrices [12].

In this paper by using the Bell function and the
generalized three dimensional Pauli operators, we de-
rive a quantum upper bound for 3 ⊗ 3 ⊗ 3 quantum

systems. We present a classification of entanglement
for triqutrit mixed states by a set of Bell inequalities.
These inequalities can distinguish fully separable and
bi-separable states. Moreover, we propose criteria
to detect classification of entanglement for 2 ⊗ 2 ⊗ 3
mixed states with correlation tensor matrices in the
principal basis representation of density matrices.

2. Entanglement identification
with Bell inequalities

We first consider relations between entanglement and
non-locality for 3 ⊗ 3 ⊗ 3 quantum systems. Consider
three observers who may choose independently be-
tween two dichotomic observables denoted by Ai and
Bi for the i-th observer, i = 1, 2, 3. Let V̂i denote the
measurement operator associated with the variable
Vi ∈ {Ai, Bi} of i-th observer. We choose a complete
set of orthonormal basis vectors |k⟩ to describe an
orthogonal measurement of a given variable Vi. The
measurement outcomes are indicated by a set of eigen-
values 1, λ, λ2, where λ = exp( i2π

3 ) is a primitive third
root of unity. Therefore the measurement operator
can be represented by V̂i =

∑2
k=0 λ

k|k⟩⟨k|. Inspired
by the Bell function (the expected value of Bell oper-
ator) constructed in [13], we introduce the following
Bell operator,

B =
2∑

j=1

1
4(Â1

j
⊗ Â2

j
⊗ Â3

j
+ λjÂ1

j
⊗ B̂2

j
⊗ B̂3

j

+ λjB̂1
j

⊗ Â2
j

⊗ B̂3
j

+ λjB̂1
j

⊗ B̂2
j

⊗ Â3
j
),
(1)

where Âi

j
(B̂i

j
) denotes the j-th power of Âi (B̂i).

Next we construct three Bell operators in terms
of Eq. (1). Consider three dimensional Pauli opera-
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tors [14] X̂ and Ẑ which satisfy

X̂|k⟩ = |k + 1⟩, Ẑ|k⟩ = λk|k⟩, X̂3 = I, Ẑ3 = I,

where I denotes the identity operator. Therefore,
if we replace Âi and B̂i with the following unitary
operators, Â1 = Ẑ, Â2 = λ2X̂Ẑ, Â3 = X̂Ẑ2, B̂1 = Ẑ,
B̂2 = X̂Ẑ2 and B̂3 = λ2X̂Ẑ, we obtain

B1 =
2∑

j=1

1
4 [Ẑj ⊗ (λ2X̂Ẑ)j ⊗ (X̂Ẑ2)j + λjẐj ⊗ (X̂Ẑ2)j

⊗ (λ2X̂Ẑ)j + λjẐj ⊗ (λ2X̂Ẑ)j ⊗ (λ2X̂Ẑ)j

+ λjẐj ⊗ (X̂Ẑ2)j ⊗ (X̂Ẑ2)j ].
(2)

If we choose unitary operators as follows, Â1 = λ2X̂Ẑ,
Â2 = X̂Ẑ2, Â3 = Ẑ, B̂1 = X̂Ẑ2, B̂2 = λ2X̂Ẑ and
B̂3 = Ẑ, we have

B2 =
2∑

j=1

1
4 [(ω2X̂Ẑ)j ⊗ (X̂Ẑ2)j ⊗ Ẑj + λj(λ2X̂Ẑ)j

⊗ (λ2X̂Ẑ)j ⊗ Ẑj) + λj(X̂Ẑ2)j ⊗ (X̂Ẑ2)j

⊗ (Ẑ)j + λj(X̂Ẑ2)j ⊗ (λ2X̂Ẑ)j ⊗ (Ẑ)j ].
(3)

Taking Â1 = λ2X̂Ẑ, Â2 = Ẑ, Â3 = X̂Ẑ2, B̂1 = X̂Ẑ2,
B̂2 = Ẑ and B̂3 = λ2X̂Ẑ, we have

B3 =
2∑

j=1

1
4 [(λ2X̂Ẑ)j ⊗ Ẑj ⊗ (X̂Ẑ2)j + λj(λ2X̂Ẑ)j

⊗ (Ẑ)j ⊗ (λ2X̂Ẑ)j) + λj(X̂Ẑ2)j ⊗ Ẑj

⊗ (λ2X̂Ẑ)j + λj(X̂Ẑ2)j ⊗ Ẑj ⊗ (X̂Ẑ2)j ].
(4)

Concerning the bounds on the mean values |⟨Bi⟩| of
the operators Bi, i = 1, 2, 3, we have the following
conclusions.

Theorem 1. For 3 ⊗ 3 ⊗ 3 mixed states, we have
the inequality, |⟨Bi⟩| ≤ 5

4 , i = 1, 2, 3.
Proof Due to the linear property of the average values,
it is sufficient to consider pure states. Any triqutrit
pure state can be written as,

|ψ⟩ =c1|000⟩ + c2|011⟩ + c3|012⟩ + c4|021⟩ + c5|022⟩
+ c6|101⟩ + c7|102⟩ + c8|110⟩ + c9|111⟩
+ c10|120⟩ + c11|122⟩ + c12|201⟩ + c13|202⟩
+ c14|210⟩ + c15|212⟩ + c16|220⟩ + c17|221⟩
+ c18|222⟩,

(5)

where c5, c11, c13, c15, c16, c17 and c18 are real and non-
negative, |c1| ≥ |ci| for i = 1, 2, . . . , 18, |c9| ≥ |c18|

and
∑18

i=1 |ci|2 = 1. Therefore,

|⟨B1⟩| =|14(−c1c2 + 5c1c5 − c2c5 − c6c10 + 2c7c8

+ 2c9c11 + 2c12c15 + 5c12c16 − c13c14 − c13c17

− 4c14c17 + 5c15c16)|

≤1
8 × 10 ×

18∑
i=1

c2
i

=5
4 .

(6)

Similarly one can prove that |⟨Bi⟩| ≤ 5
4 for i = 2, 3. □

Theorem 2. If a triqutrit mixed state ρ is fully
separable, then |⟨Bi⟩| = 0, i = 1, 2, 3.

The proof is straightforward. Due to the linear
property of the average values, it is sufficient to
consider pure states again. A fully separable pure
state can be written as under suitable bases, |ψ⟩ =
|0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩. Therefore |⟨Bi⟩| = |tr(ρBi)| = 0.

Theorem 3. For bi-separable states ρi|jk under bi-
partition i and jk, i ̸= j ̸= k ∈ {1, 2, 3}, we have

|⟨B1⟩| ≤ 3
4 , |⟨B2⟩| = 0, |⟨B3⟩| = 0,

|⟨B1⟩| = 0, |⟨B2⟩| ≤ 3
4 , |⟨B3⟩| = 0,

|⟨B1⟩| = 0, |⟨B2⟩| = 0, |⟨B3⟩| ≤ 3
4 ,

for ρ1|23, ρ3|12 and ρ2|13, respectively.
Proof It is sufficient to consider pure states only. Every
bi-separable pure state ρ1|23 can be written as via
a suitable choice of bases [15],

|ψ⟩ = |0⟩ ⊗ (c0|00⟩ + c1|11⟩ + c2|22⟩),

where |c0| ≥ |c1| ≥ |c2| and
∑2

i=0 |ci|2 = 1. Therefore,
we have by direct calculation,

|⟨B1⟩| =|14(5c2c0 − c0c1 − c1c2)|

≤1
8(5 × (c2

2 + c2
0) + (c2

0 + c2
1) × (c2

1 + c2
2))

≤3
4 .

It is straightforward to prove similarly, |⟨B2⟩| = 0 and
|⟨B3⟩| = 0. For bi-separable states ρ3|12 and ρ2|13, the
results can be proved in a similar way. □

The above relations given in Theorem 1-3 give rise
to characterization of quantum entanglement based
on the Bell-type violations. If we consider |⟨Bi⟩|, i =
1, 2, 3, to be three coordinates, then all the triqutrit
states are confined in a cube with size 5

4 × 5
4 × 5

4 . The
bi-separable states are confined in a cube with size
3
4 × 3

4 × 3
4 , see Figure 1.

223



H. Zhao, Y.-Q. Liu, Z.-X. Wang, S.-M. Fei Acta Polytechnica

Figure 1. All states lie in the yellow cube, while in
the green cube are bi-separable states.

3. Entanglement classification
under principal basis

Consider the principal basis on d-dimensional Hilbert
space H with computational basis |i⟩, i = 1, 2, ..., d.
Let Eij be the d×d unit matrix with the only nonzero
entry 1 at the position (i, j). Let ω be a fixed d-th
primitive root of unity, the principal basis is given by

Aij =
∑

m∈Zd

ωimEm,m+j , (7)

where ωd = 1, i, j ∈ Zd and Zd is Z modulo d. The
set {Aij} spans the principal Cartan subalgebra of
gl(d). Under the stand inner product (x|y) = tr(xy)
of matrices x and y, the dual basis of the principal
basis {Aij} is {(ωij/d)A−i,−j}, which follows also
from the algebraic property of the principal matrices,
AijAkl = ωjkAi+k,j+l. Namely, A†

i,j = ωijA−i,−j ,
and thus tr(AijA

†
kl) = δikδjld [10].

Next we consider the entanglement of 2 ⊗ 2 ⊗ 3
systems. Let {Aij} and {Bij} be the principal bases
of 2-dimensional and 3-dimensional Hilbert space, re-
spectively. For any quantum state ρ ∈ H2

1 ⊗H2
2 ⊗H3

3 ,
ρ has the principal basis representation:

ρ = 1
12(I2 ⊗ I2 ⊗ I3 +

∑
(i,j)

̸=(0,0)

uijAij ⊗ I2 ⊗ I3

+
∑
(k,l)

̸=(0,0)

vklI2 ⊗ Akl ⊗ I3 +
∑

(s,t)̸=(0,0)

wstI2 ⊗ I2 ⊗ Bst

+
∑

(i,j),(k,l)
̸=(0,0)

xij,klAij ⊗ Akl ⊗ I3 +
∑

(i,j),(s,t)
̸=(0,0)

yij,stAij

⊗ I2 ⊗ Bst +
∑

(k,l),(s,t)
̸=(0,0)

zkl,stI2 ⊗ Akl ⊗ Bst

+
∑

(i,j),(k,l),(s,t)
̸=(0,0)

rij,kl,stAij ⊗ Akl ⊗ Bst),

(8)
where I2 (I3) denotes the two (three) dimensional
identity matrix, uij = tr(ρA†

ij ⊗ I2 ⊗ I3), vkl =

tr(ρI2 ⊗A†
kl ⊗ I3), wst = tr(ρI2 ⊗ I2 ⊗B†

st), xij,kl =
tr(ρA†

ij ⊗A†
kl⊗I3), yij,st = tr(ρA†

ij ⊗I2⊗B†
st), zkl,st =

tr(ρI2 ⊗A†
kl ⊗B†

st) and rij,kl,st = tr(ρA†
ij ⊗A†

kl ⊗B†
st).

Denote T
1|23
1 , T 1|23

2 , T 2|13
1 , T 2|13

2 , T 3|12
1 and T

3|12
2

the matrices with entries given by r01,kl,st, r11,kl,st,
rij,01,st, rij,11,st, rij,kl,10 and rij,kl,20 (i, j, k, l ∈ Z2,
s, t ∈ Z3), respectively. Let ∥A∥tr =

∑
σi = tr

√
AA†

be the trace norm of a matrix A ∈ Rm×n, where σi

are the singular values of the matrix A.
First we note that ∥T 1|23

1 − T
1|23
2 ∥tr is invariant

under local unitary transformations. Denote UAU†

by AU . Suppose ρ′ = ρ(I⊗U2⊗U3) with U2 ∈ U(2)
and U3 ∈ U(3), AU2

ij =
∑

(i′,j′)
̸=(0,0)

mij,i′j′Ai′j′ and BU3
ij =∑

(i′,j′)
̸=(0,0)

nij,i′j′Bi′j′ for some coefficients mij,i′j′ and

nij,i′j′ . The orthogonality of {AU2
ij } and {BU3

ij } re-
quires that

tr(AU2
ij A

U2
kl ) = tr(U2AijA

†
klU

†
2 )

=tr(AijA
†
kl) = 2δikδjl;

tr(BU3
ij B

U3
kl ) = tr(U3BijB

†
klU

†
3 )

=tr(BijB
†
kl) = 3δikδjl.

Hence, we have M = (mij,i′j′) ∈ SU(3) and N =
(nij,i′j′) ∈ SU(8) since any two orthogonal bases are
transformed by an unitary matrix. One sees that∑

(i,j),(k,l),
(s,t)̸=(0,0)

rij,kl,stAij ⊗ AU2
kl ⊗ BU3

st

=
∑

(i,j),(k,l),
(s,t)̸=(0,0)

∑
(k′,l′),(s′,t′)

̸=(0,0)

rij,kl,stmkl,k′l′ nst,s′t′ Aij ⊗ Ak′l′

⊗ Bs′t′

=
∑

(i,j),(k,l),
(s,t)̸=(0,0)

(
∑

(k′,l′),(s′,t′)
̸=(0,0)

mk′l′,klrij,k′l′,s′t′ ns′t′,st)Aij ⊗ Akl

⊗ Bst.

We have T 1|23
1 (ρ′) = M tT

1|23
1 (ρ)N and T

1|23
2 (ρ′) =

M tT
1|23
2 (ρ)N. Therefore,

∥T 1|23
1 (ρ′) − T

1|23
2 (ρ′)∥tr = ∥T 1|23

1 (ρ) − T
1|23
2 (ρ)∥tr,

(9)
due to that the singular values of a matrix are the
same as those of M tTN when M and N are unitary
matrices.

Theorem 4. If a mixed state ρ is fully separable,
then ∥T 1|23

1 − T
1|23
2 ∥tr ≤

√
3.

Proof If ρ = |φ⟩⟨φ| is fully separable, we have
|φ1|2|3⟩ = |φ1⟩ ⊗ |φ23⟩ ∈ H2

1 ⊗ H6
23, where

|φ23⟩ = |φ2⟩ ⊗ |φ3⟩ ∈ H2
2 ⊗ H3

3 . Then by Schmidt
decomposition, |φ1|2|3⟩ = t0|0α⟩ + t1|1β⟩, where
t20 + t21 = 1. Taking into account the local unitary
equivalence in H2

2 ⊗ H3
3 and using (9), we only

need to consider that {|α⟩, |β⟩} = {|00⟩, |01⟩}. Then
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|φ1|2|3⟩ = t0|000⟩ + t1|101⟩. T 1|23
1 and T 1|23

2 are given
by

T
1|23
1 =



0 t0t1 0
0 t0t1 0
0 0 0
0 t0t1 0
0 t0t1ω

2 0
0 0 0
0 t0t1 0
0 t0t1ω 0



t

, (10)

T
1|23
2 =



0 t0t1 0
0 −t0t1 0
0 0 0
0 t0t1 0
0 −t0t1ω2 0
0 0 0
0 t0t1 0
0 −t0t1ω 0



t

. (11)

with ω3 = 1. Therefore, we have

∥T 1|23
1 − T

1|23
2 ∥tr

=tr
√

(T 1|23
1 − T

1|23
2 )(T 1|23

1 − T
1|23
2 )†

=
√

12t20t21 ≤
√

3.

For a fully separable mixed state ρ =
∑
pi|φi⟩⟨φi|,

we get

∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr

=∥T 1|23
1 (

∑
pi|φi⟩⟨φi|) − T

1|23
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 1|23
1 (|φi⟩⟨φi|) − T

1|23
2 (|φi⟩⟨φi|)∥tr

≤
√

3,

which proves the theorem. □

Theorem 5. For any mixed state ρ =∑
pi|φi⟩⟨φi| ∈ H2

1 ⊗H2
2 ⊗H3

3 ,
∑
pi = 1, 0 < pi ≤ 1,

we have:
(1) If ρ is 1|23 separable, then ∥T 1|23

1 −T
1|23
2 ∥tr ≤

√
6;

(2) If ρ is 2|13 separable, then ∥T 2|13
1 −T

2|13
2 ∥tr ≤

√
6;

(3) If ρ is 3|12 separable, then ∥T 3|12
1 −T

3|12
2 ∥tr ≤

√
3.

Proof (1) If ρ = |φ⟩⟨φ| is 1|23 separable, we have
|φ1|23⟩ = |φ1⟩ ⊗ |φ23⟩ ∈ H2

1 ⊗ H6
23, where H6

23 =
H2

2 ⊗H3
3 . Then by Schmidt decomposition, one has

|φ1|23⟩ = t0|0α⟩ + t1|1β⟩, where t20 + t21 = 1. Taking
into account the local unitary equivalence in H2

2 ⊗H3
3

and using (9), we only need to consider two cases (i)
{|α⟩, |β⟩} = {|00⟩, |01⟩} and (ii) {|00⟩, |11⟩}.

For the first case we have ∥T 1|23
1 − T

1|23
2 ∥tr ≤

√
3

by Theorem 4. For the second case, we have |φ1|23⟩ =

t0|000⟩ + t1|111⟩, where T 1|23
1 and T

1|23
2 are given by

T
1|23
1 =



t0t1 0 t0t1
t0t1 0 −t0t1
0 0 0
t0t1 0 t0t1
t0t1ω

2 0 −t0t1ω2

0 0 0
t0t1 0 t0t1
t0t1ω 0 −t0t1ω



t

, (12)

T
1|23
2 =



t0t1 0 t0t1
−t0t1 0 t0t1

0 0 0
t0t1 0 t0t1

−t0t1ω2 0 t0t1ω
2

0 0 0
t0t1 0 t0t1

−t0t1ω 0 t0t1ω



t

. (13)

Then we have

∥T 1|23
1 − T

1|23
2 ∥tr

=tr
√

(T 1|23
1 − T

1|23
2 )(T 1|23

1 − T
1|23
2 )†

=
√

24t20t21 ≤
√

6.

Now consider mixed state ρ =
∑
pi|φi⟩⟨φi|. We

obtain

∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr

=∥T 1|23
1 (

∑
pi|φi⟩⟨φi|) − T

1|23
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 1|23
1 (|φi⟩⟨φi|) − T

1|23
2 (|φi⟩⟨φi|)∥tr,

namely, ∥T 1|23
1 (ρ) − T

1|23
2 (ρ)∥tr ≤

√
6.

(2) If ρ = |φ⟩⟨φ| is 2|13 separable, we have |φ2|13⟩ =
|φ2⟩ ⊗ |φ13⟩ ∈ H2

2 ⊗ H6
13, where H6

13 = H2
1 ⊗ H3

3 .
Then by Schmidt decomposition, one has |φ2|13⟩ =
t0|0α⟩+t1|1β⟩, where t20 +t21 = 1. Taking into account
the local unitary equivalence in H2

1 ⊗H3
3 , we obtain

a similar equation of (9). Thus we only need to con-
sider again the two cases (i) {|α⟩, |β⟩} = {|00⟩, |01⟩}
and (ii) {|00⟩, |11⟩}.

In the first case, |φ2|13⟩ = t0|000⟩ + t1|101⟩, and
T

2|13
1 and T 2|13

2 are zero matrices. In the second case,
|φ2|13⟩ = t0|000⟩ + t1|111⟩, with T 2|13

1 and T 2|13
2 given

by

T
2|13
1 =



t0t1 0 t0t1
t0t1 0 −t0t1
0 0 0
t0t1 0 t0t1
t0t1ω

2 0 −t0t1ω2

0 0 0
t0t1 0 t0t1
t0t1ω 0 −t0t1ω



t

, (14)
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T
2|13
2 =



t0t1 0 t0t1
−t0t1 0 t0t1

0 0 0
t0t1 0 t0t1

−t0t1ω2 0 t0t1ω
2

0 0 0
t0t1 0 t0t1

−t0t1ω 0 t0t1ω



t

. (15)

Then we have

∥T 2|13
1 − T

2|13
2 ∥tr

=tr
√

(T 2|13
1 − T

2|13
2 )(T 2|13

1 − T
2|13
2 )†

=
√

24t20t21 ≤
√

6.

For the mixed state ρ =
∑
pi|φi⟩⟨φi|, we have

∥T 2|13
1 (ρ) − T

2|13
2 (ρ)∥tr

=∥T 2|13
1 (

∑
pi|φi⟩⟨φi|) − T

2|13
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 2|13
1 (|φi⟩⟨φi|) − T

2|13
2 (|φi⟩⟨φi|)∥tr

≤
√

6.

(3) If ρ = |φ⟩⟨φ| is 3|12 separable, we have |φ3|12⟩ =
|φ3⟩⊗|φ12⟩ ∈ H3

3 ⊗H4
12, where H4

12 = H2
1 ⊗H2

2 . Then
by Schmidt decomposition, we have |φ3|12⟩ = t0|0α0⟩+
t1|1α1⟩ + t2|2α2⟩, where t20 + t21 + t22 = 1. Taking into
account the local unitary equivalence in H2

1 ⊗ H2
2 ,

we obtain similar equation of (9). We only need to
consider the case |φ3|12⟩ = t0|000⟩ + t1|101⟩ + t2|210⟩.
We have

T
3|12
1 =

 0 0 0
0 t20 − ωt21 + ω2t22 0
0 0 0

 ,
T

3|12
2 =

 0 0 0
0 t20 − ω2t21 + ωt22 0
0 0 0

 .
(16)

Using 1 + ω + ω2 = 0, we have

∥T 3|12
1 − T

3|12
2 ∥tr

=tr
√

(T 3|12
1 − T

3|12
2 )(T 3|12

1 − T
3|12
2 )†

=
√

3(t20 + t21)2 ≤
√

3.

For the mixed state ρ =
∑
pi|φi⟩⟨φi|, we get

∥T 3|12
1 (ρ) − T

3|12
2 (ρ)∥tr

=∥T 3|12
1 (

∑
pi|φi⟩⟨φi|) − T

3|12
2 (

∑
pi|φi⟩⟨φi|)∥tr

≤
∑

pi∥T 3|12
1 (|φi⟩⟨φi|) − T

3|12
2 (|φi⟩⟨φi|)∥tr

≤
√

3.

As an example, let us consider the 2 ⊗ 2 ⊗ 3 state,

ρ = x|GHZ ′⟩⟨GHZ ′| + (1 − x)I12, 0 ≤ x ≤ 1,

where |GHZ ′⟩ = 1
2 (|000⟩ + |101⟩ + |011⟩ + |112⟩). By

Theorem 4, we have that when ∥T 1|23
1 − T

1|23
2 ∥ =

(2
√

3
2 + 1)x >

√
3, i.e., 0.5021 < x ≤ 1, ρ is not fully

separable. By Theorem 5, when ∥T 1|23
1 − T

1|23
2 ∥ =

∥T 2|13
1 − T

2|13
2 ∥ = (2

√
3
2 + 1)x >

√
6, i.e., 0.7101 <

x ≤ 1, ρ is not separable under bipartition 1|23 or 2|13.
When ∥T 3|12

1 − T
3|12
2 ∥ = 7

√
3

4 x >
√

3, i.e., 0.5714 <
x ≤ 1, ρ is not separable under bipartition 3|12.

4. Conclusions
We have presented quantum upper bounds for triqutrit
mixed states by using the generalized Bell functions
and the generalized three dimensional Pauli opera-
tors, from which the triqutrit entanglement has been
identified. Our inequalities distinguish fully separa-
ble states and three types of bi-separable states for
triqutrit states. Moreover, any triqutrits states are
confined in a cube with size 5

4 × 5
4 × 5

4 and the bi-
separable states are in a cube with the size 3

4 × 3
4 × 3

4 .
We have also studied the classification of quantum
entanglement for 2 ⊗ 2 ⊗ 3 systems by using the cor-
relation tensors in the principal basis representation
of density matrices. By considering the upper bounds
on some the trace norms, we have obtained the cri-
teria which detect fully separable and bi-separable
2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example
has been given to show the classification of tripartite
entanglement by using our criteria.
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